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Abstract

Ultra-high energy cosmic rays (UHECRs) are cosmic rays with energy exceeding 1018

electronvolts. The sources of these particles remain unknown despite decades of research.

This thesis presents a series of studies aimed at constraining the sources of UHECRs both

directly by studying their observed arrival directions and indirectly through their expected

secondary gamma-ray signatures.

An analysis of the arrival direction distribution of the highest energy cosmic rays

detected at the Pierre Auger Observatory is presented. The aim of the study was to

determine whether the arrival directions of observed UHECRs follow the distribution of

nearby extragalactic sources, which is expected if UHECRs are light nuclei of extragalactic

origin. A departure from isotropy at the 95% level is observed but no clear correlation

with the extragalactic matter distribution is found.

The sensitivity of upcoming UHECR experiments, with an order of magnitude higher

annual exposure than current experiments, to the expected UHECR anisotropy has been

investigated through simulations. It is shown, that with five years of data from such a

detector an anisotropy should be detectable at the 99% level as long as the composition

is proton dominated. In a scenario where the UHECR source distribution is strongly

clustered, similar to the distribution of galaxy clusters, an anisotropy at the 99.9% level

is expected even if the fraction of protons at the highest energies is as low as 30%.

Constraints on the sources of UHECRs may also come from the secondary particles

that UHECRs produce during their propagation. A study of the expected secondary

gamma-ray signatures of UHECR accelerators embedded in magnetised environments is

presented. The secondary gamma-ray emission expected in this model is shown to be

consistent with the spectra of a number of extreme blazars. It is shown that this model is
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more robust to variations of the overall extragalactic magnetic field strength than other

proposed scenarios, which is appealing in view of the large uncertainty surrounding the

strength and configuration of extragalactic magnetic fields.
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Chapter 1

Ultra-high energy cosmic rays

“Sir,’ I said to the universe, ‘I exist.’ ‘That,’ said the universe, ‘creates no sense of

obligation in me whatsoever.”

-Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In 1912 Victor Hess discovered that the ionisation of air in the atmosphere increases

with altitude in a series of daring balloon flights reaching up to 5 km in altitude (see

Hess 1912). His experiments mark the beginning of the scientific field dedicated to the

study of cosmic rays. Fifty years later, in the Volcano Ranch experiment led by John

Linsley, the first ultra-high energy cosmic ray (UHECR) with energy exceeding 1020 eV

was discovered, initiating the search for the sources of these extreme particles. Despite 50

years of observations and painstaking efforts of a large number of dedicated groups, the

origin of the highest energy cosmic rays remains unknown, but a lot of insight has been

gained in the process.

1.1 Cosmic ray energy spectrum

Cosmic rays are extraterrestrial particles incident on the Earth’s atmosphere with energies

between 109 - 1020 eV. Of the cosmic rays incident on Earth 98% are nuclei and 2% are

electrons (see e.g., Simpson 1983 for a review.) The cosmic ray spectrum is a remarkable

17



1.1. Cosmic ray energy spectrum 18

Figure 1.1. All-particle cosmic ray spectrum as a function of energy. Image
attributed to S. Swordy, adapted here from Olinto (2005).
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power-law fit well by a function of the form

dN

dE
= E−α (1.1)

with spectral index, α = 2.7, for much of the energy range, as shown in figure 1.1. At the

lowest energies the cosmic ray flux is thought to be dominated by the Sun. At the high

energy end of the spectrum there are a number of interesting features. At about 1015 eV

the slope of the spectrum abruptly becomes steeper, with α ' 3.1. This feature, which is

referred to as the “knee”, is often attributed to the maximum proton acceleration energy

attainable by supernovae. At 5× 1018 eV the spectrum flattens again (so called “ankle”).

There is some evidence that around 1017 eV a second steepening of the spectrum occurs,

the so called “second knee” (Apel et al. 2011). There is no consensus as to the exact transi-

tion energy between Galactic and extragalactic cosmic rays, although most models place it

around ∼ 1018 eV; beyond this energy UHECR protons become too rigid to be confined by

the Galactic magnetic field. In the models of Hillas (1984) and Bahcall & Waxman (2003)

the ankle marks the Galactic-extragalactic transition, whereas in the so called dip model

(Berezinsky et al. 2006) the ankle is attributed to energy losses of extragalactic UHECRs

through pair production on the CMB (see section 2.2.1) and the transition is thought to

occur below 1018 eV. The cosmic ray spectrum cuts off at ∼ 1020 eV. At present it is

unclear whether this energy corresponds to the maximum acceleration energy attainable,

or whether the cut-off is due to severe energy losses of the cosmic rays as they propagate

through the CMB - the GZK effect (see section 2.2.2).

1.2 Detection

The flux of ultra-high energy cosmic rays above 1014 eV is too low to be detected directly

by balloon and satellite experiments. Instead, cosmic-rays are detected by the extensive

air shower that they produce when they enter the Earth’s atmosphere. A cosmic ray

entering the atmosphere with sufficiently high energy will cause a cascade of particles

with characteristics that depend on the primary composition and energy. Above 1019 eV

the flux is below 1 km−2sr−1yr−1, meaning that a huge detection area is needed. Some

of the experiments and experimental techniques deployed for the study of these elusive

particles are reviewed below.
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1.2.1 Early experiments

In 1963 the first particle with energy above 1020 eV was detected in the first giant shower

array, which was located at Volcano Ranch (Linsley 1963). The discovery inspired the

beginning of a series of such experiments, constructed with the aim of detecting more

of these spectacular ultra-high energy particles. The Volcano Ranch array consisted of

20 plastic scintillators separated by 884 m. The detection principle is that of registering

the time, energy and spatial distribution of the muons and electrons that hit the surface.

From these observables, the energy and direction of the primary particle are reconstructed.

The next giant surface array was constructed in Haverah Park, Yorkshire and operated

between 1967-1987 (Lawrence et al. 1991). Water Cherenkov tanks were used to register

the air shower particles on the ground.

An altogether different experimental technique for the detection of UHECR showers

was developed in Utah with the Fly’s Eye detector (Bergeson et al. 1977). A relativis-

tic charged particle travelling through the atmosphere can excite nitrogen molecules that

produce fluorescence in the 300-450 nm range. The light produced is detectable when a

very large number of particles are incident in the atmosphere at once. The first fluores-

cence telescopes were tested in Volcano Ranch taking data in coincidence with the surface

array and a dedicated fluorescence experiment run in Utah between 1981-1993. The same

principle was behind the more recent High Resolution Fly’s Eye (HiRes) that operated

between 1997-2006 (Abbasi et al. 2002). The final of the last generation of extensive air

shower arrays was the Akeno Giant Air Shower Array (AGASA) (Chiba et al. 1991), that

consisted of ground scintillators which were distributed over a total area of 100 km2. The

Yakutsk array in Siberia should also be mentioned here. Albeit covering a small detection

area ∼ 10 km2, it has been in operation since 1970 and is currently still active (Ivanov

et al. 2009).

1.2.2 Current and upcoming experiments

The Pierre Auger Observatory, in Malargue Argentina is the largest giant shower array to

be constructed to date (Abraham et al. 2004). It has a detection area of 3000 km2 and

UHECR particle showers are detected by a combination of 1660 ground based Cherenkov

detectors, surrounded by 27 fluorescence telescopes at five different sites. The combination

of these two techniques provides the most accurate reconstruction of UHECR shower



1.2. Detection 21

Figure 1.2. Left: The layout of the Pierre Auger Observatory as of July 2009.
Each of the dots points to the location of one of the water tanks which are
arranged in a grid with 1.5 km spacing. The green lines show the reach of the
fluorescence detectors which overlook the ground detectors. The total area over
which the detectors are distributed is approximately 3000 km2. Right: One of
the Cherenkov tanks at Auger, with one of the fluorescence telescope buildings
in the background.

geometry to date. The layout of the array and one of the water tanks and fluorescence

telescope buildings are shown in figure 1.2.

Auger is fully efficient for UHECR primaries with energy greater than 1018 eV and

showers incident with a zenith angle θz ≤ 60◦. An infill array and proposed upgrades to

Auger push the energy threshold to lower energies (see e.g., Abreu et al. 2012b). Data

taking in Auger started in January 2004. Since its completion in 2008 it has been collecting

data at an approximate rate of 2 events per month beyond 6×1019 eV (the arrival directions

and reconstructed energy of 69 of these have been published in Abreu et al. 2010). The

angular resolution is better than 0.9◦ for events that trigger 6 or more surface detectors

(E ≥ 10 eV). The energy resolution is 15% and there is a 14% systematic uncertainty in

the absolute energy scale given by the calibration of the fluorescence technique (Aab et al.

2013). The most recent, combined (surface and fluorescence) energy spectrum measured

at Auger is shown in figure 1.3.

The Telescope Array (TA) experiment in Utah, which started operations in 2007,

complements the observations of Auger in the Northern hemisphere. A combination of

507 scintillators on the ground array and 3 fluorescence telescopes are active at the TA

experiment, which is largely built on the detection techniques established by AGASA and

HiRes. The total detection area is 680 km2. The detection of 52 events with energy

exceeding 57 EeV at the TA has been reported to date (Fukushima et al. 2013).
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Figure 1.3. The most recent combined energy spectrum measured at Auger.
The numbers give the total number of events inside each energy bin. The total
exceeds 130,000 events. The downward facing arrows represent upper limits at
84% confidence. Figure adapted from Aab et al. (2013).

The proposed JEM-EUSO experiment (Medina-Tanco et al. 2009) is planned to be the

first space based UHECR experiment. If realised, it will be mounted on the International

Space Station and survey the Earth’s night sky from ∼ 400 km altitude for the fluorescence

and Cherenkov radiation produced by UHECR showers in the Earth’s atmosphere, with

a super-wide field-of-view telescope (±30◦). JEM-EUSO would orbit the Earth every 90

minutes and be the first full sky UHECR experiment. It would increase the exposure to

UHECR showers by a factor of ∼ 10 − 20 compared to Auger (Adams et al. 2013). The

accumulated exposures of past, current and planned major UHECR experiments at energy

E = 3× 1020 eV are shown in figure 1.4.

1.3 Sources and acceleration of UHECRs

In the ultra relativistic limit, the Larmor radius of a charged particle with energy E and

atomic number Z is given by

rLar =
E

ZeB
' 1.08 Mpc

1

Z

(
E

1018 eV

)(
B

1 nG

)−1

, (1.2)
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Figure 1.4. Cumulative exposure of past, current and proposed UHECR exper-
iments at EUHECR = 3× 1020 eV reproduced from Kajino (2010).

Figure 1.5. Updated Hillas diagram (see text) from Kotera & Olinto (2011)
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where B is the magnetic field strength in the direction perpendicular to the momentum

of the particle. A necessary condition for the acceleration of UHECRs in an astrophysical

source is the so called Hillas criterion proposed in Hillas (1984). It states that an accelera-

tor must have a radius R ≥ rLar in order to be able to magnetically confine a particle with

gyroradius rLar. The Hillas criterion, expressed in terms of the magnetic field strength B

and R of the source gives the maximum confinement energy, which reads

Emax ∼ 1 EeV · Z ·
(

B

1 µG

)(
R

1 kpc

)
. (1.3)

Powerful astrophysical sources in B−R phase space are shown in figure 1.5, where typical

values for B and R and associated uncertainties are plotted. Only sources above the red

line can confine nuclei with energy 1020 eV and only sources above the blue line can confine

1020 eV protons. Therefore, the only viable candidate sites for UHECR acceleration are

active galactic nuclei (AGN), gamma ray bursts (GRBs), neutron stars and shocks in

the intergalactic medium. In relativistic outflows, particles are only accelerated over a

fraction of R, comparable to R/Γ with Γ the Lorentz factor of the outflow, therefore the

Hillas criterion needs to be updated in this case (see e.g., discussion in Waxman 2011, or

Waxman 1995a for a detailed derivation).

The Hillas criterion is a necessary but not sufficient condition for the acceleration of

UHECRs. For a more sophisticated estimate of the maximum acceleration energy we can

compare the acceleration timescale, tacc, to the time it takes UHECRs to escape the accel-

eration region, tesc, the age of the source and the energy loss time of the particles that are

being accelerated in the ambient medium, tloss. As long as tacc ≤ min (tesc, tloss,Agesource)

acceleration is feasible (see e.g., Lemoine & Waxman 2009).

1.3.1 Acceleration

Acceleration mechanisms in which particles can attain ultra-high energies in reasonable

timescales are a challenge for theory. Proposed mechanisms for cosmic-ray acceleration can

be broadly divided into inductive (or one-shot acceleration) and stochastic (or diffusive).

The latter are generally preferred for acceleration to the highest energies, because they

naturally produce a power-law spectrum spread over many orders of magnitude in energy.

In inductive acceleration models, the particle gains energy in a continuous way in a

strong ordered electric field across the accelerating region (see e.g., Ptitsyna & Troitsky
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2010; Hillas 1984 for details). Electric fields are hard to establish in astrophysics as they are

readily dissipated by the highly conductive plasma. However, the conditions for inductive

acceleration might arise through the motion of a rapidly rotating magnetised conductor,

such as a black hole or pulsar, which establishes a potential difference between the surface

of the object and infinity, in which the particle can be accelerated.

Diffusive acceleration mechanisms and in particular Fermi shock acceleration, are the

preferred acceleration mechanism of cosmic-rays in most astrophysical acceleration models,

not least because they are very successful in their description of cosmic-ray acceleration

in galactic sources, where significantly more detailed observations are available. In Fermi

acceleration, the charged particle is accelerated through multiple scatterings, on regions

of a varying magnetic field, gaining some energy at each collision. In the first order

Fermi mechanism (Axford et al. 1977; Bell 1978; Blandford & Ostriker 1978) particles are

accelerated through multiple crossings of strong (but non-relativistic) astrophysical shocks,

gaining some energy with every crossing1. It can be shown that with every crossing the

particle gains

〈
∆E

E

〉
=

4

3
β, (1.4)

where β is approximately the shock velocity in units of c. The spectrum expected in the

first order Fermi mechanism, in the test particle limit, for non-relativistic shock accelera-

tion, is a power law with a fixed index α,

N(E)dE = const.× E−α dE, (1.5)

where α ≈ 2.0. Observations of supernova remnants and theoretical developments over

the last years, suggest that this, standard spectrum, may not be exactly what is released

in reality. For particular magnetic field configurations, it is thought that α can become

smaller (harder spectrum) at high energies, whereas for older, slower shocks, α may become

a lot softer (see for example the detailed discussion in Hillas 2005).

1The second order Fermi mechanism that was originally proposed by Fermi (Fermi 1949) is now less
popular, as the energy gain goes as 〈∆E/E〉 = (4β2)/3.
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1.3.2 Candidate sources

Active galactic nuclei

Active galactic nuclei are the most powerful steady sources known and as such they strong

candidates as UHECR sources (e.g., Ginzburg & Syrovatskii 1964; Hillas 1984). They are

the most commonly observed extragalactic gamma-ray emitters, which necessarily implies

particle acceleration to at least moderately high energies. AGN are commonly classified

into radio-loud and radio-quiet, the former presenting no prominent radio emission while

the latter possess prominent jets, that emit in the radio and often other wavelengths,

and terminate in lobes or hot-spots. Within the unified AGN scheme (Urry & Padovani

1995), the differences between different types of AGN are a result of the viewing angle

(orientation) of the AGN and possibly evolutionary effects.

Although the size and magnetic field strength of AGN central engines (i.e. black holes)

is such that from the Hillas criterion one expects Emax ∼ 1020 eV, it is believed that in this

zone energy losses are significant, due to the presence of dense radiation fields and that

in practice such high energies are not achieved (e.g., Norman et al. 1995). In radio-loud

AGN, UHECR acceleration may also occur in the jet (Mannheim 1993; Berezinsky et al.

2006) and lobes or hot-spots (Rachen & Biermann 1993), which seem more promising

candidates. Although AGN seem an obvious candidate as UHECR sources, the absence

of very powerful AGN within 100 Mpc or so (Lγ & 1046erg s−1) makes it unclear whether

they can supply the locally observed UHECR flux (see e.g., Lemoine & Waxman 2009;

Waxman 2011).

Transient events in AGN, such as flares, have also often been discussed as UHECR

source candidates (e.g., Farrar & Gruzinov 2009) and may meet the energetic requirements

for UHECR acceleration more easily. The observed gamma-ray flux of AGN can be used

as a powerful probe of UHECR acceleration in AGN, if one can distinguish between the

possible hadronic and leptonic origin of this emission. This will be discussed in detail in

chapter 4 (see also e.g., Hinton & Hofmann 2009).

Gamma-ray bursts

Gamma-ray bursts were first proposed as UHECR sources by Waxman (1995b); Vietri

(1995). The peak luminosity of these violent stellar explosions is of order Lγ = 1052erg s−1.

If an equal amount of power goes into cosmic-ray production as in gamma-ray production,
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the observed rate of GRBs can explain the diffuse UHECR flux levels. In the GRB

fireball model, gamma-rays are created by electrons that are accelerated through the Fermi

mechanism, in shocks, during the GRB and its afterglow. In this model, UHECRs are

accelerated in the same regions as the high energy electrons. One of the appealing features

of GRBs as UHECR sources is that because of their transient nature, neutrinos, which

will inevitably be produced by interactions of UHECRs near the source (see sections 2.2,

2.2.5), should be detectable in approximate coincidence with the gamma-ray signal (± few

days). As will be discussed in section 3.1, charged UHECRs are significantly delayed in

magnetic fields and are not expected in coincidence. The IceCube experiment is sensitive

to the expected neutrino signal and starting to cut in on the allowed parameter space (see

e.g., Abbasi et al. 2012, but also Dar 2012; He et al. 2012).

Pulsars

Soon after their discovery, pulsars were proposed as possible sources of high energy cosmic

rays (Gunn & Ostriker 1969). These highly magnetised, rapidly rotating neutron stars

fulfil the Hillas criterion as shown in figure 1.5. Pulsars produce relativistic outflows to

which they induce a large potential drop, Φ, through their rapid rotation. This can in

principle be as high as Φ = 1021 eV. It was shown in Blasi et al. (2000), that young neutron

stars with millisecond rotation periods can accelerate particles up to Emax ∼ Z Φη ∼

Z × 1020 eV in such potential drops, where η is the fraction of the potential experienced

by the accelerating particle. More recently it has been shown that an extragalactic pulsar

population can reproduce the Auger spectrum and composition measurements very well

(Fang et al. 2012, 2013b). A particularly appealing feature of pulsars compared to other

candidate accelerators of UHECRs, is that the model can be confirmed or ruled out with

5-10 years of IceCube data, as a consequence of the expected diffuse neutrino counterpart

associated with pulsar UHECR sources, as shown in Fang et al. (2013a).

Shocks in the intergalactic medium

In the large scale structures of the universe, filaments and galaxy clusters, the accretion

of gas produces shocks. In particular in galaxy clusters, magnetic fields of order B ∼

1 − 10 µG have been measured (see detailed discussion in section 3.1) and it is believed

that & µG strength fields could be present in . 1 Mpc scales (Kim et al. 1990; Feretti

et al. 1995; Ferrari et al. 2008). Hence they should be able to confine UHECRs up to
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Emax & 1021eV (e.g., Norman et al. 1995; Murase et al. 2008a). Galaxy clusters have not

yet been observed in gamma-rays, although it is believed that the expected signal is not

far below the experimental sensitivity of current instruments (see e.g., discussion in Rieger

et al. 2013 as well as the work of Aharonian et al. 2009; Aleksic et al. 2012a; Arlen et al.

2012). Gamma-ray observations will help constrain the properties of these structures and

as a result the cosmic-ray content.

Non-acceleration origin of UHECRs

Other models of particle physics beyond the Standard Model have also been proposed

for the origin of UHECRs (so called top − down models, see Bhattacharjee & Sigl 2000

for a review). In these models, UHECRs are the products of the decay of heavy relic

particles, left from the very early universe. The UHECR spectrum measured by the

earlier, AGASA experiment did not exhibit the cutoff expected due to the interaction of

extragalactic hadrons with the CMB (Takeda et al. 2003), causing top-down models to be

invoked for the origin of UHECRs.

The most recent published cosmic ray spectra measured by the HiRes, Auger and

TA experiments measure a cutoff in the CR spectrum with statistical significance ≥ 5σ

(Abbasi et al. 2008; Abraham et al. 2010b; Abu-Zayyad et al. 2013a), strengthening the

view that the origin of UHECRs is in astrophysical accelerators. The non-observation of

ultra-high energy photons and neutrinos in current UHECR experiments (see section 3.2

or e.g., Aab et al. 2013) and of a significant excess of events from the direction of the

galactic centre at the highest energies (e.g. Dubovsky & Tinyakov 1998), which are firm

predictions of top-down models, strongly constrain these models.

1.4 Mass composition

The characteristics of the shower that develops when a UHECR enters the atmosphere

depend on the primary composition. Measurements of shower properties related to the

composition are challenging to interpret, as the characteristics of the shower are governed

by hadronic interactions at centre of mass energies beyond the reach of accelerator ex-

periments. A powerful observable of the primary composition is the depth where the

maximum number of electromagnetic particles in a shower, Xmax, is reached. For heavier

nuclei, Xmax is expected to occur higher in the atmosphere than for protons, as to a crude
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Figure 1.6. The elongation rate (see text) predicted by hadronic interaction
models for protons (red) and iron nuclei (blue) and the data obtained at Auger
(Aab et al. 2013) - left and with the TA (Jui 2012) - right. Note that the hadronic
interaction models plotted in the two figures are not exactly the same.

approximation, a shower initiated by a primary nucleus with mass A and energy E can

be described as a superposition of A showers with energy E/A. Xmax can be measured

directly by fluorescence detectors. In ground arrays a number of Xmax related observables

can be studied, but principally the primary composition is inferred from the muon content

of the shower (see e.g., Abreu et al. 2011b).

For a UHECR with energy E, the dependence of the average depth of shower maximum,

〈Xmax〉, on the mass number A is given by (Heitler 1954; Matthews 2005)

〈Xmax〉 = α(lnE − 〈lnA〉) + β, (1.6)

where the coefficients α and β depend on the details of the hadronic interactions governing

the evolution of the shower (due to the large statistical fluctuations in Xmax, it is common

practice to study 〈Xmax〉 for a large number of showers at a given energy).

The slope of Xmax as a function of energy is called the elongation rate and also depends

on the primary mass following

D =
d 〈Xmax〉
d logE

≈ α
(

1− d〈lnA〉
d lnE

)
ln 10. (1.7)

The elongation rate for a selection of the most advanced hadronic interaction models for

protons and iron nuclei, and the data recorded with the fluorescence detectors of Auger

and the TA, are shown in figure 1.6. Above 1018.4 eV, the elongation rate appears to
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change for the UHECRs detected at Auger, suggesting a change in composition from light

to heavier nuclei (see e.g., Abraham et al. 2010a for details or Aab et al. 2013 for the

most recent results). The TA dataset is consistent with a proton composition all the way

to the highest energies (Jui 2012), although it should be noted that the data from the

two experiments are compatible within the quoted systematic uncertainty. Efforts are

currently ongoing for a joint analysis between the two experiments (see Barcikowski et al.

2013; Abu-Zayyad et al. 2013b).

In general, one does not expect the UHECR source composition to be dominated by

intermediate or heavy mass nuclei, given that they are so rare in the local universe. In

this sense, the observation of Auger of composition diagnostics inconsistent with protons

at the highest energies is surprising. A UHECR composition enriched in heavier nuclei

at the source, is consistent with some astrophysical models, for example those in which

UHECRs originate in pulsars, which are believed to be natural sources of iron and possibly

also helium and CNO nuclei (see e.g., Fang et al. 2013b and references therein).

On the other hand, in a given source, if the timescale that limits the maximum at-

tainable UHECR energy is related to the size of the accelerating region (i.e. the Hillas

condition, equation 1.3) and the source is enriched in nuclei, the higher Z elements can be

accelerated to higher energies than protons ∼ Z ×Eproton,max. Such a setup can naturally

explain the existence of heavier nuclei at the highest energies.

Studies that attempt to fit the observed Auger composition observables require either

an unusual UHECR composition at the source (e.g., a nitrogen or silicon dominated as

shown in Hooper & Taylor 2010) or a low maximum proton energy (e.g., Allard et al. 2008;

Aloisio et al. 2011). One of the features of the propagation of nuclei with mass number A

< 20, is that they cannot travel farther than ∼ 20 Mpc without disintegrating. As a result,

for a heavy composition to be observed at the detector beyond GZK threshold energies,

the injected spectrum must be essentially dominated by iron group nuclei beyond 1020 eV

for sources beyond ∼ 20 Mpc. Such a composition can arise if the maximum acceleration

energy of protons at the source is below 6× 1019 eV (see Allard et al. 2008; Aloisio et al.

2011; Allard 2012).



Chapter 2

Interactions of UHECRs in the

intergalactic medium and

secondary products

“I am always doing that which I can not do, in order that I may learn how to do it.”

-Pablo Picasso

From the moment they are produced, the propagation of UHECRs is significantly in-

fluenced by their surrounding medium. Inside the source or in the source environment,

UHECRs interact with ambient photon and hadron fields. Outside the immediate vicinity

of the source, the diffuse extragalactic radiation backgrounds, that permeate the universe

from the radio to gamma-rays, are the main medium impeding the propagation of UHE-

CRs inducing mass and energy losses. In what follows, the extragalactic propagation of

UHECRs is considered. Next, the secondary particles produced during UHECR propaga-

tion are considered, focusing on gamma-rays. We consider their extragalactic propagation

and discuss experimental efforts for their detection. Magnetic fields also affect the prop-

agation and energy losses of charged particles as they accelerate them causing them to

radiate; their effect is discussed in chapter 3.

31
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Figure 2.1. The spectrum of cosmic background radiations. The CMB is mod-
elled as a blackbody spectrum at 2.725 K. The IR and UV backgrounds are from
the work of Kneiske & Dole (2010). The extragalactic gamma-ray background
datapoints (EGB) are from EGRET measurements (Sreekumar et al. 1998) and
Fermi-LAT measurements (Abdo et al. 2010). For the X-ray and radio back-
grounds the models presented in the works of Fabian & Barcons (1992), Clark
et al. (1970) are shown respectively.

2.1 Cosmic background radiation fields

Diffuse extragalactic background radiation fields span 20 orders of magnitude in energy

as can be seen for example in figure 2.1. Apart from the CMB all the other backgrounds

are presumably made up of the fluxes of all the discrete sources of radiation. Light from

the solar system and the Milky Way are strong foregrounds, nevertheless measurements

exist and robust bounds have been inferred. The background photon fields most relevant

to the propagation of high energy protons, leptons and high energy photons are reviewed

below.

2.1.1 Cosmic microwave background

The CMB, which is the left over radiation from the Big Bang, is energetically the dominant

extragalactic photon background (Penzias & Wilson 1965). It is remarkably uniform and

has an ideal black body spectrum given by the Planck function. The comoving CMB



2.1. Cosmic background radiation fields 33

photon number density per unit energy interval nCMB(ε) = dNCMB/dε is thus given by

nCMB(ε) =
ε2

π2~3c3
[
exp

(
ε
kT

)
− 1
] , (2.1)

where T is the temperature of the CMB and today T = 2.725 ± 0.001 K. The mean

energy of CMB photons today is given by εCMB ' 2.7kT ' 6.34 × 10−4 eV. It turns out

that nCMB ∼ 410 cm−3 today. The peak temperature of the CMB emission changes with

redshift as T (1 + z), as a result of the Hubble expansion and the physical number density

at redshift z is given by (1 + z)3nCMB. The CMB impedes the propagation of protons

with energy Ep & 5 × 1018 eV (at z = 0) and photons with Eγ & 1014 eV (see sections

2.2, 2.3.2).

2.1.2 Extragalactic background light

The light emitted by galaxies during their formation and evolution, forms the second most

energetic diffuse photon background after the CMB (see e.g., Dwek & Krennrich 2013 for

a recent review). It consists of most of the light emitted by star-formation processes and

AGNs which is still travelling through the universe at wavelengths longer than it was

emitted at, due to redshift energy losses, absorption and re-radiation by dust. The extra-

galactic background light (EBL) spans energies between ε ∼ 10−3− 10 eV, thus including

the ultraviolet (UV), optical and infra-red (IR) parts of the electromagnetic spectrum.

Protons with Ep & 5 × 1015 eV and photons with Eγ & 1011 eV are above the threshold

for interaction with EBL photons.

The EBL, being intrinsically faint, is hard to measure directly due to strong contam-

ination from the zodiacal light (solar light absorbed and reradiated by dust) at these

wavelengths. Lower limits on the EBL are derived by integrating the light of observed

galaxies (such as in the works of Madau & Pozzetti 2000; Fazio et al. 2004; Dole et al.

2006). Upper limits are derived from the non-attenuation of gamma-ray spectra (see sec-

tion 5.1.2 as well as e.g., Aharonian et al. 2006; Mazin & Raue 2007; Aliu et al. 2008;

Meyer et al. 2012). The most recent, notable models of the EBL spectrum and redshift

evolution include the works of Kneiske & Dole (2008, 2010); Franceschini et al. (2008);

Dominguez et al. (2011); Gilmore et al. (2009); Inoue et al. (2013). A collection of recent

EBL model spectra at z = 0 are shown in figure 2.2.
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Figure 2.2. Recent models of the EBL spectrum at redshift z = 0.0 from the
work of Kneiske & Dole (2010); Dominguez et al. (2011); Inoue et al. (2013);
Finke et al. (2010). The peak at optical wavelengths is thought to be due to
direct emission, whereas the infrared peak is believed to be due to the reradiated
emission of light absorbed by dust.

2.1.3 Universal radio background

At wavelengths longer than those of CMB photons, the universal radio background photons

interact with super-GZK protons with energy, Ep ≥ 1022 eV and UHE photons with

Eγ ≥ 1018 eV. The energy density of the radio background is lower than that of the CMB

and the EBL and it’s exact spectrum and level are uncertain due to contamination from

our own galaxy, which emits and absorbs at these wavelengths. The radio background is

thought to originate in the emissions of radio galaxies, with possible contribution from

other normal galaxies. Notable estimates and models of the radio background have been

presented in the works of Clark et al. (1970); Protheroe & Biermann (1996a) and most

recently Seiffert et al. (2009); Singal et al. (2010).
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2.2 Proton propagation and interactions

In this section, the interactions of ultra-high energy protons with diffuse extragalactic

background photon fields are considered in some detail. As throughout most of this

thesis, the case in which UHECRs are protons is considered primarily. A brief account

of the interactions of ultra-high energy nuclei is given at the end of this section. In what

follows, quantities in the rest frame of the nucleon are given by primed variables, whereas

unprimed quantities denote quantities in the laboratory frame.

To calculate the interaction length, or mean free path of protons, λpγ , through the

photon backgrounds, one must consider the continuous energy distribution of the photons.

The phase space density of photons with momentum pγ
′ can be written fγ(p′γ)d3p′γ . In

the laboratory frame, for a proton with energy Ep = γpmpc
2, where, γp, is the Lorentz

factor of the particle’s motion and mp, the mass of the proton, the mean free path to

photohadronic interactions is given by

λ(γp) = γp

[∫
d3p′γfγ(p′γ)σpγ(ε′)

]−1

, (2.2)

where ε′ is the energy of the background photon in the nucleon rest frame and σpγ(ε′)

is the cross-section of the process, i.e. the expression of the likelihood of interaction

between the incoming particles in units of area. The proton Lorentz factor appears in

equation 2.2 as the interactions per unit time have been expressed in the rest frame of

the nucleon (dt = γp dt′). In the laboratory frame the energy of the photon is given by

ε = (1 + βpµ
′)ε′γp, where µ′ is the angle between the photon and the nucleon direction,

in the nucleon rest frame. Further we can write d3p′γ = 2πc−3ε′2 dε′dµ′. Changing the

integration variable from µ′ to ε so as to transform to the laboratory frame, in which the

background photons are isotropic, and substituting into equation 2.2 gives the standard

formula (Stecker 1968)

λ = 2γ2
p

[∫ ∞
0

dε
1

ε2
nb(ε)

∫ 2γpε

ε′th

dε′ ε′ σpγ(ε′)

]−1

, (2.3)

where the bounds on the second integral are ε′th = ε/ [γp(1 + βp)] ∼ ε/2γ, with ε′th the

threshold energy for the interaction to occur, and ε′max = ε/ [γp(1− βp)] ∼ 2γpε in the

limit where γp � 1. Here, ε′max is the maximum background photon energy, as seen in

the nucleus rest frame. The quantity nb(ε) is the photon number density per unit energy
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interval

nb(ε) =
4π

c3
ε2fγ(ε). (2.4)

The interactions of UHECRs with the ambient photon fields result in an energy loss per

unit time, given by

− 1

E

dE

dt
= 〈kinelσpγnbc〉, (2.5)

where kinel = ∆E/E, is the inelasticity, i.e. the fractional energy loss per interaction. The

energy loss length to a given process is defined as

Lloss =

∣∣∣∣ 1

E

dE

c dt

∣∣∣∣−1

. (2.6)

2.2.1 Pair production

Above a certain proton energy, electron-positron pair production can occur, upon collision

with a low energy, background photon. This is known as the Bethe-Heitler process,

p+ γb −→ p+ e+ + e−. (2.7)

The threshold for the process in terms of the proton energy, assuming a head-on collision,

is given by

Ep =
mempc

4

ε
∼ 5× 1018 eV

( ε

10−3 eV

)−1
, (2.8)

where ε is the energy of the background photon. Therefore, Bethe-Heitler pair production

on the EBL starts at proton energy Ep ∼ 5× 1015 eV (taking εIR ∼ 0.1 eV). The energy

loss from this process is small per interaction, due to the light nature of the pairs, kinel '

2me/mp ∼ 10−3. The cross-section for the process can be approximated near the threshold

by σeepγ ∼ 1.2 × 10−27 cm2(ε/ε′th − 1)3 (in the nucleon rest frame ε′th ∼ 2mec
2 ∼ 1 MeV).

It then increases monotonically with energy to σeepγ ∼ 1.8 × 10−27 cm2(ln 2ε′ − 2.6). The

typical interaction distance is λeepγ ∼ 1/(nCMB · σeepγ) ∼ 1 Mpc. As nCMB ' 411 cm−3,

the proton energy loss length to this process at high energies, way above the threshold is

Leepγ ∼ (λeepγ/kinel) ∼ (1/nCMB · σeepγ · kinel) ' 1000 Mpc.
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Figure 2.3. Pion photoproduction cross-section as a function of photon energy
in the nucleon rest frame. The contribution from the different channels as well
as the total cross-section are shown. Image adapted from Mücke et al. (1999).

2.2.2 Pion photoproduction

At the ultra-high energy end of the cosmic ray spectrum, protons are above the threshold

for the production of pions, the lightest mesons, upon collision with CMB photons

p+ γCMB −→ ∆+ −→ nπ+/pπ0, (2.9)

where ∆+ is the unstable delta baryon (see e.g., Beringer et al. 2012 for details). This

process, known as the GZK process, was proposed soon after the discovery of the CMB

independently by Greisen (1966) and Zatsepin & Kuz’min (1966). It was predicted that

it would impose an upper limit to the energy range covered by the cosmic ray spectrum,

if UHECR sources are at cosmological distances, because the energy losses suffered by the

protons from this process are severe.

Considering a proton-photon head-on collision with a proton and a pion in the final

state, an estimate of the proton threshold energy for the process, Eth, in the CMB rest

frame, is obtained

Eth =
mπ (2mp +mπ) c4

4ε
∼ 1020 eV

(
ε

6× 10−4 eV

)−1

. (2.10)
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The full calculation, which includes the contribution of the high energy tail of the CMB

spectrum, gives Eth ∼ 6× 1019 eV. The threshold proton energy for the GZK process on

the more energetic IR photons (taking εIR ∼ 0.1 eV) is Eth ∼ 7 × 1017 eV, but as the

latter have a much lower number density than CMB photons, the interaction length for

pion photoproduction on IR photons is significantly longer.

As the pion mass is a significant fraction of that of the proton, the energy loss per

interaction here is significant, kinel ' mπ/mp ' 0.14 at threshold. In figure 2.3, the cross-

section for the process as a function of photon energy is shown, with the contribution from

different production channels indicated. Very close to the threshold, which coincides with

the production of the ∆ resonance, the cross-section peaks at σπpγ ' 5× 10−28 cm2. Here,

the mean free path of UHECR protons on CMB photons for the process is λπpγ ∼ 6 Mpc

and the loss length Lπpγ ∼ 50 Mpc. At higher energy, the cross-section levels off at

1.4× 10−28 cm2, multipion production takes over and the inelasticity rises to kinel ' 0.5.

The GZK process creates an effective horizon, beyond which, the highest energy cosmic

rays cannot reach us. As a result, more than ∼half of the UHECRs with energy ≥

6 × 1019 eV must come from sources at distances smaller than 100 Mpc, assuming the

sources are extragalactic and cosmologically distributed. This important property is used

in chapter 4, where a search for a possible correlation between extragalactic sources within

the GZK horizon of & 6× 1019 eV protons and UHECRs observed by Auger is performed.

2.2.3 Redshift energy losses

At energies below the threshold for Bethe-Heitler pair production, protons lose energy

predominantly due to the adiabatic expansion of the universe, at a rate given by

− 1

E

dE

dt
= H(z) = H0

[
ΩM(1 + z)3 + ΩΛ

]1/2
, (2.11)

if a flat universe is assumed. Here, ΩM and ΩΛ are the dimensionless density parameters,

denoting the “matter density” and “dark energy density” of the universe respectively (see

appendix A for details). At z = 0, the loss length to this process for protons is given

by Lad
loss(z = 0) = c/H0 ' 4000 Mpc. The energy loss lengths of UHECR protons are

summarised in figure 2.4.



2.2. Proton propagation and interactions 39

Figure 2.4. Proton interaction length for pion-photoproduction on the CMB
(thick dashed line) and IR (thin dashed line) background of Stecker et al. (2006),
and energy loss length for pion-photoproduction (black solid line), Bethe-Heitler
pair production (red solid line) and cosmological expansion (blue dotted line).
Image from Kotera & Olinto (2011).

2.2.4 Neutrons and nuclei

For neutrons, that have a half-life τn = 880.0± 0.9 s (Beringer et al. 2012), the dominant

energy loss process is β-decay. Being electrically neutral, neutrons are not expected to

be accelerated in astrophysical sources, nevertheless they are produced in pp collisions in

high density regions, near or inside the source and in proton GZK interactions. Neutrons

are very interesting because their trajectories are not affected by magnetic fields. The

propagation length of neutrons is

Ln = cτnγn ∼ 0.9

(
En

1020

)
Mpc, (2.12)

where γn is the Lorentz factor of the neutron; therefore, neutrons with energy 100 EeV

can travel ∼ 1 Mpc before they decay.

Nuclei suffer energy losses from pair production, photomeson production and photo-
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disintegration. In the rest frame of a nucleus with mass number A, the threshold for

photo-pair production is ε′γ ∼ 1 MeV. Photodisintegration is particularly important at

ε′γ ∼ 10 − 25 MeV (EA ≥ A × 1019 eV on the CMB) and photomeson production above

ε′γ ∼ 150 MeV (Eth ∼ 5× 1021 eV for iron nuclei on the CMB).

During photodisintegration, nuclei lose a fragment of the nucleus, most often a nu-

cleon. The highest cross-section, lowest threshold (ε′γ & 10) photodisintegration process

is the giant dipole resonance. At higher energies, the quasi deuteron process becomes im-

portant before finally photomeson production losses (baryonic resonances) take over (see

e.g., Rachen 1996; Allard 2012 for a detailed discussion). The first detailed study on the

energy losses of cosmic ray nuclei was presented in Puget et al. (1976) and more recently

in the works of e.g., Stecker & Salamon (1999); Khan et al. (2005).

Figure 2.5 shows a comparison of the fraction of surviving nuclei for different species as

a function of propagation distance at energy E ≥ 60 EeV. As shown, only iron nuclei and

protons can survive more than ∼few tens of Mpc of propagation above GZK energies. As a

consequence, for sources beyond 20 Mpc, one expects to detect essentially only secondary

nucleons at the detector, even if the source is enriched in intermediate (CNO type) nuclei

(see e.g., the work of Bertone et al. 2002; Allard et al. 2008). For a heavy dominated

composition to be observed at the detector, the injected spectrum must be dominated by

iron group nuclei beyond 1020 eV as discussed in section 1.4.

2.2.5 Secondary products of UHECRs

As we saw with equations 2.7 and 2.9, UHECRs give rise to secondary electrons and pions.

Pions are unstable (τπ± ' 2.6× 10−8 s, τπ0 ' 8.5× 10−17 s) and most frequently decay via

the following channels

π0 −→ γγ

π+ −→ µ+νµ : µ+ −→ e+νeν̄µ

π− −→ µ−ν̄µ : µ− −→ e−ν̄eνµ.

(2.13)

UHECRs are therefore also sources of high energy neutrinos and photons. Neutrinos are

discussed next, and gamma-rays in section 2.3 in some more detail.
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Figure 2.5. The fraction of surviving nuclei for different species as a function of
propagation distance at energy E ≥ 60 EeV (and E ≥ 40, 100 EeV for protons).
Image credit: Denis Allard (adapted from Kotera & Olinto 2011).

Neutrinos

Each of the neutrinos produced in equation 2.13 typically carries 20% of the energy of

the pion. These neutrinos, produced in the interactions of UHECRs with cosmological

backgrounds (Berezinsky & Zatsepin 1969), are referred to as cosmogenic or GZK neutri-

nos. High energy astrophysical neutrinos may also originate in hadronic interactions at

the source (these are often referred to as prompt or direct).

As neutrinos interact only via the weak nuclear force, they are difficult to detect and

giga-ton detectors are required. However, neutrinos travel attenuated only by redshift

losses and are unaffected by magnetic fields, hence they are very interesting cosmic mes-

sengers because they point back to their sources. High energy neutrinos are the object of

the searches of several high energy physics experiments, including AMANDA, IceCube,

ANITA (Gorham et al. 2010), the currently in prototype phase ARA experiment (Allison

et al. 2012) as well as searches at Auger (Abreu et al. 2012b).

We have recently witnessed what has been termed the “birth of neutrino astronomy”

with the detection of 28 neutrinos with energies between ∼ 50 TeV− ∼ 2 PeV at the

IceCube detector (Aartsen et al. 2013). This is a ∼ 4σ excess above the expected atmo-
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spheric neutrino background (that is, neutrinos produced by cosmic ray interactions with

the Earth’s atmosphere) and is considered the first evidence for very high energy neutrinos

of astrophysical origin. If associations of neutrinos with astrophysical sites are established

in future, it will be direct evidence that hadronic acceleration is taking place at these

sites. With present statistics, individual sources cannot be distinguished but the total

neutrino spectrum may allow to distinguish between different scenarios for their origin.

The spectrum of the recently discovered IceCube neutrinos does not seem consistent with

a cosmogenic origin of these events.

2.3 Gamma-rays

The secondary gamma-rays produced in the reactions of equation 2.13 above, are also of

special interest. Like the neutrinos, they do not suffer magnetic deflections, however as

we will see in the rest of this chapter, they suffer severe energy losses, greater than those

suffered by protons of the same energy. Unlike neutrinos, astrophysical gamma-rays are

not necessarily produced in hadronic interactions. They are thought to originate primarily

in leptonic (electromagnetic) processes. To distinguish between the two populations the

secondary gamma-rays produced in the interactions of protons, will be referred to as

hadronic.

The first compelling evidence of hadronic gamma-rays was recently reported in Tavani

et al. (2010); Giuliani et al. (2011); Ackermann et al. (2013). This gamma-ray emis-

sion, which originates in the Galactic supernova remnants W44 and IC443, has been

distinguished from leptonic gamma-ray emission due to the characteristics of the ob-

served gamma-ray spectrum, which bears the characteristic signature of pion decay. If

the hadronic origin of this emission is confirmed, these sources will be the first known

hadronic accelerators. Irrespective of their leptonic or hadronic origin, gamma-rays once

produced, propagate in a way that depends only on their energy and characteristics of

the propagation medium. The field of gamma-ray astronomy started 40 years ago, with

satellite detectors, and has now matured into an important new window into the non-

thermal universe. In section 2.3.1 the experimental status of gamma-ray astronomy and

future prospects are discussed. In section 2.3.2 we discuss the processes that characterise

gamma-ray propagation.
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2.3.1 Instruments for the detection of gamma-rays

The Earth’s atmosphere is opaque to photons above 10 eV. To study astrophysical photons

above this energy, either satellite experiments need to be deployed, or if the photons are

sufficiently energetic, they may be detected indirectly, through the shower and Cherenkov

light they produce in the atmosphere. The first steps in gamma-ray astronomy were made

with the launch of the American OSO-III balloon experiment in 1967. It was followed by

the SAS-II and COS-B satellite experiments in the 1970s, which detected a few tens of

gamma-ray sources. Major progress was made in the field with EGRET, which was the

main instrument on board NASA’s Compton Gamma Ray Observatory. EGRET took

data from 1991 to 2000 and it’s major scientific results included putting an upper limit

on the diffuse gamma-ray emission of the Milky Way, establishing pulsars as a source of

gamma-rays and blazars as the largest class of extragalactic gamma-ray emitters (Hartman

et al. 1999). Today gamma-ray astronomy is pursued with satellite experiments in the GeV

regime and with ground based detectors above 100 GeV.

Satellite experiments

Since its launch, in August 2008, the Fermi gamma ray space telescope has initiated a new

era in gamma ray astronomy. Together, the Large Area Telescope (LAT) and Gamma ray

Burst Monitor (GBM) on board Fermi, cover a very broad energy range, from 8 keV to

∼ 300 GeV. Fermi observations, have increased the number of observed gamma-ray point

sources by an order of magnitude and new gamma-ray source classes have been discovered1.

The Fermi-LAT surveys the entire sky in 3 hours and achieves full time operation. It is

equipped with an anti-coincidence detector for rejecting charged cosmic rays and uses

tracking to achieve good pointing resolution. It also achieves energy resolution better

than 10% (Atwood et al. 2009).

The operation of the Fermi-LAT so far has lead to the detection of more than 1800

point sources (Nolan et al. 2012) and to the compilation of separate class catalogues of

Pulsars, Gamma-ray bursts and AGN. At the same energy range as the Fermi-LAT, the

Italian AGILE satellite currently in operation is providing complementary data (see e.g.,

Tavani et al. 2009 for details). The complementarity of these satellite experiments with

ground based gamma-ray instruments in terms of wavelength, allows for up to six orders

of magnitude of coverage in gamma-ray energy.

1see e.g., http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/ for details
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Figure 2.6. The sensitivity of a compilation of gamma-ray detectors. The
quantity E dN/dE is the minimum gamma-ray flux in cm−2 s−1 that can be
detected above a specified threshold energy with 5σ significance after 50 hours of
observation, or in 1 or 5 years in the case of the unsteered detectors.

Ground-based detectors

Satellite experiments are limited by the small collection areas that can be accommodated.

The intensity of gamma-ray emission above 100 GeV, referred to as the very high energy

(VHE) gamma-ray band, is too low to be detected with this technique2.

Energetic gamma-ray photons produce a cascade of photons, electrons and positrons

when they enter the Earth’s atmosphere. The shower propagates longitudinally but

also spreads laterally. The relativistic electrons and positrons in the shower emit blue

Cherenkov light, which can be recorded on the ground with Cherenkov telescopes even

though the the electromagnetic shower does not reach sea level. Above 100 GeV, gamma-

ray photons produce a powerful enough electro-magnetic shower to be detectable on the

ground via the Cherenkov light produced. The technique was pioneered at the Whipple

2At 100 GeV the differential Fermi-LAT sensitivity to point sources is ∼ 10−11 TeV cm−2 s−1 in 10 years
(see e.g., Funk et al. 2013 for details of the calculation). The quoted LAT sensitivity roughly corresponds
to 10 milliCrab (where the flux of the Crab nebula has been used as a unit of intensity, as a reference,
approximating the Crab spectrum by a power law dN/dE = 3.45(E/TeV) TeV−1 cm−2 s−1 F. Aharonian
et al. 2006). Beyond 100 GeV, the LAT sensitivity worsens with increasing energy proportional to E1.
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Observatory with the detection of the Crab Nebula in 1989 (Weekes et al. 1989).

Today, imaging atmospheric Cherenkov telescopes (IACTs) are often arranged in ar-

rays, hence increasing the effective collection area up to 105 that of the Fermi-LAT, and

the field of view to 5◦. Currently in operation are the two MAGIC-II telescopes in La

Palma, the VERITAS array in Arizona with four telescopes, and HESS in Namibia. HESS

recently entered Phase 2, following the deployment of a fifth 28 m diameter telescope in

the middle of the HESS-I array. The angular resolution of the reconstructed primary

gamma-ray arrival direction is approximately 5′. A challenge for ground based Cherenkov

telescopes is discriminating gamma-ray showers from the overwhelming background of

charged cosmic ray showers. However, today’s IACTs can reject ∼ 99.98% of cosmic rays

(e.g. Krawczynski et al. 2006). The energy resolution of IACTs is approximately 15%.

At low energies, the detection threshold can be as low as ∼ few × 10 GeV(MAGIC-II,

HESS-II). A disadvantage of IACTs is that they can only observe incoming gamma-rays

on clear, moonless nights, thus achieving about 1000 hours of observations per year.

A major step is planned as the next step in TeV astronomy, which is the deployment

of the Cherenkov Telescope Array (CTA) (see e.g., Actis et al. 2011). The CTA, which

is envisaged to have O(100) telescopes covering an area of several square kilometres, will

bring a dramatic increase to the number of detected gamma-rays: it is expected to bring

the total number of detected TeV sources to O(1000), and to increase the number of known

types of TeV sources. The CTA is planned to consist of two arrays, one in the Southern

hemisphere and one in the North, hence achieving full sky coverage. It is expected to be

fully deployed by 2020 and will have an order of magnitude higher sensitivity in the 100

GeV to 10 TeV range, as well as extending to energies well below 100 GeV and above 100

TeV. It is expected to achieve an angular resolution better than 1′.

The detection of gamma-rays with IACTs is complemented by the use of ground based

particle detectors. The latter technique relies on recording the cascade particles that reach

the ground. Large water or scintillator detectors are deployed, often at high altitudes. The

technique was pioneered with HEGRA and continued with the Milagro, AS-gamma and

ARGO experiments. The current state-of-the art water Cherenkov observatory is HAWC

at the Sierra Negra, Mexico. More than two-thirds of the array are now deployed and

taking data (Mostafa 2013; Abeysekara et al. 2013). The advantage of ground based

particle detectors is that they allow for full time operation and have a large field of view

(∼ 2 sr), surveying a large fraction of the sky in a 24 hour period. Difficulties in the arrival
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direction reconstruction and discrimination of CR and gamma-ray induced air-showers

with this technique, mean that the sensitivity to gamma-ray detection is lower than can

be obtained with IACTs. A summary of the sensitivities of a selection of gamma-ray

experiments is shown in figure 2.6.

2.3.2 Intergalactic electromagnetic cascades

High energy photons, electrons and positrons promptly interact with the cosmological

background photon fields and develop electromagnetic cascades. In this section we consider

the relevant electromagnetic processes in some detail.

Pair production

When sufficiently energetic photons of energy Eγ collide with background photons, γb of

energy ε they undergo pair production,

γ + γb −→ e+ + e−. (2.14)

This process poses strict limitations for the mean free path of gamma-rays. The threshold

gamma-ray energy for the process is given by

Eγ ≥
m2
ec

4

ε
' 2.6× 1011 eV

( ε

1 eV

)−1
, (2.15)

therefore the universe is essentially opaque to gamma-rays with energy above ∼ 1011 eV.

These, high-energy photons, are absorbed by pair production on the EBL. Gamma-

rays interact with CMB photons above Eγ ∼ 1014 eV and with radio background photons

above ∼ 1019 eV. Below ∼ 1011 eV gamma-rays propagate without interacting as the EBL

density drops significantly above ∼ 1 eV. As a result, the photon flux at energies & 1011 eV

from distant sources, such as blazars, is significantly attenuated. Such photons are however

not really absorbed, but initiate electromagnetic cascades in the intergalactic medium, via

subsequent pair production and inverse-Compton scattering (see section 2.3.2).

The cross-section for pair production is given by

σγγ =
3

16
σT
m2
e

s

[
(3− β4) ln

1 + β

1− β
− 2β(1− β2)

]
, (2.16)

where σT = (8π/3)(α~c/3mec
2)2 is the electron Thompson cross-section, with α ' 1/137,
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the electromagnetic fine-structure constant and β = (1 − εth/ε)
1/2. Here εth is the pair

production threshold energy in terms of the energy of the background photon, εth =

2(mec
2)2/Eγ(1 − µ)(1 + z), where the (1 + z) factor takes into account the adiabatic

energy loss of the high energy photon and µ = cos(θ) where θ is the angle between the two

incoming photons. The pair production cross-section peaks near the threshold; as a result

the mean free path to pair production on CMB photons in the PeV range is extremely

small, λγγ = 1/(nCMBσγγ) ∼ 8 kpc, as shown in figure 2.7.

One can define the optical depth to pair production at energy Eγ and redshift z as

(Hauser & Dwek 2001)

τ(E, z) =

∫ z

0
dz′c

∣∣∣∣ dt

dz′

∣∣∣∣ ∫ 1

−1
dµ

(1− µ)

2

∫ ∞
ε′th

dε nε(ε, z
′)
(
1 + z′

)3
σγγ(β′, z′), (2.17)

where nε(ε, z) = dn (ε, z) /dε is the comoving number density of background photons of

redshift z with energy ε and the (1 + z′)3 term converts nε to a proper number density.

As a result of the attenuation due to pair production, the observed gamma-ray spectrum

of a source is related to the intrinsic spectrum through:

dN

dE observed
=

dN

dE intrinsic
· e−τ(E,z). (2.18)

The quantities τ(E, z), e−τ(E,z) are plotted as a function of the incoming gamma-ray

energy in figure 2.8 for a range of redshifts, using the EBL model of Kneiske & Dole

(2008).

inverse-Compton Scattering

High energy electrons also promptly interact with the cosmic photon backgrounds through

inverse-Compton scattering

e+ γb −→ e+ γ. (2.19)

producing energetic photons. Inverse-Compton scattering proceeds in the Thompson

regime for ε′ � mec
2, where ε′ is the background photon energy in the electron rest

frame, and in the Klein-Nishina regime in the opposite case, when ε′ � mec
2; here we are

primarily interested in the latter regime.

The cross-section for the process is well approximated by the following expression
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(Coppi & Blandford 1990)

σIC =
3σT

8κ

[(
1− 2

κ
− 2

κ2

)
ln (1 + 2κ) +

1

2
+

4

κ
− 1

2(1 + 2κ)2

]
, (2.20)

over a wide range of energies, where we’ve introduced κ = εEe/mec
2, with ε the initial pho-

ton energy. In the ultra-relativistic limit the expression reduces to σIC ' (3/8)σTκ
−1 ln 4κ

i.e. the cross-section decreases with increasing photon energy for a given value of Ee.

Intergalactic electromagnetic cascades generally proceed in the Thompson regime where

the inverse-Compton cooling length is given by (Blumenthal & Gould 1970)

DIC =
3m2

ec
3

4σTUCMBEe
' 300 kpc

(
Ee

1 TeV

)−1

, (2.21)

where UCMB ∼ 0.25 eV cm−3 is the CMB energy density. In the Klein-Nishina regime

inverse-Compton cooling is significantly less efficient and the cooling length of electrons on

the CMB is of order DIC ∼ 5 Mpc(Ee/1018 eV) between 1015 eV . Ee . 1018 eV (note that

the cooling length now increases with increasing electron energy as shown on the left panel

of figure 2.7). Beyond 1018 eV interactions with the highly uncertain radio background

become important and the scaling of DIC with electron energy possibly changes.

The development of the electromagnetic cascade stops when the energy of the sec-

ondary photons falls below the threshold for pair production on the EBL. Below this

energy electrons continue to Thompson scatter off background photons contributing to

the observed photon spectrum of the source down to the MeV region.

In the absence of magnetic fields in the intergalactic medium, through which the cas-

cade propagates, all the energy of the cascade is deposited at the . 100 GeV part of the

spectrum (see detailed discussion on this in chapter 5).

Synchrotron Radiation

The motion of a relativistic charged particle of mass m and velocity v in a magnetic field

satisfies

d

dt
γmv =

Ze

c
(v ×B) (2.22)

as a result of the Lorentz force acting on it. Relativistic charged particles in a uniform

magnetic field B move in a helix at a constant pitch angle (the angle between the magnetic



2.3. Gamma-rays 49

Figure 2.7. Left: The interaction length for pair production and inverse-
Compton scattering on the CMB. Image from Stanev (2005). Right: The in-
teraction length of photons on background radiation fields. The estimate of Lee
(1998) has been used for the EBL and of Clark et al. (1970) for the universal radio
background. The mean free path of protons of the same energy is also given for
comparison. Image adapted from Lee (1998).

field vector and the particle’s velocity) emitting “synchrotron” photons. The synchrotron

cooling length of electrons is given by

Dsyn =
6πm2

ec
4

σT
E−1B−2 ' 3.8 kpc

(
B

10−8 G

)−2( Ee
1019 eV

)−1

. (2.23)

The typical energy of synchrotron photons radiated by electrons of energy Ee is

Eγ =
3

2

heBE2
e

2πm3
ec

5
' 6.8× 109

(
Ee

1018 eV

)2 ( B

10−7 G

)
eV. (2.24)

Synchrotron photons produced with energy below the threshold for pair production (equa-

tion 2.15) propagate unimpeded by energy losses except for redshifting.

The synchrotron cooling length may be compared to the inverse-Compton cooling

length, to determine through which of the two processes the electrons will cool first at

a given energy and magnetic field strength. Comparing the inverse-Compton and syn-

chrotron cooling lengths, we observe that synchrotron losses of electrons dominate over

inverse-Compton attenuation on the EBL above Ecr ' 1018 (B/10 nG)−1 eV. Figure 2.9,

which shows the cooling length of electrons as a function of energy for different average

values of the magnetic field strength, also demonstrates this cross-over energy as well as

the opposite scaling of inverse-Compton and synchrotron energy losses with energy at
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Figure 2.8. Top: The optical depth, τ , of the EBL to gamma-rays for a range
of redshifts based on the model of Kneiske & Dole (2008). Bottom: The atten-
uation factor exp (−τ) for gamma-ray photons on the EBL for the optical depth
shown on the top panel.
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Figure 2.9. Electron cooling length as a function of energy. The dotted lines
give the synchrotron losses in an extragalactic magnetic field of r.m.s. strength
0.1, 1, 10 nG. The solid line gives the attenuation length due to inverse-Compton
scattering/pair production on the CMB and the radio background of Clark et al.
(1970). Image from Gabici & Aharonian (2005).

UHE energies. Electrons with energy of order 1018 eV cannot be accelerated in leptonic

processes (due to the synchrotron cooling proceeding faster than acceleration) and must

therefore be the secondary products of UHECRs.

The result of the above discussion is that in a magnetised region such as for example a

filament of large scale structure with typical magnetic field strength of order ∼ 10 nG, the

first generation of secondary electrons created by UHECRs through interactions with back-

ground photons cool rapidly, through synchrotron radiation, and the cascade that would

otherwise develop is strongly inhibited. The consequences for the detectable signature of

this process were first discussed in Gabici & Aharonian (2005, 2007) and studied numer-

ically in Kotera et al. (2010) and will be studied numerically in the context of recently

detected extra-Galactic gamma-ray sources in chapter 5.
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Chapter 3

Propagation of UHECRs in a

magnetised universe and

anisotropies

To complete the picture of the propagation of UHECRs we must discuss the effect of

magnetic fields on their trajectories. Unlike photons, hadrons suffer deflections and time

delays as a result of the effect of magnetic fields. The sources that produce UHECRs

are not known, but one expects their distribution to be associated with the distribution

of matter in the universe. The propagation distance of UHECRs is limited to a few

hundred Mpc at the highest energies due to the GZK process. The matter distribution is

not homogeneous over such distances, hence if UHECRs are extragalactic one expects an

anisotropy in their arrival direction distribution reflecting the inhomogeneity of the galaxy

distribution, if magnetic deflections do not completely smear their trajectories. From the

above discussion it is clear that one cannot discuss UHECR anisotropies without magnetic

fields and vice versa. In what follows, the two closely linked topics, are discussed together.

3.1 Magnetic fields

It is known from observations that magnetic fields permeate the universe. Everywhere we

look we see the effects of magnetisation, on the Earth, in the solar system, in our own

53
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Galaxy and other nearby and distant galaxies, in the intergalactic medium in filaments,

sheets and clusters of large scale structure, whereas there are observational hints and strong

theoretical arguments that even the voids of large scale structure are mildly magnetised.

Despite a growing number of measurements the configuration, coherence length (i.e.

the distance over which the field direction can be considered constant), strength and

origin of extragalactic magnetic fields remains largely unknown. Current and upcoming

large astronomy instruments, among them the Low-Frequency Array (LOFAR) and the

Square Kilometre Array (SKA), define the study of cosmic magnetic fields as a key science

goal.

Cosmic magnetic fields seem to play an important role in the universe, possibly dy-

namically affecting the evolution of structures. Magnetic fields play a dominant role in

determining the fate of UHECRs, from confining them in the vicinity of astrophysical

shocks where they can be accelerated, to reigning over their propagation throughout their

journey.

In what follows, observational techniques for the measurement of magnetic fields, the

magnetic field of the Milky Way and extragalactic magnetic fields are discussed. Next, the

state of the art in numerical simulations of magnetic fields in the universe are discussed

and analytical tools for estimating UHECR magnetic deflections are outlined.

3.1.1 Measurement techniques and observations

Synchrotron radiation is a tracer of magnetic fields in areas where relativistic particles

(mainly electrons) exist. The typical frequency of the emitted synchrotron radiation,

νmax, depends on the magnetic field strength as

νmax ' 11 MHz

(
E2
e

1 GeV

)(
B

1 µG

)
, (3.1)

where Ee is the electron energy and B the magnetic field component perpendicular to the

line of sight. For the typical magnetic field strengths in galaxies and clusters of galaxies

of order 1 µG the peak of synchrotron radiation is in the radio band. In practice, a

distribution of electron energies will exist in the source, typically modelled as a power law,

dN/dE ∝ E−γ , which results in a synchrotron spectrum with index α = (γ + 1)/2. For a
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source with extension, L, along the line of sight the intensity of synchrotron radiation is

Iν = ne B
(1−γ)/2 L, (3.2)

where ne is the density of electrons per energy interval. Given a description of the electron

energy distribution and assumption about the relative energy density of the magnetic field,

cosmic rays and gas, one can obtain an estimate of the magnetic field strength in the source

(see e.g. Beck & Krause 2005).

For more distant, Galactic and extra-galactic sources, a measurement of (or an upper

bound on) the integrated magnetic field strength along the line of sight to a specific radio

source can be obtained through the effect of Faraday Rotation which is the rotation of the

polarisation plane of linearly polarised radio emission (Kronberg 1994; Vallee 1997). The

rotation angle is given by the wavelength squared times the rotation measure, RM,

RM = C
∫ L

0

( ne
1 cm−3

)(Bl.o.s.

1 µG

)
(1 + z)−2 ds

1 Mpc
, (3.3)

where the numerical constant C = 8.1 × 105 rad m−2, ne is the free electron number

density, Bl.o.s. is the magnetic field component in the line of sight, and L, the distance

to the source. The factor (1 + z)−2 accounts for the redshift of the photons as they

travel from the source. Given the distribution of free electrons, ne, we can infer the

integrated magnetic field strength of the regular magnetic field along the line of sight,

as long as observations in two or more wavelengths exist. The effect of Faraday rotation

on Galactic sources (primarily pulsars), allows a measurement of the Galactic magnetic

field, in general towards the Galactic plane. A large number of rotation measures of

extragalactic radio sources also constrain the Galactic magnetic field in all directions (see

e.g. early work by Simard-Normandin & Kronberg 1980). Rotation measures of distant

extragalactic sources can give an estimate of the integrated magnetic field strength out to

distant extragalactic sources such as quasars. This is an important measurement because,

as will be shown below, the strength of magnetic fields in the interstellar medium is

very poorly constrained. The SKA, which is expected to start operations in 2018, will

significantly enlarge the available number of extragalactic rotation measures, giving a

clearer view of local extragalactic magnetic fields.

Inside the Galaxy we can measure the magnetic field strength of a source through the

Zeeman splitting of atomic or molecular lines. Magnetic fields interfere with the magnetic
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moment of the valence electrons causing a subdivision of electronic energy levels. This

is observed as a split of the spectral line, the magnitude of which is proportional to the

magnetic field strength. The amplitude of the effect is small and thermal broadening

makes the observation of Zeeman splitting challenging, unless a high magnetic field and

low ambient temperature exist in the source. The technique has been used with success

in studies of the magnetic field of the Sun and a number of Galactic sources.

3.1.2 galactic magnetic field

Apart from extragalactic magnetic fields, the magnetic field of the Milky Way deflects

observed UHECRs. Despite numerous measurements, we do not have a clear global picture

of the magnetic field of the Milky Way due to our position. From observations we find

that the Galaxy supports a ∼few µG strength regular magnetic field in the disk, aligned

along the Galactic plane. Apart from the regular field, a random component of similar

intensity exists, whose origin is not known (see e.g. the reviews of Beck & Wielebinski

2013; Kulsrud & Zweibel 2008).

The situation in the halo of the Galaxy is less clear. In the Galactic centre, vertical

magnetic fields apparently extend into the halo. From RMs of extragalactic radio sources

towards the Galactic poles some studies infer a local large-scale field perpendicular to the

plane of O(µG) towards the South Galactic Pole but no significant field towards the North

Galactic Pole. In contrast, Jansson & Farrar (2012) find an X-shaped halo field similar to

those observed in other spiral galaxies.

Detailed modelling of the deflections of UHECRs in the Galactic magnetic field has

been performed in a large number of works Harari et al. (1999, 2002b,a); Tinyakov &

Tkachev (2005); Alvarez-Muñiz et al. (2002); Roberts & Farrar (2013). Commonly in

numerical methods, given a model of the Galactic magnetic field, particles are backtraced

through the field to obtain an estimate of the deflection and the arrival direction of the

UHECR before it enters the Galaxy. The highest energy protons are expected to travel

mostly in straight lines while traversing the Galaxy. When crossing the Galactic disk

however, their Larmor radii are of order rL ' 100 kpc(E/1020 eV)(B/1 µG) in the typically

expected ∼ µG field and deflections might be significant, especially when crossing the

Galactic centre. Most works referenced in this section, find that 1020 eV protons, crossing

the Galaxy at low latitudes, experience & 4◦ deflections (see however the recent model of

Jansson & Farrar 2012, who find larger deflections on average and significant deflections
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Figure 3.1. Simulated maps showing the expected deflections of 6 × 1019 eV
protons in the Galactic magnetic field in the model of Jansson & Farrar (2012)-
top, Sun et al. (2008)-middle, Stanev (1997)-bottom in Galactic coordinates, with
the Galactic centre l = 0◦ in the centre and Galactic longitude increasing to the
left. Image from Jansson & Farrar (2012).

even at high Galactic latitudes). Figure 3.1 summarises the expected deflections of 6 ×

1019 eV protons in three different Galactic magnetic field models.

3.1.3 Extragalactic magnetic fields

Outside the Milky Way the uncertainties surrounding magnetic fields are significantly

larger. Theories of the origin of extragalactic magnetic fields can be divided into two

main categories: those that propose that magnetic fields were created in the primordial

universe, during inflation or phase transitions (see e.g. Widrow 2002 for a review) and

those in which the universe is magnetically enriched much later, through the magnetised

pollution ejected by the first stars or galaxies (e.g. Kulsrud & Zweibel 2008).

From theory, analytical mapping relations between the baryonic density, ρ, and the
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magnetic intensity, B, can be derived. It can be shown that B ' ρ2/3 for isotropic

gravitational collapse, or B ' ρ for anisotropic collapse during structure formation (King

& Coles 2006; Kotera & Lemoine 2008a). Therefore one expects the magnetised universe

to be highly structured, with enhanced magnetic fields in the filaments and walls of large

scale structure, and even more enhanced in galaxies and clusters of galaxies.

Observations support this picture. Measurements of Faraday rotation provide detailed

measurements of the magnetic field strength in the core of galaxy clusters, which have

typical strengths of order 1 - 10 µG. Magnetic fields are otherwise detected in galax-

ies through synchrotron emission and have similar strengths to those of galaxy clusters.

Magnetic fields have also been detected in the Coma supercluster (Kim et al. 1989).

Little is known about the strength and correlation length of magnetic fields on larger

scales and in the intergalactic medium, where there is no significant concentration of

relativistic particles to trace the fields. If magnetic fields were created at the early moments

of the universe, then some magnetisation is expected even in voids. No observations of

fields in the intergalactic medium exist to date. Upper limits have been derived from the

absence of Faraday rotation of the polarisation of the radio emission of distant quasars.

The most constraining limits from these searches are of order Bmeanλ
1/2 . 10−8 G Mpc1/2,

with λ the coherence length of the fields, (Kronberg & Simard-Normandin 1976; Kronberg

& Perry 1982; Blasi et al. 1999). Upper bounds are also derived from the non-observation

of the effects of cosmic magnetic fields on the anisotropy and polarisation of the Cosmic

Microwave Background (see e.g. discussion in Durrer & Neronov 2013 and references

therein).

Lower limits are derived from Fermi-LAT gamma-ray observations of extragalactic

sources for intergalactic magnetic fields. The techniques, model dependence of the results

and implications for particle propagation, will be discussed in detail in chapter 4, after the

propagation of gamma-rays in the intergalactic medium has been discussed in some detail.

The derived lower limits are model dependent, but as tight as Bmeanλ
1/2 & 10−14 G Mpc1/2

(see references in section 5.1.2).

In this section, a general picture of intergalactic magnetic fields was sketched. In the

absence of a precise description of the structures crossed by a specific trajectory, it is hard

to estimate exact deflections, which is why we generally rely on numerical simulations

of large scale magnetic fields, which are discussed next. Given some knowledge of the

magnetisation of the medium traversed, the deflections can be estimated analytically (see
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Figure 3.2. Cumulative filling factor of extragalactic magnetic fields from a
selection of recent numerical studies adapted from ref. Kotera & Olinto (2011).
Blue dashed: Sigl et al. (2004b), red dash-dotted: Dolag et al. (2005), pink long
dashed: Das et al. (2008), green solid: Donnert et al. (2009).

section 3.1.5).

3.1.4 Numerical simulations

Several groups have modelled the magnetic fields in the universe using numerical simula-

tions (e.g. Sigl et al. 2004b; Dolag et al. 2005; Das et al. 2008; Donnert et al. 2009). In

these studies, it is assumed that magnetic fields follow baryonic matter and the numerical

simulations follow the evolution of magnetic fields during structure formation. UHECRs

are then propagated inside a simulation volume and their deflections are calculated. In

these simulations, the magnetic field strength is in general normalised to the values derived

from observations in galaxies and clusters of galaxies.

The most sophisticated such studies have led to significantly discrepant results. The

volume filling factor of magnetic fields as a function of B is shown in figure 3.2, for a

collection of works. Discrepancies are largest for low magnetic field strengths, which likely

occupy the voids of large scale structure and are least constrained by observations.
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The different works also predict radically different deflections for UHECRs. In Sigl

et al. (2004b) it was found that 1020 eV protons experience of order 20◦ deflections,

whereas in Dolag et al. (2005) a simulation which approximately reproduces the large

scale structure 115 Mpc from the Milky Way was performed and it was found that 1020 eV

protons experience deflections of no more than a few degrees (see figure 3.3). A detailed

discussion of reasons for these discrepancies was published in Sigl et al. (2004a). The

different magnetic field amplification mechanisms assumed can account for some of the

discrepancy, but numerical issues seem to play an important role. In the more recent work

of Das et al. (2008), intermediate UHECR deflections were found; in their simulations 60%

of 1020 eV protons suffer deflection θ < 5◦.

A different, phenomenological approach was followed by Takami et al. (2006) who

mapped the magnetic field strength to the galaxy luminosity density, using the PSCz

galaxy catalogue, and found few degree deflections for 1020 eV protons. In Kotera &

Lemoine (2008a) similar (but more generalised) mapping relations were adopted and the

magnetic field intensity was mapped on a dark matter simulation. Again, deflections of

up to a few degrees were found for 1020 eV protons. In chapter 5, the latter method is

adopted to model extragalactic magnetic fields.

3.1.5 UHECR deflections

A charged relativistic particle of energy E, traversing a magnetic field B, experiences a

Lorentz force

F =
dp

dt
= Ze

p

γm
×B =

Zec2

E
p×B, (3.4)

where e is the electron charge and p the momentum of the particle. The force, which is

perpendicular to the momentum vector of the particle, curves the particle’s trajectory in

such a way that the trajectory can be described by the Larmor radius rLar (equation 1.2).

Another important quantity for characterising the transport of cosmic rays in a magnetic

field is the scattering time, tscatt, which is defined as the timescale below which the motion

can be considered quasilinear.

Comparing rLar to the coherence length of the magnetic field λ and tscatt to the travel

time of the particle ttrav, we can define distinct regimes in which the propagation might

proceed:



3.1. Magnetic fields 61

Figure 3.3. Numerical estimate of deflections suffered by 1020 eV protons in
extragalactic magnetic fields within a 110 Mpc radius from the Galaxy taking
into account energy losses from the work of Dolag et al. (2005).

• rLar > λ, tscatt > ttrav: Weak deflection regime.

• rLar > λ, tscatt < ttrav: After t = tscatt the particle enters a diffusive regime.

• rLar � λ: Diffusive regime.

These regimes are discussed in turn, below.

Weak deflection regime

If the coherence length of individual intervening magnetic fields, λ, is much smaller than

rLar, the particle experiences a series of small random deflections, δθ = λ/rLar as it tra-

verses individual magnetised regions, as illustrated in figure 3.4. The accumulated deflec-

tion of a particle travelling a distance L through ∼ L/λ scattering centres in this regime

is given by (Waxman & Miralda-Escude 1996):

θ(E,L) '
(
L

λ

)1/2

δθ ' 0.22◦Z

(
L

10 Mpc

)1/2( E

1020 eV

)−1( λ

0.1 Mpc

)1/2( B

10−9 G

)
.

(3.5)
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Figure 3.4. Schematic representation of the trajectory of a UHECR through in-
dividual magnetised scattering centres in the regime where λ� rL (see text). The
arrows give the direction of the magnetic field vector. Source: Martin Lemoine.

Clearly, the highest energy cosmic rays are in this regime from the upper limits of the

strength of extragalactic magnetic fields. As a result of their deflected trajectories, UHE-

CRs are also expected to suffer a time delay with respect to photons, given by (Alcock &

Hatchett 1978)

τ ' L

c

θ2

2
' 230 years Z2

(
L

10 Mpc

)2( λ

0.1 Mpc

)(
E

1020 eV

)−2( B

10−9 G

)2

. (3.6)

Therefore, UHECRs are not expected in coincidence with other emission from their sources,

making identification of the sources even more difficult, especially if they originate in tran-

sient sources or periods of enhanced activity in steady sources.

Diffusive regime

In a situation where tscatt < ttrav, cosmic-rays enter a diffusive regime. Diffusion is the

description of the motion of particles propagating a random walk, whose distance from

their source increases as t1/2. We can define the critical energy below which particles enter

a diffusive regime as

Ecrit = 1019 eV

(
L

1 Gpc

)1/2
(

B
√
λ

1 nG ·Mpc1/2

)
, (3.7)

which is obtained considering ttrav = tscatt ∼ r2
Lar/(λc).

The characteristics of diffusion depend on the characteristics of the magnetised medium,

and are frequently parametrised by the diffusion coefficient, D(E). During a short time ∆t
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the particle moves by an amount ∆x = u∆t+ δx, where the first term is due to the bulk

motion of the medium with velocity u and δx is due to diffusion. The diffusion coefficient

for the medium is proportional to the variance of δx and is given by

D(E) =
〈δx2〉
2∆t

. (3.8)

Considering the different regimes in which diffusion may proceed one gets:

• In the case where rLar � λ, at small distances the particle experiences weak deflec-

tions and a diffusive regime is entered after tscatt. The diffusion coefficient is given

by

D =
1

3
tscattc

2 ' c

3

r2
Lar

λ
. (3.9)

• In the case where rLar � λ, the diffusion is in the Kolmogorov regime and D is given

by

D =
1

3
cλ
(rLar

λ

)1/3
. (3.10)

• In the intermediate regime, where rLar ∼ λ, the diffusion is in the Bohm regime,

with D given by

D =
1

3
rLarc. (3.11)

Detailed studies of the evolution of D(E), with energy depending on the properties of

the magnetic turbulence of the medium, have been presented in e.g. Casse et al. (2002);

Deligny et al. (2004). For a detailed discussion of the transport of UHECRs through

inhomogeneous magnetic fields see Kotera & Lemoine (2008b).

3.2 UHECR anisotropies

As a result of the expectation that at the highest energies, cosmic-rays could point back

to their sources within a few degrees, if they are lightly charged, the arrival directions

of UHECRs have attracted great attention. Since the mid 1990s, when the previous

generation of extensive air shower arrays had collected a significant number of events with
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E ≥ 1019 eV, a large number of searches for a correlation of UHECRs with extragalactic

sources have been performed. In the work of Stanev et al. (1995), a correlation with the

Supergalactic plane was reported, whereas Waxman et al. (1997) studied the correlation

of UHECR arrival directions with IRAS 1.2 Jy galaxies. Since then, a large number of

authors have searched for a correlation between UHECR arrival directions and galaxy

surveys, namely the PSCz (Kashti & Waxman 2008; Berlind et al. 2010; Takami et al.

2009b; Cuoco et al. 2006; Koers & Tinyakov 2009), the 2MRS (Abbasi et al. 2010; Abreu

et al. 2010; Abraham et al. 2009) and the SDSS (Takami et al. 2009a). Others have

looked for a correlation between observed UHECRs and the positions of specific classes of

objects, namely AGN (Abraham et al. 2007, 2008; George et al. 2008; Pe’Er et al. 2009;

Watson et al. 2011), BL Lacertae objects (BL Lacs) (Tinyakov & Tkachev 2001; Gorbunov

et al. 2004), luminous infrared galaxies (LIRGs) (Berlind et al. 2010) and Fermi detected

AGN (Jiang et al. 2010; Mirabal & Oya 2010), reporting different degrees of correlation

depending on the UHECR sample, statistical approach and source population used.

In Abraham et al. (2007), the cross-correlation of the first 27 UHECRs detected at

Auger with energy greater than 5.5×1019 eV and the local matter distribution was studied.

In particular, a test was set up to establish the fraction of UHECRs that correlate with one

of the sources in the 12th VCV AGN catalogue (Véron-Cetty & Véron 2006). An angular

scan for the parameters that maximise the correlating fraction of UHECRs with VCV

sources was performed with the first 14 detected UHECRs (period 1) and subsequent

events were tested against this prescription. Of the 13 UHECRs with energy greater

than 5.5 × 1019 eV found subsequently (period 2), 9 correlated with a VCV AGN. The

probability of finding such a correlation assuming isotropy is 2 × 10−4. In Abreu et al.

(2010), the arrival directions of two more years of data (bringing the total to 69) were

analysed. It was reported that 21 of the 55 UHECRs detected after period 1 correlated

with a VCV AGN, bringing the correlating fraction down to ∼ 39%, but still above

isotropic expectations (21%). Further, in the same work, they cross-correlated the arrival

directions of the UHECRs with the positions of 2MRS galaxies and Swift-BAT X-ray

sources (Tueller et al. 2010). For the values of the free parameters in their models that

maximise the likelihood they found that the fraction of isotropic realisations that yield

a higher likelihood than the observed UHECRs is 0.004 and 2 × 10−4 for the 2MRS and

Swift-BAT respectively. The results obtained thus are a posteriori and do not constitute a

confidence level on anisotropy. The TA collaboration have also searched for anisotropy in
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their data and have most recently reported hints of a departure from isotropy (Fukushima

et al. 2013), by cross-correlating the arrival directions of UHECRs observed at TA with

galaxies in the yet unpublished 2MASS-XSCz catalogue.

The nearby radio galaxy Cen A (z ∼ 0.001) has long been proposed as a possible

UHECR source (Cavallo 1978; Romero et al. 1996; Anchordoqui et al. 2001). In Abreu

et al. (2010) hints of an excess in the direction of Cen A, were reported. The evolution

of the significance of this excess is being monitored by the Auger Collaboration. As

noted however in e.g. Waxman (2011); Kotera & Olinto (2011) Cen A lies in front of the

largest overdensity of matter in the local universe (the Hydra-Centaurus supercluster at

z ∼ 0.0128), hence if an excess of events in that direction is confirmed, it does not mean

that Cen A is the source.

At energies below the GZK threshold, it is thought that the deflections of UHECRs

become too large for a correlation with the parent population to be established. The only

exception to this expectation is the case of neutral particles. As seen in section 2.2.4,

neutrons with energy E ∼ 1018, can travel approximately ∼ 10 kpc before they decay.

Hence, if neutrons can be accelerated to such high energies in Galactic sources, they could

reach the Earth while pointing back to their sources. The shower produced in the Earth’s

atmosphere by neutrons is indistinguishable from that of protons, however, neutrons from

Galactic sources with E ∼ 1018 should appear as a localised excess in the UHECR arrival

direction map, in the direction of their source. No statistically significant excess of events

in any small solid angle, that would be indicative of a flux of neutral particles from a

discrete source, has been found. This result constrains scenarios for the production of

ultra-high energy cosmic rays in the Galaxy (Rouille d’Orfeuil 2011; Abreu et al. 2012a;

Salesa Greus 2013). UHE photons are also expected to correlate with their sources, that

are expected to lie at very short distances (d ∼ few Mpc). Due to the high opacity of

the universe to photons, that was discussed in section 2.3.2, they would be a powerful

tracer of nearby extragalactic sources (see e.g. the work of Taylor et al. 2009). Directional

searches for point sources of UHE photons at Auger as well as composition observables

have yielded null results so far (Settimo 2011; Kuempel 2013) and place strong constraints

on the fraction of primary UHE photons, f , at the highest energies (f . 1%, 10% above

1018 eV, 1019 eV respectively).

At energies around ∼ 1018 eV, charged cosmic rays are not expected to correlate with

their sources due to severe deflections and/or diffusive motion inside the galaxy. The
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distribution of the arrival directions at this energy is expected to exhibit a large scale

anisotropy related to the motion of the local cosmic ray rest frame around the Galactic

centre relative to the solar system. This large scale motion is expected to induce a dipole

anisotropy in the cosmic ray spectrum, with characteristics that might help constrain the

Galactic-extragalactic transition energy and models of the Galactic magnetic field (see e.g.

Giacinti et al. 2012). Searches conducted so far have resulted in interesting hints about

such an anisotropy (see e.g. Abreu et al. 2012a for recent results), whereas the first full

sky harmonic analysis of cosmic ray arrival directions with data from the Auger and TA

experiments is underway (Abu-Zayyad et al. 2013b).



Chapter 4

Search for correlation of UHECRs

with the local galaxy distribution

In this chapter, the arrival directions of the 69 UHECRs that were observed by the Auger

Observatory with energies exceeding 55 EeV until the end of 2009 are studied. I inves-

tigate whether the Auger UHECRs exhibit the anisotropy signal expected if the primary

particles are protons that originate in galaxies in the local universe, or in sources correlated

with these galaxies, by cross-correlating the UHECR arrival directions with the positions

of IRAS-PSCz and 2MASS-6dF galaxies taking into account UHECR energy losses and

deflections during propagation.

4.1 Introduction

As a result of the GZK process UHECRs that arrive on Earth with energy exceeding

50 EeV must originate in sources within a few hundred Mpc. If UHECRs are protons

and intervening magnetic fields are not too strong, observed UHECRs must point back to

their sources within a few degrees. Further, if UHECRs originate in some astrophysical

population, their arrival direction distribution should be correlated with that population

as well as with the distribution of large scale structure (LSS) in the local universe, since

matter in the universe is clustered. Heavier UHECR nuclei with energy around 50 EeV

would have their arrival directions smeared by intervening magnetic fields.

67
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In section 1.4 we saw that the primary composition of UHECRs is at present uncer-

tain. Beyond the GZK threshold the composition is very poorly understood due to the

small number of observed events. Auger composition measurements are consistent with

a transition from a proton-like to a heavier mixed composition between 1− 20 EeV. The

smaller HiRes and TA datasets agree with a proton-like composition up to the highest

energies (Sokolsky et al. 2010; Jui 2012). Given the considerable experimental difficulties

intrinsic to the measurement of composition observables the issue is far from settled (see

also discussion in section 1.4).

In this work, the question of the origin of the highest energy cosmic rays is revisited,

following the release of the arrival directions of the 69 UHECRs with energy above 55 EeV

detected until December 2009 at Auger (Abreu et al. 2010). The local UHECR source

distribution is modelled using galaxy catalogues of the nearby universe, namely the six

degree Field Galaxy Survey (6dF), which is being used in this work for the first time

to derive the expected UHECR source distribution and is an order of magnitude larger

than other spectroscopic wide field galaxy surveys and the IRAS Point Source Catalogue

of redshifts (PSCz), which is being used here for the first time to analyse the updated

dataset of 69 UHECRs. A flat universe with ΩM = 0.25, ΩΛ = 0.75 and Ho = 70 km s−1

Mpc−1 is assumed throughout.

4.2 Galaxy surveys

Galaxy redshift surveys map large volumes of the universe, identifying the locations of

galaxies which are point tracers of the overall matter distribution. One can divide galaxy

surveys into two basic categories: photometric, that obtain a two-dimensional map of the

galaxy distribution over a large area of the sky and spectroscopic, which obtain an accurate

redshift of the objects studied at the cost of being more time consuming. Recently, a hybrid

approach has become popular, that of obtaining galaxy redshifts through photometric

information from multiple wavelength bands of a photometric survey. This provides a

rough but quick measure of galaxy redshifts.

Galaxy surveys can be further classified into wide-field or deep-field. Surveys of the

former category observe a large area of the sky but only extend to modest redshifts,

whereas in the latter category surveys observe only a small patch of the sky for an extended

period of time with the aim to observe out to very large redshifts. Galaxy surveys of
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the former type are appropriate for the study here, in which two of the largest existing

spectroscopic wide area surveys have been used.

6 degree Field Galaxy Survey

The 6dF is a spectroscopic, redshift and peculiar velocity survey of 2MASS, near-infrared

selected galaxies. The survey was carried out using the Six-Degree Field instrument on

the Schmidt Telescope of the Anglo-Australian Observatory (Jones et al. 2009). It covers

the entire Southern Sky (excluding the Galactic plane) and has resulted in a catalogue of

125,071 galaxies and 110,256 associated redshifts. The 6dF has median redshift z = 0.053

which corresponds to a comoving distance of 225 Mpc in the cosmological model assumed.

The 6dF field of view covers 80% of the Auger field of view by area. Taking into account the

total declination dependent Auger acceptance (equation 4.1), which is smaller for positive

declinations, it covers 86% of the instantaneous Auger exposure. The 6dF is near-infrared

selected, which means it is dominated by elliptical galaxies. Here, the K-selected sample

of the 6dF survey is used. That is, the magnitude limited portion of the 6dF survey that

is complete down to a near-infrared K-magnitude K ≤ 12.65. This, K-selected sample,

constitutes the dominant portion of the 6dF survey (83,995 redshifts).

IRAS Point Source Catalogue of redshifts

The PSCz is a spectroscopic redshift catalogue of far-infrared selected galaxies detected

by the Infrared Astronomical Satellite (IRAS). The PSCz covers approximately 84% of

the sky (Saunders et al. 2000). It contains 14,677 galaxies with associated redshifts, and

median redshift (z = 0.028) which corresponds to a comoving distance of ∼ 119 Mpc.

Since the galaxies in the PSCz are far-infrared selected there is a preference for young,

star-forming galaxies in the catalogue.

Two complementary galaxy surveys have been chosen, to derive the expected UHECR

source distribution. The PSCz is a shallow nearly full-sky galaxy survey and its use

facilitates comparison with results of previous studies. The 6dF on the other hand is a

much larger survey (∼ 20 times more galaxies than the PSCz in the southern hemisphere).

The different median depths of the 2 surveys mean that they highlight different structures

of the nearby universe, for example the Shapley Concentration, centred at (l ∼ −50◦, b ∼

30◦) at a distance ∼ 200 Mpc is prominent in the 6dF. There is nonetheless a significant

overlap between the two surveys. As galaxy populations dominating the two surveys differ,
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their clustering properties also differ.

4.3 Auger exposure

The geometrical acceptance of Auger is uniform in right ascension as a result of full

time operation. Auger is fully efficient for zenith distance up to θm = 60◦. The Auger

acceptance as a function of declination is given by (Sommers 2001)

ω(δ) ∝ cos(a0) cos(δ) sin(αm) + αm sin(a0) sin(δ), (4.1)

where δ is the declination and a0 is the latitude of Auger which is −35.2◦. Here, αm is

given by

αm =


0 if ξ > 1

π if ξ < −1

cos−1(ξ) otherwise

and

ξ ≡ cos(θm)− sin(a0) sin(δ)

cos(a0) cos(δ)
.

The acceptance of Auger is illustrated in figure 4.1. The actual instantaneous exposure

of the observatory varies according to the number of detectors active and atmospheric

conditions which are closely monitored (see e.g., Abreu et al. 2011 for details). For the

present study, detector downtime has a negligible effect when averaged over the years of

observation over which the data were collected and is not considered.

4.4 Model of UHECR source distribution

The 6dF and PSCz are used to model a UHECR source population which is steady and

follows the distribution of local galaxies. For simplicity, it is assumed that all UHECR

sources are intrinsically identical. Although this is probably an unrealistic assumption,

relaxing it would introduce more free parameters in the model, on which there are no

constraints at the moment, neither observationally nor theoretically. One could for ex-

ample use a luminosity function, in which case the expected anisotropy predicted by the

matter-tracing model would increase, but there is no firm reason to assume that the in-

frared luminosity of galaxies in the PSCz and 6dF is a tracer of UHECR production.
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Figure 4.1. The geometrical acceptance of Auger in equatorial coordinates,
given by equation4.1.

4.4.1 Source density

The number density of UHECR sources is not known a priori. Given the very high

luminosity requirements it is possible that the observed UHECR flux is dominated by

a few “bright” sources (such as in models in which the nearby radiogalaxy Cen A is

responsible for much of the observed UHECR flux). The number of “repeaters”, i.e.

groups of UHECRs with arrival directions separated by less than a few degrees that may

be associated with a single source, can constrain the number density of sources of UHECRs

if a scale is assumed for the deflections of observed UHECRs, as shown analytically in

the work of Waxman et al. (1997); Dubovsky et al. (2000); Fodor & Katz (2001) and

numerically in e.g., Cuoco et al. (2009); Decerprit et al. (2012).

For an estimate of the UHECR source density, a search for repeaters, separated by

less than 3◦ in the Auger data has been performed. The chosen, ≤ 3◦ separation radius,

is intended to reflect the uncertainty associated with instrumental resolution (∼ 1◦) and

possible magnetic deflections of a few degrees, among the 69 Auger events. Four pairs

of events were found in the dataset. Following Dubovsky et al. (2000), the number of

clusters of multiplicity m, expected to be observed if there are S UHECR sources, within
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a horizon of radius r, producing UHECRs at an apparent average rate n̄, is expressed as

N̄m = S
n̄m

m!
e−n̄. (4.2)

This implies that the total number of expected events is
∑

mmN̄m. One can use the

observed number of clusters in the data to get an estimate of S, using equation 4.2. From

equation 4.2, the number of singlets in the data is N̄1 ∼ Sn̄, the number of doublets is

N̄2 ∼ Sn̄2/2 and so on. Rearranging the expressions for N̄1, N̄2, one gets S ∼ N̄2
1 /(2N̄2).

The four doublets present in the set of 69 Auger events, give S ∼ 612/(2 ·8) ∼ 200 UHECR

sources in the whole sky for the presently observed clustering. Using r = 100 Mpc for 60

EeV UHECRs, the minimum source density consistent with the observed clustering in the

present dataset is

200 sources
4π
3 · (100 Mpc)3

& 10−5 Mpc−3. (4.3)

If the observed number of pairs arises by chance, which is found to be the case 22% of

the time in Monte Carlo simulations of 69 UHECRs from an isotropic source distribution,

the source density could be much larger than this. Further, as shown in Dubovsky et al.

(2000) the case of equal flux sources, which is assumed here, corresponds to the absolute

minimum source density. If however, deflections are larger than assumed here, the UHECR

source density could be lower than the derived bound. Further, it has been assumed for

this estimate that the UHECR sources are steady. If the sources are transient instead, the

true number density, ρ̄0, should be related to n̄0 by ρ̄0 = n̄0/δt, where δt is the UHECR

arrival time spread due to magnetic fields (Murase & Takami 2009).

After the work presented in this chapter was completed and published the Auger Col-

laboration performed a numerical analysis in the same spirit with their most recent, larger

dataset, scanning the whole parameter space (Abreu et al. 2013). The lower bound on the

source density that they find agrees well with the estimate presented here. For comparison

the number density of bright galaxies in the local universe is ∼ n0 = 10−2 Mpc−3, that

of AGN is ∼ nAGN = 5 × 10−4 Mpc−3 and that of GRBs is ∼ nGRB = 10−5 Mpc−3.

Rarer objects, such as BL Lacs with ∼ nBLLac = 10−6 Mpc−3 and galaxy clusters with

∼ ncluster = 10−7 Mpc−3 are disfavoured by the derived bounds on the source density.

In the present model of the local UHECR source distribution, individual sources are

faint i.e. each source produces one or no events and the probability of a single source
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producing multiple events is low, which is well motivated in the light of the discussion

above. The number density of UHECR sources is assumed to be comparable to that of

bright galaxies, compatible with constraints from observed clustering. In section 4.7 the

sensitivity of the results presented in this chapter to this choice for the UHECR number

density is discussed.

4.4.2 UHECR energy losses during propagation

Each galaxy in the model source distribution is assigned a weight, proportional to the

expected UHECR flux from that source, which depends on the energy with which protons

are emitted and the flux suppression with distance. The flux weight for a galaxy at

luminosity distance, rL, that emits a cosmic ray proton with initial energy Ei which

reaches the Earth with energy equal to or greater than Ef , is given by

ω(rL)flux =
1

rL
2

∫ Ei,max

E′f

dEi

∫ Ei

E′f

dEf ρp(rL, Ei;Ef) I(Ei), (4.4)

where

ρp(rL, Ei;Ef) =

∣∣∣∣∂Pp(rL, Ei;Ef)

∂Ef

∣∣∣∣ , (4.5)

is the derivative of the function Pp(rL, Ei;Ef) which gives the probability of a proton

arriving with energy above Ef if it was emitted with energy Ei by a source at distance

rL, introduced in Bahcall & Waxman (2000). For E′f , the final energy of the 69 Auger

UHECRs, the lowest measured energy (55 EeV) present in the Auger dataset is conser-

vatively adopted. The value of Ei,max, which is the maximum energy injected through

astrophysical processes, is set to 1021 eV. The value of Ei,max is not fully constrained by

observations, but cannot be much lower than ∼ 1021 eV, given the recent observations of

UHECRs with observed energy ∼ 1020.5 eV and the lack of (identified) local UHECR

sources. It was checked that the results of this chapter are insensitive to varying Ei,max

within its anticipated range of values, as expected, since UHECRs in this energy range

promptly interact with background photons. The intrinsic spectrum of UHECRs produced

by UHECR sources is not yet known. The observed cosmic ray spectrum is well fit by a

number of models (see for example Kotera et al. 2010). Here, a power law spectrum

I(Ei) = I0 E
α
i e−Ei/Ei,max (4.6)
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with index α = −2.0 is considered. An intrinsic power-law spectrum with α ≈ −2.0 is

consistent with that expected in most models of shock acceleration, which is the most fre-

quently expected acceleration mechanism in leading extragalactic cosmic ray candidates,

such as AGN jets, hotspots and GRBs (see e.g., 1.3). Further, an intrinsic power law spec-

trum with α ≈ −2.0 is in agreement with the observed UHECR spectrum after accounting

for propagation effects (e.g., Bahcall & Waxman 2003; Katz et al. 2009). The sensitivity

of the results to the choice of α is discussed in section 4.6.4. The normalisation factor, I0,

is chosen so that

I0

∫ Ei,max

Ef

dEi E
α
i e−Ei/Ei,max = 1. (4.7)

For the simulation of the proton propagation and energy losses the Pp(rL, Ei;Ef) function

which was numerically calculated by Fodor & Katz (2001); Fodor et al. (2003) is used1.

In figure 4.2, Pp(rL, Ei;Ef) for UHECRs with Ei = 200 EeV and Ef ≥ 40, 60, 80, 100 EeV

is shown.

4.4.3 Galaxy survey completeness

To correct for the absence of the fainter galaxies in the galaxy catalogues due to the flux

limit of the survey the survey’s selection function, defined as the expected number density

of galaxies in the survey as a function of distance, in the absence of clustering is needed.

One can model the selection function using a fit to the survey’s redshift distribution, often

parametrised as:

dN(z) = Azβ exp

[
−
(
z

zp

)γ]
dz, (4.8)

with N(z) the observed number of galaxies at redshift z. The parameter A gives the

normalisation, zp the peak of the distribution and β, γ are constants that control the

slope. The overall selection function ψ(rc) is the redshift distribution divided by the

volume element

ψ(rc) =
1

Ωsr2
c

(
dN

dz

)
rc

(
dz

drc

)
rc

, (4.9)

1available online at http://www.desy.de/~uhecr/P_proton

http://www.desy.de/~uhecr/P_proton
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Figure 4.2. The function Pp(rL, Ei;Ef), which represents the probability that a
UHECR emitted by a source at luminosity distance rL, with initial energy Ei, will
be observed with final energy above Ef , here shown as a function of propagation
distance for Ei = 200 EeV and Ef ≥ 40, 60, 80, 100 EeV.

where Ωs is the solid angle of the survey and rc the comoving distance, as discussed in

e.g., Erdoğdu et al. (2006). The PSCz selection function is given by (Saunders et al. 2000)

ψ(rc) = ψ∗

(
r

r∗

)(1−α) [
1 +

(
r

r∗

)γ]−(βγ )
, (4.10)

where ψ∗ = 0.0077 is the normalisation, α = 1.82 is the nearby slope, r∗ = 86.4 h−1 Mpc is

the break distance, γ = 1.56 its sharpness and β = 4.43 the additional slope beyond it. The

quoted uncertainty in the PSCz selection function is . 10% for distances 30−200 h−1 Mpc

and ' 10% for 10 − 300 h−1 Mpc. Figure 4.3 shows the PSCz selection function as a

function of comoving distance. ocal group galaxies, such as M31, are included in the

catalogue.

The redshift distribution of the K−selected 6dF sample is well fit by the expression
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Figure 4.3. Parametric (solid line) and non-parametric selection function with
associated error-bars (filled circles) for the PSCz survey. The non-parametric
selection functions for the QDOT (open circles) and 1.2Jy (crosses) galaxy surveys
are also shown. Figure from Saunders et al. (2000).

(Jones et al. 2009)

Nfit(z) = Azγ exp [−(z/zp)γ ], (4.11)

where γ = 1.6154 ± 0.0001, zp = 0.0446 ± 0.0001, and A = 622978 ± 10. The redshift

distributions and corresponding fits for the parametric selection function of the two surveys

are shown in figure 4.4. The selection function is normalised to the value it takes at some

small distance rmin below which we believe the survey includes all existing galaxies. The

value of rmin is not very well constrained by observations. The minimum redshift found

in each survey ≈ 1 Mpc, is chosen as the default rmin, but in section 4.6.4 the sensitivity

of the results to the choice of rmin is studied.

Each galaxy, is weighted by the inverse of ψ(rc), so that the effective contribution of

each survey galaxy to the model source distribution is

ωgal =
ω(rL)flux
ψ(rc)

. (4.12)



4.4. Model of UHECR source distribution 77

Figure 4.4. Redshift distribution of galaxies in the PSCz (top) and the 6dF
survey (bottom). The fits give the prediction from the selection function.

4.4.4 Galaxy peculiar velocities

The observed recession velocity cz is not only due to the Hubble flow. Other motions, such

as bulk flows of large structures or velocities within such structures, may not be negligible.
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Galaxy redshift surveys measure recession velocities, not distances, and peculiar velocities

along the line-of-sight affect our estimates of actual distances, in particular nearby, where

the peculiar velocity might be a large fraction of the observed recession velocity. The

observed recession velocity is given by

cz = H0r + (v (r)− v (0)) · r̂, (4.13)

where v (r) is the object’s peculiar velocity and v (0) is the observer’s peculiar velocity.

Working in a reference frame where ∆v = v (r)− v (0) is small allow a more accurate

estimate of the object’s distance. In the local universe, out to cz ∼ 3000 kms−1, where

galaxies share the motions of the Local Group it is best to convert to the Local Group

rest frame. Further away galaxy peculiar velocities are independent of the Local Group

velocity and ∆v is smaller in the CMB rest frame. In this work, the focus is on the

distribution of matter nearby, hence it is most useful to work with Local Group frame

redshifts, therefore all recession velocities are converted to the Local Group frame in this

analysis.

The Sun moves with a velocity of 306 ± 18 km s−1, relative to the Galactic centroid

towards (l = 99◦ ± 5◦, b = −4◦ ± 4◦) as derived by Courteau & van den Bergh (1999).

To convert between czHel, that is the recession velocity of a given object measured in the

heliocentric frame (often given by the galaxy catalogues), and czLG, the recession velocity

in the Local Group frame, the relation (Courteau & van den Bergh 1999)

czLG = czHel − 79 cos(l) cos(b) + 296 sin(l) cos(b)− 36 sin(b) (4.14)

is used. Here l and b are the Galactic longitude and latitude of the object respectively.

4.4.5 Magnetic fields

In section 3.1 we saw that the strength and distribution of extragalactic magnetic fields are

poorly known. Dense large scale structures, such as galaxy clusters and galaxy filaments,

have been observed to support relatively strong magnetic fields, whereas in between struc-

tures magnetic fields are probably negligible. Although numerical analyses do not agree

as to the filling factor of magnetic fields as we saw in figure 3.2, most of these studies

agree that deflections of proton UHECRs of energy E ≥ 40 EeV do not exceed 3◦ over
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99% of the sky for propagation distance ∼ 100 Mpc. Magnetic deflections suffered by

heavier UHECR nuclei are expected to be much larger and can completely wash out the

directional correlation of UHECRs with their sources (see e.g., the model of Aloisio et al.

2009).

The composition of the UHECR sample we are considering here is at present uncer-

tain. If an anisotropy signal, produced by heavy nuclei of charge Z above an energy Ethr,

is observed as reported in Abraham et al. (2007), one should observe an even stronger

anisotropy at energies > Ethr/Z due to the proton component that is expected to be

associated with the sources of the heavy nuclei (Lemoine & Waxman 2009). Such an

anisotropy at Ethr/Z is not observed for 6 < Z < 26, for Ethr = 55 EeV, in the Auger

data (Abreu et al. 2011a). This is one of the arguments against the composition becoming

heavy at the highest energies according to Lemoine & Waxman (2009). On the other

hand, this absence of significant anisotropy at Ethr/Z has been interpreted by the Auger

collaboration as an absence of light nuclei at Ethr/Z (Abreu et al. 2011a).

In this analysis, it is assumed that UHECRs are protons. In order to bracket possible

proton UHECR magnetic deflections, the analysis is performed by averaging over angular

bins in the range 3.9◦−7.3◦ (see details of the binning method in section 4.5). The Galactic

plane is excluded from the analysis, |b| ≥ 12◦, following the prescription in Jones et al.

(2009), since observations in this region are strongly contaminated by Galactic emission.

4.5 Statistical approach

To detect any existing anisotropy signal the sky is divided into equal area bins. For the

statistical analysis, the counts-in-cells statistic X, proposed in Kashti & Waxman (2008),

which characterises the correlation between the predicted and observed UHECR arrival

direction distribution, is considered. In Kashti & Waxman (2008) X was shown to be

more sensitive to the expected anisotropy signal than the angular power spectrum (e.g.,

Sommers 2001; Tegmark et al. 1996) and the two point correlation function (Kachelrieß &

Semikoz 2006), which are other statistical measures commonly used in clustering analyses.

Let ωAuger,i be the exposure of Auger in bin i (equation 4.1) and ωsurvey,i the weight



4.5. Statistical approach 80

imposed by the survey mask (given by Jones et al. 2009; Saunders et al. 2000)

ω6dF,i =


1 for |b| > 12◦ and δ ≤ 0◦

0 otherwise

ωPSCz,i =


1 for |b| > 12◦

0 otherwise.

Here {i} is the set of angular bins in the mask defined region. Each angular bin, is assigned

the value of ωAuger(δ) at the centre of that bin and ωAuger is treated as a constant within

each bin. For the survey mask ωsurvey, every bin that overlaps with the region excluded

by the survey mask (even if it partly overlaps) is excluded.

To account for the combined effects of the survey mask and Auger exposure in bin i,

ωexposure,i is defined

ωexposure,i = ωAuger,i · ωsurvey,i. (4.15)

It is required that each of the quantities in the analysis are (a) weighted exactly once by

the combined weight and (b) normalised so that each has a sum equal to the weighted

sum of observed UHECRs in the mask defined region.

The number of survey galaxies visible by Auger is limited by the observatory’s decli-

nation dependent exposure (equation 4.1). To account for this effect, as well as to exclude

those survey galaxies that lie near the Galactic plane where observations are not reliable,

each survey galaxy in bin i is subjected to the combined weight,

Ngal,i = ωexposure,i ·
∑
j

ωgal,j, (4.16)

where the sum is over the weighted contribution to the flux of each survey galaxy j

(equation 4.12) in bin i. Note that the Auger exposure ωexposure,i is treated as a constant

within a given angular bin and hence remains outside the sum. In the model where

UHECR sources are correlated with galaxies in the nearby LSS, the expected number of

cosmic rays NM,i is simply Ngal,i normalised to the number of observed UHECRs according
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to condition (b)

NM,i =

∑
iNCR,i∑
iNgal,i

·Ngal,i. (4.17)

The number of UHECRs in bin i is written NCR,i and the number of UHECRs expected

to be detected in bin i in an isotropic model Niso,i.

Mock realisations of UHECRs drawn from an isotropic distribution are generated and

cross-correlated with the predicted source distribution based on the PSCz/6dF to model

the distribution of values that the statistic X takes in the case of an isotropic source

distribution. Similarly mock realisations of UHECRs correlated with PSCz/6dF galaxies

are generated by sampling from a Poisson distribution with a mean equal to the number

of UHECRs expected to be detected per unit area at Auger above energy Ef using the

model of the UHECR source distribution presented in section 4.4. Finally the value of

X for the observed Auger UHECRs is calculated, and compared to the distribution of X

obtained in two models of source distribution considered. The statistic X is defined as

X =
∑
i

(NCR,i −Niso,i) · (NM,i −Niso,i)

Niso,i
. (4.18)

4.6 Results

The analysis is performed, by dividing the sky in equal area bins (counts-in-cells), using the

HEALPix package (Górski et al. 2005). The disadvantages of the counts-in-cells scheme

are the effect of boundaries and the ability to arbitrarily choose the bin size. Both these

limitations are dealt with by treating the size of the equal area bins as a free parameter,

in a range that covers expected random proton UHECR magnetic deflections (section

4.6.1). In section 4.6.2 the Auger UHECRs are cross-correlated with shells of the expected

source distribution, which is achieved by dividing the galaxy distribution into redshift

shells of equal predicted UHECR flux. In section 4.6.3 the sensitivity of the results to the

magnitude of magnetic deflections is investigated. Since the Galactic plane and regions

of the sky not covered by the galaxy survey are always excluded from the analysis, the

number of observed UHECRs that remain in the mask defined region is never 69 and

depends on the survey used and the bin size considered. In section 4.6.4 the dependence

of the results on systematic uncertainties is investigated.
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4.6.1 Cross-correlation of UHECRs and nearby LSS

In figure 4.5, the predicted distribution of sources of 55 EeV UHECRs based on the

PSCz/6dF catalogues is shown. To aid with illustration, the model source distribution is

smeared with a 2 dimensional Gaussian filter with standard deviation σ = 7.2◦, whereas

throughout the rest of this work galaxies are treated as discrete point sources. In the map

of the PSCz shown in figure 4.6 one can see a very large contribution from the Virgo cluster

(l ∼ −80◦, b ∼ 75◦), Hydra-Centaurus (−60◦ ≤ l ≤ 0◦, 0◦ ≤ b ≤ 45◦) and the Perseus-

Pisces supercluster (l ∼ 140◦, b ∼ −25◦). In the map of the 6dF of figure 4.5 there is a large

excess as a result of flux from Hydra-Centaurus and the Shapley Concentration (centred

at l ∼ −50◦, b ∼ 30◦, at a distance ∼ 200 Mpc). The predicted source distribution, with

those of the 69 observed Auger UHECRs in the mask defined region superimposed, are

plotted in figure 4.7. Note that the Auger exposure has not been taken into account in

these plots. After doing so, the relative weights of structures change so that for example

Virgo no longer dominates in the PSCz derived model.

Because the observed galaxy distribution is in the form of flux limited as opposed to

volume limited samples, observed galaxies in the PSCz and 6dF have been weighted by

the inverse of the selection function ψ(rc) (section 4.4). There is some uncertainty asso-

ciated with this process, however this procedure is well motivated given that matter in

the universe is clustered, hence unobserved galaxies that are below the galaxy survey’s

magnitude limit are more likely to reside near the observed galaxies than in regions where

no sources were observed.

In figures 4.8 and 4.9 the distribution of values that the statistic X takes in 10,000

mock realisations of isotropically distributed UHECRs, as observed by Auger (dashed

histograms) and the distribution of values of X in 10,000 mock realisations of 55 EeV

UHECR protons with sources drawn from the predicted UHECR source distribution that

follows the distribution of matter in the PSCz and 6dF catalogues are shown respectively

(solid histograms). The black vertical line in each subplot shows the value of X for the

observed Auger UHECRs assuming Ef = 55 EeV. Each subplot corresponds to a different

bin-size in the range 7.3◦ − 3.9◦. The picture that emerges from 4.8 and 4.9 is that the

observed Auger UHECRs are not consistent with the mean of either one of the two models,

although there is weak evidence for a source distribution correlated with nearby galaxies

in bin sizes 6.5◦ × 6.5◦ and 7.3◦ × 7.3◦.
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Figure 4.5. Maps of the predicted, local UHECR source distribution, in Galactic
coordinates centred at the Galactic centre with the longitude l increasing anti-
clockwise, derived from the PSCz (top) and 6dF (bottom) for UHECRs with
final energy 55 EeV. The predicted source distribution has been smoothed with
a Gaussian filter, with σ = 7.2◦ for presentation purposes. The intensity at each
point is normalised to the average intensity in the map. Auger is sensitive to the
part of the sky below the thick black line. The regions in grey are excluded from
the statistical analysis.
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Figure 4.6. Map of the predicted, local UHECR source distribution, in Galactic
coordinates, derived from the PSCz catalogue, as in figure 4.5 above, for UHECRs
with final energy 55 EeV. The longitude l increases anti-clockwise here, with
l = 0◦ on the right of the plot. Contributions to the predicted flux from local
superclusters are marked on. The PSCz has been masked with the mask described
in Saunders et al. (2000).

The significance of this result is quantified in figure 4.10, where the percentage of real-

isations in which the value of X was more extreme than XAuger, the value of X obtained

with the observed Auger UHECRs, in each of the models of UHECR source distribution

considered (Piso in the isotropic model and PPSCz/P6dF in the model where the UHECR

sources are PSCz/6dF galaxies) as a function of cell size are plotted. One first notices

that Piso and Psurvey are very sensitive to bin size and that this behaviour is not mono-

tonic as a function of bin-size. This is a result of very low UHECR counts making the

results susceptible to boundary effects. Overall there is very good agreement between

the results obtained with the two galaxy surveys. Although the 6dF and PSCz samples

are selected differently (near-infrared and far-infrared respectively) and the 6dF is deeper

than the PSCz, they probe approximately the same large scale structure. For most of the

parameter space considered the observed Auger UHECRs are inconsistent with isotropy

at a level ≥ 95%, as can be seen by the dashed line that gives the 95% confidence level

(' 2σ from the mean expectation). At the same time they have a lower value of X than

≥ 85% of mock realisations from a source distribution following LSS, which is lower than
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Figure 4.7. The predicted UHECR source distribution as in figure 4.5 above,
with those of the 69 Auger observed events whose arrival directions fall in the
galaxy survey’s field of view superimposed (in grey). The non-uniform Auger
exposure has not been taken into account in these intensity maps, hence visual
inspection of correlations can be misleading. A statistical analysis as in section
4.5 is required.
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Figure 4.8. The distribution of values of the correlation statistic X (equation
4.18) in 10,000 mock realisations of a set of UHECRs drawn from an isotropic
distribution (dashed histograms) and from the model UHECR source distribu-
tion that follows the PSCz (solid histograms). The value of X obtained for the
observed Auger events, XAuger, is given by the black solid line. Each subplot cor-
responds to a different cell size used for the counts-in-cells analysis in the range
7.3◦ (top left) to 3.9◦ (bottom right).
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Figure 4.9. The same distributions as in figure 4.8 but using the 6dF catalogue.
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Figure 4.10. Left: Piso - dashed line (PPSCz - grey solid line), the percentage
of realisations of UHECR samples drawn from an isotropic (following the PSCz)
source distribution in which the value of X (equation 4.18) obtained was more
extreme than XAuger, the value of X obtained for the observed Auger UHECRs,
as a function of cell size. The dashed horizontal line shows the 95% confidence
level. Right: Same as on the left plot but using the 6dF survey.

is expected on average if the observed UHECRs originate in galaxies in either survey.

Another way to quantify the significance of the results of 4.8 and 4.9 is to consider the

frequency with which X equal to XAuger occurs in mock realisations of the two different

models of UHECR source distribution considered, which is proportional to the likelihood

ratio of the two models. If this ratio is greater than 1 then the model in the numerator

is preferred by the observed data, whereas if it is smaller than one the model in the

denominator is preferred. This ratio

P (LSS source model is true|XAuger)

P (isotropic source model is true|XAuger)
, (4.19)

hereafter

P (LSS|Auger)

P (ISO|Auger)
(4.20)

is shown separately for the two galaxy catalogues as a function of cell size in figure 4.11.

Here again, we see that the results are extremely sensitive to the choice of bin size and

much less sensitive to the choice of galaxy survey. A future, larger UHECR dataset will
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Figure 4.11. Left: The quantity P (LSS|Auger)/P (ISO|Auger) (equation 4.20),
the ratio of the frequencies with which a value of X equal to XAuger (the value
of X obtained with the observed Auger UHECRs) is obtained in realisations of
UHECR sets from the 2 model source distributions (following the PSCz - LSS,
isotropic -ISO) as a function of cell size. Right: Same as on the left plot but
using the 6dF survey.

suffer significantly less from such fluctuations and allow to draw firmer conclusions within

the framework that is presented here.

In figure 4.12 the results of the correlation analysis performed using the 6dF survey

are shown next to the same results for the PSCz, as well as the results of the analysis

performed with the PSCz survey but restricted to the Southern hemisphere for cell size

5.9◦ × 5.9◦. This allows for a direct comparison between the results of the two surveys

which have been confine to the same field of view. Again, we see very good agreement

between the two surveys, but no concrete conclusion emerges as to the distribution of the

sources of UHECRs.

4.6.2 Cross-correlation in equal predicted flux radial shells

In this section, a new method of studying any correlation between observed UHECR arrival

directions and predicted UHECR source distribution, by dividing the predicted source dis-

tribution into radial shells with distance, is presented. If a correlation exists, this method

will help localise the source population and constrain some of its properties, such as for

example the redshift evolution.

The expected UHECR source distribution is divided into three shells, each contributing
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Figure 4.12. The distribution of values of the statistic X obtained in 10000 re-
alisations of UHECRs from an isotropic source distribution (dashed histograms),
from a distribution of sources that follows LSS (solid grey histograms) andXAuger,
the value of X for the observed Auger events (black solid line). The distribu-
tion of sources that follows LSS was modelled with the 6dF (left), the PSCz
(centre), and the PSCz sources that lie in the southern hemisphere, i.e. the the
PSCz sources in the 6dF field of view (right). The plots shown are for cell size
5.9◦ × 5.9◦.

a third of the expected UHECR flux based on the predicted source distribution presented

above, and cross-correlate the observed Auger UHECRs with the predicted source distri-

bution in each of the shells. In order to define shells contributing equal predicted UHECR

flux, rstart and rend are determined, such that for each shell:∫ r1

rnear

d

drL
(n(rL) · ωgal(rL)) · drL =

∫ r2

r1

d

drL
(n(rL) · ωgal(rL)) · drL =∫ rfar

r2

d

drL
(n(rL) · ωgal(rL)) · drL =

1

3

∫ rfar

rnear

d

drL
(n(rL) · ωgal(rL)) · drL,

(4.21)

where n(rL) is the number of sources at distance rL, ωgal is the weighted contribution of

a source at distance rL to the expected UHECR flux defined in equation 4.12 and rnear

and rfar are the distances of the nearest and most distant sources in the galaxy survey (in

practice rmax is a cut applied, well beyond the GZK-horizon, in order to avoid diverging

weights of the few, very distant sources, present in the galaxy surveys). Any contribution

to the observed UHECR flux from sources beyond this distance should be isotropic but

at this energy, such a contribution will amount to less than 1%. Since each nearby galaxy

contributes more of the expected UHECR flux than any other more distant galaxy, due

to flux suppression with distance and particle energy losses during propagation, the three

shells that have been defined are not equal in width nor in the number of galaxies they

contain. In table 4.1, the number of sources in each of the shells as well as the distances
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PSCz 6dF

shell 1 shell 2 shell 3 shell 1 shell 2 shell 3
rstart − rend [Mpc] 0 - 47 47 - 132 132 - 365 0 - 29 29 - 100 100 - 365
Number of sources 2189 5577 5300 1103 10711 65785

Table 4.1. The number of galaxies and the distances covered in each of the
three radial shells (section 4.6.2) expected to contribute equal UHECR flux, for
a model UHECR source distribution based on the PSCz (left) and on the 6dF
(right). Beyond ∼ 100 Mpc the PSCz selection function, ψ(rc) (equation 4.9),
drops off quicker than ω(rL)flux of equation 4.4, the flux weight for a source at
distance rL. As a result the effective weight of each galaxy, ωgal (equation 4.12),
does not monotonically decrease with distance for the PSCz, which is why shell
3 contains fewer galaxies than shell 2 (see also section 4.6.4 for a more detailed
discussion of the PSCz selection function).

covered by each shell for the PSCz and the 6dF are given.

In the top row of 4.13 and 4.14, the distribution of the values that X takes in 10000

realisations of UHECR samples from an isotropic distribution of sources and from a distri-

bution of sources based on the local galaxy distribution as well as for the observed Auger

UHECRs, in each of the three shells, for 5.9◦×5.9◦ bins, for the PSCz and 6dF respectively

is shown. In the middle and bottom row Piso, PPSCz and P (LSS|Auger)/P (ISO|Auger)

(defined in section 4.6.1) are shown, for shells 1, 2 and 3 from left to right, as a function

of cell size. We see a strong sensitivity to the choice of cell-size as in section 4.6.1 in these

results. Overall, when cross-correlated with shell 1 of the PSCz and shells 1, 2 of the 6dF

the observed Auger UHECRs are consistent with isotropy, whereas there is weak evidence

for correlation of the observed UHECRs with the predicted source distribution is shells 2

and 3 of the PSCz and with shell 3 of the 6dF.

The normalised correlation coefficient R is used, to determine the relative strength of

any detected anisotropy signal with respect to source clustering in the shell

R =

∑
i (NCR,i −Niso,i) · (NM,i −Niso,i)√∑

i (NCR,i −Niso,i)
2 ·
√∑

i (NM,i −Niso,i)
2
. (4.22)

In figure 4.15, the distribution of R obtained in 10000 realisations of UHECR samples

from an isotropic distribution of sources and from a distribution of sources based on the

local galaxy distribution, as well as for the observed Auger UHECRs, RAuger are shown,

for shells 1, 2 and 3 from left to right, for the PSCz (top row) and the 6dF (bottom row).
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Figure 4.13. Top Row: Distribution of values of the statistic X (equation
4.18) for 10,000 realisations of UHECR sets drawn from an isotropic source dis-
tribution (dashed histograms), a distribution of sources based on the PSCz (solid
histograms) and XAuger, the value of X obtained for the observed Auger UHE-
CRs (black solid line) for shells 1, 2 and 3 (see section 4.6.2). The cell size used
for these plots is 5.9◦ × 5.9◦.
Middle Row: Piso - dashed line (PPSCz - solid line), the percentage of realisations
of sets of UHECRs from an isotropic (correlated with LSS) source distribution in
which the value of X was more extreme than XAuger as a function of cell size.
Bottom Row: P (PSCz|Auger)/P (ISO|Auger) (equation 4.20), the ratio of re-
alisations of the two models that had a value of X equal to XAuger as a function
of cell size.
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Figure 4.14. Same as in figure 4.13 but for the 6dF survey.

The plots shown are for 5.9◦×5.9◦ angular bins. In shell 1 of the PSCz, which includes all

sources nearer than 47 Mpc, R has greater discriminatory power than shells 2 and 3 and

the mean value of RPSCz in shell 1 is twice that of shells 2 and 3. The picture is similar

for the 6dF. The mean value of R6dF drops from ∼ 0.3 in shell 1, to ∼ 0.2 in shell 2 and

∼ 0.1 in shell 3. The reason for this behaviour is that going from shell 1 to 3 there are

progressively more galaxies in each shell, occupying a larger volume and hence we move

to larger scales, where the galaxy distribution is less anisotropic and there is significantly

less contrast. In shell 1 where R has the greatest statistical power the Auger UHECRs

are consistent with an isotropic hypothesis, whereas in shells 2 and 3 of the PSCz and

shell 3 of the 6dF which have lower contrast and less discriminatory power there is weak

evidence of correlation with the predicted source distribution. If the magnetic deflections

of the UHECRs studied are not larger than has been assumed, this result would suggest
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Figure 4.15. Top Row: Distribution of values of the normalised correlation
coefficient R (equation 4.22) for 10,000 realisations of UHECR sets drawn from an
isotropic source distribution (dashed histograms), from a distribution of sources
based on the PSCz (solid histograms) and RAuger, the value of R obtained for
the observed Auger UHECRs (black solid line), for Shells 1, 2 and 3 (see section
4.6.2). The cell size used for these plots is 5.9◦ × 5.9◦. Bottom Row: Same as
in the row above, but with the 6dF survey.

that the true UHECR source population has similar clustering properties to those of the

galaxy distribution in shells 2 and 3 and is less clustered than the source distribution in

shell 1, which is consistent with the results in the other sections of this work.

4.6.3 Magnetic deflections

In this section, the dependence of the results on the amplitude of the magnetic deflections,

that are suffered by UHECRs during their propagation, is investigated. If the mass com-

position of UHECRs is mixed as recent experimental data suggest, or magnetic fields in

the local universe are stronger than typically found in relevant studies, average magnetic

deflections will likely be larger than has been assumed so far in this work.

Mock realisations, in which UHECRs suffer simulated magnetic deflections, are gen-

erated, and the expected level of correlation with the galaxy distribution in this model

is compared to that of the Auger UHECRs. Random magnetic deflections are simulated

using a 2 dimensional Gaussian function, centred at the position of the source. A gaussian
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Figure 4.16. Left: The distribution of values of X in 10,000 realisations of
UHECRs from an isotropic distribution of sources (dashed histogram) and from
a distribution of sources based on the PSCz (solid histograms) with and without
simulated magnetic deflections with amplitude 5◦. The cell size shown in this
plot is 5.9◦ × 5.9◦. Right: Same as on the plot on the left panel but using the
6dF.

with a standard deviation σd = 5◦ is considered. With this function, randomly oriented

angular displacements for each UHECR with respect to its source are generated.

In figure 4.16 the distribution of values of X obtained for mock UHECRs, whose

sources are nearby galaxies with and without simulated deflections, is shown. We see that

even if the sources of the UHECRs are correlated with nearby galaxies (as the ones in

the LSS model), increasing the deflection angle dilutes the anisotropy signal as expected

intuitively. The distribution of the arrival directions of Auger UHECRs is consistent with

that expected, if the sources are correlated with the galaxy distribution, if deflections are

of order 5◦.

4.6.4 Systematic uncertainties

In the previous section the uncertainties introduced by the unknown composition of UHE-

CRs and the magnitude of magnetic deflections were discussed. In this section, the sen-

sitivity of the results to the uncertainty on the selection function of the galaxy surveys is

studied.

When modelling the selection function of a galaxy survey the uncertainty is largest nearby

where the luminosity function is calculated from a very small number of galaxies. This
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uncertainly nearby has a non-negligible effect on the UHECR source distribution models

where nearby galaxies have a greater weight than more distant ones due to flux suppression

with distance and particle energy losses during propagation. The PSCz survey is studied

in what follows, but qualitatively similar findings are expected for the 6dF. The PSCz

selection function is well fit by equation 4.10. In table 4.2, the sensitivity of Piso, PPSCz

and P (PSCz|Auger)/P (ISO|Auger) on the error in ψ(r), which is estimated by varying the

parameter α of equation 4.10 so as to reproduce the published errors, is shown. Further,

in the same table, the sensitivity of these quantities on the choice of rmin, the distance at

which the selection function is normalised, the choice of which affects the predicted galaxy

number density as a function of distance nearby, is quantified.

We see that the values of Piso, PPSCz and P (PSCz|Auger)/P (ISO|Auger) obtained for

shells 1 and 2 are particularly sensitive to the systematics, whereas those obtained for

shell 3 are significantly more robust. This is as expected, as the nearby slope of the se-

lection function, where systematic uncertainties have a large impact to the results, since

nearby sources are expected to contribute significantly to the observed UHECR flux, has

been varied. The sensitivity of Piso, PPSCz and P (PSCz|Auger)/P (ISO|Auger) to the sys-

tematics discussed here is comparable to the sensitivity to the choice of bin size everywhere

but in shell 3 where the systematic uncertainty is small. With a larger UHECR dataset

the sensitivity of this method to bin size will significantly decrease but the systematic

uncertainty discussed here will not, at least not for the galaxy surveys discussed.

The systematic uncertainty in the energy determination of the primary particles de-

tected at Auger introduces an error to the results. At the time of this analysis the sys-

tematic uncertainty was 23%. The effect of this uncertainty on the results is studied,

by changing Ef in the models by 23% i.e. assuming that the energy of the observed

Auger UHECR events has been under(over)-estimated by 23%. This produces changes in

Piso(PPSCz) of order few(10)%, but doesn’t strongly change the conclusions drawn here.

The sensitivity to the injection spectrum index (equation 4.6) is smaller, at most few %

relative to the value of Piso(PPSCz) in the range −2.5 ≤ α ≤ −1.5.

4.7 Discussion

The set of 69 observed Auger UHECRs with energy greater than 55 EeV have been used,

to assess whether their arrival directions are correlated with the positions of nearby galax-
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1.82, 0.84 6.12 0.61 0.5 35.1 0.27 0.1 2.13 40.9 7 1.40 31.5 10
1.68, 0.84 12.2 0.04 0.1 38.2 0.05 0.05 3.46 22.9 5 2.12 28.7 7
1.94, 0.84 4.09 2.86 1 13.1 4.31 0.5 20.7 12.7 0.7 2.26 43.9 8
1.82, 5 20.2 0.03 0.06 48 0.01 0.03 2.46 40.4 8 2.54 29.6 6
1.82, 10 23.9 < 0.01 0.01 44.7 < 0.01 0.01 2.76 20.5 5 2.72 25.8 5

Table 4.2. Sensitivity of Piso (PPSCz), the percentage of realisations of an
isotropic (correlated with LSS) UHECR source distribution in which the value
of X was more extreme than XAuger, the value of X obtained with the observed
Auger UHECRs, and P (PSCz|Auger)/P (ISO|Auger), the ratio of the likelihoods
of the two models of source distribution, to errors in the PSCz selection function
and to the choice of the selection function normalisation distance rmin. From left
to right, the sensitivity for the source model based on the entire PSCZ catalogue
(introduced in section 4.6.1) and for shells 1, 2 and 3 as defined in section 4.6.2
are shown. All values quoted in this table are for an analysis performed with
equal area angular bins with size 5.9◦ × 5.9◦. The top row gives the canonical
choice of parameters for this analysis, the second and third row give sensitivity
to the parameter α of equation 4.10 and the two bottom rows give the sensitivity
to rmin (introduced in section 4.4).

ies or sources correlated with those galaxies. A steady UHECR source distribution, in

which individual UHECR sources are faint, has been modelled using the PSCz and 6dF.

The latter has being used here for the first time to model the predicted UHECR source

distribution. Throughout this work, the UHECR flux suppression due to energy losses

during particle propagation, expected random magnetic deflections of a few degrees, and

the non-uniform Auger exposure, have been taken into account.

In figures 4.8-4.12, it is shown that the observed Auger UHECRs have a higher degree

of correlation with the predicted UHECR source distribution than 94% (98%) of mock

realisations from an isotropic source distribution, when cross-correlated with the PSCz

(6dF), sensitive to the choice of cell-size for the analysis and other systematics discussed

in section 4.6.4. At the same time the observed cross-correlation signal is lower than in

& 85% of realisations of UHECRs that originate in galaxies in either survey. As shown in

figure 4.16, the observed Auger UHECRs favour a model in which the sources are galaxies

in the PSCz/6dF, but random magnetic deflections of UHECRs are slightly greater than
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in the default model parameters, of order 5◦. The results are very sensitive to the choice of

cell-size due to low statistics, but this sensitivity will certainly decrease when the number

of observed UHECRs increases.

Compared to studies of the 2007 Auger dataset of 27 events the significance of the

correlation has decreased (as shown in e.g., Abreu et al. 2010). This is something that

was tested with the setup presented here, and which I can confirm. As was pointed out

in e.g., Kashti & Waxman (2008) the fact that half of the original 27 events had been

selected to maximise the UHECR-AGN correlation, may have lead to an overestimate of

the significance with which isotropy was ruled out.

In this work it was assumed that individual UHECR sources are faint, i.e. the proba-

bility of a given source producing more than one observed event is low. This is favoured by

the clustering of the UHECR dataset that was analysed, as well as the more recent study

of Abreu et al. (2013). Further, it was assumed that the number density of UHECRs is

comparable to the local density of galaxies. The mean value of X in a given model does

not depend on the source number density n0. The width of the distribution of X does

depend on n0, since for lower source number density the number of sources contributing

to the flux is lower, fluctuations are larger, and the distribution of values of X is wider, as

shown in the work of Waxman et al. (1997); Kashti & Waxman (2008). For a dataset of the

present size this effect is subdominant to the sensitivity of X to other model parameters,

primarily the choice of cell size.

A new way of analysing any observed correlation between observed UHECRs and model

source distribution was presented. The method proposed is to divide the predicted source

distribution into radial shells of equal predicted UHECR flux contribution. It was shown

that the 69 observed Auger UHECRs are consistent with an isotropic distribution, when

cross-correlated with the source distribution in the nearest shell (shell 1) of the PSCz and

shells 1 and 2 of the 6dF, whereas there is weak evidence of correlation with the source

distribution of shells 2 and 3 of the PSCz and shell 3 of the 6dF (4.13 - 4.15). The principle

of the method proposed here can be further developed in future and with larger datasets,

to help localise the true sources of UHECRs and constrain some of their properties. In

chapter 6 the expected sensitivity of future, larger UHECR detectors to the predicted

UHECR anisotropy signal will be studied in detail.

The analysis was performed with two galaxy surveys, which have been carried out

using different selection criteria, and have different median depths, hence probing different
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LSS. Observing a correlation with a specific astrophysical population does not constitute

proof that the sources of UHECRs are members of that population, as matter in the

universe is clustered and different astrophysical populations are correlated with each other.

There is very good agreement between the results obtained with the two surveys despite

them having different fields of view and median depths, highlighting the robustness of the

method.

In this work a Frequentist approach to the long standing question of the origin of

UHECRs was taken, as it the most straightforward approach for this type of study, with

the smallest number of assumptions, regarding the source population. Other authors have

taken a Bayesian approach to the question (e.g., Watson et al. 2011; Soiaporn et al. 2012).

The authors of Watson et al. (2011) have obtained results that are qualitatively similar to

these obtained here, namely they conclude that the Auger UHECRs observed to date are

neither consistent with an isotropic distribution of sources nor with a model in which all

UHECRs are protons that originate in nearby galaxies.

Observed UHECRs may have suffered magnetic deflections larger than a few degrees,

if at least a fraction of them are heavily charged nuclei as opposed to nucleons which were

assumed in this work, or if intervening magnetic fields are stronger than most recent studies

conclude (as e.g., in the work of Sigl et al. 2004b), in which case even proton UHECRs

may have suffered deflections much larger than 3◦. Identifying the mass composition of

the primaries and progress in understanding extragalactic magnetic fields, will help break

the degeneracy between the above scenarios.
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Chapter 5

Gamma-ray spectra of Blazars

“There are more things in heaven and earth, Horatio, than are dreamt of in your

philosophy.”

-Shakespeare, Hamlet

Blazars are AGN with jets that point towards the observer. As we saw in section 1.3

AGN are some of the very few types of astrophysical sources where UHECR acceleration

is thought to be viable. At the same time blazars are now the most frequently observed

extragalactic gamma-ray sources. If proton acceleration up to ultra-high energies takes

place in these sources, it may be possible to identify the signature of this process in

blazar gamma-ray spectra, depending on the total energy output in hadrons. Clearly,

unambiguous detection of secondary gamma-rays of hadronic origin would have a lasting

impact on the long standing question of the origin of UHECRs (see e.g., review by Kotera

& Olinto 2011 and references therein). One of the signatures of UHECR production is the

synchrotron emission expected from secondary electrons and positrons that are produced

when the source resides in a magnetised region, such as a filament of large scale structure,

in which many blazars should be embedded. In this chapter, numerical modelling of the

expected blazar gamma-ray emission from this channel are performed. It is shown, that

this channel successfully reproduces the gamma-ray spectra of some recently discovered,

extreme blazars.

101
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5.1 Introduction

5.1.1 Blazars

BL Lacertae objects (BL Lacs) and flat spectrum radio quasars (FSRQs), commonly

referred to as blazars, are a radio loud subclass of AGN that have jets, i.e. collimated highly

relativistic outflows, that point almost directly towards the observer (Urry & Padovani

1995). Blazars appear point-like and exhibit rapidly varying non-thermal emission across

all energy bands. Blazar broadband spectral energy distributions have a characteristic

double-bump shape. The low frequency peak is found in the optical to X-ray band and

is generally thought to originate in the synchrotron emission of relativistic electrons and

positrons in the jet. The high energy peak occurs in the gamma-ray band and its origin

is less well understood. Commonly it is assumed to be due to leptonic inverse-Compton

scattering, but in some cases, in which conventional leptonic models fail to explain the

observations, a hadronic origin is a viable alternative interpretation. Physical mechanisms

that could be responsible for the observed high-energy emission, will be discussed in detail

in sections 5.1.2, 5.1.3 below.

FSRQs have broad prominent emission lines and are believed to be hosted by high-

luminosity radio galaxies (Fanaroff- Riley type II [FR II]; Fanaroff & Riley 1974), whereas

BL Lacs are believed to be hosted by the lower luminosity Fanaroff-Riley type I [FR I] and

have weak or absent emission lines. In the commonly used “blazar sequence” classification

(Fossati 1998; Donato et al. 2001), blazars are described as a continuous distribution,

characterised by a decreasing source luminosity and increasing synchrotron peak energy as

shown in figure 5.1. FSRQs are the highest luminosity and peak at lower energies. BL Lacs

are further classified into into low- (LBL), intermediate- (IBL) and high-frequency peaked

(HBL), the latter having high energy peaks as high as in the TeV gamma-ray band. The

“blazar sequence”, although popular, often fails to properly account for the very diverse

and intensely variable characteristics of blazars. It is often challenged on the grounds of

systematic biases; for example, the recent, detailed study of multiwavelengh blazar data

of Giommi et al. (2012) suggests that the apparent correlation between decreasing source

luminosity and increasing synchrotron peak energy, advocated by the blazar sequence

model, is a selection effect. More than 90% of the extragalactic gamma-ray sources that

have been detected to date are blazars. In its five years of operation the Fermi-LAT

(Abdo et al. 2011) has detected and compiled a catalogue of more than 1000 blazars
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Figure 5.1. Average spectral energy distributions of blazars demonstrating the
“blazar sequence” classification with FSRQs being the most luminous (upper
curve) and HBLs the lowest luminosity, highest frequency peaked (bottom curve).
Figure from Donato et al. (2001).

divided approximately equally into BL Lacs and FSRQs. Since 2004, when the current

generation of ground based imaging atmospheric Cherenkov telescopes (IACTs) began

operations, more than 50 blazars have been detected in the TeV region1. The majority

of the TeV blazars detected so far are HBLs. Below, possible models for the origin of

the observed blazar gamma-ray spectra, which can be broadly separated into leptonic and

hadronic, are discussed.

5.1.2 Leptonic origin

The most popular interpretation for the gamma-ray bump in HBLs, which are the most

numerous TeV blazars known, is synchrotron self-Compton emission (SSC) (Mastichiadis

& Kirk 1997; Tavecchio et al. 1998). In this model, it is assumed that relativistic electrons

in the jet radiate in synchrotron, producing photons up to X-ray energies, which are

subsequently inverse-Compton scattered by the same electron population to gamma-ray

energies. Alternatively, electrons in the source inverse-Compton scatter on external photon

fields (see e.g., Dermer & Schlickeiser 1993), or ambient photon fields in different parts

1http://tevcat.uchicago.edu



5.1. Introduction 104

of the jet (e.g., Ghisellini et al. 2005). In general, leptonic models are the preferred

explanation for blazar gamma-ray spectra. They require acceleration of electrons to only

TeV energies (unlike hadronic models, which typically require acceleration of protons and

nuclei to ultra-high energies). Further, the production of gamma-rays proceeds through the

very efficient inverse-Compton process. Theoretical challenges of leptonic models include

accelerating electrons to high enough energies without suffering severe synchrotron losses,

and having a target for the inverse-Compton to occur that isn’t opaque enough to attenuate

the outgoing gamma-rays.

The attenuation of VHE gamma-rays from blazars by pair-production on the EBL, is

expected to leave a unique, redshift dependent cutoff in the blazar spectra, assuming that

there are no breaks in the intrinsic spectrum below the characteristic cutoff energy. Under

some assumptions about the maximum achievable hardness of the intrinsic spectrum, it

is possible to constrain the EBL at earlier epochs, from observations of the exact position

and shape of this cutoff in the TeV spectra of hard-spectrum blazars (e.g., Aharonian et al.

2006; Kneiske & Dole 2008). Such studies typically assume a purely leptonic origin of the

blazar emission.

Within leptonic models, blazar gamma-ray spectra are also used to constrain the

strength of intergalactic magnetic fields (IGMFs). In the absence of intervening IGMFs,

one expects a given level of flux in the GeV region, associated with the blazars that have

been detected at VHE with IACTs. The expected GeV flux, should be the intrinsic flux of

the source in that energy range plus any contribution from the electromagnetic cascade,

that typically deposits energy from cascaded higher energy gamma-rays to the GeV region

below the pair-production threshold. There are a number of VHE blazars that seem to

have an unusually low level of flux in the GeV (inferred from Fermi-LAT observations or

upper limits). The absence of the expected GeV flux has been interpreted as the result

of intervening IGMFs deflecting the low energy electrons in the cascade, thus diluting the

cascade signal in the GeV band. This line of reasoning has been used in a number of re-

cent studies, that, analysing the spectra of such hard-spectrum blazars place a lower limit

on the strength of intervening IGMFs. Assuming that blazar emission is steady, Fermi

data lead to lower limits of BIGMFλ
1/2 . 10−15 G Mpc1/2 (e.g.,, Neronov & Vovk 2010;

Taylor et al. 2011; Ahlers & Salvado 2011; Vovk et al. 2012). Taking into account the

possibility that blazar emission is transient rather than steady, conservative constraints

can be obtained, which are of order 10−18 − 10−20 G Mpc1/2 (e.g.,, Murase et al. 2008b;
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Dolag et al. 2011; Dermer et al. 2011). Recent results from HESS however, exclude some

of the previously allowed parameter space from this type of search (see Abramowski et al.

2014). The top panel of figure 5.2 shows the model fit to the spectrum of 1ES 0229+200

obtained in the work of Taylor et al. (2011).

It was recently pointed out, that the electrons and positrons in the electromagnetic

cascade of TeV emitting blazars, might collectively interact with the electrons in the

integalactic medium, and lose energy by generating plasma waves, at a rate much larger

than the energy loss rate through inverse-Compton scattering (Broderick et al. 2012). If

such a mechanism does dominate the cooling of the pairs in intergalactic cascades, the

otherwise expected GeV cascade emission from TeV emitting blazars will be suppressed.

If this scenario is true, constraints on the strength of IGMFs, derived from the absence

of GeV cascaded emission of TeV emitting blazars, do not hold. The fraction of the total

energy of the beam dissipated in heating the intergalactic medium due to such instabilities,

depends on the properties of the pair beam and those of the plasma which it traverses,

and is currently a topic of debate (see Miniati & Elyiv 2013; Sironi & Giannios 2014 and

references therein).

5.1.3 Hadronic origin

Along with electrons, protons may also be accelerated in blazars. As discussed in section

1.3, AGN with their black-holes, jets and hot-spots are some of the few astrophysical

sites where UHECR confinement is expected to be possible. Theoretically, the magnetic

luminosity of the relativistic outflow of the source, that is, the energy density of the

magnetic field, must satisfy LB & 1047.2 Z−2E2
20Γ2

1 erg s−1, where E = 1020 eV/E20 is

the cosmic ray energy and Γ = 10 Γ1 is the Lorentz factor of the outflow (see Lemoine &

Waxman 2009 for a detailed derivation). This limit places a stringent constraint on the

candidate sources, as these are luminosities typically reached only by FRII-type galaxies.

Apart from the very high energy output required in the form of hadrons, hadronic

models strain to account for the observed rapid variability of blazar gamma-ray spectra.

Leptonic models in general provide a simpler model for the blazar emission, where only

one primary population of particles is responsible for the observed non-thermal blazar

emission. Further, in SSC models, observations of correlated, multi wavelength, blazar

variability arise naturally and can easily explain such observations. However, for a fraction

of TeV emitting blazars, the parameters required in order for classical SSC models to fit
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the data are extreme and suggest the need for alternative models. In particular, a fraction

of VHE detected blazars, exhibit spectra that, after correcting for the expected absorption

of the intrinsic emission by the intervening EBL, are exceptionally hard, peaking at energy

∼ 1 TeV or higher. For classical SSC models to explain these observations, an extremely

low magnetic field (orders of magnitude below equipartition) and/or a very large doppler

factor are required (D ∼ 100) in order to fit the observations. These observations, which

challenge pure SSC interpretation have given rise to more complicated leptonic models,

which provide alternative possible explanations for these objects (e.g., Aharonian et al.

2006; Tavecchio et al. 2011; Zacharopoulou et al. 2011; Lefa et al. 2011). In these cases, a

hadronic origin is a natural alternative, which can provide an attractive interpretation of

the data, if it proceeds via an efficient gamma-ray production mechanism.

High energy protons can produce secondary gamma-rays either via photo-hadronic pion

production or Bethe-Heitler pair production, p+γ −→ p+ e+ + e− (see section 2.2 as well

as e.g., Mannheim 1993). In the case of heavier nuclei, photo-disintegration should also

lead to gamma-ray production. It was recently shown by Murase et al. (2012); Tavecchio

(2014) that a number of extreme VHE BL Lacs are capable of accelerating protons to

Emax
p . 10 EeV and nuclei up to Z · Emax

p , assuming the validity of the SSC model

(i.e. deriving blazar parameters using the SSC model and applying these parameters

to hadrons). Higher proton energies (∼ 1020 eV) are achievable in blazars in hadronic

models, where the SSC model is abandoned and instead a highly magnetised blazar jet

with B ∼ 10−100 G is considered (Aharonian 2000; Mücke et al. 2003) and in some other

non-standard acceleration models (see discussion in section 5.4).

An alternative model for the gamma-ray emission of blazars is proton-induced inter-

galactic cascade emission. UHE gamma-rays and pairs seeded by UHECRs via photo-

meson production on the EBL could cascade in the intergalactic medium (e.g., Ferrigno

et al. 2005; Essey & Kusenko 2010, 2013; Essey et al. 2010, 2011; Murase et al. 2012;

Prosekin et al. 2012). If the magnetic field in the vicinity of the source is not strong,

then UHECRs will propagate away with little deflection and decay in the intergalactic

medium, where their products will initiate inverse-Compton cascades much as they do in

the case where the primary particles are leptons. However, there will be differences in

the observed gamma-ray spectra, since, in the case of UHECR primaries, the injection

energies are much higher to start with and there is continuous injection of high energy

electrons from Bethe-Heitler pair production. The Bethe-Heitler pair production, leads to
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a tail of emission, that extends deeper into the TeV than is expected in leptonic models.

Recently, Takami et al. (2013) showed how this tail could be measured in the integrated

flux above ∼ 500 GeV (depending on source redshift) for several luminous sources with

z . 1 with the future CTA, to distinguish between leptonic and the UHECR induced

inverse-Compton cascade origin (see also Zech & Cerruti 2013 for the capabilities of the

approach for a statistical discrimination). Taking the same argument to extreme redshifts,

Aharonian et al. (2013) showed that the discovery of TeV radiation from a source with

z & 1 could only be explained as this type of UHECR cascade emission with conventional

physics (to date sources up to z . 0.5 have been observed at VHE). In the bottom panel of

figure 5.2 the model fit to the spectrum of 1ES 0229+200 in the UHECR cascade scenario

from the work of Essey & Kusenko (2010) is shown.

On the other hand, if the UHECRs are accelerated in blazars that are embedded in

regions where the magnetic field strength is at the level of 10 nG or higher, such as a

filament or cluster of large scale structure, they will inevitably give rise to secondary

electrons, carrying a few percent of the proton energy, which will radiate synchrotron

photons inhibiting the development of the inverse-Compton cascade. In figure 2.9 we saw

that electrons with energy Ee & 1018 eV undergo synchrotron cooling before undergoing

inverse-Compton scattering when the magnetic field strength is & few nG. The character-

istic energy of the synchrotron emission (which is given by equation 2.24) is in the GeV

band for the magnetic fields expected in filaments (10−9 − 10−7 G) and in the TeV band

for the higher magnetic field strengths expected in galaxy clusters (∼ 10−7−10−5 G). The

detectability of such signatures in a general framework has been studied analytically and

by Monte-Carlo (concentrating on the synchrotron emission and without including the

electromagnetic cascade component) by Gabici & Aharonian (2005), Gabici & Aharonian

(2007) and Kotera et al. (2010). Prosekin et al. (2011) studied the expected signature from

this model for hypothetical UHECR sources located at high redshifts, when the energy

conversion from protons to secondary particles was significantly more effective, because

of the denser and more energetic CMB in the past. In sources that accelerate UHECRs,

whether this secondary synchrotron signal will dominate over the UHECR induced inverse-

Compton cascade signal, depends on the magnetic field strength and configuration, not

only in the vicinity of the source but also in the intergalactic medium, as is discussed in

section 5.1.4.
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Figure 5.2. Model fits to the spectrum of a blazar at redshift z = 0.14. Data
points correspond to the gamma-ray spectrum of the blazar 1ES 0229+200.
Top: A leptonic origin of the emission is assumed. Different model fits show
the expected flux for different average strengths of homogeneous extragalactic
magnetic fields with correlation length, λcoh = 1 Mpc. Image from Taylor et al.
(2011).
Bottom: A UHECR cascade origin of the emission is assumed and the sig-
nal expected for a range of maximum UHECR proton injection energies, Emax

is shown. Neutrino flux predictions are also shown. Extragalactic magnetic
fields of negligible strength have been assumed. The injected isotropic equivalent
UHECR luminosity in the simulations depends on the maximum injection energy
as Lcr,iso = 6× 1048 erg s−1 for Emax = 1017 eV (red), Lcr,iso = 2× 1046 erg s−1

for Emax = 1019 eV (green), Lcr,iso = 9× 1045 erg s−1 for Emax = 1021 eV (blue).
Image from Essey & Kusenko (2010).
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5.1.4 The role of magnetic fields

We saw in section 3.1 that our knowledge of IGMFs on scales larger than galaxy clusters

remains very loosely constrained by observations. Constraints from Fermi-LAT blazar

observations place lower bounds on the IGMF in voids of ∼ 10−17 G Mpc1/2 as discussed

in section 5.1.2, whereas upper limits from Faraday Rotation and the CMB constrain the

mean IGMF strength to be below Bmean λ
1/2 . 10−8 G Mpc1/2. Nonetheless, one expects

the IGMF to be highly structured, with filament and cluster regions supporting significant

magnetic fields (B & 10−8 G).

UHECR induced inverse-Compton cascades are expected to produce almost non-variable,

or very slowly variable emission, that has been shown to be a good fit to the TeV spectra

of a number of extreme blazars, assuming very low intergalactic magnetic fields. In the

presence of IGMFs, the deflection that the cascade electrons will suffer in one cooling time

can be estimated by considering the ratio of their Larmor radius, rLar at a given energy

to the inverse-Compton cooling distance (equation 2.21)

θe ∼
DIC

rLar
= 1◦

(
B

10−16 G

)(
Ee

1 TeV
.

)−2

, (5.1)

Therefore, for the UHECR-induced inverse-Compton cascade to be observable, very weak

IGMFs are required, with strengths in voids of order Bvoids λ
1/2 . 10−15−10−14 G Mpc1/2.

For stronger fields, the cascade radiation at TeV energies is diluted by deflections of pairs

in the IGMF, as shown in Aharonian et al. (1994). Even if intervening IGMFs are weak

enough that the cascade can propagate unsuppressed, it is also necessary that the magnetic

field strength in the vicinity of the source is low enough (� 1 nG) to avoid a suppression

of the cascade due to synchrotron losses by the first generation of electrons as discussed

in Gabici & Aharonian (2007). This point was demonstrated in Murase et al. (2012) who

showed that structured IGMFs in the vicinity of the accelerator suppress the resulting

gamma-ray flux by more than one order of magnitude compared to the case without them.

This inverse-Compton cascade component is not included in the calculations presented

here, as it has been studied extensively by the various authors cited above, and is not

within the scope of this work. Contamination from this channel is expected to contribute

mostly below ∼ 100 GeV, and the primary aim here is to study the peak and tail of the

observed VHE emission of a number of sources that challenge leptonic models. Besides,

the level at which this component contributes is very uncertain due to possible dilution in
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the IGMF (see discussion in section 5.4).

In what follows it is shown that the synchrotron signal of secondary UHE electrons

produced in blazars located in magnetised environments can also successfully reproduce the

spectra observed in certain extreme hard-spectrum blazars. Further, it is shown that, this

signal is unavoidable if blazars are sources of UHECRs, and that the energy flux at the peak

energy is insensitive to the overall strength of the IGMF. Finally, it is demonstrated that

the variability of blazar gamma-ray emission can be accommodated by the synchrotron

emission of secondary products of UHE photons, if these are produced inside the source

in accelerators of UHECRs.

5.2 Methodology

5.2.1 Selection of sources

A number of TeV HBLs, observed with ground based IACTs since the launch of the

Fermi-LAT in August 2008, are considered. For all TeV blazars observed after that date

there exist simultaneous GeV observations (or upper limits) due to full time operation of

the Fermi-LAT. The present study focuses on high redshift HBLs, as the most extreme

accelerators are likely to reside at higher redshifts. Blazars for which there exist long-term

observations are of particular interest, so as to constrain their variability properties.

The HBL 1ES 0229+200 is a relatively distant hard spectrum source, that has been

studied extensively. The observed spectral index ΓVHE ' 2.5 suggests a very hard intrinsic

emission. Its high energy peak is at energy, E ≥ 10 TeV. Under the assumption that the

intrinsic spectrum cannot be harder than Γ ' 1.5 in leptonic models, it has been inferred

that the EBL must be very low, close to the minimum inferred by resolved galaxy counts

in order to be consistent with the observed spectrum of 1ES 0229+200 (Aharonian et al.

2007). The source has also been used to place lower limits on the strength of IGMFs in

the voids of large scale structure, under the assumption of a purely leptonic origin of the

gamma-ray emission (see section 5.1.2 and references therein). The gamma-ray spectrum

of the source is also possible to explain if the emission is due to inverse-Compton cascades

seeded by UHECRs (e.g., Essey & Kusenko 2010; Murase et al. 2012). If the UHECR

cascade mechanism is responsible for the observed spectrum, the lower limits of the IGMF

inferred are no longer valid, nor are the EBL limits inferred from the study of this source. In

addition, a number of non-conventional physics models have been considered in relation to
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its unusually hard spectrum (e.g., Horns & Meyer 2012). There is an ongoing VERITAS

campaign for deep observations of this object (Dumm 2013), where the first hints for

variability on year-long timescales have been reported (Aliu et al. 2014). If this variability

is confirmed, it will challenge the UHECR cascade origin of the observed VHE emission

as the secondary emission from this channel is not expected to exhibit variability at such

timescales. The HBLs RGB J0710+591 and 1ES 1218+304, which have ΓVHE ' 2.7

(Acciari et al. 2010a) and ΓVHE ' 3.0 (Albert et al. 2006; Fortin 2008) respectively,

are also studied. There is no reported variability in the gamma-ray emission of RGB

J0710+591, whereas 1ES 1218+304 exhibits a ∼ 90 hour variability in the VHE band

(Acciari et al. 2010b). RGB J0710+591 and 1ES 1218+304 have also been used to set

constraints on the IGMF strength assuming a leptonic origin of the emission (Taylor et al.

2011; Huan et al. 2011; Arlen et al. 2012).

PG 1553+113 is a very distant HBL, first observed with HESS in 2006 (Aharonian

et al. 2006). Its redshift is uncertain, due to inability to resolve any of the features of

the spectrum of the host galaxy, which is not uncommon in blazars as the beamed non-

thermal emission often obscures the host galaxy. The latest studies of this object estimate

z = 0.43 − 0.58 by studying the Lyman forest absorption of the spectrum of this source,

by the intervening intergalactic medium (Danforth et al. 2010), making it one of the most

distant TeV blazars known. From the requirement that there is no upturn to the spectrum

after correction for EBL absorption an upper bound on the redshift of z < 0.62 has been

obtained (Dumm 2013). PG 1553+113 has a hard GeV spectrum ΓLAT ' 1.7 but a very

soft TeV spectrum, ΓVHE ' 4.3 and exhibits no short term variability in the GeV band. In

the TeV band hints for a low amplitude variability in the total flux on year-long timescales

have been reported Aleksic et al. (2012b). In 2012, the observation of a flare from this

source was reported (Steele et al. 2012). The main parameters of the blazars studied are

summarised in table 5.2.1.

z ΓVHE tV
1ES 0229+200 0.14 2.5 ∼ yr?
RGB J0710+591 0.13 2.7 none
1ES 1218+304 0.18 3.0 ∼ 90 hours
PG 1553+113 0.43-0.58 4.3 ∼ yr?

Table 5.1. Redshift, z, observed spectral spectral index ΓVHE, and inferred
variability tV of the blazars studied (see text for references). For PG 1553+113,
whose redshift is not confirmed, z = 0.43 is assumed.
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5.2.2 Magnetic field model

As discussed in section 3.1, the most sophisticated numerical simulations of the large scale

distribution of magnetic fields in the universe (e.g., Ryu et al. 1998; Dolag et al. 2005;

Das et al. 2008) do not converge as to the filling factor of magnetic fields, especially in the

weak magnetic field regime that one expects for IGMFs in voids.

Here, the more practical phenomenological method of Kotera & Lemoine (2008a) for

modelling the structured magnetic fields in the universe is adopted. The method relies on

mapping the strength of magnetic fields, B, to the underlying matter density distribution

ρ, following analytic relations of the form B = B0f(ρ), where B0 is a normalisation factor.

A model of the form

fcontrast(ρ) = ρ

[
1 +

(
ρ

〈ρ〉

)−2
]−1

, (5.2)

is considered, which is motivated by physical arguments related to the mechanism of

amplification of magnetic fields during structure formation (see e.g. discussion in 3.1.3).

This relation (“contrast model” of Kotera & Lemoine 2008a), is an adhoc model, which

aims to capture a situation in which the magnetic field in the voids of large scale structure

is suppressed with respect to the magnetisation in denser regions, where magnetic pollution

is expected to have taken place through e.g., starburst, radio galaxies. The synchrotron

emission calculated in this work depends very weakly on the chosen magnetic field model,

as the differences between different models are only major in the voids of large scale

structure.

To model the density field, a dark matter simulation volume, which is obtained with

the hydrodynamical code RAMSES (Teyssier 2002), has been used. The distribution of

dark matter is a good description of the underlying density field. The simulation volume

is given by a 5123 cube, which describes a volume of size 200h−1 Mpc comoving. A

standard ΛCDM model is assumed in the dark matter simulation and throughout this

work, with ΩΛ = 0.7, ΩM = 0.3 and Hubble constant H0 = 70 km s−1 Mpc−1. Each cell

of the simulation is considered as an independent scattering centre with coherence length

λcoh = 0.39h−1 Mpc comoving, with a randomly oriented magnetic field direction. A slice

through the magnetic field volume can be seen in figure 5.3.
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Figure 5.3. Slice through the magnetic field in the simulation volume. The
colour-bar gives logB in Gauss. The slice shown has been obtained considering
a normalisation factor B0 = 1 nG (see text). The coherence length of individual
scattering centres is 0.39h−1 Mpc comoving.

Figure 5.4. Median deflection angle at different distances from the source as a
function of energy of the propagating protons in the simulations (solid lines). The
dashed lines give the deflection angle expected based on the analytical prediction
of Waxman & Miralda-Escude (1996) (equation 3.5). The noise in the numerical
results is statistical.
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Figure 5.5. Profile of the mean and median magnetic field strength as a function
of distance from the source, in the vicinity of the source in the simulation volume.
The profile shown corresponds to a normalisation factor B0 = 50 nG (see text).

To verify the robustness of the simulations of the UHECR propagation in a magnetised

medium, the deflection angles of protons in the simulations are compared to the analytical

prediction of Waxman & Miralda-Escude (1996) (equation 3.5). As shown in figure 5.4,

at ultra-high energies the median deflection angle suffered by protons in the simulations

is in acceptable agreement with the analytical prediction. At lower energies, the curves

obtained numerically deviate from the analytical prediction as protons enter a diffusive

regime, the curves saturate at 90◦ and equation 3.5 no longer holds.

5.2.3 Simulations

The expected gamma-ray signal is modelled through a combination of numerical Monte

Carlo simulations and solving the kinetic equations of the particles in the simulations.

For the propagation of hadrons emitted by the blazars in the simulation volume, CR-

Propa 2.0 (Kampert et al. 2013) in 3D mode is used. CRPropa models the interactions

of hadrons with the radio, CMB and IR backgrounds and subsequent production of elec-

tron/positron pairs, mesons and neutrinos. The deflections and time delays of hadrons in
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cosmic magnetic fields are also handled. There are some limitations in the treatment of

electromagnetic cascades with CRPropa and for this reason the code presented in Murase

(2012), which solves the kinetic equations of the leptons in the simulations at every time

step, taking full account of energy losses and interactions with background photons, is

used here instead.

In CRPropa, pion production of protons on the CMB is simulated with the SOPHIA

package (Mücke et al. 1999) and Bethe-Heitler pair production is treated following the

parametrisation of Kelner & Aharonian (2008). The equations of motion of each hadron

are solved at every time step, deflections are calculated analytically and a new position

and momentum for each particle are determined.

Particles are injected from a filament in the simulation volume. The profile of the

magnetic field strength in the vicinity of the source is shown in figure 5.5. The value of

B0 is varied so as to reproduce the typical magnetic field strength in filaments and in

the outskirts of galaxy clusters. Quantitatively, with the structured field model presented

in section 5.2.2, a normalization factor B0 = 1, 2.5, 16, 50 nG corresponds to a volume

averaged magnetic field over 3 Mpc, B̄ = 6, 16, 100, 316 nG respectively. The size of the

magnetised region has been chosen to reflect the typical radius of an overdense region in

a cluster of galaxies or a filament. In what follows, the term “magnetised region” refers

to the 3 Mpc radius sphere around the source, with mean field B̄.

For the UHECR primaries, a pure proton composition is injected. A power-law spec-

trum of the form dN/dE ∝ E−α is considered, with isotropic cosmic ray luminosity above

1018 eV, Lcr,iso chosen so as to reproduce the observed gamma-ray fluxes of the sources

studied. An abrupt cutoff of the spectrum at Emax, the maximum injected UHECR energy,

is assumed. As a test, a spectrum with an exponential cutoff, exp−E/Emax , was also con-

sidered. The results shown here were found to be insensitive to this choice. As a default,

a spectral index is α = 2.0, is used. A value of 2.0 is approximately what is expected from

diffusive shock acceleration and has been shown to agree with the observed diffuse UHECR

spectrum, after propagation as discussed in section 4.4. To speed up computation while

having sufficient statistics at the highest energies, protons are typically injected in the sim-

ulations with a harder index and the propagated spectra are subsequently reweighed to

the softer index of choice (see equation B.6). The positions and momenta of the secondary

leptons produced in photohadronic interactions in CRPropa in the magnetised region are

recorded. The electrons and photons with a momentum vector that points towards a pre-
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defined observer at a specified distance from the source are collected, allowing a solid angle

error margin of 2π(1 − cos θ), with θ = 11◦ to increase statistics (see geometry in figure

B.1). Rather than using the inbuilt observer modes in CRPropa, the procedure defined

above was used, as the former do not accurately mimic the detection of gamma-rays. The

collected leptons were subsequently propagated with the kinetic code of Murase (2012).

In the lepton propagation code, as with any kinetic code time averaged fluxes are

calculated (see for example the discussion in Lee 1998; Bhattacharjee & Sigl 2000 for

more details). Pair production, inverse-Compton and synchrotron losses, interactions,

adiabatic energy losses and higher order processes are handled. The scheme relies on

solving the coupled transport equations of the ensemble of the flux of each species at

every time-step. A sample transport equation for electrons, with explicit pair-production

and inverse-Compton terms can be written as (Lee 1998)

d

dt
ne(Ee, t) = −ne(Ee, t)

∫
dε nε

∫ +1

−1
dµ

1− µβe
2

σIC(Ee, ε, µ)

+

∫
dE′e ne(E

′
e, t)

∫
dε nε

∫ +1

−1
dµ

1− µβ′e
2

dσIC

dEEe
(Ee;E

′
e, ε, µ)

+

∫
dE′γ nγ(Eγ , t)

∫
dε nε

∫ +1

−1
dµ

1− µβe
2

dσγγ
dEEγ

(Ee;Eγ , ε, µ) +Q(Ee, t).

(5.3)

Here, ne is the local number density of electrons, nε is the local number density of back-

ground photons of energy ε, βe is the velocity of the electrons and nγ is the number

density of gamma-rays. The terms on the right hand side of the equation give the loss

of electrons of energy Ee due to inverse-Compton scattering, the influx of electrons in

this energy bin due to inverse-Compton scattering, the influx of electrons due to pair

production and Q(Ee, t) is an external source term, which accounts for external injection

of electrons. The method is significantly more efficient computationally than a Monte

Carlo and is sufficiently accurate when deflections are negligible, as a one dimensional

propagation approximation is used. In the channel studied here, the deflections of leptons

are subdominant as any deflections will be these of the UHE electrons in the magnetised

region, which promptly interact via synchrotron (and they are typically in a regime where

Dsyn � rLar).

In the lepton propagation code, the secondary leptons produced in the CRPropa runs,

are uniformly injected over the magnetised region. This is a good approximation, given
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that the loss length of protons to the relevant processes (Bethe-Heitler pair production

and photo-pion production) is significantly larger than the size of the magnetised region.

For the magnetic field strength, the volume averaged strength over the magnetised region,

out to 3 Mpc, is taken at this stage of the calculation.

The synchrotron signal that escapes from the magnetised region is calculated with

this setup. A semianalytic cutoff is applied for the attenuation of the signal, that escapes

the magnetised region, by the intervening EBL. The synchrotron photons are below the

pair production threshold for the typical magnetic field strength in filaments, hence the

gamma-ray photons observed in this case are prompt with no further deflections in the

intergalactic medium. For the magnetic field strength typical in galaxy clusters some

cascading of the TeV synchrotron photons might occur, but as already discussed this

component will likely be isotropised by IGMFs. For the opening angle of the blazar jet,

θjet = 0.192 ' 11◦ is considered, but the results presented here are not sensitive to this

choice.

For the EBL energy density and redshift evolution, a range of models that are consis-

tent with current observations are considered (Kneiske et al. 2004; Kneiske & Dole 2008;

Franceschini et al. 2008; Inoue et al. 2013) and for the CMB a black body spectrum of

temperature 2.7 K is assumed. For the URB the model of Protheroe & Biermann (1996b)

and measurements of Clark et al. (1970) as implemented by CRPropa are used. Uncer-

tainties on the spectrum and redshift evolution of the EBL and to a lesser extent of the

radio background, introduce an uncertainty to the results of this work. In particular, the

exact position of the cutoff energy in the TeV may vary substantially between different

EBL models as it depends exponentially on τ , the optical depth to pair production on

the EBL (see equations 2.17, 2.18). However, as we will see in the following section, the

results are robust to the choice of EBL model for the representative range of models that

have been considered in this work.

5.3 Robustness of synchrotron signal with application to

specific sources

The blazars studied have gamma-ray peaks between ∼10 GeV - 10 TeV, however irrespec-

tive of their intrinsic spectra, a cut-off is observed in the TeV that strongly depends on

the redshift of the source and details of the EBL spectrum and redshift evolution. The
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Figure 5.6. Top: Solid lines: The energy flux of secondary leptons produced
by pγ interactions in a 3 Mpc magnetised region around a source at redshift
z = 0.14 that emits UHECRs with Lcr,iso = 1047erg s−1. The magnetic field
profile is shown in figure 5.5. The volume averaged magnetic field strength in
the magnetised region is B̄ = 31.6 nG (purple), 316 nG (green). The peak at
∼ 1015 eV is due to Bethe-Heitler pair production and the high energy peak is
due to photo-pion production and subsequent pion decay. The noise in the pion
bump statistical. Dot-dashed lines: The energy flux of secondary leptons pro-
duced by pγ interactions beyond the first 3 Mpc of propagation.
Bottom: Same as in top panel for B̄ = 316 nG only. The contribution of Bethe-
Heitler pair production (blue) and photomeson production to the secondary lep-
ton flux are shown separately and in the later case photons (green) are shown
separately from the e+e− pairs (red).
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optical depth of the EBL to 1 TeV gamma-rays is thought to be O(1) at z ∼ 0.1 (see for

example figure 2.8), hence for all the sources studied, a strong suppression of the intrinsic

source flux above this energy is expected.

In the secondary synchrotron model, the main contribution to the secondary energy flux

within the magnetised region will be from photomeson production due to the significantly

shorter cooling length compared to that of Bethe-Heitler pair production. This can be

seen in figure 5.6 where the solid lines show the secondary leptons (photons and electron-

positron pairs) produced inside the magnetised region. We can also see that for the chosen

injection spectrum, the peak of the energy spectrum of the first generation of electrons

from photomeson production is at Ee ∼ 1019 eV, as a result of the competition between

the abundance of primary protons with increasing energy and the energy loss rate of the

primary protons. Thus, the characteristic energy of the synchrotron emission will be at

Esyn ∼ 6.8×1011(B/100 nG) eV (c.f. equation 2.24), which for the typical magnetic fields

expected in the large scale structures we study, is near the peak of the blazar spectra.

The synchrotron emission which is emitted with energy beyond few TeV, will be absorbed

by the EBL. As already discussed this low energy absorbed component is expected to be

diluted by IGMFs and not contribute to the GeV flux of the source. In this sense the

results shown here correspond to the limit where IGMFs are strong enough to isotropise

this low energy cascade component.

5.3.1 1ES 0229+200

Figure 5.7 shows the model prediction of the secondary synchrotron signal to the observed

spectrum of 1ES 0229+200 for B̄ in the range 6−316 nG. The assumed isotropic equivalent

luminosity is Lcr,iso = 1047erg s−1. For this source, whose spectrum peaks at & 10 TeV,

B̄ = 316 nG is consistent with the combined GeV-TeV data, whereas considering a lower

value of B̄ results in a poorer fit.

In figure 5.8, the robustness of the model fit to the uncertainty in the intensity and

redshift evolution of the EBL is demonstrated, by considering a range of EBL models

that are consistent with existing limits and measurements. The goodness of the model

fit to the spectrum of 1ES 0229+200 depends on the EBL assumed and the best fit is

obtained with the lower limit model of Kneiske & Dole (2008). All models considered,

slightly under-predict the energy flux at the highest TeV datapoint, but for the fit with

the EBL model of Kneiske & Dole (2008) this disagreement is very small. Considering a



5.3. Robustness of synchrotron signal with application to specific sources 120

slightly higher value of B̄ would improve the consistency of the model with the last TeV

data-point.

In figure 5.9 the robustness of the model predictions to the choice of UHECR injection

parameters, namely the maximum UHECR injected energy, Emax and spectral index, α

is shown. The top panel shows the model fit to the spectrum of 1ES 0229+200, for

Emax = 1020.5 eV, 1021 eV; higher values of Emax are hard to accommodate theoretically.

Here, B̄ = 316 nG has been assumed, and the assumed Lcr,iso is given in the figure legend.

Lower values of Emax result in a poorer fit, implying that if the synchrotron channel

presented here is at the origin of the measured blazar spectrum, then these accelerators

can reach the highest observed energies of cosmic rays.

Considering a higher value of Emax results in a harder model spectrum, increasing the

consistency to the highest energy TeV data-point while easing the luminosity requirements

on the accelerator. This is as expected intuitively as higher energy UHECRs undergo pγ

interactions quicker thus creating more flux in the first few megaparsecs of propagation. In

the bottom panel, the model prediction for the spectrum of 1ES 0229+200 for α = 2.0, 2.3

is shown. A softer spectrum increases the required Lcr,iso, but the model prediction remains

otherwise unaltered.

5.3.2 Other sources

The fits to the combined GeV-TeV band spectra found in the UHECR secondary syn-

chrotron model under the assumption of B̄ = 100 nG, in a 3 Mpc magnetised region

around the source, are shown in figure 5.10 for RGB J0710+591, 1ES 1218+304 and PG

1553+113. The isotropic equivalent luminosity required, Lcr,iso, for the model shown, is

given in the legend. For RGB J0710+591 the secondary synchrotron model is consistent

with the data across the GeV and TeV bands and Lcr,iso = 1047erg s−1.

The fit to the TeV data for 1ES 1218+304 is poorer, although the model is consistent

with the GeV observations for this source. Considering a slightly lower value of B̄ and/or

a softer injection spectrum would fit the TeV data, at the cost of a slight increase in

the required Lcr,iso as demonstrated in figure 5.7 for 1ES 0229+200. However, as already

noted, the gamma-ray emission from this source exhibits a variability in ∼ day timescales.

The observed variability does not favour a secondary UHECR synchrotron origin of the

spectrum of this source (see discussion in section 5.3.3).

The fit to the spectrum of PG 1553+113 is poor. The main source of discrepancy
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Figure 5.7. The fit of the UHECR secondary synchrotron model to the spec-
trum of 1ES 0229+200, assuming a mean strength of the magnetic field in the
magnetised region, B̄ in the range 6 − 316 nG. Here Lcr,iso = 1046.5erg s−1 has
been assumed. Fermi-LAT data points for this source here and throughout have
been adapted from Vovk et al. (2012) and TeV data are from Aharonian et al.
(2007); Aliu et al. (2014). The model spectra shown account for the attenuation
by the EBL, for which the model of Kneiske & Dole (2008) has been considered.

between the model predictions and the data, is an over prediction of the energy flux beyond

0.1 TeV. The TeV spectrum of this source is significantly softer than those of the other

sources considered here. Considering a lower value of B̄ and/or a softer injection spectrum,

would improve the fit to the tail of the spectrum and possibly provide a fit consistent with

the data. However, the required UHECR luminosity is Lcr,iso = 3×1049erg s−1; therefore,

even if a better fit can be obtained, the extreme luminosity requirements make the model

implausible for this source.

5.3.3 UHE photons

If UHECRs are accelerated in AGN, pγ interactions inside the source should also lead

to the production of UHE photons and UHE neutrons (Murase et al. 2009). Such UHE

neutral particles can leave the acceleration zone, if the target photon spectrum is thermal

or suppressed by synchrotron self-absorption. In particular, if the radio emission from

bubbles and lobes is not too strong, the mean free path to γγ pair production is ∼ 2 Mpc,

which is comparable to the size of the magnetised region considered here. So about one
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Figure 5.8. Robustness of the UHECR secondary electron synchrotron model
to the EBL model considered for 1ES 0229+200. Here we show results with the
EBL model of Franceschini et al. (2008)(purple dotted), Kneiske & Dole (2008)
(green solid), Inoue et al. (2013) (blue long dashed). Model parameters assumed
are B̄ = 316 nG and Lcr,iso = 1046.5erg s−1.

half of the UHE photons can escape, while the other half would promptly produce electron-

positron pairs in the magnetised intergalactic medium surrounding a source such as we

have been discussing in this work. The secondary high energy electrons would in turn

radiate synchrotron photons as in the case of runaway UHECRs that we have considered

so far. This type of emission has recently been proposed and studied by Murase (2012).

One expects the signature of the secondary synchrotron emission of runaway UHE

photons to differ from the emission that has been studied thus far, of runaway UHECR

protons, in a number of ways. Firstly, the injection spectra in the two channels are differ-

ent; in the case of runaway UHECRs the only relevant photon fields are the cosmic photon

backgrounds, whereas the production spectrum of UHE photons must happen on a target

photon field inside the source. Murase (2012) analytically calculated the expected UHE

photon spectrum considering target photon spectra created by the synchrotron emission

of electrons in the source environment. Further, and more importantly the main observ-

able difference should be related to the different deflection properties and as a result the

different timing properties of the signal in the two channels. In the UHE photon channel
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Figure 5.9. Robustness of the UHECR secondary electron synchrotron model
fit to the spectrum of 1ES 0229+200, for different UHECR injection spectrum
parameters. Here B̄ = 316 nG has been assumed.
Top panel: Model prediction for Emax = 1020.5 eV (red dotted line) and Emax =
1021 eV (green solid line).
Bottom panel: Model prediction for injection spectral index α = 2 (blue dotted
line) and α = 2.3 (green solid line).
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Figure 5.10. The expected photon energy flux, resulting from the UHECR
secondary electron synchrotron model a magnetised region with average magnetic
field strength B̄ = 100 nG for RGB J0710+591 (top), 1ES 1218+304 (middle)
and PG 1553+113 (bottom). Long-dashed lines show the spectrum that escapes
from the magnetised region. Blue solid lines show the spectra with account of
the attenuation by the EBL, for which the model of Kneiske & Dole (2008) has
been considered. Datapoints for RGB J0710+591 are from Acciari et al. (2010a),
for 1ES 1218+304 from Acciari et al. (2010b) and for PG 1553+113 from Aleksic
et al. (2012a).
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any deflections will come from the secondary electrons and should be approximately

θe ∼ Dsyn/rLar ∼ 3× 10−4(Ee/1019 eV)−2(B/10 nG)−1 (5.4)

(note the difference to equation 5.1 as the relevant cooling process for electrons in this case

is synchrotron emission). Typically this is a very small angle, smaller than typical values

of θjet, hence the emission from this channel is expected to be beamed. If UHE photons

are able to escape the source vicinity and enter the intergalactic medium, the mean free

path to γγ pair production is λγγ ∼ 2 Mpc, which is smaller than the UHECR mean

free path to photo-pion production in the intergalactic medium. Therefore, the secondary

synchrotron signal from UHE photons is dominant when photo-pion production inside the

source is efficient. As a result of the small deflections, the time spread δt of the signal

should also be small. For a magnetised region of characteristic scale, d, Murase (2012)

obtained δt ∼ θ2
ed/2c ∼ 0.3 yr (Esyn/102.5 GeV)(min[d, λγγ ]/Mpc) (c.f. equation 3.6).

In comparison the deflections suffered by UHECR protons in the magnetised region

are larger, of order θp ∼
√
d λcoh/rLar ∼ 0.044 (d/Mpc)(E/1020 eV)(λcoh/d)1/2(B/10 nG).

The resulting time spread is also expected to be considerably larger for the UHECR proton

channel, δt ∼ θ2
pd/2c ∼ 1.6× 103 yr (B/10 nG)(λcoh/d)(d/Mpc)3(E/1020 eV)−2.

In the case of blazars a characteristic signature of the UHE photon channel could

be a transient event, such as a flare with a duration ∼ 0.1 − 1 year, whereas the small

time spread in the UHE photon channel implies that we may observe the echo of flaring

activities. The two channels may be hard to distinguish between for a given steady gamma

ray source, but if the UHE photon channel is dominant, the resulting emission will almost

certainly be more variable.

Figures 5.11, 5.12 show the expected gamma ray spectra from the UHE photon channel

for 1ES 0229+200 and 1ES 1218+304, motivated by their observed variability (or hints

of such a variability in the case of 1ES 0229+200). Following Murase (2012), an injection

spectrum of the form Lγ = L0× (E/Emax
γ )0.5e−E

min
γ /EeE/E

max
γ has been considered. Here,

the generation spectrum of UHE photons depends on the slope of the primary proton

spectrum α, as well as the slope of the target photon spectrum ζ as E2
γdγ/dEγ ∝ E1+ζ−α

p .

An index ζ ∼ 1.5 is assumed, which is typically expected for a photon field generated via

synchrotron emission in AGN and α ' 2.0 as throughout most of this work. The values of

Emin
γ = 1018.5 eV and Emax

γ = 1019.5 eV are chosen to capture the typical energies of the
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ultra high energy photons that are created through the pγ interaction, corresponding to

Emax
p = 1020.5 eV. The normalisation L0 ' fpγLcr,iso, where fpγ is the efficiency with which

UHE photons are produced in pγ interactions. For the setup considered here fpγ ∼ 1/200

at Emax
p is assumed. For a detailed derivation of the ultra-high energy photon generation

spectrum see Murase (2012). Further, B̄ = 316 nG has been assumed in the magnetised

region in the case of 1ES 0229+200 and B̄ = 100 nG in the case of 1ES 1218+304.

The model prediction is consistent with the GeV data of 1ES 0229+200 while slightly

under-predicting the TeV flux. As discussed above, a slightly higher value of the magnetic

field strength at the source would shift the peak of the synchrotron emission further into

the TeV, providing consistency with the TeV observations for this source. The required

luminosity is L0 = 1045erg s−1, i.e. Lcr,iso = 2 × 1047erg s−1, similar to the required

UHECR luminosity in the UHECR proton channel. In the case of UHE neutral beams

the recent hints of variability of the TeV spectrum of this source in ∼ 1 year timescales

can be accommodated.

For 1ES 1218+304 the model prediction is consistent with the combined GeV-TeV

observations of this source. The observed ∼day scale variability of this source cannot

be explained by our current setup, where the UHE photons cascade over an ∼Mpc scale

structured IGMF region. However, UHE neutral beams could possibly explain the vari-

ability of 1ES 1218+304, if the size of the region over which γγ/nγ interactions occur is

significantly smaller (of order kpc), as in the model of Dermer et al. (2012) for FSRQs.

Detailed work on the variability of these sources will be presented elsewhere.

Comparison of figures 5.9, 5.10 and 5.12 illustrates the differences between the two

channels studied. A harder spectrum is observed in the UHECR channel for a given mag-

netic field strength. The injection of a spectrum with an exponential cut-off in the UHE

photon channel partly explains why the resulting synchrotron spectrum in this model has

a sharper cut-off than the synchrotron spectrum in the UHECR channel. A further dif-

ference comes from the contribution of the Bethe-Heitler process in the UHECR channel.

The secondary pairs, that are created via Bethe-Heitler pair production, contribute to the

spectrum that escapes the magnetised region, through the addition of photons with en-

ergy beyond ∼ 1014 eV via inverse-Compton scattering. This is because the Bethe-Heitler

component, which peaks at ∼ 1015 eV, is below the critical energy for cooling via syn-

chrotron emission, which is otherwise the dominant cooling mechanism in the magnetised

regions we’ve been considering. This contribution from Bethe-Heitler pairs, results in a
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Figure 5.11. The arriving energy flux expected from the UHE photon emis-
sion escaping from a magnetised region with average magnetic field strength
B̄ = 316 nG for 1ES 0229+200. The injected luminosity normalisation in ultra
high energy photons is L0 = 1045erg s−1 (see text for details). The dashed black
line gives the injected UHE photon spectrum, the grey dotted line shows the
spectrum that escapes from the magnetised region. The green solid line and blue
dot-dashed line show the expected attenuated spectra using the EBL model of
Kneiske & Dole (2008) and Franceschini et al. (2008) respectively.

harder spectrum escaping the magnetised region in the UHECR channel. In this sense

the observation of the UHE photon channel resulting in a softer TeV spectrum should not

be considered a general result, the difference comes from the different initial conditions.

To summarise, we observe that both channels are a very good fit to the observed gamma-

ray spectra although discrimination between the ultra high energy photon and UHECR

channels is challenging on the basis of the spectral fit alone for steady gamma-ray sources.

The timing properties and the angular extension of the signal contribute towards such a

discrimination, in particular the observed variability of 1ES 0229+200 and 1ES 1218+304

favour neutral beams as the population responsible for this emission.

5.4 Discussion

In 50 years of direct searches for the sources of UHECRs, as discussed in earlier chapters,

we have not made conclusive progress on the subject. The proposed CTA is envisaged
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Figure 5.12. Middle: Same as figure 5.11 but zooming in at the arriving
photon energy flux.
Bottom: Same as top panel but for 1ES 1218+304. The injected luminosity
normalisation is L0 = 8 × 1045erg s−1 and the volume averaged magnetic field
strength inside the magnetised region is assumed to be B̄ = 100 nG.
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to bring about an order of magnitude increase in VHE AGN detections and may thus

allow us to make great progress in searches for the secondary emission of UHECRs. Its

increased sensitivity by as much as a factor of ten compared to the current generation of

IACTs, may make it possible to rule out or confirm the existence of the tail expected,

if the observed VHE emission is due to a UHECR cascade. The absence of such a tail

should imply that this emission is due to synchrotron radiation of secondary electrons

from UHECRs or of leptonic origin. One can then examine the angular image of the

source with the CTA to distinguish between these two possibilities. As shown analytically

in Gabici & Aharonian (2005) and modelled numerically in Kotera et al. (2011), in the

secondary electron synchrotron channel one expects a halo to form around the source as a

result of the deflection of the primary protons and secondary electrons in the embedding

magnetised region. Detailed modelling of the halo expected from this channel should make

it possible to distinguish it from the halo expected from the leptonic channel (presented

in e.g., Elyiv et al. 2009; Taylor et al. 2011).

As the loss length for protons via Bethe-Heitler pair production is of order 1 Gpc and

through photo-meson production of order 100 Mpc in the absence of IGMFs one would

expect the UHECR cascade signal to dominate over the secondary electron synchrotron

signal. This is shown for example in figure 5.6 for a source at redshift z = 0.14, where

we see that the secondary emissions of protons within the magnetised region are 1-2

orders of magnitude lower than the overall proton losses all the way to the observer. It

was shown that, in both cases of UHECR-induced and UHE photon-induced synchrotron

cascades, Liso,cr ∼ 1046 − 1047 erg s−1 is required. Due to the deflection of UHECRs

in magnetised regions, similar UHECR luminosities are required in the case of inverse-

Compton cascades propagating in the intergalactic medium, when UHECR sources are

located in filaments but void IGMFs are negligible (Murase et al. 2012). The UHECR-

induced inverse-Compton cascade signal however, will be further suppressed due to the

deflection of the charged leptons in the cascade, if void IGMFs are non-negligible as is

quantified below.

Following Kotera et al. (2011), the gamma-ray flux from a given UHECR source per
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unit energy interval, can be approximated as

E2
γ

dNγ

dEγ
' f1d(< Bθ)χe

Lcr

8πd2

(
Eγ

Eγ,max

)1/2

' 2.5× 10−10 GeV cm−2 s−1f1d(< Bθ)χe

×
(

LE,19

1042 erg s−1

)(
d

100 Mpc

)−2( Eγ
Eγ,max

)1/2

,

(5.5)

where χeLcr(> E) is the luminosity injected in secondary photons and pairs over a distance

d above cosmic ray energy E and f1d(< Bθ) is the fraction of the distance in the line

of sight, where the magnetic field strength is greater than Bθ. Redshift energy losses

have been neglected in the above expression. For E, one may consider 1019 eV as below

this energy the proton energy loss length via Bethe-Heitler, pair production becomes

significantly larger and the contribution of lower energy particles to the observed flux can

be neglected for an order of magnitude estimate. The fraction of energy transferred to

pairs and pions at distances 100 Mpc ≤ d ≤ 1 Gpc ranges from ∼ 0.5 at d = 100 Mpc

to ∼ 1 at d = 1 Gpc (see proton energy loss lengths to dominant energy loss processes

discussed in sections 2.2.1 and 2.2.2). The magnetic field strength. Bθ, is defined such

that the deflection suffered by the low energy electrons at the final stage of the cascade

is θ. For θ = 1◦, Bθ ∼ 2 × 10−14 G from equation 5.1, for the low energy electrons in

the cascade. The one dimensional filling factor f1d is the most uncertain quantity in the

expression as we’ve discussed throughout this thesis. It is expected that it is related to the

three-dimensional filling factor f1d by f1d ∼ f3d by a constant of order ∼ 1, which depends

on the geometry of the magnetised structures. Several of the most sophisticated large

scale magnetic field models find that a large fraction of the universe is filled with magnetic

fields, where B � 10−14 G (see e.g., figure 3.2). It is clear that if this is the case, the

UHECR cascade signal will be isotropised and hence drop below experimental sensitivity

(see e.g., figure 5 of Ahlers & Salvado (2011) where this effect of homogeneous magnetic

fields of strength B = 10−14 G is illustrated for the case of 1ES 0229+200). If the average

magnetic field strength in voids is below 10−14 G as concluded e.g., in the work of Donnert

et al. (2009), the expected flux level will depend on the number of magnetised structures

crossed. Passing a galaxy or cluster of galaxies would isotropise the cascade but is unlikely,

as these occupy a small fraction of the volume in the universe. Passing a filament is much

more likely, but with a less dramatic effect on the cascade emission. Assuming that a
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fraction f ∼ 0.1 of the volume is filled with filaments of diameter L ∼ 1 Mpc, passing

through the latter would lower the cascade signal level by an order of magnitude. As the

UHECR luminosity requirements are already very high, it remains largely dependent on

the magnetisation properties of the IGMF whether this channel is ultimately detectable.

Throughout, sources that emit an isotropic cosmic ray luminosity Lcr,iso ∼ 1047 erg s−1

above 1018 eV have been considered. Beamed emission eases the requirements on the

accelerator by (1− cos(θj)) · Lcr,iso. For a typical beaming factor of 100, this corresponds

to a beaming-corrected luminosity of Lj ∼ 1045 erg s−1. This is smaller than the Eddington

luminosity, the maximum possible luminosity due to accretion by the black hole which is

given by Ledd(M•) ' 1.3× 1038(M•/M�)erg s−1 (e.g., Dermer & Menon 2010), where M•

is the mass of the black hole and M� is one solar mass. For the blazars studied here,

M• & 108 − 109M� have been derived (Wagner 2008; Woo et al. 2005). Therefore the

required Lj ∼ 1045 erg s−1 is high but not unreasonable (although the jet power is typically

lower than the Eddington luminosity for BL Lacs, as discussed in Ghisellini 2010). Note

that the required cosmic ray luminosity is at the same level as required by UHECR-induced

inverse-Compton cascade models.

On the other hand the observed Auger UHECR spectrum suggests that in the Earth’s

GZK horizon the total power in UHECRs per unit volume per year at energy E is

E2dN/dE ' 1044 erg Mpc−1 yr−1 assuming an isotropic distribution of sources (Murase

& Takami 2009; Berezinsky et al. 2006; Waxman 1995b). Given that from observations

the number density of sources locally is consistent with n0 ∼ 10−5 − 10−4 Mpc−3, typical

local UHECR sources must have Lj ∼ 1042 erg s−1, therefore the sources discussed here

must be rare and powerful and cannot be typical sources of UHECRs. Due to their dis-

tance and the energy losses (the Greisen-Zatsepin-Kuzmin or GZK effect, Greisen 1966;

Zatsepin & Kuzmin 1966) their contribution to the observed UHECR spectrum should

thus be limited to . 10%. In fact, had any such sources been located within the Earth’s

GZK horizon one would expect a strong excess in the direction of the source in the arrival

direction distribution of UHECRs.

In this work it is assumed that the maximum acceleration energy in the blazars studied

is Emax
p ∼ 1020.5 − 1021 eV. Such energies cannot be achieved by BL Lacs within the SSC

model, where generally protons can reach up to ∼ 1019 eV (Murase et al. 2012; Tavecchio

2014). This is a drawback of the secondary synchrotron scenario for extreme TeV blazars.

However as noted in Tavecchio (2014), the blazar jet parameters obtained in the SSC
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model for classical BL Lacs can hardly be applicable to the extreme TeV blazars that

have been studied here. In addition to the conventional shock acceleration mechanism,

a number of acceleration mechanisms have been proposed that would allow protons in

blazar jets to achieve energies ∼ 1020 eV. These include the shear acceleration mechanism

(Rieger & Duffy 2004) and magnetic reconnection (e.g., Giannios 2010). As mentioned in

section 5.1.3, other models exist in which one abandons the SSC interpretation altogether

and considers a highly magnetised blazar jet B ∼ 10 − 100 G (Aharonian 2000; Mücke

et al. 2003). In such, purely hadronic models, proton energies of 1020 eV can be obtained,

but in general in these conditions pion photo-production is inefficient compared to pro-

ton synchrotron, which is the dominant process responsible for the observed gamma-ray

emission.

Despite the caveat stated above regarding the maximum proton energy, the synchrotron

signal studied in this work is an interesting channel and it can coexist with other emis-

sion components. Proton acceleration in blazar jets remains highly uncertain, and our

assumption for the maximum proton acceleration energy may be accommodated in some

non-typical blazars such as the extreme TeV blazars studied here. Such high maximum

proton acceleration energies in jets have also been discussed in relation to a possible ex-

cess of UHECRs in the direction of Cen A (see e.g., Rieger & Aharonian 2009). In the

near future, detailed multi-wavelength observations of blazar jets will help to clarify the

picture.

In conclusion, the synchrotron emission induced by UHECRs and UHE photons, in the

context of blazars embedded in magnetised regions, was studied. It was demonstrated that

the synchrotron emission of UHECR secondaries provides a possible alternative explana-

tion to the more conventional leptonic SSC or UHECR-induced inverse-Compton cascade

scenarios, for the GeV-TeV spectra of some extreme TeV blazars. In this channel, the

flux at the peak energy is insensitive to variations in the overall IGMF strength, which

is appealing in view of the large uncertainties on void IGMFs. it was also shown that

the variability of blazar gamma-ray emission in ∼month-year timescales can be accom-

modated by the synchrotron emission of secondary products of UHE photons, if these are

produced inside the source in accelerators of UHECRs and that the GeV-TeV spectrum of

1ES 0229+200 is consistent with this possible interpretation. The signal, and the model fit

to the blazar data in this model depend only on the magnetic field strength in the vicinity

of the source and can dominate over other emission components, unless the strength of
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IGMFs in voids is negligibly small. A large fraction of observed galaxies reside in filaments

and clusters of large scale structure and hence this is an almost guaranteed signature as

long as the required energy output in hadrons can be met by the accelerator. Finally, one

may remark that the UHECR-induced synchrotron signal from magnetised regions studied

here and the UHECR-induced inverse-Compton cascade signal that primarily develops in

the voids of large-scale structure are not mutually exclusive.
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Chapter 6

Simulations for a next-generation

UHECR observatory

Only those who will risk going too far can possibly find out how far one can go.

-T. S. Eliot, Transit of Venus

In this chapter, the potential of a future, next-generation UHECR experiment to probe

the sources of UHECRs is explored, focusing on the expected sensitivity to UHECR

anisotropies at the highest energies. In chapter 4 it was concluded that although there are

significant hints for a departure from isotropy at energies beyond the GZK cutoff, it re-

mains difficult to draw firm conclusions as to the sources of UHECRs with available data.

Given the lack of obvious progress in the quest of UHECR sources in almost 50 years, it

is natural to wonder what the capabilities of a future instrument, that is able to overcome

the problem of low statistics, will be. Here, an order of magnitude larger detector than

current-generation UHECR observatories is considered as an example. Such a detector

could be the next step in UHECR astronomy, if the proposed, space-based JEM-EUSO

mission is realised.

6.1 Introduction

The current generation of UHECR detectors collect super-GZK events at a rate . 2 month.

To make progress in the quest for UHECR sources, a natural strategy is to aim for an

135
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increase in experimental detection area, although the prospects for source identification

with a next-generation detector are debated as a result of the absence of a clear correlation

signal with luminous sources so far. Further doubts as to the detectability of UHECR

sources are raised by the recent experimental evidence for an increasingly heavy UHECR

composition at the highest energies.

The next UHECR experiment could be a space-based telescope such as the proposed

JEM-EUSO. Advantages of a space-based observatory over a future ground array in-

clude a full sky exposure and significantly larger detection area than can be achieved

by ground based detectors. In contrast, a future ground based extensive air shower array

could achieve a better energy resolution and better sensitivity to UHECR composition.

JEM-EUSO is proposed to be mounted on the International Space Station in ∼ 2020.

If launched, it will survey the night sky for the ultra-violet fluorescence and Cherenkov

radiation produced when a UHECR hits the Earth’s atmosphere (Adams et al. 2012). It is

expected that JEM-EUSO would reach an annual exposure of 6×104 km2 sr yr, which is 9

times the annual Auger exposure at 100 EeV, in nadir mode (that is when the instrument

is pointing to the point on the Earth directly below its location). In tilt mode, where the

instrument is tilted thus increasing its effective observation area at the cost of decreasing

the energy resolution, it will have about 20 times the annual exposure of Auger. JEM-

EUSO will be sensitive to UHECRs with energy E ≥ 40 EeV and fully efficient beyond

60− 70 EeV. It will have a near uniform exposure over the full sky.

A number of simulation studies have been performed with the aim of assessing the

anisotropy discovery potential of a next-generation full sky observatory. Blaksley et al.

(2013) studied the fraction of observed UHECRs contributed by individual sources at the

highest energies. It was shown that for a UHECR source number density, n̄ = 10−5 Mpc−3

at energy above E = 100 EeV the brightest two to five sources in the sky can be expected

to contribute more than half the total UHECR flux. In the work of d’Orfeuil et al. (2014)

a study of the expected sensitivity of a future JEM-EUSO type detector to anisotropies

for a large range of composition scenarios was performed. It was concluded that even

for the most unfavourable composition scenarios, such as for example in a model where

no protons are accelerated to the highest energies, an anisotropy should be observable, if

UHECR sources follow the spatial and luminosity distribution of 2MRS galaxies. Denton

et al. (2014) studied the sensitivity of JEM-EUSO to anisotropies in the UHECR arrival

distribution that can be revealed through a spherical harmonic analysis. They found that
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large scale anisotropies, which could arise if a bright nearby source or the Galaxy, or

the Supergalactic plane contribute asymmetrically to the observed UHECR flux should

be detectable with high statistical significance. In particular they showed that a dipole

anisotropy, defined via a standard min/max asymmetry α = (Imax − Imin)/(Imax + Imin)

with I the normalised cosmic ray intensity in a specified celestial direction (see e.g. Som-

mers 2001), should be detectable at the 5σ level with three years of JEM-EUSO as long as

α & 0.28. In comparison a 5σ discovery can only be achieved with 10 years of Auger for

dipole amplitudes α & 0.80. Decerprit et al. (2012) developed the formalism to constrain

the responsible astrophysical model for a given UHECR dataset, in a 2D parameter space

consisting of the source number density and angular deflection of the UHECRs. They

showed that a significant anisotropy signal is expected to be detected for a large fraction

of this 2D parameter space even for a moderate number of detected events, or, failing that,

a large range of astrophysical models can be constrained.

As discussed in chapter 4, detecting a correlation of UHECRs with some astrophysical

population does not in itself reveal the UHECR sources, but simply their astrophysical

nature due to the clustering of matter. The relative bias of the distribution of UHECR

sources with respect to that of galaxies has therefore long been an important question.

Some authors (Waxman et al. 1997; Kashti & Waxman 2008) have studied whether through

a statistical analysis of UHECR arrival directions one can constrain such a bias, which

could reveal important hints about the sources of UHECRs. In the case of transient

UHECR sources and a proton dominated composition, a different, degenerate with the

former, bias is expected to occur. This would be the result of the spread in the arrival

times of UHECRs, induced by intervening magnetic fields, which will occur preferentially

in the denser regions of large scale structure, enhancing the UHECR flux expected from

these regions (Kotera & Lemoine 2008b; Kalli et al. 2011). The conclusions of these

studies, that such a bias should indeed be detectable, provide the motivation for taking a

closer look here, at the potential of a future UHECR experiment to detect such an effect.

A study of the sensitivity of a next-generation UHECR detector to the expected

UHECR anisotropy is presented, with focus on the prospect of a statistical discrimination

between different astrophysical scenarios for the origin of UHECRs. A scan over the al-

lowed parameter space is performed. The allowed parameter space includes the unknown

UHECR source density, the unknown fraction of protons at the highest cosmic ray energies

and the possible bias of the UHECR source distribution with respect to the galaxy distri-
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bution, for which, a wider range of physically motivated models than have been studied

in previous works, are considered. The probability of ruling out individual models for

the sources of UHECRs, for the number of events expected to be detected within a few

years of operation of a detector with an annual exposure comparable to that expected for

JEM-EUSO, is presented. Such a study is timely, not least because the relative merit of

a next-generation experiment, that focuses on high exposure over a ground based experi-

ment, that can perform more precise measurements at the cost of more modest statistics,

is at present a topic of debate.

Previously conducted simulation studies, referenced above, have focused on the low

source density regime and the highest cosmic-ray energies, emphasising the expectation

that in this limit, due to the drastically smaller GZK horizon, an anisotropic arrival di-

rection distribution is expected to be observed as a result of multiplets from individual

“bright” UHECR sources each of which produces a significant fraction of the observed

UHECRs above some energy cutoff (generally E & 80 EeV). In this study instead, the

focus is on the “faint” source regime, where the probability of multiplets from an indi-

vidual source is low. In this latter regime, any anisotropy detected should be intrinsic

to the clustering in the distribution of the sources. Even for a relatively low source den-

sity, n̄ ∼ 10−4 Mpc−3, one should be able to probe the intrinsic anisotropy of the source

distribution by considering lower energy events (as long as E & 40 EeV, below which

energy deflections are expected to be too severe, see e.g. Kashti & Waxman 2008). Al-

though the UHECR source density remains unknown, the faint source regime is favoured

by the observed clustering of UHECRs as we’ve discussed in chapter 4 whereas models

with n̄ < 10−5 Mpc−3 are strongly disfavoured (Abreu et al. 2013).

The results presented are general and apply to any future UHECR detector with an

order of magnitude higher exposure than current experiments. Given the prospect of JEM-

EUSO being the next experiment dedicated to UHECR detection, some of its expected

characteristics, namely its expected annual exposure, detection sensitivity, nearly uniform

full sky exposure, pointing and energy resolution have been assumed. Throughout, the

energy losses of UHECRs as they propagate through the background photon fields and

their deflections in intervening magnetic fields are taken into account.
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6.2 Model building

The work presented in this chapter although in the same theme as the work presented

in chapter 4 is an independent analysis with numerous different characteristics. One of

the main differences lies in the expected cosmic ray intensity maps which are presented

in the rest of this section. In chapter 4 we discussed the correlation of UHECRs with

PSCz and 6dF galaxies, that should accurately represent the overall matter distribution,

possibly with some bias. In this chapter instead, Monte Carlo modelling of the unknown

UHECR sources is performed and the expected UHECR arrival distributions are forecast,

for a range of astrophysical models, which are presented next.

6.2.1 Bias prescription of UHECR source clustering

It is well established observationally that different galaxies are biased tracers of the un-

derlying mass distribution in the universe and that different galaxy types cluster to the

mass distribution with varying strengths. Clusters of galaxies cluster more strongly than

galaxies themselves, whereas some subtypes of galaxies, in particular luminous red galaxies

and AGN, are observed to cluster more strongly than the average galaxy field overall.

A number of different theories exist that aim to explain this observed bias. For exam-

ple, the observed strong clustering of galaxy clusters, has been interpreted as a result of

these, very massive structures sampling the high peaks of the underlying mass distribution

(Kaiser 1984; Sheth & Tormen 1999). In this work, the focus is on the clustering of the

unknown UHECR sources. Observationally, a way to constrain the latter sources is to

consider their bias relative to that of galaxies overall. From this point on, in this work,

the term bias refers to the bias of UHECR sources relative to catalogued galaxies, and not

the bias relative to the underlying mass distribution.

A number of models for the bias of UHECR sources are considered, with the aim of

capturing different astrophysical scenarios for the origin of UHECRs. If UHECRs are

accelerated in common sources, then the overall UHECR distribution should follow that

of galaxies. If for example UHECRs are accelerated primarily in young pulsars, then the

distribution of UHECR sources should roughly follow the distribution of young starburst

galaxies, which roughly follows that of ordinary galaxies (e.g., Owers et al. 2007). If on

the other hand UHECRs are accelerated in uncommon, extreme sources such as AGN,

and radio galaxies which tend to be found in over-dense regions, then the distribution of
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UHECR sources should be more strongly clustered than that of galaxies.

Denoting the galaxy density field ρg and its mean value ρ̄g the local galaxy fractional

overdensity can be expressed as

δg =
ρg − ρ̄g

ρ̄g
. (6.1)

Similarly, the local fractional overdensity of UHECR sources can be expressed as δs =

ρs/ρ̄s − 1. The simplest (and often assumed) relationship between two overdensity fields,

here denoted δs and δg, is a linear bias of the form:

δs = b · δg. (6.2)

This, widely used model cannot hold in all cases. For example, it can result in negative

densities if b > 1. It is however generally a good approximation on cosmological scales,

where the density fluctuations δ � 1. Here, to model the bias, b, of the unknown UHECR

sources with respect to that of galaxies, the following models are considered:

• An isotropic model (I), where δs = 0 everywhere.

• An unbiased model (UB), where δs = b·δg, with b = 1. The unbiased model describes

a situation in which all galaxies (or sources in these galaxies) are equally likely to

accelerate UHECRs to the highest energies. Such a model is consistent with the

observed UHECR small scale clustering and derived bounds on the source density.

• A linear bias model (L), where δs = b ·δg, where b = 3. This model better describes a

scenario in which observed UHECRs originate in sources that tend to preferentially

populate overdense regions, such as AGN or radio galaxies (e.g., Shaver & Pierre

1989).

• A threshold bias model (TH), where δs = δg if δg > δmin else δs = −1. This is a

more extreme, ad hoc version of the linear bias model, in which only the densest

regions (i.e. primarily galaxy clusters) contain sources responsible for the production

of observed UHECRs (as we saw in section 1.3 galaxy clusters are some of the few

viable candidates for UHECR acceleration).

In the next section these models are applied to the PSCz catalogue, in order to make

predictions of the expected UHECR intensity maps.
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6.2.2 UHECR intensity maps and simulations

Source distribution

The IRAS PSCz catalogue is used as the basis of the model of the expected UHECR

source distribution; its (almost) full sky coverage is an important advantage over e.g.,

the 6dF which, in the volume it covers, provides a much more detailed survey of the

nearby universe. For simplicity, identical UHECR sources are considered. The UHECR

sources are assumed to produce a power-law spectrum, with maximum acceleration energy,

Emax = 1021 eV, and injection spectral index, α = −2.0. As discussed in chapter 4, Emax

cannot be much lower than ∼ 1021 eV, given that UHECRs have been observed with

energy ∼ 1020.5 eV. Further, the results presented here, are very weakly sensitive to varying

Emax within its anticipated range of values, as UHECRs in this energy range promptly

interact with background photons. The sensitivity of the results to the redshift evolution in

the UHECR source model has not been investigated in this work, as it is almost negligible

within the proton GZK horizon at the highest cosmic ray energies. As in chapter 4 the

PSCz galaxies are weighted by the inverse of the selection function, given by equation

4.10, to correct for the incompleteness of the magnitude limited survey. Galaxy recession

velocities are converted to the Local Group frame, for the reasons discussed in section 4.4.

To construct models of the UHECR source distribution, the galaxy distribution is split

into radial shells of equal thickness; from this stage on, the source distribution models

diverge from what has been presented in chapter 4. A thickness of 11 Mpc was chosen, as

a compromise between degrading the resolution of the analysis and having large enough

shells to capture large structures (as a reminder the typical radius of a galaxy cluster is

a few Mpc). The bias is applied to individual radial shells, which are pixelised into equal

area bins of angular size 0.93◦ (HealPix nside = 64). The bin size was chosen after testing,

as a compromise between degrading the resolution of the maps, and having bins large

enough to capture known galaxy clusters.

In the linear bias model, in some underpopulated bins, the model ends up with negative

densities for the reason explained in section 6.2.1. Given that δs < −1 is unphysical one

needs to set some underdense regions to have δs = −1, or equivalently, a number density

equal to zero. For this analysis, the number density of under dense (δs < −1) bins was set

to zero, after smoothing (see next section). This unavoidable procedure does not make a

big difference to the expected correlation signal in practice, as the cross-correlation mainly
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picks out the high density regions.

To construct the threshold bias model the procedure outlined below is used. A regular

hard thresholding procedure would usually involve setting all the pixels below a fixed δmin

to δs = −1. However given that the galaxy field changes as a function of distance (number

density of galaxies in the sample increases and then decreases as shown in the top panel of

figure 4.4) it would not be possible to maintain a fixed threshold for this situation. Instead

the threshold is defined via a proportion of pixels. The cooler pixels are set to δs = −1.

The proportion of pixels to be set to δs = −1 however, is dependent upon the pixel size.

Through empirical tests it was determined that setting 99% of the coolest pixels with an

angular size of 0.93◦ to δs = −1 is sufficient to retain, on average, 10% of all galaxies which

reside in the densest regions (hottest pixels). Choosing the threshold so as to retain this

galaxy fraction, is motivated by the fact that approximately 10% of all galaxies are found

in galaxy clusters. Figure 6.1 demonstrates that, for the chosen pixel size and threshold,

the mean fraction of all galaxies per comoving shell in the model stays approximately at

10% for all distances.
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Figure 6.1. The fraction of PSCz galaxies that are included in the threshold
bias model as a function of comoving distance. The threshold has been chosen
such that the hottest 1% of all pixels contribute to the model.

Each radial shell is weighted for its expected contribution to the arriving UHECR flux,

following equation 4.4. For all UHECR energy loss calculations, the results obtained by

Monte Carlo in the work of Fodor & Katz (2001) have been used. An isotropic contribution

to the expected UHECR flux by sources beyond 337 Mpc is considered. It is defined

as follows: the GZK horizon for 99% of all cosmic rays, above a given energy, r99%,

and subsequently the fraction of flux contributed by sources between 337 Mpc and r99%

are calculated. The fraction of cosmic rays contributed by sources beyond 337 Mpc is

appreciable below 50 EeV (≥ 30%) but smaller than 1% beyond 60 EeV after the onset of
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the GZK process. This treatment of the homogeneous contribution from sources at high

redshifts, is completely separate from the isotropic fraction in relation to the unknown

composition of UHECRs, which will be introduced below.

The galaxy distribution is smoothed with a Gaussian filter of variable dispersion, fol-

lowing the prescription of Fisher et al. (1995). The smoothing length corresponds to dif-

ferent physical lengths at different distances and roughly reflects the mean galaxy-galaxy

separation in the PSCz at different redshifts. Roughly, in comoving units, the smoothing

length corresponds to . 5 Mpc out to 50 Mpc, . 10 Mpc out to 100 Mpc, . 15 Mpc out

to 200 Mpc and . 25 Mpc out to 300 Mpc. Variable smoothing is important for maintain-

ing high-resolution nearby, while suppressing shot noise at larger distances. The overall

resolution of the maps after smoothing is of order ∼ 7◦. The galaxy survey is masked with

the PSCz mask (Saunders et al. 2000) which is dilated by 7◦, to remove the areas around

the masked region, that will have unavoidably been depleted by the smoothing procedure.

In figure 6.2 the integrated source density in the different bias models out to 337 Mpc

are shown. As expected, the contrast is significantly enhanced in the linear and threshold

bias models with respect to the unbiased model. In figures 6.3-6.5 the fluctuations in

the mean of the expected UHECR intensity averaged over realisations, for UHECRs with

energy above 40, 60, 80, 100 EeV in the various bias models are shown. Increasing the

energy threshold drastically reduces the GZK horizon and it is clearly visible in the maps

that as a result the number of sources contributing to the arriving UHECR flux reduces

drastically. In the maps that correspond to 100 EeV UHECRs for example the contrast is

significantly enhanced compared to the 40 EeV maps, as fewer, nearby sources contribute

significantly to the expected flux.

Source density

A specific realisation of UHECRs is generated by drawing the expected number of sources,

contributing one or more observed cosmic rays, from the smoothed underlying UHECR

source distribution in the various models. The total number of sources depends on the

number density of UHECR sources and is determined as follows: defining the effective

volume to be contained within the radius rGZK at which the surviving fraction of UHECRs

drops to e−1, N sources are drawn from the smooth maps, such that the source number

density, n̄ = N/V , takes the value chosen for a specific realisation, with V = (4/3)πr3
GZK.

The effective GZK radius, rGZK, depends on the UHECR energy. Here, for the source
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Figure 6.2. Maps of the integrated UHECR source distribution out to 337 Mpc
in the unbiased (top), linear bias (middle) and threshold bias (bottom) models,
in Galactic coordinates, with l = 0◦ at the centre of the map and l increasing to
the left. All maps have been normalised to their mean intensity.

number density, values in the range n̄ = 10−4 Mpc−3 − 10−2 Mpc−3 are considered; the

former being close to the lower limit of the source density derived from UHECR clustering

(Abreu et al. 2013) and the latter the number density of bright galaxies.



6.2. Model building 145

Figure 6.3. The expected UHECR intensity averaged over realisations for UHE-
CRs with energy above 40, 60, 80, 100 EeV in the unbiased source model, in
Galactic coordinates, with l = 0◦ at the centre of the map and l increasing to the
left.

Treatment of UHECR deflections

Tthe deflections expected to be suffered by UHECR protons at different energies are taken

into account using an adhoc analytic scaling with energy, σ = 3◦ + 1.5◦(100 EeV/E),
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Figure 6.4. The expected UHECR intensity averaged over realisations for UHE-
CRs with energy above 40, 60, 80, 100 EeV in the linear bias model, in Galactic
coordinates, with l = 0◦ at the centre of the map and l increasing to the left.
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aimed to reflect the expected angular resolution of JEM-EUSO of ≤ 3◦ and the energy

dependent rigidity of proton UHECRs as they propagate through the extragalactic and

Galactic magnetic fields (c.f. equation 3.5).

Expected number of events

The absolute energy scale of the observed UHECR spectrum is not precisely known due

to the large systematic errors associated with the energy reconstruction of the primary

UHECRs (∼ 14% in Auger, ∼ 21% in the TA). The UHECR spectra that have been

presented by the TA and Auger appear to have a systematic disagreement, but can be

brought into agreement by a ∼ 20% rescaling of the energy (see Dawson et al. 2013),

well within the published systematic uncertainties. This introduces an uncertainty to the

expected number of UHECRs above a certain energy for a future detector like JEM-EUSO.

To estimate the number of UHECR events detectable with JEM-EUSO in d’Orfeuil et al.

(2014) two UHECR reference spectra were constructed: one with the Auger absolute

energy scale and one with the TA absolute energy scale. Taking into account the JEM-

EUSO detection efficiency presented in Adams et al. (2013) the expected number of events

for an integrated exposure equal to 3× 105 km2 sr yr was found to be 1100, 250 and 100

events above 50, 80, 100 EeV respectively for the Auger energy scale. For the TA absolute

energy scale 2100, 580, and 260 events are expected for the same energy thresholds. Here,

these estimates are assumed for the number of expected UHECRs. Since the masked

region is excluded from the statistical analysis but the total number of expected events is

fixed, the number of expected UHECRs in a given trial is also determined by Monte Carlo

and varies between realisations. An example sky map of the expected UHECR arrival

direction distribution in the unbiased model, for the statistics that JEM-EUSO would

collect in ∼ 5 years of operation, assuming the TA energy scale, is shown in figure 6.6, for

a (reconstructed) energy threshold E ≥ 50 EeV (see subsection 6.2.2 for details).

Energy resolution

To account for the energy resolution of the detector (∼ 15% for Auger, ∼ 30% expected for

JEM-EUSO) a Gaussian detector response is implemented for the reconstructed UHECR

energy. The analysis is performed with the reconstructed energies, instead of the actual

energies injected in the simulations. The degradation of the anisotropy signal with respect

to expectations due to lower energy events being mis-reconstructed with a higher than
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their true energy was not explicitly modelled in chapter 4, although the effect of a possible,

systematic over(under) estimation of the energy of the Auger UHECRs on the results was

investigated.

Statistical approach

To quantify the expected sensitivity of JEM-EUSO to any anisotropy signal in the UHECR

arrival directions the statistic XM, introduced in chapter 4 is used

XM =
∑
i

(NCR,i −Niso,i) · (NM,i −Niso,i)

Niso,i
. (6.3)

Note the slight redefinition of the various terms in equation 6.3: NCR,i is the number of

UHECRs detected in bin i. Niso,i is the number of UHECRs expected to be detected in

bin i in the isotropic model and NM,i is the number of UHECRs expected to be detected

in bin i in model M (i.e. either of the unbiased, linear and threshold models). Here,

XM is calculated over 7◦ × 7◦ angular bins, to average over possible UHECR deflections.

In practice, here XM is evaluated assuming the UHECR source distribution follows the

unbiased model so from here on it is denoted XUB. Note that unlike in chapter 4, where

fluctuations in value of XUB as a function of bin size were investigated, in the present

analysis the value of XUB does not vary significantly for bin sizes smaller than ∼ 7◦ × 7◦,

as a result of having previously smoothed the expected source distribution with a filter of

a comparable smoothing length.

6.3 Results

In this section, the anisotropy signal expected to be detected with five years of data with

JEM-EUSO, is calculated with the setup presented above.

6.3.1 Isotropic fraction

In this thesis so far it has been assumed that the highest energy cosmic-rays are protons,

which is a firm prediction of most models for the origin of UHECRs. This standard, and

well motivated interpretation is challenged by the composition sensitive measurements of

Auger (see section 1.4 and references therein) and the absence of a clear anisotropy in the

data collected so far by the Auger experiment, as we saw in chapters 3-4. In this section,
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the sensitivity of JEM-EUSO to the expected anisotropy signal in the presence of a fraction

of UHECRs, that have been deflected by large angles, is investigated. It is assumed that

a fraction of UHECRs arrive without having retained a correlation with their sources i.e.

isotropically. This fraction is treated as a free parameter in the simulations.

Figure 6.7 shows the distribution of values of XUB obtained in 10000 Monte Carlo

realisations of an isotropic model (black histograms), an unbiased model where 100% of

UHECRs are protons (red histograms), an unbiased model where 30% of UHECRs arrive

isotropically (blue histograms) and finally an unbiased model where 70% of UHECRs

arrive isotropically (green histograms).

Concentrating on the solid thick histograms, we observe that choosing different isotropic

fractions produces a smooth transition between the predicted mean value XUB in the

isotropic case and the fully anisotropic case. Further, it is clear that the expected

anisotropy signal strongly depends on the number of events collected, and that it is signif-

icantly stronger if we consider all events collected with reconstructed energy E ≥ 50 EeV

than if we concentrate only on the smaller subset of the highest energy events.

6.3.2 Sensitivity to the UHECR source density

The different linestyles in figure 6.7 show the distribution of values of XUB obtained for

different values of the UHECR number density. We observe, as expected (see discussion

in chapter 4) that the source number density does not affect the mean value of XUB

obtained for a specific model, but rather the width of the distribution of values of XUB

and therefore it does affect the significance with which a specific model for the UHECR

source distribution can be ruled out. Further, we observe that a source number density

similar to that of bright galaxies results in the strongest possible anisotropy signal and is

thus the most favourable for the present study. Note that for an energy threshold of 80 EeV

or higher it is not possible to constrain source number densities lower than 10−3 Mpc−3

with the present setup, as the number of sources contributing to the expected UHECRs

drops radically (the horizon over which the survival probability of 80 EeV UHECRs drops

to e−1 is ∼ 60 Mpc, making the number contributing UHECR sources (4/3)π(603)n̄ ∼ 200

for n̄ = 10−4 Mpc−3). As a result the distribution of XUB becomes highly non-Gaussian,

not allowing to derive unambiguous confidence intervals. For a study of this low source

number density regime see the work of Blaksley et al. (2013).
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6.3.3 Sensitivity to the bias of the source distribution

We now look at the sensitivity of a future UHECR detector to the anisotropy signal

expected in the different clustering models that have been assumed for the cosmic ray

sources. With the same setup as previously the distribution of values of XUB is calculated

in the different possible models of the source distribution and plotted in figures 6.8-6.10.

As with the results of the previous section, we observe that the much larger number of

lower energy events is crucial for distinguishing between the different bias models. In the

bottom row of figure 6.8 we see that already at 1100 events there is significant distinction

between the isotropic, unbiased and linear models and in particular the threshold model

could be ruled in or out with a very high significance. The situation only improves, if the

TA energy scale is assumed.

Further, inspection of figures 6.9 and 6.10 reveals that the trend for the mean of

the distribution of XUB changes in a similar way as the bias models change and as the

isotropic fraction in the data changes. In other words, with future data it will be possible to

constrain the 2D parameter space defined by the combination of the composition and the

bias model with the statistic XUB alone. Inspection of the histograms in figures 6.8-6.10

leads to a further, slightly disappointing, conclusion that has not been discussed before;

namely that the mean value of the cross-correlation will have degeneracies as a result of

the effect of the unknown composition/deflections of UHECRs and that of the unknown

bias of the UHECR sources with respect to the galaxy distribution. Only knowledge of

the composition of the UHECR sample studied will allow such a degeneracy to be broken.

Despite this drawback, the main concern here is whether a significant anisotropy should

be expected or not. Tables 6.1 and 6.2 quantify the results that have thus far been discussed

qualitatively in this section. Following the formalism developed in Waxman (1995b) the

probability P (M1|M2) of ruling out a particular model of the source distribution M1 at a

specified confidence level (95%, 99%, 99.9%) assuming model M2 is true is quoted. This is

calculated, by counting the fraction of realisations of M1 in which XUB took more extreme

values than in 95%, 99%, 99.9% of realisations of M2 respectively. Note that confidence

intervals in the two tables have been obtained assuming the baseline model M1 (i.e. model

M1 with 0% events arriving isotropically). This is different to what is shown in figures 6.9

and 6.10 where all models have been plotted assuming an isotropic fraction of events.

Inspection of tables 6.1 and 6.2 confirms that the larger number of lower energy events
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will be crucial for differentiating between the various models of the UHECR source distri-

bution. Further, inspection of table 6.2 reveals that once the number of observed events

beyond 50 EeV increases to above 1000, an anisotropy at the 99% level should be de-

tectable if the number density of sources is comparable to that of galaxies, as long as

the composition is proton dominated. Once the number of events increases to 2000 the

anisotropy should be detectable at the 99% level, as long as the number density of UHECR

sources is equal to or larger than n̄ = 10−3 Mpc−3 and the fraction of protons is not lower

than 70%. Further, if the UHECR sources cluster in a way similar to that of extreme, un-

common objects such as massive galaxy clusters, an anisotropy at the 99.9% level should

be detectable once the number of events exceeds 2000, even if the fraction of protons

above 50 EeV is as low as 30%. Finally, it is shown that a clear discrimination between

a linear bias model and an unbiased model will not be possible even if 100% of UHECRs

are protons. The confidence intervals quoted here, can be considered a firm lower limit

to the expected anisotropy signal for the models considered; the assumption that heavier

nuclei than protons arrive isotropically, certainly results in a very conservative estimate

of the expected anisotropy. It should be noted that the conclusions drawn here for the

full proton composition, are more conservative than those of Kashti & Waxman (2008)

for a specified number of events, as a result of having taken more conservative values for

the energy and pointing resolution of the experiment, given the possibility that the next

generation UHECR detector might be in space.

6.4 Discussion

In this chapter, the UHECR anisotropy signal in arrival directions, expected to be detected

with a detector with an order of magnitude larger annual exposure at energy 100 EeV than

Auger, were forecast, under different astrophysical scenarios. The present study, focused

on the anisotropy expected as a result of the intrinsic anisotropy of the UHECR sources, if

these trace the distribution of extragalactic matter, as opposed to anisotropies which might

arise if individual UHECR sources are “bright” and produce high multiplicity clusters of

UHECRs (as presented in e.g. Blaksley et al. 2013; d’Orfeuil et al. 2014). The results

presented here are general and apply to any future UHECR detector, although some of

the characteristics of the proposed JEM-EUSO space telescope, which might be the next

UHECR observatory to be realised, were assumed. In particular, the expected uniform
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95% CL

iso [%] P(I|UB) P(I|L) P(I|TH) P(UB|L) P(UB|TH) P(L|TH)

0 90( > 99.9 ) 90( > 99.9 ) 99.9 ( > 99.9 ) 57(64) 99( > 99.9 ) 68(98)

30 69(98) 93( > 99.9 ) 99.9 ( > 99.9 ) 7(9) 69(91) 8(28)

50 48(49) 82(86) 99( > 99.9 ) 2(< 1) 28(26) < 1(< 1)

70 23(53) 42(80) 79(99) < 1(< 1) 2(< 1) < 1(< 1)

90 10(14) 8(22) 17(40) < 1(< 1) < 1(< 1) < 1(< 1)

0 59(89) 84(99) 99( > 99.9 ) 19(34) 67(89) 40(56)

30 34(68) 60(92) 88(99) 5(6) 29(53) 8(15)

50 26(50) 42(74) 73(96) 2(< 1) 12(16) 3(1)

70 13(25) 22(41) 38(72) < 1(< 1) 1(< 1) < 1(< 1)

90 7(9) 8(12) 9(18) < 1(< 1) < 1(< 1) < 1(< 1)

99% CL

0 71(99) 99( 99.9 ) > 99.9 ( > 99.9 ) 33(36) 95( > 99.9 ) 43(92)

30 41(92) 77(99) 99( > 99.9 ) 2(2) 45(74) 2(11)

50 22(70) 58(95) 94( > 99.9 ) < 1(< 1) 12(9) < 1(< 1)

70 7(27) 18(57) 56(96) < 1(< 1) < 1(< 1) < 1(< 1)

90 2(3) 2(7) 5(18) < 1(< 1) < 1(< 1) < 1(< 1)

0 33(74) 63(97) 94( > 99.9 ) 6(14) 43(74) 20(35)

30 16(68) 36(92) 74(99) < 1(1) 10(30) 2(6)

50 11(23) 22(50) 53(89) < 1(< 1) 3(4) < 1(< 1)

70 13(9) 8(18) 18(49) < 1(< 1) < 1(< 1) < 1(< 1)

90 2(2) 2(3) 3(5) < 1(< 1) < 1(< 1) < 1(< 1)

99.9% CL

0 36(99) 92( > 99.9 ) > 99.9 ( > 99.9 ) 14(13) 85(99) 13(72)

30 14(80) 43(99) 96( > 99.9 ) < 1(< 1) 22(47) < 1(2)

50 5(49) 25(86) 75( > 99.9 ) < 1(< 1) 3(2) < 1(< 1)

70 < 1(12) 3(34) 23(89) < 1(< 1) < 1(< 1) < 1(< 1)

90 < 1(< 1) < 1(2) < 1(7) < 1(< 1) < 1(< 1) < 1(< 1)

0 14(53) 37(90) 83(99) 1(2) 19(45) 6(15)

30 4(22) 14(59) 48(95) < 1(< 1) 2(9) < 1(< 1)

50 2(9) 7(26) 26(76) < 1(< 1) < 1(< 1) < 1(< 1)

70 < 1(2) 2(6) 5(27) < 1(< 1) < 1(< 1) < 1(< 1)

90 < 1(< 1) < 1(< 1) < 1(< 1) < 1(< 1) < 1(< 1) < 1(< 1)

Table 6.1. Probability of ruling out model M1 assuming model M2 is true
P(M1|M2), for the I-isotropic, UB-unbiased, L-linear and TH-threshold models, at
the specified confidence level (95%, 99%, 99.9%) with five years of a JEM-EUSO
like exposure, considering only events expected to be detected with E ≥ 100 EeV.
Values outside (inside) brackets assume that the number of detected events will
be 100 (260). In each of the three subtables (95%, 99% and 99.9% CL) the top
five rows assume a UHECR source number density n̄ = 10−2 Mpc−3 and the
bottom five rows assume n̄ = 10−3 Mpc−3. Different rows assume a different
fraction of the observed UHECRs arrives isotropically (denoted “iso”). From top
to bottom iso= 0%, 30%, 50%, 70%, 90%.

full-sky exposure, as well as the modest pointing and energy resolution of a space based

UHECR telescope and the proposed detection efficiency of JEM-EUSO (Adams et al.

2013) were assumed.

Sky maps of the expected UHECR intensity, in a range of models for the bias of



6.4. Discussion 153

95% CL

iso[%] P(I|UB) P(I|L) P(I|TH) P(UB|L) P(UB|TH) P(L|TH)

0 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) 72(90) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 )

30 99( > 99.9 ) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) 5(5) > 99.9 ( > 99.9 ) 99.9 ( > 99.9 )

50 86(98) 99( > 99.9 ) > 99.9 ( > 99.9 ) < 1(< 1) 99( > 99.9 ) 53(76)

70 52(72) 78(93) > 99.9 ( > 99.9 ) < 1(< 1) 9(12) < 1(< 1)

90 15(18) 21(29) 61(84) < 1(< 1) < 1(< 1) < 1(< 1)

0 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) 65(86) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 )

30 97 ( 99.9 ) 99.9( > 99.9 ) > 99.9 ( > 99.9 ) 6(5) > 99.9 ( > 99.9 ) 99( > 99.9 )

50 80(97) 97( > 99.9 ) > 99.9 ( > 99.9 ) < 1(< 1) 97( > 99.9 ) 48(75)

70 45(69) 70(90) > 99.9 ( > 99.9 ) < 1(< 1) 9(10) < 1(< 1)

90 13(17) 19(26) 56(80) < 1(< 1) < 1(< 1) < 1(< 1)

0 95(99) 99.9( > 99.9 ) > 99.9 ( > 99.9 ) 37(56) > 99.9 ( > 99.9 ) 99.9 ( > 99.9 )

30 76(94) 95(99) > 99.9 ( > 99.9 ) 4(5) 99( > 99.9 ) 71(96)

50 53(75) 78(95) > 99.9 ( > 99.9 ) < 1(< 1) 73(91) 27(40)

70 27(40) 43(64) 97(99) < 1(< 1) 9(9) < 1(< 1)

90 10(12) 13(17) 34(52) < 1(< 1) < 1(< 1) < 1(< 1)

99% CL

0 99.9( > 99.9 ) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) 46(73) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 )

30 93(99) 99( > 99.9 ) > 99.9 ( > 99.9 ) 1(1) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 )

50 65(92) 93(99) > 99.9 ( > 99.9 ) < 1(< 1) 95(99) 25(52)

70 25(47) 51(80) > 99.9 ( > 99.9 ) < 1(< 1) 2(3) < 1(< 1)

90 4(6) 6(11) 32(64) < 1(< 1) < 1(< 1) < 1(< 1)

0 99( > 99.9 ) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) 37(66) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 )

30 87(99) 99( > 99.9 ) > 99.9 ( > 99.9 ) < 1(6) > 99.9 ( > 99.9 ) 99( > 99.9 )

50 55(87) 88(99) > 99.9 ( > 99.9 ) < 1(< 1) 90(99) 23(54)

70 19(43) 43(74) 99( > 99.9 ) < 1(< 1) 3(3) < 1(< 1)

90 3(5) 5(10) 31(57) < 1(< 1) < 1(< 1) < 1(< 1)

0 84(99) 99( > 99.9 ) > 99.9 ( > 99.9 ) 16(30) 99.9 ( > 99.9 ) 99( > 99.9 )

30 51(82) 84(98) 99.9( > 99.9 ) < 1(< 1) 96(99) 71(87)

50 27(75) 54(95) 99.9( > 99.9 ) < 1(< 1) 50(77) < 1(< 1)

70 10(18) 19(38) 89(99) < 1(< 1) 2(2) < 1(< 1)

90 2(3) 4(5) 14(28) < 1(< 1) < 1(< 1) < 1(< 1)

99.9% CL

0 98( > 99.9 ) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) 19(43) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 )

30 76(98) 98( > 99.9 ) > 99.9 ( > 99.9 ) < 1(2) 99.9 ( > 99.9 ) 96( > 99.9 )

50 36(75) 77(99) > 99.9 ( > 99.9 ) < 1(< 1) 80(98) 10(22)

70 7(22) 24(55) 99( > 99.9 ) < 1(< 1) < 1(< 1) < 1(< 1)

90 < 1(< 1) < 1(3) 13(36) < 1(< 1) < 1(< 1) < 1(< 1)

0 98( > 99.9 ) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 ) 16(39) > 99.9 ( > 99.9 ) > 99.9 ( > 99.9 )

30 72(96) 98( > 99.9 ) > 99.9 ( > 99.9 ) < 1(< 1) > 99.9 ( > 99.9 ) 92(99)

50 33(65) 73(98) > 99.9 ( > 99.9 ) < 1(< 1) 72(98) 6(23)

70 7(17) 22(47) 99( > 99.9 ) < 1(< 1) < 1(< 1) < 1(< 1)

90 < 1(1) 1(2) 11(29) < 1(< 1) < 1(< 1) < 1(< 1)

0 60(92) 94( > 99.9 ) > 99.9 ( > 99.9 ) 4(10) > 99.9 ( > 99.9 ) 98(99)

30 24(60) 60(93) > 99.9 ( > 99.9 ) < 1(< 1) 86(98) 47(71)

50 9(24) 26(61) 99( > 99.9 ) < 1(< 1) 24(52) 3(6)

70 2(5) 5(15) 70(95) < 1(< 1) < 1(< 1) < 1(< 1)

90 < 1(< 1) < 1(< 1) 3(10) < 1(< 1) < 1(< 1) < 1(< 1)

Table 6.2. Same as table 6.1 but considering all the events expected to be
detected in five years of JEM-EUSO with energy E ≥ 50 EeV. Values outside
(inside) brackets assume that the number of detected events will be 1100 (2100).
In each of the three subtables (95%, 99% and 99.9% CL) the top five rows assume
a UHECR source number density n̄ = 10−2 Mpc−3, the five middle rows assume
n̄ = 10−3 Mpc−3 and the five bottom rows assume n̄ = 10−4 Mpc−3.
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UHECR sources relative to the galaxy distribution, were constructed, motivated by the

observed clustering of different astrophysical populations relative to the overall galaxy

distribution. Motivated by recent measurements of UHECR composition, that suggest

an increasingly heavy, mixed composition with energy above ∼20 EeV, the analysis was

conducted assuming a fraction of the observed UHECRs are deflected by large angles. The

effect of such heavily deflected UHECRs was simulated by assuming they arrive isotrop-

ically, smearing the expected anisotropy signal. For a given assumed fraction of protons

in the data, this is almost certainly a conservative estimate of the expected anisotropy

signal, as more than likely at least some of the observed nuclei will retain some correlation

with their sources as shown for example by d’Orfeuil et al. (2014).

It was shown that if UHECR sources cluster to the matter distribution in a similar

manner to that of galaxy clusters, a significant anisotropy should be detectable in the

arrival directions when the number of events with energy E ≥ 50 EeV exceeds 1000 even

for the modest, energy and pointing resolution of a space based instrument and even if the

fraction of protons at the highest energies is as low as 30%. Further, it was demonstrated

that if the UHECR source distribution follows the distribution of galaxies, perhaps with

some linear bias comparable to the observed bias of low redshift AGN, then the expected

anisotropy signal will be lower but detectable with high statistical significance, as long

as the fraction of light nuclei at the highest energies is ≥ 70% and the UHECR source

number density is comparable to that of bright galaxies, assuming the energy scale of

the Auger experiment. Assuming the energy scale of the TA experiment means that

double the number of events should be detectable annually. In that case, a statistically

significant anisotropy should be expected, even if the number density of sources is an

order of magnitude lower. The dependence of the results to the unknown UHECR source

number density has been pointed out throughout and it was demonstrated that the larger

the number of UHECR sources, the higher the expected anisotropy. In practice, the

UHECR source number density should be possible to constrain with real data from the

clustering in the dataset (number of “repeaters”) as shown in chapter 4.

Throughout this chapter the expected UHECR flux sky maps were masked by the PSCz

mask leading, unfortunately, to an incomplete sky coverage. In some of the studies that

have been discussed in this chapter (e.g., Kashti & Waxman 2008; d’Orfeuil et al. 2014),

the obscured region of the galactic plane and unobserved regions have been populated by

drawing the number of galaxies in the obscured part of the sky from a Gaussian, or Poisson
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distribution with a mean equal to the mean number of galaxies in adjacent observed

regions. This technique was avoided here, as it can bias the results of the analysis.

In conclusion, it was shown that an order of magnitude larger detector than current

UHECR experiments should push forward the study of UHECRs. Further, a significant

anisotropy should be expected in most astrophysical scenarios in the parameter space

explored, consistent with the complementary findings of d’Orfeuil et al. (2014). An absence

of anisotropy with such an increase in experimental exposure, could only mean a completely

heavy dominated composition and unexpectedly large UHECR deflections, which could

be translated to bounds on the Galactic and local extragalactic magnetic fields or new

physics.
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Figure 6.5. The expected UHECR intensity, averaged over realisations, for
UHECRs with energy above 40, 60, 80, 100 EeV in the threshold bias model, in
Galactic coordinates, with l = 0◦ at the centre of the map and l increasing to the
left.
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Figure 6.6. Example of the expected UHECR arrival direction distribu-
tion, for the statistics that JEM-EUSO would gather with a total exposure
of 300000 km2 sr yr (≈ 5 years of operation), with a reconstructed energy
E ≥ 50 EeV, in the unbiased model. The expected flux has been calculated,
assuming the flux normalisation given by the TA energy scale (see text). The
map is in Galactic coordinates, with l = 0◦ at the centre of the map and l
increasing to the left.
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Figure 6.7. The distribution of values of XUB in 10000 realisations of UHECRs
with energy E ≥ 100, 80, 50 EeV from top to bottom. Red lines give the isotropic
expectation, black lines the expectation from the unbiased model, blue lines the
expectation from the unbiased model assuming a 30% of the sample is isotropic
and green lines the expectation for a sample that is 70% isotropic. Thick solid
lines correspond to a UHECR source number density n̄ = 10−2 Mpc−3, dashed
lines correspond to n̄ = 10−3 Mpc−3 and thin solid lines to n̄ = 10−4 Mpc−3

(the latter are only shown in the bottom row; see text for explanation). The
left (right) column corresponds to the expected number of events in five years of
JEM-EUSO following the Auger (TA/HiRes) energy scale.
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Figure 6.8. The distribution of values of XUB in 10000 realisations of UHECRs
with energy E ≥ 100, 80, 50 EeV from top to bottom in the different bias models.
Black histograms give the isotropic expectation, green histograms the expectation
from the unbiased model, purple histograms the expectation from the linear bias
model and orange histograms the expectation from the threshold bias model.
The expected number of events shown in the left (right) column corresponds to
the expected number of detected events with 5 years of JEM-EUSO following the
Auger (TA) energy scale. The UHECR source number density has been assumed
to be n̄ = 10−3 Mpc−3.
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Figure 6.9. Same as figure 6.8 but assuming 30% of detected UHECRs arrive
isotropically.
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Figure 6.10. Same as figure 6.9 but assuming 70% of detected UHECRs arrive
isotropically.
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Chapter 7

Conclusions and future work

We shall not cease from exploration, and the end of all our exploring will be to

arrive where we started and know the place for the first time.

-T. S. Eliot, Little Gidding

In this thesis we set out to constrain the sources of ultra-high energy cosmic rays. What

have we achieved in this endeavour?

In chapter 4, the expectation that the highest energy cosmic rays may reveal their

sources, if they are protons, due to their short propagation horizon and small magnetic

deflections. was examined. By studying the clustering in the arrival directions of the

UHECRs detected by the Auger experiment and assuming that they are protons, the

number density of UHECR sources was constrained to be larger than ∼ 10−4 Mpc−3. By

cross-correlating the Auger UHECR arrival directions with the local galaxy distribution,

further constraints were placed on the unknown UHECR sources. It was shown that the

Auger UHECRs exhibit a departure from isotropy at the 95% level and are consistent with

the distribution of galaxies in the PSCz and 6dF surveys, if effective random deflections

with amplitude 3◦−5◦ have been suffered. It was demonstrated that these conclusions are

robust to the choice of galaxy catalogue, to the systematic uncertainty in the energy of

the UHECRs and the unknown details of the UHECR spectrum produced by individual

accelerators. Further, the possibility that UHECRs may correlate with a fraction of the
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galaxy distribution was explored, by cross-correlating the Auger UHECRs with contigu-

ous radial shells of galaxies. It was found, that there is no correlation with the galaxy

distribution in the nearest ∼50 Mpc whereas the Auger UHECRs are consistent with the

less anisotropic (by construction due to the larger volume covered) galaxy distribution in

the more distant shells beyond ∼50 Mpc.

In chapter 5 we saw that gamma-ray emission is also a powerful tracer of hadronic ac-

celeration in extragalactic sources and it should be possible to detect sources of UHECRs

through their secondary gamma-ray signatures as long as hadronic and leptonic contri-

butions can be disentangled. The gamma-ray spectra of a number of TeV BL Lacs, that

are extreme in the sense that that their spectra are particularly hard and peak beyond

1 TeV, were studied. It was argued that standard leptonic scenarios strain to account

for these observations. It was shown that inverse Compton cascades seeded by UHECRs

in the intergalactic medium have also been invoked and can account for these spectra,

only if very weak intergalactic magnetic fields are assumed. The synchrotron emission of

UHECR secondaries produced in blazars located in magnetised environments, was stud-

ied, and hit was shown that it can provide an alternative explanation for the spectra of

some of the sources studied. It was demonstrated that this, secondary synchrotron signal,

is more robust to variations of the intergalactic magnetic field strength than the inverse

Compton cascade signal, which is appealing in view of the large uncertainties on the in-

tergalactic magnetic field strength. Finally, the possibility that the gamma-ray spectra of

these sources originate in the synchrotron emission of secondary products of UHE photons,

if these are emitted by UHECR accelerators inside magnetised regions, was considered.

These could also naturally account for the observed blazar spectra, and in some cases

they can also account for the observed variability, such as for example in the case of the

blazar 1ES 0229+200, for which hints of a variability in ∼year long timescales have been

observed.

In chapter 6, the potential of a future UHECR experiment, that is able to overcome the

limitation of very low statistics to detect an anisotropy in the arrival directions of UHECRs,

was explored. A future detector with an order of magnitude increased sensitivity to ∼

1020 eV UHECRs compared to the current generation of experiments, such as the proposed

space-based JEM-EUSO, was considered. The potential for a statistical discrimination

between different astrophysical models, which was parametrised by the number density

of UHECR sources, the possible bias of the UHECR accelerators with respect to the
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galaxy distribution, and the unknown fraction of UHECRs that have been deflected by

large angles was explored. It was shown that an anisotropy at the 99% level should be

detectable, when the number of detected events exceeds 1000 beyond 50 EeV, as long

as the composition is proton dominated and the number density of UHECR sources is

high-comparable to that of bright galaxies. Once the number of detected events increases

beyond 2000, the anisotropy should be detectable at the 99% level, even if the number

density of UHECR sources is one order of magnitude lower, as long as the fraction of

protons in the dataset is 70% or higher. Finally, it was shown that if the UHECR sources

follow the distribution of galaxy clusters, an anisotropy at the 99.9% should be detectable

once the number of detected events exceeds 2000, even if the fraction of protons at the

highest energies is as low as 30%.

7.1 Future work

Much remains to do in future since not a single source of UHECRs is yet confirmed.

For direct UHECR studies, such as the cross-correlation analysis presented in chapter 4

the main difficulty of course is the very small number of detected UHECR events. With

Auger and and TA in full operation the available UHECR dataset has already doubled

(although not yet been published) and is continuing to increase slowly. In light of this

upcoming data it is important to use the best available galaxy survey to cross-correlate

the arrival directions of the UHECRs. After the work in chapter 4 was completed the

2MASS selected 2MRS survey was completed and it would be important to check how the

conclusions drawn evolve in light of the expanded UHECR datasets, when cross-correlated

with the 2MRS, which is the densest sampled all-sky redshift survey to date and which

improves over the sampling of the PSCz.

The uncertainty introduced in the cross-correlation results by the uncertainty in the

measured redshift of the nearest galaxies, due to their peculiar velocities, was discussed.

A possible refinement to the model of the expected UHECR source distribution, would be

to consider a model of the reconstructed velocity field (see e.g., the work of Erdoğdu et al.

2006), which takes into account bulk flows due to known mass concentrations and would

to some extent correct for this effect. The uncertainty introduced in the results by the

magnitude limit of the survey was also discussed. To some extent, this was corrected for,

by using the selection function of the surveys used. This method, which is unavoidable
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if one wants to properly account for the relative contribution to the UHECR flux from

sources as a function of distance, could bias the results by weighting observed structures

over unobserved ones. A more sophisticated way to account for the magnitude limit of

the survey without relying on the selection function would be to construct a volume (and

magnitude) limited sample from the parent galaxy catalogue. Such a procedure is a natural

extension of the models constructed in this work.

On the other hand, all the available surveys considered so far, are near or far infrared

selected. It is natural to wonder how the conclusions of this analysis compare to an analysis

of the cross-correlation of observed UHECRs with sources in different wavelength bands.

Given the rapidly increasing number of extra-galactic gamma-ray detections a natural

extension of the cross-correlation analysis presented here, would be to examine the cross-

correlation of UHECRs with known extragalactic gamma-ray sources. By concentrating

on gamma-ray emitters, which are known to be responsible for the production of photons

with energy ∼ 1012 eV, one filters out the bulk of less extreme extragalactic emitters.

Similarly it would be beneficial to compare the conclusions of chapter 6 with those

that one obtains when considering the 2MRS survey. The added benefit here is that a

significant gain in exposure can be achieved with the improved coverage of the 2MRS

compared to that of the PSCz near the galactic plane. It would also be important to

compare the results obtained in the ad hoc threshold bias model constructed with the

results that one obtains when considering instead a proper group and cluster catalogue

such as the one presented by Crook et al. (2007). Another possible refinement of this

analysis would be to consider a range of statistical tests in order to determine the ones

most sensitive to the expected anisotropy signal with the number of events expected to be

detected with a next generation experiment.

Much also remains to be done in the phenomenology of extragalactic gamma-ray

sources, in the light of the upcoming high quality data by current and upcoming gamma-

ray instruments. A natural extension to the study of the secondary gamma-ray synchrotron

model presented in chapter 5 would be to study whether it provides a viable alternative

explanation of the gamma-ray spectra of misaligned VHE AGN or FSRQs; the latter are

expected to fulfil the high energetic requirements more comfortably than BL Lacs. The

secondary UHE electron synchrotron emission should be observable independent of the

jet orientation, as long as UHECRs are accelerated in AGN regions other than the jet, as

the synchrotron gamma-rays are produced in the magnetised intergalactic medium that
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surrounds the source.

In this thesis, the focus was on the study of the UHECR signatures of blazars, in

the limit where intergalactic magnetic fields are strong enough to isotropise the inverse

Compton cascade, which would otherwise be expected to develop in parallel. It would be

important to study numerically with a robust self-contained setup, the relative contribu-

tion to the gamma-ray flux of the secondary synchrotron and inverse Compton cascade

components, scanning the allowed parameter space; such a study has never been per-

formed.

Another natural extension of the study presented in chapter 5, is to perform detailed

modelling of the gamma-ray halo expected to form around the source in this channel and

to compare it to the halo expected in other models of the blazar gamma-ray emission (see

Kotera et al. 2011 for a discussion of the different channels). Gamma-ray halos around

AGN are expected to form in a number of different ways and attract significant attention

not least because of the possibility of constraining the strength of the intergalactic mag-

netic field, hence a detailed study would prepare the ground for interpreting the detection

or absence of such a halo consistently. Finally, as mentioned in chapter 5, further work

on the variability of the extreme TeV blazars that were studied is envisaged. It would

be interesting to determine whether UHE neutral emission can account for the observed

variability of extreme TeV blazars that are variable in ∼day timescales for reasonable

injection parameters.

Based on the studies conducted in this thesis, it is concluded that the discovery of the

sources of UHECRs that have for so long eluded us are within reach of upcoming UHECR

and gamma-ray experiments. At the same time neutrino experiments are also closing in

on the expected neutrino counterpart of a number of suspected extragalactic hadronic

accelerators (e.g., Aartsen et al. 2013), making this an exciting moment for the field and

highlighting the importance of a multi-messenger approach to particle astronomy.
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Appendix A

Appendix A: Distances in

cosmology

The hubble parameter H0 relates the recession speed v and the distance d in the expanding

Universe:

v = H0d (A.1)

at the present epoch H0 = 100 h km−1 s−1Mpc−1 where h is a dimensionless number

that absorbs the uncertainty on H0. The most recent measurement of H0 comes from the

Planck experiment that find H0 = 67.80 ± 0.77 km−1 s−1Mpc−1 (Ade et al. 2013). The

hubble parameter at redshift z can be expressed in terms of H0 as

H = H0 · E(z) (A.2)

where E(z) is given by

E(z) =
√

(ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ. (A.3)

Here ΩM, Ωk, ΩΛ are dimensionless density parameters given by:

ΩM =
8πGρ0

3H2
0

, (A.4)
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ΩLambda =
Λc2

3H2
0

, (A.5)

where ρ0 is the matter density of the Universe today, and Λ the cosmological constant.

The Ωk parameter gives the curvature of space and is defined by the relation

ΩM + Ωk + ΩΛ = 1. (A.6)

In a flat universe Ωk = 0.

The line-of-sight comoving distance, dc, between two objects is the distance that re-

mains constant with epoch while the objects are moving with the Hubble flow. The total

line of sight comoving distance to an object at redshift z is given by

dc =
c

H0

∫ z

0

dz′

E(z′)
. (A.7)

The light travel distance dT is the product of ctL, where tL is the look-back time, that

is, the difference between the age of the Universe at the time of observation t0 and the age

of the Universe when the photons were emitted te (according to the object). It is given

by

tL =
1

H0

∫ z

0

dz′

(1 + z′)E(z′)
. (A.8)

The luminosity distance relates an object’s observed integrated flux F to it’s intrinsic

luminosity integrated over all wavelengths, L:

dL =

√
4πF

L
, (A.9)

where the definition assumes a flat, non-expanding Universe. In a flat Universe dL and dc

are related by:

dL = (1 + z)dc. (A.10)

The different distance measures are illustrated in figure A.1 for the currently favoured

cosmological model, ΛCDM, with ΩM = 0.3 and ΩΛ = 0.7. For a detailed discussion of
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Figure A.1. Comparison of the different distance measures as a function of
redshift, for a ΛCDM Universe with ΩM = 0.3 and ΩΛ = 0.7. Here dL is the
luminosity distance, dc is the comoving distance, dm and da are the Mattig and
angular diameter distance that we have not discussed in this work (see e.g. Mar-
tinez & Saar 2002). All distances are given in the units of the Hubble length
c/H0. Image from Martinez & Saar (2002).

distance measures in cosmology see Hogg (1999).
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Appendix B

Appendix B: Details of the Monte

Carlo setup in chapter 5

The number of particles injected in a simulation with a power law spectrum dN/dE ∝ E−α

between Emin,s and Emax,s is Ns and is given by:

Ns =

∫ Emax,s

Emin,s

dN

dE
dE =

∫ Emax,s

Emin,s

ks ·
(

E

Emin

)−α
dE

=
ks

1− α

[
E1−α

E−αmin

]Emax,s

Emin,s

=
ks

1− α
·
E1−α

max,s − E1−α
min,s

E−αmin

(B.1)

from which we get the weight of an individual particle in the simulation, ks:

ks = Ns · (1− α) ·
E−αmin

E1−α
max,s − E1−α

min,s

(B.2)
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The luminosity of a source which emits a power law spectrum above energy Emin,L is:

Lsource =

∫ Emax,L

Emin,L

dN

dE
· E dE =

∫ Emax,L

Emin,L

kL ·
E1−α

E−αmin

dE

=
kL

2− α

[
E2−α

E−αmin,L

]Emax,L

Emin

=
kL

2− α
·
E1−α

max,L − E
2−α
min,L

E−αmin

,

(B.3)

hence:

kL = Lsource · (2− α) ·
E−αmin

E2−α
max,L − E

2−α
min,L

(B.4)

To normalise the luminosity injected in a simulation to Lsource we multiply the injected

spectrum by kL/ks which from equations B.2 and B.4:

kL

ks
=
Lsource

Ns
· (2− α)

(1− α)
·
E1−α

max,s − E1−α
min,s

E2−α
max,L − E

2−α
min,L

(B.5)

To reweight a simulated spectrum with an injection spectrum dN/dE ∝ E−α (e.g.

α = 1.1) to a different injection index γ (e.g. γ = −2) the following expression can be

used:

Ns,w = Ns ·
1− α
1− γ

·
E

(1−γ)
max − E(1−γ)

min

E
(1−α)
max − E(1−α)

min

, (B.6)

where Ns is the number of simulated primaries, Ns,w is the number of simulated primaries

if we account for the conversion from α to γ and Ntot,real = k′ is the number of injected

particles at the source given a luminosity L. The spectrum output from the simulation is

finally normalised, multiplying by Ntot,real/Ns,w. Typically this reweighting procedure is

employed when we are interested in simulating a soft intrinsic spectrum but inject instead

a harder spectrum to improve computation time.



175

Figure B.1. Diagram depicting the source-observer setup and the condition
for registering a newly created lepton during the UHECR propagation in our
simulation volume. Here S is the source position and the curved lines depict the
trajectories of UHECRs. At point P a lepton is created and O the position of the
observer. The momentum vector of the newly created lepton is denoted vp. Any
lepton created with θ(OP, vp) ≤ 11◦ is recorded and propagated to the observer.
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