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Abstract

The increasing cost of randomised controlled trials is hindering the rate at which new,

effective therapies reach patients. To accelerate drug development, more efficient clinical

trial designs are needed. One such design which has had success in speeding up the evalu-

ation of therapies in cancer is the multi-arm multi-stage (MAMS) design. This particular

design compares multiple new treatments against a control in a single trial, obviating

the need for multiple two-arm studies, and ceases recruitment to poorly performing arms

during the study. To further increase efficiency, interim assessments can be based on an

intermediate outcome which is on the causal pathway to the primary outcome of the trial,

thus allowing phases 2 and 3 of evaluation to be incorporated into a single, seamless design.

The MAMS design was initially developed for trials in cancer where time to event outcomes

are commonly used. To make it more widely applicable to other disease areas, we first

extend the design to other types of outcome measure such as binary. The new designs

are then applied to trials in tuberculosis — a disease area with many new treatments

currently in the clinical pipeline and which may therefore benefit from using more efficient

trial designs.

We then consider more general design issues such as familywise error rate and expected

sample size and present calculations of both measures using simulation. Methods are

developed for finding designs which have the desired overall operating characteristics and

which are the most efficient under particular optimality criteria, known as admissible

designs. Guidance is provided for choosing the number of stages and allocation ratio for a

particular number of arms and we apply the methods developed in the thesis to existing

and hypothetical MAMS trials. Throughout, Stata programs are created and updated to

accommodate the use of the methods in practice.
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Chapter 1

Introduction

1.1 Context of the research

Recent advances in basic biomedical science, such as the sequencing of the human genome,

have broadened our understanding of many disease areas and have raised the prospect of

new, more effective and safer therapies for patients. However, in 2004 the US Food and

Drug Administration (FDA) reported a slowdown rather than an expected increase in

the number of new therapies reaching patients over the preceding ten years, despite an

increase in drug research and development spending [1]. A major barrier to research is

the escalating cost of bringing a drug to market which is estimated to have increased from

an average of US$802 million in 2003 to US$1.3–1.7 billion in 2009 [2]. Such high costs

limit the number of drugs that can be evaluated at any time and in particular discourage

investment in therapies for uncommon diseases or diseases of poverty because the costs

are not likely to be recouped [1].

A major cause of the slowdown in drug approval is what Scannell et al. [3] refer to as the

‘better than the Beatles’ problem. This states that because existing therapies for many

conditions are already highly effective, new therapies do not gain market approval as they

only carry a small or no additional benefit. In order to detect the small effects that new

treatments might have over existing therapies, the size of clinical trials has to increase,

thus escalating the cost of treatment evaluation. Another cause is that regulators are more

cautious now than in the past and are therefore increasing the number of hurdles that have

to be passed for a drug to reach the market [3]. As a result, new medical compounds in

phase I have only an 8% chance of reaching the market compared to a 14% chance 15

years ago [4].
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The cost of drug development is exacerbated by the inefficiency of conventional clinical trial

designs whereby each new treatment is compared to a control in a separate fixed-sample

trial. This inefficient process means that new drugs cannot be assessed as quickly as they

are created and delays the time between trial design and market approval. To combat

this, the FDA introduced the Critical Path Initiative in 2004 which seeks to improve and

accelerate the drug development process through the use of new scientific tools [5, 6].

O’Neill [4] has outlined the areas where, in his view, biostatistics can contribute to the

FDA’s goal. One of these areas is adaptive study designs, defined as a “multistage study

design that uses accumulating data to decide how to modify aspects of the study without

undermining the validity and integrity of the trial” [7]. Such designs are more flexible

than conventional fixed-sample designs and can help to streamline and increase the success

rate of clinical trials. One way they achieve this is by allowing recruitment to arms to

be stopped prematurely at interim analyses if an experimental treatment is performing

significantly worse or no better than control, thus saving time and resources for evaluating

more promising therapies. Such an approach is particularly useful when there are several

new therapies to evaluate in a single trial, so that only the most promising treatments are

selected for further evaluation.

There are a vast number of modifications other than treatment selection that could be

made in an adaptive design. These include but are not constrained to: adaptive randomi-

sation, whereby the allocation ratio adapts to favour the most promising treatment as

the trial progresses; sample size re-estimation, which allows the sample size of the trial

to be altered at an interim analysis based on observed results to increase power; enrich-

ment designs which allow the patient population to change; and designs which allow the

hypothesis or primary endpoint to change during the course of the trial [8, 9].

In this introductory chapter, a range of clinical trial designs which aim to improve the

efficiency of drug development are reviewed. We begin with multi-arm trial designs which

obviate the need for separate trials of each new treatment by assessing them all in a

single trial. Next, we touch upon seamless designs which reduce sample size requirements

by combining two consecutive phases of testing into a single trial, thus allowing patients

from the first phase to also be included in the analysis of the final phase should the trial

reach that point. In the main section of this chapter, various adaptive treatment selection

designs, which can combine the advantages of multi-arm and seamless designs in a single

trial, are discussed. Such designs operate by selecting a subset of treatment arms at

an interim analysis to continue for further assessment in the trial and can stop the trial

prematurely if no arms are effective or if an arm shows overwhelming benefit over the

control. Designs in which treatment selection is based on the primary outcome of the
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trial, some short-term outcome measure or both are considered.

An area which might benefit from such designs in the future is tuberculosis (TB) [10]

— a disease which is still highly prevalent in many developing countries and for which

many new treatments are currently in the clinical pipeline [11]. The current TB clinical

development programme is outlined and reasons why a new approach to TB treatment

evaluation is needed are given. A particular adaptive design has been suggested as an

ideal candidate for use in TB following its success in cancer trials and we briefly review

the challenges in applying this design to this area. Lastly, the objectives for this thesis

are given.

1.2 Conventional trial designs

New drugs which are shown to be safe in phase 1 trials are often continued to phase 2

testing where they may be assessed alone, against a standard treatment or a placebo on a

short-term outcome. Promising treatments are then evaluated in larger phase 3 trials, often

on a longer-term outcome which has direct relevance to the patient. In the conventional

approach to treatment evaluation, phase 2 and 3 trials are conducted separately with no

overlap in the patients recruited and analysed in each study. This process is inefficient for

several reasons:

1. By not continuing follow-up of the participants in the phase 2 trial and excluding

them from the analysis of the phase 3 trial, one has to recruit the required number

of patients for the phase 3 trial from scratch. Thus the total sample size over both

phases will be larger than might otherwise be required. The most efficient use of

resources is therefore not made.

2. Conducting separate trials means that an often lengthy pause is required between

phases to allow the phase 2 data to be analysed and interpreted and for the phase

3 trial to be designed, thus prolonging treatment evaluation. Furthermore, separate

protocols and approvals are required for each study which increases the administra-

tive burden. Although this interval is often important to allow the phase 3 trial to

be designed more appropriately with the hindsight of the phase 2 results, in some

cases it might not be necessary [12].

3. When several treatments are simultaneously available for testing, they are often

evaluated in separate trials each with its own control arm. Thus several control

arms are required which can increase the demand on patient resources.
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1.3 Multi-arm designs

In some disease areas there are often several new treatments available for testing at any

point in time. For example, in TB there are currently at least ten new or repurposed

drugs in clinical development [13] while in cancer there are over 1500 [14]. Testing each

new treatment in its own trial is inefficient as it requires the use of multiple control arms.

To reduce sample size requirements and decrease the administrative burden associated

with multiple trials, all new treatments could instead be compared to a common control

arm in a single, multi-arm trial (see Figure 1.1). For example, comparing four experimental

arms in parallel to a single control (five-arm trial) reduces the required sample size by 37%

compared to four separate two-arm trials if no adjustments for multiple testing are made.

In general, comparing K experimental arms to a single control reduces the overall sample

size by a factor of (K − 1)/2K compared to K separate two-arm trials [15].

Figure 1.1: Increased efficiency of a multi-arm design compared to separate two-arm trials
for each experimental arm (Ei) against the control treatment (C).

1.3.1 Multiplicity issues

Despite the benefits of increased efficiency, multi-arm trials bring about several challenges

including the issue of multiplicity [16]. By making several treatment comparisons in a sin-

gle trial, the chance of finding at least one false-positive result, known as the familywise

error rate (FWER), is likely to be higher than the significance level at which each compar-
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ison is made [17]. For instance, if several arms are each compared at the 5% significance

level against a common control then the maximum probability of finding at least one false

positive result will be higher than 5% with the inflation being greater for a larger number

of comparisons.

There is much disagreement in the literature about whether the FWER should be con-

trolled in a multi-arm study at some conventional level or whether it suffices to control

the type I error rate for each pairwise comparison (PWER). A common argument against

adjustment is that if each experimental arm was compared to a control in its own two-arm

study then no adjustment for multiple testing would be made across studies [18]. Wason

et al. [19] give an interesting analogy to this for multiple primary outcomes: one could test

each outcome in its own trial without requiring a correction for multiple testing, however,

if they were all evaluated in a single trial then such a correction would be encouraged

by regulatory bodies. As a general rule, the European Medicines Agency state that a

‘minimal prerequisite’ in confirmatory trials is to control the FWER in the ‘strong sense’,

that is, limiting the maximum probability of making at least one false positive [20]. In

addition, control is mandatory in dose response studies that are aimed at recommending

the dose of a drug for future trials. FWER control is not required for exploratory multi-

arm studies such as phase 2 trials, however, Wason et al. [19] suggest that the FWER is a

more important quantity to control than the PWER as it limits the maximum probability

of continuing an ineffective treatment to a potentially resource-intensive phase 3 trial.

Freidlin et al. [15] argue that the decision to control the FWER depends on the relatedness

of the questions that the study is attempting to answer. For instance, if the evaluation

of each treatment arm can be viewed as separate experiments and a multi-arm trial was

used purely for reasons of efficiency, then not controlling the FWER may be justified.

Alternatively, the same might apply for a trial in which the results of one arm will have

no direct influence on the results of other arms, or if one positive result will not mean a

positive result for the trial as a whole. On the other hand, if the multi-arm trial can be

regarded as a family of experiments such as a trial evaluating the effectiveness of several

doses or schedules of the same drug, then multiplicity adjustment should be made [21].

1.3.1.1 Bonferroni and Dunnett corrections

The are various methods for controlling the FWER of a multi-arm trial. The simplest

approach is the Bonferroni correction whereby each of the K pairwise comparisons is

conducted at the α/K significance level to ensure the maximum FWER is no higher than

α. This adjustment is simple to implement as it assumes that the observed treatment
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effects are independent of each other. However, the use of a common control arm induces a

correlation between the comparisons, thus making the Bonferroni adjustment conservative

(i.e. the actual type I error rate will be lower than the nominal level). This results in

reduced power or a trial which is larger than necessary. A more powerful multiplicity

adjustment is via the method described by Dunnett [22] which accounts for the between-

arm correlation by considering the joint distribution of the test statistics. Assuming these

test statistics follow a multivariate normal distribution, the FWER can be controlled at

some prespecified level, α, by comparing each of the K experimental arms against the

control at the significance level αp which satisfies

α = ΦK(zαp , . . . , zαp ; ρ)

where ΦK is the K-dimensional multivariate normal distribution function, ρ is the K×K
between-arm correlation matrix with (i, j)th entry equal to A/(A + 1) if i 6= j and 1

otherwise (i, j = 1, . . . ,K), and A is the number of patients allocated to each experimental

arm for each patient allocated to control (i.e. the allocation ratio).

1.3.1.2 Closure principle

Another multiple testing procedure which underpins nearly all other multiple testing pro-

cedures and controls the FWER in the strong sense is the closure principle [16, 23]. This

principle states that a null hypothesis, Hk, in a set of K null hypotheses H1, . . . ,HK may

be rejected at the α level if Hk and all intersection hypotheses containing Hk are also

rejected at the α level. For instance, if there are two treatment arms to be compared

against a common control, then the null-hypothesis H1 may be rejected at the α level if

H1 and H1 ∩H2 are both rejected at the α level.

A simple rejection procedure which uses the closure principle and is more powerful than

the Bonferroni test is the Holm procedure [24]. This test applies the Bonferroni procedure

to the intersection hypothesis H1 ∩ H2. In other words, if pk is the p-value for the test

of hypothesis Hk then H1 is rejected if either (a) p1 < α/2 or (b) p1 < α and p2 < α/2.

Likewise, H2 is rejected if either (a) p2 < α/2 or (b) p2 < α and p1 < α/2. For similar

reasons to those stated above, applying a Dunnett test rather than a Bonferroni correction

to the intersection hypothesis will increase power further if comparisons are correlated.
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1.4 Seamless designs

To eliminate the often lengthy interval between phase 2 and 3 trials, the different phases

can be combined into a single ‘seamless’ trial. In its simplest form, such a trial is conducted

in two stages. The first stage most resembles a phase 2 trial in which an experimental

treatment is compared to a control, often on a short-term outcome. Based on the observed

data, recruitment continues into the second stage of the trial at the end of which the arms

are compared on the phase 3 outcome. A seamless trial which incorporates phases 2 and

3 of testing is often denoted as a phase 2/3 design and an example of such a trial with one

interim analysis is shown in Figure 1.2.

Figure 1.2: Conventional and seamless approaches to phase 2 and 3 trials.

Unlike the conventional approach, the phase 3 analysis in the seamless design uses follow-

up data from all patients recruited over both stages of the trial. This avoids the need to

recruit the required sample size for the phase 3 analysis from scratch and thus reduces

the maximum number of patients required [25]. Another major advantage of a seamless

design is that it can combine two studies into a single trial and thus reduces the number

of protocols, control arms, trial teams, ethical approvals etc, leading to a more rapid and

less resource-intensive evaluation of new treatments [26].

Such designs however, come with challenges. For instance, the design of the phase 3 aspect

of the trial might have to be based only on phase 1 data as the phase 2 study would yet

to have taken place. Sample size estimates are therefore prone to being under or overesti-

mated if, say, insufficient data are available to reliably estimate nuisance parameters. In

addition, phase 2 trials often provide insights into other design aspects of phase 3 trials

such as follow-up frequencies, endpoints and design conduct as well as ways to improve

enrolment, adherence and retention rates [27]. Although seamless designs remove the in-

terlude between phases 2 and 3, Emerson and Fleming [27] argue that this benefit is lost
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by the need for more time to design the trial.

Nonetheless, the increased use of designs which both simultaneously evaluate multiple

treatment arms and adopt a seamless approach to treatment evaluation are likely to greatly

increase the efficiency of the drug development process. In the next section, various

treatment selection designs in which this approach could be implemented are described.

1.5 Treatment selection designs

Like conventional two-arm designs, conventional multi-arm trials recruit a fixed, prede-

termined sample size to each arm before the analysis takes place. Hence there is no

opportunity to cease recruitment to arms which are showing benefit or harm over the

control as the trial is progressing, except in very extreme scenarios in which it would be

unethical to continue the trial. Furthermore, an arm might be performing no better than

control during the trial in which case it would be futile to continue recruitment since a

positive result is not likely to be observed in the final analysis. Prematurely terminat-

ing recruitment to such arms can therefore save resources for evaluating potentially more

promising treatments in the future. Multi-arm trial designs which allow such stopping de-

cisions to be made during the trial are therefore likely to further streamline the treatment

evaluation process over fixed-sample multi-arm designs.

1.5.1 Early designs

In 1988, Thall et al. [28] introduced a multi-arm two-stage selection procedure for binary

outcomes in which the trial is terminated at the end of the first stage without rejection

of the null hypothesis, H0, if no experimental arm is sufficiently better than control.

Otherwise, recruitment continues to the treatment with the highest success rate and the

control in the second stage of the trial culminating in a one-sided between-arm comparison

using all patients recruited to the two arms over both stages.

The design of Thall et al. [28] was motivated by the fact that when several experimental

treatments are ready for testing, there are not always sufficient numbers of patients avail-

able to fully evaluate each one relative to a control. To avoid a lengthy trial in such a

scenario, selecting only the most promising treatment early on in the study reduces sam-

ple size requirements compared to a multi-arm one-stage trial which does not implement

a selection procedure. The relative reductions in sample size increase with the number

of arms included in the trial [28]. In particular, when H0 is true for all arms, the design
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roughly has a 50% chance of terminating at the end of the first stage, thus saving resources

that would otherwise be spent on evaluating an ineffective treatment to the planned end

of the study. To further improve efficiency, the authors present stopping boundaries for

several designs which minimise a weighted sum of the expected sample size (i.e. the av-

erage number of patients recruited to the trial if it is performed multiple times) under

the null and alternative hypotheses. Importantly, Jennison and Turnbull [29] showed that

the FWER is protected under any parameter configuration and hence is controlled in the

strong sense in this design.

A similar two-stage selection procedure for binary outcomes which allows only a single arm

to continue to the final stage of the study was proposed by Thall et al. [30]. Unlike the

previous design, a control arm is not included in the first stage. Instead, a predetermined

threshold based on prior clinical experience is used to decide whether to continue the arm

with the highest success rate to the second stage of the study. In the second stage, patients

are randomised to the selected treatment or a control and only these patients are included

in the comparison of the two arms at the end of the study.

The authors justify the absence of a control arm in the first stage by suggesting that most

new therapies do not have a clinically meaningful benefit over existing therapies and so

the second stage is not likely to be required. As a result, the expected sample size (ESS)

under the global null hypothesis, HG (i.e. when H0 is true for all arms), is smaller than

in the previous design [28]. However, the ESS under the alternative hypothesis is larger

since stage 1 patients are not used in the comparison at the end of stage 2 and so a larger

sample size needs to be recruited to arms which pass the interim analysis.

The designs of Thall et al. [28, 30] are most appropriate when one experimental arm, at

most, is likely to have a substantial benefit over the control on the primary outcome. This

is because only a single treatment arm may be evaluated against the control at the end

of the second stage. Otherwise the effects of other beneficial experimental arms are likely

to be missed. Moreover, simply choosing the treatment which is the best performing on

a single outcome ignores other potentially important aspects such as safety, acceptability

and cost-benefit.

A more flexible two-stage selection design where any number of arms can continue to the

second stage was proposed by Schaid et al. [31] for time to event outcomes. In their design,

several treatments are compared to a control in the first stage. An analysis takes places at

time t1 with the trial being terminated with rejection of H0 if any arm shows a substantial

advantage over the control. Otherwise recruitment continues to the second stage of the

trial to all arms with a treatment effect exceeding some lower boundary which indicates
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no effect over control. The flexibility of allowing more than one arm to continue beyond

the first stage is important, particularly in trials with time to event outcomes as survival

advantages may not become apparent until later in the trial. Moreover, this flexibility

avoids arbitrarily choosing the best performing treatment when several arms may also

have a similar effect.

1.5.2 Group sequential approaches

1.5.2.1 Two-arm group sequential designs

To introduce the group-sequential approach to trial design we first consider the comparison

of one experimental treatment (E) to a control (C). Let θ denote the treatment effect

of E over C which may be summarised, for example, as an absolute difference between

means for continuous outcome data, a log-odds ratio for binary outcome data or a log

hazard-ratio for time to event data. Furthermore, suppose θ > 0 and θ < 0 correspond

to a beneficial and harmful effect respectively of E over C and θ = 0 corresponds to no

effect.

For a group sequential trial with a maximum of J analyses, let θ̂j denote the maximum

likelihood estimate of θ based on all primary outcome data collected up to and including

stage j (j = 1, . . . , J). In the above examples, θ̂j is normally distributed with θ̂j ∼
N(θ, 1/Ij) where Ij is the Fisher information for θ at analysis j (Ij = 1/Var(θ̂j)). A

group sequential test of H0 is often based on the score statistic Sj = θ̂jIj or the Wald test

statistic Zj = Sj/
√
Ij [32]. In both cases, Sj and Zj are normally distributed with

Sj ∼ N(θIj , Ij)

Zj ∼ N(θ
√
Ij , 1)

Details for calculating score statistics for various types of outcome data can be found

in [33].

In a group sequential trial testing the null hypothesis H0 : θ = 0 against the two-sided

alternative H1 : θ 6= 0, the absolute value of the test statistic of choice, Tj = Sj or Zj ,

is compared to a corresponding critical value cj ≥ 0 at a series of interim analyses which

occur when outcome data from a predetermined number of patients have been observed.

At analysis j, if Tj ≥ cj or Tj ≤ −cj then H0 is rejected and the trial terminated with the

conclusion that E is superior or inferior to C respectively. If |Tj | < cj then recruitment

continues to the next planned interim analysis. If, at the final analysis, |TJ | < cJ then the
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trial terminates without rejection of H0.

For a prespecified type I error rate α, the critical values cj (j = 1, . . . , J) are calculated

to satisfy

P (|T1| ≥ c1 ∪ · · · ∪ |TJ | ≥ cJ | H0) = α. (1.1)

This can be achieved using recursive numerical integration as described in Chapter 19 of

[34]. Wang and Tsiatis [35] proposed a family of two-sided group-sequential test boundaries

indexed by parameter ∆ in which the critical values for the standardised test statistic are

given by cj = C(j/J)∆−1/2. The constant C is found to satisfy (1.1) and analyses are

assumed to be equally spaced. Special cases are the well-known Pocock (∆ = 1/2) [36] and

O’Brien and Fleming (OB&F) (∆ = 0) [37] boundaries; examples of which are presented

in Figure 1.3 on the Wald statistic scale (Zj) for a trial with J = 5 equally spaced

interim analyses, 5% type I error rate and 90% power. Also shown in Figure 1.3 are the

critical values for a conventional fixed-sample (1-stage) design with the same operating

characteristics.
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Figure 1.3: Two-sided group-sequential boundaries for Pocock’s and O’Brien and Flem-
ing’s designs with 5% type I error rate, 90% power and five equally spaced analyses.

The critical values for Pocock’s test are the same at each interim analysis while those for

OB&F’s test start at extreme levels and decrease with each stage. The implication is that

the OB&F test requires stronger evidence for rejecting H0 at earlier stages when sample
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sizes are likely to be small and spurious results have a reasonable chance of occurring [34].

Thresholds become more relaxed at later stages to the point that they are less stringent

than those of Pocock and are almost similar to the critical values for the corresponding

fixed-sample trial. As a result, the maximum duration of the Pocock test is much longer

than that for the OB&F test (see Figure 1.3). However, the Pocock test tends to require

smaller average sample sizes for large treatment effects because the probability of earlier

termination with rejection of H0 is greater [34].

Many clinical trials may only be interested in testing for an effect in a single direction

(e.g. a positive effect of E over C). In such cases the null hypothesis H0 : θ ≤ 0 is

tested against the one-sided alternative H1 : θ > 0. To test such a hypothesis in a group

sequential trial Tj is compared to lower and upper critical values lj and uj respectively at

analysis j. If Tj ≥ uj , the trial is stopped and H0 is rejected. If Tj ≤ lj , the trial is stopped

without rejection of H0. If Tj lies within the region (lj , uj), known as the continuation

region, then the trial continues to the next interim analysis. Upper and lower stopping

boundaries are equal in the final analysis (lJ = uJ) to ensure that the trial is terminated

no later than this point [32]. The magnitude of the upper and lower stopping limits are

not equal at every analyses (uj 6= −lj) so the stopping boundaries are asymmetric. This

in contrast to the two-sided stopping boundaries above which were symmetric (uj = lj

for all j), although asymmetric boundaries may be used in a two-sided group sequential

test [38].

A common choice for an asymmetric one-sided group sequential test is the triangular

test [39], so called for its triangular shape on the score statistic scale. An example is

shown in Figure 1.4 for a design with 5% type I error rate, 90% power and five equally

spaced analyses.

Such designs are more efficient when testing ineffective treatments (i.e. when θ = 0) than

the two-sided group sequential tests described above since the latter do not allow for early

stopping to accept H0. They therefore often proceed to the maximum required sample

size under H0 whereas there is a much smaller chance of this occurring in a triangular

test [34].

When the number of interim analyses or group sizes are not equal to their design values,

the actual type I error rate and power of the group sequential designs described above can

deviate from their nominal levels (e.g. see Table 3.1 in [34]). These requirements may not

be met in practice if, say, more interim analyses than initially planned are performed due

to a slower than anticipated recruitment rate. A more flexible approach for calculating the

critical values at each analysis is via the use an alpha-spending function which does not
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Figure 1.4: Group-sequential boundaries for a triangular test

require the number or frequency of interim analyses to be prespecified in advance [40,41].

This approach works by allocating a certain amount of the overall α to the interim analysis

depending on the timing of all previous interim analyses. More formally, a two-sided α-

spending function is a non-decreasing function α∗ : [0, 1] → [0, α] with α∗(0) = 0 and

α∗(1) = α such that, at the jth interim analysis,

P (|T1| < c1, . . . , |Tj−1| < cj−1, |Tj | ≥ cj | H0) = α∗(tj)− α∗(tj−1)

where tj = Ij/IJ is the fraction of the maximum information observed at the jth analysis.

For a prespecified alpha-spending function, the corresponding critical value, cj , can be

calculated via recursive numerical integration as described in Chapter 7 of [34].

When group sizes are equal, the alpha-spending functions

α∗(t) = 2(1− Φ(zα/2/
√
t))

and

α∗(t) = α log(1− (e− 1)t)

yield similar critical values to those of the O’Brien and Fleming and Pocock tests re-

spectively [40]. However, by using an alpha-spending function, the timing and number of

interim analyses does not have to be pre-specified.
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For a one-sided test, a similar function, α∗U , can be used to calculate the efficacy stopping

boundaries u1, . . . , uJ such that

P (T1 ∈ (l1, u1), . . . , Tj−1 ∈ (lj−1, uj−1), Tj ≥ uj | H0) = α∗U (tj)− α∗U (tj−1)

where α∗U (0) = 0 and α∗U (1) = α

In a similar manner, l1, . . . , lJ can be calculated using an analogous β-spending function

[42] where β is the desired type II error rate, or a ‘(1 − α)’-spending function, α∗L, such

that

P (T1 ∈ (l1, u1), . . . , Tj−1 ∈ (lj−1, uj−1), Tj ≤ lj | H0) = α∗L(tj)− α∗L(tj−1)

where α∗L(0) = 0 and α∗L(1) = 1− α [43].

1.5.2.2 Multi-arm group sequential designs

Follmann et al. [44] extend the α-spending function of Lan and DeMets [40] to a multi-

arm setting to allow monitoring of pairwise comparisons between all arms or between

each experimental arm and the control. Strong control of the FWER is achieved by

generalising Dunnett’s procedure [22] (or Tukey’s procedure [45] in the case of monitoring

all pairwise comparisons) to a multi-arm group-sequential setting. Critical values are

calculated via simulation which can be computationally intensive and so the authors also

consider a much simpler Bonferroni correction. Although this is more conservative that the

Dunnett correction, the authors show that the increase in the critical values for multi-arm

analogues of the Pocock [36] and O’Brien and Fleming [37] designs is small, particularly

for smaller α [44]. Furthermore, a Bonferroni correction permits greater flexibility by

allowing different boundaries to be used for different arms, such as a Pocock boundary for

one arm and an O’Brien and Fleming boundary for another.

In the design of Follmann et al. [44] which compares experimental arms to a common

control, arms are dropped from the trial if they are significantly inferior to control at

the interim analysis. To increase power, the authors propose a sequentially rejective

procedure [24] in which boundaries are relaxed for remaining arms if other treatments are

dropped during the course of the trial. For instance, if Kj arms remain at the jth analysis

then the jth significance level corresponding to a group sequential procedure with overall

significance level α/Kj may be used without inflating the FWER. Although dropping arms

for inferiority during the trial can increase efficiency over a fixed sample design, such a

procedure is arguably too stringent, particularly when there is a pressing need to find at
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least one effective new treatment or when resources are limited [46]. Designs which allow

arms to be dropped without rejection of H0 (i.e. for lack-of-benefit) are therefore likely to

be more appealing in practice.

One such design is the multi-stage design proposed by Stallard and Todd [47] which selects

the most promising of several treatments at the end of the first stage. This design extends

the methods of Thall et al. [28] and Schaid et al. [31] in two ways. First, the use of the

efficient score as a test statistic makes the design applicable to trials with either binary,

time to event or normally distributed outcomes and allows for adjustment of covariates.

Second, the design allows the selected treatment to be compared with the control at a

number of interim analyses after the first stage. This increases efficiency above that of

the two earlier designs by allowing the trial to be stopped early with rejection of H0 at

the jth analysis if the score statistic, Sj , exceeds some upper efficacy boundary, uj , or

without rejection of H0 if Sj is less than some futility boundary, lj . If lj < Sj < uj then

the experimental and control arms continue to the next stage of the trial. Upper efficacy

and lower futility boundaries can be calculated using the spending functions described

in Section 1.5.2.1 [40, 42, 43]. These boundaries are also applied in the analysis of the

‘selection’ (first) stage so that if the effect of the most promising treatment lies outside

the continuation region then the trial is terminated at that point with the appropriate

conclusion made.

Like the design of Thall et al. [28], the design by Stallard and Todd [47] is applicable

when it is acceptable to select any one treatment from a group of treatments which are

superior to control. An example might be when evaluating different doses or schedules of

a particular drug. Importantly, the most promising treatment need not always be selected

at the end of the first stage and other outcomes such as safety could play a role in the

decision making process. In such a scenario, the test will be conservative as the type I

error rate will be smaller than the desired value [32]. Use of this design is less appropriate

if the best of several effective treatments is to be selected, in which case a design which

allows more than one arm to continue beyond the first stage is required to allow more

data on each arm to be collected and a more informed selection decision to be made [47].

Such a design, however, is likely to need a much larger sample size.

In practice, the constraint of allowing only one arm to continue beyond the first interim

analysis is likely to be too restrictive. The design by Stallard and Todd [47] can be

generalised further by allowing any number of treatment arms to continue beyond each

stage. Stallard and Friede [48] proposed such a design which controls the FWER in the

strong sense if the number of arms to be included in each stage is specified in advance of

the trial commencing, regardless of which arms are actually continued during the course
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of the trial. This is achieved by considering the sum of the largest increments in the

score statistics of all remaining arms in each stage under the global null hypothesis and

constructing stopping boundaries using an alpha-spending function based on this maximal

value. Since the largest score statistic for an individual arm will be no higher than this

maximal sum, the test is conservative under the global null hypothesis [32].

Although this approach is more flexible than that of Stallard and Todd [47], specifying the

number of arms in each stage may still be impractical. Stallard and Friede [48] therefore

consider the possibility of making a data-dependent choice on the number of arms which

continue to the next stage of the trial using a method proposed by Kelly et al. [49]. In

this procedure, recruitment to the ith treatment arm is continued to the next stage if

θ̂i ≥ θ̂max − ε, where θ̂i is the observed treatment effect for arm i, θ̂max is the largest

observed effect and ε ≥ 0 is some prespecified constant. If ε = 0 then the design is

equivalent to that proposed by Stallard and Todd [47] since only the best performing

treatment is continued. Friede and Stallard [50] investigate error rates using this rule and

show that while the FWER is still strongly controlled, the degree of conservatism increases

for larger ε.

There are clear limitations in designs which only drop arms for inferiority (e.g. [44]), select

only one treatment at the interim analysis (e.g. [47]), or prespecify the number of arms

allowed in each stage of the trial (e.g. [48]). Acknowledging this, Magirr et al. [46] proposed

a more flexible multi-arm multi-stage design for normally distributed outcomes in which

the number of treatment arms in each stage does not have to be specified in advance of the

trial commencing. Instead, arms can be dropped for futility at interim analyses or the trial

may terminate with rejection of H0 if at least one treatment is shown to be sufficiently

superior to control. By generalising the Dunnett test [22] to a multi-stage trial, stopping

boundaries are derived such that the FWER is controlled in the strong sense.

The approach of Magirr et al. [46] differs to that of Follmann et al. [44] by allowing futility

stopping boundaries to be implemented. For example, the familiar Pocock or O’Brien and

Fleming efficacy boundaries can be used with a constant zero futility boundary added so

that any arms which perform no better than control are dropped from the study. Al-

ternatively, the more efficient triangular test boundaries [39] can be used. Any number

of patients per arm per stage is permitted, although practical constraints such as equal

numbers of patients on each experimental arm are considered. Calculation of stopping

boundaries is via numerical integration which can be computationally intensive partic-

ularly for designs with a large number of arms and stages. However, faster performing

simulation techniques have more recently been proposed [51].
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Jaki and Magirr [52] extend the methods of Magirr et al. [46] to accommodate non-

normally distributed endpoints and assess the impact of deviations to the planned design.

They showed that incorrectly continuing arms which fall below the futility boundary in-

flates the FWER and thus recommend that the futility boundaries are ‘binding’. This

might not be desirable in practice since the decision to drop an arm for futility may de-

pend on several factors [53]. For instance, an arm could appear ineffective on the outcome

on which early stopping is based but appear much more beneficial on other outcomes, thus

making it desirable to study further.

A design for monitoring multiple doses which provides the practical flexibility of non-

binding futility boundaries while controlling the FWER in the strong sense was proposed

by Chen et al. [53]. This flexibility is achieved by deriving the efficacy boundary under

the assumption of no stopping for futility so that it is not relaxed to account for the

increased chance of stopping without rejection of H0 at each analysis. Adding a stopping

boundary for futility therefore decreases the type I error rate below its nominal level,

however, the trade-off is that arms do not necessarily have to be dropped for futility if

they fall below this boundary. Similarly, power is computed assuming no stopping for

futility and so adding such a stopping rule increases the risk of dropping an arm without

rejection of H0, thus decreasing power (by as much as 6% in some instances [53]). Efficacy

boundaries are calculated using either a joint monitoring procedure, whereby all pairwise

comparisons are monitored using a single alpha-spending function [40], or using a marginal

monitoring approach in which the desired FWER is divided between comparisons (e.g.

using a Bonferroni or Dunnett-type correction) and a separate alpha-spending function is

used for each.

1.5.3 Other treatment selection designs

1.5.3.1 Combination test approach

Other approaches to monitoring of multi-arm trials have been proposed which do not nec-

essarily use the group sequential boundaries described above. One such design, proposed

by Bauer and Kieser [54], is a multi-arm extension of a two-arm design by Bauer and

Köhne [55]. This adaptive test procedure combines the p-value calculated at each analysis

across stages using a pre-specified combination function, C, to allow valid inference to be

made at the end of the trial.

For a two-stage design with prespecified type I error rate α, the general procedure of Bauer

and Köhne [55] is conducted as follows [56]:
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1. Conduct the first stage of the trial and calculate the p-value, p1, for the pre-defined

test statistic comparing the two treatments.

2. For pre-determined stopping values α0 and α1 (α0 > α1), stop the trial with rejection

of H0 (efficacy) if p1 ≤ α1 or without rejection of H0 (futility) if p1 ≥ α0. If

α1 < p1 < α0 continue to the next stage.

3. If the decision is to continue, conduct the second stage and calculate the p-value,

p2, for the test statistic estimated using data collected during the second stage only

(thus p1 and p2 are independent).

4. Combine p-values across stages using the combination function C(p1, p2) and decide

whether or not to reject H0 at level α using an appropriate critical value.

A common choice for C is Fisher’s combination function [57] whereby H0 is rejected at

the end of the second stage at level α if

C(p1, p2) = p1p2 ≤ c = exp(−χ2
4,1−α/2).

To maintain the overall type I error rate at level α, the first stage stopping limits α0 and

α1 are chosen such that α1 + c(logα0 − logα1) = α [55].

Another frequently used combination function is the weighted inverse normal method [58],

C(p1, p2) = 1− Φ[w1Φ−1(1− p1) + w2Φ−1(1− p2)]

where wi (i = 1, 2) are weights chosen such that 0 < wi < 1 and w2
1 +w2

2 = 1. For example,

w2
i could be proportional to the corresponding fraction of the maximum sample size or

maximum information of the trial accrued in stage i. In this case the design corresponds

to a classical group sequential test if no adaptions to the design are made (see below) [56].

In the case of survival data the assumption that p1 and p2 are independent in step 3 above

might not hold since some events occuring in the second stage may come from patients

recruited in the first stage. However, a result by Tsiatis [59] implies that the difference

between the log-rank test statistics estimated at the end of the first stage and at the end of

the second stage (on all data accrued up to that point) is independent of the log-rank test

statistic for the first stage. These test statistics can therefore be used in the combination

test.

The multi-arm extension by Bauer and Kieser [54] allows multiple arms to be assessed in

the first stage with a subset of arms being continued to the second stage. To provide strong
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control of the FWER in the testing of multiple treatment arms, this design combines the

combination test approach described above with the closed testing principle outlined in

Section 1.3.1.2.

An advantage of this design over the group sequential approaches described above is that

the design of the second stage can be modified at the interim analysis based on observed

and external data, without inflation of the type I error rate and without completely pre-

specifying the adaptations in the trial protocol [60]. Examples of modifications that could

be made include recalculation of sample size based on observed nuisance parameters,

changing the allocation ratio, restricting the inclusion criteria to a certain subgroup of pa-

tients most likely to respond to treatment, or selecting the testing strategy for the second

stage of the trial [56].

However, this flexibility has brought the design under criticism from some authors [27,61]

who have suggested that it leads to reduced interpretability of the results, undermines trial

credibility and integrity and risks making changes based on unreliable interim results. In

particular, making unscheduled changes to the design during a confirmatory trial is dis-

couraged by regulators [62]. Furthermore, statistical significance may be overemphasised

relative to clinical significance if, say, the sample size is reestimated at an interim anal-

ysis in order to detect a smaller treatment effect than originally planned. Stallard and

Friede [48] also note that the combination test approach does not depend on a sufficient

statistic for the treatment effect such as the score, and may therefore lack power over other

designs.

Kelly et al. [49] proposed a multi-arm design which utilises the combination test approach

to generalise the design of Stallard and Todd [47] so that any number of experimental

arms may continue beyond the first interim analysis. The design operates by monitoring

the combined test statistics of the best performing treatment arm in each stage, Sj , with

group sequential boundaries obtained from pre-specified spending functions (e.g. [40,43]).

If Sj crosses the upper efficacy boundary, uj , at the jth interim analysis H0 is rejected and

a treatment (most likely the best performing) is selected. If Sj crosses the lower futility

boundary, lj , the trial is stopped without rejection of H0. Otherwise the trial continues to

the next stage of the study along with any other arms which are not much worse than the

best performing treatment by a prespecified value ε. If ε = 0 then the design is analogous

to that of Stallard and Todd [47] since only the best performing treatment is continued.

The test statistic, Sj , is calculated by transforming the independent p-values for the best

performing treatment in each stage using the inverse normal weighted method [58]: for

prespecified weights, wj , equal to the fraction of information accrued in stage j, the p-value
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estimated using the stage j data, pj , is transformed using Xj = wjΦ
−1(1− pj). The test

statistic Sj = X1 + · · ·+Xj then satisfies the same distributional assumptions as the score

statistic and can be compared to standard group sequential boundaries [49]. However, the

design retains the flexibility of the adaptive design approach described above due to the

way in which the test statistics are constructed [63].

This design maintains the aim of declaring only a single arm to be superior to control at

the end of the trial, as may be required in pharmaceutical trials. For instance, if H0 is

rejected during the trial then the arm with the largest observed treatment effect (B) could

be selected. Alternatively, safety data may play a role and an arm which is slightly less

effective than B but which is safer could be chosen. To control the FWER, p-values are

calculated using Dunnett’s method [22] to adjust for the number of comparisons in each

stage. However, Stallard and Friede [48] showed that the type I error rate of this design

is inflated when there are some truly effective arms in the trial and the most effective

arm is dropped at each analysis. The FWER is therefore only controlled when the null

hypothesis is true for all arms, that is, in the weak sense.

1.5.3.2 Conditional error rate approach

Another approach to treatment selection designs is based on the conditional error function

approach [64,65]. For a two-arm two-stage design the procedure works as follows. At the

interim analysis the conditional error rate for the null hypothesis is calculated on the stage

1 data, X1, using a function A(X1) = P (φ = 1|X1, H0) where φ is a test such that φ = 1

denotes rejection and φ = 0 denotes acceptance of H0. In other words, the conditional

error rate, A(X1), is the conditional probability of rejecting H0 given the first stage data

and assuming H0 is true. At the interim analysis, adaptions to the design such as sample

size reestimation can be made. The second stage is then performed resulting in a p-value,

p2, calculated only on data collected in the second stage. The null hypothesis is then

rejected if p2 ≤ A(X1).

Koenig et al. [66] extended this approach to a two-stage treatment selection procedure

using the closed testing principle [23] to control the FWER in the strong sense and applying

the conventional Dunnett test [22] to each intersection hypothesis. At the interim analysis

a decision to drop any number of treatment arms may be made using any interim data (e.g.

safety or efficacy) and any external information. The design is therefore more flexible than

some of the group sequential approaches described in Section 1.5.2.2. Also at the interim

analysis, the conditional error rate for each individual and each intersection hypothesis is

calculated. The second stage is then performed on all remaining treatment arms with a
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p-value calculated for the test of each individual and each intersection hypothesis which

are then compared to the corresponding conditional error rate.

Friede and Stallard [50] compared the type I error rate and power of this adaptive Dunnett

test to the group sequential design of Stallard and Friede [48] and the combination testing

approach of Bauer and Kieser [54]. For designs with two or three experimental arms in

which either one or all arms are effective, the authors considered two selection rules: a

random one to determine the sensitivity of the approaches when not picking the treatment

with the largest effect, and the rule proposed by Kelly et al. [49] where all arms which

are no less effective than the most promising by a certain margin, ε, are continued. The

adaptive Dunnett test [66] controls the FWER at the desired level for all values of ε that the

authors considered, whereas the combination test [54] and group sequential approaches [48]

become more conservative for larger ε. In terms of power, no method seems to consistently

dominate the others and so the authors suggest choosing a design based on familiarity or

ease of implementation [50].

1.5.4 Incorporating short-term and long-term endpoints

In the designs discussed in Sections 1.5.2 and 1.5.3, treatment selection is based on the same

outcome as used in the final, planned analysis of the study (unless the outcome is switched

in a design using the combination test approach, e.g. see [67]). This outcome should be

observed relatively quickly after randomisation so that interim analyses can occur soon

after the required sample size has been recruited. In some areas however, phase 3 trials

use a long-term outcome (e.g. death) which can be inappropriate for treatment selection

since the full sample size may have accrued by the time enough outcome data have been

observed for the interim analysis [26]. In such instances, it may be more appropriate to

base treatment selection on a short-term endpoint which is on the causal pathway to the

definitive outcome of the study. This is often the approach used in many disease areas

where treatment selection is based on a series of phase 2 trials investigating a short-term

endpoint before conducting a longer-term phase 3 trial.

Several designs which allow treatment selection to be based on a short-term endpoint

have been proposed. Todd and Stallard [68] extend the design of Stallard and Todd [47]

to allow selection of the best performing treatment in the first stage to be based only

on a short-term outcome. This is then followed by a group sequential comparison of

the selected treatment against the control on the primary outcome of the study. In this

design, the short-term and long-term endpoints do not have to be of the same type. For

instance, the authors present an example of a trial with a binary long-term endpoint and
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a continuous short-term endpoint. The design requires specification of an estimate of the

correlation, ρ, between the score statistics for the short-term and long-term endpoints

which can be estimated from previous data. Todd [69] provides formulae for calculating ρ

for combinations of binary or continuous outcomes, discusses issue regarding sensitivity of

error rates to ρ and proposes an adaptive method for re-estimating ρ as the trial progresses.

Todd and Stallard [68] show that their design provides modest savings in sample size over

conducting a separate multi-arm phase 2 trial followed by a two-arm group sequential trial

of the selected treatment, with greater savings when using a larger first stage. However, the

seamless nature of the design means that delays between studies and additional start-up

costs can be avoided (see Section 1.4).

In the two-stage seamless phase 2/3 design for multiple doses described by Liu and

Pledger [70], short-term efficacy and safety data are examined in the first interim anal-

ysis. Low doses which are ineffective and high doses which are harmful are eliminated

while recruitment to other doses continues and are eventually evaluated at the end of the

second stage on a long-term endpoint. The test statistics for stages 1 and 2 are then

combined and used to determine whether to reject H0. A notable feature of this design

is that the test statistic and sample size for the second stage do not need specifying in

advance and can be chosen at the interim analysis, without undermining validity [71].

This approach is important for maintaining overall power since nuisance parameters (e.g.

variance) may differ to those assumed at the start of the trial. However, Friede et al. [72]

criticise the authors’ approach of combining the test statistics for the short-term, first

stage outcome and long-term, final stage outcome for confirmatory testing by suggesting

that it is controversial from a regulatory perspective.

Stallard [73] proposed a treatment selection design which operates in a similar way to the

design of Stallard and Todd [47] but combines long-term and short-term outcome data

from patients at each interim analysis using the ‘double regression’ method described by

Engel and Walstra [74]. This involves first performing a standard regression analysis of

all short-term outcomes observed by the interim analysis to yield a maximum likelihood

estimate of the treatment effect on the short-term outcome for each arm. A second analysis

is then performed in all patients with both short-term and long-term endpoint data using

a regression analysis of the long-term outcome as the dependent variable and treatment

allocation and short-term outcome as covariates. Results from the two regression models

are then combined to produce an estimate of the effect of an experimental treatment

relative to control on the primary, long-term outcome. A single experimental arm, usually

the one with the largest treatment effect, is then continued beyond the first stage into a

group sequential comparison against the control with the treatment effect at each analysis

estimated in the same way as described above. The final analysis is of long-term data only
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and occurs when long-term data have been observed for the required number of patients.

If the trial is stopped early for futility or efficacy then follow-up of patients continues until

all long-term endpoint data have been observed. If the remaining patients are followed up

under protocol conditions and are not switched to the superior treatment then a reanalysis

of all long-term data only is conducted and final inference is based on this analysis [75].

Combining data in this way increases power compared to using long-term data only, with

the effect being more pronounced as the correlation between the endpoints increases [73].

The design might therefore be most effective if the short-term endpoint is the same as the

primary outcome but observed at an earlier time-point. An advantage of this design over

that of Todd and Stallard [68] is that it does not require an estimate of the correlation

between endpoints to be specified in the design of the trial in order to control the type I

error rate, since the correlation is estimated in the double regression analysis. However,

a drawback of this design is that it is currently only applicable to normally distributed

outcomes.

Friede et al. [72] proposed a two-stage design with treatment selection based on an early

outcome and which uses the combination test approach [55] and closure principle [23] to

control the FWER in the strong sense. More specifically, the weighted inverse normal

method [58] is used to combine p-values across stages with p-values for the intersection

hypotheses obtained using Dunnett-type tests. At the final analysis, only the p-values for

the primary endpoint data are combined across stages to avoid the possible regulatory

problem of Liu and Pledger’s [70] design. More than one experimental arm can be con-

tinued beyond the interim analysis which is particularly important as the best performing

treatment on the early outcome may not always be the most promising on the primary

outcome, unless the early outcome is a perfect surrogate [76]. A selection rule such as that

proposed by Kelly et al. [49] can therefore be used by continuing all arms with a response

rate no worse than that in the most effective arm by a certain margin. It should be noted

however, that the test in this design is often conservative when arms are dropped at the

interim without collecting primary outcome data. This is because these data would other-

wise be used in the intersection hypothesis tests at the final analysis and so the effects in

these arms have to be replaced by a conservative estimate [72]. Friede et al. [72] applied

their design to multiple sclerosis and showed that savings in sample size can be substantial

compared to the more conventional approaches to treatment evaluation.

Royston et al. [77] proposed a multi-arm two-stage design for time to event outcomes

in which the interim assessment of each experimental treatment versus control may be

based on an intermediate outcome (I) which is on the causal pathway to the definitive,

primary outcome (D) of the trial. The intermediate outcome does not have to be a perfect
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surrogate outcome for D as defined by Prentice [76], however, it should occur earlier and

more frequently than D. In addition, if the null hypothesis is true for I then it should be

very likely that the null hypothesis is also true for D (high negative predictive value). This

is because one would not wish to have a high chance of dropping such an arm at an interim

analysis when there is a true effect on the primary outcome of the trial. On the other

hand, if the alternative hypothesis is true for I then it is not necessary for the alternative

hypothesis to also be true for D, that is, I does not need a high positive predictive

value [78]. In oncology, for instance, where this design has been successfully implemented

(e.g. the ICON6 [79] and STAMPEDE [80] trials), failure-free survival (FFS), a composite

of progression-free and overall survival, was used for I and overall survival (OS) was used

for D. It should be noted that it is acceptable to use D for interim assessments, however,

this reduces efficiency by delaying the interim analyses compared to when using I.

In the design of Royston et al. [77], the interim analysis occurs once a predetermined

number of I events have been observed in the control arm. Recruitment is then stopped to

experimental arms which fail to show a predetermined level of benefit over the control on I.

Recruitment to more promising treatments continues until the pre-determined number of

D events required for the final analysis have been observed in the control arm. Unlike some

of the designs described above, there is no restriction on the number of arms which can

continue beyond the first interim analysis. However, trials using this design may only stop

for efficacy in very extreme circumstances on D (e.g. if the p-value for the treatment effect

on D is less than 0.001 — see Chapter 9.8 of version 11 of the STAMPEDE protocol [81])

thus reducing efficiency relative to these other designs if evaluating therapies which are

truly effective.

An example of a completed trial using this two-stage design is the GOG-182/ICON5 trial

which consisted of testing four experimental arms against a common control in a two-stage

design in women with advanced ovarian cancer [82]. In the first stage, arms were compared

to control on FFS with the final analysis taking place on OS. The trial began accrual in

2001 but was terminated in 2004 after no experimental arm demonstrated sufficient benefit

on the intermediate outcome at the interim analysis to warrant continued recruitment to

the final stage of the trial. As a result, the evaluation of these four arms was completed

in just 3.5 years, saving approximately 20 years compared to separate trials investigating

overall survival of each new therapy only [78].

The two-stage design was extended by Royston et al. [83] to allow interim analyses to be

carried out on I at multiple timepoints (stages), thus increasing efficiency. This multi-arm

multi-stage (MAMS) design is constructed by specifying a one-sided significance level αj

and power ωj for each pairwise comparison in each stage, j, along with the target hazard
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ratio (HR) for the outcome of interest in that stage. Based on these design parameters, the

timing of each analysis, critical hazard ratio for continuation and sample sizes can then be

calculated using the nstage package in Stata [84]. Royston et al. [83] recommend choosing

high stagewise powers to improve the chance of continuing recruitment to effective arms

beyond each analysis and to ensure high overall power for each arm. Significance levels

should start relatively high (e.g. α1 = 50%) to allow arms which are performing very badly

to be dropped as early as possible, and then reduce with each stage to increase the level

of benefit that needs to be demonstrated for recruitment to be continued. A conventional

one-sided significance level (e.g. 2.5%) can be used in the final stage analysis. The overall

type I error rate, α, and power, ω, for each pairwise comparison is calculated by combining

the stagewise significance levels and powers respectively across stages, accounting for the

between-stage correlation which arises by reusing patients recruited in earlier stages in

each analysis.

An example of this multi-arm multi-stage design as implemented in the 6-arm 4-stage

STAMPEDE trial in prostate cancer [80] is shown in Table 1.1. The critical HR is the

maximum HR that can be observed on the corresponding outcome in order to continue an

arm to the next stage of the trial and is calculated using the one-sided significance level and

power for the corresponding stage. This trial allocates one patient to each experimental

arm for every two patients allocated to the control (2:1:1:1:1:1 allocation ratio). Although

this might not be the optimal allocation ratio (i.e. that which minimises the ESS) [51], it

was actually chosen to allow a more accurate estimate of the control event rate, which is

used in each pairwise comparison, to be obtained [80].

Stage (j)
Target

Outcome
1-sided sig.

Power (ωj)
Control Critical

HR level (αj) events HR

1 0.75 FFS 0.500 0.95 113 1.00

2 0.75 FFS 0.250 0.95 216 0.92

3 0.75 FFS 0.100 0.95 334 0.89

4 0.75 OS 0.025 0.90 403 0.84

Overall 0.013 0.83

Table 1.1: Design of the 6-arm 4-stage STAMPEDE trial in prostate cancer, using the
methodology described by Royston et al. [77, 83]. HR = hazard ratio, FFS = failure-free
survival, OS = overall survival.

As well as dropping poorly performing arms, the STAMPEDE trial has also added new

experimental arms during its course [85]. The first new arm was added more than five
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years after the trial commenced. There are several advantages in adding a new arm to an

existing trial rather than starting a new trial: a new protocol does not have to be created

and an amendment can simply be added to the existing one; recruitment to a new trial

often starts slowly, whereas an existing trial may already have numerous participating

sites actively recruiting; an extra control arm is not needed for the new arm which would

otherwise increase trial competition; and the cost of adding an arm to an existing trial

is markedly lower than the cost of starting a new trial [85]. However, Wason et al. [19]

advise against this practice if FWER control is required unless efficacy boundaries are

appropriately adjusted.

A question yet to be addressed in the MAMS design of Royston et al. [77, 83] is how the

stagewise operating characteristics should be specified in order to achieve designs that are

both feasible; that is, they have the desired overall values of α and ω, and efficient in terms

of minimising the expected number of patients recruited to the trial [83]. Furthermore,

the design is currently only applicable to disease areas where time to event outcomes in

which longer event times are more favourable are investigated and analysed using a hazard

ratio (e.g. as in cancer). The nstage program for Stata which facilitates the design of

such trials [84] was also initially developed with the design of cancer trials in mind and

therefore suffers from the same limitations.

Finally, as pointed out by Wason et al. [19] this design and in particular the STAMPEDE

trial does not explicitly specify or control the FWER. Although the overall pairwise α and

thus the FWER of STAMPEDE is small, more sophisticated methods for controlling the

FWER at a prespecified level are needed to optimise power (i.e. by ensuring the type I

error rate is not too low) and for the design to be used in more confirmatory settings.

1.6 Tuberculosis

With a large number of drugs currently in clinical development, tuberculosis (TB) is an

area which could benefit from the use of novel trial designs such as those described above

to accelerate treatment evaluation. The current TB drug development pipeline is discussed

below and used as motivation for work in future chapters of this thesis.

1.6.1 Background

Despite being all but eradicated from developed countries due to improved living conditions

and effective treatment, TB remains one of the worlds’ major infectious diseases and
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was declared a global emergency by the World Health Organisation (WHO) in 1993.

The disease is still highly prevalent in the developing world with 22 low- and middle-

income countries currently accounting for over 80% of 9 million new active cases per year

worldwide [11, 86]. Despite an available cure, TB was estimated to have caused up to 1.3

million deaths in 2012 [86].

Between the 1940s and 1980s the current first-line regimen for treatment of TB (an inten-

sive phase of isoniazid, rifampicin, pyrazinamide and ethambutol for two months followed

by a continuation phase of isoniazid and rifampicin for four months) was developed. Ri-

fampicin, the most recent drug in this regimen demonstrated to be effective in treating

TB, was discovered over 40 years ago [13, 87]. This regimen is highly effective with up to

95% of patients cured upon completion [87] and only a 5% relapse rate during the 12-18

months following therapy in trial conditions [88].

While relatively inexpensive and effective, the current regimen is inadequate for controlling

the current TB epidemic [89]. A major problem is the reduction in levels of rifampicin

when taken concurrently with antiretroviral therapy (ART) by patients co-infected with

HIV [13, 89–91], which also leads to an increased pill burden and higher toxicity [92].

Currently around 13% of new TB cases occur in patients who are HIV-positive [86] and

the risk of developing TB in people infected with HIV is estimated to be at least 20 times

higher than those who are HIV-negative [11,89].

The current first-line regimen for drug-sensitive TB (DS-TB) is lengthy, comes with a

large pill burden and often clears up symptoms within the first few weeks of use. These

factors discourage patients from fully adhering to treatment which in turn has led to

the rise of drug-resistant strains of TB. This is particularly problematic if the bacilli

develop resistance to the two most powerful first-line drugs (rifampicin and isoniazid),

commonly referred to as multi-drug resistant TB (MDR-TB) [11, 87]. MDR-TB is an

emerging global health threat and it is estimated that there were approximately 450,000

cases among notified TB cases in 2012 [86]. Drug resistant strains of TB require an entirely

different regimen of drugs which are less effective, more toxic, taken for up to two years

with injectables in the first six months, up to 500 times more expensive and much more

difficult to adhere to than the standard regimen for DS-TB [13,89,91,93].

An entirely new regimen for treating TB will therefore be required to achieve the Stop TB

(www.stoptb.org) partnership’s aim of eliminating TB as a global public health problem

by 2050. Four urgent requirements are [91,94]:

1. Shorter, simpler, yet affordable multi-drug regimens for DS-TB which are effective

in programmatic conditions [13] and are easily adhered to, thus reducing the chance
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of more drug-resistant strains of TB developing.

2. Shorter, more effective, less toxic and more affordable regimens for drug resistant

strains of TB, ideally matching the regimen for DS-TB.

3. Regimens which do not interact with ART for HIV infection, enabling HIV positive

and negative patients to be treated with the same regimen.

4. An ultra-short, simple and safe regimen for latent (non-active) TB infection which

is estimated to infect one in three people globally.

A current primary research and development goal is to develop a three-drug, two-month

regimen which is equally effective against both drug sensitive and drug resistant strains of

TB and which can be used by both HIV-negative and HIV-positive patients [94]. Further-

more, a shorter regimen should ideally require drugs to be administered on a less frequent

basis to better accomplish completion of therapy, thereby reducing the chance of a patient

developing drug resistance. The ultimate goal would be to create a simple, fast-acting reg-

imen with low toxicity that is able to cure TB in two weeks or less regardless of whether

patients are co-infected with HIV or whether they are infected with a drug-resistant strain

of TB [89,91,95]. However, Ginsberg [89] states that “several waves of innovation will be

needed to achieve this vision, including adopting a novel paradigm for the development of

multi-drug regimens”.

1.6.2 Current clinical development programme

Phases 2 and 3 of the current clinical pathway for a new TB drug are described below.

Phase 2 is separated into two phases – 2a and 2b.

1.6.2.1 Phase 2a

New TB drugs which are shown to be safe and tolerable in phase 1 trials of healthy

volunteers are likely to then be tested in a phase 2a trial. In this phase, a range of doses of

a new drug are administered as monotherapy and their early bactericidal activity (EBA) is

evaluated by examining the rate of decline in TB in the sputum on a daily basis during the

first 14 days of treatment [96, 97]. This is thought to give an indication of the sterilising

activity of the new drug, that is, its ability to prevent relapse of disease once treatment has

been completed by eradicating all populations of TB organisms [88]. It is unethical to test

a drug given as monotherapy for longer than this 14 day period due to the potential for
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patients to develop drug-resistance to the treatment and also because it is unacceptable

to delay effective first-line therapy without knowledge of the efficacy of the new drug [91].

1.6.2.2 Phase 2b

Doses of a new drug which are shown to have sufficient EBA in phase 2a are continued

to phase 2b trials where they are incorporated into multi-drug regimens with other anti-

TB drugs. Sputum culture status at two months (a binary outcome) is the traditional

endpoint for phase 2b trials and has been shown to correlate with the sterilising activity

of regimens [98]. However, a recent meta-analysis by Horne et al. [99] has shown it to have

low sensitivity (40%, 95% CI 25%–56%), modest specificity (85%, 95% CI 77%–91%) and

low positive predictive value (18%, 95% CI 14%–21%) for predicting relapse, a primary

outcome of a phase 3 trial. Such an outcome measure may therefore not be adequate for

identifying promising regimens to study further. Considering a measure of the longitudinal

profile of culture results, such as time to culture conversion, over the same time period

has been suggested as a more appropriate outcome for phase 2b trials compared to culture

status at a single time point [100], and is increasingly being used in practice [101–103].

However, a current downside of any outcome involving culture status is the delay in de-

termining the outcome after a sample has been taken. Cultures grown on solid media

are grown for up to eight weeks to detect positivity, meaning the two month endpoint

is unknown until nearly four months after the beginning of therapy. Liquid culture sys-

tems which detect growth more quickly and more frequently have been introduced but

not yet extensively studied as markers of treatment response [104]. A rapid and accurate

point-of-care test will not only help to streamline phase 2b trials but will also help reduce

transmission of TB in the long-run [105].

1.6.2.3 Phase 3

Regimens which demonstrate superiority over the standard regimen in phase 2b are likely

to continue to phase 3 where they are compared to the standard regimen on a composite

primary endpoint of treatment failure (consistently positive cultures results during treat-

ment) and relapse (positive culture results after previously being cured) [96, 97]. Due to

the highly effective nature of the current six month regimen in treating DS-TB (relapse

rates of 5% or less in trial conditions, although these are not often observed in routine

practice), a new regimen is unlikely to be deemed superior without an extremely large

sample size. A non-inferiority design is therefore used to determine whether the new reg-
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imen has a comparable efficacy to the standard treatment with the caveat that the new

regimen has some other advantage such as reduced cost, shorter duration, fewer drugs,

or lower toxicity [106]. Current phase 3 TB trials usually require 500-900 patients per

arm [96], followed up for at least 18 months after the completion of therapy. They can

therefore be long, drawn out processes, likely to take at least five years to complete [104]

and require an extensive amount of resources. It is therefore vital that new, effective

regimens are adequately tested during phase 2a and 2b trials using a suitable predictor of

relapse to avoid ineffective regimens being evaluated in phase 3.

1.6.3 Accelerating TB treatment evaluation

There are currently at least ten anti-TB drugs in phase 2 or 3 of clinical development,

more than at anytime in the past 40 years [96] (see Figure 1.5). At least six of these

are new drugs specifically being developed for TB while others are current drugs being

redeveloped or repurposed (e.g. high dose rifampicin). Since TB requires treatment from

a combination of drugs to reduce the risk of drug resistance developing, these new drugs

cannot be administered individually for a long period of time and therefore have to be

evaluated as part of a regimen. The number of potential regimens that could be conjured

from these new drugs (and the drugs in the current standard regimen) is likely to be

huge. Multiple trials will be needed to evaluate them, however, the length, size and cost

of current TB trials are an impediment to their rapid evaluation [86,88].

To increase the rate at which new TB regimens are evaluated, phase 2 and 3 clinical trials

need to become much smaller and shorter in duration. The current phase 2b outcome of

culture status at 2 months results in trials with large sample sizes (e.g. over 400 patients

[101]) and is arguably unable to successfully identify effective new regimens for continued

assessment in phase 3 trials [100]. One solution is to develop a more reliable biomarker

which is observed relatively quickly after initiation of treatment [107]. In addition, the

use of a surrogate endpoint [76] to replace the lengthy primary outcome in phase 3 trials

could go a long way to reducing treatment evaluation by years, however, there is currently

no such outcome available [100].

A possible way to evaluate the many new treatments that are currently in clinical develop-

ment is to add or substitute a single drug into the current regimen at a time. However, such

an approach would lead to a completely novel regimen taking decades to develop [93,95].

This is clearly impractical, and with nearly 4,000 deaths from TB every day globally it is a

public health imperative that TB drug evaluation is drastically accelerated. The Critical

Path to TB Regimens (CPTR) launched by the Bill and Melinda Gates Foundation, the
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Figure 1.5: Global TB drug pipeline as of June 2013 (www.newtbdrugs.org/pipeline.php).

TB Alliance and the Critical Path Institute brings together drug sponsors, drug develop-

ers, regulators, funders and researchers from industry and academia into collaboration to

speed up the introduction of new and effective regimens, regardless of sponsor [93]. They

aim to achieve this by developing novel drug regimens as a unit rather than new drugs

being added to regimens and tested individually, thus reducing the time required to assess

a completely new regimen by one third to one fourth, or from decades to years [89,108].

The first trial to be conducted under this new paradigm was the New Combination 1

(NC001) trial, the results of which were published in 2012 [109]. This multi-arm trial was

a fourteen day EBA phase 2a study of a three-drug regimen containing the novel drugs

PA-824 and moxifloxacin in combination with the current first-line drug pyrazinamide and

also two two-drug regimens of pyrazinamide with either PA-824 or TMC-207. Since these

new regimens contain neither rifampicin nor isoniazid they have the ability to harmonise

treatment for DS- and MDR-TB, thus potentially reducing the length of therapy for the

latter from two years to less than six months. The results of NC001 showed that a

combination of PA-824, moxifloxacin and pyrazinamide (PaMZ) killed TB bacteria faster

than the standard DS-TB regimen [109]. A subsequent phase 2 study (New Combination

2, NC002) testing PaMZ in patients who have either drug-sensitive or drug-resistant TB

has recently been completed but not yet reported [110].
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This new and efficient method of evaluating regimens as a unit, rather than by replacing

individual drugs in the current regimen, will undoubtedly reduce the length and cost of

early phase clinical development as well as bring about the benefits of multi-arm designs.

A multi-arm approach has also been used in an ongoing phase 3 trial assessing two four-

month regimens of moxifloxacin substituted for ethambutol or isoniazid versus the current

standard regimen [106].

1.7 Summary

In TB, improvements in trial design are needed if potential new regimens are to be assessed

in the quickest possible manner and with the minimum number of resources. The need for

better biomarkers, novel study populations, stronger collaborations and increased funding

have been necessitated; however, the potential benefits of novel trial designs have only

recently been realised [10]. As discussed in this chapter, a range of treatment selection

designs are available for accelerating drug development. However, Phillips et al. [10] have

advocated the use of the multi-arm multi-stage design developed by Royston et al. [77,83]

in TB. This design works by testing multiple new therapies in a single trial, ceasing

recruitment to poorly performing arms during the course of the trial, and allowing interim

comparisons to be made on an intermediate outcome which is observed earlier than the

primary outcome of the trial. These features have led to the success of the design in

speeding up the evaluation of cancer therapies [78] and it may have a similar positive

impact in TB.

Other types of treatment selection design could be used in TB, but seem less appealing

than the MAMS design. For instance, the design of Todd and Stallard [68], which assesses

a short-term endpoint (e.g. culture status at two months) at the end of the first stage and

then a longer-term endpoint (e.g. relapse) at all subsequent stages, might be impractical

since the follow-up period for the phase 3 TB endpoint is very long. Using only a two-

stage design is a possibility (since the long-term endpoint would then only be assessed at

the end of the trial) but may lack efficiency over designs with more stages. Furthermore,

their design only allows one treatment to continue beyond the first analysis which is likely

to be too restrictive in TB. The design of Stallard [73], which combines both short- and

long-term data (albeit continuous) at each analysis, may be more appropriate but also

only allows one experimental arm to be continued beyond the first stage. By contrast, the

MAMS design has no restrictions on the number of arms that can continue beyond each

stage and assesses only the short-term, intermediate endpoint at all interim analyses with

the long-term, phase 3 endpoint analysed at the end of the trial.
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However, before the MAMS design can be implemented in TB, a number of design issues

need addressing. Since the MAMS design was initially developed for use in oncology trials,

and thus only time to event outcomes can currently be used, extending the design to allow

the use of binary intermediate and definitive outcomes (which are often used in TB trials)

is required. A number of methodological challenges have also arisen through the use of

the design thus far in oncology, such as accurately calculating and controlling the FWER

and choosing stagewise operating characteristics to increase efficiency.

1.8 Overview and objective of thesis

In this thesis, the multi-arm multi-stage design of Royston et al. [77, 83] is extended to

make it more widely applicable to other disease areas, particularly TB, and outstanding

design issues such as calculating FWER and finding efficient designs are addressed. Firstly,

in Chapter 2 the MAMS design is extended to enable its use in phase 2b TB studies

where time to culture conversion is the main outcome of interest. In Chapter 3, MAMS

designs which use a binary intermediate and binary definitive outcome are developed, thus

allowing seamless phase 2/3 MAMS TB trials to be constructed with, say, an intermediate

outcome of culture status at a fixed time point and a primary outcome of long-term

relapse. Methods for choosing the stagewise operating characteristics of two-arm multi-

stage designs are developed in Chapter 4 to allow the most efficient designs with the desired

overall type I error rate and power to be found. In Chapter 5, the outstanding issue of

the FWER of the MAMS design is addressed and a calculation is derived. The issue of

FWER control is covered in Chapter 6 along with methods for finding efficient MAMS

designs with more than two arms. In Chapter 7, the methods developed throughout the

thesis are applied to the STAMPEDE trial to determine whether it could have been more

efficient in terms of the required number of events. In addition, hypothetical examples of

MAMS phase 2/3 trials in TB are presented to demonstrate the potential savings in time

and resources that this approach could achieve compared to separate trials of each phase

of evaluation. Finally, the work presented in the thesis is summarised in Chapter 8 and

ideas for future research are outlined.



Chapter 2

Extensions to the multi-arm

multi-stage design for time to

event outcomes

2.1 Introduction

The multi-arm multi-stage (MAMS) design described by Royston et al. [77, 83] was orig-

inally developed with the design of cancer trials in mind and therefore comes with limi-

tations which can prevent its application to other disease areas. For example, the choice

of outcome measure(s) is (are) restricted to time to event outcomes where events must be

observed more slowly on an experimental arm than on control to demonstrate superiority.

In other words, if a hazard ratio (HR) is used to measure the effect of the experimen-

tal arm relative to the control (as is assumed in the design of a MAMS trial) then the

methodology only allows hazard ratios less than 1 to be targeted under the alternative

hypothesis. This is suitable in a trial in cancer, say, where outcomes such as failure-free or

overall survival are used. However, in other disease areas, observing events more quickly

on an outcome may indicate a benefit (i.e. hazard ratios greater than 1 should be targeted

under the alternative hypothesis). Examples of such outcomes include time to healing in

a trial for venous leg ulcers [111] and time to culture negativity (a marker for cure) in

tuberculosis (TB) [100]. Simply taking the reciprocal of the targeted HR and applying

the methodology described by Royston et al. [83] to design the trial is not appropriate, as

will become apparent in this chapter.

Another current limitation of the MAMS design is that it works under the assumption

53
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that no patient withdraws from the trial or is lost to follow-up and that follow-up con-

tinues until either the primary outcome has been observed or the trial is terminated. In

the STAMPEDE trial [80] for example, the definitive outcome of overall survival can be

determined from a patient’s medical records without the need for regular follow-up visits

and so outcome data could potentially always be obtainable. However, this is not always

possible. In TB for instance, the phase 2b outcome of time to culture conversion (TCC)

requires a much more intensive follow-up regime (e.g. weekly visits [103]) to determine

whether TB bacilli are still present in a patient’s sputum. Follow-up is therefore limited

to a fixed duration to reduce costs. Consequently, this reduces the rate at which events

are observed and can therefore prolong the duration of the trial. Using the methodology

described by Royston et al. [83] to design such a trial will consequently underestimate

stage durations and sample sizes.

When designing a MAMS trial with a time to event outcome, one has to make an as-

sumption about the underlying distribution of the event times in order to predict stage

end times and sample sizes. Although these estimates are not essential for the conduct

of the trial, they are particularly useful in determining roughly when analyses are likely

to take place and how many participants will be recruited. The MAMS design described

in [83] assumes that survival times follow an exponential distribution and therefore as-

sumes a constant hazard function over time. However, such an assumption is often not

appropriate in practice. For instance, the progression-free and overall survival times in

the ICON7 trial (Panels A and D in Figure 2 of [112]) possibly indicate a non-constant

hazard function over time.

In this chapter, the methodology described in [83] is extended to time to event outcomes

where hazard ratios greater than 1 are targeted under the alternative hypothesis. To

allow such outcomes to be used in practice, we implement the extension in the nstage

program in Stata [84] which facilitates the design of MAMS trials and encounters the

same limitations as those described above. A new MAMS design is then introduced for a

time to event outcome where the follow-up of each patient is limited to a fixed duration,

thus allowing a phase 2b MAMS trial assessing TCC to be constructed. In addition, we

incorporate into the design the assumption that event times follow a Weibull distribution,

which is a generalisation of the exponential distribution and should allow stage end-times

and sample sizes to be estimated more accurately. To facilitate the use of this design in

practice, a new Stata program similar to nstage is introduced and is used to demonstrate

the design of an actual MAMS TB trial investigating TCC. Finally, simulations are used

to investigate the accuracy of the new methodology in estimating stage end-times and

error rates in several one- and two-stage designs.
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2.2 Targeting hazard ratios greater than 1 under the alter-

native hypothesis

2.2.1 Notation

Let I denote the intermediate and D the definitive outcome of a MAMS trial. The same

null and alternative hypotheses are used for all experimental arms so that sample size

requirements for each pairwise comparison is the same, thus allowing interim analyses for

each arm to be conducted simultaneously. We therefore develop the sample size calculation

by first considering a single experimental arm, E, compared to a control, C.

For a J-stage trial, let θj denote the true hazard ratio (HR) comparing E relative to C on

the outcome of interest in stage j (j = 1, . . . , J) and let θ0
j denote the corresponding HR

under H0. If arms are monitored on the same outcome throughout the trial (I = D) then

θj and θ0
j are assumed constant for all j. Otherwise θJ and θ0

J correspond to the true and

null hazard ratios on the definitive outcome and θj and θ0
j are constant for all j < J and

correspond to the intermediate outcome. Proportional hazards are assumed throughout.

In practice θ0
j is usually chosen to be equal to 1 for all j to correspond to no difference

between the two treatments. Finally, let A denote the number of patients randomised to

each experimental arm for every patient that is allocated to the control.

For a minimum effect (often the minimum clinically important difference), θ1
j , that one

would like to detect with prespecified power, ωj , for the outcome of interest in stage j,

the one-sided null (H0) and alternative (H1) hypotheses for θj in scenarios (a) θ1
j < θ0

j

and (b) θ1
j > θ0

j are shown in Table 2.1. The design of MAMS trials under scenario (a) is

described by Royston et al. [77, 83]. Below we extend the methodology to allow MAMS

trials under scenario (b) to be designed.

Hypothesis (a) θ1
j < θ0

j (b) θ1
j > θ0

j

H0 θj ≥ θ0
j θj ≤ θ0

j

H1 θj < θ0
j θj > θ0

j

Table 2.1: Null and alternative hypotheses for the true hazard ratio θj on the outcome of
interest in stage j of a J-stage trial for target hazard ratios (a) θ1

j < θ0
j and (b) θ1

j > θ0
j .

2.2.2 Overview of the MAMS design

A two-arm J-stage trial is designed as follows [83]:
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1. Specify the one-sided significance level αj , power ωj and the null and target hazard

ratios θ0
j and θ1

j for each stage, j, of the trial. The power in each stage should

be maintained at a high level (e.g. > 0.9) to ensure effective arms have a high

chance of proceeding beyond each stage and to achieve high overall power for the

trial [78, 83]. A large significance level should be chosen for the first stage to allow

poorly performing arms to be dropped as early as possible and then decreased with

each stage in order to avoid stages becoming redundant. For trials with J ≤ 6 stages,

Royston et al. [83] suggest using αj = 0.5j for stages j = 1, . . . , J − 1 to help ensure

equally spaced analyses and αJ = 0.025 in the final stage to mimic a conventional

two-sided test at the 5% level.

2. Calculate the cumulative number of events in the control arm, ej0, that are required

for the analysis at the end of the jth stage to take place. This can be done using the

algorithm described in Section 2.4 of [83] if θ1
j < θ0

j or using the algorithm outlined

below if θ1
j > θ0

j . Given the overall recruitment rate per unit of trial time, rj , and

the constant hazard rate for the control arm, λj , the duration of the jth stage, dj ,

can be calculated followed by the cumulative number of patients recruited to the

control arm, nj , and to the experimental arm, Anj , by the end of that stage. Details

of how to calculate dj and nj are given in [83].

3. Calculate the critical value, δj , that the observed hazard ratio must be more favourable

than for recruitment to continue to the experimental arm in the next stage of the

study. Calculation of δj for θ1
j < θ0

j is given in [83] and a modification is given below

for θ1
j > θ0

j .

2.2.3 Calculation of the critical values, δj

We assume that the observed log hazard ratio on the outcome of interest in the jth stage,

log θ̂j , follows a normal distribution as follows:

log θ̂j ∼ N(log θ0
j , v

0
j ) under θj = θ0

j

log θ̂j ∼ N(log θ1
j , v

1
j ) under θj = θ1

j

where v0
j and v1

j are the variances of the observed log hazard ratios under θ0
j and θ1

j

respectively. A result by Tsiatis [59] approximates these variances to

v0
j = v1

j =
1

ej0
+

1

Aej0
=

1 +A−1

ej0
(2.1)
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where ej0 is the cumulative number of control arm events required for the analysis (and

observed) at the end of stage j (estimated below).

Let σij = (vij)
1/2, i = 0, 1, denote the standard error of the log hazard ratio under the

relevant hypothesis and let Φ denote the standard normal distribution function. For

θ1
j > θ0

j , the type I error rate in the jth stage (ignoring all previous stages) is

αj = P
(

log θ̂j > log δj
∣∣ H0

)
= P

(
log θ̂j − log θ0

j

σ0
j

>
log δj − log θ0

j

σ0
j

∣∣∣∣ H0

)

= 1− Φ

(
log δj − log θ0

j

σ0
j

)
= Φ(zαj )

Hence

zαj =
log θ0

j − log δj

σ0
j

⇒ log δj = log θ0
j − zαjσ0

j (2.2)

Similarly, the power in the jth stage is

ωj = P
(

log θ̂j > log δj
∣∣ H1

)
= P

(
log θ̂j − log θ1

j

σ1
j

>
log δj − log θ1

j

σ1
j

∣∣∣∣ H1

)

= 1− Φ

(
log δj − log θ1

j

σ1
j

)
= Φ(zωj )

Therefore

zωj =
log θ1

j − log δj

σ1
j

(2.3)

⇒ log δj = log θ1
j − zωjσ1

j (2.4)

By assuming that σ0
j = σ1

j , we find by simultaneously solving (2.2) and (2.4) that

σ0
j = σ1

j =
log θ0

j − log θ1
j

zαj − zωj
(2.5)



Chapter 2. Extensions to the multi-arm multi-stage design for time to event outcomes 58

Substituting (2.5) into (2.1) and rearranging for ej0 gives an initial estimate of the required

number of control arm events for the analysis at the end of stage j [83]:

ej0 = (1 +A−1)

(
zαj − zωj

log θ0
j − log θ1

j

)2

(2.6)

An initial estimate of the critical value for the observed log hazard ratio in stage j can

also then be calculated using (2.2):

log δj = log θ0
j − zαjσ0

j = log θ0
j − zαj

√
(1 +A−1)/ej0 (2.7)

2.2.4 Estimation of the required number of control arm events, ej0

The analysis at the end of a particular stage occurs when a predetermined number of

events have been observed on the outcome of interest in the control arm. In this section,

the algorithm described in Section 2.4 of [83] for calculating the required number of events

when θ1
j < θ0

j is adapted for the situation where θ1
j > θ0

j .

The formula in (2.1) provides a good approximation to the variance of the log hazard

ratio when θj = 1 (often H0), however, it overestimates the variance under H1 (i.e. when

θj > 1). To see this, note that underH1 the number of events occurring in the experimental

arm will be greater than Aej0 since events will occur at a faster rate than when θj = 1.

Using the initial estimate of v1
j will therefore lead to an overpowered trial. A more accurate

approximation of v1
j is given by Royston et al. [83] as

v1
j =

1

ej0
+

1

ej1
(2.8)

where ej1 is the expected cumulative number of events observed in the experimental arm

under θj = θ1
j by the end of stage j.

This variance approximation is used in the following algorithm (now implemented in

nstage) to more accurately estimate the number of control events to achieve the desired

level of power in the jth stage when θ1
j > θ0

j :

1. Given design parameters θ0
j , θ

1
j , αj , ωj and A, calculate an initial estimate of ej0

using (2.6)

2. Calculate the corresponding critical hazard ratio, δj using (2.7).

3. For a prespecified control hazard rate λj , estimate the stage end time, tj , using the
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algorithm in Section 8.2 of [83].

4. Calculate the cumulative number of events expected in the experimental arm, ej1,

by tj under θj = θ1
j using the algorithm specified in Section 8.1 of [83].

5. Using (2.3) and the more accurate estimate of v1
j given in (2.8), calculate ω∗j — the

actual power at the end of stage j.

6. If ω∗j > ωj decrease ej0 by 1 and repeat steps 2 to 6. Otherwise terminate the

algorithm.

Given the stage end times, the estimated cumulative number of patients recruited to the

trial by the end of stage j, Nj , is then

Nj =

j∑
i=1

ri(ti − ti−1)

where t0 = 0 represents the beginning of recruitment.

Note that only step 6 of the above algorithm differs to the one given in [83] for θ1
j < θ0

j .

This is because the initial event estimate in (2.6) leads to an overpowered trial and so ej0

must be reduced to reach the desired level of power. Conversely, when θ1
j < θ0

j the initial

event estimate does not give enough power and so must be increased. This means that

two trials with identical design characteristics but whose target log hazard ratios differ

only in sign will have the same initial estimate of ej0 (using (2.6)) but, after running the

corresponding algorithm, will end up requiring a different number of control events for the

analysis.

To see this, consider a two-arm one-stage randomised trial with a 1:1 allocation ratio (A =

1), α1 = 0.025 and θ0
1 = 1. Assuming a constant accrual rate of r1 = 100 patients/year and

a median survival time of 1 year, the required number of control events to detect a hazard

ratio of θ1
1 = 0.667 or 1.5 with power ω1 = 0.90 are shown in Table 2.2 and were estimated

using an updated version of nstage which incorporates the above methodology. Notice

that the trial targeting θ1
1 = 0.667 requires 133 control events whereas the trial targeting

θ1
1 = 1.5 requires 9 fewer events, despite the magnitude of the minimum targeted effect

being the same.
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Design characteristic
Target hazard ratio

θ1
1 = 0.667 θ1

1 = 1.5

Required number of control events, e10 133 124

Critical hazard ratio, θ1 0.786 1.283

Sample size per arm, n1 182 172

Duration, d1 (years) 3.63 3.45

Table 2.2: Design characteristics of two one-stage two-arm trials whose target log hazard
ratios under H1 differ only in sign.

2.3 Time to event outcomes with a limited follow-up period

The MAMS design proposed by Royston et al. [77, 83] assumes that patients remain in

follow-up until the final event of interest (e.g. death) has been observed or the until trial

ends. This is often achievable when, say, patient outcomes can be obtained from clinical

records and so regular follow-up of patients is not required. In some cases, however, regular

follow-up visits are necessary to determine whether an event has occurred. For instance,

in a TB trial looking at time to culture conversion, patients are followed up at regular

intervals (e.g. weekly [103]) to obtain sputum samples which are then grown in cultures

to determine whether TB bacilli are still present. If not present, then that patient’s

sputum sample is classed as culture negative and the event of interest has been observed.

Such an intensive follow-up period can be costly and time-consuming for laboratories and

so limiting the duration over which cultures are frequently obtained from patients can

reduce costs. In six of the East Africa MRC TB trials studied by Phillips et al. [100],

71% and 90% of patients were culture negative two and three months after randomisation

respectively. Limiting follow-up to either of these time points will therefore capture most

culture conversions and will avoid the need to continue collecting cultures from patients

whose sputum samples might never be negative.

Restricting follow-up of patients to a fixed duration, t∗, after randomisation limits the

maximum value of the distribution function for event times. Using the methodology

described above or by Royston et al. [83] to design a trial with such an outcome is likely to

accurately estimate the required number of events, however, it would underestimate the

stage durations and sample sizes. The design is therefore extended below to accommodate

a time to event outcome which can only be observed during the first t∗ units of time after

randomisation. The methodology is first developed for a one-stage design and then for a

multi-stage design where the same outcome is monitored throughout the trial (I = D).
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In addition, we allow a Weibull distribution to be assumed for the event times to more

accurately estimate stage durations in the case where event times may not be exponentially

distributed, and introduce Stata software for aiding the design of such a trial.

2.3.1 One-stage design

Suppose all patients recruited to a trial are followed up for a fixed, maximum length

of time, t∗. Only events which occur during this time are observed and will contribute

towards analyses while patients who have not experienced the event of interest before t∗

are censored at t∗. Denote by F (t) the distribution function for the probability of an event

at time t. For a maximum follow-up duration, t∗, define the distribution function, F ∗(t),

by

F ∗(t) =

F (t), if 0 ≤ t < t∗

F (t∗), if t ≥ t∗
(2.9)

In other words, if a patient has yet to complete follow-up (i.e. t < t∗) then the probability

of having an event by time t is F (t). If, however, a patient has completed follow-up (i.e.

t ≥ t∗) then the probability that they had an event during follow-up is F (t∗).

Figure 2.1 shows the functions F (t1 − t) and F ∗(t1 − t) for the probability of an event by

time t1 for patients recruited at time t of a trial. Here the function F (t) is assumed to follow

an exponential distribution. Clearly, if a patient enters the trial at the current timepoint,

t1, then the probability of them having an event by t1 is zero (F (t1 − t1) = F (0) = 0). In

the case of a fixed maximum follow-up period (t∗), all patients who were recruited before

t1− t∗ will have completed follow-up and so the probability of any one such patient having

had an event observed is F (t∗).

Suppose a one-stage trial is comparing an experimental arm (k = 1) to a control (k = 0)

on a time to event outcome where patients in both arms are followed up for a maximum

duration after randomisation, t∗. Denote by F ∗k (t) and Fk(t) the distribution functions in

arm k as defined in (2.9). The total number of events observed in arm k by time t1 > t∗

of the trial, e1k, is the area under F ∗k (t1− t) (i.e. the darker area in Figure 2.1) multiplied

by the recruitment rate to arm k, r1k, i.e.

e1k = r1k(t1 − t∗)Fk(t∗) + r1k

∫ t1

t1−t∗
Fk(t1 − t)dt (2.10)

Given an initial estimate of the number of control events, e10, required for the analysis

(calculated using (2.6)) and the assumed underlying distribution function, F ∗0 (t), for the
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Figure 2.1: Distribution functions F (t1 − t) and F ∗(t1 − t)

control arm, (2.10) can be rearranged to make t1 the subject to calculate the time by

which e10 events will be observed in the control arm (examples are given in Section 2.3.3).

The appropriate algorithm described in Section 2.2.4 or in [83] depending on whether

θ1
j > θ0

j or θ1
j < θ0

j respectively can then be applied to estimate the number of control

events required to achieve the nominal level of power, ω1. In each algorithm, t1 and e11

are estimated using (2.10) in steps 3 and 4 respectively. Once a final estimate of t1 is

obtained, the approximate sample size of the trial is calculated by N1 = r1t1 where r1 is

the anticipated overall (constant) recruitment rate for the trial.

If patients are followed up indefinitely then more events will be observed on average by time

t1 with the expected additional number of events being the recruitment rate multiplied by

the lighter area in Figure 2.1. Restricting the maximum follow-up duration will therefore

increase the length and, consequently, the sample size of the trial. Longer follow-up may

be costly, but so too is a longer and larger trial. Therefore a trade-off should be made

between these two factors when designing such a trial.
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2.3.2 Multi-stage design

To calculate the number of events observed by the end of a particular stage in a multi-

stage trial we first need to impose the constraint that stage durations should be longer

than the follow-up period, t∗. This simplifies the calculation somewhat as it means that

all patients allocated to a particular arm during stages 1, . . . , j − 1 will have completed

follow-up by the end of stage j and will therefore have the same probability of having had

an event. Thus the only patients still at-risk of an event at the end of stage j are those

recruited during that stage and who have neither had an event or completed follow-up.

To estimate the number of events observed in arm k by the end of stage j we first split

the trial time t by the stage end times (t1, . . . , tj) and estimate the number of patients

recruited during each stage that have had an observable event. The number of patients

allocated to arm k during stage i (1 ≤ i ≤ j) is rik(ti − ti−1) where rik is the recruitment

rate to arm k during that stage. Since all patients recruited during stage i < j will

have completed follow-up, the expected number of those patients who will have had an

observable event is therefore rik(ti− ti−1)Fk(t
∗). The number of patients allocated to arm

k during the current stage (j) and who have an observable event by tj is then calculated

using a function similar to (2.10). Therefore, provided stage durations are longer than the

follow-up period, t∗, the total number of events occurring in treatment k by the end of

stage j is

ejk =

j−1∑
i=1

rik(ti − ti−1)Fk(t
∗) + rjk((tj − t∗)− tj−1)Fk(t

∗) + rjk

∫ tj

tj−t∗
Fk(tj − t)dt (2.11)

where t0 = 0 represents the beginning recruitment.

The requirement that stage durations are longer than t∗ is an important one otherwise

calculation of ejk will become more complex as some patients recruited during stage (j −
1) will still be at-risk of an event by the end of stage j. If t∗ is relatively short then

this requirement is unlikely to be violated, otherwise stage durations can be increased

by tweaking the stagewise operating characteristics of the trial. Furthermore, a slower

recruitment rate is likely to improve the chances of this condition being met but at the

expense of a longer trial [10].

Given the stagewise recruitment rates, rjk, and the underlying event-time distribution,

F ∗k (t), the formula for calculating ejk in (2.11) and its rearrangement with tj as the subject

can then be used to replace steps 4 and 3 respectively in the algorithm in Section 2.2.3

for powering a multi-stage trial.
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2.3.3 Underlying event time distributions

2.3.3.1 Exponential distribution

For an exponential event time distribution with constant hazard hk(t) = λk in arm k and

fixed follow-up duration t∗, the distribution function, F ∗k (t), is

F ∗k (t) =

Fk(t) = 1− exp(−λkt), if 0 ≤ t < t∗

Fk(t
∗) = 1− exp(−λkt∗), if t ≥ t∗

Using (2.11) the total number of events occurring in arm k by the end of stage j (i.e. by

time tj) is therefore

ejk =

j−1∑
i=1

rik(ti − ti−1)Fk(t
∗) + rjk((tj − t∗)− tj−1)Fk(t

∗) + rjk

(
t∗ − 1

λk
Fk(t

∗)

)
(2.12)

Given an estimate of ejk, the time at which stage j ends (tj) is found be rearranging

(2.12):

tj =
1

rjkFk(t∗)

(
ejk −

j−1∑
i=1

rik(ti − ti−1)Fk(t
∗)− rjk

(
t∗ − 1

λk
Fk(t

∗)

))
+ tj−1 + t∗ (2.13)

This can then be used in step 4 of the algorithm in Section 2.2.4 to predict the stage end

times provided exponentially distributed event times is a realistic assumption.

2.3.3.2 Weibull distribution

A generalisation of the exponential distribution is the two-parameter Weibull model (see

Chapter 4 of [113]). Unlike the exponential model, the Weibull model allows for a non-

constant hazard function which is either monotonically increasing or decreasing over time.

The hazard function for the model is given by

h(t) = λγtγ−1

where λ > 0 is known as the ‘scale’ parameter and γ > 0 is the ‘shape’ parameter. Note

that for γ = 1 the model reduces to the exponential model. If γ > 1 the hazard increases

with time while γ < 1 indicates that the hazard decreases with time. Examples of hazard

functions for various values of the shape parameter γ and their corresponding survival

functions are shown in Figure 2.2.
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Figure 2.2: Hazard and survival functions of Weibull models with shape parameters γ =
0.5, 1 (exponential), 2, 3 and scale parameter λ = 1.

Assuming the underlying survival distribution is exponentially distributed leads to a simple

calculation for the number of events, however, such an assumption is not always realistic.

This is particularly the case for time to culture conversion (TCC) in TB. Figure 2.3 shows

a Kaplan-Meier plot of culture negativity times in the control arm of a recent phase 2 TB

study [103]. Data were extracted from Figure 6 in [103]. Also shown in Figure 2.3 are the

best fitting exponential and Weibull models for the event-time distribution. Clearly, the

Weibull model fits the data much better than the exponential distribution and shows that

the hazard increases with time (since γ > 1). Using a Weibull model to design a MAMS

trial investigating time to culture negativity is therefore more likely to accurately predict

stage end times and sample sizes than using an exponential distribution.

The truncated distribution function for arm k, F ∗k (t), assuming a Weibull model for the

survival times is

F ∗k (t) =

Fk(t) = 1− exp(−λktγ), if 0 ≤ t < t∗

Fk(t
∗) = 1− exp(−λkt∗γ), if t ≥ t∗

Integration of Fk(t) in (2.11) is more complicated than the exponential case, however, it

can be achieved by integrating its Taylor Series expansion (see Appendix A). Thus, (2.11)



Chapter 2. Extensions to the multi-arm multi-stage design for time to event outcomes 66

.2

.4

.6

.8

1

P
ro

po
rt

io
n 

cu
ltu

re
 p

os
iti

ve

0 20 40 60

Days on therapy

Kaplan-Meier plot

Weibull model (l<0.01, g=4.63)

Exponential model (l=0.01)

Figure 2.3: Estimated time to culture negativity curves for the OFLOTUB phase 2 TB
study [103].

becomes

ejk =

j−1∑
i=1

rik(ti − ti−1)Fk(t
∗) + rjk((tj − t∗)− tj−1)Fk(t

∗)− rjk
∞∑
n=1

(−λ)n

n!

t∗(nγ+1)

nγ + 1
(2.14)

The final term in (2.14) can be easily calculated using software by continually adding

terms until the change in ejk is negligible. In addition, (2.14) can be rearranged for tj to

estimate stage end times given an estimate of ejk.

2.4 Accounting for delays

Thus far we have assumed that a particular stage of a study begins immediately after the

required number of events for the analysis of the previous stage have been observed. In

practice, this would not be the case since time is needed for data cleaning, data analysis

and for the various committees to meet to decide whether to continue or cease recruitment

to treatment arms in the next stage [85]. Furthermore, events might not be observed or

recorded as soon as they occur. This is currently the case for culture conversion in TB and

the delay could be as long as 6 weeks from collecting the sample to determining whether
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it is culture negative. These delays can have a substantial impact on the length and size

of a MAMS trial and must therefore be incorporated into the design.

We continue with the case where patients are followed-up for a fixed maximum duration

after randomisation. Let τ1 be the delay between an event occurring and it being observed

(assumed to be the same for all patients) and let τ2 be the total delay between observing

the last required event for an analysis and the beginning of the next stage of the trial.

The value of τ2 incorporates the time needed for data cleaning and analysis etc. The

total delay between the last event occurring and the start of the next stage is therefore

τ = τ1 + τ2. If τ > 0, as will often be the case in practice, more patients will be recruited

to the trial than are needed for the interim analysis. The extra patients who are allocated

to arms which are continued to the next stage of the trial will contribute towards the next

analysis and so fewer patients will need to be recruited during that stage than if τ = 0.

However, some patients may be recruited to arms which are subsequently dropped and so

will not contribute towards any future interim analysis. As Choodari-Oskooei et al. [114]

discuss, such patients should still be followed up under protocol conditions and included in

a reanalysis of the final outcome at the planned end of the trial to reduce bias in treatment

effect estimates.

If delays are likely to occur then τ should be added to the final estimate of tj after running

the algorithm in Section 2.2.4 to produce a more accurate estimate of the stage end time.

Equation (2.11) can then be used to calculate the expected number of events occurring

(but not necessarily observed) in the control and each experimental arm by tj . To maintain

the validity of (2.11), the duration of each stage should be longer than t∗ + τ .

2.5 nstagesurv

To facilitate the design of multi-arm multi-stage trials with time to event outcomes ob-

served during a fixed follow-up period, we have developed the nstagesurv program for

Stata which operates in a similar manner to nstage. Given a set of design parameters

(e.g. number of arms and stages, target hazard ratios, stagewise significance levels and

powers etc), nstagesurv estimates the required number of events and the critical hazard

ratio for the analysis at the end of each stage. In addition, stage durations and sample

sizes are predicted for a given underlying Weibull distribution for the event times. The

program also calculates the overall type I error rate, α, and power, ω, for each pairwise

comparison using the formulae given in Section 2.7 of [83]. The syntax for nstagesurv is

described below and an example of its output is shown in the next section.
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2.5.1 Syntax

nstagesurv, nstage(#) accrate(numlist) alpha(numlist) power(numlist)

arms(numlist) hr0(#) hr1(#) lofu(#) lambda(#) [gamma(#) delay(#)

extrat(#) aratio(#) tunit(#)]

Note: the number of values given in each numlist must equal the number of stages in the

trial (specified in nstage()).

2.5.2 Options

Required

nstage(#) # = J , the number of trial stages.

accrate(numlist) overall accrual rate, rj , per unit of trial time (see tunit()) in

each stage.

alpha(numlist) one-sided significance level, αj , for each pairwise comparison in

each stage.

power(numlist) nominal power, ωj , for each pairwise comparison in each stage.

arms(numlist) number of arms actively recruiting in each stage (including con-

trol arm).

hr0(#) hazard ratio under H0.

hr1(#) minimum target hazard ratio under H1.

lofu(#) # = t∗, the maximum length of follow-up for each patient in

units of trial time (see tunit()).

lambda(#) # = λ0, the scale parameter of the event time distribution in the

control arm. If γ = 1 (see gamma()) then lambda() specifies the

constant hazard function for the control arm.

Optional

gamma(#) # = γ, the shape parameter of the survival distribution. Default

# is 1 (exponential distribution).

delay(#) # = τ1, the delay in observing the outcome from the moment it

occurs in units of trial time (see tunit()). Default # is 0 (no

delay).

extrat(#) # = τ2, the delay between observing the final outcome for an

analysis and the beginning of the next stage in units of trial time

(see tunit()). Default # is 0 (no delay).
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aratio(#) # = A, the allocation ratio (number of patients allocated to each

experimental arm for each patient allocated to control). Default

# is 1 (equal allocation).

tunit(#) code for units of trial time: 1 = one year, 2 = 6 months, 3 = one

quarter (3 months), 4 = one month, 5 = one week, 6 = one day,

and 7 = unspecified. Default # is 7 (unspecified).

2.6 Example — the PanACEA trial

The methodology developed above has been used to design the 5-arm 2-stage phase 2b

PanACEA (Pan African Consortium for the Evaluation of Antituberculosis Antibiotics)

trial in TB (ClinicalTrials.gov identifier NCT01785186) comparing four novel regimens

against the standard six-month four-drug regimen. The outcome of interest is time to cul-

ture conversion assessed on a weekly basis over the first 12 weeks (t∗) after randomisation.

A 6 week delay (τ1) is used to account for culture growth in addition to a 4 week delay (τ2)

for data cleaning and analysis and for conducting the data monitoring and trial steering

committee meetings. Based on previous trial data, the underlying hazard function was

assumed to be non-constant and so a Weibull distribution with parameters λ0 = 0.023

and γ = 1.77 was assumed for the control arm to estimate stage end times and sample

sizes. Other design parameters for PanACEA are shown in Table 2.3.

Design parameter Value

Number of stages, J 2

Number of arms (including control) 5

Stagewise accrual rates (per week) r1, r2 9, 9

Stagewise significance levels α1, α2 0.4, 0.025

Stagewise powers ω1, ω2 0.95, 0.90

Hazard ratio under H0, θ0 1

Target hazard ratio, θ1 1.8

Weibull parameters λ0 = 0.023, γ = 1.77

Length of follow-up (weeks), t∗ 12

Allocation ratio, A 0.5

Delay in observing outcome (weeks) 6

Delay for analysis (weeks) 4

Table 2.3: Design parameters for the 5-arm 2-stage PanACEA trial
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The corresponding output from nstagesurv is shown below for the situation when all

experimental arms are assumed to pass the first stage and thus shows the maximum

number of events, sample size and duration.

nstagesurv, nstage(2) accrate(9 9) alpha(0.4 0.025) power(0.95 0.90) ///

arms(5 5) hr0(1) hr1(1.8) lambda(0.023) gamma(1.77) lofu(12) ///

aratio(0.5) delay(6) extrat(4) tunit(5)

Sample size for a 5-arm 2-stage trial with time to event outcome

and limited follow-up duration

Operating characteristics & stages durations

------------------------------------------------------------------------

Alpha(1S) Power HR|H0 HR|H1 Crit.HR Length* Time*

------------------------------------------------------------------------

Stage 1 0.4000 0.948 1.000 1.800 1.088 26.754 26.754

Stage 2 0.0250 0.899 1.000 1.800 1.439 23.643 50.398

Pairwise 0.0223 0.870 50.398

------------------------------------------------------------------------

Time delay in observing events* = 6.000

Time delay for analysis* = 4.000

* Lengths and durations are expressed in one week periods

Cumulative sample sizes and number of events

----------Stage 1---------- ----------Stage 2----------

Overall Control Exper. Overall Control Exper.

----------------------------------------------------------------------

Arms 5 1 4 5 1 4

Acc.rate 9.0 3.0 6.0 9.0 3.0 6.0

Req.events 95 27 68 295 87 208

Tot.events 181 53 128 343 103 240

Patients 240 80 160 415 139 276

----------------------------------------------------------------------

By comparison, the corresponding 1-stage design with type I error rate 0.0223 and power

0.870 will require 396 patients and take approximately 48 weeks to complete. The two-

stage design will only require more patients than this (415) if recruitment continues to all

arms beyond the first interim analysis. In particular, if no arms show sufficient benefit at

the interim analysis then approximately only 240 patients would be required, thus allowing

patient resources to be redirected to the evaluation of other, potentially more promising,

novel regimens.

In this design, recruitment is assumed to stop as soon as the required number of events

have been observed in the control arm. However, due to the delay in observing outcomes,

more events would have occurred in the trial than are necessary for the analysis (e.g. at the
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end of the final stage 103 control events would have actually occurred once the 87 required

for the analysis have been observed). To combat this, one could predict during the trial

when the required number of events will have actually occurred and curtail recruitment

in the final stage at that point. This can be achieved using the artpep command in

Stata for instance [115], thus reducing the maximum length of the trial by 6 weeks which

is equivalent to recruiting 54 fewer patients in the trial (assuming a recruitment rate of

9 patients/week). However, this will not pose such a large problem once methods are

developed for determining culture status in a shorter time frame and implemented into

practice.

It should be noted that the time to culture conversion outcome is an interval-censored

outcome since culture samples are only taken on a weekly basis. Thus the actual time

to culture conversion may have occured between visits. This often has to be taken into

account in the analysis of such an outcome particularly if the interval between measure-

ments is large in relation to the length of the trial. However, this may not be such an issue

in PanACEA since the weekly intervals are much shorter than projected the minimum

length of the trial of 26 weeks.

2.7 Simulation study

2.7.1 One-stage designs

A simulation study was performed to determine the accuracy of the calculations made by

nstagesurv. One-stage designs were investigated by simulating patient-level data for all

combination of designs from parameters shown in Table 2.4 (288 designs in total). The

following parameter values were used for all simulated trials: t∗ = 10, r1 = 10, τ = 0

and θ0 = 1. Survival times with underlying exponential or Weibull distributions were

explored along with target hazard ratios less than and greater than 1. Stage end times

and stagewise pass/fail rates under H0 and H1 were estimated for each study design in the

simulations and compared to calculated values. Ten-thousand replicates were generated

for each study design to ensure the Monte Carlo standard error of the type I error rate

and power estimates was no higher than 0.005. Hazard ratios were estimated using the

stcox command in Stata. Error rates were assessed when using (a) the significance level

and (b) critical hazard ratio to determine whether the experimental arm was superior to

control.

For each design, the average duration of all simulated trials was within 1% of the cor-
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Design parameter Values investigated

Type I error rate, α 0.025, 0.05

Power, ω 0.8, 0.9

Target HR, θ1 0.5, 0.75, 1.3, 2

Control scale parameter, λ0 0.05, 0.1

Shape parameter, γ 0.75, 1, 1.25

Allocation ratio, A 0.5, 1, 2

Table 2.4: Design parameters for simulations

responding calculated values (data not shown). Figures 2.4 and 2.5 show the difference

between the type I error rates and powers respectively from simulations compared to the

nominal levels. Figures labelled (a) show the difference in error rates when superiority

is assessed by comparing the p-value for the observed HR to the significance level of the

trial, and those labelled (b) show the results when comparing the observed HR to the

corresponding critical hazard ratio (determined by nstagesurv).

Figure 2.4 shows that using the significance level, rather than the critical hazard ratio,

results in type I error rates closer to the nominal value. For target HRs less than 1, the

actual type I error rate often exceeds the nominal value, whereas it usually fails to reach

it for HRs > 1. Figure 2.5 shows that using (a) or (b) results in similar discrepancies

between the actual and nominal power, although the difference in power is more variable

when using the significance level particularly for small control event numbers (e.g. < 50).

In all cases the actual error rates tend to the nominal values as the number of events

increases. These findings are similar to those of Royston et al. [83] who investigated 1-

and 3-stage designs with a target HR of 0.75 and used the critical HR as the cut-off value.

Both the type I error rate and power tended to be underestimated in the calculations (as

is the case here) but the accuracy increased for designs requiring more events.

The discrepancies in Figures 2.4 and 2.5 are an artifact of the stcox command in Stata

which was used to analyse the simulated data. Figure 2.6 shows that this command tended

to underestimate the HR particularly when there were fewer than 100 control arm events.

Thus, when the target HR was greater than one, this underestimation reduced the type I

error rate and power when using a critical HR to determine superiority. For target HRs

greater than 1, the converse is true. In addition, the underestimation was more extensive

for trials observing less than 100 control arm events thus resulting in larger discrepancies

at these points as shown in Figures 2.4 and 2.5. The stcox command also tended to give

standard errors which were slightly higher than the estimate in (2.8) particularly under
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(b) Using critical hazard ratio

Figure 2.4: Difference between type I error rates obtained from simulations and nominal
values for 1-stage designs when using (a) the significance level or (b) the critical hazard
ratio for determining whether the experimental arm is superior to control.

H1 and when fewer than 100 control arm events were observed. Oddly, this resulted in

powers which were slightly lower or higher on average than the nominal values when the

target HR was less than or greater than 1 respectively, as shown in Figure 2.5(a) (note

this is the opposite to what was observed in Figure 2.5(b)).

2.7.2 Two-stage designs

The relationship between the number of control events and the discrepancy in error rates

has implications for multi-stage designs since early stages may only require a small number

of events and so these differences could be amplified over several stages. We therefore

simulated two-stage designs with stagewise operating characteristics α2 = 0.025, ω1 = 0.95

and ω2 = 0.9 and explored first stage significance levels (α1) of 0.1, 0.3 and 0.5. We

hypothesise that the two-stage designs will show larger discrepancies in error rates than

the 1-stage designs in the previous section and that these differences will increase for

designs using a larger first stage significance level and thus smaller first stage. Designs

generated using all combinations of θ1, λ0, γ and A shown in Table 2.4 and for which both

stages were longer in duration than the follow-up period (t∗ = 10) were investigated.

Table 2.5 shows the average difference between the simulated and calculated overall error

rates and powers for the two-stage designs. Also shown are the same results for the
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Figure 2.5: Difference between powers obtained from simulations and nominal values for
1-stage designs when using (a) the significance level or (b) the critical hazard ratio for
determining whether the experimental arm is superior to control.

α1
Using significance level Using critical HR

∆α (SD) ∆ω (SD) ∆α (SD) ∆ω (SD)

Target HR< 1

0.1 0.000 (0.002) -0.003 (0.004) 0.004 (0.002) 0.008 (0.004)

0.3 0.002 (0.003) 0.004 (0.007) 0.008 (0.005) 0.021 (0.011)

0.5 0.001 (0.003) 0.008 (0.007) 0.008 (0.005) 0.027 (0.013)

1-stage 0.001 (0.003) -0.011 (0.010) 0.008 (0.005) 0.011 (0.006)

Target HR> 1

0.1 -0.001 (0.002) -0.002 (0.005) -0.003 (0.002) -0.010 (0.004)

0.3 -0.002 (0.003) -0.010 (0.011) -0.005 (0.003) -0.021 (0.016)

0.5 -0.002 (0.002) -0.020 (0.016) -0.006 (0.003) -0.032 (0.020)

1-stage -0.002 (0.003) 0.002 (0.008) -0.006 (0.003) -0.011 (0.007)

Table 2.5: Average difference between overall type I error rates (∆α) and powers (∆ω)
obtained from simulations compared to calculated values for two-stage designs with first
stage significance level α1.

corresponding 1-stage designs with α = α2 = 0.025 and ω = ω2 = 0.9 as investigated in

the previous section. As expected, the difference between the calculated and simulated

error rates increases for larger stage 1 significance levels (i.e. as the required number
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Figure 2.6: Average difference between hazard ratios estimated using the stcox Stata
command and the corresponding underlying HR under (a) H0 (left) and (b) H1 (right)

of events decreases). This difference is more severe when using the critical HR as the

cut-off value while the differences are relatively much smaller when using the significance

level. For the latter in particular, there is little difference between the discrepancies in the

1-stage and 2-stage designs except for the difference in power when α1 = 0.5.

2.8 Discussion

In this chapter the MAMS design for time to event outcomes was extended to allow hazard

ratios greater than one to be targeted under the alternative hypothesis. This is required if

events need to be observed more quickly on an experimental arm than on control for it to

be deemed superior. Examples of such outcomes are time to cure or time to healing. The

extensions to the methodology were also applied to the nstage program in Stata which is

used to aid the design of MAMS trials with time to event outcomes.

An adaptation of the MAMS design was introduced allowing the use of time to event

outcomes which are only observed during a limited period after randomisation. Unlike the

original MAMS design which only assumes exponential event times, a Weibull distribution

can be assumed thus allowing more accurate estimation of stage end times and sample

sizes. In practice, time to event outcomes might not be exponentially distributed, as

shown for the TCC outcome in TB in Section 2.3.3.2. This is also often the case in

cancer where, for example in the ICON7 study, progression-free survival times appear to
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be non-exponential (Figure 2 of [112]). Making a similar extension to the MAMS design

described in [83], which is often used in cancer, or allowing the use of a more general

piece-wise exponential distribution might therefore be useful.

Unlike the original MAMS design, we have only allowed the use of a single outcome

throughout the trial (I = D). Further work could include extending the design to situ-

ations where I and D are different time to event outcomes both observed during a fixed

period, or even to the case where either I or D is observed during a fixed period and the

other outcome can be ascertained at any time. For instance, in TB one could have a trial

where I is time to culture conversion and D is overall survival. Whether such a design is

likely to be required in practice however, is unclear.

To aid the design of a MAMS trial with a time to event outcome observed during a fixed

follow-up period, the nstagesurv program was introduced for Stata. Like nstage, the

program requires the number of arms recruiting in each stage to be specified, however,

this is not likely to be known before the trial commences. When designing a trial it is

recommended to run the design under various combinations of arms to explore the impact

on the sample size and duration of the trial [84]. nstagesurv was used to help design the

5-arm 2-stage PanACEA TB study investigating time to culture conversion which finished

recruitment in March 2014.

The stage durations, type I error rates and powers calculated by nstagesurv were assessed

with simulations of one-stage and two-stage designs. Stage duration estimates were shown

to be highly accurate. For designs requiring a small number of control events there was a

small discrepancy between the calculated and actual type I error rates and powers which

diminished as the number of events increased. These findings are an artifact of the stcox

command in Stata which underestimated HRs for designs with less than approximately

100 events and so other, more accurate means of estimating HRs need to be investigated.

We also assessed these discrepancies when using the nominal significance level or critical

HR to determine superiority of the experimental treatment. Using the significance level as

the cut-off for the observed p-value tended to give error rates closer to the nominal values

especially under H0, and we therefore recommend using the significance levels rather than

critical HRs in practice.

In summary, we have extended the existing MAMS design of Royston et al. [83] to make

it applicable to trials of outcomes in which shorter event times are more favourable. In

addition, we have introduced a new MAMS design for time to event outcomes which are

only observed during a limited time frame after randomisation and developed software for

applying the design in practice. The methodology has already been used in a phase 2b TB
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trial investigating time to culture conversion and holds promise for accelerating treatment

evaluation in this area.



Chapter 3

A multi-arm multi-stage trial

design for binary outcomes

3.1 Introduction

As discussed in previous chapters, the sample size calculation for the multi-arm multi-

stage (MAMS) design described by Royston et al. [83] is only applicable to time to event

outcomes where a hazard ratio (HR) is typically the summary statistic used to compare an

experimental treatment against a control. It is therefore applicable to trials in oncology,

for example, where time to an event such as death is often used as a primary endpoint.

In Chapter 2 we extended the design to a time to event outcome which is only observable

during a limited period of time after randomisation and applied the design to a phase

2b trial in tuberculosis (TB) where time to culture conversion (TCC) is the outcome of

interest. However, if the MAMS design is to be more widely used in other disease areas,

the methodology needs extending further to allow more types of outcome measure to be

used.

In TB, another commonly used outcome measure for phase 2b trials is the absolute differ-

ence in the proportion of patients who have a negative culture status eight weeks or two

months after commencing therapy [101, 116, 117]. Unlike TCC, this is a binary outcome

assessed at a single time point. In phase 3, the absolute difference in the proportion of

patients who either fail to respond to their allocated treatment or relapse after completing

treatment (also binary) is usually assessed one to two years after randomisation [104]. In

this chapter, these examples are used as motivation for extending the MAMS design to

binary intermediate and definitive outcomes observed at the end of fixed follow-up peri-

78
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ods and analysed using an absolute difference in proportions. Binary (or dichotomous)

outcomes are widely used in many clinical studies and so making such an extension to the

methodology should vastly increase the areas in which the MAMS design could be used.

Unlike the design in the previous chapter, the intermediate and definitive outcomes may

differ thus allowing phases 2 and 3 of testing to be incorporated into a single MAMS study.

The benefits of this design over more conventional approaches to treatment evaluation

(e.g. separate fixed-sample phase 2 and 3 trials) are explored and issues surrounding the

design, such as type I error rate and critical values, are investigated. Simulation studies

using examples in a TB context are used to verify the methodology and to investigate

the bias in treatment effect estimates under various scenarios. Finally, a new software

program for Stata is introduced which facilitates the design of MAMS trials with binary

outcomes.

3.2 Proposed design

Let I denote the intermediate and D the definitive outcome of a MAMS trial. To simplify

matters practically and methodologically, the same null and alternative hypotheses are

used for all experimental arms so that their sample size requirements are identical, thus

allowing corresponding interim assessments of each arm to be conducted simultaneously.

We therefore develop the sample size calculation by first considering a single experimental

arm, E, compared against a control, C.

For a MAMS trial with J stages, let πEj and πCj denote the true event rates for the

outcome of interest in the jth stage of the trial in the experimental arm and the control

arm respectively (j = 1, . . . , J). If the same outcome is used throughout the trial (I = D)

then πEj and πCj are constant for all j. If the intermediate and definitive outcomes differ

(I 6= D) the values πEJ and πCJ correspond to the true treatment effects for the definitive

outcome and πEj and πCj are constant for all j < J and correspond to the intermediate

outcome.

To make the MAMS design directly applicable to phase 2 and 3 trials using binary out-

comes in TB we will develop the methodology for treatment effects parametrised by an

absolute difference in proportions. Future work will focus on extending the methods to

odds ratios and risk ratios which are often used in many other trials of binary outcomes.

Denote by θj = πEj − πCj the true absolute risk difference at the jth interim analysis.

Without loss of generality, assume that a positive value of θj indicates benefit of E over
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C. The null and alternative hypotheses are then

H0 : θj ≤ θ0
j , j = 1, . . . , J

H1 : θj > θ0
j , j = 1, . . . , J.

The value θ0
j is constant for all j if the intermediate and definitive outcome measures are

the same (I = D). Otherwise θ0
J corresponds to the definitive outcome and θ0

j is constant

for all j < J for the intermediate outcome. In a superiority trial, θ0
j is usually taken to be

0 to represent no difference between arms under the null hypothesis. In a non-inferiority

trial, a negative value of θ0
j is used to represent that E is slightly inferior to C under H0.

Having specified the null and alternative hypotheses above, the one-sided significance

level, αj , and power, ωj , for each pairwise comparison is chosen for each stage j of the

trial (j = 1, . . . , J). As stated in Chapter 2, it is recommended to use a high power in each

stage, for example 90% or 95%, in order to achieve high overall power for the trial [83]. A

large significance level should be used in the first stage to allow the first interim analysis

to occur early on in the trial. Over subsequent stages significance levels are decreased to

avoid stages becoming redundant. For trials with 6 or fewer stages, Royston et al. [83]

suggest a ‘rule of thumb’ of αj = 0.5j for stages j = 1, . . . , J−1 and αJ = 0.025 in the final

stage to mimic a conventional two-sided test at the 5% level. However, further research

by Barthel et al. [118] and Choodari-Oskooei et al. [114] have suggested using a first stage

significance level between 0.2 and 0.3 to reduce error rates and bias. The issue of how

stagewise operating characteristics should be chosen in order to increase the efficiency of

a design has yet to be addressed [83] and will be investigated in a later chapter.

3.2.1 Critical values

For time to event outcomes, Royston et al. [83] calculate and apply critical values to the

observed HRs to determine whether to continue recruitment to an experimental arm in

the next stage of the trial. The critical HR, δj , for the jth interim analysis is a function of

the variance of the treatment effect and is therefore calculated under the assumption that

a predetermined number of control arm events, ej , will have been observed by the interim

analysis. If the interim analysis occurs exactly when ej events have been observed in the

control arm then the critical HR will roughly yield nominal type I and II error rates if it

is strictly adhered to [83].

In the case of binary outcomes, similar critical values for θj would instead be a function

of the control arm event rate, πCj , which is an unknown parameter and a value would
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therefore have to be assumed. Figure 3.1 shows that applying such a critical value, δ,

to the observed treatment effect in a simple 1-stage design does not control the type I

error rate at the nominal level (α1 = 0.025) if the true control event rate differs from the

assumed value (0.3 in this example).

A possible solution is to recalculate the critical value using the observed control event rate

and apply this to the observed treatment effect. However, Figure 3.1 shows that this also

does not provide nominal type I error rates. By contrast, using the significance level as

the critical value for the p-value of the observed treatment effect controls the type I error

rate at the nominal level regardless of the true control event rate.
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Figure 3.1: Actual type I error rate of a 1-stage design with α1 = 0.025 (dotted line)
under a range of true control event rates when (a) using a critical value which is calculated
assuming a control event rate of 0.3, (b) applying a critical value which is ‘updated’ using
the observed control event rate and (c) using the significance level as the critical value for
the p-value of the observed treatment effect. (Note: the true event rate in the experimental
arm is assumed to be the same as in the control)

The p-value for the observed treatment effect should therefore be used for monitoring as

follows: immediately after the jth interim analysis, continue recruitment to experimental

arms whose treatment effect estimate on the intermediate outcome is statistically signif-

icant at the 100αj% level. Otherwise consider ceasing further randomisations to it. If

the treatment effect estimate on the definitive outcome is statistically significant at the

100αJ% level in the final analysis then the experimental treatment is declared superior to
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the control arm (or non-inferior, depending on the objective).

3.2.2 Sample size calculation

By specifying a significance level, αj , and power, ωj , for each pairwise comparison in the

jth stage we can use standard formulae to calculate the required sample size for each

analysis. For example, the required sample size for the control arm in the jth analysis,

nCj , can be calculated using [119,120]

nCj =
(z1−αj + zωj )

2[AπCj (1− πCj ) + π1
j (1− π1

j )]

A(θ1
j − θ0

j )
2

(3.1)

where θ1
j is the minimum effect that one would like to detect with power ωj on the outcome

in the jth stage (usually the minimum clinically important difference), π1
j = πCj + θ1

j is

the target event rate in the experimental arm under H1, zk is the kth percentile of the

standard normal distribution and the E : C allocation ratio is A : 1 so that A patients are

randomised to each experimental arm for every patient allocated to control.

For a MAMS trial with Kj experimental arms recruiting in stage j, the total sample size

required for the jth interim analysis is then

nj = (1 +KjA)nCj . (3.2)

3.2.3 Consequences of delayed observations

In clinical trials, patients are often followed up for a set period of time after randomisation

before outcomes are observed. An immediate consequence of delayed observations is that

patients may withdraw or become lost to follow-up before their outcome can be ascertained.

If it is likely that outcome data will not be available for some proportion of patients, λj ,

on the outcome in the jth stage of the study, then the required sample size should be

multiplied by 1/(1−λj) to maintain the desired level of power for a complete-case analysis.

It should be noted that such an analysis assumes that missing data occur completely at

random which might not be plausible, and so appropriate imputation techniques should

also be applied [121].

For simplicity we assume that the attrition rate, λj , will be constant throughout the trial

for each outcome. One might normally expect a higher attrition rate for D than I as

it requires a longer follow-up period. However, it may be easier to obtain the former
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particularly if it can be ascertained from medical records (for example, death), in which

case a lower attrition rate on D may be a more plausible assumption.

Another consequence of delayed observations is that interim analyses cannot take place as

soon as the required sample size has been recruited and randomised. Since recruitment is

continuous, the delay in obtaining data on an outcome means that there will be patients at

each interim analysis who have been recruited to the trial but who have yet to have their

outcome observed. For example, if the follow-up period is six months and the recruitment

rate is a constant 100 patients per year, then an extra 50 patients will be recruited to

the trial but will not have completed follow-up by the time of the database freeze for the

interim analysis. This highlights the need for using an intermediate outcome which is

observed relatively quickly after randomisation. By contrast, the length of the follow-up

period for the definitive outcome is not such an issue as recruitment is stopped in the final

stage once the required sample size has accrued.

The additional patients who are randomised to arms which are subsequently dropped at

the interim analysis will also not be included in any future interim analyses. However, for

reasons concerning bias (see Section 3.4.2 and [114]) these patients should still complete

follow-up under protocol conditions and be included in a final analysis of their allocated

arm against all control arm patients randomised concurrently at the planned end of the

trial. If patients cannot be followed up under protocol conditions, for example, because

their allocated treatment is shown to be harmful and is therefore switched, then their

outcomes should not be included in a reanalysis as they may lead to more biased treatment

effect estimates [75].

The delay in starting the next stage of the trial caused by data cleaning, analysis, various

committee meetings and changing the randomisation codes (if necessary) further increases

the number of patients allocated to an arm which may imminently be dropped from

the trial. A possible solution to avoid randomising patients during this interval and the

follow-up period is to suspend recruitment once the required sample size for the analysis

has accrued and then recommence it at the start of the next stage. However, this is not

recommended since suspending and re-initiating recruitment can be logistically challenging

and is likely to prolong the duration of the trial by slowing the overall recruitment rate

[10,25].



Chapter 3. A multi-arm multi-stage trial design for binary outcomes 84

3.2.4 Calculating the stage durations

The total expected delay, denoted by τj , between recruiting the last of the nj patients

required for the jth interim analysis and the beginning of the next stage of the trial

incorporates the delay in observing the outcome plus the additional delays caused by the

analysis. Denoting the total number of patients recruited to the arms remaining in the

study at the end of stage i by Ni, the number of patients that need to be recruited during

the current stage, j, for the upcoming interim analysis, ñj , is

ñj = nj −
AKj + 1

AKj−1 + 1
Nj−1(1− λj)

where N0 = 0 and Kj is the number of experimental arms actively recruiting in the jth

stage of the study. It follows that the duration of stage j is

dj =
ñj

rj(1− λj)
+ τj

where rj is the anticipated overall recruitment rate in the jth stage (assumed to be constant

within each stage).

The cumulative number of patients allocated to all treatment arms still recruiting at the

end of each intermediate stage is then

Nj = rjdj +
AKj + 1

AKj−1 + 1
Nj−1 j = 1, . . . , J − 1.

In the final stage, recruitment to the trial may be terminated as soon as NJ = nJ/(1−λJ)

patients have been allocated to the remaining treatment arms. It is not necessary to

continue recruitment beyond this point since there are no more planned analyses after the

final analysis.

The stage end-times, tj , are obtained by summing the durations of all preceding stages;

tj =
∑j

i=1 di. These values are particularly useful as they roughly predict when interim

analyses will occur and so help to organise data monitoring and trial steering committee

meetings in advance.
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3.2.5 Pairwise operating characteristics

For a trial with J stages, Royston et al. [83] state that the overall type I error rate, α,

and power, ω, for each experimental arm compared to control is

α = ΦJ(zα1 , . . . , zαJ ;R0
J) under θj = θ0

j for all j (3.3)

ω = ΦJ(zω1 , . . . , zωJ ;R1
J) under θj = θ1

j for all j (3.4)

where ΦJ is the J-dimensional multivariate normal distribution function with correlation

matrix RhJ (h = 0, 1). The (j, k)th entry of RhJ is the correlation between the treatment

effects in stages j and k under θj = θhj . The calculation of these correlations is outlined

in Appendix B.

When I and D differ, the calculation of α in (3.3) is made under the assumption that H0

is true for both I and D. However, the maximum type I error rate, αmax, will actually

be larger than α. To see this, consider a two-stage trial in which the experimental arm is

highly effective on I but is ineffective on D. If such an arm is recommended at the end

of the trial then a type I error has been made. However, since the experimental arm is

highly effective on I it will almost always pass the interim analysis, effectively making it

redundant. The design will therefore reduce to a 1-stage trial with a maximum type I error

rate equal to the final stage significance level, αJ (> α). In the STAMPEDE trial (see

Table 1.1 on page 44), the type I error rate has been estimated to be 0.013 [80], however,

this is only when H0 is true for both I and D. By the above argument, the maximum type

I error rate for each pairwise comparison is actually equal to the final stage significance

level of the trial: αJ = 0.025.

The type I error rates of two two-stage I 6= D designs with (a) α1 = 0.5 and (b) α1 = 0.2 are

shown in Figure 3.2 for various underlying treatment effects on the intermediate outcome,

θ1, and under the null hypothesis for D. In both designs α2 = 0.025. Figure 3.2 shows

that even for values of θ1 slightly larger than the null value, θ0
1, the inflation in the type

I error rate above α is substantial with the maximum value, αmax = α2, practically being

reached when θ1 is equal to the minimum effect targeted under H1, θ1
1. Furthermore, the

increase is sharper when using a smaller significance level in the intermediate stage. To

control the pairwise type I error rate at a particular level, α∗, in the strong sense (i.e.

under any set of treatment effects) one should therefore set αJ = α∗ in the design of the

trial.

This raises important questions about how strictly one should adhere to the stopping

guidelines at the interim analyses. For instance, if the treatment effect for an arm is



Chapter 3. A multi-arm multi-stage trial design for binary outcomes 86

0.000

0.005

0.010

0.015

0.020

a

a2, 0.025

T
yp

e 
I e

rr
or

 r
at

e

q1
0 q1

1

Treatment effect on I outcome

a1 = 0.5

0.000

0.005

0.010

0.015

0.020

a

a2, 0.025

T
yp

e 
I e

rr
or

 r
at

e

q1
0 q1

1

Treatment effect on I outcome

a1 = 0.2

Figure 3.2: Type I error rates of two two-stage I 6= D designs over a range of true
treatment effects on the I outcome. Key: θ0

1 = treatment effect under H0; θ1
1 = minimum

targeted treatment effect under H1; α = type I error rate assuming H0 is also true for the
I outcome; αj = nominal significance level in the jth stage (j = 1, 2).

statistically non-significant at an interim analysis but it has a highly beneficial effect on

an important secondary outcome (e.g. safety), then it may be desirable to continue the

arm to the next stage of the study for further assessment. Ignoring interim stopping

guidelines in a trial where I 6= D will not inflate the maximum type I error rate, αmax,

since it is controlled only by the final stage significance level (αJ). The interim significance

levels could therefore be considered ‘non-binding’ in that arms do not strictly have to be

dropped at the jth analysis if their treatment effect is statistically non-significant at level

αj [53]. This increases the flexibility of the design, however, efficiency will be lost if

stopping guidelines are ignored.

By contrast, ignoring stopping guidelines will inflate the type I error rate when I = D

since all stagewise significance levels contribute to the overall pairwise type I error rate, α.

However, it is difficult to make the significance levels α1, . . . , αJ ‘binding’ since arms which

are ineffective on I (= D) but have potentially promising effects on secondary outcomes

cannot then be assessed further. If this is likely to be an issue one could decrease αJ to be

equal to the desired pairwise error rate when designing the trial to ensure that the actual

type I error rate will not be no higher than this value. This will allow the significance

levels at the interim analyses to be non-binding but at the expense of a slight increase in

the maximum sample size and potential loss in efficiency.



Chapter 3. A multi-arm multi-stage trial design for binary outcomes 87

3.2.6 Positive predictive value

As shown in Appendix B, the calculation of α and ω using (3.3) and (3.4) when I 6= D

requires an estimate of either the probability of a patient experiencing both outcomes or

the probability of experiencing the definitive outcome given they have had the intermediate

outcome (positive predictive value, PPV) for the control arm and for experimental arms

under H0 and H1.

The PPV is arguably easier to specify as it only requires an assumption for a single

outcome (D, given that I has occurred) to be made, rather than two (both I and D).

For simplicity, we will assume that the PPV in the control arm and an experimental arm

under H0 is the same, which should often be the case in practice.

An estimate of either value can be obtained using data from previous trials, through expert

opinion or both. Since the correlations between treatment effects, and therefore α and ω,

increase as either of these probabilities tend to 1 we recommended slightly underestimating

them to obtain a conservative estimate of ω.

Here we are interested in the PPV of I on D at an individual level to estimate the between-

stage correlation. This is in contrast to the trial-level PPV discussed in Section 1.5.4

where it was stated that there was no requirement for a true alternative hypothesis on I

to translate into a true alternative hypothesis for D. For the remainder of this chapter

PPV will correspond to the patient-level probability P (D = 1|I = 1) (probability that a

patient experiences the definitive outcome given they have experienced the intermediate

outcome).

3.2.7 Probability of passing each stage

Using similar formulae to (3.3) and (3.4), the probabilities of an experimental arm passing

the first j stages of a MAMS trial are

Aj = Φj(zα1 , . . . , zαj ;R
0
j ) under θj = θ0

j

Ωj = Φj(zω1 , . . . , zωj ;R
1
j ) under θj = θ1

j

where Φj is the j-dimensional multivariate normal distribution function and Rhj (h = 0, 1)

is the j × j submatrix of RhJ introduced in Section 3.2.5.

Clearly, A1 = α1, Ω1 = ω1, AJ = α and ΩJ = ω. Other values of interest, particularly

in a seamless phase 2/3 design (e.g. when I 6= D), are AJ−1 and ΩJ−1 which denote the
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probability of continuing recruitment to an arm in the final (phase 3) stage of the trial

under H0 and H1 respectively. Phase 3 trials are often resource intensive and lengthy

and the same may be true for the final stage of a MAMS trial if the intermediate and

definitive outcomes differ. Therefore it is important to have a reasonably small value

of AJ−1 and a large value of ΩJ−1 to increase the chance of only allocating patients to

effective experimental treatments in the final stage.

3.3 Application to tuberculosis

To illustrate how this new MAMS design might be applied and to assess its benefits in

a TB setting, we used the methodology above to calculate sample sizes for phase 2 and

seamless phase 2/3 two-arm two-stage TB trials.

Phase 2 designs were based upon a recent study by Dorman et al. [101] that substituted

moxifloxacin for isoniazid in the standard TB regimen during the intensive phase (first

two months) of treatment. The outcome in this study was culture status eight weeks after

randomisation and this was also used as the basis for the intermediate outcome in the

hypothetical seamless phase 2/3 designs. The definitive outcome was based on the ongoing

phase 3 REMox TB trial (controlled comparison of two moxifloxacin containing treatment

shortening regimens in pulmonary tuberculosis) that investigates the effect of two four

month regimens against the standard six month regimen on relapse rates 18 months after

randomisation [106]. This trial uses a Bonferroni-adjusted one-sided significance level of

1.25% for each treatment arm to ensure the overall type I error rate is no higher than

2.5%. For this example we considered only one experimental arm from REMox and thus

used a one-sided significance level of 2.5%. The designs of these standalone phase 2 and

phase 3 trials are summarised in Table 3.1.

Examples of two-arm two-stage phase 2 and phase 2/3 TB trials were generated using

a conventional one-sided significance level (α2 = 0.025) and power (ω2 = 0.90) in the

final stage. One-sided significance levels (α1) of 0.2 and 0.5 and powers (ω1) of 0.90 and

0.95 for the first stage were explored. Delays of 4 and 14 weeks for observing a patient’s

culture status after randomisation were used to explore their effect on the efficiency of a

multi-stage trial. The latter was chosen as it is the current delay in observing a patient’s

culture status after randomisation due to the 8 week follow-up period plus 6 week wait for

detecting absence of TB (in liquid medium). A 4 week delay was also chosen as it is not

yet certain whether culture status at 8 weeks is an appropriate intermediate outcome for

long-term relapse and observing it after 4 weeks may be more suitable. Furthermore, the
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Design Study
Overall*

Parameter Phase 2 Phase 3

Primary outcome
Negative Non-

culture status failure/relapse

Follow-up length 8 weeks** 18 months**

Significance level (1-sided) 2.5% 2.5% 2.5%

Power 80% 85% 68%

Control arm event rate 75% 90%

Treatment effect under H0 0% -6% (NI margin)

Target treatment effect (H1) 13% 0%

Allocation ratio (E : C) 1:1 1:1

Attrition rate 15% 20%

Required sample size*** 320 1122 1442

Table 3.1: Design parameters of a phase 2 TB trial based on Dorman et al. [101] and a
phase 3 TB trial based on REMox [106]. * Calculated assuming independence between
trials (note: overall type I error rate is the maximum over all possible treatment effects).
** An additional 6 week delay is typically required to determine culture status. *** Sample
sizes estimated using equations (3.1) and (3.2). NI = non-inferiority

additional 6 week wait is unlikely to exist in future as techniques for immediate detection

of TB are developed [105] and so 4 weeks may represent the shortest possible delay for

this outcome.

The efficiency of each design was measured by its expected sample size (ESS), that is,

the mean number of patients recruited to the trial before it is terminated [51]. ESS was

calculated under the null hypothesis for the I outcome since the aim of the MAMS design

is to reduce sample size requirements when evaluating ineffective treatments. The ESS

was compared between designs with roughly similar overall operating characteristics to

determine which is likely to require fewer resources when the experimental treatment is

ineffective on I. For a single-stage trial such as those in Table 3.1, the ESS is equal to the

total sample size since there is no opportunity for stopping before the planned end of the

study (except in extreme circumstances such as overwhelming efficacy of an arm).

To calculate the overall operating characteristics in the seamless designs (I 6= D) an

estimate of the positive predictive value, that is, the probability of a patient not relapsing

or being classed as a treatment failure given that they have a negative culture, was obtained

from a meta-analysis by Horne et al. [99] who estimated it to be 95% (95% CI (95%,
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96%)) for cultures taken at 2 months. This value was assumed to be the same for both

the experimental and control arms.

3.3.1 Two-stage phase 2 TB trial designs

Examples of two-arm two-stage phase 2 TB trial designs are shown in Table 3.2. These

are based on the design parameters of the study by Dorman et al. [101] and use culture

status at either 4 or 8 weeks of follow-up for both the intermediate and definitive outcome.

A constant recruitment rate of 200 patients/year was assumed in both stages to estimate

stage durations. All two-stage designs shown in Table 3.2 have the same maximum sample

size since they use identical final stage operating characteristics.

Although the maximum sample sizes of the two-stage designs shown in Table 3.2 are higher

than the corresponding fixed sample sizes, their expected sample sizes are much lower as

they allow recruitment to be stopped early if the experimental treatment does not show

sufficient benefit at the first stage. Increasing the power in the first stage reduces the

difference between the maximum and fixed sample sizes, however, this also increases the

ESS due to a larger first stage. A balance may therefore need to be made between these

two measures. As expected, the correlation between stages increases as the gap between

analyses decreases, however, by comparing designs with the same stagewise significance

levels or stagewise powers it can be seen that this only marginally increases the type I

error rate and power respectively. Unsurprisingly, the ESS is smaller when using a shorter

follow-up period since fewer patients are recruited during the first stage of the trial.

There appears little advantages in using many of the designs in Table 3.2 over the corre-

sponding fixed sample designs as they require much larger maximum sample sizes (possibly

with the exception of design (iv)), thus prolonging the evaluation of any treatment which

passes the first stage. However, should the arm under study perform poorly then the

two-stage designs allow evaluation to be stopped early unlike the fixed sample design,

thus saving resources. It should be noted that many multi-stage designs may exist for

any pair of operating characteristics α and ω, some of which require smaller sample sizes

than others. The next chapter will therefore focus on finding more efficient multi-stage

designs (both in terms of maximum and expected sample size) which are likely to be more

appealing in practice.
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3.3.2 Two-stage phase 2/3 TB trial designs

Examples of seamless two-stage TB trial designs incorporating both phase 2 and 3 of

testing are presented in Table 3.3. For reasons stated in Section 3.2.5, the maximum type

I error rate for these designs is the significance level used in the final stage (α2 = 0.025).

A constant recruitment rate of 200 patients/year was assumed for the intermediate (phase

2) stage and a much higher recruitment rate of 800 patients/year was used for the much

larger second (phase 3) stage. Under these assumptions the maximum duration of each

design is no longer than 5 years. If similar recruitment rates are assumed for the fixed

sample designs shown in Table 3.1 then the maximum duration of conducting both trials

separately is approximately 7.5 years assuming a modest delay between phases of two

years. Furthermore, the overall power of the seamless designs is over 80% which is much

higher than that for conducting trials separately (68%) and maximum sample sizes are

over 100 patients lower.

Design Stage (j) αj ωj nj Nj tj ESS|H0 ρ|H0 ρ|H1 αmax ω

(v)
1 0.5 0.90 56 134 0.67

723 0.10 0.08 0.025 0.813
2 0.025 0.90 1050 1312 3.84

(vi)
1 0.5 0.95 94 178 0.89

745 0.12 0.11 0.025 0.857
2 0.025 0.90 1050 1312 4.00

(vii)
1 0.2 0.90 156 252 1.26

464 0.16 0.14 0.025 0.815
2 0.025 0.90 1050 1312 4.28

(viii)
1 0.2 0.95 214 320 1.60

518 0.19 0.16 0.025 0.858
2 0.025 0.90 1050 1312 4.54

Table 3.3: Characteristics of two-arm two-stage seamless phase 2/3 TB trials where I
= culture status observed 14 weeks after randomisation and D = relapse status at 18
months. Key: for stage j, αj = stagewise significance level, ωj = stagewise power, nj =
total sample size required for analysis j, Nj = cumulative number of patients recruited
by the end of stage j, tj = predicted timing (in years) of the end of stage j, ESS|H0 =
expected sample size under the null hypothesis for I, ρ|Hh = correlation between stages
under hypothesis Hh, αmax = maximum type I error rate, ω = overall power.

The between-stage correlations in these designs are much lower than those in the phase

2 designs in Table 3.2 for two reasons. Firstly, the PPV is effectively 1 in designs where

I = D (see Appendix B) whereas the seamless designs here use a slightly lower value

(PPV=0.95). Secondly, the interim and final analyses are much further apart in terms

of sample size than in the phase 2 designs due to targeting a smaller effect on D, which

further reduces the correlation.

A downside of the seamless designs presented in Table 3.3, as illustrated by the high ESS,
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is that ineffective arms have a reasonable chance of proceeding to the final stage of the

trial. This is due to using a high significance level in the first stage. This is in contrast

to the fixed sample designs in Table 3.1 which use a smaller significance level in the phase

2 trial and have a smaller ESS. The large gap between the first and final analyses in the

2-stage designs means that an extra intermediate stage could be added to the trial to

combat this. For example, adding a second intermediate stage with 95% power and a

10% significance level to design (vi) in Table 3.3 reduces the ESS to 377 with only a 3%

reduction in overall power. This loss in power can be recovered by slightly increasing the

stagewise powers which will also slightly increase the ESS. Identifying multi-stage designs

which maintain the overall operating characteristics but have desirable properties such as

minimising the expected or maximum sample sizes is investigated in the next chapter.

There is clearly much more benefit in using the MAMS design for seamless phase 2/3 TB

trials than for phase 2 alone compared to conventional fixed-sample designs for each phase

of testing. The designs in Table 3.3 show that savings in time and resources and simulta-

neous gains in power can be achieved by using seamless two-arm two-stage trials over the

more conventional approach. For multi-arm multi-stage seamless trials, the savings will

potentially be much greater compared to conducting separate phase 2 and phase 3 trials

for each experimental treatment.

3.4 Simulation study

Performing a standard maximum likelihood analysis in a multi-stage trial ignores stopping

guidelines implemented in previous interim analyses and may therefore result in biased

treatment effect estimates [114]. Choodari-Oskooei et al. [114] investigated the extent of

this bias for two-arm multi-stage trials with time to event outcomes. For arms stopped

at the first interim analysis for lack-of-benefit they showed that on average the estimated

treatment effects appeared slightly less effective than their corresponding true values.

However, the bias was markedly reduced by continuing to follow-up patients under protocol

conditions on the intermediate and definitive outcomes and reanalysing the data at the

planned end of the trial. Importantly, for truly effective arms, they showed that the bias

in the estimated treatment effects on the definitive outcome at the final stage analysis was

of no practical importance.

In the time to event case, interim analyses occur when a pre-specified number of events

have been observed in the control arm. In arms in which recruitment is stopped early there

is scope for continuing to follow-up patients who have not yet experienced the event(s)
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of interest and including them in a reanalysis at the planned end of the trial to obtain

a less biased estimate of the treatment effect. This is also applicable when outcomes are

observed at the end of a fixed follow-up period (e.g. binary outcomes) since not all patients

will have had both their intermediate and definitive outcomes observed by each interim

analysis.

A simulation study was conducted using the two-stage phase 2 and phase 2/3 TB trial

designs shown in Tables 3.2 and 3.3 respectively to quantify the bias in treatment effects

estimated on the definitive outcome at:

(a) The first interim analysis in arms which are not continued to the second stage.

(b) A reanalysis of the same arms (against all control arm patients recruited concur-

rently) after intermediate and definitive outcome data have been obtained from all

patients.

(c) The final stage analysis of all arms which pass the intermediate stage.

Phase 2/3 designs in which the follow-up period for I was 4 weeks (designs not shown)

were also used to investigate the effect of follow-up length in (b).

In addition to bias, the proportion of arms for which recruitment is stopped at the first

interim analysis and the proportion which continue recruiting to the final stage of the trial,

as well as the pairwise type I error rate (α), power (ω) and correlation between stages were

determined in the simulations and compared to their corresponding calculated values.

For each design shown in Tables 3.2 and 3.3, the bias associated with the four pairs of

underlying treatment effects shown in Table 3.4 for the culture status (θ1) and relapse out-

comes (θ2) was investigated in the simulations. Note that for I = D designs in Table 3.2,

only θ1 applies.

By assessing bias in scenarios (a), (b) and (c) for the range of treatment effects in Table 3.4,

recommendations can be made for designing multi-stage trials which reduce bias. This

will help to improve the accuracy of treatment effect estimates which might be used, for

example, in future meta-analyses, policy-making decisions or the design of future trials.

3.4.1 Methods

To perform the bias assessment and assess the accuracy of the calculation of the pair-

wise operating characteristics, individual patient data were simulated for each phase 2
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Arm Description θ1 θ2

A Harmful — treatment effects worse than those
under H0

-5% -10%

B Ineffective — treatment effects under H0 0% -6%

C Mildly effective — treatment effects between
those under H0 and H1

8% -3%

D Effective — treatment effects under H1 13% 0%

Table 3.4: Underlying treatment effects on culture status (θ1) and relapse (θ2) outcomes
for four treatment arms investigated in simulations.

and phase 2/3 design under treatment effects A–D. In each case 40,000 replicates were

generated to estimate pass/fail rates to an accuracy of at least 0.5% at the 5% significance

level. For each patient, missing value indicators for the I and D outcomes were drawn

from Bernoulli distributions with parameters derived from Table 3.1. In the designs where

I 6= D, the probability of observing the definitive outcome was not conditional on ob-

serving the intermediate outcome. This reduces the correlation between stages compared

to the calculation given in Appendix B where all patients with a missing intermediate

outcome are also assumed to have a missing definitive outcome. However, these different

assumptions will indicate the robustness of the calculation of the overall type I error rate

and power.

Patient outcomes were drawn from Bernoulli distributions with control arm event rates

derived from Table 3.1. The underlying event rates for experimental arms A–D were found

by adding on the corresponding treatment effects shown in Table 3.4. Since the phase 3

outcome of relapse is dependent on culture status, the event rate for the former will differ

according to whether a patient’s culture status is positive (I = 0), negative (I = 1) or

missing. The estimate from Horne et al. (95%) [99] for the positive predictive value

(PPV=P (D = 1|I = 1)) was assumed for all arms. The probability P (D = 1|I = 0) for

each treatment arm was then found by rearranging the formula for total probability:

P (D = 1) = P (D = 1|I = 1)P (I = 1) + P (D = 1|I = 0)P (I = 0)

Unconditional event rates were used for patients with missing intermediate outcomes.

When simulating each trial, analyses were triggered once the pre-determined number of

control arm patients had their outcome of interest observed. The pairwise type I error

rate (α) and power (ω) for each design was calculated as the proportion of arms simulated
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under H0 (treatment arm B) and H1 (treatment arm D) respectively which passed all

stages of the trial. For each underlying treatment effect in each design, the absolute bias

in scenarios (a), (b) and (c) was calculated as the average deviation of all corresponding

treatment effect estimates from the true value.

3.4.2 Results

Table 3.5 shows that the overall type I error rate (calculated under H0 for the I outcome),

power and correlation between stages estimated from the simulations agree very well with

the corresponding calculated values shown in Tables 3.2 and 3.3. As expected, when

I 6= D the correlation between stages estimated from the simulations is slightly lower than

the calculated values for reasons given above. However, this only leads to a negligible

difference between the overall type I error rates and powers showing that their calculation

is robust to the assumed degree of dependence between observing each outcome.

Design
From calculation From simulation

ρ|H0 ρ|H1 α ω ρ̂|H0 ρ̂|H1 α̂ ω̂

I = D =culture status

(i) 0.39 0.39 0.021 0.826 0.38 0.38 0.021 0.828

(ii) 0.50 0.50 0.023 0.870 0.50 0.50 0.024 0.872

(iii) 0.65 0.65 0.020 0.843 0.64 0.65 0.019 0.847

(iv) 0.76 0.76 0.023 0.883 0.76 0.76 0.023 0.885

I= culture status, D = relapse

(v) 0.10 0.08 0.015 0.813 0.07 0.06 0.014 0.809

(vi) 0.12 0.11 0.015 0.857 0.10 0.09 0.015 0.854

(vii) 0.16 0.14 0.008 0.815 0.12 0.11 0.008 0.811

(viii) 0.19 0.16 0.009 0.858 0.15 0.12 0.008 0.858

Table 3.5: Overall type I error rates, powers and correlations between stages obtained
from calculation and from simulations of designs (i)-(viii) in Tables 3.2 and 3.3. Key:
ρ|Hh = correlation between stages under hypothesis Hh, α = overall type I error rate, ω
= overall power. Hats indicate values estimated from simulations.

3.4.2.1 Bias in arms dropped at the first analysis

Table 3.6 summarises the simulation results for the proportion of arms dropped at the end

of the first stage and the absolute bias in their treatment effect estimates on the definitive



Chapter 3. A multi-arm multi-stage trial design for binary outcomes 97

outcome at the interim analysis (scenario (a)) and after all patients have completed follow-

up (scenario (b)). The proportion of arms dropped under H0 (treatment effect B) and H1

(treatment effect D) is as expected given the significance level and power in this stage.

The results show that, on average, treatment effects are underestimated in arms which do

not show sufficient benefit for continuation at the first interim analysis. When I = D the

absolute bias in such arms is quite high when a large significance level (50%) and relatively

low power (90%) is used (i.e. design (i) in Table 3.2) or, more generally, the earlier the

interim analysis occurs. In design (i) the magnitude of the absolute bias is over 9% under

H0. However, the bias is markedly reduced in a reanalysis after all remaining patients

have had their outcome recorded. The reduction in bias is greater when using a longer

follow-up period or, more generally, when more patients can be added to the reanalysis.

In this particular example, the magnitude of the absolute bias under H0 decreases from

9.5% to 6.5% for a 4 week follow-up and to 4.6% if outcome observation is delayed by 14

weeks after randomisation.

When using a relatively low significance level in the first stage (e.g. 20%) the bias is of no

practical importance in arms which are likely to be stopped at that analysis, particularly

after follow-up is complete. When I 6= D, the bias in the treatment effect estimates for D

is much lower than when the same outcome is used throughout the trial, even when the

first stage is small.

3.4.2.2 Bias in arms reaching the final analysis

Table 3.7 shows that treatment effects estimated at the final planned analysis of the trial

are overestimated on average, although the bias is generally not as large as it is for arms

dropped at the first analysis. The results suggest that bias decreases the further the

interim analysis is in terms of sample size from the final analysis (i.e. as the correlation

between stages decreases) and when the chance of proceeding to the final stage of the trial

is higher.

In the examples used in Table 3.7, the bias is practically zero when I 6= D, even for

ineffective arms. This is due to the very low correlation between stages in these designs

(roughly 0.1). However, even when the correlation is higher, for example when I = D,

the bias is still very small for arms which are likely to proceed to the final stage. Bias

is higher for ineffective arms, however, in a well-designed MAMS trial such arms should

have little chance of reaching the final stage.
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α1
Treatment

θD
ω1 = 0.90 ω1 = 0.95

arm % Pass E(θ̂D) bD % Pass E(θ̂D) bD

I = D = culture status at 8 weeks

0.5

A -5% 35 -3.1% 1.9% 29 -2.2% 2.8%

B 0% 51 1.4% 1.4% 50 1.8% 1.8%

C 8% 78 8.6% 0.6% 83 8.7% 0.7%

D 13% 90 13.3% 0.3% 95 13.2% 0.2%

0.2

A -5% 6 0.9% 5.9% 5 2.4% 7.4%

B 0% 20 4.2% 4.2% 20 4.8% 4.8%

C 8% 65 9.5% 1.5% 73 9.5% 1.5%

D 13% 90 13.5% 0.5% 95 13.4% 0.4%

I = culture status at 8 weeks, D = relapse

0.5

A -10% 35 -9.8% 0.2% 30 -9.7% 0.3%

B -6% 51 -5.9% 0.1% 51 -5.8% 0.2%

C -3% 77 -3.0% 0.0% 83 -2.9% 0.1%

D 0% 90 0.0% 0.0% 95 0.0% 0.0%

0.2

A -10% 6 -9.4% 0.6% 5 -9.3% 0.7%

B -6% 20 -5.6% 0.4% 20 -5.5% 0.5%

C -3% 65 -2.9% 0.1% 73 -2.9% 0.1%

D 0% 90 0.0% 0.0% 95 0.0% 0.0%

Table 3.7: Simulation results showing the proportion of trials which continue to the final
(second) stage of the trial (% pass) and the absolute bias in the estimated treatment
effect on D at the final analysis. Key: θD = underlying treatment effect on the definitive
outcome, α1 = significance level in stage 1, ω1 = nominal power in stage 1, E(θ̂D) =
average treatment effect on the definitive outcome in the final stage, bD = E(θ̂D)− θD =
bias in the average treatment effect estimate on the definitive outcome in the final stage.
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3.5 nstagebin

To aid the design of multi-arm multi-stage trials with binary outcomes observed at a

fixed time point after randomisation, we have developed the nstagebin program for Stata

which operates in a similar manner to nstage [84] and nstagesurv (Chapter 2) for time

to event outcomes. Given a set of design parameters (number of arms, stages, target risk

differences, stagewise significance levels and powers etc), nstagebin estimates the required

sample sizes for the analysis at the end of each stage in addition to stage durations and

overall pairwise operating characteristics. The syntax for nstagebin is described below

along with dialog boxes for simplifying its use, particularly for first-time users. This

program was used to generate the two-stage designs shown in Tables 3.2 and 3.3 and the

output for design (v) is shown below.

3.5.1 Syntax and options

nstagebin, nstage(#) accrate(numlist) alpha(numlist) power(numlist)

arms(numlist) theta0(# [#]) theta1(# [#]) ctrlp(# [#]) [ppvc(#) ppve(#)

aratio(#) fu(# [#]) extrat(#) ltfu(# [#]) tunit(#)]

Note: the number of values given in each numlist must equal the number of stages in the

trial as specified in the nstage() option. The options for nstagebin are as follows:

Required:

nstage(#) # = J , the number of trial stages.

accrate(numlist) overall anticipated constant accrual rate, rj , per unit of trial time

(see tunit()) in each stage.

alpha(numlist) one-sided significance level, αj , for each pairwise comparison in

each stage.

power(numlist) nominal power, ωj , for each pairwise comparison in each stage.

arms(numlist) number of arms recruiting in each stage (including control arm).

theta0(# [#]) absolute risk difference under H0 for the I and D outcomes.

theta1(# [#]) minimum risk difference targeted under H1 for the I and D out-

comes.

ctrlp(# [#]) anticipated control arm event rate for the I and D outcomes.

Required only if the intermediate and definitive outcomes differ:
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ppvc(#) positive predictive value P (D = 1|I = 1) for the control arm.

ppve(#) positive predictive value P (D = 1|I = 1) for the experimental

arm under H1.

Optional:

aratio(#) # = A, the allocation ratio (number of patients allocated to each

experimental arm for each patient allocated to control). Default

# is 1.

fu(# [#]) length of follow-up period in units of trial time (see tunit()) for

the I and D outcomes. Default # is 0 (I and D outcomes both

observed immediately after randomisation).

extrat(#) delay in units of trial time (see tunit()) between observing the

final required outcome for an analysis and the beginning of the

next stage. Default # is 0 (no delay).

ltfu(# [#]) loss to follow-up rate for the I and D outcomes. Default # is 0

(no loss to follow-up for either outcome).

tunit(#) code for units of trial time: 1 = one year, 2 = 6 months, 3 = one

quarter (3 months), 4 = one month, 5 = one week, 6 = one day,

and 7 = unspecified. Default # is 7 (unspecified).

3.5.2 Output

nstagebin, nstage(2) arms(2 2) alpha(0.5 0.025) power(0.9 0.9) theta0(0 -0.06)

theta1(0.13 0) ctrlp(0.75 0.9) ppvc(0.95) ppve(0.95) accrate(200 800)

fu(0.27 1.5) extrat(0.075) ltfu(0.15 0.2) tunit(1)

n-stage trial design version 1.0.0, 07 May 2014

---------------------------------------------------------------

Sample size for a 2-arm 2-stage trial with binary outcome

---------------------------------------------------------------

Control arm I (D) event rate = 0.75 (0.90)

Attrition rate for I (D) outcome = 0.15 (0.20)

Operating characteristics

--------------------------------------------------------------------------

Alpha(1S) Power theta|H0 theta|H1 Length* Time*

--------------------------------------------------------------------------

Stage 1 0.5000 0.900 0.000 0.130 0.670 0.670

Stage 2 0.0250 0.900 -0.060 0.000 3.172 3.842

Pairwise 0.0147 0.813 3.842

Maximum 0.0250
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--------------------------------------------------------------------------

* Length (duration of each stage) is expressed in year periods

Cumulative sample sizes per arm per stage

---------Stage 1--------- ---------Stage 2---------

Overall Control Exper. Overall Control Exper.

---------------------------------------------------------------------------

Number of active arms 2 1 1 2 1 1

Accrual rate* 200.0 100.0 100.0 800.0 400.0 400.0

Patients for analysis 56 28 28 1050 525 525

Patients recruited** 134 67 67 1312 656 656

---------------------------------------------------------------------------

* Accrual rates are specified in number of patients per year

** Accounts for loss-to-follow-up rate and includes patients recruited

during follow-up periods

3.5.3 Dialog menu

In our experience, first-time users of nstagebin (and also nstage) often find the program

challenging. To improve its usability we have created an accompanying dialog box to

simplify the way in which design parameters can be entered into the program. Once

installed, the box can be accessed by typing “db nstagebin” into the Stata command

line. The tabs of the dialog box are presented in Figures 3.3–3.6 and show the input for

the example above.

In the first tab (‘Design parameters’ — Figure 3.3) the number of stages, allocation ratio,

trial time units and delay required for interim analyses are entered. In the second tab

(‘Operating characteristics’ — Figure 3.4) the significance levels, powers, accrual rates

and number of recruiting arms are chosen for each stage of the trial. In the third tab

(‘Intermediate outcome’ — Figure 3.5) the design parameters for the intermediate outcome

(if it differs to the primary outcome) are entered. These include the control event rate,

risk differences under H0 and H1, length of follow-up and loss to follow-up rate. On the

final tab (‘Primary outcome’ — Figure 3.6) the analogous parameters are entered for the

definitive outcome. Also on the third tab, the positive predictive values of I on D are

entered for the control and experimental arms.
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Figure 3.3: Screenshot of the first tab of the nstagebin dialog box: general trial design
parameters.

Figure 3.4: Screenshot of the second tab of the nstagebin dialog box: stagewise operating
characteristics.
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Figure 3.5: Screenshot of the third tab of the nstagebin dialog box: parameters for the
intermediate outcome (if applicable).

Figure 3.6: Screenshot of the final tab of the nstagebin dialog box: parameters for the
primary outcome.
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3.6 Discussion

In this chapter the MAMS design initially developed by Royston et al. [77, 83] has been

adapted to allow the use of binary intermediate and definitive outcomes which are ob-

served at the end of a fixed follow-up period and analysed using an absolute difference

in proportions. Throughout, TB has been used as an example of a disease area where

this MAMS approach could dramatically speed up treatment evaluation compared to the

traditional approach of separate, two-arm phase 2 and 3 trials. Savings in time and re-

sources and simultaneous gains in power are particularly large when using the MAMS

design to incorporate both phase 2 and phase 3 into a single seamless trial. However,

savings are also likely to be made when using the design for a multi-arm phase 2 trial if

poorly performing arms are dropped during the trial. Many new and repurposed drugs

are currently in clinical development for TB and so a large number of new regimens are

likely to be available for testing in phase 2 and 3 trials in the near future. Evaluating

them in separate, single stage trials will not only be costly but will prolong the discovery

of a simpler and shorter effective regimen by decades. Use of novel trial designs such as

the MAMS design is therefore recommended [10].

Further work is needed to determine the best intermediate outcome for long-term relapse

before the MAMS design described here can be used to evaluate TB treatments in a

seamless phase 2/3 trial. The methods used by Barthel et al [118], who evaluated the

performance of the MAMS design for time to event outcomes in four cancer trials, could

be applied to past TB trials. If the rate at which trials are incorrectly stopped for lack-

of-benefit on culture status at eight weeks is high then other intermediate outcomes will

need considering, such as culture status at other time points. Another candidate for the

intermediate outcome is time to culture conversion which is increasingly being used in

phase 2 trials and is arguably a more reliable endpoint for deciding whether to continue

a treatment to phase 3 [122]. The PanACEA consortium is conducting a MAMS trial

(ClinicalTrials.gov identifier NCT01785186) using this endpoint but since this is a phase 2

trial the definitive outcome is also time to culture conversion. Incorporating this outcome

into a MAMS design with a binary definitive outcome will require further extensions to

the methodology.

The amount of bias likely to be generated in various examples of phase 2 and phase

2/3 TB trials was investigated and was shown to often be of no practical importance in

arms reaching the final analysis. This is particularly the case for effective arms or when

treatment selection is based on an intermediate outcome different to the definitive outcome.

In general, the bias at the final analysis increases as the treatment effects estimated at each
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stage become more correlated. This is caused by having short stage durations in which

only a small amount of new data can be collected. Ensuring that stages are adequately

spaced is not only practical from the perspective of everyone involved in the trial but it

will also limit the amount of bias likely to be generated.

As shown by Choodari-Oskooei et al. [114], we also found that having an early first in-

terim analysis increased the bias of treatment effect estimates in arms dropped at this

analysis, particularly when the intermediate and definitive outcomes were identical. Bias

was markedly reduced in a reanalysis after all patients had completed follow-up. It should

be noted however, that the average treatment effect in arms which are stopped early for

lack-of-benefit (i.e. are statistically non-significant) will necessarily appear less effective

than their true value [123]. Freidlin and Korn [124] suggest that the most appropriate

comparator for the x% of trials stopped at the first interim analysis is the average treat-

ment effect estimate of the same outcome in the corresponding x% most extreme trials in

the corresponding fixed sample-size design (i.e. the design that has no interim analyses).

When taking this into consideration the bias estimates in Table 3.6 are nearly halved (data

not shown).

A calculation for the maximum type I error rate for a single experimental arm was given,

thus allowing strong control of this measure in a trial. However, as discussed in Sec-

tion 1.3.1 on page 23, in a multi-arm trial it may be more important to control the family-

wise type I error rate (FWER). In Chapter 5, a calculation will be derived for the FWER

of the MAMS design described here and by Royston et al. [77, 83]. This will allow the

MAMS design to be used in trials where FWER control is required, such as confirmatory

studies [20].

In summary, we have extended the MAMS design introduced by Royston et al. [83] to

binary intermediate and definitive outcomes, potentially opening up its use in many other

disease areas. We also introduced Stata software for facilitating the design of such trials in

practice. However, for the design to be potentially used in any disease setting, the method-

ology needs extending further to all types of outcome measures and also any combination

of outcomes (e.g. a continuous I and a binary D outcome). We applied the MAMS design

for binary outcomes to a TB setting and showed considerable savings in time, sample size

and gains in power are possible compared to more conventional approaches to phase 2 and

3 trials which are still routinely used in practice.



Chapter 4

Feasible and admissible two-arm

multi-stage designs

4.1 Introduction

The nstage program in Stata [84] is currently used to facilitate the design of trials which

use the multi-arm multi-stage (MAMS) approach described by Royston et al. [83] for time

to event outcomes. Among other things, this program requires the user to choose the

number of stages and the significance level and power in each stage of the trial in order

to determine the required sample sizes, number of events, approximate timing of each

analysis and the overall type I error rate, α, and power, ω, for each pairwise comparison.

Similar programs (nstagesurv and nstagebin) were introduced in Chapters 2 and 3 for

other time to event outcomes and binary outcomes respectively.

When designing a trial, one usually wishes to control the overall operating characteristics

α and ω rather than the stagewise operating characteristics at particular levels (e.g. α =

0.025, ω = 0.9). Designs which achieve these pairwise operating characteristics are called

feasible [125]. However, using the appropriate nstage- command alone to find such designs

is currently quite challenging as users cannot simply enter their desired values of α and

ω and be presented with a list of stagewise operating characteristics to use. Instead, one

has to use a trial-and-error approach by searching over various sets of stagewise operating

characteristics until a feasible design is found. This approach is not ideal as there are likely

to be many feasible multi-stage designs for any pair of values of α and ω, some requiring

smaller sample sizes than others. Finding a wide range of such designs will therefore be

important to ensure that the chosen design is the most efficient and/or the most suitable

107
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to use in practice. However, achieving this using the appropriate nstage- command alone

will be difficult and time-consuming and so a new approach to designing MAMS trials is

needed.

Previous MAMS trials (e.g. the STAMPEDE trial) have used the recommendations given

by Royston et al. [83] to choose the stagewise significance levels and powers. They advise

using high power in the intermediate stages (e.g. at least 0.95) and also the final stage

(e.g. at least 0.90) to ensure high overall power for the trial. The reason for using higher

power in the intermediate stages is to give effective arms a strong chance of reaching the

final stage [78]. Royston et al. [83] then go on to suggest using a descending geometric

sequence such as αj = 0.5j for the significance levels in the intermediate stages and using

a final stage one-sided significance level of 0.025 to mimic a conventional two-sided 0.05

significance test. It should be noted that these recommendations were made for practical

reasons to ensure that analyses are roughly equally spaced and to allow a decision on

dropping arms to be made reasonably early in the trial, rather than to achieve a particular

overall type I error rate or power. For instance if, say, the overall desired power is 0.8 then

the recommended stagewise powers may be too high. Royston et al. [83] also acknowledge

that a more systematic approach is needed to find stagewise operating characteristics

which give efficient designs.

In adaptive designs with treatment selection such as the MAMS design, efficiency can be

measured by the number of patients that are expected to be recruited to the trial before it

is terminated, known as the expected sample size (ESS). Finding feasible MAMS designs

which minimise the ESS for a particular underlying treatment effect, referred to as optimal

designs [51], are therefore of particular interest. Popular choices of optimal designs in trials

which can stop for lack-of-benefit only (e.g. Simon’s 2-stage design [126]) are those which

minimise the ESS under the null hypothesis or the maximum sample size (MSS), known

as the null-optimal and minimax designs respectively. However, both designs have been

shown to perform relatively poorly under effects for which they are not optimised [127].

For instance, the null-optimal design has a high maximum sample size while the minimax

design has a high ESS under the null hypothesis. Instead, designs which minimise a more

balanced weighted sum of these two optimality criteria, known as admissible designs [127],

can possess the desirable properties of both the null-optimal and minimax designs.

In this chapter, we first propose a method for finding a set of feasible two-arm multi-

stage trials by applying a grid search technique to the stagewise operating characteristics.

Constraints are added for designs with more than two stages to accelerate the search

procedure. Admissible designs are then found for examples in which the intermediate and

definitive outcomes are either the same or are different. We compare the efficiency of these
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admissible designs to those found using a method based on the recommendations made

by Royston et al. [83] for choosing stagewise parameters (described above). The effect

that the number of stages has on the efficiency of two-arm trials is explored and a Stata

program for finding admissible designs with binary outcomes is introduced. Throughout,

multi-stage designs with binary outcomes are considered but the methods can be easily

applied to designs with other types of outcome.

4.2 Finding feasible designs

Given a pairwise type I error rate, α, and power, ω, for a J-stage trial, some basic principles

for choosing the stagewise significance levels and powers are as follows:

1. The significance level and power in each stage must be no lower than the correspond-

ing overall desired values: αj ≥ α and ωj ≥ ω for all j = 1, . . . , J .

2. Significance levels should decrease with each stage so that stopping guidelines become

more stringent as the trial progresses: αj+1 < αj for all j = 1, . . . , J − 1.

3. The power in the intermediate stages of the trial should ideally be at least as high

as the final stage power to give effective experimental arms a stronger chance of

reaching the planned end of the trial, thus allowing more data to be collected for

these arms: ωj ≥ ωJ for all j = 1, . . . J − 1.

4. Since treatment effect estimates at different stages will be correlated, sets of stagewise

operating characteristics which satisfy α1α2 . . . αJ ≤ α and ω1ω2 . . . ωJ ≤ ω need

only be considered.

4.2.1 Two-stage designs

In the simplest case of a 2-stage design there are two significance levels (α1 and α2) and

two powers (ω1 and ω2) to choose. To find a set of feasible designs, a grid search over

all values of α1, α2, ω1 and ω2 satisfying the above principles can be used. To limit the

search time it should only be necessary to search over α1, ω1 and ω2 in increments of

0.01. Using a smaller incrementation is not likely to result in designs with much greater

efficiency and will avoid the use of ‘unusual’ operating characteristics. However, to ensure

a reasonable number of feasible designs are found, the final stage significance level, α2,

should be searched over in smaller increments, for example 0.001, as it has the largest

influence over the overall type I error rate.
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Significance levels between 0.1 and 0.5 need only be considered for the first stage to avoid it

being too lengthy (which may reduce efficiency) or too small (which could increase bias and

the risk of spurious findings). All powers equal to or above ω should be considered for stage

1. Given suitable values of α1 and ω1, the principles listed above then imply that the choice

of significance level and power in the final stage is constrained by α ≤ α2 ≤ min(α1, α/α1)

and ω ≤ ω2 ≤ min(ω1, ω/ω1) respectively.

4.2.2 Multi-stage designs

To find feasible designs with more than two stages, a similar grid search over all plausible

stagewise operating characteristics could be used. However, the addition of an extra two

parameters to search over for each additional stage will drastically increase the search time,

thus making it impractical. Limiting the number of parameters that are to be searched

over by imposing constraints on the choice of stagewise operating characteristics can ease

this problem.

A reasonable starting point is to restrict the power in all intermediate stages to be the

same and allow only the power in the final stage to differ. This means that only two power

parameters need to be considered. Principle 3 implies that the power in each intermediate

stage, ωI , should be at least as high as the power in the final stage, ωD, to allow effective

arms a strong chance of proceeding to the final stage of the trial. The multi-arm multi-

stage STAMPEDE trial in prostate cancer, for instance, uses ωI = 0.95 and ωD = 0.90 [80].

For the same reasons as in the 2-stage case, it should only be necessary to explore powers

in increments of 0.01.

To limit the number of significance level parameters that need to be searched over (e.g. to

a maximum of two) and to satisfy principle 2 above, a monotonically decreasing function

can be used to automatically determine the significance levels which are not included in the

search. An ‘α-function’ similar to that proposed by Royston et al. [83] which determines

the significance levels for the intermediate stages given the significance level for the first

stage is

αj = αj1 j = 1, . . . , J − 1. (4.1)

To find a range of feasible designs using this function, various values of α1 can be searched

over with the final stage significance level, αJ , chosen such that the desired type I error

rate is achieved. However, very few sets of significance levels will be searched over using

this function and so few, if any, feasible designs are likely to be found. This will be

demonstrated later in this chapter.
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An alternative, more flexible, family of functions defined by a parameter 0 ≤ r ≤ 1 and

which pass through specified values of α1 and αJ is given by

αj =
α1

jr
J − j
J − 1

+ αJ
j − 1

J − 1
j = 1, . . . , J. (4.2)

By performing a grid search over α1 and αJ , this function can be used to automatically

determine the significance levels for stages j = 2, . . . , J − 1 for a range of prespecified

values of r. The search time will therefore be longer than it is when using (4.1), however,

a larger number of feasible designs are likely to be found.

The shape of both of the above α-functions are shown in Figure 4.1 for J = 3, 4 and 5

stages, α1 = 0.5, αJ = 0.05 and, for (4.2) only, r = 0 (linear), 0.5 and 1 . The stagewise

significance levels corresponding to each function are shown in Table 4.1 with intermediate

significance levels rounded in units of 0.01 for practical reasons. In a later section, the

efficiency of the designs found using the two functions are compared.
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Figure 4.1: Examples of α-functions generated using (4.1) (“Royston’s function”) and
(4.2) for r = 0, 0.5 and 1, J = 3, 4 and 5 stages, α1 = 0.5 and αJ = 0.05.

Figure 4.1 shows that as r increases, the α-functions in (4.2) become more curved. This
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Number of
Stage

r in (4.2) Royston’s

stages, J 0 0.5 1 function (4.1)

3

1 0.50 0.50 0.50 0.50

2 0.28 0.20 0.15 0.25

3 0.05 0.05 0.05 0.05

4

1 0.50 0.50 0.50 0.50

2 0.35 0.25 0.18 0.25

3 0.20 0.13 0.09 0.13

4 0.05 0.05 0.05 0.05

5

1 0.50 0.50 0.50 0.50

2 0.39 0.28 0.20 0.25

3 0.28 0.17 0.11 0.13

4 0.16 0.10 0.07 0.06

5 0.05 0.05 0.05 0.05

Table 4.1: Stagewise significance levels obtained from the α-functions shown in Figure 4.1
for 3-, 4- and 5-stage designs.

causes the significance level to decrease more rapidly during the initial stages, thus increas-

ing their sample size and duration (except for the first stage, whose duration is determined

by the fixed value α1). The functions then level off and so the number of patients recruited

in the later stages will decrease. From Table 4.1 it appears that using a value of r greater

than 1 for a large number of stages (e.g. J = 5) will result in negligibly small decre-

ments in the significance levels between later stages, thus making them too small. On

the other hand, α-functions which curve in the opposite direction will have very short

early intermediate stages, while later stages will be lengthy. Such designs are likely to be

impractical and inefficient and therefore only values of r between 0 and 1 are considered

in this chapter.

Table 4.1 also shows that for three or four stages, the significance levels found using (4.1)

almost coincide with a set found using (4.2). In the 5-stage example, the decrease in the

significance level between the penultimate (α4 = 0.06) and final stages (α5 = 0.05) using

Royston’s function is too small and unlikely to result in a practical design. Nonetheless,

both families of functions are considered later in this chapter to see which produce the

most efficient designs.
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4.2.3 Technical and practical considerations

No multi-stage design is likely to have pairwise operating characteristics exactly equal to

the desired values of α and ω and so it will be necessary to class designs with operating

characteristics close to these values as feasible. In the examples later in this chapter, we

consider designs with pairwise operating characteristics α± δα and ω ± δω to be feasible,

where δα and δω are small enough without being too lenient and yet large enough so that

a reasonable number of feasible designs are found. Our empirical investigations suggest

that δα = δω = 0.0005 are a reasonable choice.

A practical requirement of a multi-stage design is that each stage should be long enough to

accumulate a ‘meaningful’ amount of new data for the next interim analysis [80]. Not only

does this help to reduce the amount of bias generated by the design but it is also practical

from the perspective of the trial team and trial committees as it ensures that interim

analyses (for which a considerable amount of work is often required [85]) are adequately

spaced. This practicality can be achieved by imposing a constraint in the feasible design

search so that only those designs which will recruit a prespecified proportion, π, of their

maximum sample size during each stage of the trial are chosen. The maximum value of π

is determined by the number of stages that one wishes to use, and vice-versa. In general,

it will either be necessary to choose a value of π less than 1/J for a J-stage trial or, for a

given value of π, no more than b1/πc stages may be used.

4.3 Optimal designs

There are likely to be many feasible designs for any pair of values of α and ω. It is therefore

not appropriate to choose any such design as it may not be the most efficient one to use in

practice. Instead, designs which are the most efficient (i.e. minimise the expected sample

size) for a particular underlying treatment effect, referred to as optimal designs, are of

particular interest.

4.3.1 Expected sample size

Let N denote the realised sample size of a multi-stage trial and let θI be the true treatment

effect for the binary intermediate outcome. Assuming the stopping guidelines at each stage
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will be adhered to, the expected sample size, E(N |θI), of a two-arm J-stage trial is

E(N |θI) = N1 +
J−1∑
j=1

(Nj+1 −Nj)P (experimental arm passes stage j|θI) (4.3)

where Nj is the total sample size recruited to the trial by the end of stage j. In the time to

event case, the stage-end times are instead governed by the observed number of events in

the control arm. The expected number of events is therefore a more appropriate measure

to consider in this case and can be calculated by simply replacing the sample sizes in (4.3)

with the estimated number of events observed under θI .

The probability in (4.3) is calculated as follows. Assume that θI > θ0
I represents a positive

effect of the experimental treatment over control on the intermediate outcome where θ0
I is

the treatment effect under H0. For any θI , the probability of the experimental arm passing

the jth stage (j = 1, . . . , J − 1), ignoring the stopping guidelines of previous stages, is

pj = P

(
θ̂j − θ0

I

σj
> z1−αj

∣∣∣∣∣θI
)

= P

(
θ̂j − θI
σj

> z1−αj +
θ0
I − θI
σj

∣∣∣∣∣θI
)

= 1− Φ

(
z1−αj +

θ0
I − θI
σj

)

where σj is the standard deviation of the observed treatment effects under θI in the jth

stage. If θI < θ0
I represents a beneficial effect of the experimental treatment, a similar

calculation shows

pj = 1− Φ

(
z1−αj −

θ0
I − θI
σj

)

The cumulative probability of an experimental arm passing the jth stage of the trial is

then

P (experimental arm passes stage j|θI) = Φ(zp1 , . . . , zpj ;Rj) (4.4)

where Rj is the between-stage correlation matrix for the first j stages of the trial (see

Appendix B for binary outcomes or [83] for time to event outcomes).

In trials which allow stopping for lack-of-benefit only, E(N |θI) is monotonically increasing

over θI and ranges between the minimum and maximum possible sample sizes N1 and

NJ respectively. In the class of MAMS designs discussed here, there is also often the
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opportunity for stopping early at an interim analysis for overwhelming benefit on the

definitive outcome. For instance, the STAMPEDE trial uses the Haybittle-Peto rule [128,

129] so that if p < 0.001 on D for a particular arm then that arm (or the whole trial) is

stopped for efficacy [81]. Such a rule will have a negligible impact on the ESS for very

small treatment effects but it may be more influential as the effect on D increases; that is

unless there is little data available on this outcome at the interim analysis. Incorporating

this stopping guideline into the calculation should be straightforward when I = D but

may be more complex when I 6= D since the ESS will be a function of two correlated

parameters — θI and the underlying treatment effect on D, θD. However, since the same

efficacy stopping rule is used in any MAMS design, it is unlikely to have an impact on

distinguishing which designs are the most efficient in terms of ESS. For this reason and

also to avoid complicating the calculation of ESS, we will ignore the efficacy stopping

guideline throughout this chapter.

4.3.2 Null-optimal designs

A major reason for using stopping guidelines for lack-of-benefit is to reduce the amount

of resources required when evaluating ineffective treatment arms. The design which best

achieves this will be the one which minimises the ESS under the null hypothesis, H0.

Under H0, θI = θ0
I and so pj = αj , as expected. Hence

P (experimental arm passes stage j|H0) = Φ(zα1 , . . . , zαj ;Rj)

which is denoted by Aj using the notation in Section 3.2.7. Thus the expected sample size

under H0 is

E(N |H0) = N1 +A1(N2 −N1) + · · ·+AJ−1(NJ −NJ−1) (4.5)

Designs which minimise E(N |H0) are referred to as ‘null-optimal’ and are a suitable choice

of design if, for example [130]:

• The experimental treatment is very expensive or toxic and should therefore be

stopped as early as possible if it is ineffective.

• The trial requires a very large sample size and should therefore be terminated as soon

as possible to save large amounts of future time and resources if the experimental

treatment is ineffective.

• There is reason to believe that the null hypothesis is true, in which case the trial
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should arguably not go ahead.

4.3.3 Minimax designs

Another useful measure of sample size which, unlike the ESS, will be known in advance

of the trial commencing is the maximum number of patients that could be recruited

to the trial, or maximum sample size (MSS). If there is some reason to believe that the

experimental treatment is truly effective, for instance, because of data from previous trials,

then it will be important to limit MSS as much as possible to avoid a lengthy trial. This

would also be desirable if, say, recruitment to a trial is likely to be slow (for example,

because the disease in question is rare) in order to limit the maximum possible duration

or size of the trial. Designs which have the lowest maximum sample size are referred to

as minimax designs [126].

4.4 Admissible designs

Although the null-optimal and minimax designs are appealing in certain circumstances,

Jung et al. [131] showed that in Simon’s 2-stage design they are unlikely to be the most

suitable choice of design in practice. For instance, the null-optimal design tends to have a

relatively large MSS, while the minimax design has a relatively large ESS under H0. By

plotting the expected and maximum sample sizes of various feasible 2-stage designs, Jung

et al. [131] found that designs often exist which have an expected sample size close to that

of the null-optimal design but a smaller maximum sample size, or a maximum sample size

similar to the minimax design but a smaller expected sample size.

Such designs can be found by minimising the following loss function, L(q) for some q ∈
[0, 1], defined by Jung et al. [127] which is a weighted sum of the expected sample size

under H0 and the maximum sample size:

L(q) = qmax(N) + (1− q)E(N |H0) (4.6)

Feasible designs which minimise (4.6) for some q ∈ [0, 1] are called admissible. Special

cases are the null-optimal (q = 0) and minimax (q = 1) designs, but other admissible

designs which minimise a more balanced weighting of the two measures may exist. Jung

et al. [127] found that these ‘balanced’ admissible designs are often much more appealing in

practice as they usually possess similar desirable properties to the null-optimal or minimax

designs but do not have such large maximum or expected sample sizes respectively.
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Likewise, Wason et al. [125] found that when stopping for efficacy is also allowed, the

design which minimises the maximum expected sample size, referred to as the δ-minimax

design, is unlikely to be the most appealing one to use in practice. Admissible designs can

often be found which have a marginally higher maximum ESS but a much smaller MSS

and vice versa.

4.5 Example when I = D

4.5.1 Design parameters and fixed sample sizes

The methods described in Section 4.2 were used to find feasible 2-, 3-, 4- and 5-stage trials

where the intermediate (I) and definitive (D) binary outcomes were the same. Admissible

designs were found for overall operating characteristics (α, ω) = (0.025, 0.9), (0.025, 0.8)

and (0.05, 0.8) and a minimum target treatment effect (risk difference), θ1, of 0.2. To

compare the choice of admissible designs when the required sample size is much larger, a

target effect of θ1 = 0.1 was also investigated.

Other design parameters were: 1:1 allocation ratio, control arm event rate of 0.5, target

effect under H0 of θ0 = 0, no loss to follow-up and no follow-up period (i.e. outcomes ob-

served immediately after randomisation). The required sample sizes for the corresponding

fixed-sample designs, i.e. those designs with no interim analyses, are shown in Table 4.2

and were calculated using equation (3.1) in Section 3.2.2.

Type I error
Power, ω

Target treatment Sample

rate, α effect, θ1 size

0.025 0.9
0.1 1030

0.2 242

0.025 0.8
0.1 770

0.2 180

0.05 0.8
0.1 606

0.2 142

Table 4.2: Required sample sizes of fixed sample designs with type I error rate α and
power ω to detect a minimum treatment effect of θ1.
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4.5.2 Admissible I = D designs

Designs with overall operating characteristics within ±0.0005 of the desired values and

which planned to recruit at least 10% of the maximum sample size in each stage (π = 0.1)

were considered feasible. For designs with more than two stages, α-functions shown in

(4.2) using r = 0, 0.25, 0.5, 0.75 and 1 were used in the feasible design search. The

set of admissible designs was then found for each set of design characteristics (α, ω, θ1, J).

Designs which minimised L(q) defined in (4.6) for any q between 0 and 1 in 0.01 increments

were deemed admissible. For each set of design parameters, several designs were often

deemed admissible for q = 1 (minimax design) and so the design with the lowest ESS

under H0 was chosen. Admissible designs were also found using the α-function shown in

(4.1) for comparison.

In total, 36 2-stage, 80 3-stage, 41 4-stage and 17 5-stage feasible designs were found for

(α, ω, θ1) = (0.025, 0.9, 0.2) using (4.2). Table 4.3 shows the stagewise operating charac-

teristics of the admissible 2-, 3-, 4- and 5-stage designs for this set of design parameters.

The range of values of q (‘q-range’) for which each design minimises the loss function are

also presented along with the sample size of the smallest stage in each design. As expected,

stages tend to become smaller as the number of stages increases. For instance, the size

of the smallest stage in the 5-stage minimax design is just 26 patients whereas it is 70

patients for the 2-stage design.

Minimax designs (admissible for q = 1) use a high power in the intermediate stages so

that the lowest possible power is chosen in the final stage, thus reducing the maximum

sample size. The stagewise powers in the intermediate and final stages then balance out

as q decreases (i.e. as E(N |H0) becomes more of a factor in choosing a design). In all

cases, admissible designs used a small value of r (r ≤ 0.5 — i.e. a less curved α-function).

The maximum sample size of all designs in Table 4.3 is at least as large as that for the

fixed-sample design (N = 242). This increase in the maximum sample size is required

to compensate for the use of interim analyses where a type II error may be made, thus

maintaining the power at the desired level. The increase in maximum sample size therefore

tends to be larger for designs using more stages. Interestingly, in this example, the 2-stage

minimax design has the same maximum sample size as the fixed-sample design showing

that it is possible to implement an interim analysis without resulting in a potentially larger

trial.

The general pattern observed in Table 4.3 is that as the maximum sample size of the

admissible designs increases, the ESS under H0 decreases. Figure 4.2(a) plots these values
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and shows that this trend is non-linear. In particular, designs can be found which have a

similar ESS under H0 to the null-optimal or a similar MSS to the minimax designs, but

which also have much more desirable values of the MSS or E(N |H0) respectively. For

example, in the 5-stage null-optimal design (admissible for q ∈ [0.00, 0.23]) E(N |H0) is

124 and the MSS is 288 whereas the 5-stage design which is admissible for q ∈ [0.24, 0.56]

has an MSS which is 26 patients lower and E(N |H0) is just 8 patients higher.

Figure 4.2(a) also illustrates that E(N |H0) tends to be lower for designs using a larger

number of stages. For admissible designs with roughly equal MSS, E(N |H0) is substan-

tially reduced by using three stages rather than two particularly for larger maximum

sample sizes. In some cases using more than three stages can reduce E(N |H0) slightly

further, however, the small saving may not warrant the added workload of an extra interim

analysis. Interestingly, this was also the case for admissible designs targeting a treatment

effect of θ1 = 0.1 (Figure 4.2(b)). This shows that 3-stage designs provide a good tradeoff

between efficiency and the maximum number of interim analyses required regardless of

the required sample size. Similar results were observed in plots of E(N |H0) vs MSS for

(α, ω) = (0.025, 0.8) and (0.05, 0.8) which are presented in Appendix C.
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Figure 4.2: Expected sample sizes under H0 versus maximum sample sizes of admissible
2-, 3-, 4- and 5-stage designs for α = 0.025, ω = 0.9 and target treatment effects of (a)
θ1 = 0.2 (left) and (b) θ1 = 0.1 (right). The vertical dashed lines represent the sample
size, N , of the corresponding fixed-sample designs: (a) N = 242 and (b) N = 1030.

A limitation of these plots is that they only consider the ESS for highly effective arms

(equal to the MSS) and the ESS under H0. In reality, the true effect of a treatment
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is likely to lie somewhere in between. Considering the ESS of admissible designs over

a range of other underlying treatment effects may therefore be of value when choosing

which design to use. Figure 4.3 shows the ESS over a range of true treatment effects, θ,

for designs in Table 4.3 which minimise L(q) for q = 0 (null-optimal), 0.5 (‘balanced’) or

1 (minimax). The ESS for values of θ between 0 (the null effect) and 0.25 (roughly where

the ESS is maximised in this example) were calculated using (4.3). Figure 4.3 shows that

the null-optimal and minimax designs would not perform well for very large or very small

treatment effects respectively. By contrast, the balanced designs tend to have relatively

low expected sample sizes over the full range of treatment effects. They are therefore

likely to be a better choice of design in practice particularly if there are no strong beliefs

about the effectiveness of the treatment under study. Considering plots such as those in

Figures 4.2 and 4.3 for all admissible designs are clearly useful in deciding which design

to use for a particular trial.

4.5.3 Comparison with Royston’s α-functions

As stated in Section 4.2.2, multi-stage designs could also be generated using an α-function

similar to that proposed by Royston et al. [83], as shown in (4.1). We used a similar

approach to that above to find admissible 3- and 4-stage designs using (4.1) for all sets of

operating characteristics that were investigated in the previous section and compared their

resulting maximum and expected sample sizes under H0 to the corresponding admissible

designs found using (4.2). In all examples, a minimum risk difference of θ1 = 0.2 was

targeted under H1.

Two-stage designs were not considered because exactly the same search procedure is im-

plemented in both cases (i.e. a full grid search). Five-stage designs were also not explored

as they were shown in the previous section to carry little, if any, added efficiency over

4-stage designs.

The results comparing admissible 3- and 4-stage designs found using (4.1) and (4.2) are

presented in Figure 4.4. Although the admissible designs identified using (4.1), represented

by the solid points, tend to only be slightly less efficient that those found using (4.2), the

number of admissible designs is substantially smaller. For instance, there were only two

4-stage admissible designs found using (4.1) for (α, ω) = (0.025, 0.9) due to the relatively

small number of feasible designs which were discovered using this approach (e.g. ten 3-

stage and four 4-stage designs for this set of operating characteristics). By comparison,

using (4.2) results in a larger number of feasible, and hence admissible, designs to choose

from. Due to the inflexibility of the α-function in (4.1) and the results in Figure 4.4, we
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Figure 4.3: Expected sample sizes over a range of underlying treatment effects for 2-, 3-,
4- and 5-stage null-optimal (q = 0), minimax (q = 1) and balanced (q = 0.5) designs with
α = 0.025, ω = 0.9 and θ1 = 0.2. The horizontal dotted line is the size of the fixed-sample
design (N = 242).

will not consider this function further.

Interestingly, the original design of the 4-stage STAMPEDE trial [80] was generated using

the recommendations made by Royston et al. [83] and in a later chapter we will investigate

whether a more efficient design could have been used for this trial, thus potentially saving

time and patient resources.
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4.6 Example when I 6= D

The previous section explored admissible designs where the D outcome is also used for

interim monitoring (I = D). In this section, designs using the same definitive outcome are

considered but using an I outcome which differs to D. As discussed in Chapter 3, when

the intermediate and definitive outcomes differ, the maximum type I error rate is equal

to the significance level in the final stage, αJ . This parameter therefore does not have to

be searched over when finding feasible designs since it is set equal to α, thus decreasing

the search time. However, a trial team may wish to instead control a different measure
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of the type I error rate such as that when the null hypothesis is also true for I. This is

not recommended as it may result in a design with an inadequately large type I error rate

should the arm under investigation be effective on I but not D.

When designing a multi-stage trial where I 6= D, several other factors have to be taken

into consideration compared to when I = D. One is the choice of the minimum targeted

treatment effect on the I outcome, θI . Firstly, θI should be no smaller in magnitude

than the target effect on D, θD, otherwise fewer patients might be required for the final

analysis than an interim analysis. On the other hand, targeting a larger effect on I than

on D is permitted and might be necessary if only a large effect on I is likely to translate

into a clinically important benefit on D. This will lead to shorter intermediate stages

which might not be practical but will nonetheless increase the efficiency of the trial by

allowing poorly performing arms to be dropped sooner. However, in doing so one might

increase the risk of missing smaller effects on I which could translate into a benefit on

D. For practical reasons, the STAMPEDE trial targeted a hazard ratio of 0.75 on both

the failure-free survival (FFS) and overall survival (OS) outcomes to help create more

uniformly spaced analyses, despite it being quite reasonable to expect larger effects on

FFS than OS [132–134].

To explore the impact of the choice of θI on the efficiency of a MAMS trial, targeted

effects on I of θI = 0.2 and θI = 0.25 were explored in designs which also targeted a

minimum risk difference of 0.2 on D. A positive predictive value (PPV) of 0.9 is assumed

throughout.

Tables 4.4 and 4.5 show 2-, 3- and 4-stage admissible designs for θI = 0.2 and 0.25 respec-

tively and (α, ω, θD) = (0.025, 0.9, 0.2). The tables show that admissible designs in which

θI = θD tend to use α-functions which are more linear (r ≈ 0) than when θI > θD. More

curved α-functions tend to be used for the latter to help reduce the large gap between the

penultimate and final analyses of the trial which is caused by targeting a larger treatment

effect on I than D. However, for a large number of stages this can result in the later

intermediate stages becoming impractically short due to increasingly smaller reductions

in the significance level between these stages (see Table 4.1).

Figure 4.5 plots the ESS under H0 and the MSS of the admissible designs in Tables 4.4

and 4.5 and shows that targeting a larger treatment effect on I can considerably increase

the efficiency of the trial under H0. For instance, the expected sample sizes under H0 of

the admissible designs for θI = 0.25 were on average over 15% lower than for θI = 0.2.

Despite this, when designing such a trial one should always target an effect on I no higher

than the minimum effect that is anticipated to translate into benefit on D in order to
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avoid the risk of underpowering the study.
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2-stage 3-stage 4-stage

Figure 4.5: Expected sample sizes under H0 versus maximum sample sizes of admissible
2-, 3- and 4-stage designs with I 6= D, α = 0.025, ω = 0.9 and minimum target treatment
effects on I (θI) of (a) 0.2 (left) and (b) 0.25 (right). The vertical dashed lines represent
the sample size of the corresponding fixed-sample design (N = 242).

As in the I = D case (see Figure 4.2), Figure 4.5 also shows that the 3-stage designs tend

to be much more efficient under H0 than using two stages, while little extra efficiency,

if any, is gained by using four stages. Again, the null-optimal and minimax designs are

usually not the most suitable choice in practice as other admissible designs exist with

similar characteristics to these designs but much lower MSS or ESS under H0 respectively.

For instance, Table 4.4 shows that the MSS of the 4-stage design which is admissible

for q = (0.14, 0.40) is 32 patients lower than that for the 4-stage null-optimal design

in exchange for an ESS which is just 5 patients higher. Similar results can be seen in

Appendix D for other sets of operating characteristics.

The maximum sample sizes of all admissible designs above are higher than the corre-

sponding fixed-sample designs, as was the case for I = D designs. However, if the I 6= D

designs incorporated two phases of testing (e.g. in a seamless phase 2/3 design) then the

maximum sample sizes are likely to be somewhat smaller (depending on the size of the

phase 2 trial) than the total sample size of the phase 2 plus phase 3 fixed-sample trials.

In addition, the interlude between phases will be removed further reducing the maximum

duration of the trial.
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If the PPV is assumed to be lower than the value specified in the above example (0.9) then

the estimated correlation between the intermediate and final stages will be lower. This

means that the stagewise powers may have to be increased slightly to maintain the overall

desired power. As stated in Chapter 3, we recommend slightly underestimating the PPV

to avoid the risk of underpowering the trial. Alternatively, an adaptive approach similar

to that proposed by Todd [69] for bivariate group sequential trials could be used in which

the PPV is reestimated during the trial using observed data. The stagewise operating

characteristics of future stages can then amended to maintain the overall power, however,

the effect of implementing such a procedure in the MAMS design will require further work.

4.7 nstagebinopt

To aid the search for admissible two-arm multi-stage designs with binary outcomes, we

have developed the nstagebinopt program for Stata which implements the methods de-

scribed in this chapter for designs where I = D or I 6= D. The program works by first

finding a set of feasible designs for a given number of stages and overall operating char-

acteristics using a prespecified set of α-functions and then outputs the admissible designs

from this set for all q ∈ [0, 1]. The syntax and output of the program is described below.

4.7.1 Syntax

nstagebinopt, nstage(#) alpha(#) power(#) theta0(# [#]) theta1(# [#])

ctrlp(# [#]) [aratio(#) ppv(#) ltfu(# [#]) fu(# [#]) accrate(numlist)

pi(#) r(numlist) acc(#) save(string) plot]

4.7.2 Options

Required:

nstage(#) # = J , the number of trial stages.

alpha(#) overall desired maximum type I error rate.

power(#) overall desired power.

theta0(# [#]) absolute risk difference(s) under H0 for the I and D outcomes.

theta1(# [#]) minimum risk difference(s) targeted under H1 for the I and D

outcomes.

ctrlp(# [#]) anticipated control arm event rate(s) for the I and D outcomes.
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Optional:

aratio(#) # = A, the allocation ratio (number of patients allocated to each

experimental arm for each patient allocated to control). Default

# is 1.

ppv(#) positive predictive value P (D = 1|I = 1), assumed to be the

same in all arms (only needs specifying if I 6= D).

ltfu(# [#]) loss to follow-up rate for the I and D outcomes. Default # is 0

(no loss to follow-up for either outcome).

fu(# [#]) length of the follow-up period(s) in units of trial time for the

I and D outcomes. Default # is 0 (I and D outcomes both

observed immediately after randomisation).

accrate(numlist) overall anticipated constant accrual rate per unit of trial time in

each stage. This option is required only if fu() is specified and

is greater than zero.

pi(#) # = π, the minimum proportion of the maximum sample size

that should be recruited in each stage. Default # is 0.1.

r(numlist) α-functions defined by parameter r which will be used to find

feasible designs. Default is r = {0, 0.25, 0.5} if I = D and r =

{0, 0.25, 0.5, 0.75, 1} if I 6= D.

acc(#) maximum absolute difference in type I error rate and power of

feasible designs from the values specified in alpha() and power()

respectively. Default # is ±0.0005.

save(string) file name in which to save the characteristics of the admissible

designs.

plot produces a plot of the expected sample sizes under H0 versus

maximum sample sizes of the J-stage admissible designs.

4.7.3 Algorithm

The algorithm that nstagebinopt uses to find the set of admissible designs proceeds as

follows:

1. For a value of r specified in r() and initial values of α1 = 0.5, ωI = ω, ωD = ω and

αJ = α, calculate αj using the specified α-function for j = 2, . . . , J − 1.

2. Calculate the required sample size, nj , for the jth analysis (j = 1, . . . , J).
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3. Estimate the overall pairwise type I error rate, α∗.

4. If the absolute difference between α∗ and α is less than the value specified in acc(),

estimate the overall pairwise power, ω∗.

5. If the absolute difference between ω∗ and ω is also less than the value specified in

acc(), calculate the ESS of the design under H0.

6. Store the design in a temporary dataset containing the set of feasible designs.

7. If I = D, repeat steps 2–6 for all plausible values of α1, αJ , ωI and ωD based on the

principles outlined in Section 4.2. If I 6= D then αJ does not need to be searched

over and is fixed at α.

8. Repeat steps 1–7 for all other values of r specified in r().

9. Load the dataset containing the final set of feasible designs. For each design, cal-

culate the loss function L(q) = qmax(N) + (1 − q)E(N |H0) for each q ∈ [0, 1] in

increments of 0.01. Output admissible designs and the range of values of q for which

they minimised the loss function.

4.7.4 Output

nstagebinopt outputs the stagewise operating characteristics, expected sample sizes un-

der H0 and maximum sample sizes of each admissible J-stage design which minimises the

loss function qmax(N) + (1− q)E(N |H0) for some q ∈ [0, 1]. The program can also save

this information in a Stata dataset by specifying the save() option and can produce a

plot of E(N |H0) versus max(N) by choosing the plot option. Each admissible design can

then be entered into the nstagebin program (see Section 3.5) to see the design in more

detail (e.g. stage durations and sample sizes).

The output from nstagebinopt is shown below for the 2-stage I = D and I 6= D designs

explored in Sections 4.5 and 4.6 respectively with α = 0.025 and ω = 0.9. A minimum risk

difference of 0.2 is targeted under H1 on D in both cases, with an effect of 0.25 targeted

on I in the latter.
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nstagebinopt, nstage(2) alpha(0.025) power(0.9) theta0(0) theta1(0.2) ctrlp(0.5)

-----------------------------------------------------------------

q-range Stage Sig. Power Alloc. E(N|H0) max(N)

level ratio

-----------------------------------------------------------------

[0.00,0.27] 1 0.29 0.94 1.00 151 272

2 0.030 0.94

-----------------------------------------------------------------

[0.28,0.33] 1 0.32 0.95 1.00 154 264

2 0.028 0.93

-----------------------------------------------------------------

[0.34,0.52] 1 0.33 0.96 1.00 158 256

2 0.027 0.92

-----------------------------------------------------------------

[0.53,0.82] 1 0.31 0.97 1.00 167 248

2 0.026 0.91

-----------------------------------------------------------------

[0.83,1.00] 1 0.34 0.99 1.00 196 242

2 0.025 0.90

-----------------------------------------------------------------

Note: each design minimises the loss function q*max(N)+(1-q)*E(N|H0) for

weights q specified in q-range.

nstagebinopt, nstage(2) alpha(0.025) power(0.9) theta0(0 0) theta1(0.25 0.2) ///

ctrlp(0.5 0.5) ppv(0.9)

-----------------------------------------------------------------

q-range Stage Sig. Power Alloc. E(N|H0) max(N)

level ratio

-----------------------------------------------------------------

[0.00,0.07] 1 0.28 0.95 1.00 130 284

2 0.025 0.94

-----------------------------------------------------------------

[0.08,0.14] 1 0.28 0.96 1.00 131 272

2 0.025 0.93

-----------------------------------------------------------------

[0.15,0.52] 1 0.28 0.97 1.00 133 260

2 0.025 0.92

-----------------------------------------------------------------

[0.53,1.00] 1 0.20 0.98 1.00 144 250

2 0.025 0.91

-----------------------------------------------------------------

Note: each design minimises the loss function q*max(N)+(1-q)*E(N|H0) for

weights q specified in q-range.
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4.7.5 Speed of nstagebinopt

For nstagebinopt to be of any practical use, it must run relatively quickly. The length

of time taken in seconds by the program to find the 2-, 3- and 4-stage admissible designs

in Tables 4.3 and 4.5 are shown in Table 4.6. Calculations were performed on an Intel(R)

Core(TM) i7 2.9GHz processor with 4GB RAM.

J I = D I 6= D

2 0.5 0.2

3 143.5 12.9

4 162.7 12.9

Table 4.6: Time taken in seconds for nstagebinopt to output the set of admissible 2-, 3-
and 4-stage designs shown in Tables 4.3 (I = D) and 4.5 (I 6= D). Key: J = number of
trial stages.

For any number of stages the program performed much more quickly for designs with

I 6= D than I = D. This is because when I 6= D, the final stage significance level is set

equal to the maximum desired type I error rate in order to control it in the strong sense

at that level. Thus, there is one less parameter to search over. For 2-stage designs, the

program output the set of admissible designs in less than one second for both I = D and

I 6= D. It was considerably slower for more than two stages due to the extra parameter, r,

being searched over and the added computation that designs using more stages requires.

Nonetheless it still only took less than 13 seconds when I 6= D. For I = D, it can take

the program 2–3 minutes to find 3- and 4-stage admissible designs, however, this is not so

long that the program becomes impractical to use.

4.8 Discussion

Designing a multi-stage trial to have a particular pairwise type I error rate and power using

nstage [84], nstagesurv (Chapter 2) or nstagebin (Chapter 3) alone is both difficult and

time-consuming. A cumbersome trial-and-error approach is required in which users must

continually tweak the stagewise operating characteristics until a design with the desired

α and ω is found. This approach is problematic as not all feasible designs are likely be

found and thus the most efficient, or optimal, designs for a particular true treatment effect

may be missed. The methods presented in this chapter address this problem by using a

systematic search procedure to find a large set of feasible designs and then selecting those

which minimise the loss function L(q) = qmax(N) + (1− q)E(N |H0) for some q ∈ [0, 1],
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known as admissible designs.

The null-optimal (q = 0) and minimax (q = 1) designs are special cases of admissible

design and are often popular choices for trials which allow stopping for lack-of-benefit

only [126]. However, we and other authors have shown that they are usually not the best

choice of design in practice [131]. For instance, the null-optimal design often requires a

large maximum sample size while the minimax design usually has a large ESS under H0.

Instead, other admissible designs can often be found which have similar characteristics to

the null-optimal and minimax designs but which have lower maximum or expected sample

sizes respectively. Such designs also tend to be more efficient for true treatment effects

between those under the null and alternative hypotheses which are more likely to be seen

in practice. We therefore recommend finding admissible designs for all values of q ∈ [0, 1]

and investigating their expected sample sizes under various treatment effects (e.g. as in

Figure 4.3) before choosing one to use in practice. Generally, designs which are admissible

for a broader range of values of q will perform better over a wider range of treatment

effects and may therefore be a safer choice of design in practice.

For two-arm trials we found that using three stages often provides much more efficiency

under H0 over 2-stage designs and that little more is gained by using four of five stages,

regardless of sample size. Further work is needed to explore whether this is also true

for time to event outcomes. Since a considerable amount of effort is usually required to

conduct interim analyses (see [85]), a 3-stage design will therefore provide a good trade-off

between efficiency and the maximum number of analyses required. Using fewer stages also

allows a larger amount of data to accrue between analyses which can help to reduce bias

in treatment effect estimates (see Chapter 3).

Throughout, we have assumed that trials can be stopped at an interim analysis for lack-

of-benefit only. However, as noted in Section 4.3.1, an efficacy stopping guideline is also

likely to be applied to the definitive outcome at each stage (e.g. the Haybittle-Peto rule).

Such a stopping boundary will have a negligible impact if the arm is ineffective, however, it

may be quite influential in reducing the expected sample size when evaluating a treatment

which is truly effective on D. Thus, the maximum sample size might be a less relevant

quantity than the ESS under H1, say. However, since the same efficacy stopping rule

would be used in all designs, we feel that ignoring it is unlikely to influence the set of

admissible designs which is identified. Further work is needed to fully investigate this and

to incorporate the efficacy stopping guideline into the methodology if found otherwise.

The loss function we used included two optimality criteria: the ESS under H0 and the

MSS. However, other factors could be used in place of or in addition to these criteria
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such as the expected sample size under H1. Mander et al. [135] defined admissible designs

of single-arm two-stage trials which can stop for futility or efficacy to be those which

minimised a two-parameter loss function incorporating the expected sample sizes under

H0 and H1 and the maximum sample size. However, when stopping for futility only, the

authors found that using the ESS under H1 as an optimality criteria in addition to the

MSS was shown to have little influence on the choice of admissible design. Using a similar

loss function for the MAMS designs discussed here will therefore not be necessary unless

the efficacy stopping guideline is shown to be influential in the admissible design search.

The methods presented in this chapter were used to find admissible multi-stage trials with

binary outcomes and a Stata program was developed to help implement the methods in

practice. Developing other Stata programs which apply similar methodology to MAMS

trials of other types of outcome measure such as time to event, should be relatively straight-

forward and is an area of future work. However, a major difference is that in the time to

event case, analyses are triggered by the number of control arm events rather than the

number of patients followed up and so consideration should be given to the expected and

maximum number of events required rather than the analogous values for sample size.

We introduced the family of α-functions shown in (4.2) which allows a larger number of

stagewise significance levels to be searched over than a function similar to the one proposed

by Royston et al. [83] shown in (4.1). Figure 4.4 showed that this allowed a larger set

of more efficient admissible designs to be found. However, the most efficient admissible

designs will be found through a full grid search over all plausible stagewise operating

characteristics, as used for 2-stage designs. The extra efficiency of these designs compared

to those found using sets of α-functions defined in (4.2) requires further research; however,

we feel the differences will be negligible if several values of r are used. Furthermore, a full

grid search is likely to be very time-consuming for designs with three or more stages and

may therefore be impractical.

In this chapter we have addressed the problem of how to find efficient two-arm multi-stage

trials with particular pairwise operating characteristics. Similar methods could be used

to find admissible multi-stage trials with more than two arms, however, as yet there is

no rapid calculation available for the expected sample size of such trials. Moreover, in a

multi-arm trial the probability of rejecting at least one true null-hypothesis, known as the

familywise error rate (FWER), is often of greater interest particularly if, say, various doses

of a drug are to be evaluated against a control [15] or the trial is confirmatory [19]. Methods

for finding optimal or admissible designs which control the FWER at a prespecified level

are therefore needed and will be investigated in a later chapter.



Chapter 5

Familywise error rate of multi-arm

multi-stage designs

5.1 Introduction

So far, the overall type I error rate for a single experimental arm compared to the control,

known as the pairwise type I error rate (PWER), has been calculated for the multi-arm

multi-stage designs described in Chapters 2 and 3 and by Royston et al. [83]. This measure

gives the probability of recommending a particular treatment at the end of the trial when

it is truly ineffective, regardless of other arms in the study. For trials with more than

one experimental arm, the probability of recommending at least one ineffective or harmful

treatment at the end of the study, known as the familywise error rate (FWER) [16], is

arguably a more important quantity than the PWER as it gives the type I error rate

for the trial as a whole. However, for the MAMS designs discussed here, a general and

accurate calculation of the FWER is not yet available. It is therefore important that such

a calculation is developed if such designs are to be used in confirmatory trials for instance,

where limiting the maximum FWER (strong control) is often mandatory [19,20].

This chapter first outlines a calculation for the FWER of a MAMS design which allows

early stopping of recruitment to an experimental arm for lack-of-benefit only. As will

be explained, different calculations for the maximum FWER are required depending on

whether I = D or I 6= D, as is the case for determining the maximum PWER (see

Section 3.2.5). The calculation is applied to multi-arm two-stage trials with time to

event outcomes and checked using simulation of individual patient data. In addition, the

influence that the underlying treatment effect on the intermediate outcome has on the

135
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FWER in I 6= D designs is investigated to illustrate the scenario in which it is maximised.

The effect that design parameters such as allocation ratio and number of stages have on

the FWER is discussed and corrections are made to the probs option in nstage to more

accurately calculate the probability of any number of arms passing each stage of the trial

under certain sets of hypotheses. Lastly, a new subroutine for calculating the FWER of a

MAMS design is described and integrated into the nstage family of Stata commands to

allow it to be used in practice.

5.2 Calculation of FWER

A result by Magirr et al. [46] states that the FWER of a multi-arm multi-stage study with

a single outcome (i.e. when I = D) which is normally distributed is maximised under

the global null hypothesis (HG), that is, when H0 is true for all treatment arms. Further

work has shown this result also applies to other types of outcome [52, 136]. Calculation

of the FWER under this set of underlying treatment effects is therefore of prime interest

when I = D if the FWER is to be controlled in the strong sense, that is, under any set of

treatment effects. When I 6= D, recall from Chapter 3 that the PWER is maximised when

an experimental arm is sufficiently effective on I that it always passes all intermediate

stages but H0 is true on D. In Section 5.2.3 we argue that the FWER will also be

maximised when this is true for all experimental arms in the study.

In both cases, a conservative estimate of the FWER can be easily calculated by assuming

the correlation between treatment effect estimates for different arms at each stage is zero:

for a study with K experimental arms each with maximum pairwise type I error rate αmax,

the FWER will be no higher than 1 − (1 − αmax)K [18]. So, for example, in a four-arm

study with αmax = 0.025, an estimate of the FWER is 0.073. However, the actual value

will be lower than this since treatment effect estimates for different arms will be correlated

due to the use of a common control arm. Using this conservative calculation to control

the FWER at a particular value is therefore not recommended as it will result in a trial

which is larger than necessary. Nonetheless, the resulting design will still be more efficient

than conducting separate two-arm trials for each experimental arm since only one control

arm will be required. However, more efficient designs are likely to be found by using an

accurate calculation of the FWER which accounts for the correlation structure.

Magirr et al. [46] give analytical expressions for computing the FWER of multi-arm multi-

stage studies with a single normally distributed outcome using multi-dimensional integra-

tion. However, Wason and Jaki [51] show that this calculation becomes impractically slow
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as the number of stages increases. For instance, they reported that it took over eight

hours to calculate the FWER, power and expected sample size for a 5-arm 4-stage trial,

whereas it took just under 6 minutes for a 5-arm 3-stage design. The authors therefore

proposed a faster, alternative calculation by simulating trial-level data, namely the z-test

statistics for each arm at each stage. However, this calculation is restricted to designs with

normally distributed outcomes and which plan to recruit the same number of participants

to the control arm in each stage [51]. In the MAMS designs of interest here, the latter

constraint is not likely to be met (e.g. see examples in Tables 3.2 and 3.3 of Chapter 3),

other types of outcome may be of interest and I and D may differ.

5.2.1 Simulation of trial-level data

Below, the technique used by Wason and Jaki is generalised to designs where unequal

numbers of patients can be allocated to the control arm in each stage and where interim

analyses can be conducted on an intermediate outcome which differs to the definitive

outcome of the trial. The calculation is applicable to any type of outcome provided the

test statistic for the treatment effect is normally distributed (e.g. log hazard ratio). By

simulating the joint distribution of the z-test statistics, the familywise error rates under a

range of underlying treatment effects can be quickly estimated for designs where I = D or

I 6= D. Furthermore, this technique will be useful for estimating the expected sample sizes

of MAMS designs with more than two arms which will be explored in the next chapter.

We first describe a procedure for simulating the joint distribution of the z-statistics for all

experimental arms at each stage under a general set of underlying treatment effects. For

a (K + 1)-arm J-stage trial let Zjk denote the z-statistic for the kth experimental arm

(k = 1, . . . ,K) on the outcome of interest at the end of stage j (j = 1, . . . , J). For example,

Zjk may be the z-test statistic for the log hazard ratio or the log-rank test statistic for a

time to event outcome. Ignoring stopping guidelines, the distribution of Zjk is

Zjk ∼ N

(
θjk − θ0

j

σjk
, 1

)

where θjk is the true treatment effect for the kth experimental arm on the outcome of

interest in stage j, θ0
j is the corresponding treatment effect under H0 and σjk is the

standard deviation of the observed treatment effects under θjk. Under the null hypothesis

for arm k, Zjk ∼ N(0, 1) since θjk = θ0
j .

Let ρjj′ = Corr(Zjk, Zj′k) denote the correlation between the test statistics in stages j

and j′ for arm k. The calculation of ρjj′ is given in [83] for time to event outcomes and
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in Appendix B for binary outcomes. A result by Dunnett [22] implies that the corre-

lation between the observed treatment effects in any two treatment arms in stage j is

Corr(Zjk, Zjk′) = A/(A + 1) where A is the number of patients allocated to each experi-

mental arm for each control patient.

To simulate the joint distribution of the z-test statistics, Zjk, standard normally dis-

tributed random variables xjk (j = 1, . . . , J) are first generated for k = 0, . . . ,K such that

the correlation between xjk and xj′k is ρjj′ . This can be achieved using the drawnorm

command in Stata. The formula

Zjk =

√
A

A+ 1
xj0 +

√
1

A+ 1
xjk +

θjk − θ0
j

σjk
(5.1)

is then used to give simulated random variables with the required distribution and corre-

lation structure described above (proof shown in Appendix E).

This method for simulating Zjk differs to that used by Wason and Jaki [51]. In their pa-

per, the authors first generate standard normal random variables, xjk, with the required

between-arm, rather than between-stage, correlation and then go on to use an expression

similar to (5.1) to generate z-statistics which also have the appropriate between-stage

correlation. This approach only seems tractable if the intermediate and definitive out-

comes are identical otherwise the between-stage correlation structure becomes much more

complex and may be difficult to be induced using a simple expression such as (5.1).

5.2.2 FWER when I = D

Recall that for MAMS designs with a single outcome (I = D), Magirr et al. [46] state that

the FWER is maximised under the global null hypothesis, HG, that is, when θjk = θ0
j for all

j and k. Note that under this set of parameters the final term in (5.1) vanishes. Simulating

the random variables Zjk under HG and calculating the proportion of replicates which,

for any k and without loss of generality, Zjk < zαj for all j therefore gives the maximum

FWER. In other words, the FWER is the proportion of all replicates for which at least

one ineffective experimental treatment arm passes all J stages. Wason and Jaki suggest

that 250,000 replicates provide a good estimate of the FWER in practice [51] and ensures

that the Monte Carlo standard error for the estimate is no higher than 0.001.
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5.2.3 FWER when I 6= D

In a MAMS design, a type I error is made by incorrectly rejecting the null hypothesis for

the definitive outcome only. Wrongly dismissing the null hypothesis on the intermediate

outcome would not result in a type I error for the trial as it is not the primary outcome.

In other words, if an arm is superior to control on I at the final analysis but not on D then

that arm should not be recommended. Therefore in designs where the I and D outcomes

differ, the null hypothesis is true for experimental arm k if it is true for the definitive

outcome only (i.e. θJk = θ0
J), regardless of the true treatment effect on I.

In I 6= D designs the FWER will again be maximised under the global null hypothesis,

that is, when H0 is true for all experimental arms on the definitive outcome. However, the

set of treatment effects on I which will produce this maximum value need to be found.

Recall from Chapter 3 that the PWER is maximised under H0 when an arm is sufficiently

effective on I that it always passes all interim analyses. The FWER will also be maximised

when this is true for all experimental arms. To see this, consider the following two sets of

parameters configurations:

(1) θjk = θ0
j for all j and k (denote by HG)

(2) θjk = −∞ for all j < J and θJk = θ0
J for all k (denote by HD).

Scenario (1) is equivalent to H0 being true on both the I and D outcomes for all experi-

mental arms. In scenario (2), all experimental arms are infinitely effective on I (assuming

θjk < 0 is beneficial) but H0 is true on D.

In scenario (2) all experimental arms will always pass the interim analyses, thus making

them redundant. The design will therefore effectively reduce to a multi-arm trial with a

single stage since all arms will reach the final analysis. As the treatment effect on I tends

towards the null value in scenario (1), experimental arms will inevitably be dropped from

the trial at interim analyses. Consequently, fewer arms will reach the final stage and hence

fewer type I errors can be made. As a result, the FWER must be maximised under HD.

This will be demonstrated in an example in Section 5.3.

The maximum FWER can therefore be calculated in a similar way to that for a 1-stage

trial by using a Dunnett probability [22] which is simpler and computationally quicker

than the simulation in Section 5.2.1. For a design with K experimental arms, final stage

significance level αJ and a normally distributed test statistic for D, the maximum FWER

is given by

FWER = ΦK(zαJ , . . . , zαJ ;C) (5.2)



Chapter 5. Familywise error rate of multi-arm multi-stage designs 140

where ΦK is the K-dimensional multivariate normal distribution function and C is the

K×K between-arm correlation matrix with (j, k)th entry equal to A/(A+1) if j 6= k and

1 otherwise.

Calculating the FWER in scenario (1) (i.e. under HG) may still be of interest particularly

if I has high specificity for D, in which case a true null hypothesis for D is likely to

correspond to H0 also being true for I. In this scenario the FWER is not likely to be as

high as the maximum value calculated under HD and so controlling it under this worst-

case scenario may therefore be too conservative. Nonetheless, only limiting the FWER

under HG will technically control the FWER in the weak sense (i.e. under a single set

of parameters) and is likely be inadequate for a trial requiring strong FWER control

regardless of the specificity of I.

5.3 Example

We first calculate the FWER for 2-stage I = D and I 6= D designs with time to event

outcomes. For I 6= D, median survival times on the control arm of 2 and 4 years were

assumed for the intermediate and definitive outcomes respectively. The same definitive

outcome was also used in the I = D designs. The minimum hazard ratio targeted under

H1 was 0.75 for both outcomes. All designs used a significance level and power of 0.5 and

0.95 in the first stage respectively, and 0.025 and 0.9 in the final stage respectively. For

the I 6= D designs, the correlation between hazard ratios on I and D at a single time point

(see [83]) was assumed to be 0.6.

Table 5.1 shows the pairwise and familywise error rates calculated under HG for designs

with 2 and 5 experimental arms. These values are lower for the I 6= D designs since the

correlation between stages is smaller due to the use of different outcomes. However, the

maximum FWER of the I 6= D designs, calculated under HD, is somewhat higher than

the FWER of the analogous I = D design. This is arguably a disadvantage of using an I

outcome which differs to D since one then has to control the pairwise or familywise error

rate using the final stage significance level only, resulting in a larger maximum sample size.

However, this is likely to be outweighed by a lower expected sample size which is achieved

by using an I outcome observed earlier than D. Also shown in Table 5.1 are estimates of

the maximum FWER obtained by simulating individual patient data for 100,000 trials.

These estimates are slightly higher than the calculated values due to the stcox program

in Stata (which was used to analyse the simulated data) slightly underestimating hazard

ratios — see Figure 2.6.
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Design α αmax K
FWER Conservative estimate

HG HD HD (IPD) 1− (1− αmax)K

I = D 0.0231 0.0231
2 0.0424 0.0424 0.0441 0.0457

5 0.0858 0.0858 0.0898 0.1102

I 6= D 0.0201 0.0250
2 0.0378 0.0454 0.0477 0.0494

5 0.0758 0.0914 0.0950 0.1189

Table 5.1: Pairwise and familywise error rates of 3- and 6-arm 2-stage designs with time to
event outcomes. Key: K = number of experimental arms; HG = global null hypothesis on
I and D; α = pairwise type I error rate (PWER) under HG; HD = global null hypothesis
under which PWER and FWER are maximised; αmax = PWER under HD; FWER =
familywise error rate; IPD = individual patient data simulation (100,000 replicates).

In general, the size of the difference between the FWER under HG and HD for I 6= D

designs will depend upon the significance levels in the intermediate stages. For a fixed

final stage significance level (and thus a fixed maximum FWER), reducing α1, . . . , αJ−1

will increase this difference. To demonstrate this, Figure 5.1 shows the FWER when the

true treatment effect on I varies from the null effect (in this case a HR of 1) in one or

both experimental arms of a 3-arm 2-stage trial with α1 = 0.5 (left panel) and α1 = 0.2

(right panel). When θ1k < 1 in one or both experimental arms, the inflation in the FWER

is much sharper for the design using the smaller first stage significance level, i.e. when

the difference between the FWER under HG and HD is larger. This difference will also

be larger for designs using more stages (i.e. as the probability of dropping arms before

the final stage increases). Figure 5.1 shows that in both cases the maximum FWER

(which is the same for each design as they use the same final stage significance level and

allocation ratio) is achieved roughly when the effect of both experimental arms on I is

equal to the minimum effect targeted under H1. The figure also supports the argument

made in Section 5.2.3 that the FWER is maximised when all arms are highly effective on

I but ineffective on D, and that the FWER then decreases as the effects on I become less

beneficial.

Also shown in Table 5.1 is a conservative estimate of the maximum FWER which assumes

no correlation between treatment arms and is calculated using 1 − (1 − αmax)K . These

estimates are only slightly higher for K = 2 than the more accurate estimates obtained

using simulation or a Dunnett probability, however, they give a much larger overestimate

for designs with more arms. Using this measure to control the FWER at a particular level

is therefore not recommended as it will result in a trial that is larger than necessary.
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Figure 5.1: FWER of 3-arm 2-stage designs with α1 = 0.5 (left) or α1 = 0.2 (right)
when the underlying HR on I (θI) varies in one or both experimental arms. Key: θ1k =
underlying effect on I in experimental arm k.

5.4 Design parameters affecting the FWER

5.4.1 Allocation ratio

The correlation, r, between pairs of z-statistics testing different treatment arms against

a common control arm is one factor which influences the FWER. The more correlated

treatment arms are, the lower the FWER will be if all other design parameters remain the

same. For instance, if r = 1 the FWER will be equal to the pairwise type I error rate, α,

since if one ineffective arm is recommended then so will all others. On the other hand, if

arms are uncorrelated (r = 0) the FWER will be 1− (1− α)K where K is the number of

experimental arms. The correlation, r, is given by A/(A + 1) where A is the number of

patients randomised to each experimental arm for each patient allocated to control [22].

Therefore as the allocation ratio to the control arm increases, so too does the FWER

since the correlation between arms is reduced. This might be counter-intuitive, however,

increasing the relative size of the control arm decreases the variance of its effect estimate

which then accounts for less of the total variance of each treatment effect estimate, thus

reducing correlation.

Although using a larger value of A will reduce the FWER, it will also increase the required
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sample size of the trial. For a fixed-sample (1-stage) multi-arm trial, the optimal allocation

ratio (i.e. the one that minimises the sample size for a fixed power) is approximately

A = 1/
√
K [22, 51]. The 6-arm STAMPEDE trial uses an allocation ratio close to this

optimal value (A = 0.5). However, Wason and Jaki [51] showed that for a MAMS trial

using stopping guidelines for efficacy and futility, the optimal allocation ratio (i.e. the one

that minimises the ESS for a given power and FWER) is closer to A = 1. This is because

arms can be dropped during the trial and so fewer than K experimental arms are likely

to be recruiting after the initial stage. Nonetheless, deviating from the optimal value in

favour of the control does not seem to greatly increase sample size requirements and could

even decrease the overall cost of the trial if the control arm is much cheaper than the

experimental arms [19]. It should also be noted that increasing the allocation to control

has been shown to discourage patients from joining a trial in some settings [19,137]. This

may be particularly problematic as a multi-stage trial progresses and arms are dropped

since the chance of receiving an experimental arm will become even smaller. The trial

may then be less attractive to patients, potentially decreasing the recruitment rate.

Since Wason and Jaki [51] considered MAMS designs which can stop for efficacy as well as

futility, we will perform a similar investigation to theirs in the next chapter to determine

optimal allocation ratios for MAMS designs which allow stopping for lack-of-benefit only.

5.4.2 Number of stages

In I 6= D designs the calculation of the maximum FWER in (5.2) is based purely on the

final stage significance level, allocation ratio and number of arms and so the number of

stages will not influence its value. However, whether two I = D designs which share the

same pairwise type I error rate, allocation ratio and number of arms will also have the

same FWER is less clear. To investigate this, the familywise error rates of all 2-, 3-, 4-

and 5-stage admissible I = D designs found in Section 4.5 were calculated for 2, 3, 4, 5

and 6 experimental arms using the simulation technique described in Section 5.2.1.

The results in Figure 5.2 show that the FWER is roughly equal for all designs with

the same pairwise type I error rate and number of experimental arms regardless of the

number of stages or sample size of the trial. The small observed variation is caused by

a mixture of simulation error (250,000 replicates were used for each FWER calculation)

and by permitting feasible designs to have pairwise type I error rates within ±0.0005 of

the desired value, α.

Also shown in Figure 5.2 are the FWERs for the corresponding 1-stage designs (horizontal
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dashed lines) calculated using a Dunnett probability [22] with pairwise type I error rate

equal to α + 0.0005 (i.e. the upper limit allowed for feasible designs). Although not

mathematically equivalent, these values are also approximately equal to the FWER of the

corresponding multi-stage designs. This suggests that to control the FWER in a multi-

stage design, one simply has to find the pairwise α that would be required for controlling

the FWER in the corresponding 1-stage design. Once the required α is determined, the

methods described in Chapter 4 can be used to find feasible multi-stage designs which

will control the FWER in the strong sense — this procedure will be explored in the next

chapter.
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Figure 5.2: FWER of all admissible 2-, 3-, 4- and 5-stage I = D designs found in Section 4.5
for trials with 2, 3, 4, 5 and 6 experimental arms. Dashed horizontal lines are the FWER
for the corresponding K-arm 1-stage designs, calculated using Dunnett’s method [22].

5.5 Correction to the probs option in nstage

The probs option in nstage reports the approximate probabilities of the number of exper-

imental arms reaching each stage of the trial under the global null and global alternative

hypotheses [84, 138]. These values inform users of the number of arms that are likely to

be recruiting in each stage of the trial and thus allow alterations to be made to the design

if these numbers are higher or lower than desired. For instance, if a large number of arms

is likely to reach the final stage of the trial under the global null hypothesis then either

additional interim analyses could be added or the stagewise significance levels lowered to
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improve the chance of eliminating these arms at an earlier stage.

These probabilities are currently calculated using binomial distributions as described by

Barthel [138]. However, as the author acknowledges, this calculation does not take into

account the correlation between arms at each analysis caused by the use of a common

control arm. As a result, Barthel demonstrated through simulation of individual patient

data (IPD) that the probabilities calculated using this method are inaccurate [138]. For

instance, in a particular example of a 4-arm 3-stage trial which is used below, the proba-

bility of no experimental arms reaching the final stage under the global null was 0.81 in a

simulation, whereas the approximation given by the probs option was 0.93.

Simulating the joint distribution of the z-statistics, as described in Section 5.2, takes

into account the correlation structure between arms and stages and therefore allows more

accurate estimates of the probabilities given by the probs option to be attained. Using

this method, the probability of k out of K experimental arms reaching stage j of the

trial is simply the proportion of replicates in which any k experimental arms pass stages

1, . . . , j − 1 of the trial.

To demonstrate the improved accuracy of the new calculation, consider the example given

by Barthel [138] of a 4-arm 3-stage design with the same intermediate and definitive time

to event outcomes. The significance levels at stages 1, 2 and 3 are 0.25, 0.1 and 0.025

respectively, the power is 0.95 for the intermediate stages and 0.9 for the final stage and the

minimum targeted hazard ratio under H1 is 0.752. In Table 5.2 the probabilities of k out of

3 experimental arms (k = 0, . . . , 3) reaching stages 2 and 3 of the trial were calculated using

binomial distributions (Barthel’s method), by simulating the z-test statistics for each arm

at each stage (trial-level data), and by simulating individual patient data. Calculations

were performed under the global null (HG0) and global alternative (HG1) hypotheses.

Table 5.2 shows that the probabilities calculated via simulation of Zjk using (5.1) are

much closer to the results of the IPD simulation than those obtained using binomial

distributions. In some cases, the binomial calculation gives very poor estimates. For

instance, the probability of one arm reaching the second stage under HG0 is estimated

to be 0.42 using the binomial approximation whereas it is estimated to be 0.25 through

simulation of trial- and patient-level data. To more accurately calculate the probabilities

given by the probs option, we have therefore implemented the methods described in

Section 5.2 into nstage using the subroutine described in the next section.
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Prob. of k experimental arms Prob. of k experimental arms

reaching stage 2 reaching stage 3

Under HG0 k = 0 k = 1 k = 2 k = 3 k = 0 k = 1 k = 2 k = 3

Binomial approx. 0.422 0.422 0.141 0.016 0.927 0.071 0.002 0

Simulating (5.1) 0.539 0.249 0.140 0.073 0.808 0.139 0.041 0.012

Simulating IPD 0.533 0.250 0.140 0.077 0.808 0.138 0.041 0.013

Under HG1 k = 0 k = 1 k = 2 k = 3 k = 0 k = 1 k = 2 k = 3

Binomial approx. 0 0.007 0.134 0.859 0.001 0.025 0.236 0.738

Simulating (5.1) 0.005 0.024 0.095 0.876 0.010 0.039 0.133 0.817

Simulating IPD 0.004 0.019 0.095 0.882 0.007 0.034 0.132 0.827

Table 5.2: Probability of k = 0, 1, 2 or 3 experimental arms reaching stages 2 and 3 of
a 3-stage I = D design, calculated under the global null (HG0) and global alternative
(HG1) hypotheses using simulation of trial-level and patient-level data and using binomial
distributions.

5.6 The nstagefwer subroutine

To enable the maximum FWER to be calculated in the design of a MAMS trial and to

more accurately estimate the probabilities given by the probs option, we have developed

the nstagefwer subroutine which simulates the joint distribution of the z-statistics for

each arm at each stage using the methods described in Section 5.2. Since these meth-

ods are applicable to any type of normally distributed test statistic, nstagefwer can be

incorporated into nstage, nstagesurv or nstagebin.

The options for nstagefwer are outlined below. The required input is passed to the

subroutine by the relevant nstage- program depending on the design parameters specified

by the user.

Required:

nstage(#) # = J , the number of stages in the trial.

arms(#) # = K + 1, the total number of arms (experimental + control) at

the start of the trial.

alpha(numlist) one-sided significance levels for each stage.

aratio(#) # = A, the allocation ratio (number of patients allocated to each

experimental arm per control arm patient).

corr(matrix) between-stage correlation matrix.
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muz1(numlist) expected z-statistic in each stage under the minimum targeted

treatment effect (used for calculating probs under HG1).

Optional:

reps(#) number of simulations (can be specified by the user in the main

program). Default # is 250,000.

seed(#) set the seed for the simulations (can be specified by the user in the

main program). Default # is Stata’s default seed number.

ineqd specify that I 6= D so that the correct estimate of the maximum

FWER is presented.

This subroutine has been incorporated into an updated version of nstage which now

outputs the FWER of a MAMS design with more than two arms by default. If I 6= D,

nstage will output both the pairwise and familywise error rates under HG and HD (see

Section 5.2.3). The subroutine runs relatively quickly (e.g. a few seconds even for a large

number of arms and stages), however, the nofwer option has been added to nstage to

circumvent the FWER calculation if desired.

The output produced by specifying the probs option in the previous version of nstage

in which the probabilities were calculated using binomial distributions is shown below for

the 4-arm 3-stage example used in Section 5.5.

Approx. prob. of k experimental arms reaching stage 2:

---------------------------------------------

k (#arms) 0 1 2 3

---------------------------------------------

Under H0 0.422 0.422 0.141 0.016

Under H1 0.000 0.007 0.134 0.859

---------------------------------------------

Approx. prob. of k experimental arms reaching stage 3:

---------------------------------------------

k (#arms) 0 1 2 3

---------------------------------------------

Under H0 0.927 0.071 0.002 0.000

Under H1 0.001 0.025 0.236 0.738

---------------------------------------------

The output from the updated version of nstage, in which the probabilities are more

accurately calculated using nstagefwer, is shown below for the same example. Instead

of showing the probabilities of k out of K experimental arms reaching each stage of the

trial, the new output shows the probabilities of k arms passing each stage of the trial.



Chapter 5. Familywise error rate of multi-arm multi-stage designs 148

The two are synonymous in that the probability of k arms reaching stage j is the same

as the probability of k arms passing stage j − 1. However, the new output also gives the

probability of k arms passing the final stage of the trial, thus giving the distribution of

type I errors under HG0.

Probability of k experimental arms passing each stage under global H0

----------------------------------------

k(#arms) 0 1 2 3

----------------------------------------

Stage 1 0.539 0.249 0.140 0.073

Stage 2 0.808 0.139 0.041 0.012

Stage 3 0.943 0.047 0.008 0.001

----------------------------------------

Probability of k experimental arms passing each stage under global H1

----------------------------------------

k(#arms) 0 1 2 3

----------------------------------------

Stage 1 0.005 0.024 0.095 0.876

Stage 2 0.010 0.039 0.133 0.817

Stage 3 0.026 0.073 0.188 0.713

----------------------------------------

5.7 Discussion

The methods presented in this chapter address the need to accurately calculate the fam-

ilywise error rate of the multi-arm multi-stage design originally described by Royston et

al. [77, 83] and its extensions presented in Chapters 2 and 3. The calculation, which is a

generalisation of the simulation described by Wason and Jaki for another form of MAMS

design [51], simulates the joint distribution of the z-test statistics at each stage for each

arm. It is applicable to any normally distributed test statistic and thus can be applied to

various outcomes such as time to event, continuous or binary.

When I 6= D, the FWER was shown to depend on the underlying treatment effects on the

intermediate outcome of the trial. In discussing the requirements for I, various authors

have stated that if the alternative hypothesis is true for I it need not also be true for

D [78, 80, 83]. However, in this chapter we have shown that arms which are effective

on I but not on D have a strong chance of reaching the final stage of the trial and are

therefore more likely to show a false positive result compared to arms which are ineffective

on both outcomes (HG). If the maximum FWER is not controlled or if it is only controlled
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under HG, it is therefore important (but not critical) to use an I outcome which has high

specificity for D to avoid inflating the FWER; that is, if an arm has no effect on D then

it should also have no effect on I. In various oncology trials which have used or are using

the MAMS design [79, 80], the definitive outcome of overall survival is incorporated into

the intermediate outcome of failure-free survival which may help to increase its specificity.

Nonetheless, if strong FWER control is required, it remains necessary to control the type

I error rate using the final stage significance level rather than by the type I error rate

under HG, in which case the specificity of I is irrelevant.

A subroutine was introduced for the nstage family of commands to calculate and output

the FWER of a MAMS design by default. Furthermore, the subroutine corrects the

previous calculation for the probability of the number of arms passing each stage of the

study as given by the probs option. Running the subroutine within nstage takes just a

few seconds which is in contrast to using an algebraic calculation which could potentially

take hours [51].

Interestingly, the FWER was shown in Figure 5.2 to be invariant to the number of stages

in I = D designs with the same pairwise type I error rate, allocation ratio and number

of experimental treatment arms. In other words, designs with two or more stages had the

same FWER as a 1-stage design with pairwise significance level equal to the pairwise type

I error rate in the multi-stage designs. This fact can be used to find designs which control

the FWER in the strong sense at a particular level, such as 0.025 or 0.05, which may be

required in a confirmatory trial [19,20]. To do this, the required pairwise type I error rate,

α, for a trial with K experimental arms can be found to satisfy the Dunnett probability

FWER = ΦK(zα, . . . , zα;C)

where C is the K × K between-arm correlation matrix in (5.2). If I 6= D, a similar

technique can be applied using (5.2) to determine the final stage significance level which

will control the maximum FWER at the pre-specified level. The methods described in

Chapter 4 can then be used to find feasible designs with the required pairwise, and thus

familywise, error rates. In the next chapter, optimal and admissible multi-arm multi-stage

designs which control the FWER are explored in a similar manner to the investigation of

admissible designs for two-arm trials in Chapter 4.

Other useful quantities for a MAMS design can be calculated by simulating the joint

distribution of the z-statistics as described in Section 5.2. For instance, the speed of the

simulation study used in Chapter 3 to assess bias can be greatly increased simply by

simulating trial-level rather than patient-level data. This could allow a more broad range
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of designs and scenarios to be investigated in future. Another important measure for a

MAMS trial is its expected sample size (ESS) under various sets of treatment effects. As

shown in Chapter 4, there is a relatively simple formula which can be used to calculate ESS

for a two-arm multi-stage trial under any true treatment effect. For a MAMS trial, such

a formula would be much more complex and computationally intensive and so simulation

of Zjk can instead be used. This is explored in the next chapter.



Chapter 6

Optimal and admissible multi-arm

multi-stage trial designs

6.1 Introduction

In Chapter 4, methods were presented for finding two-arm multi-stage designs which con-

trol the overall type I error rate and power at prespecified levels, known as feasible designs.

The set of feasible designs which minimised a weighted sum of the expected sample size

(ESS) under the null hypothesis and the maximum sample size (MSS), known as admis-

sible designs [127], were then found. Null-optimal and minimax designs are special cases

of admissible design and have the lowest expected or maximum sample sizes of all feasible

designs respectively. However, they were shown to perform relatively poorly at treatment

effects for which they were not optimised. For instance, the null-optimal design had a

relatively high MSS and so performs poorly when evaluating highly effective arms, while

the converse is true for the minimax design. By contrast, admissible designs which min-

imised a more balanced sum of the expected and maximum sample sizes were shown to

perform well over a wider range of treatment effects. They are therefore more likely to

be a suitable choice of design in practice, particularly if there are no strong prior beliefs

about the effectiveness of the treatment under study.

The results of Chapter 4 showed that 3-stage admissible designs are often much more

efficient in terms of the expected sample size under H0 than 2-stage designs. The extra

gains in efficiency in designs with more than three stages were shown to be relatively

small and not likely to justify the increased administrative burden of additional interim

analyses. Whether these findings also apply to admissible designs evaluating more than

151
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one experimental arm is yet to be determined.

The null-optimal and minimax designs are examples of optimal design as they minimise the

ESS under a particular hypothesis. Wason and Jaki [51] explored optimal designs for the

class of multi-arm multi-stage trials described by Magirr et al. [46]. In their investigations,

the authors found designs which minimised the expected sample size under different sets

of treatment effects such as the global null hypothesis (all arms equally as effective as

control) and the set of treatment effects which maximised the expected sample size (“worst-

case scenario”). Although each design performed well under its corresponding optimality

criteria, they generally performed less well under other parameter configurations. The

authors therefore suggested balancing the optimality criterion of interest with some other

criterion, to find more appealing designs (i.e. admissible designs).

Wason and Jaki also investigated the optimal control:experimental allocation ratio of

these optimal designs and found that it tended to be closer to 1:1 than the optimal ratio

of
√
K : 1 for a fixed-sample design with K experimental arms [19, 22, 51]. This is due

to allowing arms to be dropped during a multi-stage trial, resulting in the possibility of

there being fewer than K experimental arms recruiting by the end of the study. However,

the choice of optimal allocation ratio is actually not so clear cut as it depends on the

underlying effects of the experimental arms which are often difficult to predict in advance

of the trial.

In this chapter, we consider optimal and admissible designs of MAMS trials with more

than one experimental arm and which allow stopping for lack-of-benefit only (for reasons

stated later, we ignore the efficacy stopping guideline which is common to all designs).

A calculation of the ESS using the simulation procedure in Section 5.2 is first described

allowing this measure to be determined for trials with more than one experimental arm and

under any set of underlying treatment effects. Optimal and admissible designs are then

defined and found for multi-arm analogues of the two-arm multi-stage trials with binary

outcomes explored in Chapter 4. Consideration is also given to optimal and admissible

MAMS designs using time to event outcomes. In all examples the FWER is controlled in

the strong sense using the methods outlined in Chapter 5. In addition, optimal allocation

ratios are investigated for these optimal and admissible designs when evaluating different

numbers of treatment arms and the reductions in ESS that they achieve over using a 1:1

ratio are reported. Finally, the nstagebinopt Stata program described in Chapter 4 for

finding two-arm multi-stage admissible designs is extended to multi-arm trials with an

option added for controlling the maximum FWER if desired.
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6.2 Methods

6.2.1 Expected sample size

In Chapter 4 a simple calculation was given for the ESS of a two-arm multi-stage trial

under any treatment effect on the I outcome. For a multi-arm trial, such a calculation

will be much more complex and may be too computer intensive for practical use [51]. We

therefore use the procedure described in Section 5.2.1 for simulating the joint distribution

of the test statistics for each arm at each stage to calculate the ESS of a (K + 1)-arm

J-stage trial (J,K > 1) under any set of underlying treatment effects on the intermediate

outcome, θ = {θ1, . . . , θK}. Note that if I 6= D, the effect of each arm on the definitive

outcome can be ignored as only the effect on the I outcome influences the progress of each

arm through the trial and thus expected sample size.

By simulating the joint distribution of the z-statistics for each arm at each stage of the trial

(ignoring stopping guidelines), the probability of k out of K experimental arms passing

the jth stage, pjk, can be computed for all j < J and k under θ. This is analogous to

the procedure used by the probs option in the nstage program to estimate pjk under the

global null and alternative hypotheses (see Section 5.5). The expected sample size under

θ is then

E(N |θ) = (1 +KA)n1 +

J−1∑
j=1

K∑
k=1

pjk(1 + kA)(nj+1 − nj) (6.1)

where nj is the cumulative number of patients allocated to the control by the end of

stage j, N is the total sample size of the trial and the C : E : E : . . . allocation ratio is

1 : A : A : . . . .

Recall that the MAMS design may also use a stopping guideline for overwhelming efficacy

on the definitive outcome at each interim analysis (e.g. the Haybittle-Peto rule) [81]. As

discussed in Chapter 4 for two-arm trials, these guidelines will have a negligible impact

on ESS for very small treatment effects but may be more influential on the ESS for more

effective arms. When I = D, incorporating the stopping guideline into the ESS calculation

should be straightforward. However, when I 6= D the calculation becomes much more

complicated as the ESS is then a function of the treatment effects on both I and D and

also the correlation between these two effects.

When accounting for efficacy stopping in multi-arm trials, an added complication in cal-

culating the ESS is that there are several possible consequences of an arm crossing the

efficacy boundary. For instance, the trial may be stopped as a whole; recruitment may
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only be stopped to the effective arm while the rest of the trial continues as planned; or

recruitment to the control arm may be stopped with the effective arm becoming the new

control. One might have to calculate the ESS for each possible scenario since the action

that would be taken might not be planned in advance.

In Chapter 4 the stopping guidelines for efficacy were ignored primarily because the same

guideline would be used in any MAMS design and would therefore be unlikely to impact

which designs are deemed admissible. For the same reason and because of the added

complications described above, we will also ignore these guidelines in this chapter.

6.2.2 Definition of optimal designs

For MAMS trials with stopping guidelines for efficacy and lack-of-benefit, Wason and Jaki

investigated designs which minimised the ESS (i.e. were optimal) under the following

criteria [51]:

1. Global null hypothesis, HG: θk = θ0 for all experimental arms k where θ0 is the

treatment effect under H0.

2. The least favourable configuration (LFC), so called because it gives the lowest prob-

ability of concluding that the only effective arm in the trial is superior to control.

Without loss of generality, under the LFC θ1 = θ1 where θ1 is the minimum effect

targeted under the alternative hypothesis on I and all other treatment effects, θk

(k > 1), are equal to some beneficial yet uninteresting effect, θ∗.

3. The worst-case scenario (WCS) in which θk = θ∗ for all k > 1 and θ1 is equal to

some effect δ which maximises the expected sample size.

Optimal designs which minimise the ESS in scenarios 1, 2 or 3 are referred to as HG-

optimal, LFC-optimal and δ-minimax designs respectively.

When early stopping for efficacy is not permitted (or ignored), the set of treatment effects

in scenarios 2 and 3 are no longer of interest. The LFC is relevant when early stopping

for efficacy is permitted because if one arm passes the efficacy boundary then recruitment

to the whole trial, rather than just that particular arm, may be terminated. However,

when efficacy stopping boundaries are not used, the progress of one arm through the

trial no longer has any bearing on any other arms in the study. The least favourable

configuration, i.e. that which gives the lowest power, will therefore be when the effect in

only one arm is equal to the minimum effect targeted under the alternative hypothesis,
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while the underlying effect in all other arms is equal to the null effect. Furthermore, when

stopping only for lack-of-benefit, the maximum expected sample size, i.e. that achieved

under the ‘worst-case scenario’, will simply be the maximum sample size of the trial. This

will occur when all arms are sufficiently effective on the intermediate outcome I that they

always pass all interim analyses.

Interestingly, Wason and Jaki [51] only consider situations in which at most one experi-

mental arm is effective. As the number of experimental arms increases, it is more likely

in practice that more than one arm will be effective. In our investigation we will there-

fore consider optimal designs which minimise the expected sample size when k out of K

experimental arms are effective on the I outcome (k = 0, . . . ,K). More formally, designs

which minimise E(N |θ) for

θ = {θi = θ1 for i = 1, . . . , k and θi = θ0 for i = k + 1, . . . ,K}

will be deemed optimal and referred to as Hk-optimal designs. Here, Hk is the hypothesis

that k out of K arms have the minimum effect under the alternative hypothesis (θ1)

and the remaining K − k arms have the null effect, θ0. So, for example, the H0-optimal

design will be analogous to the HG-optimal design in scenario 1 above, while the HK-

optimal design will be that which minimises the expected sample size when the effect in

all experimental arms is equal to that under the alternative hypothesis (i.e. all arms are

effective).

6.2.3 Criteria for admissible designs

Admissible two-arm multi-stage designs were defined in Chapter 4 to be those which

minimised the loss function qmax(N)+(1−q)E(N |H0) for some q ∈ [0, 1]. Unlike optimal

designs, admissible designs can take into account more than one optimality criteria and

can therefore have more desirable expected sample sizes over a wider range of treatment

effects. This was shown to be the case in Figure 4.3 on page 122 where the ESS of the

balanced design (admissible for q = 0.5) was relatively close to that of the null-optimal

and minimax designs for very small or large effects respectively, and tended to have the

lowest ESS for intermediate effects.

In a multi-stage trial with more than one experimental arm, the maximum sample size

is less likely to be required than in a two-arm study because at least one experimental

treatment is more likely to be dropped at an interim assessment [51]. This measure is

therefore less relevant in defining admissible designs than it is in a two-arm study. Instead,
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we will define the set of admissible designs to be those which minimise a loss function,

L(q), which is a weighted sum of the expected sample size under the global null hypothesis,

H0, and the hypothesis in which all arms are effective, HK , i.e.

L(q) = qE(N |HK) + (1− q)E(N |H0) (6.2)

for q ∈ [0, 1]. Note that the H0- and HK-optimal designs are special cases of admissible

design and minimise (6.2) for q = 0 or q = 1 respectively.

These optimality criteria were chosen as they are at the extremes of what is likely to be

seen in practice. Thus, designs which minimise a balanced sum of these two measures are

likely to perform well over a wide range of scenarios (similar to what was observed in the

two-arm case). Applying weights to expected sample sizes under other hypotheses could

be used in addition to those under H0 and HK . However, as discussed in Chapter 4, using

other optimality criteria when stopping for lack-of-benefit only is not likely to influence

the choice of admissible designs.

6.2.4 Controlling the familywise error rate

The familywise error rate (FWER) of the MAMS designs in the examples that follow will

be strongly controlled at conventional levels (e.g. 2.5% or 5%). As discussed in Chapter 5,

the maximum FWER of I 6= D designs can be calculated using a Dunnett probability

by treating the design as a multi-arm fixed-sample design with pairwise type I error rate

equal to the final stage significance level, αJ . Searching over a range of values of αJ and

choosing that which corresponds to the desired FWER will thus control it in the strong

sense. For instance, if the desired FWER is 0.05 then the final stage significance level for

a 3-arm study with 1:1 allocation ratio should be 0.0276.

In a MAMS design in which I = D, the FWER can be controlled by applying a simi-

lar procedure to the pairwise type I error rate, α. Once the required pairwise operating

characteristics are determined, the methods described in Chapter 4 can then be used to

find stagewise operating characteristics which result in feasible designs. Since no set of

stagewise operating characteristics will achieve the required overall operating character-

istics exactly, all designs with a FWER and pairwise power within a prespecified narrow

margin of the targeted values will be deemed feasible. For instance, if the target FWER

is 0.05± 0.0005 in a 3-arm trial then designs with pairwise α in the range 0.0274–0.0279

(and the desired ω) will be deemed feasible.
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6.2.5 Optimal allocation ratio

When allowing stopping for lack-of-benefit and efficacy, Wason et al. [51] showed that the

optimal C : E allocation ratio in scenarios 1–3 in Section 6.2.2 is between 1:1 and
√
K : 1

(i.e. that for a fixed-sample (K + 1)-arm design). Whether this is also the case when only

allowing stopping for lack-of-benefit is unclear. In particular, the optimal allocation ratio

is likely to depend on the number of arms which are effective on the I outcome. If all arms

are effective then they are all likely to reach the final stage and so the optimal allocation

ratio should be closer to
√
K : 1. However, if only one arm is effective then an allocation

ratio closer to 1:1 might be more efficient since only that arm is likely to be recruiting by

the end of the study.

In this chapter we investigate the optimal allocation ratios of optimal and admissible

MAMS designs under various scenarios and present the reductions in sample size that

they achieve over a conventional 1:1 allocation. Throughout, the allocation ratio will be

denoted by A — the number of patients allocated to each experimental arm for each

patient allocated to control.

6.3 Example when I = D

We first applied the methods outlined in Section 6.2 to find optimal and admissible MAMS

designs investigating a single binary outcome (I = D) and with FWER = 0.025, pairwise

power ω = 0.9 and minimum target risk difference under the alternative hypothesis of

θ1 = 0.2. Designs with other (FWER, ω) combinations of (0.025, 0.8) and (0.05, 0.8) were

also explored.

Feasible designs were found by first determining the pairwise type I error rate giving the

desired FWER as described in Section 6.2.4, and then using the method described in

Section 4.2 to find stagewise operating characteristics. In this search procedure the same

stagewise power, ωI , is used in all intermediate stages and the final stage power, ωD, is

chosen such that ωD ≤ ωI (see Principle 3 in Section 4.2). The α-function defined in (4.2)

in Section 4.2.2 was used to search over sets of stagewise significance levels using values

of r of 0, 0.25, 0.5 and 0.75. Designs with K = 2 and 5 experimental arms and J = 2, 3,

4 and 5 stages were investigated.
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6.3.1 Optimal designs

Expected sample sizes of all feasible designs were calculated using the simulation method

described in Section 6.2.1 under all sets of hypotheses H0, . . . ,HK . Feasible 3-arm multi-

stage designs which minimised the expected sample size under H0, H1 or H2 (referred to as

H0-, H1, and H2-optimal designs respectively) are presented in Table 6.1 for J = 2, . . . , 5

stages and 1:1 allocation ratio (A = 1).

Table 6.1 shows that the optimal designs tend to become more efficient under H0 (i.e.

E(N |H0) decreases) as the number of stages increases. However, the ESS under H2 (i.e.

when all arms are effective) tends to increase with the number of stages. If an H0-

optimal design is to be used, one therefore has to make a trade-off between the increased

efficiency under H0 and the number of stages and efficiency under H2. By contrast, the

H1-optimal designs have expected sample sizes under H0 and H2 which fall between those

of the H0- and H2-optimal designs while (by definition) having the lowest ESS under

H1. Furthermore, there appears to be little difference between the ESS under H1 of the

H1-optimal designs across stages.

The expected sample sizes of all optimal designs in Table 6.1 are plotted in Figure 6.1.

The figure shows that the H0-optimal designs are usually the least efficient than the other

optimal designs when any arms are effective while H2-optimal designs have a relatively

large ESS under H0. On the other hand, Figure 6.1 also shows that the H1-optimal designs

usually perform well under any of the three hypotheses with expected sample sizes close

to the optimal values under H0 and H2 in addition to the lowest ESS under H1. Similar

results were found for 3-arm designs with other operating characteristics (see Appendix F).

Optimal designs were also found for 6-arm multi-stage trials with the same design char-

acteristics as the 3-arm designs above. Figure 6.2 shows the expected sample sizes under

H0, . . . ,H5 of H0-, H2- and H5-optimal designs with (FWER, ω) = (0.025, 0.9) and similar

plots are shown in Appendix F for other operating characteristics. These plots show simi-

lar patterns to those in the 3-arm case in that the relative performance of the H0-optimal

designs worsens as the number of effective arms increases, while the converse is true for

designs which are optimal under H5 (i.e. when all arms are effective). The H0-optimal

designs tend to perform better than the H5-optimal over a wider range of treatment effects

when using fewer stages, but the advantage diminishes as the number of stages increases.

By contrast, the H2-optimal designs have expected sample sizes close to the optimum

values under H0 and H5 while also having the lowest expected sample sizes under most

other hypotheses. Based on these results and those for 3-arm designs, it therefore appears
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Figure 6.1: Expected sample sizes of H0-, H1- and H2-optimal 3-arm multi-stage designs
shown in Table 6.1 when 0, 1 or 2 experimental arms are effective.

that the design which is optimal when about half of the number of experimental arms

are effective is a more suitable choice of design in practice than the H0- or HK-optimal

designs.

6.3.1.1 Optimal allocation ratio

The optimal designs presented thus far have used a 1:1 allocation ratio. However, as

discussed in Section 6.2.5 and as shown by Wason and Jaki [51] for other MAMS designs,

increasing the relative size of the control arm can result in more efficient designs. To

explore this further, the optimal allocation ratios, A∗, were found for the 3- and 6-arm

H0-, H1- and HK-optimal designs with FWER = 0.025 and ω = 0.9 investigated in the

previous section. Allocation ratios A between 0.3 and 1 were searched over in increments

on 0.01.

The optimal allocation ratios are shown in Table 6.2 along with the percentage differences

in E(N |H0), E(N |H1) and E(N |HK) relative to the corresponding optimal designs with

A = 1. The optimal allocation ratio is smaller (i.e. the relative size of the control arm is

bigger) for a larger number of experimental arms, as is also the case for multi-arm fixed-
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Figure 6.2: Expected sample sizes of H0-, H2- and H5-optimal 6-arm multi-stage designs
with FWER = 0.025 and ω = 0.9 when 0, . . . , 5 experimental arms are effective.

sample designs. For designs optimised under HK , that is, when all experimental arms are

assumed to be effective, A∗ is roughly equal to the optimal value for the corresponding

multi-arm fixed sample design. This is because under such a hypothesis all arms are likely

to reach the planned end of the study and so it will roughly translate to a fixed-sample

trial. By contrast, Table 6.2 shows that designs which are optimised when assuming a

smaller number of arms are effective tend to have an optimal allocation ratio which is

closer to 1:1 since not all arms are likely to reach the final stage. There was no discernible

relationship between A∗ and the number of stages which Wason et al. [19] also noted for

the MAMS designs they investigated.

Table 6.2 shows that using the optimal allocation ratio rather than 1:1 reduces the ESS

under the hypothesis for which the design is optimised. This reduction is greater when

assessing a larger number of experimental arms. For instance, Table 6.2 shows that the

expected sample size under H0 of the H0-optimal 6-arm 3-stage design is nearly 11%

lower than the corresponding optimal design using A = 1, whereas it is just over 3% lower

for the 3-arm 3-stage design. Even greater gains in efficiency are made under HK for

the HK-optimal designs. For example, using A∗ in the 6-arm 3-stage H5-optimal design

results in a 15% decrease in E(N |H5) over the corresponding design with 1:1 allocation,
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whereas the decrease is just under 5% in the 3-arm case. However, Table 6.2 also shows

that while using A∗ decreases the ESS under some hypotheses, it can increase expected

sample sizes under others. For instance, although E(N |H2) is reduced by almost 6% when

using A∗ in the 3-arm 2-stage H2-optimal design, E(N |H0) is increased by almost 24%

and E(N |H1) by 3%. This is unlikely to be an acceptable trade-off. Similar results can

be seen for other designs in Table 6.2. When searching for an optimal allocation ratio, we

therefore recommend investigating the effect it has on expected sample sizes under a range

of plausible hypotheses rather than just under that for which the design is optimised. An

alternative procedure is to search for the allocation ratio which consistently gives lower

expected sample sizes than 1:1 under a range of hypotheses rather than that which gives

the lowest ESS under a particular hypothesis.

A potential problem with most of the allocation ratios in Table 6.2 is that they are not

very practical. For instance, the optimal allocation ratio of the H1-optimal 3-arm 2-stage

design is A∗ = 0.69 which corresponds to a C : E allocation of 100:69. However, deviating

slightly from A∗ should not greatly reduce efficiency and so more practical allocation

ratios may be used. For instance, a more conventional 3:2 allocation ratio corresponds

to A = 0.67 and achieves similar gains in efficiency as A∗ over a 1:1 allocation in this

example.

6.3.2 Admissible designs

The results of the previous section show that designs which are optimised under a single,

extreme set of treatment effects can be a poor choice of design in practice as they often

perform poorly under other parameter configurations. This is especially true for H0- and

HK-optimal designs when all or none of the experimental arms are effective respectively.

This highlights the need to consider a range of alternative scenarios or more than one

optimality criteria when choosing a MAMS design to guard against the possibility of

overly large sample sizes if the assumed underlying treatment effects are not true.

Designs which are optimal when about half of the experimental arms are effective perform

consistently well over a wider range of treatment effects but this might not always be

the case, particularly under H0 or HK . Nor might such a design be practical in terms

of, say, roughly equally spaced analyses. As an alternative to optimal designs, one can

search for the set of admissible designs which minimise a weighted sum of E(N |H0) and

E(N |HK) using the loss function shown in (6.2). This is likely to be a more efficient

computational process than searching for optimal designs since only the expected sample

sizes for two hypotheses (H0 and HK) need to be calculated rather than for K. Below, we
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find admissible designs for 3- and 6-arm trials using the same operating characteristics as

in the previous section.

Table 6.3 shows the set of 3-arm admissible designs for 2, 3, 4 and 5 stages, FWER = 0.025

and ω = 0.9. A plot of the ESS of these designs under H0 and HK is shown in Figure 6.3

along with those for 6-arm admissible designs with the same operating characteristics.

Similar plots for other sets of operating characteristics are shown in Appendix G.

Firstly, Table 6.3 shows that the set of admissible designs can give a greater choice of

stagewise operating characteristics than searching for optimal designs alone and this is

shown to be more so the case for other examples in Appendix G. For instance, when

searching for 3-arm optimal designs using the methods in Section 6.2.2, only a maximum

of three designs will be found for a particular number of stages. By comparison, seven

3-stage admissible designs were found for (FWER, ω) = (0.05, 0.8) and eight 4-stage

admissible designs were found for (FWER, ω) = (0.025, 0.8).

The optimal designs are also often special cases of admissible design. For instance, the

designs which are admissible for q = 0 and q = 1 correspond to the H0- and HK-optimal

designs respectively. Table 6.3 shows that the H1-optimal design also tends to coincide

with an admissible design, usually for some mid-range value of q when it does not coincide

with a H0- or HK-optimal design. However, this might not always be the case.

Figure 6.3 shows that as the expected sample size of the admissible designs under H0

decreases, the expected sample size under HK increases. A similar relationship was also

observed between the maximum and expected (under H0) sample sizes of two-arm admis-

sible designs (e.g. see Figure 4.2 on page 120). One therefore has to make a trade-off

between these two measures by making a prior judgment about the relative probability

of each hypothesis being true or the relative importance of each ESS measure and use a

suitable value of q to reflect this.

This also applies to the number of stages one requires since choosing a larger number

of stages can reduce E(N |H0) but often at the expense of increasing E(N |HK). As in

the two-arm case, Figures 6.3, G.1 and G.2 show that E(N |H0) is considerably reduced

by using three stages over two and that it is decreased only slightly further by adding

a fourth stage, regardless of the number of arms being studied. The extra efficiency of

5-stage designs over four stages is negligible and unlikely to justify the use of an extra

interim analysis. If there are no strong preferences to minimise the ESS under either H0

or HK then we recommend using a more balanced admissible design (e.g. q = 0.5) with

three or possibly four stages to guard against overly large sample sizes in either case and

to reduce the administrative burden of the trial.
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Figure 6.3: Expected sample sizes under H0 and HK of 3-arm (left figure) and 6-arm
(right figure) multi-stage admissible designs with FWER = 0.025, ω = 0.9, θ1 = 0.2 and
1:1 allocation ratio. The vertical dashed lines represent the size of the corresponding fixed-
sample designs. Solid scatter points are also Hk-optimal designs for some k (0 < k < K).

In Figure 6.3 there are a few instances where two admissible designs with the same number

of stages are practically identical in terms of their expected sample sizes. Such designs

have very similar values of the loss function for all q ∈ [0, 1] and so in terms of efficiency

it would not matter which of the two designs are used in practice.

6.3.2.1 Optimal allocation ratio

The admissible designs in the previous section use a 1:1 allocation ratio, however, the

results in Table 6.2 showed that allocating a larger proportion of patients to control can

reduce expected sample sizes in a MAMS trial. We therefore found the set of 3-arm and

6-arm admissible designs with 2.5% FWER and 90% power using any allocation ratio

between 0.3 and 1 in increments on 0.01.

Figure 6.4 plots the expected sample sizes of the 3-arm and 6-arm admissible designs under

H0 and HK for a 1:1 allocation ratio (dashed lines) and the optimal allocation ratio (solid

lines). It shows that using the optimal allocation ratio reduces expected sample sizes much

more under HK than H0 with the reduction being much greater for a larger number of

treatment arms. However, as discussed previously, using an optimal allocation ratio can
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Figure 6.4: Expected sample sizes under H0 and HK of 3-arm (left figure) and 6-arm
(right figure) multi-stage admissible designs using a 1:1 allocation ratio (dashed lines) and
the optimal allocation ratio (solid lines).

also have adverse effects. For instance, the ESS under H0 is considerably higher for the

3-arm 2-stage design which is admissible for q = 1 (i.e. the H2-optimal design) and uses

the optimal allocation ratio compared to the corresponding design using a 1:1 allocation

ratio (note: these are the same H2-optimal designs investigated in Table 6.2 which showed

a 24% difference in ESS under H0). Nonetheless, by searching for admissible designs and

plotting their expected sample sizes, we can find (in this example) another 2-stage design

with similar ESS under H2 to the H2-optimal design but an ESS under H0 which is almost

100 patients lower. This highlights the need for finding the full set of admissible designs

for numerous stages and allocation ratios before choosing one to use in practice.

6.4 Example when I 6= D

In the investigations above we assumed that the D outcome was observed immediately

after randomisation (i.e. there was no follow-up period). In practice D may be observed

after a relatively long fixed follow-up period. Using D for I in this case may therefore

be inappropriate since the maximum sample size could have accrued by the time enough

outcome data have been collected for an interim analysis. However, an I outcome may

exist which is on the causal pathway to D and fulfills the requirements of an intermediate
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outcome in a MAMS trial described by various authors [78,80,83]. In this case, a MAMS

design can be used to assess D but with interim assessments made on the more quickly

ascertained I outcome.

We therefore repeated the investigation in the previous section using the same operat-

ing characteristics to look at the properties of admissible I 6= D designs. To strongly

control the FWER, the final stage significance level rather than the overall pairwise α

is adjusted (see Section 6.2.4). The I outcome is assumed to be observed immediately

after randomisation (no follow-up period) and the same target treatment effects are used

for both outcomes (θ0
j = 0 and θ1

j = 0.2 for all j). In addition, the positive predictive

value of I on D is assumed to be 0.9. The expected sample sizes under H0 and HK are

plotted in Figure 6.5 for 2-, 3-, 4- and 5-stage admissible designs with 3 and 6 arms, 1:1

allocation ratio (A = 1), FWER = 0.025 and ω = 0.9. Similar plots for other operating

characteristics are shown in Appendix H.
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Figure 6.5: Expected sample sizes under H0 and HK of 3-arm (left figure) and 6-arm (right
figure) multi-stage admissible designs with I 6= D, FWER = 0.025, ω = 0.9, 1:1 allocation
ratio and minimum target treatment effects on I and D of θ1 = 0.2. The vertical dashed
lines represent the size of the corresponding fixed-sample designs.

Since the maximum FWER is controlled by the final stage significance level rather than

the pairwise type I error rate, αJ is smaller in I 6= D designs than when I = D. Thus,

the maximum sample sizes and expected sample sizes under HK of admissible I 6= D

designs tend to be larger than the corresponding designs in which D is used for interim

assessments. By comparing Figures 6.5 and 6.3, or those in Appendices G and H for designs
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with similar operating characteristics, one can see that the ESS curves are shifted more

to the right (i.e. are further from the fixed sample sizes) for I 6= D designs. Nonetheless,

if the follow-up period on D in lengthy then using it for interim assessments is not likely

to be practical for reasons stated above.

All figures show a similar general picture to those for I = D admissible designs in that

using three stages can considerably increase efficiency under H0 over 2-stage designs. Little

more in gained by using four or five stages, regardless of the number of arms being studied.

However, an exception to this pattern can be seen in the 6-arm case in Figure 6.5 where two

5-stage designs appear much more efficient than designs with fewer stages. We therefore

stress that all admissible designs should be found for various numbers of stages when

designing a MAMS trial to avoid missing those which are the most efficient. Moreover,

searching for a single design with a prespecified number of stages and which is admissible

for a particular value of q is not recommended as more efficient designs may be missed. For

instance, if we were to search only for the 5-stage minimax design in the 3-arm example

above then Figure 6.5 shows that we would have missed more desirable designs with lower

expected sample sizes under H0 and HK and which also use fewer stages.

6.5 Time to event outcomes

When assessing time to event outcomes, the timing of each interim analysis is determined

by the number of observed control arm events rather than sample size. A more appropriate

measure of efficiency in such trials is therefore the expected number of events under a

particular hypothesis. Using expected sample size is not recommended as it depends

on many underlying factors such as accrual and event rates which are not likely to be

accurately predicted in advance of the trial. Furthermore, the ESS will require a much

more complicated calculation because the number of patients recruited to each arm in a

particular stage is dependent on the number of arms which are recruiting in that stage.

Calculating the expected number of events for designs assessing time to event outcomes

is trickier than calculating the ESS for binary outcomes since the number of events ob-

served in each experimental arm will depend on its underlying event rate. For example,

if the underlying hazard ratio is less than one then fewer events will be observed in the

experimental arm than control. If the interest is only in hypotheses which assume that the

effect in each experimental arm is either that under the null hypothesis or the minimum

effect targeted under the alternative hypothesis (e.g. as it is when searching for optimal or

admissible designs) then a calculation of each of these quantities is available in the nstage
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package using the algorithms described by Royston et al. [83].

A further complication to the calculation is that under hypothesis Hm (0 < m < K),

the probabilities pjk of k experimental arms passing stage j have to be partitioned to

calculate the analogous probabilities for the effective and ineffective arms separately (since

ineffective and effective arms will result in different numbers of events occurring in each

stage). However, these two probabilities are not independent since all pairwise comparisons

use the same control arm. Calculation of the expected number of events therefore only

seems tractable under H0 or HK , that is, assuming all arms are ineffective or effective

respectively. This means that admissible designs which minimise (6.2) for some q can be

found but not those designs which are optimal under Hm for 0 < m < K. However, the

results above show that admissible designs are usually a superset of the set of optimal

designs and provide a greater choice of efficient designs to use in practice.

Additionally, when I 6= D, the number of control events required for the intermediate and

final analyses will not correspond to the same outcome. To ensure an average of a single

measure is taken, we only consider the number of I events occurring in the trial, eI . The

expected number of I events can be calculated using

E(eI |θ) = e10 +Ke11 +
J−1∑
j=1

K∑
k=1

pjk
(
(ej0 − e(j−1)0) + k(ej1 − e(j−1)1)

)
where ejk is the number of I events anticipated in the control (k = 0) or an experimental

arm (k = 1) by the end of stage j under θ = H0 or HK respectively. This measure will

be used in the next chapter where we apply the methods above to find admissible designs

for the STAMPEDE trial.

6.6 Extension of nstagebinopt

In Section 4.7, the nstagebinopt Stata program was introduced to allow users to find a set

of admissible designs for a trial with two arms, a prespecified number of stages and binary

intermediate and definitive outcomes. We have now extended this program to include the

methods above for finding admissible designs with more than one experimental arm, with

or without strong control of the FWER.

The following options have been added or amended in the program:
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Required

arms(#) # = K+ 1, the total number of arms in the study (including con-

trol arm). If more than two arms are specified, the program out-

puts designs which minimise the loss function defined in (6.2), oth-

erwise it outputs designs minimising qmax(N) + (1− q)E(N |H0).

aratio(numlist) list of allocation ratios A to search over. We recommend choosing

allocation ratios A ≤ 1.

Optional

fwer specify that the FWER is to be controlled in the strong sense at

the level specified in alpha().

Since sample sizes in a multi-arm trial can be decreased by allocating more patients to

control, a range of allocation ratios can now be searched over in nstagebinopt. Note that

this adds another parameter to the search procedure and so only a few reasonable values

of A should be specified to decrease computing time. For instance, if there are strong prior

notions that all K experimental arms are effective (and so a design which is admissible

for a larger value of q is likely to be chosen) then allocation ratios close to A = 1/
√
K are

likely to be the most efficient. Deviating slightly from the most optimal value does not

seem to greatly reduce efficiency and so the most practical allocation ratios (e.g. 2:1, 3:2

etc) in the vicinity of the optimal value could be selected.

Users also now have the option of controlling the maximum familywise error rate by

specifying the fwer option. Note that if I 6= D, there is currently not an option to control

the pairwise or familywise error rate under the global null hypothesis (i.e. under the null

for I and D in all arms) since this would not control these rates in the strong sense and

so is not recommended.

Examples of the syntax and output of nstagebinopt is shown below using similar design

parameters to the examples used in Section 4.7.4 on page 130 but with three arms and

maximum FWER of 2.5%. Allocation ratios A = 0.5 (2:1:1), 2
3 (3:2:2) and 1 (1:1:1) were

searched over.
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nstagebinopt, nstage(2) arms(3) alpha(0.025) power(0.9) theta0(0) theta1(0.2) ///

ctrlp(0.5) aratio(0.5 0.6667 1) fwer

--------------------------------------------------------------------------

q-range Stage Sig. Power Alloc. E(N|H0) E(N|H2) FWER

level ratio (SE)

--------------------------------------------------------------------------

[0.00,0.50] 1 0.27 0.95 0.67 258 430 0.0252

2 0.015 0.93 (0.0003)

--------------------------------------------------------------------------

[0.51,0.93] 1 0.24 0.97 0.67 279 409 0.0253

2 0.014 0.91 (0.0003)

--------------------------------------------------------------------------

[0.94,1.00] 1 0.23 0.99 0.67 338 405 0.0242

2 0.013 0.90 (0.0003)

--------------------------------------------------------------------------

Note: each design minimises the loss function (1-q)E(N|H0)+qE(N|H2) for values

of q specified in q-range. Hk is the hypothesis that k experimental

arms are effective.

nstagebinopt, nstage(2) arms(3) alpha(0.025) power(0.9) theta0(0 0) theta1(0.25 0.2) ///

ctrlp(0.5 0.5) ppv(0.9) aratio(0.5 0.6667 1) fwer

--------------------------------------------------------------------------

q-range Stage Sig. Power Alloc. E(N|H0) E(N|H2) FWER

level ratio

--------------------------------------------------------------------------

[0.00,0.12] 1 0.23 0.95 0.67 215 457 0.0250

2 .013145 0.94

--------------------------------------------------------------------------

[0.13,0.61] 1 0.21 0.97 0.67 219 428 0.0250

2 .013145 0.92

--------------------------------------------------------------------------

[0.62,1.00] 1 0.12 0.98 0.67 240 415 0.0250

2 .013145 0.91

--------------------------------------------------------------------------

Note: each design minimises the loss function (1-q)E(N|H0)+qE(N|H2) for values

of q specified in q-range. Hk is the hypothesis that k experimental

arms are effective.

nstagebinopt outputs the expected sample size measures used in the loss function, the

maximum type I error rate (or FWER if fwer is specified), stagewise operating charac-

teristics and allocation ratio of each admissible design. These design parameters can then

be entered into the nstagebin program to see each design in more detail, such as their

stagewise sample sizes and durations when a certain number of arms passes each stage.
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6.7 Discussion

In this chapter the methods for designing efficient two-arm multi-stage trials in Chapter 4

were extended to trials where more than one experimental arm is to be evaluated against

a control. Designs which minimise the expected sample size when k out of K experimental

arms are effective and the remaining K − k are ineffective, defined as Hk-optimal designs,

were introduced. These criteria seem more appropriate than those used by Wason and Jaki

[51] who only considered optimal designs for hypotheses in which at most one experimental

arm is effective. In practice, this is not likely to be the case.

In general, the H0-optimal design (i.e. the design that has the lowest ESS when no arms

are effective) tends to perform relatively poorly when all K arms are effective (i.e. under

HK). Likewise, the HK-optimal design can have a relatively large ESS under H0. This is

analogous to the null-optimal and minimax designs of Chapter 4 which have a relatively

large maximum and expected sample size under H0 respectively. On the other hand, the

optimal design which minimises the ESS when roughly half of the experimental arms are

effective performs consistently well over a wider range of hypotheses.

Admissible MAMS designs were also investigated and defined as the set of feasible designs

which minimised the weighted sum qE(N |HK) + (1 − q)E(N |H0) for some parameter

q ∈ [0, 1]. Maximum sample size was not used as a criteria as it is for two-arm trials since

it is less likely to be realised when evaluating more than one experimental arm [51]. H0-

and HK-optimal designs are always special cases of admissible designs, minimising the

loss function for q = 0 and q = 1 respectively. Other optimal designs are sometimes also

admissible but not always.

The parameter q could encompass the prior beliefs about the effectiveness of the arms

under study or the relative importance of the expected sample sizes under H0 and HK to

the investigators. Designs which minimise the loss function for a wider range of values of

q are likely to be more desirable as they are admissible for a wider range of prior beliefs or

scenarios. Hence it is important to find the admissible designs for all values of q so that

those which cover the broadest range of opinions can be found. In addition, admissible

designs for various numbers of stages should also be found since designs using more stages

will not always have greater efficiency (e.g. see the 6-arm designs in Figure 6.3 and 3-arm

designs in Figure 6.5).

The allocation ratios which minimised the ESS when none, one or all arms are effective

were investigated for H0-, H1- and HK-optimal designs. Under HK , all arms are likely

to reach the final stage of the study and so the optimal allocation ratio for HK-optimal
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designs is roughly equal to that for a fixed sample design (
√
K : 1). As the number of

effective arms decreases, the probability of all arms reaching the final stage is reduced and

so the optimal allocation tends be more balanced. The savings in ESS gained by using the

optimal allocation ratio over 1:1 are relatively small for designs with few arms but become

much greater when assessing more arms. However, there is a risk that the ESS under

hypotheses for which the design is not optimised will be higher than that for a 1:1 design.

Thus, we recommend thoroughly investigating the effect of using an unequal allocation

ratio under various scenarios before choosing one to use in practice.

Finally, the nstagebinopt Stata program was extended to implement the methods devel-

oped in this chapter for finding admissible MAMS designs with more than one experimental

arm. Development of a similar program for MAMS designs evaluating time to event out-

comes is in progress. In the next chapter, we apply the methodology in this chapter to find

sets of admissible designs for the STAMPEDE trial and for hypothetical MAMS designs

in TB.



Chapter 7

Application of methods

In this chapter the methods developed throughout Chapters 3–6 are applied to real and

hypothetical MAMS trials. We first calculate the FWER of the 6-arm 4-stage STAMPEDE

trial and determine whether a more efficient design could have been used by comparing the

original design to sets of admissible designs with similar pairwise operating characteristics.

We then consider admissible designs of hypothetical 2- and 3-arm multi-stage phase 2/3

TB trials with binary outcomes and compare the savings in patient resources and gains in

power that they achieve over the conventional approach of evaluating each new regimen

in separate trials.

7.1 STAMPEDE

7.1.1 Rationale for the original design

The original design of the STAMPEDE trial involved the comparison of five experimental

treatments for prostate cancer against a control in a four-stage trial, the design of which

was shown in Table 1.1 on page 44. Below is a summary of the rationale for choosing each

of the design parameters, as given by Sydes et al. [80].

1. Number of stages: four stages (three interim analyses on failure-free survival (FFS)

and the final analysis on overall survival (OS)) were chosen for “pragmatic” reasons.

Firstly, the trial team did not want too many stages in the trial which would have

decreased the amount of data accumulating between analyses and thus increased

both bias and the administrative burden. Using four stages meant that at least

175
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100 control arm FFS events would occur between analyses. However, the reasons

for using no fewer than four stages is not mentioned by Sydes et al. [80] and in

particular it does not appear that four stages were chosen to increase efficiency

under a particular hypothesis.

2. Target differences: A target HR under H1 of 0.75 was chosen for the OS outcome be-

cause it was considered to translate into a worthwhile improvement in 5-year survival

of 10%. The same target effect was chosen for FFS despite it being reasonable to

observe larger effects on FFS than OS [132–134]. Nonetheless, this allows treatments

with more modest effects on FFS to be targeted with higher power.

3. Stagewise powers: A high level of power was required for each interim analysis

to reduce the risk of discarding treatments which are at least as effective as the

minimum effects targeted under H1. Therefore 95% power was chosen for stages 1–3

while 90% power was used for the final analysis to ensure the overall power for each

experimental arm was relatively high [83].

4. Stagewise significance levels: Large significance levels were used for the initial stages

to allow interim analyses to be conducted early in the trial and with high power.

Sydes et al. [80] acknowledge that this allows ineffective arms a high chance of

proceeding to the next stage of the study, however, by using high power, effective

arms are more importantly much less likely to be erroneously dropped. The authors

report that the overall pairwise type I error rate is 0.013. However, as we discussed

in Section 3.2.5, this is the type I error rate under the null hypothesis for I as well

as D. As the authors acknowledge, treatments often have a larger effect on FFS

than OS and so the actual type I error rate is likely to be higher than 0.013. The

maximum value that it can be is the final stage significance level, α4 = 0.025, as

pointed out in Section 3.2.5.

5. Event rates: Median survival times on FFS (2 years) and OS (4 years) were based

on published data.

6. Allocation ratio: Two patients were allocated to the control arm for one patient

allocated to each experimental arm to allow a more reliable estimate of the control

arm event rate to be made. Furthermore, using an allocation ratio which is biased

towards the control arm reduces the required sample size for a fixed power in a

multi-arm trial [78]. However, reducing A increases the FWER (see Section 5.4.1)

and also reduces the chance of a patient receiving an experimental treatment which

can negatively impact recruitment rates [137] particularly later in the trial if some

experimental arms have been dropped. Nevertheless, this has not seemed to be the

case in STAMPEDE which has seen recruitment rates increase during the trial.
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7.1.2 Familywise error rate of STAMPEDE

Several key characteristics were not explicitly calculated during the design of the STAM-

PEDE trial including the familywise error rate and expected number of events. It was

initially thought that the FWER would be relatively low because the pairwise type I error

rate was estimated to be 0.013. Indeed, under the global null hypothesis (i.e. assuming H0

is true for I and D in all arms) the FWER is estimated to be 0.053 using the simulation

procedure described in Chapter 5. However, the pairwise type I error rate could be as high

as 0.025 (the final stage significance level) depending on the effectiveness of each arm on

FFS and so the maximum FWER is estimated to be 0.103 using a Dunnett probability.

Although this means that the STAMPEDE trial cannot be said to control the FWER in

the strong sense, this may not have been the aim of the trial.

The expected number of I events in STAMPEDE is 880 under H0 (no arms effective on I)

and 1806 under H5 (all arms effective on I). In the section that follows, we will determine

whether designs with smaller expected numbers of events could have been used.

7.1.3 Admissible STAMPEDE designs

The stagewise operating characteristics of the STAMPEDE trial were unlikely to have

been chosen to minimise sample size requirements under a particular hypothesis since a

calculation of the expected number of events was unavailable at the time. More efficient

designs may therefore exist. To investigate this, we applied the methods outlined in

Chapter 6 to find sets of admissible 2-, 3-, 4- and 5-stage designs of STAMPEDE which

minimise the loss function qE(eI |H5) + (1 − q)E(eI |H0) for some q ∈ [0, 1], where eI is

the total number of I events observed during the trial. In particular, we were interested

in answering the following:

1. Could the trial have used fewer than four stages without reducing efficiency?

2. Could higher stagewise powers have been used in the intermediate stages to give

arms which are effective on FFS a stronger change of reaching the final analysis?

3. Could a different allocation ratio have resulted in a more efficient design?

To redesign the STAMPEDE trial, the same target hazard ratios, accrual rates and median

survival times as the original design were used. Multi-stage designs were deemed feasible

if they had similar pairwise operating characteristics to the original design, i.e. power

ω = 0.834 and maximum pairwise type I error rate αmax = 0.025. The allocation ratio



Chapter 7. Application of methods 178

of the original design was initially used (A = 0.5). To see whether changing the relative

size of the control arm would have increased efficiency, we also investigated designs using

allocation ratios between A = 0.3 and A = 0.7 in increments of 0.01 and A = 1. Designs

with 2, 3, 4, and 5 stages were considered with the latter three using values of r of 0, 1/3

and 2/3 in the stagewise α-functions for generating intermediate significance levels.

Admissible STAMPEDE designs with 2, 3, 4 or 5 stages and a 2:1 C:E allocation ratio

which minimise the loss function for q = 0 (H0-optimal), 0.5 and 1 (H5-optimal) are

presented in Table 7.1 along with the actual design of STAMPEDE. All designs presented

in the table have the same maximum FWER as the original STAMPEDE design (0.103).

The table shows that admissible designs exist which are more efficient in terms of E(eI)

under either H0 or H5 than the original STAMPEDE design at the expense of higher

E(eI) under the other hypothesis. Figure 7.1 plots the expected number of I events under

H0 and H5 of these admissible designs and shows that none of them are more efficient

than the original STAMPEDE design under both hypotheses. The 5-stage design which

is admissible for q ∈ [0.31, 0.51] seems more appealing than the original design as it has

approximately 100 fewer events expected under H5 in exchange for just 19 more events

expected under H0. However, this design comes at the expense of potentially requiring an

extra interim analysis.
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Figure 7.1 also shows that the original STAMPEDE design roughly coincides with the

4-stage admissible design which minimises the loss function for q ∈ [0.18, 0.29]. The

actual STAMPEDE design is therefore focussed more on minimising the expected number

of events when all arms are ineffective (i.e. under H0), rather than when they are all

effective. This is perhaps appropriate since such a large trial will have ample resources

and so will not need to be focussed on limiting the maximum duration of the trial. Instead,

if all arms turn out to be ineffective then a larger proportion of resources can be saved

and directed to the evaluation of other treatments.

Using fewer than four stages in STAMPEDE would have substantially decreased the overall

workload required for the trial by reducing the number of interim analyses [85]. However,

Figure 7.1 shows that it would have also increased the expected numbers of events under

H0 and, for some designs, H5. For instance, in the closest 3-stage admissible design to

STAMPEDE, E(N |H0) is 43 events higher and E(N |H5) is 49 events higher. However,

if reducing E(eI |H5) was of greater importance then choosing a 3-stage design which is

admissible for a larger value of q may have justified the increase in E(N |H0).

Table 7.1 also shows that the pairwise and familywise type I error rates under HG tend to

be larger for designs which are admissible for similar values of q but which use fewer stages.

For instance, the FWER under HG of the 2-stage H5-optimal design is 0.092 whereas it

is 0.077 for the corresponding 3-stage design and 0.049 for the 4-stage design. This may

have been an issue in STAMPEDE if control of the FWER under HG (weak control) was

required.

Admissible designs of STAMPEDE using other allocation ratios were investigated but

there were no significant reductions in E(eI) under any hypothesis (data not shown).

Furthermore, using a 1:1 allocation ratio would have considerably reduced the efficiency

of the trial (data not shown) which is not surprising given the large number of arms in

the study.

7.2 Admissible multi-arm multi-stage TB trials

7.2.1 One experimental arm

In Table 3.3 on page 92, examples of several two-arm two-stage phase 2/3 (I 6= D) TB

trial designs were presented. Design parameters for the I outcome (culture status at 8

weeks) were based on the phase 2 trial by Dorman et al. [101] while those for the definitive,

phase 3 outcome (relapse or treatment failure) were based on those used in the REMox
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study [106]. The design characteristics of these two fixed-sample trials (which we refer to

as the ‘conventional’ approach) were shown in Table 3.1 on page 89. Conducting these two

trials separately, as done in practice, results in an overall power of just 68%, an expected

sample size under H0 of 348 and maximum sample size of 1442. By contrast, the seamless

phase 2/3 designs presented in Table 3.3 had over 80% power and a much lower maximum

sample size of 1312 but higher expected sample sizes under H0 (e.g. > 450 patients).

Adding an extra interim analysis to these two-stage designs reduced the expected sample

size but also reduced power.

In these examples the stagewise significance levels and powers were not chosen to give

overall type I error rates and powers corresponding to the conventional designs but were

instead chosen to explore the effect of the stagewise operating characteristics on bias. To

better determine the gains in efficiency that could be achieved by using a seamless two-arm

design over the conventional approach, we applied the methods of Chapter 4 to find sets

of admissible phase 2/3 TB trial designs for various numbers of stages. Designs had a

maximum type I error rate equal to that of the conventional approach of 2.5% but a more

conventional power of 80% which is considerably higher than the combined power of the

designs in Table 3.1.

A design was deemed to be admissible if it minimised the loss function

qmax(N) + (1− q)E(N |H0)

for some q ∈ [0, 1]. Admissible designs were found using the nstagebinopt program intro-

duced in Chapter 4. For practical reasons, only designs which recruited a minimum of 10%

of the maximum control arm sample size in each stage were considered. Design parame-

ters for the I (phase 2) and D (phase 3) outcomes were derived from the corresponding

fixed-sample designs in Table 3.1.

The stagewise operating characteristics and sample sizes of admissible two-arm phase 2/3

designs using 2, 3 or 4 stages are shown in Table 7.2. In Figure 7.2, the expected and

maximum sample sizes of these designs are plotted along with the analogous values for

the conventional approach.

Table 7.2 shows that all admissible designs have maximum sample sizes which are between

80 to 434 patients lower than when conducting phases 2 and 3 separately, despite having

12% more power. This is mainly due to phase 2 patients continuing follow-up and being

included in the analysis of the phase 3 outcome at the end of the seamless designs. Many

admissible designs even have a maximum sample size which is lower than that for the

standalone phase 3 trial (N = 1122). The two-stage designs have a larger ESS than the
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J r αj ωI ωD max(N) E(N |H0) q-range

2

- 0.05, 0.025 0.89 0.89 1270 434 [0.00,0.02]

- 0.06, 0.025 0.90 0.88 1228 435 [0.03,0.22]

- 0.19, 0.025 0.97 0.82 1032 491 [0.23,1.00]

3

1.00 0.35, 0.10, 0.025 0.92 0.91 1362 328 [0.00,0.03]

1.00 0.28, 0.08, 0.025 0.93 0.89 1270 331 [0.04,0.18]

1.00 0.27, 0.08, 0.025 0.95 0.86 1156 357 [0.19,0.19]

1.00 0.41, 0.11, 0.025 0.96 0.85 1122 365 [0.20,0.45]

0.25 0.28, 0.13, 0.025 0.98 0.82 1032 439 [0.46,0.52]

0.75 0.40, 0.13, 0.025 0.99 0.81 1008 466 [0.53,1.00]

4

0.75 0.37, 0.16, 0.07, 0.025 0.96 0.86 1156 332 [0.00,0.29]

1.00 0.50, 0.18, 0.07, 0.025 0.98 0.83 1062 372 [0.30,0.74]

0.50 0.17, 0.09, 0.05, 0.025 0.99 0.81 1008 533 [0.75,1.00]

Table 7.2: Admissible two-arm multi-stage phase 2/3 TB designs with 2.5% maximum
type I error rate and 80% power. Note: the conventional design has max(N) = 1442,
E(N |H0) = 348 and 68% power. Key: J = number of stages; r = power in α-function;
αj = stagewise significance levels; ωI = power in intermediate stages; ωD = power in final
stage; max(N) = maximum sample size; E(N |H0) = expected sample size under H0.

conventional approach since the latter uses a lower significance level for the phase 2 trial

than that used in the first stage of the two-stage designs. However, admissible designs exist

(e.g. 3- or 4-stage null-optimal designs) which have both lower expected and maximum

sample sizes than the conventional approach. Thus, there does not necessarily have to be

a sample size ‘penalty’ for using a multi-stage approach to design a seamless, phase 2/3

trial unlike when designing a trial which incorporates only a single phase of testing (for

instance, see the two-arm two-stage phase 2 TB trials in Table 3.2).

The conventional approach to trial design therefore appears to have only a few advantages

over a multi-stage design. Firstly, treatment effect estimates will be unbiased at the end

of each phase since a separate sample is used in each trial. However, the investigation in

Chapter 3 showed that bias on the definitive outcome in a multi-stage trial is negligible

when using an intermediate outcome for interim analyses. Secondly and perhaps more

importantly, conducting phase 2 and 3 trials separately allows a break between phases to

contemplate the findings of the phase 2 trial which may have an influence on the design of

a future phase 3 trial — something which is not possible in a seamless design. However,

this may not be a problem in a field such as TB as trial designs are quite well established



Chapter 7. Application of methods 183

300

350

400

450

500

550

E
xp

ec
te

d 
sa

m
pl

e 
si

ze
 | 

H
0

1000 1100 1200 1300 1400

Maximum sample size

2-stage
3-stage
4-stage
Conventional
approach

Figure 7.2: Expected and maximum sample sizes of two-arm multi-stage admissible phase
2/3 TB designs and the conventional approach of conducting phases 2 and 3 in separate
trials.

and may also not be a problem in other areas discussed by Cuffe et al. [12].

7.2.2 Two experimental arms

Sometimes there may be more than one experimental regimen available for phase 2 testing

at any one time. This is currently the case in TB and is likely to remain so for the

next few years as several new drug classes become available for testing in combination

with each other and with the drugs that compose the current standard regimen [10].

Two conventional approaches to such a situation is to either test each new regimen in a

separate phase 2 trial with its own control arm or to test all new regimens in a single

multi-arm phase 2 trial against a common control. The latter would clearly require a

smaller sample size since it only requires one control arm, however, there may be barriers

to conducting such a trial due to commercial conflicts or difficulty in sourcing drugs from

different companies [78].

In this section we compare the efficiency of these two conventional approaches against

a MAMS approach which incorporates both phases of testing for all new experimental
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treatments into a single trial. We hypothesise that when more than one new regimen is to

be evaluated, the benefits of the MAMS design increases beyond that seen in the previous

section for a single treatment.

We assume that two new TB regimens are both ready for testing in conventional phase

2 trials with arms showing superiority on culture status at 8 weeks being continued to

phase 3. If both arms are effective, a single confirmatory 3-arm phase 3 trial is used with

strong control of the FWER achieved using a Bonferroni correction, as is commonly done

in practice. The phase 2 and phase 3 designs are again based on those by Dorman et

al. [101] and REMox [106] respectively, the designs of which are shown in Table 3.1 for

a single experimental arm. The following three approaches to treatment evaluation are

considered:

1. Each regimen is first tested in its own phase 2 trial. If the treatment effect of only

one regimen is significant at the 2.5% level then it is continued to a phase 3 trial,

also using a 2.5% significance level. If both treatments pass phase 2, a 3-arm phase 3

trial is conducted including both regimens and using a Bonferroni-adjusted pairwise

significance level of 1.25% to ensure the FWER is no higher than 2.5%, as done in

the actual 3-arm REMox study.

2. Both regimens are tested in a single 3-arm phase 2 trial with 2.5% pairwise signifi-

cance level. The same procedure to that in the first approach is then used for phase

3.

3. A 3-arm multi-stage approach is used, assessing the phase 2 outcome at the interme-

diate stages and the phase 3 outcome at the final stage should any arms reach that

point. A pairwise power of 80% is used and the FWER is controlled by applying a

more powerful Dunnett correction to the final stage significance level (αJ = 0.0135).

Approaches 1 and 2 are analogous to the current methods for TB treatment evaluation.

The required sample sizes for these two approaches are shown in Table 7.3 along with

their expected sample sizes under H0 and H2. Approach 2 is more efficient than approach

1 under both hypothesis as it requires only a single control arm in phase 2. In Figure 7.3,

the expected sample sizes of these two approaches are plotted along with those of the 2-,

3- and 4-stage phase 2/3 admissible designs which were found using nstagebinopt.

Figure 7.3 shows that all admissible designs are more efficient when both arms are effective

than the designs in approaches 1 and 2 despite again having more power. This is because

the admissible designs include patients recruited in the intermediate (phase 2) stages in
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2× 2-arm 3-arm

phase 2 trials phase 2 trial

Phase 2 sample size 640 480

2-arm phase 3 1122 1122

3-arm phase 3 2013 2013

Maximum sample size 2653 2493

E(N |H0) 696 535

E(N |H2) 2287 2116

Table 7.3: Required sample sizes of two conventional approaches for evaluating two new
TB regimens. Phase 2 and phase 3 designs are based on those of Dorman et al. [101] and
REMox [106] respectively.
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Figure 7.3: Expected and maximum sample sizes of 3-arm multi-stage admissible phase
2/3 TB designs and two conventional fixed-sample approaches for evaluating two new TB
regimens.

the analysis of the definitive outcome in the final stage and thus require smaller maximum

sample sizes. Most admissible designs are more efficient under H0 than approach 1, but

only the 3- and 4-stage H0-optimal designs outperform approach 2 when both arms are

ineffective. The gains in efficiency of the 4-stage design in particular arguably justify the

additional analyses that may be required over approach 2. It should be noted that the

admissible designs have 12% more power than the fixed sample approaches and so the

differences in expected sample sizes will be much greater than those observed here if all
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approaches had the same overall pairwise power.

Interestingly, there were only two 2-stage admissible designs while a much broader range

of 3-stage designs was available. The 3-stage designs also had considerably lower expected

sample sizes than the 2-stage designs particularly under H0. Only three 4-stage admissible

designs were available and these were slightly more efficient than the 3-stage designs.

These results show that the savings in sample size achieved by using a seamless MAMS

approach increase when testing more experimental arms compared to testing each new

treatment in separate phase 2 trials followed by a single phase 3 trials of all successful

treatments. The savings gained by a MAMS approach will be even greater if phase 3 trials

of each successful treatment were to be conducted separately. However, the differences

in sample size requirements between the MAMS and conventional approaches are roughly

the same as they are in the two-arm case when using a single phase 2 trial to test all new

regimens. By using a seamless MAMS design, not only will patient resources be saved

but so too will the duration of testing as the often lengthy gap between phases 2 and 3 is

removed.



Chapter 8

Summary and future research

Owing to the increasing pace of drug discovery there is often more than one new treatment

available for evaluating in clinical trials in many disease areas [14,139]. Traditional clinical

trial designs, whereby new treatments are assessed in separate fixed-sample trials, are still

routinely used in practice perhaps due to their simplicity. However, they are inadequate for

keeping pace with drug discovery [1]. A major reason is their inefficiency — by assessing

treatments in separate fixed-sample trials, multiple control arms are required and there

is little to no opportunity to stop trials prematurely if the experimental arm is showing

no or overwhelming benefit. Using such designs can therefore increase the cost of drug

development which limits the number of treatments that can be assessed at any one

time. Recent research in adaptive designs has led to a vast increase in the number of

novel approaches aimed at increasing the efficiency of treatment evaluation. However,

their uptake in practice has been slow for reasons such as conservatism, lack of expertise,

software and funding, and the often longer time needed for designing such trials [140].

A type of adaptive design which has been the focus of this thesis is the multi-arm multi-

stage (MAMS) design introduced by Royston et al. [77,83]. This design works by assessing

multiple new treatments against a common control in a single trial, stopping recruitment

to arms which perform poorly during the trial and allowing interim assessments to be

made on an outcome which is on the causal pathway to the primary outcome of the trial.

Thus far this approach has been used to design trials in prostate and ovarian cancer and

has significantly reduced the time taken to evaluate new therapies in this area compared

to traditional fixed-sample designs [78]. A major advantage of this design is its relative

simplicity as each stage of the trial can be considered as a conventional fixed-sample

multi-arm design with its own significance level and power. The design was initially only

developed for time to event outcomes such as failure-free (FFS) and overall survival (OS)

187
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and so extending it to other types of outcome measure such as binary, continuous and

categorical is required to fully exploit its potential and increase its uptake in other disease

areas.

The work in this thesis is aimed at partly resolving this issue by extending the design

to time to event outcomes which are observed during a limited follow-up period and

binary outcomes. Some important outstanding issues regarding the design of MAMS

trials were also addressed, such as providing a fast and accurate calculation of familywise

error rate and developing methods and software for finding efficient MAMS designs with

a prespecified type I error rate and power. Below, a more detailed summary of this thesis

is given and ideas for future research outlined.

8.1 Summary of thesis

Chapters 2 and 3 of this thesis focused on extending the MAMS design to outcomes other

than time to event endpoints such as FFS and OS. A major motivation for this work

stemmed from TB; an area in which many new and repurposed drugs are in clinical de-

velopment and may therefore benefit from novels trial designs to accelerate the evaluation

of these new treatments in future [10].

In phase 2 TB trials, an outcome which is increasingly being used is time to culture

conversion [100]. To use such an outcome in a MAMS trial, two extensions were made

to the design: 1) HRs > 1 were allowed to be targeted under H1 since events need to

be observed more quickly on an experimental arm for it to be superior to control, and

2) a limit was placed on the duration of patient follow-up (in the original MAMS design,

patients were assumed to be followed up until the definitive outcome had been observed

or the trial had ended). These extensions to the methodology were recently used to help

design the 5-arm 2-stage PanACEA phase 2 study (see Section 2.6).

An outcome which has traditionally been used in phase 2 TB trials and is still in use

today is a binary outcome of culture status at a single time point, often 8 weeks or 2

months [122]. In addition, phase 3 TB trials use a long-term binary outcome of relapse

or treatment failure 1–2 years after randomisation. To allow both phases of evaluation

to be incorporated into a single seamless trial we therefore extended the MAMS design

to binary I and D outcomes which are observed at fixed timepoints after randomisation.

We also assessed bias in these designs in a similar manner to the investigation for time to

event outcomes by Choodari-Oskooei et al. [114] and found that while bias was relatively

low in all designs which were explored, it was practically zero on D when using a different
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I outcome for interim comparisons. The work of Chapter 3 has been published in BMC

Medical Research Methodology [141].

An important point raised in Chapter 3 which has implications for existing and future

MAMS trials in which I 6= D (such as STAMPEDE) is that the maximum type I error

rate is higher than the value calculated by Royston et al. [83]. Their calculation of the type

I error rate, α, is made under the assumption that H0 is true for both I and D. However,

in Chapter 3 we showed that the actual α is higher than this value if the effect on I is

more beneficial than that under H0. Such a scenario is entirely plausible and has often

been shown to be the case with FFS and OS in cancer [132–134]. Moreover, the maximum

value that α can be is the final stage significance level of the trial, αJ . Therefore when

designing a MAMS trial in which I 6= D, one should set αJ equal to the desired type I

error rate in order to control it under any scenario (i.e. in the strong sense).

Another important addition we have made to the MAMS design is to provide an accurate

calculation of the familywise error rate (FWER). In many multi-arm trials, control of the

familywise rather than pairwise error rate is required, particularly if they are confirma-

tory [20]. In Chapter 5, a fast and accurate calculation of the FWER using simulation of

trial-level data was described and incorporated into the nstage family of commands which

now calculate FWER by default. The calculation was shown to be simplified somewhat by

treating the MAMS design as a multi-arm 1-stage trial with the same maximum pairwise

type I error rate and using a Dunnett probability [22] accounting for the between-arm

correlation. FWER control can then be achieved by finding stagewise operating char-

acteristics corresponding to the pairwise type I error rate which satisfies the Dunnett

probability.

Prior to the work in this thesis there was no method available for finding feasible MAMS

designs; that is, designs which have a prespecified overall type I error rate and power.

Instead, one simply had to take an educated guess when choosing the stagewise operating

characteristics (or use the values recommended by Royston et al. [83]) and then work

iteratively to ensure overall power was relatively high and that analyses were roughly

equally spaced for practical reasons. A major downside to this approach is that it is

unlikely that the resulting design would be the most efficient possible design to use. In

Chapter 4 we therefore introduced a search procedure for finding a large set of two-arm

multi-stage designs with the desired overall pairwise type I error rate and power. From

this, the set of admissible designs (i.e. those which minimised a weighted sum of the

expected sample size under H0 and maximum sample size) was then found. Such designs

are likely to be the most ideal choice in practice as each one is often the most efficient

under a particular range of treatment effects. The final choice of design will therefore
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depend on prior beliefs about the effectiveness of the treatment under study, the relative

importance of the maximum and expected sample sizes to the investigators or both.

In Chapter 6 we extended the methods in Chapter 4 to find optimal and admissible

multi-stage designs in which more than one experimental treatment is evaluated. In our

examples, we also combined the methods with those in Chapter 5 to control the FWER

in the strong sense. The results showed that designs which minimise the ESS assuming

either none or all of the experimental arms are effective tend not to perform well under the

opposing hypothesis. However, designs which are optimal when about half of the experi-

mental arms are effective are a safer choice in practice as they have a relatively low ESS

over a wider range of hypotheses. This is also true of admissible designs which minimise a

more balanced weighted sum of the expected sample sizes. We recommend searching for

admissible rather than optimal designs in practice since the former are computationally

easier to find and usually provide a wider range of designs to choose from.

In Chapters 4 and 6 we found that using three stages generally provides a decent trade-off

between efficiency and the number of interim analyses required, regardless of the number

of arms being studied or the required sample size. Additional gains in efficiency can be

achieved by using four stages but they are often quite small. The trial team would therefore

have to make a judgement about whether this warrants an extra interim analysis for which

a considerable amount of work is often required [85]. In Chapter 6 we also investigated

optimal allocation ratios of optimal and admissible designs and found them to be roughly

equal to those for the corresponding fixed-sample design when all arms are assumed to be

effective but tend to 1:1 as the number of effective arms decreases.

Finally in Chapter 7 the methods developed in Chapters 3–6 were applied to real and

hypothetical examples of MAMS trials. We first found sets of admissible designs for

the STAMPEDE trial and showed that there was no design which had a lower expected

number of events under both H0 (when all arms are ineffective) and H5 (when all arms

are effective). In particular, using a different allocation ratio would not have significantly

increased the efficiency of the trial and there were no designs which had similar properties

to STAMPEDE but used fewer stages which would have reduced the overall workload of

the trial by reducing the number of interim analyses.

We also found admissible designs for seamless phase 2/3 multi-stage TB trials evaluating

one or two new treatment regimens. These designs were shown to be considerably more

efficient than the conventional approach of separate phase 2 and 3 trials of each new

regimen and even possessed greater power. Incorporating phases 2 and 3 into a single trial

can achieve these large savings in time and patient resources for two reasons: 1) a seamless
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design eliminates the delay between the end of a successful phase 2 trial and the start of

phase 3 and 2) unlike the conventional approach, the seamless designs include phase 2

patients in the analysis of the phase 3 endpoint at the end of the trial, thus reducing the

maximum sample size.

8.2 Stata software

We have made several updates to the nstage program in Stata for facilitating the design

of MAMS trials with time to event outcomes. Firstly, the program has been extended to

allow HRs greater than 1 to be targeted under H1. Outcomes for which a higher event

rate indicates benefit (e.g. time to cure) can now be investigated in a MAMS design.

We have also developed a subroutine for calculating the FWER of a MAMS design and

incorporated it into the nstage command to make FWER calculation a default feature.

These updates along with several others are described in [142].

In Chapter 2 we introduced the nstagesurv command for designing MAMS trials with

time to event outcomes observed during a limited follow-up period. In Chapter 3, the

nstagebin command was developed for designing MAMS trials with binary intermediate

and definitive outcomes. Both programs function in a similar manner to the original

nstage program [84] in that users must specify the stagewise operating characteristics

they wish to use. The programs then output the pairwise operating characteristics, sample

sizes and stage end times of the design as well as the FWER using the same subroutine

as that recently implemented in nstage.

For reasons discussed in the previous section, manually choosing stagewise operating char-

acteristics is not an ideal way to design a MAMS trial. We therefore developed the

nstagebinopt program using the methods described in Chapters 4 and 6 for finding ad-

missible MAMS designs with binary outcomes. Using this program, the user simply has to

enter the pairwise or familywise error rate and power that they would like their design to

possess along with the number of arms, stages and other design parameters and the pro-

gram will output the stagewise operating characteristics of the admissible designs. Given

these stagewise parameters, the user can then use the nstagebin program to see each

admissible design in more detail and decide which to then use in practice. Development

of a similar program for time to event outcomes is in progress.
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8.3 Limitations of the MAMS design

The advantages of the MAMS design over more conventional approaches to treatment

evaluation have been discussed throughout this thesis, however, there are some potential

drawbacks that one should be aware of before using a MAMS design. Firstly, a MAMS

trial is likely to require more resources to run than a traditional single-stage study due to

the use of interim analyses. The effort needed to conduct an interim analysis is described

in detail by Sydes et al. [85]. Secondly, incorporating two phases of testing into a single

MAMS trial is also likely to require much more planning than the conventional approach

of separate phases since the phase 3 aspect of the study might have to be planned in

advance of any phase 2 results.

While a seamless MAMS design with different I and D outcomes can considerably reduce

sample size requirements over separate phase 2 and 3 trials, such savings are less likely

to be made in a MAMS trial incorporating only a single phase of testing. If only one

experimental arm is being tested then the maximum sample size of the trial will be at

least as high as the fixed-sample design with the same pairwise operating characteristics,

as demonstrated in Figure 4.2 on page 120. Furthermore, the increase in the maximum

sample size tends to be greater for designs using more stages. However, in all I = D

examples considered in Chapter 4 the maximum sample size of the two-stage minimax

design was the same as that of the fixed-sample trial. Therefore, the maximum sample

size of the trial does not necessarily have to be higher in a MAMS trial. In all I = D

examples considered in Chapter 4 the maximum sample size of the admissible designs

was between 0–25% higher than the fixed sample size. Similar increases in the maximum

sample size will be required for multi-stage trials of more than one experimental arm,

however, in a multi-arm trial the maximum sample size is less likely to be required due

to the increased chance of dropping an arm at an interim analysis. The larger maximum

sample sizes are therefore less likely to be of a issue.

A major concern in any study which allows stopping for lack-of-benefit is the possibility

of dropping an arm at an interim analysis when in fact a beneficial effect would have been

shown on the primary outcome at the end of the study [143]. This is more likely to occur in

studies using an intermediate outcome which differs to the definitve outcome particularly

if it has low sensitivity — that is, if the alternative hypothesis is true for D then it should

also be true for I. A similar scenario may also occur in a multi-stage trial of a time to

event outcome particularly if the first interim analyis occurs very early in the trial since

survival advantages may only become apparent later in follow-up. To guard against this

the first interim analysis should not occur too early in the trial.
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Finally, the MAMS design developed in Chapter 3 allows a non-inferiority outcome to

be used for interim assessments. However, the interpretation of a non-inferiority analysis

often differs to that of a superiority outcome and so an analysis which suggests dropping

an arm for futility may not convince investigators to do so. Consequently arms are less

likely to be dropped at an interim analysis compared to when using a superiority analysis

and so efficiency will be lost.

8.4 Future research

The methodology presented in Chapters 2 and 3 goes some way to making the MAMS de-

sign more applicable to other outcome measures and disease areas. However, further work

is needed to allow any type of outcome and, in particular, any combination of intermediate

and definitive outcomes (e.g. a binary intermediate and a continuous definitive outcome)

to be used in a MAMS trial. In addition, developing a single, unified Stata program for

designing a MAMS trial with any type of outcome will avoid the vast number of separate

nstage- programs that might otherwise be required.

In Chapters 3 and 7 we gave some examples of hypothetical MAMS designs in TB. In these

designs culture status at 8 weeks was used as the intermediate outcome for the definitive

outcome of long term relapse. Although Phillips et al. [100] have shown culture status

at a single time point to be a poor surrogate for relapse, this does not necessarily mean

that it will act as a poor intermediate outcome [78, 83]. High negative predictive value is

a more important attribute so that arms which are ineffective on I are also likely to be

ineffective on D. Moreover, I should have high sensitivity so that arms which are effective

on D are not erroneously dropped at interim analyses [83]. Further work based on that

by Barthel et al. [118], who assessed FFS as an intermediate outcome for OS, should aim

to determine the suitability of culture status at a single time point as an intermediate

outcome for relapse by redesigning and reanalysing past TB studies as MAMS trials. The

rates at which arms are correctly or incorrectly dropped at interim analyses should be

assessed along with determining whether culture status at an earlier time point than 8

weeks could potentially be used, thus increasing efficiency.

In the MAMS design developed in Chapter 2, we allowed event times to be assumed to

follow a Weibull distribution to more accurately calculate stage end times and sample

sizes and implemented the methodology in the nstagesurv program. This was shown

to be particularly useful in TB as it modelled time to culture conversion much more

accurately than an exponential distribution (see Figure 2.3 on page 66). The nstage
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program currently only allows an exponential distribution to be assumed, however, in

cancer it is quite plausible for FFS and OS times to be non-exponentially distributed (e.g.

see [112]). Allowing the use of more general survival distributions such as a Weibull or

piecewise exponential in this program will therefore more accurately estimate sample sizes

and durations and thus improve projected estimates of trial funding.

In Chapter 4 and 6 we alluded to the fact that a stopping guideline for overwhelming

efficacy is often applied to the definitive outcome of a MAMS trial. However, we ignored

this rule when searching for optimal and admissible designs as it is not thought to influence

the choice of these designs. Moreover, incorporating such a rule into the methodology

would have significantly increased its complexity by having to account for effects on both

I and D and also having to consider the various implications of an arm crossing the

efficacy boundary in MAMS trial. Further work should investigate the effect of this efficacy

boundary on expected sample size and optimal and admissible designs particularly when

at least one arm in the trial is effective, and produce guidance on how to proceed should

an arm cross this boundary.

A more general extension which could be made to the MAMS design is to allow more than

one intermediate outcome to be assessed at each interim analysis [144,145]. For example,

safety is often an important factor to assess in many trials and one may wish to evaluate it

alongside an intermediate efficacy outcome to allow arms to be dropped if they show harm

(unlike the efficacy outcome on which arms are dropped for lack-of-benefit). Alternatively,

it may also be useful to assess the D outcome at each interim analysis or incorporate it into

the analysis of I to increase power [73]. The impact of including an additional outcome

on the pairwise and familywise operating characteristics will need careful assessment and

software will need to be updated accordingly.

Much discussion has recently been made over adding arms to an ongoing MAMS design

such as the STAMPEDE trial which to date has added two new arms since it began [19,85].

The effect of adding arms on the FWER needs to be considered further as it is not

initially clear how much it will be inflated when arms are only added when existing arms

are dropped for lack-of-benefit. A related question is whether a sequentially rejective

procedure such as that described in [44] could be applied to the MAMS design. Such

a procedure relaxes future stopping rules if arms are dropped during the course of the

trial so that the power for the remaining comparisons is increased without inflating the

FWER. For instance, if a two-stage trial initially has two experimental arms and one arm

is dropped at the first analysis then one could use a significance level in the final analysis

which is higher than that proposed in the initial design.
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8.5 Conclusion

The MAMS design described by Royston et al. [77, 83] has demonstrated its ability to

accelerate the drug development process in oncology and could have a similar impact in

other disease areas. The work of this thesis has broadened the areas in which the MAMS

design could be used and has shown the savings in resources that could be made over

conventional approaches to treatment evaluation, particularly in TB. Methods have been

developed for facilitating the design of MAMS trials with focus on error rate control and

increasing efficiency. Stata software which is freely available in public repositories has

been created for implementing these procedures in practice, further supporting the uptake

of the MAMS design.
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[55] P. Bauer and K. Köhne. Evaluation of experiments with adaptive interim analyses.

Biometrics, 50(4):1029–41, 1994.

[56] F. Bretz, H. Schmidli, F. König, A. Racine, and W. Maurer. Confirmatory seamless

phase II/III clinical trials with hypotheses selection at interim: general concepts.

Biom J, 48(4):623–34, 2006.

[57] R. A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh,

4th edition, 1932.

[58] W. Lehmacher and G. Wassmer. Adaptive sample size calculations in group sequen-

tial trials. Biometrics, 55(4):1286–90, 1999.

[59] A. A. Tsiatis. The asymptotic joint distribution of the efficient scores test for the

proportional hazards model calculated over time. Biometrika, 68(1):311–315, 1981.

[60] F. Bretz, F. Koenig, W. Brannath, E. Glimm, and M. Posch. Adaptive designs for

confirmatory clinical trials. Stat Med, 28(8):1181–217, 2009.

[61] T. R. Fleming. Standard versus adaptive monitoring procedures: A commentary.

Stat Med, 25(19):3305–12, 2006.

[62] Committee for Propriertary Medicinal Products. Reflection paper on methodological

issues in confirmatory clinical trials planned with an adaptive design. Technical

report, EMEA, 2007.

[63] P. J. Kelly, M. R. Sooriyarachchi, N. Stallard, and S. Todd. A practical comparison

of group-sequential and adaptive designs. J Biopharm Stat, 15(4):719–38, 2005.

[64] M. A. Proschan and S. A. Hunsberger. Designed extension of studies based on

conditional power. Biometrics, 51(4):1315–24, 1995.
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Appendix A

Integration of the Weibull

distribution function

Below, the final term in equation (2.11) in Chapter 2 is calculated for the Weibull distribu-

tion by integrating the Taylor Series expansion of its distribution function F (t) = 1−e−λtγ .

First, note that the Taylor Series expansion of e−λt
γ

is

e−λt
γ

= 1− λtγ +
λ2t2γ

2!
− λ3t3γ

3!
+ ...

Hence ∫ tj

tj−t∗
Fk(tj − t)dt =

∫ t∗

0
F (u)du (u = tj − t)

=

∫ t∗

0
1− e−λuγdu

= t∗ −
∫ t∗

0
e−λu

γ
du

= t∗ −
∫ t∗

0

(
1− λuγ +

λ2u2γ

2!
− λ3u3γ

3!
+ ...

)
du

=
λ

1!

t∗(γ+1)

γ + 1
− λ2

2!

t∗(2γ+1)

2γ + 1
+
λ3

3!

t∗(3γ+1)

3γ + 1
− ...

= −
∞∑
n=1

(−λ)n

n!

t∗(nγ+1)

nγ + 1
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Appendix B

Calculation of the between-stage

correlation for binary outcomes

Before Ai and Ωi can be calculated the correlation matrices R0
i and R1

i whose (j, k)th

entries are the correlations between the treatment effects in stages j and k under H0 and

H1 respectively, are required. We begin with a general case where the binary outcomes

of interest in stages j and k are different. Suppose outcome X is the outcome of interest

in stage j and outcome Y is of interest in stage k with j < k and denote the observed

treatment effects by θ̂j and θ̂k respectively.

Denoting the experimental arm event rate under hypothesis Hh in stage i by πhi = πCi +θhi ,

the standard deviation of θhi in its normal approximation is

σhi =

√
πhi (1− πhi )

AnCi
+
πCi (1− πCi )

nCi

Assuming success rates between treatment arms are independent, the correlation between

θ̂j and θ̂k under hypothesis Hh (h = 0, 1), denoted by ρh(j,k), is

ρh(j,k) =
Cov(θ̂j , θ̂k)

σhj σ
h
k

=
Cov(π̂hj − π̂Cj , π̂hk − π̂Ck )

σhj σ
h
k

=
Cov(π̂hj , π̂

h
k ) + Cov(π̂Cj , π̂

C
k )

σhj σ
h
k
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Denote by XC
m and Y C

m the observed X and Y outcomes respectively for the mth patient

in the control arm (XC
m, Y

C
m ∈ {0, 1}) where XC

m is observed during or before stage j and

Y C
m is observed during or before stage k (j < k). The covariance between the control arm

event rates in stage j on the X outcome and stage k on the Y outcome is

Cov(π̂Cj , π̂
C
k ) = Cov

 1

nCj

nCj∑
l=1

XC
l ,

1

nCk

nCk∑
m=1

Y C
m


=

1

nCj n
C
k

nCj∑
l=1

nCk∑
m=1

Cov(XC
l , Y

C
m )

=
1

nCj n
C
k

nCj∑
l=1

nCk∑
m=1

{
E(XC

l Y
C
m )− E(XC

l )E(Y C
m )
}

Assuming observations from different patients are independent implies

E(XC
l Y

C
m ) = E(XC

l )E(Y C
m )

if l 6= m and so

Cov(π̂Cj , π̂
C
k ) =

1

nCj n
C
k

nCj∑
l=1

{
E(XC

l Y
C
l )− E(XC

l )E(Y C
l )
}

since j < k

=
1

nCj n
C
k

nCj∑
l=1

(
πC(j,k) − π

C
j π

C
k

)
=

1

nCk
(πC(j,k) − π

C
j π

C
k )

where πC(j,k) is the probability of a patient experiencing both the X and Y outcomes in

the control arm. A similar argument for the covariance of event rates between stages in

an experimental arm under Hh gives

Cov(π̂hj , π̂
h
k ) =

1

AnCk
(πh(j,k) − π

h
j π

h
k ).

It follows that

ρh(j,k) =
(πh(j,k) − π

h
j π

h
k ) +A(πC(j,k) − π

C
j π

C
k )

AnCk σ
h
j σ

h
k

(B.1)
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The values πC(j,k) and πh(j,k) may be estimated from prior knowledge. Alternatively, if

estimates of the positive predictive value in each arm are available, that is, the probability

of a patient having a Y event given that they have had an X event, then from the definition

of conditional probability

πC(j,k) = P (Y C
m = 1|XC

m = 1)πCj

and

πh(j,k) = P (Y h
m = 1|Xh

m = 1)πhj .

If the outcomes of interest in stages j and k are the same then equation (B.1) simplifies.

In this case the positive predictive value is 1 and so πC(j,k) = πCj and πh(j,k) = πhj . Then

ρh(j,k) =
(πhj − (πhj )2) +A(πCj − (πCj )2)

AnCk σ
h
j σ

h
k

=
πhj (1− πhj ) +AπCj (1− πCj )

AnCk σ
h
j σ

h
k

=
nCj (σhj )2

nCk σ
h
j σ

h
k

=

√
nCj

nCk
(B.2)

since underlying treatment effects are assumed to be constant throughout the trial. Note

that these correlations are the same under H0 and H1 (i.e. ρ0
(j,k) = ρ1

(j,k)).

The entries, ρh(j,k), below the main diagonal of Rhi can now be calculated using (B.1) for the

correlations between the effects on the intermediate and final outcomes and using (B.2)

for the correlations between the effects on intermediate outcome in different stages. Since

each matrix is symmetric we set ρh(j,k) = ρh(k,j) and all diagonal entries, i.e. the correlation

between treatment effects in the same stage, are ρh(j,j) = 1.



Appendix C

Characteristics of other two-arm

multi-stage I = D admissible

designs

The following figures plot expected sample sizes under H0 against maximum sample sizes

of admissible designs with the same I and D binary outcomes and pairwise operating

characteristics (α, ω) = (0.025, 0.8) and (0.05, 0.8), analogous to those plots shown in

Figure 4.2 on page 120. Minimum target treatment effects under H1 of (a) 0.2 and (b) 0.1

are explored.
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Figure C.1: Expected sample sizes under H0 versus maximum sample sizes of admissible
2-, 3-, 4- and 5-stage designs for α = 0.025, ω = 0.8 and target treatment effects of (a)
θ1 = 0.2 (left) and (b) θ1 = 0.1 (right). The vertical dashed lines represent the sample
size, N , of the corresponding fixed-sample design: (a) N = 180 and (b) N = 770.
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Figure C.2: Expected sample sizes under H0 versus maximum sample sizes of admissible
2-, 3-, 4- and 5-stage designs for α = 0.05, ω = 0.8 and target treatment effects of (a)
θ1 = 0.2 (left) and (b) θ1 = 0.1 (right). The vertical dashed lines represent the sample
size, N , of the corresponding fixed-sample design: (a) N = 142 and (b) N = 606.



Appendix D

Characteristics of other two-arm

multi-stage I 6= D admissible

designs

The following figures plot expected sample sizes under H0 for I against maximum sample

sizes of admissible designs with different I and D binary outcomes and pairwise operating

characteristics (α, ω) = (0.025, 0.8) and (0.05, 0.8), analogous to those plots shown in

Figure 4.5 on page 127. Minimum target treatment effects under H1 of (a) 0.2 and (b)

0.25 on the I outcome are explored.
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Figure D.1: Expected sample sizes under H0 versus maximum sample sizes of admissible
2-, 3- and 4-stage designs with I 6= D, α = 0.025, ω = 0.8 and minimum target treatment
effects on I (θI) of (a) 0.2 (left) and (b) 0.25 (right). The vertical dashed lines represent
the sample size of the corresponding fixed-sample design (N = 180).
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effects on I (θI) of (a) 0.2 (left) and (b) 0.25 (right). The vertical dashed lines represent
the sample size of the corresponding fixed-sample design (N = 142).



Appendix E

Distribution of Zjk

Below is a proof that the test statistics, Zjk (j = 1, . . . , J ; k = 1, . . . ,K), generated using

equation (5.1) in Chapter 5 have the required distribution

Zjk ∼ N

(
θjk − θ0

j

σjk
, 1

)

and between-stage and between-arm correlation structure

Corr(Zjk, Zj′k) = ρjj′

Corr(Zjk, Zjk′) =
A

A+ 1

1. Expectation

E(Zjk) =

√
A

A+ 1
E(xj0) +

√
1

A+ 1
E(xjk) +

θjk − θ0
j

σjk

=
θjk − θ0

j

σjk

since E(xjk) = 0 for all j = 1, . . . , J and k = 0, . . . ,K.

217



Appendix E. Distribution of Zjk 218

2. Variance

V (Zjk) =
A

A+ 1
V (xj0) +

1

A+ 1
V (xjk)

=
A

A+ 1
+

1

A+ 1

= 1

since V (xjk) = 1 for all j = 1, . . . , J and k = 0, . . . ,K.

3. Between-stage correlation

Corr(Zjk, Zj′k) = Cov(Zjk, Zj′k)

=
A

A+ 1
Cov(xj0, xj′0) +

1

A+ 1
Cov(xjk, xj′k)

=
A

A+ 1
ρjj′ +

1

A+ 1
ρjj′

= ρjj′

since Cov(xjk, xjk′) = 0 for k 6= k′ and Cov(xjk, xj′k) = ρjj′ for all k = 0, . . . ,K.

4. Between-arm correlation

Corr(Zjk, Zjk′) =
A

A+ 1
Cov(xj0, xj0)

=
A

A+ 1



Appendix F

Characteristics of other optimal

I = D MAMS designs

The following figures plot expected sample sizes under H0, . . . ,HK of optimal MAMS

designs with the same I and D binary outcomes, analogous to Figures 6.1 on page 160

and 6.2 on page 162. Designs with K = 2 and K = 5 experimental arms and operating

characteristics (FWER, ω) = (0.025, 0.8) and (0.05, 0.8) are investigated. All designs have

a minimum target treatment effect under H1 of 0.2.
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Figure F.1: Expected sample sizes of H0-, H1- and H2-optimal 3-arm multi-stage designs
with ω = 0.8, FWER = 0.025 (top) and 0.05 (bottom) when 0, 1 or 2 experimental arms
are effective.
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Figure F.2: Expected sample sizes of H0-, H2- and H5-optimal 6-arm multi-stage designs
with ω = 0.8, FWER = 0.025 (top) and 0.05 (bottom) when 0, . . . , 5 experimental arms
are effective.



Appendix G

Characteristics of other admissible

I = D MAMS designs

The following figures plot expected sample sizes under H0 and HK of admissible MAMS

designs with the same I and D binary outcomes, analogous to Figure 6.3 on page 166.

Designs with K = 2 and K = 5 experimental arms and operating characteristics (FWER,

ω) = (0.025, 0.8) and (0.05, 0.8) are investigated. All designs have a minimum target

treatment effect under H1 of 0.2.
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Figure G.1: Expected sample sizes under H0 and HK of 3-arm (left figure) and 6-arm
(right figure) multi-stage admissible designs with FWER = 0.025, ω = 0.8, θ1 = 0.2 and
1:1 allocation ratio. The vertical dashed lines represent the size of the corresponding fixed-
sample designs. Solid scatter points are also Hk-optimal designs for some k (0 < k < K).
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Figure G.2: Expected sample sizes under H0 and HK of 3-arm (left figure) and 6-arm
(right figure) multi-stage admissible designs with FWER = 0.05, ω = 0.8, θ1 = 0.2 and
1:1 allocation ratio. The vertical dashed lines represent the size of the corresponding fixed-
sample designs. Solid scatter points are also Hk-optimal designs for some k (0 < k < K).



Appendix H

Characteristics of other admissible

I 6= D MAMS designs

The following figures plot expected sample sizes under H0 and HK of admissible designs

with different I and D binary outcomes, analogous to those plots shown in Figure 6.5 on

page 168. Designs with K = 2 and K = 5 experimental arms and operating characteristics

(FWER, ω) = (0.025, 0.8) and (0.05, 0.8) are investigated. All designs have a minimum

target treatment effect under H1 of 0.2 on the I and D outcomes.
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Figure H.1: Expected sample sizes under H0 and HK of 3-arm (left figure) and 6-arm
(right figure) multi-stage admissible designs with I 6= D, FWER = 0.025, ω = 0.8, 1:1
allocation ratio and minimum target treatment effects on I and D of θ1 = 0.2. The vertical
dashed lines represent the size of the corresponding fixed-sample designs.
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vertical dashed lines represent the size of the corresponding fixed-sample designs.
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