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Abstract 

As the explosive growth in the proliferation and use of mobile devices 

accelerates, more web service providers move their premises on the Cloud under 

the Software as a Service (SaaS) service model. Mobile environments present 

new challenges that Service Discovery methods developed for non-mobile 

environments cannot address. The requirements a mobile client device will have 

from internet services may change, even at runtime, due to variable context, 

which may include hardware resources, environmental variables (like network 

availability) and user preferences. Binding to a discovered service having QoS 

levels different from the ones imposed by current context and policy requirements 

may lead to low application performance, excessive consumption of mobile 

resources such as battery life and service disruption, especially for long lasting 

foreground applications like media-streaming, navigation etc. This thesis presents 

the Volare approach for performing parameter adaptation for service requests to 

Cloud services, in SaaS architecture. For this purpose, we introduce an adaptive 

mobile middleware solution that performs context-aware QoS parameter 

adaptation. When service discovery is initiated, the middleware calculates the 

optimal service requests QoS levels under the current context, policy 

requirements and goals and adapts the service request accordingly. At runtime, it 

can trigger dynamic service rediscovery following significant context changes, to 

ensure optimal binding. The adaptation logic is built through the characteristics of 

the declarative domain-specific Volare Adaptation Policy Specification Language 

(APSL). Key characteristics of this approach include two-level policy support 

(providing both device specific and application specific adaptation), integration of 

a User Preferences Model and high behavioral (parameter adaptation) variability, 

by allowing multiple weighted adaptation rules to influence each QoS variable. 

The Volare approach supports unanticipated quantitative long term performance 

goals (LTPGs) with finite horizons. A use case and a proof-of-concept 

implementation have been developed on cloud service discovery through a cloud 

service provider, as well as an appropriate case study, which demonstrates 

significant savings in battery consumption, provider data usage and monetary 

cost, compared to unadapted QoS service bindings, while consistently avoiding 

service disruptions caused by QoS levels that the device cannot support. In 

addition, adaptation policies using the Volare approach tend to increase in size, 

in a mostly linear fashion, instead of the combinatorial increase of more 

conventional situation-action approaches.   
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Volare Mobile Context-aware 

Adaptation for the Cloud 

1 Introduction 

1.1 The Research Problem 

Application development in mobile systems faces the challenges of constrained 

and/or consumable device resources like battery power, CPU, RAM, storage 

memory and communication capability, frequent environmental context changes 

like network availability and bandwidth or location variation, and variable User 

Preferences concerning desired operation parameters due to mobility. In order to 

ensure that users meet their non-functional requirements in such scenarios, 

software services need to be context-aware and adapt to their context, to ensure 

that the Quality of Service (QoS) levels selected reflect the current needs of the 

user, which change according to context.  

By context in this work we mean: (i) device resource and execution-environment 

parameters (like available battery power level or CPU), (ii) environmental 

parameters (like: bandwidth or GPS coordinates), and (iii) User Preferences.  

Context Awareness is defined in this work as the capability of a system to be 

aware of the context parameters of the execution environment (see also §2.1 for 

more detailed reference).   

Consequently when mobile devices launch Service Discovery for a web service 

on the cloud or web, in order to ensure satisfactory operation, a service of the 

requested content needs to be discovered providing the QoS levels 

corresponding to the current context and the adaptation logic requirements. 

Especially for long-lasting services, like media-streaming, navigation, video-

calling, tele-conferencing etc., since context conditions may vary during runtime, 

service levels requested at initial Service Discovery may not be optimal for the 

new conditions of the device, leading to adverse effects on performance or cost 

or device resource utilization and overall user satisfaction. In this case dynamic 

adaptation capability to the new context at runtime has to be supported. 
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A plethora of research approaches[13][18][30][34] propose general or domain-

specific solutions to these challenges, with the state of the art recommending 

Dynamic Context-Aware Adaptation (DCAA) through a mobile middleware or 

distributed framework implementing context-awareness, adaptation reasoning 

and adaptation implementation functionalities. Use of external adaptation logic is 

recommended for easy updates over the software lifetime, in the form of 

adaptation policies developed through an appropriate Adaptation Reasoning 

Technique and based on an Adaptation Policy Specification Language. 

There remain certain domain-specific challenges to applying this general 

approach for implementing DCAA on service discovery by mobile applications 

that are discussed in the following subsections. 

In this work, we are focusing implementation and evaluation on Cloud Services, 

due to the fact that they are a newer up and coming architecture that seems to be 

getting higher relevance in the Distributed Computing state of the art 

[122][121][111]. The work itself is relevant to mobile computing in general, 

however. 

1.2 Challenges for Service Discovery on the Cloud 

1.2.1 The Cloud Computing Paradigm 

One of the latest emerging distributed computing paradigms is that of Cloud 

computing [1][4][5][104][106][107], which promises reliable services delivered 

through next-generation data centers built on resource virtualization 

technologies. Given the explosive development of cloud computing in recent 

years, the Software as a Service approach in Cloud computing is becoming 

increasingly prevalent [106][107]. Cloud computing can offer significant 

advantages to mobile application developers, by enabling remote data storage, 

computation capabilities etc., as well as eventual computation off-loading, an 

area gradually covered by Mobile Cloud Computing (MCC) [97][106].  

At the same time, Cloud computing offers to mobile applications accessing to 

online resources and services in a manner similar to Web Services and Grid 

Computing, as increasingly the trend among Service Providers is to move their 

premises on the Cloud due to concrete operational and business advantages  

[105][109][112]. 

Scope of this research: In this work we focus on Cloud Service Request QoS 

parameter adaptation as pertains to Cloud Service Discovery by mobile 

applications through application-selected Cloud Service Brokers or Service 
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Providers on public Clouds, where alternative services of the same content at 

different QoS levels are available.  

As an extension, our approach may also be utilized on Service Discovery on 

private or community Clouds (with no cost obligation), or on the Web through 

Service Brokers or Service Providers, with the cost dimension of adaptation 

reasoning and of the SR to be ignored as non-relevant.      

1.2.2 Service Discovery on the Cloud 

Service Discovery on the Cloud – in a Software as a Service business model(see 

ch2.6.1)- presents to the mobile applications developers its own particular 

challenges outlined below, in addition to the DCAA challenges for mobile systems 

already described above, namely:  

1. Monetary cost for binding to services provisioning on Public Clouds 

Services on Public Clouds present the specific feature [1][4][21][46 - 52] of 

imposing monetary costs on their client, according to resource usage. Although 

the pricing policy depends on the CSP or CSB, the cost for use of services on the 

Cloud typically depends on the resources utilized and on the QoS level of each 

service among alternative ones of the same content. Consequently, a service 

request for service on Public Clouds should include the price per resource used 

as a selection QoS variable and a cost-oriented strategy should be an integral 

part of a Policy for service discovery and binding on services on the Cloud.   

2. Technical challenges on Service Discovery on Public Clouds 

Another major issue with Service Discovery on the Cloud is that there is often 

limited control about the decision-making process of matching a service request 

with the closest possible service [4][5][105][115][121], see also §2.6.  

Additionally, there are currently no industry standard protocols when it comes to 

advertising Cloud services or QoS service levels. Thus, usually a Cloud Service 

Provider or Service Broker has its own proprietary protocols. Consequently the 

Cloud Service Consumer should be directed to relevant for the requested service 

CSPs or more generally to CSBs [105][21][109][112]. 

1.3 Challenges on Adaptation Logic and Reasoning 

As described above, in addition to the DCAA software, the external adaptation 

intelligence, i.e. the Adaptation Policy Logic, authored using an Adaptation 

Reasoning Technique supported by characteristics of the Adaptation Policy 

Specification Language and of the middleware, dictates the adaptation process. 
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Typically, the Adaptation Policy Logic is specified through three main tools 

[18][34][54][56][61]:  

 An appropriate domain-specific Adaptation Policy Specification Language 

(APSL) to enable descriptions of policy languages (see also §2.3) 

 An Adaptation Reasoning Technique, that enables as described below 

(see also §2.4) 

There are three established adaptation reasoning approaches [18][34], we 

distinguish as follows: The rule-based technique - known as “Action-based” 

technique [7][58] implements “condition-action” adaptation and is popular for 

relatively simple applications/scenarios. The “state-based” techniques - 

namely the “Goal-based” [74] and the “Utility-based” [6][18] ones - both 

require complete system state re-evaluation at adaptation time, thus entailing 

a relatively much more tedious development task and a significant 

computational burden for the device.  

 A User Preferences Model that is often integrated in the Policy, setting user 

preferences through an application-specific User Interface [28][36][83] and/or 

through dynamic Applications Profiles for User preferences and/or resource 

requirements [6][15].  

We mention briefly below several important adaptation reasoning challenges for 

the dynamic mobile environment that we claim the adaptation reasoning should 

support and the Adaptation Policy should satisfy:     

1. Support of both device and application specific adaptation 

One of the challenges of adaptation in mobile computing is that often the 

application developer will not know, beforehand, the exact specifications of the 

platform his application will be running on (various mobile phone models etc.). To 

ensure efficiency when performing QoS parameter adaptation however, the 

adaptation policy must take into account the unique capabilities of the mobile 

device, as well as the specific needs of the application itself. The solution of 

creating separate policies for each possible device configuration is often 

unattainable, due to the number of possible devices. Thus, ideally, some sort of 

collaboration between device-specific and application specific policies is 

necessary.  

2. Support of alternative dynamically selectable and customizable 

adaptation behaviors  
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Given the need for the user to The challenge consists in designing a configurable 

policy-based dynamic User Preferences Model that enables easy on-the-fly 

selection by the User of policy-based alternative adaptation behaviors on generic 

crosscutting concerns and thus valid for every application and dynamic 

customization by the User of the adaptation behavior on predetermined 

characteristics. 

3. Support of Long Term Performance Goals   

A unique characteristic of mobile devices is the resource budgets associated with 

it, either enforced by the service provider (data allocation), the user (monetary 

budget constraints), or the limitations of the device itself (battery life). Thus, 

adaptation behavior aimed for such devices needs to be able to take into account 

such finite resources in its adaptation behavior. 

Such “Long Term Performance Goals” (LTPGs) may be the battery power use 

Mgmt over every battery discharge period, or the monthly cost management of 

binding on Cloud services or of monthly data volume use.  

LTPG monitoring at runtime requires information processing over the temporal 

horizon, history storage and maintenance capability and adaptation guidance 

models that are not trivial in mobile applications.  

Such policy-based Long Term Performance Goals undertake supervisory tasks 

and relieve the User from the need to monitor and intervene at Policy operation.  

4. Adaptation Logic Building On Selected “Adaptation-Concerns” 

We argue that in the adaptation process there are multiple active “adaptation-

concerns” (targeted adaptation viewpoints) that need to be considered and 

“represented” at every relevant context instance in the rules selectable at policy 

execution. These “adaptation-concerns” represent different motivations for 

adaptation such as: device resource optimal use, satisfactory performance, 

optimal cost strategy, etc., in order to optimize user satisfaction.  

Allowing multiple such adaptation-concerns to be modelled separately in the 

adaptation policy would allow developers more flexibility in choosing the relative 

importance of certain adaptation-rules over others as appropriate, and would 

enable more thorough modeling of adaptation requirements in the policy itself. 

The conventional action-based adaptation reasoning technique by imposing a 

single rule per adaptation-variable selectable at policy execution restricts the 

synthesis of relevant concerns in one rule per adaptation-variable. It is difficult to 

provide fine-grained adaptation with just one rule selectable on each adaptation-
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variable under any contextual situation in the conventional approach. Additionally 

adaptation tends to be abrupt across “condition” boundaries, where another rule 

is selected.  

An APSL and an Adaptation Reasoning Technique that would permit possibly 

multiple rules on the same adaptation variable to selectable at policy execution 

imposing participative weighted contribution to the adaptation choices, is a first 

challenge at adaptation policy authoring.  

5. Adaptation Logic with High Behavioral Variability   

Another challenge consists in expressing in the policy richer behavioral 

(parameter adaptation) variability under each structural configuration, making 

adaptation behavior more fine-grained and gradual. However, high behavioral 

variability increases the number of rules required in a combinatorial manner to 

the number of behavioral variants, thus rendering policy authoring more 

burdensome and higher the risk of rule faults [34][101], in a typical situation-

action approach. This is due to having to define a separate policy for each 

context situation, which can quickly become untenable. 

The challenge is raised for the adaptation logic to enable more fine-grained, 

gradual adaptation wherever possible, and to express different crosscutting 

concerns (common for all - or most - applications), imposing richer (higher) 

behavioral (parameter settings) variability, without undue increase in the number 

of rules [101]. 

1.4 Research Hypothesis 

In response to the above in §1.1 state of the art CAA design requirements for 

supporting mobile applications, as well as the challenges for service discovery on 

the Cloud expressed in §1.2, the adaptation reasoning research challenges 

mentioned in §1.3 and the resulting Research Question described in §1.4, we 

come up with the following hypothesis: 

Research Hypothesis – It is possible to support policy-driven adaptation of 

service request QoS levels in a lightweight, efficient and application transparent 

manner that provides improved resource consumption and satisfaction of goals 

and requirements in a mobile service application running in an environment with 

dynamically changing context. 



 
 
   

10 
 

1.5 Research Contributions 

In response to the aforementioned challenges, the primary contribution of this 

research project is the “Volare approach”, a client-side policy-based adaptation 

scheme for implementing in an application-transparent way dynamic context-

aware adaptation to the commercial service request (SR) of a mobile application 

to an application-selected cloud service broker or provider provisioning 

alternative services of the same content at different QoS levels.  

It aims to support the discovery of the most appropriate service found under the 

current context and the adaptation logic requirements, by adapting the QoS 

levels of the service request, then evaluating the offered service QoS levels, and 

either binding to it or adjusting the SR and launching re-discovery.   

The Volare client-side approach is composed of three required and integrated 

constituent components:  

 The adaptation policy specification language (APSL) that allows the 

developer to specify the adaptation behavior required. 

 The mobile DCAA support middleware that implements the adaptation 

functionality itself. 

 The weight-based adaptation reasoning technique (WBART) that guides 

the adaptation policy development process.  

The characteristics of each constituent are outlined in §3.4 and are analyzed in 

detail in chapters 4, 5 and 6 respectively. 

These components implement the Volare approach, which has the following 

innovative characteristics, compared to a more traditional situation-action 

adaptation approach, in order to better resolve the challenges identified in §1.2: 

1. Two-level Policy Support 

The Volare policy language supports a two-level architecture, using a global and 

and application level policies concurrently, thus allowing both device and 

application-specific adaptation of the QoS levels. 

2. Multiple rules selectable on the same adaptation-variable  

Multiple adaptation rules may be selected to adapt the same QoS variable at 

policy execution and all will participate in the final adapted value via the conflict 

resolution directives for participative weighted contribution, based rules weight 

values specified in policy development. This enables the following innovations. 

3. Building the Policy in Adaptation-Strategies  
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Determination of the major adaptation-concerns around which the policy will be 

built, and building it as a set of independent adaptation-strategies, each of which 

is the collection of policy rules that serve a specific adaptation-concern over the 

valid context domain. This approach may lead, when there is high behavioral 

variability, to policy authoring significantly shorter in the number of rules and 

simpler in testing and verification than an equivalent “action-based” policy (see 

ch. 5 and §8.3.2 for detailed analysis). 

4. The Volare Dynamic User Preferences Model 

A policy-based dynamic user preferences model for adaptation logic fine-tuning 

by the user, allowing a degree of dynamic control to the user over the adaptation 

behavior without any need for software or policy update. 

5. Support of Unanticipated Quantitative Long Term Performance Goals   

Volare supports introduction in the policy of unanticipated at middleware design 

time quantitative long term performance goals (LTPGs) with finite horizons over 

many binding sessions, allowing for long term resource management.  

6. Offered Service Evaluation and SR Adjustment & Rediscovery 

The middleware supports offered service QoS terms evaluation on policy-based 

parameters and hard-coded criteria. If the offered service is not assessed 

appropriate, then the SR is adjusted and rediscovery is launched until a 

satisfactory service on QoS terms is discovered and bound to. 

7. Support of Hierarchic Multi-cycle Policy Execution  

Optional specification of multiple “consecutive execution cycles” at policy 

execution is supported, thus allowing hierarchic selection of variant(s) at one 

cycle and of the relevant parameter settings in the next cycle, enabling more 

concise policy authoring in high behavioural variability scenarios. 

A use case and a proof-of-concept implementation have been developed on 

cloud service discovery through a cloud service provider, as well as a simulation 

case study based on usage data, demonstrating (Table 8-2) significant monthly 

savings in battery consumption (average lowest battery level of 18,4% unadapted 

vs 27,2% in the adapted case, in 10 discharge cycles), provider data usage and 

monetary cost compared to very shallow adaptation of QoS service bindings, 

while consistently avoiding service disruptions caused by QoS levels that the 

device cannot support. The standard reference case presented in Fig. 8.15 

achieved, by the end of the monthly period, 95.5% of the credit allowance vs. 
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105.9% of the very shallow adaptation version (still very near the goal value, 

under the circumstances) and data use ratio respectively 87.8% vs. 91.1% for a 

similar very shallow adaptation application, in a typical usage model. In extreme 

cases of context variations, these results raise dramatically, as seen in chapter 8. 

In addition, adaptation policies using the Volare approach tend to increase in 

size, due to possible context states, in a mostly linear fashion, instead of the 

combinatorial increase of more conventional situation-action approaches. This 

leads to smaller adaptation policies in cases as the number of possible context 

states increases. In our case, with 142 adaptation-rules of the Composite Policy 

were covered the adaptation of 864 adaptation states.   

1.6 Thesis Outline 

Chapter 2 presents the current state of the art for the mobile devices on Service 

Discovery and Binding to services on the Web and the Cloud and Related 

Literature.  

Chapter 3 introduces a Motivating Example demonstrating the research 

challenges and we outline the ideas and requirements for this research project, 

highlighting the main innovative characteristics of the Volare project. 

Chapter 4 introduces the novel Adaptation Policy Specification Language that is 

the heart of the weight-based approach, the Conflict Resolution Directives with 

the Participative Weighted Contribution Procedure and the Consecutive 

Execution Cycles feature of the Policy Engine that supports hierarchic policy 

execution. 

Chapter 5 presents the novel weight-based adaptation reasoning technique for 

adaptation policy authoring, as well as the relevant methodological tools specially 

developed for this purpose, to assist the developer in policy design according to 

the Volare approach, including Policy Testing & Verification. 

Chapter 6 describes the conceptual model for the DCAA middleware and the UPI 

application for user preference selection and policy customization. 

Chapter 7 outlines the implementation, testing and validation issues for the 

middleware as well as for the adaptation logic that supports policy-based Long 

Term Performance Goals over finite horizons.   

Chapter 8 presents the critical evaluation of this research project as a whole and 

on each of the three individual constituents of the Volare approach, both 

qualitatively and quantitatively. 
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Chapter 9 finally outlines the contributions of this research work in the fields of 

adaptation reasoning and policy-based DCAA for mobile computing and explores 

directions for future work.  

1.7 Related Publications 

1. Papakos P, Capra L and Rosenblum DS. Volare: Context-Aware Adaptive 

Cloud Service Discovery for Mobile Systems. ARM 2010: 32-38.  

2. Papakos P, Rosenblum DS, Mukhija A and Capra L. Volare: Adaptive Web 

Service Discovery Middleware for Mobile Systems. ECEASST 19 (2009). 
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2 Background 

2.1 Scope of mobile devices 

Referring to mobile devices in this work, we mean mobile (handheld) smart-

phones, palmtop computers and personal digital assistants (PDAs) that 

communicate through a wireless or mobile communications network (WLAN, 3G, 

EDGE, GPRS) and are power supported by their battery. It is further assumed 

that there is one user per mobile device that sets preferences and choices [46]. 

Typically, the mobile devices pose three significant limitations to software 

developers. 

Mobile devices have limited hardware resources (CPU, RAM, memory, battery 

power, storage memory etc) and computation capability, while some of them are 

consumable over recurring periods. 

In addition, mobile devices are subject to frequent environmental context change 

due to mobility, for instance local network availability or bandwidth or gps 

coordinates etc., due to movement and/or network load. 

Finally, there is the issue of variable user preferences, to ensure user satisfaction 

during Service Discovery. 

2.2 State-of–the-art for Service Discovery by Mobile 

Applications 

These factors lead to the need for developing appropriate software engineering 

solutions to ensure satisfactory performance for mobile applications launching 

Service Discovery on internet services, issues discussed in detail in the following 

subsections.  

In particular, applications that require long lasting service binding, which include 

transfers of large amounts of data or of longer duration, such as data-syncing 

applications, media-streaming or navigation and video-calling or tele-

conferencing applications (like GoogleTalk, Skype or FaceTime) are negatively 

impacted by fluctuations in available resources and network bandwidth 

[36][54][69]. In addition, such applications may rapidly deplete the device’s 

consumable resources, if they continue binding on the initial or nominal QoS 

levels when not able to support them.  

We define below basic concepts to be used throughout this work: 
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Context - While many definitions of context are available in the literature, the 

most widely cited one is: “Context is any information that can be used to 

characterize the situation of an entity; an entity is a person, place, or object that is 

considered relevant to the interaction between a user and an application, 

including the user and application themselves” Dey 2001 [57][34].  

In this work we distinguish context in: device resource parameters (like available 

CPU level, storage memory, RAM or battery power), environmental parameters 

(such as network availability and bandwidth, location, speed, noise, illumination 

etc.) that may vary at runtime, and user preferences (such as preferences on 

billing limits, alert settings, minimum QoS settings, etc.) that may also change at 

runtime.  

Context-Awareness – “A system is context-aware if it uses context to provide 

relevant information and/or services to the user, where relevancy depends on the 

user’s task” Dey 2001 [57].  

Context-aware adaptation – we mean the ability of a software component to 

modify itself in response to context change without user interaction. Mobile 

applications in the dynamic execution environment have to be context-aware, and 

able to adapt to context changes [6].  

Thus, a major challenge in mobile applications development is the varying 

context of mobile systems that may change at runtime [9][13][54]. The context 

may include limited or consumable device resources (like available CPU level, 

storage memory, RAM or battery power), environmental variables (such as 

network availability and bandwidth, location, speed, noise, illumination etc) that 

may vary at runtime usually due to mobility, and user preferences (such as billing 

limits, alert settings, minimum QoS settings) that may also change at runtime.  

Extensive research [13][18][30][34][54][56] has identified a series of possible 

solutions that the current state-of-the-art utilizes to address these issues: 

1. Context-Aware Adaptation at initial Service Discovery 

At a new session of Service Discovery, the Service Request QoS levels need to 

be specified not at default values but in context-aware manner, in accordance 

with the current context and the adaptation logic.  

2. Dynamic Context-Aware Adaptation 

The change of context of a mobile device during runtime may also create serious 

performance problems, as well as inefficient use of device resources. This 

happens because in such cases of change of device resource levels and/or other 
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parameters like bandwidth, the quality of service (QoS) levels initially requested 

by the mobile client application may not actually match the current capabilities of 

the device to receive and process data, resulting delays, performance 

degradation and user dissatisfaction, device resource wastage and unreliable 

web service binding.  

Extensive research has shown that, especially for long-lasting applications, 

dynamic context–aware adaptation is necessary to ensure efficiency 

[18][30][34][36][42]. 

3. Middleware-based Dynamic Context-Aware Adaptation Support 

Dynamic context-aware adaptation may be applied either internally in the 

application or externally through a DCAA-support middleware. It is shown that the 

external middleware-based approach makes mobile application development 

much simpler, while on the same time it can be used for other adaptive 

applications.     

Typically, for policy-based context-aware adaptation of mobile applications a 

middleware-based architecture is adopted, where the middleware layer provides 

at least the first two and in some cases all three of the following functionalities 

[18][34][45][61]: 

a) Context-awareness through a Context Monitoring Manager, collecting, 

aggregating and making the context available to interested components. 

b) Adaptation reasoning through an event-based Adaptation Reasoning 

Manager on the eventual adaptation actions when context change requiring 

adaptation occurs. 

c) Adaptation Implementation, answering to the question: “where to adapt?” 

[30], i.e. the implementation of adaptation actions selected in response to 

context change is realized either by the middleware itself as it is often the 

case of distributed communication adaptation [6][30] or by the active 

application concerned [7], or by both the middleware and the adaptation [20].    

4. External policy-based adaptation logic 

The adaptation logic may be either hard-coded in the application or external to 

the application, in the form of policy. Since today’s software requirements change 

rapidly, there is a need for easy and frequent updates of the adaptation logic of 

an adaptive system. Research in the field indicates that policy-based adaptation 

logic, updatable either at load-time or even better dynamically at runtime, is a 
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most useful feature in the state of the art for context-aware adaptation for mobile 

systems [6][7] [18] [34][61][80]. 

The adaptation logic for an adaptive system is developed through the use of two 

required tools: an Adaptation Policy Specification Language and an Adaptation 

Reasoning Technique.  

The Volare approach conforms to the state-of-the art described above, by 

providing the three above referenced constituents: a mobile DCAA-support 

adaptive middleware with the required context-awareness and adaptation 

reasoning functionalities for SR adaptation and for authoring the adaptation logic, 

the Volare APSL and the weight-based adaptation reasoning technique.      

2.3 Policy Specification Languages 

Policy-based systems require a Policy Specification or Description Language to 

formalize the adaptation policies. A general purpose or domain-specific 

Adaptation Policy Specification Language for policy authoring is required, 

defining the rules form after the Event-Condition-Action or simply the Condition-

Action model, a rule priority assigning mechanism, the Conflict Resolution 

Directives [34][12][44][39], keywords and operators.  

Several such formal languages have been developed within the last decade for 

mobile and distributed systems: Jess [35] is a policy description language on 

Java with an inference engine shell used in Hydrogen [8].  Policy Description 

Language PDL [37] describes strategies for mapping a series of events into a set 

of actions. PONDER [12] is a Policy Language that may be used both for 

management and security policies in distributed systems. The Event Calculus 

[44] presents a method for transforming both policy and system behavior 

specifications into a formal notation that is based on event calculus.  

Alternatively, semantic Web Service Languages have been developed supporting 

well defined semantics: KaoS [39] presents a policy-based agent management 

approach. Rei [38] is a policy language based on deontic concepts. 

Finally simpler and shorter domain-specific Adaptation Policy Specification 

Languages (APSL) to enable policy authoring for mobile or pervasive and 

ubiquitous policy-based CAA middleware or frameworks have been developed in 

the last decade, that we will discuss in brief as being closer to our work, such as 

the APSLs used in CARISMA [6], CHISEL [7], QuAMobile [19], RAM [24], 

MIMOSA [36], RAINBOW [59], CARE [69] etc.  
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In the Volare Approach, a domain-specific APSL for the field of Service Discovery 

has been developed with the aim to support more expressive policy specification. 

It is endowed with several unique characteristics, like Conflict Resolution 

Directives allowing possibly multiple rules on the same adaptation-variable to be 

selected at policy execution and influence the adaptation results through a 

participative weighted contribution procedure.    The Volare APSL is presented in 

Chapter 4. 

2.4 Main Adaptation Reasoning Techniques 

Policy-based DCAA systems require adaptation policies externally to the 

middleware or applications. Three main methodologies have been proposed for 

the description of such policies [18][34][6][19]]22][26][61]. 

1. The Action-based Adaptation Reasoning Technique 

Situation-action approaches specify exactly what to do in each context situation, 

using a separate behavioral policy for each contextual configurations. Action-

based specifications are undoubtedly the most popular and are used in different 

domains related to networks and distributed systems [18]. 

The action-based or situation-action approach specifies exactly what to do in 

certain situations, requiring the explicit description of each situation as a context 

sub-domain through a set of predicates and specifying the required adaptation 

actions (i.e. the rule action) in response to the context changes (i.e. the rule 

condition) [7][24]. 

Action-based policies are popular with developers because they offer specific 

advantages: (a) they are expressive ( i.e. easy to write); (b) they do not need to 

define the possible system states (i.e. the possible system’s configurations and 

behaviors), developing a formal state model of the system at design time, like in 

the Goal or Utility-based approaches; (c) they give a fast system reaction to 

context changes, where the system adaptation actions are already defined, 

without the need to re-evaluate the system state model. However, (a) this 

approach uses simple rules that fail to catch some dependencies between 

adaptation and context; (b) defining the specific system reactions to the context 

changes at each “situation” during the design time may also be difficult in large 

scale systems with large number of adaptation behaviors; (c) an action-based 

policy is difficult to be fine-tuned or modified and then a full policy review will be 

necessary to avoid potential erroneous execution [18][34].  

2. The Goal-Based Adaptation Reasoning Technique  
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“Goal-oriented approaches represent a higher-level form of behavioral 

specification that establishes performance objectives, leaving the system or the 

middleware to determine the actions required to achieve those objectives. Goal 

specifications capture the relations between context and adaptation mechanisms 

in a concise way” [18].  

They specify the possible system’s configurations/behaviors as states. These 

states are used to build a state-based model for the system’s adaptive behavior, 

where the transitions between these states are enabled by the context changes. 

Goal specifications capture the relations between context and adaptation 

mechanisms in a concise way.  

However, goal-oriented approaches also have some drawbacks: (a) they fail to 

catch dependencies between adaptations and goals, and conflicts between 

goals; (b) they do not provide any mechanism to compare adaptation actions 

when several actions can be applied to achieve a goal; (c) when the number of 

the context variables becomes large, the state explosion problem happened; (d) 

even if the model does not have the state explosion problem, the enumeration of 

all possible system states is difficult and may be impossible; (e) comparing to 

writing the condition-action rules, the building of state based models is difficult; (f) 

furthermore, computing the required adaptation actions at runtime causes a 

significant overhead to the system, which affects the system performance 

[74][75][34]. 

3. The Utility-Based Adaptation Reasoning Technique 

“Utility-based approaches extend goal-oriented approaches. Utility functions 

ascribe a real-value scalar desirability to system states (i.e. in our case, a state is 

an application variant). The middleware computes the utilities of variants and 

selects the variant with the highest utility.” [18] 

Utility functions express the rationale for adaptation decisions in a precise way, 

and are therefore more appropriate than goal policies when adaptation triggers 

and effects interfere, or when goals are in conflict  [6][18][26]. 

However, they have the drawback of being highly complex to develop when there 

is a large number of context variables that are used to define the utility functions. 

Additionally, the utility-based approach has problems similar to the goal-based 

approach such as the need to enumerate all the possible system states at design 

time and the runtime overhead where the utility functions are computed at the 

runtime [34]. 
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4. Evaluation of Adaptation Reasoning Techniques 

The Goal-based and the Utility-based techniques typically impose a high 

computational burden on the restricted capability and resources of the mobile 

devices, depending on the scenario complication (although CARISMA [6] 

demonstrated its feasible application for stand-alone middleware solution on 

mobiles) [34]. Additionally, they require a tedious policy development procedure 

for calculating a mathematical state-based model for the context-aware 

adaptation of the system or the service.     

The action-based technique is most widely used in relatively simple mobile 

applications as it is relatively less tedious for the developer and imposes the 

smallest computational overhead on the system in comparison to the other two. It 

is typically built by breaking the context domain into contextual “situations” (i.e. 

context sub-domains), assigning to each situation appropriate adaptation actions 

through adaptation rules.  

“A limitation of action-based approaches is the imposed binary decision logic 

since each rule may be selected and executed or not. This limitation becomes 

more obvious in dynamic environments and may lead to low coverage of the 

context value domain” [34]. 

Which Adaptation Reasoning Technique will be selected for a mobile 

middleware-based (D)CAA application depends on a cost/benefit analysis based 

on the adaptation scenario and requirements, the adaptation alternatives 

available and the adaptation mechanism (parameter adaptation, selecting the 

most appropriate among a fixed number of alternative configurations or dynamic 

service composition).  

The weight-based adaptation reasoning technique developed by the Volare 

approach for policy authoring is a rule-based one on the condition-action 

paradigm and consequently it is comparable to the action-based technique. 

However, it makes use of the Volare APSL characteristics, allowing at policy 

execution possibly multiple rules selectable on the same adaptation-variable, 

thus allowing rules from different “adaptation-concerns” on the same adaptation-

variable to influence the adaptation results, depending on their weight value – 

expressing their relative importance. The weight-based technique is presented in 

Chapter 5.  
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2.5 Mobile Middleware/Frameworks on Service Discovery  

There has been extended work in the last decade on mobile dynamic context-

aware adaptation of mobile applications on service or resource discovery and 

binding to wireless internet services, some of which are referenced below. These 

projects use either a middleware deployed on the mobile device or a distributed 

framework both on the client device and on server(s). 

Concerning the object of adaptation implementation, it takes place either:  (a) on 

the middleware or framework components - like HERA [31], design approach on 

Volare [16-17], Q-CAD [15], ODYSSEY [40], ReMMoC [23], or (b) on the 

components of the custom-made adaptive application, like: MADAM [18], 

QuAMobile [19], QuA [22], RAM [24], MUSIC [26], PLASTIC [25].  

Specific reference of such mobile DCAA middleware and frameworks and brief 

comparison to Volare is presented in related work §6.5. 

2.6 Cloud Service Discovery by Mobile Applications 

Cloud computing enables convenient, on-demand network access to a shared 

pool of configurable computing resources, such as networks, servers, storage, 

applications, and services, which the cloud system can rapidly provision and 

release automatically [109]. Given the explosive development of cloud computing 

in recent years, it was only a matter of time before mobile device application 

developers and cloud-service providers began utilizing the new capabilities 

offered by this approach for service provisioning [1][4].  

Although context aware adaptation for mobile devices on the web is a highly 

researched area, very little research has been done on mobile applications 

implementing service discovery & binding on the emerging sector of cloud 

services, despite the trend by service providers to move their premises on the 

cloud [1][5][21][110-120].  

Cloud Service Models  

There is particular interest in the commercial applications of cloud computing [5], 

through alternative service models:  

Software as a Service (SaaS) – The capability provided to the consumer is to 

use the provider’s applications running on a cloud infrastructure. The applications 

are accessible from various client devices through either a thin client interface, 

such as a web browser (e.g., web-based email), or a program interface. 
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The SaaS layer generally exploits the Service-Oriented Architecture (SOA) 

technology because SOA and Cloud computing coexist, complement and support 

each other [109][111].  

The Volare project in its current version focuses only on the SaaS service model 

of cloud computing (i.e. application-level service discovery). 

Platform as a Service (PaaS) – The capability provided to the consumer is to 

deploy onto the cloud infrastructure consumer-created or acquired applications 

created using programming languages, libraries, services, and tools supported by 

the provider. 

Infrastructure as a Service (IaaS) – The capability provided to the consumer is 

to provision processing, storage, networks, and other fundamental computing 

resources where the consumer is able to deploy and run arbitrary software, which 

can include operating systems and applications. 

Cloud Deployment Models  

Different cloud deployment models are used, following different business models, 

differentiated on whether they provide access to all interested users or only 

authorized ones (private or community clouds) [105]: 

Public Cloud – The cloud infrastructure is provisioned for open use by the 

general public. It may be owned, managed, and operated by a business, 

academic, or government organization, or some combination of them.  It exists on 

the premises of the cloud provider.  

Private Cloud – The cloud infrastructure is provisioned for exclusive use by a 

single organization comprising multiple consumers (e.g., business units).  

Community Cloud – The cloud infrastructure is provisioned for exclusive use by 

a specific community of consumers from organizations that have shared 

concerns (e.g., mission, security requirements, policy, and compliance 

considerations).  

Hybrid Cloud – The cloud infrastructure is a composition of two or more distinct 

cloud infrastructures (private, community, or public) that remain unique entities, 

but are bound together by standardized or proprietary technology that enables 

data and application portability (e.g., cloud bursting for load balancing between 

clouds).  
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Main Actors in the Cloud 

In the scope of our work, we can emphasize from the figure 2-1 above by NIST 

[105], the role of the following main actors in cloud computing: 

Figure 2-1 – The Cloud Conceptual Reference Model by NIST [105] 

Figure 2-2– Usage Scenario for Cloud Consumer – Provider [105] 

 

The cloud consumer is the principal stakeholder for the cloud computing service. 

Service discovery on the cloud is implemented by a service request either 

through a cloud provider or through a cloud broker. The cloud consumer browses 

the service catalog from a cloud provider, requests the appropriate service, sets 

up service contracts with the cloud provider, and uses the service. The cloud 

consumer may be billed for the service provisioned, and needs to arrange 

payments accordingly.   
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2.6.1 SaaS Cloud Services 

Applications or services offered by means of cloud computing are called cloud 

services. The user of a cloud service has access to the service through a Web 

interface or via an API. A benefit of the approach is that it enables clients getting 

service on a pay-as-you-go basis and selecting cloud services based on the price 

and other criteria such as QoS. The net benefit for consumers and mobile users 

in particular, is the ability to receive better services tailored to their current needs 

[105].   

SaaS represents the trend of the future and the most common form of cloud 

service development. With SaaS, software is deployed over the Internet and 

delivered to thousands of customers. Using this model, the cloud service provider 

may license its service to customers through a subscription or a pay-as-you-go 

model. The service is then accessible using an API [121][5][109].    

2.6.2 Commercial Web Service Providers Move in the Cloud 

One of the underlying advantages justifying the deployment of commercial web 

service providers in the cloud is the economy of scale. By making the most of the 

cloud infrastructure provided by a cloud vendor, a service provider can offer 

better, cheaper, and more reliable services than is possible within its premises.  

The cloud service provider can utilize the full processing and storage resources 

of the cloud infrastructure if needed. Another advantage is scalability in terms of 

computing resources, since service providers can scale up when additional 

resources are required as a result of a rise in the demand for their services. 

Conversely, they can scale down when the demand for service is decreasing 

[121][5][104][114].  

New software developers no longer require large starting capital to distribute their 

services. Providers no longer have to commit resources to provide a service that 

may prove unpopular. Clients no longer need to be concerned about usage 

spikes, requesting over provisioning, as the cost is calculated by the resource 

usage. Thus, the overall cost of hosting distributed applications of dynamically 

changing usage levels decreases dramatically [53]. It also follows that services 

based on cloud resources are more reliable, as they are able to cope with usage 

spikes, as cloud resources are assumed to be practically infinite, and instantly 

scalable.  These advantages present particularly useful opportunities for service 

providers for mobile and non-mobile applications [1][3][21].  
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As a consequence, SPs operating in the past as commercial web services - move 

their premises on the cloud, like: FLIXT for video and movies, OnLive or XBOX 

Live for online gaming, PANDORA for music audio-streaming, etc. [48]. This is 

the main reason that we selected to focus our project on service discovery by 

mobiles on public cloud services, that seems to represent the future of the 

overwhelming majority of commercial application-level services.   

2.6.1 Cloud Service Brokerage  

The NIST identified in its Cloud Computing Reference Model the cloud broker 

actor, which is in charge of service intermediation, service aggregation, and 

service arbitrage [105].   

As cloud computing technology matures, cloud services offers are proliferating at 

an unprecedented pace. As in every business with a delivery model, such as real 

estate and insurance, cloud services’ brokerage is expected to emerge in order to 

enable organizations to procure cloud services efficiently [121][21]. Indeed, 

finding the right cloud service is not an easy task for service consumers given the 

plethora and the variety of cloud services offerings. Dealing with a cloud service 

provider requires knowledge of its operating environment, the availability of 

management tools, its security levels and data recovery approaches, and the 

service terms and conditions. Collecting this information for multiple cloud service 

providers is likely to be a demanding task that is expensive and time consuming.  

A cloud consumer may request service from a cloud broker instead of contacting 

a cloud provider directly. The cloud broker may create a new service by 

combining multiple services or by enhancing an existing service. In this example, 

the actual cloud providers are invisible to the cloud consumer and the cloud 

consumer interacts directly with the cloud broker [105]. 

 

Figure 2-3 - Usage Scenario for Cloud Brokers 

 

Cloud service brokers (CSBs) with their know-how and value-added services will 

assist service consumers in finding appropriate cloud service offerings, carrying 

out the QoS Terms negotiation process, monitoring and assessing 

implementation.    
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Cloud services, much like web services, are typically accessed using brokers, 

which will mainly be in charge of the management of the utilization, performance, 

and delivery of cloud services. CSBs will broker relationships between service 

consumer and multiple cloud providers [121].  

Figure 2-4 – Broker based Cloud service provision [5] 

In this figure (2-4) by Buyya, R., Yeo et al [5], we can see the envisioned serviced 

based market model for future Cloud services. The brokers act as intermidierie 

betweens the users (1..N) and the plethora of services around them. These 

brokers allow users to submit a service request, including required QoS levels for 

that service. They will then proceed to bind the best matching QoS terms with the 

cloud provider for the requested service and QoS levels [4][5][121]. It should be 

pointed out that this paradigm is still somewhat theoretical, and has not been 

applied uniformly to the Cloud industry as of yet. 

2.6.2 Cloud Service Discovery by Mobile Applications 

Service discovery on the cloud presents to the mobile applications developers its 

own particular challenges outlined below, in addition to the DCAA challenges for 

mobile systems already described in §2.2, namely:  

1. Monetary cost of service provisioning on the Cloud 

Cloud services present the specific feature [1][3][4][49][50][51] of imposing 

monetary costs on their clients - typically on a pay as you go basis. This cost for 

use of services on the cloud, typically depends on the resources utilized and the 

QoS level at service binding. Consequently, a service request on the cloud 

should include the cost of binding as a primary selection QoS variable and a cost-
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based adaptation- strategy should be an integral part of a policy for service 

discovery and binding on services on the cloud, in contrast to web services.   

2. Additional challenges on service discovery on the Cloud 

Another major issue with service discovery on the cloud is that it usually passes 

through service providers or brokers (generally third party services), where there 

is limited control about the decision making process of matching a service 

request with the closest possible service.  

Additionally, there are currently no industry standard protocols when it comes to 

advertising cloud services or QoS service levels. Thus, every service provider or 

broker on the cloud has its proprietary protocols. 

There has recently been work on context-aware adaptation of mobile applications 

[4] with cloud service discovery, focusing on market analysis based adaptation of 

the request. It focuses on choosing the most efficient service by means of cost-

analysis of available services in the market and does not take into consideration 

the context of the client device.  

In [27] an approach is presented for mobile systems, by replicating the whole 

smart-phone image and running the application code in powerful VM replicas on 

the cloud for augmented execution, outsourcing the heavy load computation on 

the cloud clone. CasCap [66] is a distributed power management framework for 

mobiles, making use of crowd-sourced context monitoring, functionality off-

loading and adaptation as a service on the Cloud on a clone or a proxy, adapting 

energy-demanding activities in relation to WAN node access and other 

considerations. The research efforts on Mobile Cloud Computing (MCC) are 

rapidly developed for mobile applications off-loading part of the computation on 

the cloud, like CloneCloud [27], CasCap [66], eTime [90], MAUI [96], [97] etc.  

MCC is outside the scope of the Volare project. 

In [67] a context-awareness cloud-based service for profiling mobiles is 

presented, based on frequency of accessing services on the internet, with activity 

database storage and management on the cloud. 

In [65] a distributed framework for context-aware service provisioning, by 

dynamically adapting on the provider side the offered cloud service to the mobile 

user context, through dynamic service composition at the provider side in the 

form of service. This work is on dynamic service composition on cloud 

provisioned services, but with a different scope than Volare.            
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Some new research is published on interactions of mobiles and cloud services. 

There is also significant interest in optimizing the service provisioning process by 

development of relevant approaches or broker models for clouds, since currently 

many cloud providers use proprietary standards for accessing their services, so a 

third party broker is needed to access multiple different clouds [2][5][121][110-

111][114][116][120]. Most of these research efforts aim at optimizing service 

discovery for cloud services through a broker architecture or brokerage 

mechanism or service selection component on the cloud.   

The Volare approach aims to achieve resource optimization for the mobile device 

by applying parameter adaptation of the service request on the client-side. 
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3 Project Overview 

This work aims to address the research problem of how to establish an approach 

that can adapt the service request to ascertain optimal QoS levels to existing or 

independently designed mobile applications launching service discovery & 

binding on cloud services.  

Extensive research work discussed in Ch. 2 recommends as state-of-the-art for 

parameter adaptation on mobile applications the approach of middleware-based 

DCAA adaptation with external adaptation logic. The challenges for the developer 

to provide middleware-based policy-driven DCAA support to existing or 

independent mobile applications implementing Service Discovery on the Cloud 

(CSD) can be seen as multi-fold: 

 The general challenges of the resource and capability constrained mobile 

devices and bandwidth variability referenced already; 

 The added adaptation dimensions of the cost of binding and of the Broker-

specific QoS advertisement and communication protocols due to service 

discovery on the Cloud; 

 The variable user preferences during runtime due to mobility or change of 

mood or of objective needs, that were unobserved or trivial in the stable high-

resources & high bandwidth non-mobile environment; 

The aim of this work is to provide adaptation support to relevant existing or 

independent applications (that are not custom-made to the middleware), without 

any recoding and with minimum cost for the application developer, thus improving 

resource consumption and efficiency in the mobile client and the service provider.   

Despite the high expansion rate of cloud computing and the advantages of that it 

may provide to resource constrained mobile devices, as explained in Chapter 2, 

service discovery to the cloud has so far been scarcely explored by the research 

community. Broker based futures approaches are currently in development 

[121,122], suggesting further interest in expanding the cloud services paradigm. 

Due to the interesting research challenges and future impact of services on the 

cloud to the computing community, along with the increasing number of smart 

mobile users, that leads us to focus our research project on the domain of service 

discovery on the cloud for mobile applications. 



 
 
   

30 
 

3.1 Motivating Scenario for Mobile Policy-based Adaptive 

Service Discovery on the Cloud   

The Volare mobile middleware aims to provide policy-based DCAA functionality 

to independent mobile applications implementing cloud service discovery (CSD) 

to services by adapting their Service Request (SR). DCAA of the SR by the 

middleware ensures the most satisfactory Quality of Service (QoS) under the 

current context and the policy constraints, including binding to the most 

appropriate and cost-competitive cloud service discovered.  

The adaptation should be implemented transparently to the applications without 

any recoding, simply requiring from the application developer to provide an 

application-specific adaptation policy file with mostly pre-declared context & QoS 

variables that includes the rules on the service request QoS variables that will 

guide adaptation.   

3.1.1 Motivating Example – User Set Challenges 

We describe below a motivating scenario: Evelin is a smartphone user 

subscribed to a Mobile Network Service Provider (MNSP) for a monthly contract 

of a specified maximum monthly data allowance (4 GBs in the case study) 

downloadable through the use of mobile internet (web and cloud) services. Evelin 

– or the MNSP – has also installed on the device the Volare DCAA-support 

middleware, as well as several mobile applications launching service discovery to 

services on the cloud, like: video-streaming, audio-streaming, navigation, portfolio 

evaluation, professional news videos, etc., with a specified maximum monthly 

cost allowance on data volume used for services on the cloud (in the case study: 

5£/month).  

Jacob, the developer responsible for the firmware and optimization of the mobile 

device, is aware that cloud services may potentially be operated on it. His interest 

is to ensure the best operation and most efficient resource allocation for his 

device, to ensure Evelin’s satisfaction. He is aware of the capabilities and 

limitations of the platform he is working on, and thus wants to ensure that the 

adaptation behavior for QoS operations on that device reflects the capabilities of 

the device itself. Thus, he has installed the Volare middleware on the device, and 

wants to specify a global adaptation policy for it that will influence any future 

adaptation, since he cannot expect the application developer to be aware of all 

the intricacies of every possible client device his application will be used on. 
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Ronald is the developer of a cloud video streaming application. He wants to 

ensure that his application operates in the most effective manner possible, 

ensuring optimal performance for Evelin, while minimizing resource consumption 

from the provider side, which he is likely financially responsible for. He wants to 

be able to develop a QoS adaptation policy for his specific application that will 

alter the QoS levels requested, according to the context of the device, which he 

cannot predict beforehand. In addition, he wants to be able to do this outside of 

the application code itself, since it may already be developed, or the policy may 

need to be updated and calibrated. Most importantly, he knows the target devices 

for his application are running the Volare middleware, but he certainly does not 

want to develop a separate policy for each device, since he is not aware of the 

intricacies and limitations of each model. Thus, he wants to focus on developing 

adaptation behavior for his own application, trusting that the global adaptation 

policy of the device will ensure that the adaptation behavior will more accurately 

reflect its capabilities.  

Evelin is informed on the default adaptation logic of the Volare middleware, the 

Long Term Performance Goals (LTPGs) and the customization capability, as well 

as the alternative generic user preference modes offered by the User 

Preferences Interface (UPI). Evelin’s actions or expectations are presented below 

in various scenes of the mobile operation for service discovery on the cloud.     

Scene 1 – Customizing the default adaptation logic – Evelin initially (and 

eventually at a later time) customizes the default adaptation logic concerning 

service discovery on the cloud, including the Long Term Performance Goals 

values, setting the actual MNSP contract value of 4 MBs/month for the monthly 

data volume allowance on the internet, and the 5 pounds/month value for the 

monthly cost allowance for binding to services on the cloud. He reviews other 

customizable parameters values of the adaptation logic. 

Scene 2 – Selecting alternative generic User Preference modes – Evelin, at 

runtime of a CSD application, would like to select on-the-fly through the user 

Preferences Interface or leave selected the currently appropriate user preference 

mode (like: “Normal” or “HighQuality” or “LowCost” or “SaveBattery”), enforcing 

the selected policy-based generic real-life adaptation behavior on the active CSD 

session. For instance, when the highest attainable quality binding is sought, then 

the “HighQuality” mode is selected – without considering cost or battery level. On 

the contrary, “LowCost” mode may be selected for services where low QoS is 

acceptable at low cost. “SaveBattery” mode may be selected when Evelin sees 
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that battery level is below 30% or 40% and expects extensive device use till 

recharging opportunity.  

Scene 3 – User-Transparent Dynamic Rediscovery at Runtime – When Evelin 

launches a service request on the cloud, he expects the most appropriate service 

to be discovered and bound to. If mobility at runtime leads to bandwidth or 

resource drop, Evelin expects a user-transparent dynamic policy-based 

evaluation and eventual rediscovery and binding to more appropriate service, 

without being annoyed by instructions requests or long delays.      

Scene 4 – Intelligent Smartphone Operation on LTPGs – Evelin expects that his 

only supervision duty, after having reviewed and customized the default settings 

for the User Choices Profile, should consist in recharging the device when it is at 

low battery level and occasionally selecting a more appropriate than the default 

“Normal” user preference mode. Evelin expects his smartphone to operate in an 

intelligent and user-transparent manner, monitoring context and performance on 

LTPGs, adapting when required in order to achieve the LTPGs over their 

horizons, without burdening him with guidance requests and/or options selection 

for appropriate service QoS levels. It is the Volare’s task to achieve each LTPG 

by the completion of its time horizon. 

Scene 5 – Fine-Grained, Gradual Adaptation Behavior – Evelin expects fine-

grained, gradual and not abrupt adaptation behavior. For instance, if the monthly 

expenses rate for cloud services is estimated as overrunning a policy-based 

estimated threshold, then the middleware should transparently start selecting 

services gradually cheaper than usual, in order to bring back to normal the 

expenses rate, keeping costs within target over the monthly period. However, 

adaptation change level should be in relevance to the expenses rate 

discrepancy, in a gradual, fine-grained manner.   

3.2 Establishing DCAA support for Cloud Service Discovery 

As expressed in the state of the art in Ch. 2, Dynamic Context Aware Adaptation 

(DCAA) for mobile applications launching Service Discovery & Binding to 

services on the Cloud, require the following three basic constituents of CAA: 

a) A Mobile Middleware supporting DCAA  for the active application(s); 

b) An Adaptation Policy Specification Language for authoring or editing the 

middleware and the application policies; 

c) An Adaptation Reasoning Approach for Adaptation Policy development. 
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We will examine for each of these three required constituents for DCAA support, 

the challenges imposed by the research field chosen (Cloud Service Discovery 

by mobile applications). We additionally impose our own additional usability and 

development capability needs and we deduce the requirements for the design of 

each of the above three constituents.   

3.3 Motivation for a novel Adaptation Reasoning Approach 

In policy-based systems the adaptation policy logic is the driving force for 

satisfactory adaptation. Consequently, identifying the characteristics that an 

adaptation policy and the DCAA middleware/framework should support is a major 

software engineering challenge.  

In this work we use the term “policy” or “policy file” to mean the whole set of 

adaptation-rules for the middleware adaptation or for an application adaptation. 

We also use the term “adaptation-variable” for each rule “head predicate”.        

We restrict ourselves in comparison to the action-based adaptation reasoning 

approach, since the other two goal-based and utility-based approaches as 

described in §2.3, entail a heavy development and operational cost that may be 

justified only for more complicated applications, usually concerning dynamic 

service composition.  

3.3.1 Challenges for a novel Adaptation Reasoning Approach 

Critical issues are examined concerning the adaptation reasoning approach for 

policy design compatible to the Volare APSL innovative features, in order to be 

able to provide consistent and meaningful optimal (or near-optimal) adaptation 

results:   

1. Policy Structured over Multiple Competing Adaptation-concerns 

There exists a multi-faceted challenge on policy development that needs to be 

addressed. The conventional Action-based adaptation policy uses the “situation - 

action” approach with the limitation of just one selectable adaptation-rule for each 

head predicate at any “situation”. However in the adaptation process, there are 

multiple active, live, adaptation-concerns (adaptation interests), that need to be 

considered and “represented” in the “situation-action” relevant selectable 

adaptation-rules, for instance: 

a) The interest to have the most satisfying application performance for the user 

under the current context, constraints and user preferences. 

b) The interest in optimal use of resources like battery power, RAM, CPU etc.  
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c) The interest to have service discovery and binding to a service on the Cloud 

that satisfies the policy-based cost strategy under the current user 

preference. 

d) The interest that service rediscovery and/or rebinding at runtime due to 

context change should only be allowed conditionally, on a strategy to 

consider the cost/disruption caused in user satisfaction by a 

rediscovery/rebinding vs. the benefit of re-adaptation. 

We argue that it is difficult on one rule for each adaptation-variable to combine 

successfully all those adaptation interests, especially since they may vary with 

context even within the context sub-domain of a contextual “situation”.    

2. Making Policy Editing, Modification or Enrichment Easy  

In the conventional action-based adaptation reasoning, the policy consists of 

cautiously designed adaptation rules. If the developer decides to modify the 

policy on one or more adaptation features, would need to review the whole policy 

to identify the relevant adaptation-rules that need to be modified, removed or 

added and make the modification. This happens because the priority settings on 

adaptation-rules and the shared context-variables conditions make the Policy 

very complicated for modification and increase the risk of rule inconsistencies or 

other rule faults at policy execution.  

For example consider the case where the adaptation policy has incorporated a 

specific behavioral attitude, like a cost-based service selection strategy for 

binding to a service or a battery power management strategy at service discovery 

on the cloud. At some time, the developer or advanced user decides to replace 

the specific strategy with a different one. In the conventional action-based 

approach, this would typically require a full scale effort to review the whole policy, 

identify adaptation-rules on different context conditions and possibly different 

head predicates that need to be modified or replaced and the need for full policy 

verification for danger of inconsistencies or rule faults. 

3. Adaptation Policy Fine-tuning on Specific Feature(s) by the User  

There is also the challenge of how the user may fine-tune adaptation behavior in 

an action-based adaptation policy, so that the application/middleware behaves 

differently on one or more specific feature(s), without intervening in the policy. For 

instance, the developer or advanced user decides to make the binding cost 

strategy stricter and/or set a more cautious attitude towards a resource like 

battery power use.  



 
 
   

35 
 

In that case, it is difficult and tedious for the developer of the action-based policy 

to identify the appropriate adaptation rules and a policy review is required, due to 

the fact that there should be only one selectable adaptation rule per QoS 

variable, and it must represent all relevant adaptation interests, including the 

possibility for fine-tuning. 

4. Fine-grained, gradual Adaptation  

A further issue with typical action-based adaptation stems from the fact that it is 

difficult to implement more gradual adaptation, due to the difficulties in accounting 

for multiple different context changes happening simultaneously. Thus, policy 

authors often resort to simply providing static QoS values triggered on specific 

context events, instead of opting for more gradual adaptation, that may lead to 

inefficient in final service request QoS levels [34][18]. In addition, at contextual 

situation boundaries, the adaptation tends to be abrupt, as another rule becomes 

selected. 

5. Policy Optimization through Usage Pattern history 

Assuming a single user for each mobile as it is typically the case, it may be 

possible to attune the initial adaptation policy to the mobile device usage pattern, 

thus optimizing the adaptation behavior on policy-based Long Term Performance 

Goals. This is much easier to implement for a policy designed around pre-

determined adaptation characteristics, especially with the tool of weight values 

that may modify the adaptation behavior.  

3.3.2 Requirements of a novel Adaptation Reasoning Technique 

Thus a novel weight-based adaptation reasoning technique is introduced for 

policy development compatible to the Volare Adaptation Policy Specification 

Language (APSL) through eventually multiple adaptation-rules on each 

adaptation-variable. The requirement is the development of a new, simple, rule-

based adaptation reasoning technique for policy development through the APSL, 

based on the following basic policy design tasks, preferably executed in an 

iterative pattern: 

1. Develop an adaptation logic that enables multiple adaptation rules per 

QoS variable, to express multiple adaptation-concerns. 

We argue that the policy would be more expressive, flexible and easy at 

authoring, editing or fine-tuning, if the developer identified at design-time the 

scenario major non-overlapping adaptation-concerns and defined the policy 
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through adaptation-rules that express each adaptation-concern at every relevant 

contextual “situation”. Each different adaptation-rule would provide the adaptation 

action aimed to satisfy the adaptation-concern that it represents under the current 

context.  

At policy execution, the eventually multiple selected adaptation-rules for each 

head predicate (one for each relevant adaptation-concern and adaptation-

variable) the Conflict Resolution should derive the adaptation results through 

Participative Weighted Contribution of their execution-values and weight values. 

Thus we conceptualize an adaptation policy structured around chosen major non-

overlapping adaptation-concerns that express various adaptation viewpoints 

(such as performance optimization, resource use optimization, binding cost 

minimization etc) through multiple rules that affect the same QoS variables or 

middleware configuration variables. The balance in the adaptation results in the 

case of eventually multiple execution values is established through the weighted 

approach.  

In addition, if the policy is structured on pre-defined adaptation-concerns, then 

modifying or replacing all or some from the set of rules on a specific adaptation-

concern would be much easier, as they are immediately identified and the 

inconsistency or highly erroneous adaptation danger is much lower, because 

there is not just one selectable rule on each adaptation variable.    

2. Define a scenario-specific User Preferences Model.  

This allows fine-tuning of the adaptation logic by the user for each relevant 

application and for easy on-the-fly dynamic user preference selection of the 

appropriate behavior pattern.     

3. Define Long Term Performance Goals. 

By defining possible long term adaptation goals over finite horizons, we can 

achieve more efficient resource consumption over the long term. By combining 

this knowledge with statistical analysis of existing usage patterns, we can 

enhance the efficiency of the adaptation process, but planning ahead for 

expected pattering in the resource usage and environmental change. 

4. Define a Weight-Assigning Strategy (WAS).  

By developing a system for increasing or decreasing the importance of certain 

adaptation rules in a multi rule environment, we can achieve higher 

expressiveness and more gradual adaptation. We can implement this by 

assigning an appropriate weight function value to every adaptation-rule. The 



 
 
   

37 
 

WAS should facilitate  the implementation of the User Preferences Model 

selected, either in adaptation logic fine-tuning by the user or in the user 

preference mode selection, imposing a different adaptation behavior. 

3.4 Motivation for a novel DCAA Mobile Middleware 

3.4.1 Challenges for a novel DCAA Mobile Middleware 

When mobile devices are binding to Internet wireless services, context conditions 

at service discovery and context variation during runtime may lead to changing 

requirements from client mobile applications with adverse effects on 

performance, resource utilization and user satisfaction [18][30][34][54]. Variable 

network availability and constrained device resources may lead to disconnections 

or resource exhaustion. For this reason the Volare is designed as a client side, 

not distributed, middleware.  

Since the mobile environment cannot offer QoS level guarantees, optimal 

operation corresponds to a dynamic compromise between what is technically 

attainable and the user preferences on competing and changing interests, like: 

performance, resource conservation, cost and disruption minimization etc. For 

this reason, the Volare approach introduces the User Preferences Interface (UPI) 

application and dynamic monitoring of the user preferences as described in the 

Volare scenario in §3.3, making it a crucial characteristic in adaptation and the 

middleware design and functionality.   

Additional challenges for mobile application developers consist in the domain 

specific difficulties of service discovery on cloud services [4][5][21], namely:  

 Service Discovery and binding to services on the cloud passes through Cloud 

Service Brokers, predominantly commercially based and therefore difficult to 

work with for research purposes.  

 The Service Request Protocol to a Broker presents a significant challenge in 

the process, as there is still no industry standard protocol available, unlike in 

the web services domain. Similarly, there is no industry standardized QoS 

Advertisement Protocol. As such, it is difficult to establish a system where 

QoS levels from different providers are evaluated.  

 Cloud Service Providers, due to the commercial nature of the Cloud [1][21], 

charge the user in a pay-as-you-go directive, according to the Provider 

resources utilized. Consequently the adaptation logic for binding on a service 
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on the cloud should necessarily be cost-conscious and a practical User 

Preferences Model should be supported.    

3.4.2 Requirements for a DCAA Mobile Middleware 

From our hypothesis in §1.5, the general motivation in §3.1, the scenario in §3.2 

and the specific challenges in §3.3, hereby follows a brief description of features 

that constitute requirements that the Volare middleware should satisfy, based on 

the functionalities that is required to provide as described in the scenario. 

Requirements on the functionality and operation of the middleware: 

 Dynamic adaptation at runtime – The middleware shall support policy-based 

dynamic adaptation of the application Service Request, in response to 

context change at Service Request time and at runtime.  

 Adaptive middleware – The middleware should be able to adapt its 

functionalities to context change to better serve its purpose.  

 Application independent and application transparent adaptation – The 

middleware will not require the client application itself to be modified, or to be 

adaptive or to be custom-made to the middleware to facilitate adaptation.  

 Support to the Volare two-level dynamic User Preferences Model, through a 

User Preferences Interface (UPI) application. The UPI will operate as a 

context multi-sensor, dispatching to the middleware the current user 

preferences. The UPI will operate at a generic level, independently to 

whatever user preference functionality each application may (or may not) 

have, by specifying short-term and long-term user wishes on performance, 

resources use, abstract level goals or  disruptions due to rediscoveries etc.  

 Context & Adaptation History Data Management and support to policy-based 

Long Term Performance Goals through statistical analysis functions on the 

context & adaptation history data.    

Additional Requirements on the architecture and design: 

 Client-side middleware - All components of the middleware should be on the 

mobile device to cope for robustness against loss of communication capacity 

due to mobility as well as to reduce the computational burden of a distributed 

framework and the cost of binding on the cloud. The computational and 

memory footprint of the middleware should be well within the mobile device 

capability. 
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 Middleware architecture in loosely-coupled task-specific modules for easy 

maintenance, upgrade possibility and extensibility. 

 Reusable and platform independent components as much as possible, using 

an object oriented language for mobiles supported by several platforms, for 

all components not directly communicating with the OS of the device.  

 Events monitoring and management will be implemented by the middleware, 

triggering policy execution for adaptation according to hard-coded criteria and 

policy-based threshold parameter values.  

3.5 Motivation for a novel Adaptation Policy Specification 

Language 

3.5.1 Challenges for a novel Adaptation Policy Specification 

Language 

As briefly described in §2.4, there are various available domain-specific or 

general use Policy Description or Specification Languages for policy authoring 

with particular characteristics. However, in Volare we are interested not only in a 

simple and clear, declarative Adaptation Policy Specification Language (APSL), 

but also on some specific original features and we examine below the challenges 

involved.  

Specifically we focus on a characteristic of the Conflict Resolution procedure in 

the Policy Specification Languages. The common thread in similar adaptation 

policies is to select a single adaptation rule for each QoS variable based on the 

context, which in general terms is a very reasonable requirement in order to 

prevent conflicts and avoid middleware and/or application malfunction. 

However, if more than one adaptation rules were to be selected and executed 

providing their execution values but were assigned values of relative importance 

in the form of weight values, then an appropriate Conflict Resolution and 

Participative Weighted Contribution Procedure would calculate final adaptation 

results without inconsistencies. 

A major research challenge for Volare is thus the design of such an Adaptation 

Policy Specification Language, by exploring the requirements and conditions for 

such an approach to be consistent, enabling authoring of adaptation policy logic 

with eventually multiple adaptation rules on the same head predicate selectable 

at policy execution, thus allowing contribution to the adaptation results by 

competing interests. 
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Another innovative characteristic sought for the Volare APSL is the support at the 

same time to two policies independently designed by different developers, for 

adaptation of the middleware and of the active application service request.  

Additionally, we raise the issue that the APSL, optionally at the developer’s 

decision, should support hierarchic policy execution in consecutive cycles to 

provide for dependencies by specifying at which cycle the rules for each 

adaptation-variable are allowed to be matched and selected. This APSL feature 

would allow in the first cycle(s) only rules selection and execution that identify the 

most appropriate mutually exclusive configuration variant (or variants if more than 

one sub-configuration exist with alternative variants) and then in subsequent 

cycle(s) rules selection and execution for the dependent parameters settings, 

until the maximum number of cycles is reached and all adaptation variables have 

new values.  

3.5.2 Requirements for a novel Adaptation Policy Specification 

Language 

Based on the above challenges, the following requirements are set for the Volare 

novel, declarative, simple and clear Adaptation Policy Specification Language:  

1. Eventually multiple adaptation-rules on the same adaptation-variable 

selectable at policy execution 

a) “Allow at policy execution eventually multiple adaptation-rules on the same 

head predicate to be selected and executed.” The Volare APSL – contrary to 

most policy specification languages and the three main adaptation reasoning 

approaches described in §2.2 – adopts an innovative, weight-based 

approach:  

b) By Conflict Resolution Directives allowing eventually multiple adaptation-rules 

on the same head-predicate to be selected and executed, thus providing 

multiple execution-values, each with a weight value representing its relative 

importance at adaptation calculation. 

2. Participative Weighted Contribution of the selected adaptation-rules to 

the adaptation results  

By Participative Weighted Contribution Directives for calculating the adaptation 

results. More precisely, the Volare APSL introduces two unique Conflict 

Resolution Directives: 
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a) “At the “Select Rules” step of the Policy Engine Cycle at policy execution, all 

the highest priority adaptation rules are selected for execution forming the 

Agenda, including possibly multiple ones on the same head predicate”. This 

happens in contrast to conventional on this feature approaches that allow 

only one adaptation-rule to be selected for each head predicate (adaptation-

variable). 

b)  “At the “Execute Rules” step of the Policy Engine Cycle at policy execution, 

all execution-values of the selected and executed adaptation rules on the 

same adaptation-variable contribute to the adaptation results through 

Participative Weighted Contribution Directives: (i) the Weighted-Average Rule 

for numeric variables and (ii) the Majority Rule on the sums of weights for 

each non-numeric (Boolean or string type) adaptation-variable”. 

3. A weight function value assigned to every adaptation-rule 

The APSL should require at policy execution, the existence of a weight function 

value on every adaptation-rule. This weight function value should represent the 

relative importance of the rule in comparison to selectable rules on the same 

adaptation variable (head predicate) in calculating the final relevant adaptation 

result by the Participative Weighted Contribution Directives.   

4. A simple and clear, declarative Adaptation Policy Specification 

Language  

A simple and clear declarative Adaptation Policy Specification Language (APSL). 

The policy files can be viewed, printed and edited dynamically. 

5. Adaptation-rules of the paradigm: condition-action  

Simple rules of the form: If (conditions) – Then (action), neither of the “event- 

condition-Action”, nor of the “If-Then-Else” model, with “action” a single 

adaptation-statement assigning to the adaptation-variable (head predicate) at the 

LHS a value at the RHS of type numeric, Boolean or string and a weight value.  

6. Two-level Adaptation Policy support 

At Policy execution, a Composite Policy made of the middleware and of the 

active application adaptation policies will constitute the adaptation driving logic, 

with provisions ensuring the protection of critical adaptation-rules from Inter-

Policy Conflict and overriding.  

7. Support to multiple Consecutive Execution Cycles (CECs) 
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Support to developer-defined eventual multi-cycle policy execution, expressing 

the need for successive hierarchic configuration variant(s) selection or operation 

profile variants with dependencies, where it is necessary to select first one 

component or profile/algorithm or configuration or protocol variant before 

selecting at the next Policy Engine cycle the dependent parameters values. 

All these requirements should be covered by the provisions of the Volare 

Adaptation Policy Specification Language, as will be further described in the 

features of the APSL in the following paragraphs of Chapter 3 and in the detailed 

APSL section in Chapter 5. 

3.6 The Volare Solution 

In this work we introduce the Volare approach for middleware-based DCAA 

transparent support to independent mobile applications launching service 

discovery for services on the cloud, for dynamic combined cost, resources and 

QoS level optimization of the service discovery, according to the operational 

requirements set in our hypothesis. 
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As seen in the figure above(3-1), the Volare approach is composed of the 

following three required constituents: 

1. A novel two-level Adaptation Policy Specification Language that enables the 

developer to define adaptation behavior for individual application, or global 

adaptation rules, by providing the rules and syntax. 

2. A novel Weight-based Adaptation Reasoning Technique for policy 

development, providing the developer a systematic, consistent methodology 

for developing those adaptation policies. 

3. A dynamic context-aware adaptive mobile middleware design, which 

implements the adaptation policies written above to perform parameter 

adaptation an application’s cloud service request QoS levels. The middleware 

thus ensures that the request is properly optimized for the current context of 

the device, before forwarding it to the service provider. 

In addition, the user of the mobile device must be able to influence the adaptation 

process though a User Preferences Interface. 

Our research contributions for each of the above three constituents of the Volare 

approach are presented in the following paragraphs. 

3.6.1 Middleware Operation 

When a mobile application launches a service request on the cloud, the 

middleware intercepts and transparently to the application adapts the QoS levels 

of the service request according to the current context in a policy-based manner 

involving the policies for the middleware and the active application and 

dispatches it to the cloud Broker for service discovery.  

Additionally, the middleware configuration is also adapted to the current context 

to better serve its functionalities, i.e. context monitoring, adaptation reasoning, 

adaptation implementation and the service discovery & binding functionality.  

The Broker returns the QoS for the most appropriate service discovered. The 

middleware, based on policy-based negotiation limitations, either binds to the 

discovered service or re-adapts the service request and implements new service 

discovery.  

At runtime, the middleware monitors the context to determine if adaptation is 

required due to context change according to policy-based criteria. If so, service 

rediscovery to the same Provider or rebinding to another more suitable Service 

Provider is implemented, adapting again the QoS request values as well as the 

middleware configuration variables to the new context. 



 
 
   

44 
 

Volare supports the User Preferences Model through a User Preferences 

Interface (UPI) application. To achieve optimal cloud service binding Volare 

attempts to discover the service providing optimal available QoS levels, including 

the added binding on the Cloud cost dimension. Since optimal service in the 

mobile environment is typically a compromise of what is technically attainable vs. 

available resources and user preferences, Volare introduces a User Preferences 

Model enabling dynamic declaration of a short-term user preference mode and of 

long-term choices that should be supported and satisfied by the middleware.  

In this way, the Volare approach can utilize a User Preferences Interface (UPI), 

through which the user can:  

a) Choose or change at runtime one among several alternative pre-defined 

policy-based user preference modes, thus modifying the adaptation behavior 

in a policy-based manner as the mode-title indicates; 

b) Fine-tune or customize the default middleware adaptation behavior for each 

specific application supported, by setting the long-term User Choices Profile 

that modifies the default values of middleware adaptation policy parameters 

within pre-determined “safe limits” through the UPI. 

3.6.2 A novel Weight-based Adaptation Reasoning Technique 

The “weight-based adaptation reasoning technique” for policy development is 

introduced – based on the Volare APSL. Our specific contributions on the 

conception of the weight-based adaptation reasoning methodology are: 

1. Policy structured around predetermined adaptation-concerns 

The policy is structured around predetermined complementary and non-

overlapping adaptation-concerns representing important qualitative goals that 

cover the adaptation-concerns space, such as: binding cost optimization, optimal 

resource use, performance optimization, delays/disruption minimization etc. For 

every adaptation-concern a group of rules is designed serving it across the whole 

valid context domain and is called adaptation-strategy.  

2. The Weight-Assigning Strategy for weight value assigning to each rule 

A Weight-Assigning Strategy assigns an appropriate weight value to each 

adaptation-rule representing at policy execution the rule’s relative importance 

with respect to the other selected rules on the same adaptation-variable.   

3. Integration in the Policy of the Volare Two-level User Preferences Model 
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Integration in the policy rules of an innovative Volare configurable User 

Preferences Model of the weight-based methodology, allowing through the UPI 

selection at runtime of a user preference mode triggering dynamic adaptation to 

the appropriate adaptation behavior, as well as global policy customization for 

each application through the User Choices Profile. 

4. Weight-based Variant Selection for non-numeric Adaptation-Variables  

Another contribution is the weight-based variant selection feature for non-numeric 

adaptation-variables at policy execution, through the weight values, expressing 

user preference. This is a unique feature not directly present in conventional 

action-based approaches, allowing variant selection through the weight values of 

the selected rules, indicating – under all other similar context conditions – the 

user preference influence in adaptation results. In this case the sum of weights 

for each variant is used as a utility function. 

5. An Adaptation Policy Authoring Methodology 

By developing an appropriate adaptation policy authoring methodology and 

appropriate testing and verification tools, we can enable the policy developer to 

easily author policies integrating the above weight-based technique, using the 

Volare APSL defined below. 

3.6.3 A Two-Level Adaptation Policy Specification Language 

1. Multiple Rules selectable on the same Head Predicate 

Perhaps the most important contribution of our work consists in designing a 

simple and clear, declarative Adaptation Policy Specification Language (APSL), 

with unique features like weight value assigning to every adaptation rule built on 

the situation-action paradigm, so that at policy execution:  

a) Conflict Resolution Directives allow eventually multiple rules on the same 

head predicate (the variable to be adapted) – representing different 

adaptation-concerns – to be selected providing their execution and weight 

values  

b) Participative Weighted Contribution Directives enable calculation of the 

adaptation results without inconsistencies, through application of two 

common-sense rules on the execution and weight values: the Weighted-

Average Directive for numeric adaptation variables and the Majority 

Directive on the sum of weights for non-numeric adaptation variables variant 

selection. 
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This unique APSL feature permits a much more expressive policy authoring, by 

allowing eventually multiple adaptation rules to be selected concerning the same 

QoS variable, contributing their execution values for the adaptation-concern they 

represent in the policy, at the relative importance assigned through the weight 

values.   

2. Two-level Adaptation Policy Specification Language 

The second important contribution for the Volare APSL consists in supporting 

two-level policies: the global policy for the middleware and the application policy 

for each application, allowing inter-policy and intra-policy Conflict Resolution, as 

well as provisions for the protection of critical rules of each policy from being 

overridden. The application adaptation policy has access to the context and 

global QoS variables of the global policy.   

3.6.4 A dynamic context-aware adaptive mobile Middleware Design 

1. DCAA Support to independent Applications on SD on the Cloud    

This project includes the creation of a mobile middleware design to enable DCAA 

support to independent mobile applications that request service provision from 

the cloud, via the capability to intercept service requests to the cloud in an 

application transparent manner (without changing the application’s code) and 

dynamically adapting it to better reflect the current context of the device. 

2. Middleware Support of Two-level Adaptation Policies 

Another original aspect of this work is middleware’s capability to allow two 

different adaptation policies to affect the adaptation behavior. This is achieved by 

dynamically forming, at service discovery time, a “Composite Policy” from the 

middleware “global policy”, which concerns adaptation logic based on the unique 

capabilities of the client mobile device, and the active service request “application 

policy”, which is adaptation logic based on the application itself. This allows our 

adaptation logic to perform adaptation that takes into account both the individual 

needs of the mobile device and the application itself. 

3. Support of Long Term Performance Goals 

Predictive functionality allows for Long Term Performance Goals on 

predetermined characteristics by policy-based criteria through Machine Learning 

techniques evaluating the context & adaptation history.    
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3.7 Research Benefits  

The benefits of this research work on mobile middleware-based systems to 

provide policy-based DCAA support to independent applications for the software 

engineering community beyond the scope of the current project are:  

1. The Volare weight-based approach allows imparting DCAA functionality on 

the Service Request of existing or independent applications in an application 

transparent manner (without any recoding).  

The application policy development is a small cost for assigning policy-driven 

middleware-based DCAA functionality to applications with no adaptation 

capability. The classical approach middleware-based DCAA would require 

applications custom-made to the middleware or vice-versa.     

2. The capability of the Volare APSL to allow multiple adaptation-rules 

concerning the same adaptation variable to be selected and executed at 

policy execution under the Participative Weighted Contribution Directives, 

provides the developer with much greater expressiveness in adaptation policy 

authoring, than the conventional action-based technique, through the 

possibility for multiple rules, each expressing a different adaptation-concern.  

3. The two-level policy structure, combined with Volare’s capability to handle 

multiple rules concerning the same QoS variable, enables platform specific 

adaptation in conjunction with application specific adaptation. It allows for the 

mobile device’s firmware developer (via the global policy) to also influence 

the adaptation process to account for each mobile device’s unique resource 

characteristics. This can increase the efficiency of the adaptation in cases 

where the application developer cannot predict the platform his application 

will be run on, which is common in mobile application development. 

4. The adaptation-concerns and corresponding adaptation-strategies feature of 

the Volare approach also allows easy modification or customization of an 

existing adaptation policy on predetermined adaptation features, or easy 

substitution of a whole strategy on a predetermined feature with another, or 

addition of a new strategy selectable under specific conditions. This makes 

the task of authoring or integrating new policies in an existing policy easier for 

integrating new user requirements. In addition, it leads to significantly smaller 

adaptation policies in cases where mutually exclusive context variables must 

be considered, as it does not require developers to rewrite the entire 

adaptation policy for each eventuality.  
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5. The introduction of the Volare Two-level User Preferences Model permits: (a) 

the selection of a user preference adaptation behavior on the fly and (b) a 

User Choices Profile for middleware policy customization to each specific 

application, through a User Preferences Interface application. 

6. Volare’s weight-based technique capability to smoothly integrate multiple 

adaptation-rules also allows for fine-grained, gradual, highly expressive 

adaptation in comparison to the action-based technique. 

7. The introduction of policy-based Long Term Performance Goals unanticipated 

at middleware design time, by the statistical analysis functionality of the 

middleware on pre-determined features in a policy-based manner of the 

usage pattern [10]. 

3.8 Research Scope  

The following important topics are referenced in the Thesis but are not studied 

and are considered outside the frame of this project at this point 

1. The use of weight values for uncertainty reasoning 

For this project project, on the subject of weight assigning, we do not refer to the 

issue of uncertainty and fuzzy logic [56][76][34]. Instead, in our work we consider 

the context information trustworthy and not conflicting, especially since in our 

scenario we focus on a single mobile user and not on Pervasive Computing 

multiple context values of different trustworthiness from many sources.  

Weight assigning to each adaptation rule at policy execution leads directly to 

assigning a relative importance to eventually more than one selected adaptation 

action on the same head predicate, due to different user desirability on each 

adaptation action originating from a different adaptation-concern. 

2. Security Issues 

The use of such adaptation policies for security functionality is a possible 

expansion to our work, however the more fluid nature of our weight-based 

functionality makes it less predictable than a more conventional action-based 

design. Thus, it is not a direction we examined thoroughly in this project. 

3. Coordinated Adaptation for more than one active Applications 

In the present work, assumption is made that only one application has an active 

service request for service discovery on the cloud at any time. Although this is 

typically true for foreground applications like video-streaming or navigation 

requiring the full user’s attention, it may not be so for eventual background 
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applications for service discovery on the cloud operating in parallel with a 

foreground application. The issues of coordinated adaptation and shared 

resources coordinated management may be the subject of future work.   

4. Reflection  

This work assumes the ability to inspect and reason about the local context 

(including resources, such as remaining battery power and bandwidth available) 

and to expose this information for adaptation reasoning of the service request of 

applications, allowing intelligent adaptation choices. Although related to dynamic 

context-aware adaptation, the reflection mechanism is not adopted, since the 

project aims to the adaptation of the Service Request of independent “black-box” 

applications on service discovery on the cloud and not adaptation of the 

applications themselves. Additionally, the middleware itself is self-adaptive.  
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4 Middleware Architecture, Design & Operation 

4.1 Middleware Architecture 

As it can be seen in Figure 4-1, the Volare middleware is situated on the client 

device. That client device then runs an application, which requests a service from 

the cloud. Volare will intercept the service request and adapt it according to the 

current context of the device. Volare’s architecture follows a modular approach, 

consisting of several task-oriented independent interconnected modules. 

The middleware modules are as follows: 

The Context Monitoring Module monitors the context of the mobile device. If 

there are significant deviations of the context from policy specified thresholds 

during runtime, the context monitor alerts Volare to re-evaluate whether the 

presently bound service satisfies the new requirements of the client based on its 

new context.  

The Service Request Module intercepts the cloud service request sent by the 

client application to the service. It then forwards that service request to the 

Adaptation Module. This is a separate module because its implementation is, by 

necessity, platform dependant. 

The Service Binding Module will decide according to the policy adaptation-rules 

to either send the adapted service request to the broker for rediscovery and 

rebinding, or to signal renegotiation with the existing cloud provider, if possible.  

The Context & Adaptation History Module has the task to record the declared 

in The Composite Policy parameters data at every recheck period in the Context 

& Adaptation History Database (CAHiD) and its maintenance and eventual 

periodic data aggregation. 

The Statistical Analysis Module has the task to implement policy-based 

statistical analysis function on the recorded data and provide statistically inferred 

information. It supports a number of pre-defined statistical functions like: Sum, 

Max, Min, Avg etc on a specified parameter data within a specified time period 

among several pre-defined “periods” of repeated activity, like Daily, Manthly, 

(battery) Dischargecycle, Session (on the Cloud) etc.   
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Figure 4-1 – The Volare Middleware Modules 
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 The Event Service Manager (ESM) handles the middleware events and event 

driven operation, through a predetermined event-condition-action list. For any 

predetermined Event Requiring Adaptation (ERA-event), the ARM is notified 

to initiate adaptation. 

 The Adaptation Reasoning Manager (ARM) is the middleware component 

that manages the Policy Engine operation, ensuring the input-output as well 

as policy execution through the Policy Engine Manager. 

 The Policy Files Manager (PFP) is responsible for the maintenance of the 

Policy Files Repository, the loading of requested policy files as well as the 

parsing and merging them into the Composite Policy. 

 The Adaptation Evaluation Manager (AEM) is responsible for evaluation of 

the new adaptation data at runtime, according to policy-based criteria, and 

deciding on launching or cancelling service rediscovery and/or rebinding, if 

the new adaptation data are not assessed as necessitating rediscovery, so as 

not to create user annoyance. For instance if the adaptation recommends a 

small, say 3% increase in bit rate QoS Request, due to some bandwidth 

increase, this quality improvement may not justify operation disruption and 

delay for a rediscovery. 

 The Adaptation Implementation Manager is responsible for dispatching the 

new adaptation data to the corresponding modules/components for 

execution, in predetermined sequence.  

This architecture enables Volare to be used with already developed applications 

without modifying the application itself. Instead, the developer only needs to 

provide a suitable adaptation policy file for the application. Volare achieves this 

by intercepting the service request after it has been initiated by the client 

application, and adapts it without the application’s direct intervention. The policy 

is independent of the application itself. 

A global and a scenario application policy file have been developed according to 

the Volare approach in chapter 7, providing the middleware adaptation logic. 

4.2 The Middleware User Preferences Interface (UPI) 

The UPI is a multi-sensor application connected to the Context Monitoring 

Module of the middleware and allows the global policy developer configuration of 

its menu, by assigning to each sensor a user preference context-variable, a 

range of values that it can take and high & low bounds for modification by the 

user if it is a numeric sensor.  
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It includes, in its current version, although this can be modified, two string type 

sensors for the user preference mode context element at 2 levels and at least 24 

numeric sensors, that may be declared at the global policy as context-variables of 

the UPI and are assigned names, default values and allowed modification 

margins by the developer. 

At every recheck period, the values of the UPI are dispatched to the middleware 

for use in the next adaptation. 

Fine-tuning the middleware  

The Volare User Preferences Interface (UPI) provides the user with the possibility 

to fine-tune or the middleware policy logic and consequently its adaptation 

behavior at runtime, at three successive levels of increasing complexity. It is 

operated by the user easily at the following two levels. 

The User Preference Selection level, which is by default the active level, at 

which the user may on the fly select the desired user preference mode: “Normal”, 

“HighQuality”, “LowCost”, “SaveBattery” and eventually also the 2nd level 

category:  “Business” and “Personal”. See also Figure 5.2. 

The User Choices Profile (UCP) level, which allows the user to customize 

adaptation logic parameters, pre-determined by the global policy developer, 

defining either the generic UCP for all applications or for a specific application. 

Every application-specific UCP is saved and is loaded by the policy files Manager 

when the application launches a SR on the cloud. 

The UPI allows the user to customize the values of global policy adaptation 

parameters, thus fine-tuning the adaptation behavior as follows:  

a) It allows the user to modify the default Strategy-weight-coefficients at every 

user preference, within predefined “safe” limits from about 80% up to 125% of 

the developer’s default values, always keeping the modified weight coefficient 

value between 0 and 1. This customization of weight coefficient values, 

influences the relative importance of the adaptation-strategies and 

consequently the resulting adaptation behavior, enforcing or weakening an 

adaptation-strategy rules versus the other adaptation-rules.   

b) The user through the UPI may modify the default values for pre-determined 

by the global policy parameters, as for instance the goal values for the 

LTPGs, like:  monthly data volume or monthly cost of binding allowance.  
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4.3 Reserved Volare configuration-variables List 

This is the list of adaptation-variables reserved as Volare configuration-variables, 

as well as their default values, that can be accessed and modified through both 

the global and the application-level policy and adapt the middleware modules to 

the current context, in addition to the middleware adaptive service of service 

discovery & binding functionality on the cloud.   

However, the Volare APSL provides the keyword: “overridesAll”, so that global 

policy adaptation-rules on critical configuration-variables may only be resolved at 

the global policy level and any adaptation-rules of the application policy on such 

configuration-variables are overridden. The application policy developer by 

reading the global policy identifies to which variables may have may access.   

 

Volare Reserved Configuration Variables 

 

 

Variable Name Description Type Defa

ult 

Valu

e 
defaultBindingMargin 

The default binding margin 

all QoS variables will have 

when unspecified 

implying 

percentage 
10 

recheckRate 

The rate at which Volare will 

recheck the context of the 

device 

integer, in 

seconds 
20 

rediscQoSThreshold 

The threshold at which the 

discrepancy of the QoS 

levels of the existing binding 

and the calculated new QoS 

levels based on the current 

context will initiate service 

re-discovery and rebinding. 

 implying 

percentage 
5 

renegotiate 

Will Volare attempt to 

renegotiate the request 

when it finds no satisfying 

services? 

Boolean True 
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renegotiationAttempts 

Indicates how many 

attempts will be made to 

renegotiate the QoS levels 

required by the client 

device, in case the 

discovery engine fails. 

Integer 5 

discoveryAccuracy 

Indicates how much the 

values of the QoS Offer 

terms may differ from QoS 

Request values to be 

accepted. 

implying 

percentage 
5 

renegotiationAdjustment 

Indicates how much a QoS 

Request numeric value may 

be adjusted at 

renegotiation. 

implying 

percentage 
12 

rebindingRecheck 

Will Volare wait before 

rechecking after rebinding, 

in order to avoid rebinding 

due to sensor spikes? 

Boolean True 

rebindingDelay 

How long will attempt to 

wait before rechecking after 

rebinding. 

integer, in 

ms 

1000

0 

defaultPeriodicity 

The default monitoring 

periodicity for any context-

variable, for which no 

periodicity value ids defined 

Integer 1 

preferredModality 

Indicates selection of one 

among several mutually 

exclusive variants 

string type  

4.4 The Policy Engine Cycle 

The Volare custom-made forward chaining Policy Engine operated by the 

Adaptation Module of the middleware, for adaptation logic authored conforming 

to the Volare APSL policy file syntax and the WBART, has specific characteristics 

that are analyzed below. 
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4.4.1 The Policy Engine Steps at Policy Execution Session  

At a policy execution session the Volare middleware Policy Engine operates 

either in one single or in multiple Policy Engine cycles, depending on policy-

based instructions. Each Policy Engine execution session is implemented in three 

consecutive steps:  

1. Match Rules step 

In the first state, match adaptation-rules, the Policy Engine finds all of the 

adaptation-rules that are satisfied by the current contents of the Working 

Memory. Since the Volare policies adaptation-rules are in the typical condition-

action form, this means testing the conditions against the working memory of the 

current context data. The matching adaptation-rules that are found are all 

candidates for execution: they are collectively referred to as the conflict set. Note 

that multiple adaptation-rules on the same head predicate may appear in the 

conflict set if it matches different subsets of context data.  

2. Select Rules step 

The Policy Engine then passes along the conflict set to the second state, select 

adaptation-rules, applying a selection strategy to determine which adaptation-

rules will actually be executed. This select adaptation-rules strategy is based on 

implied priority assigning on each adaptation-rule through APSL reserved 

keywords (overrides, yields etc), retaining only the highest priority adaptation-

rules on each head predicate (i.e. adaptation-variable). These adaptation-rules 

will form the Agenda.  

3. Execute Rules step 

Finally the Agenda (the selected adaptation-rules of the highest priority) are 

passed over to the third state, execute adaptation-rules. The Policy Engine starts 

execution of the selected adaptation-rules, executing sequentially each selected 

adaptation-statement, deriving an execution-value for the adaptation-variable 

referenced, along with the values of any referenced attributes (binding margin 

and weight function value).  

The execution-values from all selected adaptation-statements through the 

Conflict Resolution Directives are evaluated according to the Volare Participative 

Weighted Contribution mechanism to provide the resolved-value for each 

adaptation-variable, representing the adaptation results.   

4. Consecutive Execution Cycles at Policy Execution 
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The Volare APSL, depending on the global policy file, allows a policy execution 

session to be executed either in one single or in multiple Policy Engine cycles, 

thus supporting more complex, hierarchic, consecutive calculation of the 

adaptation variables values. It allows the system to first select the most 

appropriate mutually exclusive variant among several competing structural, 

modality or algorithmic variants and then in the subsequent Policy Engine cycle 

to calculate the rest of the adaptation variables. 

The global policy file declares and defines in the Declarations section the integer 

type calculation-variable cyclesMax that defines the maximum number of Policy 

Engine cycles. In simple applications when there exists only just one 

configuration variant in the global policy, then cyclesMax = 1.  

However, if there are more than one variants and the Composite Policy includes 

weight-based selection of the most suitable one (i.e. by the Conflict Resolution 

Directives through the sum of weights for each variant), then more Policy Engine 

cycles will be necessary).  

At the first cycle, the most suitable variant is selected. At the next Policy Engine 

cycle, use is made in the Criteria conditions of the known value for the selected  

structural or algorithmic or modality variant, for instance: preferredModality = 

variantX, thus selecting only the adaptation-statements under the already 

selected variantX.  

If the Composite-Policy includes further sub-options, then successively more than 

two Policy Engine cycles may be necessary, until all adaptation-variables have 

been calculated in hierarchically successive Policy Engine cycles. 

The application developer has either to conform to the maximum number of 

cycles cyclesMax defined in the global policy or introduce an adaptation-rule with 

the new cyclesMax value and width higher weight value than the default 

adaptation-rule, with a cycle declaration to be evaluated at the first CEC, so that 

the configuration-variable cyclesMax is adapted. 

At the end of all Policy Engine cycles, the Policy Engine eventually provides the 

calculated resolved-values for each adaptation-variable, representing the 

adaptation results, to the Adaptation Reasoning Manager (ARM) for 

implementation, or rejection if the configuration variable: implementAdaptation  is 

set to “N”, because the context and calculated QoS values do not differ 

substantially from the current values, and for storage by the CAHiD.  
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4.5 The Middleware Operation 

A dynamic context-aware adaptive mobile middleware design that enables 

transparent dynamic adaptation of the service request of independent mobile 

applications implementing Service Discovery on the cloud, for discovery and 

binding to services on the cloud ensuring QoS levels that can be supported by 

the current context. It additionally supports of Long Term Performance Goals, 

through the Context & Adaptation History Module (CAHiM) for data history 

maintenance and aggregation and the Statistical Analysis Module that supports 

pre-determined classes of statistical functions on the recorded usage model, that 

are needed for the LTPGs management, as described in §3.5.2 and in 

subsection 6.4. 

4.5.1 Middleware Operation when a SR is launched on the Cloud 

At initial service discovery – at a service request (SR) on the cloud by a mobile 

application, the Volare middleware intercepts it, parses and merges the global 

and relevant application policy to a “Composite Policy” driving the adaptation and 

adapts the service request initial values of the QoS variables and the middleware 

configuration-variables to the current context. Then service discovery for the 

adapted SR is activated through the CSB or CSP for the most appropriate service 

under the current context. The CSB/CSP identifies a fitting service and submits a 

Service Offer with the provisioning QoS terms.  

The middleware Binding Module implements Service Offer evaluation based on 

hard-coded mechanism and policy-based parameters and either accepts the 

offered service and is bound to it or launches rediscovery until a more fitting 

service is discovered and bound to, as described in §4.7. 

During runtime – the middleware monitors the context at every recheck time 

(initially set to every 30 seconds, except at the “HighQuality” user preference 

when it is set to 10 s, adapting at any further rediscovery). At every recheck time 

Composite Policy execution takes place under the new current context, providing 

the new most appropriate values for the SR QoS variables and for the 

middleware configuration variables. If the Binding Module reaches decision for 

rediscovery, based on policy-based threshold parameters, then it launches 

rediscovery on the new QoS values. 
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4.5.2 Decision-making Mechanism for Rediscovery at Runtime 

A decision-making evaluation mechanism on policy-based threshold parameters 

is hard-coded in the middleware Binding Module, deciding whether the 

discrepancy between the last adaptation (and currently in force) QoS variables 

values from the newly calculated ones is significant enough to necessitate 

adaptation and rediscovery or not. The evaluation mechanism takes into 

consideration policy-based threshold parameter values. 

At negative evaluation, the Binding Module cancels adaptation of the SR and of 

the middleware, in order to avoid the nuisance for the user of frequent 

rediscoveries and consequent delays and changes of performance quality for no 

or very low advantage gained.  

At positive adaptation decision, the Binding Module launches service re-discovery 

at the newly calculated SR QoS values and the middleware configuration 

variables are adapted. 

The decision-making mechanism for the evaluation of the new service QoS vs. 

the last adaptation current one, is the same one as for the evaluation of a Service 

Offer QoS terms vs. the submitted SR QoS terms, and is explained analytically in 

§4.7.1.  
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4.6 Adaptation Walkthrough 

What follows is a walkthrough of a typical cloud service discovery and adaptation 

runtime: 

1. The client device runs an application which needs to request a service from 

the Cloud. This may be a Software as a Service (SaaS) or Infrastructure as a 

Service (IaaS) request.  

2. The Volare middleware is active. It intercepts the request, appends relevant 

context and resource data, as well as the relevant policy for the request.  

3. The Volare middleware adapts the service request according to the global 

and service level adaptation policies, as well as the current context/resource 

data of the system, as seen in Figure 4-2. It first requests the context data 

declared in the adaptation policy from the OS. Then the middleware performs 

the necessary QoS adaptation based on that data, according to the 

adaptation rules specified in the policy. 

 

Figure 4-2 - Typical Service Binding 
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4. The adapted service request will then be sent to the Cloud Service 

Provider/Broker. 

5. As seen in Figure 4-3, if the CSP/CSB fails to produce acceptable results, the 

Volare middleware will adapt the request further according to the policy files, 

lowering the QoS levels where appropriate. Then it will send the re-adapted 

service request to the CPS/CSB. 

 

Figure 4-3 - Handling QoS matching 
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6. When finally a fitting service is found Volare will forward it to the mobile OS. 

The Volare monitoring service keeps running, and dynamically activates at set 

intervals or when significant deviations in context and resources happen. 

At these intervals, Volare will check that service provided by the current binding 

satisfies the client, given the current context/resource data which may now be 

radically different compared to the ones at the time of the binding.  

If the service offered by the provider is radically different than the one currently 

required by the client, the device will attempt to rediscover to a new service with 

the new requirements, going back to step 2, as seen in Figure 4-4. This rebinding 

may simply be a new agreement with the same provider for higher/lower QoS 

levels, which may prove more cost effective, or it may be binding with a more 

cost effective provider. 

 

 

Figure 4-4 - Dynamic QoS level monitoring 
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In case of service interruption, rediscovery will automatically be activated. In this 

case, binding with different providers will be given priority. 

The thresholds for what is considered a satisfactory service, and when the 

service should rebind will be defined in a global policy level file. 

4.7 Service QoS Evaluation on Policy-based Parameters 

The CSB or CSP, in response to a SR by a mobile application, discovers relevant 

services and after filtering based on the SR QoS Terms returns a Service Offer 

with the most appropriate QoS level values. However as there are multiple QoS 

terms, filtering and service selection may follow the CSB/CSP specific service 

selection mechanism.  

The middleware Binding Module intercepts the Service Offer and evaluates it. 

Volare has its own policy-based service evaluation parameters – interpreting user 

preferences and policy goals – that are used by the Volare hard-coded Service 

Evaluation Algorithm.  

At policy execution the following policy-based configuration-variables are 

provided as parameters for Service Offer Evaluation for acceptance and SR 

eventual adjustment for rediscovery:  

(i) the QoS terms values calculated at policy execution,  

(ii) the calculated value for binding margin bMi on each QoS term,  

(iii) the calculated value for renegotiationAdjustment configuration-variable, 

(iv) the sign of the binding margin of every QoS variable indicates whether the 

resolved-value corresponds to an optimal value constituting a lower limit – 

accepting only values equal or higher (positive binding margin), or corresponds to 

a higher bound - accepting only lower values (negative binding margin).  

4.7.1 Service QoS Evaluation Mechanism  

Given one candidate Service Offer by the CSP/CSB, it is evaluated by the 

Binding Module to be accepted or not. Suppose that the SR has n QoS terms. 

The Service Request and Service Offer values for the QoS term i, are 

respectively denoted as: QoSReqi and QoSOffi, 1 <= i <= n, while the 

corresponding absolute value of the binding margin is denoted as bMi. 

It is required for each QoS term i value percentage difference not to exceed the 

binding margin bMi plus rediscQoSThreshold: 

If bMi >= 0 then: 

0 <= 100 x (QoSOffi – QoSReqi) / QoSReqi <= bMi + rediscQoSThreshold  (1) 
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If bMi < 0 Then  

100 x (QoSReqi – QoSOffi) / QoSReqi >= bMi - rediscQoSThreshold   (2) 

In order for an offered service to be accepted, the above constraints (1) to (2) 

should be satisfied for every QoS term value of the Service Offer. The same 

mechanism is applied when at runtime, the new SR QoS values are evaluated 

(as Service Offer QoS values) against the last adaptation in force QoS values.  

4.7.2 Adjusting the Service Request for new Rediscovery 

In the case that the Service Offer is not accepted, we need to adjust the SR QoS 

terms values – reducing the requested quality of service levels, in order to launch 

service rediscovery with adjusted QoS Terms. Again, for every QoS term of new 

SR: QoSReqNewi, we can have a simple formula like:  

If bMi >= 0 Then (meaning a QoSReqi is a minimum value) 

QoSReqNewi = QoSReqi x (1 + bMi + rediscQoSThreshold + discoveryAccuracy)  (1) 

If bMi < 0 Then (meaning a QoSReqi is a maximum value) 

QoSReqNewi = QoSReqi x (1 + bMi - rediscQoSThreshold + discoveryAccuracy)    (2) 

4.8 Related Work 

There has been extended work in the last decade on mobile dynamic context-

aware adaptation for Web Services, some of which are referenced below. There 

are alternative criteria, through which the different research approaches on 

mobile policy-based CAA middleware/frameworks may be examined. 

Concerning the middleware carrier with (a) stand-alone (client-side) systems, like 

HERA [31], HYDROGEN [9], CARISMA [6], Q-CAD [15], RAM [24], Volare [16, 

17], (b) distributed systems, like DINO [9], CHISEL [7], ReMMoC [23], ODYSSEY 

[40], Rukzio et al [28] and (c) distributed with deployable components on the 

client device, like MobiPADS  [20], MADAM [18], MUSIC [26], PLASTIC [25], 

QuAMobile [18, 19], QuA [22]. 

4.8.1 Stand-alone Mobile Middleware 

We shall first consider the mobile client-based middleware/frameworks on CAA 

that are more comparable to Volare.   

HERA [39] is an adaptive Hypermedia Presentation stand-alone mobile policy-

based middleware with a specially designed AHA adaptation engine, using an 

updatable “static” User Preferences Model and the dynamic context from User 

browsing history, in addition to device and network context.  



 
 
   

65 
 

The Hydrogen [8] approach is a stand-alone mobile context-awareness 

framework of three - layered architecture. The “Adaptor” layer gets context 

information from sensors and delivers it to the “Management” layer, where the 

“ContextServer” stores and can be queried about the context and can share 

context information with other devices on peer-to-peer basis. Mobile applications 

are part of the “Application” layer and have access to context by querying the 

“ContextServer”.  

Volare also adopts the client-side attitude, but with a different approach and 

instead of providing context-awareness services, it provides to independent 

mobile applications an adaptive functionality of service discovery on the Cloud as 

well as context-aware adaptation to policy-based compatible applications.     

The Context-Aware Reflective middleware for Mobile Applications CARISMA [6] 

was prototyped as a peer-to-peer policy-based dynamic adaptation middleware, 

supporting the construction of context-aware, adaptive applications. It introduces 

Application Profiles as the information source for application properties, resource 

requirements, user preferences/associated QoS requirements and appropriate 

policies. At runtime, application developers/users may dynamically modify each 

application profile. At service invocation, the middleware consults the application 

profile, queries the status of relevant resources and determines the appropriate 

policy. At adaptation time, making use of utility functions that incorporate user 

preferences defined at application level, QoS parameters and resource 

requirements for each policy included in the application profiles, the highest utility 

variant from a set of alternative implementations of the service requested by the 

applications, is selected and implemented by the middleware, thus relieving the 

applications of this burden. Conflicts are resolved through an auction-like 

microeconomic procedure. CARISMA uses a C-A rule form in the policies without 

direct program code commands and so does Volare. However, Volare is built on 

the Service Oriented Architecture and not the peer-to-peer paradigm. 

Additionally, it provides itself the adaptive functionality for communication 

services on the Cloud to independent applications. It also differs from CARISMA 

in the approach adopted for the User Choices/Preferences context element as 

previously described, which in CARISMA is included in the application profiles as 

well as the use of utility functions while Volare follows the Weight-based 

Adaptation-Strategies Approach and the relevant Conflict Resolution mechanism, 

using weight values for adaptation reasoning through the adaptation-strategies 

concept.      
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QuAMobile [19][20] is a lighter version of the QuA [22] core reflective middleware 

aimed at context-aware mobile computing systems. QuAMobile implements open 

component architecture with distributed support for extra components 

deployment. It introduces a QoS-architecture and a distributed reflective meta-

level representation of context and services for mobile computing. QoS 

requirements are specified in the form of utility functions, allowing users to 

specify their preferences at a high abstraction level. It uses a combined Resource 

and Context Model, with QoS management for the appropriate adaptation in 

selecting and implementing an application configuration.   

Rukzio et al [28] present a peer-to-peer policy-based middleware for mobile 

commerce on architecture with a distributed system topology, using RDF for 

context representation, JESS [35] as policy language and inference engine and 

the JADE framework as agent-based middleware and agents under the FIPA 

standard. They also propose a policy editing framework with an interesting 

general purpose five steps iterative procedure, a UML-extended tool depicting the 

structure/execution flow of context information as well as a technique to 

appropriately group policies in modules successively executed. The paper 

describes a very powerful User Interface requesting user choices step by step at 

various levels of detail at every application session.  

Volare also uses a multiple steps iterative procedure for policy development, 

specific to the weight-based adaptation reasoning technique on policy design and 

with specific methodology tools. Volare also considers the dynamic user 

preferences element as most important, but instead stands for low user intrusion 

and saves the “long term” User Choices Profile (UCP) for each application, 

implementing policy-based adaptation accordingly, while providing at runtime the 

choice among several User Preference behavioral patterns.    

The Q-CAD project [15] is a context and QoS-aware local and remote resource 

discovery and selection reflective framework for pervasive environments, 

requiring a shared ontology for context, resource names and characteristics. An 

application profile specifies how the User wished the context should influence 

resource discovery. Resource discovery is implemented through static resource 

descriptors. At resource discovery, filtering through the application profile context 

constraints leads to discovered resources pruning. Then selection from the 

remaining ones is based on the values of a utility function for each discovered 

resource that should be maximized for the most suitable one.  
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Volare shares similar combination of features like policy files, user preferences 

and a User Choices Profile for each application, setting the User Choices, weight 

for utility functions and adapted service requests for resource descriptors. The Q-

CAD methodology, although wider in scope than Volare, does not include 

dynamic adaptation and rebinding of services at runtime.  

4.8.2 Distributed Policy-Based DCAA Frameworks for Mobile 

Systems 

Several distributed frameworks, supporting policy-based DCAA on mobile apps, 

developed the last decade and we discuss some specific features, since they are 

not directly comparable to Volare: 

CHISEL [7] is an open distributed framework for policy-driven context-aware 

dynamic adaptation in Iguana/J and the distributed reflective framework is built on 

the ALICE framework with clear separation of concerns. The custom-made policy 

language supports the event-condition-action rule model. The adaptation rules 

are of clear, declarative, human readable scripts, with introduction of new 

rules/events dynamically at runtime, thus covering unanticipated at design time 

new triggers and adaptation behaviors.  

Volare shares with CHISEL features like: the self-adaptive character, the 

declarative simple form of adaptation rules – which are much simpler in Volare 

and of the C-A paradigm – and the dynamic support to unanticipated behaviors.  

However, Volare requires complete policy files from different issuing entities: the 

global policy file by the middleware developer and the application policy file by 

the application developer, with dynamic fine-tuning options by the user on the 

global policy. Volare allows dynamic user preference update instead of 

introducing adaptation rules at runtime for consistency and procedural reasons.  

RAM [24] provides an infrastructure with an adaptation engine for development of 

adaptive applications by separating the application non-functional concerns in 

Services & Roles. Two policy levels exist used together at adaptation time:  

System policies for low-level system rules and application policies with higher 

level rules. A special purpose language is used for each type of policy. The paper 

concerns prototype implementation providing a simple proof of concept, with 

issues to be solved like conflict resolution and consistency guarantees on 

reconfiguration of components.  

Volare also uses adaptation-rules of the C-A model and two level policies, one 

middleware-specific and one application-specific, which at adaptation time merge 
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operating as one. However each policy file includes all the required high and/or 

low-level rules for ensuring its specific purposes. Volare also differs from RAM in 

that it makes use of weight values, as well as in the use and influence of the user 

preference dynamic context element on adaptation behavior.   

DINO [9] presents a distributed infrastructure consisting of a number of brokers 

for QoS specification and service provider selection in open dynamic 

environments. It aims at supporting development of service engineering for 

discovery, selection, binding, delivery, QoS monitoring and dynamic service 

composition and architecture reconfiguration.    

MobiPADS [20] - The Mobile Platform for actively Deployable Service combines 

context-awareness, dynamic service reconfiguration and mobile agents called 

mobilets in master-slave pairs. It has three tiers: client, proxy and server. It 

supports not only adaptive behavior but adaptive applications as well. It follows a 

very different approach than Volare, with deployable components on the mobile. 

ODYSSEY [40] is a mobile client – server platform for mobile data access that 

provides adaptive services to independent concurrent mobile applications in a 

dynamic context-aware manner based mainly on resource availability and QoS. It 

is partly implemented on the OS kernel and partly as a middleware. Applications 

provide a window of “tolerance” on required resource levels, while a “Warden” for 

each the application provides suitable adaptation levels. Odyssey introduces the 

concept of “fidelity” to label alternative context versions. It is original but different 

from Volare in architecture and approach. 

ReMMoC [23] - Reflective Middleware for Mobile Computing is a reflective 

middleware platform with two middleware services: service discovery and remote 

binding, using OpenCOM as its underlying component technology and 

implemented in separate Component Frameworks (CFs). During runtime, the 

service discovery framework adapts itself to the mobile network discovery 

protocol, and implements dynamic reconfiguration to the service composition 

within the binding CF to allow interoperation with heterogeneous services.  

ReMMoC makes use of rule-based policies supporting fixed, predetermined, 

component compositions, like Volare. Volare differs in architecture, scope and 

approach, in the use of weight functions and of the User Preferences Model.  

MADAM [18] and MUSIC [26] provide a framework for the development of mobile 

context-aware self-adaptive component-based applications that support dynamic 

composition through the use of a sophisticated middleware. Both projects follow a 
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model-driven development methodology based on abstract adaptation models 

and model-to-code transformations. Dynamic adaptation is achieved by plugging 

into component type different component implementations with the same 

functional characteristics, or modifying the composition. The middleware on the 

mobile device uses utility functions based on QoS model to calculate utility 

scores for each variant under the current context. The most suitable variant is the 

one with the highest score and it is selected for implementation.  

Volare also makes systematic use of the utility concept, but in the Volare 

approach as “weight”. It does not directly support dynamic service composition or 

service planning of adaptive applications, offering adaptive services involving 

only predetermined alternative service implementations and parameter 

adaptation in its scope of application.  

PLASTIC [25] introduces the PLASTIC platform to enable robust distributed 

lightweight services in B3G networking environments (i.e., environments 

ggregating the various networking technologies available) through both design-

time and run-time development support using a service-centric model. Volare 

focuses on different issues. 

MIMOSA [36] and its core project CARE [69] present an interesting distributed 

framework that couples a middleware for context-awareness with an 

intermediary-based architecture for content adaptation on Web Service 

Provisioning. Although different in scope from Volare, they also raise the question 

of aggregation of Policies made by different entities (User, Service Provider etc) 

and set a framework for conflict resolution. MIMOSA also makes use of weight 

values assigned to each adaptation-rule, but simply used for the purpose of Intra 

and Inter-Policy Conflict Resolution. CARE and more closely MIMOSA also make 

use of an innovative multi-feature User Interface for User Preference declaration, 

for indicating inappropriate adaptation behaviour and suggesting new Policy 

rules.  

The Weight-based adaptation reasoning approach is different. The Volare User 

Preferences Model allows parameter customization, in a manner similar to 

MIMOSA. However, the Volare Policy tries to prevent transparently to the User 

inappropriate adaptation behaviours, setting constraints that moderate User 

wishes for adaptation inappropriate under the current context, by reasoning on 

different adaptation-concerns and balancing competing adaptation interests.      
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4.8.3 Mobile Applications on the Cloud 

Finally, there has recently been similar work on context-aware adaptation of 

mobile applications [4] with cloud service discovery, focusing on market analysis 

based adaptation of the request. It focuses on choosing the most efficient service 

by means of cost-analysis of available services in the market and does not take 

into consideration the context of the client device.  

In [27] a different approach is presented for mobile systems, by replicating the 

whole smart-phone image and running the application code in powerful VM 

replicas on the cloud for augmented execution, outsourcing the heavy load 

computation on the cloud clone. No specific comments on DCAA are included in 

the paper. 

Some new research is published on interactions of mobiles and cloud services. 

In [65] a distributed framework for context-aware service provisioning, by 

dynamically adapting on the provider side the offered cloud service to the mobile 

user context, through dynamic service composition at the provider side in the 

form of service. This work is on dynamic service composition on cloud 

provisioned services, but with a different scope than Volare.            

CasCap [66] is a distributed power management framework for mobiles, making 

use of crowd-sourced context monitoring, functionality off-loading and adaptation 

as a service on the cloud on a clone or a proxy, adapting energy-demanding 

activities in relation to WAN node access and other considerations.  

In [67] a context-awareness cloud-based service for profiling mobiles based on 

frequency of accessing services on the internet, with activity database storage 

and management on the cloud. 

In [68] an action-based modified approach on adaptation reasoning is presented 

by evaluating the service state-model and specifying explicitly the adaptation 

behaviour in response to context change. It also distinguishes between 

independent and dependent adaptation actions, thus reducing an eventual state 

explosion problem. It introduces a verification procedure on the correctness of the 

adaptation model with an enabling condition element, while also transforming it to 

a Petri Net model for design-time verification. The weight-based methodology has 

also developed static and dynamic verification tools, to prevent failures and 

identify rule faults. Additionally, at policy execution the adaptation variables 

values vector (i.e. the new adapted state) is verified for completeness and 

consistency before implementation, according to hard-coded and policy-based 
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criteria. Volare follows the situation-action paradigm and the state explosion 

problem is not critical, since no state-model is evaluated at adaptation time. 

Additionally, Volare safeguards the consistency of matched and selectable 

adaptation rules by analysing at design time the adaptation into mutually 

exclusive configuration variants, thus overriding rules belonging to different 

configurations than the one selected, that would otherwise raise the possibility for 

inconsistent adaptation actions. 
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5 The Volare Adaptation Policy Specification 

Language 

5.1 General Principles 

This chapter presents the Volare declarative, first order logic, Adaptation Policy 

Specification Language (APSL) for rule-based policy authoring concerning 

middleware-based adaptation of the SR on cloud service discovery by mobile 

applications. 

As mentioned in Introduction (ch. 1) and in Project Overview (ch. 3), we set 

requirements for the APSL in response to challenges ascertained in the 

preliminary parts of the work. In an effort to deal with those challenges, the 

Volare Adaptation Policy Specification Language (APSL) was developed which 

follows the general principles described below:  

1. Two-level Adaptation Policy Files 

The adaptation adaptation-rules are expressed in policies contained in policy 

files, one policy file for the middleware adaptive operation and one for each 

application service request, which can be easily read, printed, edited and can be 

updated at runtime.  

Since the middleware provides policy-based DCAA support to independent 

applications, a two level policy approach has been adopted. The global-level 

policy named global policy is authorized to globally affect all relevant 

adaptation for global-variables (i.e. common QoS-variables) and the Volare 

configuration-variables. The application policy for each application is authorized 

to affect adaptation on application-specific QoS variables expressed through the 

Service Request as well as on the QoS-Variables pre-defined by the global 

policy.  

2. Adaptation-Rules Form 

The adaptation rules in Volare follow the Condition-action paradigm: If 

“conditions” – Then “action”. The “action” part is a value assigning statement to 

an adaptation-variable, called in this work: adaptation-statement.  

Consequently, every adaptation policy rule in Volare is distinguished in two parts: 

the Criteria part (i.e. the “If condition statements” part) and the adaptation-

statement (i.e. the “action” part) of the adaptation-rule, assigning a value (through 

a value, expression or function variable at the RHS) to the adaptation-variable 
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referenced at the LHS of the adaptation-statement, describing the way the 

variable should be adapted under the current context.  

Specific keywords, set at the RHS of an adaptation-statement, assign rule priority 

to each adaptation-rule, thus imposing the rule priority to depend also on the 

policy of origin in order to maintain the balance. 

3. Policy File Structure 

Each policy file consists of three required sections: (a) the Variables 

Declarations section, where the variables are declared, (b) the Criteria section 

which consists of several criteria groups of condition statements, each criteria 

group corresponding to the specific Subpolicy under the same name and 

enabling it when all its criteria conditions are satisfied by the current context 

data, (c) the Subpolicies section consisting of a set of “sub-policies” called 

hereinafter Subpolicies, each composed of a number of adaptation-statements 

with common Criteria conditions. 

4. Composite Policy at runtime 

At policy execution time, the global and application policy file of the active 

service request are parsed and merged creating the Composite-Policy that 

drives the adaptation, composed of the three Composite Sections: the Variables 

Declaration, the Criteria and the Subpolicies sections, of the global and the 

application policy corresponding section statements. 

5. Composite Policy Execution 

At the Composite-Policy execution, the Policy Engine Cycle operates on the 

three typical steps:  

a) At the Match Rules step starts sequential evaluation of each Criteria group 

with the current context data, to identify the Matched Criteria Subpolicies 

that exclusively satisfy the current context. Multiple corresponding 

Subpolicies from both the global and the application policy for the active 

service request may be matched, resulting in a dynamic list of the 

adaptation-statements of each matched Subpolicy. 

b) At the Select Rules step, the Policy Engine selects all the highest priority 

adaptation-statements for each adaptation-variable, forming the Agenda.  

c) At the Execute Rules step, every selected adaptation-statement of the 

Agenda that is calculated provides an execution-value for the adaptation-

variable it is authorized to assign value to.  
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6. Multi-cycle Policy Execution Session 

Multi-cycle policy execution is supported by setting the maximum number of 

Cycles and by assigning to every Criteria conditions group a cycle declaration 

number specifying at which policy execution cycle it is to be evaluated for 

matching. This optional feature allows successive hierarchic evaluation of the 

adaptation parameters values.  

7. Multiple Rules eventually selectable for each Adaptation-Variable at 

Policy  Execution 

The Volare APSL allows eventually multiple adaptation-rules on the same 

adaptation-variable and expressing different adaptation viewpoints to be matched 

and selected at policy execution.    

8. Conflict Resolution Directives 

For resolving issues of conflicting execution-values provided by more than one 

selected adaptation-statements corresponding to the same adaptation-variable, 

the APSL Conflict Resolution Directives are implemented by the Policy Engine, 

as explained in detail in the relevant section below. For this purpose a weight 

function value is formally required, assigned by the developer to every 

adaptation-rule, appended at the end of the LHS of each adaptation-statement, 

indicating the relative importance of the execution-value in comparison to the 

execution-values of the same adaptation-variable.  

The basic Conflict Resolution Directives adopted are: 

a) When there is only one execution-value for an adaptation-variable, then this 

value is assigned to the variable as the resolved-value. 

b) When there is more than one execution-value for a numeric variable from 

multiple adaptation-statements, the Conflict Resolution Participative 

Weighted Average Directive is applied on the execution-values of the 

selected and calculated adaptation-statements to derive the resolved-value. 

c) When there are more than one execution-value concerning non-numeric 

adaptation-variables (such as Boolean or string type variables), then the 

Conflict Resolution Majority Directive on the sum of weights is applied, 

selecting as the resolved-value the execution-value with the higher weights 

sum.  

5.2 General Policy Syntax Guidelines 

A typical complete Volare policy file is separated into three required sections:  
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1. Variables Declaration Section 

The Variables Declarations section contains the declarations of new context and 

adaptation-variables (global QoS and configuration-variables) of the global policy 

as well as the QoS adaptation-variables application policy. 

2. Criteria Section 

The Criteria section consists of Criteria conditions groups, one for each 

Subpolicy, sharing the same name with the respective Subpolicy when all the 

Criteria conditions are satisfied by the current context data. 

3. Subpolicies Section 

The Subpolicies section consists of a set of “sub-policies” called hereinafter 

Subpolicies, each composed of a number of adaptation-statements having the 

same Criteria (i.e. “If conditions”). 

 

Figure 5-1 – Typical Policy File Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For policy file integrity and consistency and security reasons, each Policy can 

only be declared once, in one file, and all three relevant sections, i.e. the 

Declarations, the Subpolicies and the Criteria section must be included in that 

Policy Policy-Name{ 

 Declarations{ 

  … 

      }; 

 Criteria{ 

  [1] Criteria Subpolicy-Name1{ 

   … 

         }; 

  … 

   }; 

 Subpolicies{ 

  Subpolicy Subpolicy-Name1{ 

   … 

            }; 

  … 

    }; 

}; 
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policy file. This allows global and application-level policy developers to include 

read-only policy files, in order to avoid tampering by other developers. 

A new application-level policy file needs to have a Declarations section that at 

least includes the declaration of the new service request for the application, as 

well as the application-specific QoS Variables that may be selected from the 

global QoS Variables, even if all the other context and adaptation-variables are 

the generic ones of the global-level policy.  

5.2.1 Policy File Syntax 

A policy file is a sequence of line statements with characters and symbols 

conforming to the APSL rules. Starting a policy file or the Declarations, Criteria or 

Subpolicies section or a Subpolicy or Criteria conditions group of line statements 

is denoted by the “{“ just after the last character. Ending any one of the above 

groups of line statements is denoted by the “};” symbols. The end of each line 

statement in a policy file is denoted by a “;” termination symbol. or alternatively 

with an “or” or “xor” operand. The only allowed exception is at the end of a line 

statement denoting the beginning of a new group of line statements, which starts 

simply by the “{“ symbol, as shown in the previous figure on the policy file 

Structure.  

The expressions denoting start of a group of line statements are: Policy Policy-

Name{, Declarations{, Criteria{, Subpolicies{, Subpolicy Subpolicy-Name{, 

Criteria Subpolicy-Name{ and case{. All these groups of statements should end 

with a line having the single character: “}” followed by the “;” statement-

termination character. 

Similarly, the operand “or” or “xor” does not take a termination symbol, and 

constitutes the only word of a line statement.  

5.2.2 Keywords and Operands 

The following keywords and operands are reserved and used by the Volare 

Adaptation Policy Specification Language (APSL), starting with a small capital 

letter: 

1. Criteria Operands 

and implied operand 

When defining the criteria object for a Subpolicy, each line conditional statement 

in the Subpolicy criteria object is assumed to operate on an and operand, unless 

specified otherwise by the following case, or or xor operands. 
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or or xor operand 

If an or or xor operand infixed in a criteria object is used, then the contents are 

assumed to share an and operand. It is used as a single statement term without 

termination symbol. 

case operand 

The “case” operand infixed in a criteria object, allows to specify or or xor 

relationships within a subset of a Criteria conditions group that start and finish 

within brackets {}. 

default keyword 

The “default” keyword in an empty of other conditions Criteria conditions group, 

signifies that the Criteria should be matched at each policy execution of the 

assigned Declaration Cycle and the corresponding Subpolicy is also matched at 

Policy execution.    

empty Criteria 

An empty “Criteria” is a Criteria conditions group empty of conditions in the form: 

[n] Criteria Criteria-NameX{ 

     default; 

         }; with n E N, where n = 1, 2 3 etc. 

Since an empty Criteria has no Criteria conditions, it is considered matched at the 

Policy Engine Cycle = n, activating the same name Subpolicy “Criteria-NameX”. 

An empty “Criteria’ is typically used at a cycleNo to assign default values to 

adaptation-variables through the adaptation-statements of the corresponding 

Subpolicy.  

not() operand 

The not( ) operand applied on a Boolean adaptation-variable in a RHS 

expression of a Criteria condition or of an adaptation-statement, expresses the 

negation of the Boolean value of the expression.   

2. Priority Assigning & Conflict Resolution Keywords 

overridesAll keyword 

The overridesAll keyword can be prefixed at the LHS of a specific adaptation-

statement within a Subpolicy, letting it override any other global or application-

level matched adaptation-statements for the same variable without the 
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“overridesAll” keyword. The overridesAll keyword operates equally on the 

corresponding binding threshold margin attribute within brackets (see below). 

Note 1: In the case of adaptation-statements on the same adaptation-variable 

which are set to overridesAll both in the global and the application-level selected 

Subpolicies, the global-level policy adaptation-statements takes precedence. 

Note 2: If more than one adaptation-statement on the same adaptation-variable 

is selected with “overridesAll” keyword from the global and the application policy, 

then at policy execution the Conflict Resolution Directives override all other 

statements, either from the App Policy or without overridesAll and participative 

weighted contribution procedure is implemented on the selected A/Sts.    

yieldsAll keyword 

The yieldsAll keyword has the exact opposite functionality from the overridesAll 

keyword, making the specified adaptation-statement(s) only be calculated when 

there is no other adaptation rule referring to this adaptation-variable without 

yieldsAll, otherwise it is ignored. When used in the global layer, yieldsAll will 

operate in a similar manner. However, if for an adaptation variable several 

adaptation statements are set to yieldsAll in both the global and the application-

level, then the application-level adaptation-statements will be executed, not the 

global-level one(s).  

overrides keyword 

The overrides keyword can be prefixed at the LHS of a specific adaptation-

statement within a Subpolicy, letting it override any other global or application-

level matched adaptation-statements for the same variable in the Agenda that 

does not have an overridesAll keyword. The overrides keyword operates 

equally on the corresponding binding threshold margin attribute within brackets 

(see below). If at policy execution, there are adaptation-statements with 

overrides on the same adaptation-variable from both the global and the 

application policy, then the Conflict Resolution Directives are applied on all A/Sts 

with overrides, based on their weight values. If there is more than one 

“overrides” in adaptation statements on the same adaptation-variable, Conflict 

Resolution Directives apply as normal. 

yields keyword 

The yields keyword has the exact opposite functionality from the overrides 

keyword, making the specified adaptation-statement(s) only be calculated when 

there is no other adaptation rule referring to this adaptation-variable without 
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yields, otherwise it is ignored. The yields keyword operates equally on the 

corresponding binding threshold margin attribute within brackets (see below). If at 

policy execution, there are adaptation-statements with yields on the same 

adaptation-variable from both the global and the application policy then the 

Conflict Resolution Directives are applying the participative weighted contribution 

approach on all A/Sts with yields, based on their weight values. 

overridesAsUpperLimit or overridesAsLowerLimit keyword 

One of these keywords prefixed at the LHS of an adaptation-statement for 

numeric adaptation-variables when encountered at policy execution time, defines 

an upper or lower limit value for the referenced attribute(s) of this adaptation-

variable (also for the binding margin - if a value exists) and not a execution-value. 

All execution-values on attributes of this adaptation-variable that exceed this limit 

are modified to conform by the Policy Engine Manager to the limit value and only 

then the Conflict Resolution Procedure is applied to calculate the resolved-value.  

Rule 1: If more than one adaptation-statement with the keyword 

“overridesAsUpper (or Lower)Limit” are encountered for the same numeric 

adaptation-variable at policy execution time, then the Conflict Resolution 

procedure adopts the “stronger” (the minimum for Upper and maximum for Lower 

limit respectively) value as the corresponding Upper or Lower Limit.  

Rule 2: When An Upper or Lower Limit value is available for a numeric 

adaptation-variable at policy execution, then the Conflict Resolution Procedure 

ensures that each execution-value is first adapted to conform to the 

corresponding Limit and only then the Weighted Average Rule is applied to the 

execution-values. 

Rule on mutually exclusive keywords: Only one keyword is allowed, prefixed, 

in an adaptation-statement among the following sixmutually exclusive ones: 

yieldsAll, yields, overrides, overridesAll, overridesAsUpperLimit, 

overridesAsLowerLimit.   

cyclesMax keyword  

The cyclesMax keyword indicates the maximum number of Policy Engine Cycles 

at a Composite policy execution, and is defined at the global policy file 

Declarations section by the calculation-variable: cyclesMax, in a Declaration 

statement of the form: integer CalculationVariables.cyclesMax == 1 (or 2, 3 

etc). Any Criteria group with a cycle declaration higher than the cyclesMax will 

not be executed.  
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2. Attribute Assigning Operands 

binding threshold margin [ ] operand  

A float type non negative number implying percentage enclosed in [ ] square 

brackets postfixed at the RHS of an adaptation-rule concerning a numeric QoS-

variable is a modifier enabling specification of the binding threshold margin for 

the numeric adaptation-variable concerned. The following rules additionally apply: 

Rule 1: A non-numeric QoS-variable or a non QoS-variable does not have a 

binding margin value. 

Rule 2: The default threshold margin for numeric QoS-variables not assigned a 

margin value at the adaptation-rule level is specified in the global-level policy as 

defaultBindingMargin.  

Rule 3: The same Conflict Resolution Mechanism that is applied on the 

execution-values for a numeric QoS-variable is also applied on the 

corresponding recommended-value(s) of the binding threshold margin attribute 

of this QoS-variable.  

Note 1: If the variable has a binding threshold margin of 10, then the service 

can accept bindings with a discrepancy of 10% from the adapted request value. 

The higher the binding threshold margin, the more leeway the specified QoS 

variable has to be readapted if a satisfying service is not found, and the more 

likely it is to be compromised in favour of maintaining another adaptation-variable 

value with lower threshold margin.  This way the developer can specify which 

QoS metrics can be compromised first.  

Note 2: An adaptation-variable not permitted to be negotiated at binding time 

may be specified with a zero binding threshold margin [0] in the adaptation-

rule.  

weight ( ) operand 

Numeric values or expressions or references enclosed in ( ) brackets postfixed at 

the RHS of an adaptation-rule are called in this work weights (also called weight 

functions) that enable specification of weighted modifiers to be used during 

Conflict Resolution among execution-values on the same head predicate 

provided by the selected and executed adaptation-statements originating from 

both the global or application-level policies.  

Rule 1: The minimum allowed weight value is 0 and the maximum weight value 

is 1.0 (see Conflict Resolution Directives).  
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Rule 2: If the weight term in an adaptation-rule is omitted, then the default 

weight value 0.5 is implied. 

Note: Adaptation-rules with higher weights are more highly considered when 

there are multiple adaptation-rules regarding the same adaptation-variable and 

under the same context, across different subpolicies. This enables developers to 

specify adaptation-rules more or less dominant compared to others.   

cycle declaration [ ] operand 

The cycle declaration operand [ ] with a positive integer digit is prefixed on each 

Criteria conditions group starting statement, indicating at policy execution at 

which Policy Engine Cycle No the Criteria conditions group referenced may be 

evaluated for matching. For developer-friendly reasons, if the policy file has only 

Policy Engine cycleNo = 1, then the prefixed “[1]” notation may be omitted.     

The notation adopted for the starting statement of any Criteria Conditions group 

is: [n] Criteria Criteria-Name{, where n =1 or 2 or 3…       

Note 1: The application policy developer has to comply with the cyclesMax value 

of the global policy, since if it is higher, then the corresponding criteria group will 

not be executed. 

5.3 Volare Adaptation Policy Specification Language 

Syntax 

What follows is a formal definition of the syntax of the Volare policy language 

using the generic Extended Backus–Naur Form (EBNF), with most important 

features of EBNF used in this paper being: 

 

Extended BNF Meaning 

Unquoted words Non-terminal symbol 

" ... " Terminal symbol 

' ... ' Terminal symbol 

( ... ) Brackets 

[ ... ] Optional symbols 

{ ... } Symbols repeated zeroor more times 

{ ... }- Symbols repeated one or more times 

= Defining symbol 

; Rule terminator 

| Alternative 

, Concatenation 
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/* ... Row Comment 

 

/* Updated more detailed version using the Thesis terms  

PolicyFile ::=  PolicyFileTitle, Declarations, Criteria, Subpolicies, “}”; 

PolicyFileTitle ::= “Policy “, “Global” | ServiceID, “{“; 

ServiceID ::= identifier; 

Declarations ::= “Declarations{“, DeclStatements, “}”; 

DeclStatements ::= { DeclStatement }-; 

 

/* Short Definition 

DeclStatement ::= DataType, Repository, identifier , “ == “, Component, { “.”, identifier }- | 

expression | number; 

 

/* Alternative more detailed Declaration statements 

DeclStatement ::= ContextStatement | QoSStatement | ConfigStatement | CalcStatement 

| AuxStatement | VariableAssigningStatement;  

ContextStatement ::= DataType, ContextVar, identifier, “ == “, “ContextMonitoringM.”, 

identifier | “UI.” , identifier | ”StatAnaM.”, identifier, “.”, Period, “.” StatisticTerm; 

QoSStatement ::= DataType, QoSVar, [ “activeRequest.”, ] QoSVariable, “ == “, 

“BindingM.”, identifier; 

ConfigStatement ::= DataType, ConfigVar, ConfigVariable, “ == “, Component, “.”, 

identifier; 

CalcStatement ::= DataType, CalcVar, identifier, “ == “, number | expression | identifier; 

AuxStatement ::= DataType, AuxVar, identifier, “ == “, “AdaptationM.”, identifier; 

VariableAssigningStatement ::= “activeRequest.”, identifier, “ :: “, Repository, “.”, identifier; 

Period ::= RecheckCycle | Session | Daily | DischargeCycle | Monthly | OverallHistory; 

StatisticTerm ::= Sum | Avg | Std | Max | Min | UpperConfLim; 

ConfigVariable ::= “periodicity” | “preferredVariant” | “reNegotiate” | “rebindingDelay” | 

“rediscQoSThreshold” | “rediscContextThreshold” | “renegotiationAdjustment” | 

“renegotiationAttempts” | “recheckRate” | “defaultBindingMargin” | “rebindingRecheck”; 

 

DataType ::= { integer | float | percentage | string | Boolean | date | time | functionality }-; 

Repository ::= ContextVar | CalcVar | ConfigVar | QoSVar | AuxVar | ServiceRequests; 

Component ::= ContextMonitoringM | BindingM | AdaptationM | SRequestM | StatAnalM | 

CAHiM | MUPI;  
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Criteria ::= “Criteria{“, CriteriaConditionsGroups, “}”; 

CriteriaConditionsGroups ::= { CriteriaConditionsGroup }-; 

CriteriaConditionsGroup ::= “[“, CycleDeclaration, “]”, “Criteria “, identifier | “Default”, “{“, 

Conditions, “}”;  

CycleDeclaration ::= integer; 

Conditions ::= { Condition }- | { Condition }-, “ or ”, { Condition }- | { Condition }-, “ case{“, { 

Condition }-, { “ or ”, { Condition }- }-, “}” | “void”; 

Condition ::= identifier, Restriction;  

Restriction ::= logicSymbol, “ “, identifier | number | expression;  

 

Subpolicies ::= “Subpolicies{ “, { Subpolicy }-, “}”; 

Subpolicy ::= “Subpolicy “, identifier | “Default”, {“, { Actions }-, “}”; 

Actions ::= { NonQoSAction }- | { QoSAction }-; 

QoSAction ::= [ Priority, ] QoSVariable, “ = “,  number | identifier | expression, [ “ [“, 

BindingMargin, “]”, ] “ (“, Weight, “)”; 

NonQoSAction ::= [ Priority, ] ConfigVariable | AuxVariable, “ = “,  number | identifier | 

expression, (“, Weight, “)”; 

Priority ::= [ “overridesAll ” | “overrides “ | “yields “ | “yieldsAll “ | “overridesAsUpperLimit ” | 

“overridesAsLowerLimit “ ]; 

BindingMargin ::= number | expression;  

Weight ::= number | expression;  

AuxVariable ::= identifier; 

logicSymbol ::= ‘ > ‘ | ‘ < ’ | ‘ >= ’ | ‘ <= ’ | ‘ = ’ | “not”; 

expression ::= { number | identifier, arithmeticSymbol,  | { number | identifier, 

powerSymbol }-, arithmeticSymbol,  expression | expression, [, number, ], (,number,) }-;            

number ::= integer | integer, “.” , integer; 

integer::= num, {num}; 

arithmeticSymbol ::= ‘-‘ | ‘+’ | ‘*’ | ‘/’; 

absSymbol ::= “abs(”; 

denialSymbol ::= “not “; 

powerSymbol ::= “^” 

num ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'; 

identifier ::= char , { char | integer }; 
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char ::= 'E' | 'T' | 'A' | 'O' | 'N' | 'I' | ‘T’ | 'S' | 'R' | 'H' | 'L' | 'D' | 'C' | 'U' | 'P' | 'F' | 'M' | 'N' | 'W ' | 

'Y' | 'B' | 'G' | 'V' | 'K' | 'Q' | 'X' | 'J' | 'Z’ | ‘.’ | “_” | “&”; 

 

 

5.4 The Context & Adaptation Variables Profile 

There are six categories of variables defined by the Volare Adaptation Policy 

Specification Language and six variables Repositories created and used by the 

Volare middleware: 

1. The context-variables  

The context-variables (of type float, integer, Boolean or string), the values of 

which cannot be changed by adaptation and may be distinguished to the 

“physical” context-variables, provided directly by sensors or the computing 

environment variables (including Boolean context-variables signifying an event or 

a state of a system component). 

The ContextVar Repository includes all the declared context-variables of the 

global and application policies, either “physical” context-variables from various 

context sensors, or statistic-calculation-variables by the Statistical Analysis 

Module.  

The “composite” context-variables equal to an expression including the value 

of another “physical” context-variable. Abstract-level conceptual or formula-based 

variables, that may be assigned a value like constants or modifier values used in 

Criteria statements or adaptation statements may also be declared and then used 

in the policy files. 

A context-variable does not take values from the adaptation-statements of the 

Subpolicies section, but by the corresponding sensor referenced at the RHS of 

its Declarations statement.  The values of the variables referenced from this 

Repository cannot be altered by a policy. Most of these variables are predefined 

in the global policy file, but the application-level policy developer may declare 

new context-variables representing sensor values, or execution context or 

statistic-calculation-variables when required.  

The context-variables are of type numeric (float, integer or percentage) or non-

numeric (Boolean, string, time or date) variables.  

A context-variable does not take values from the adaptation-statements of the 

Subpolicies section, but by the corresponding sensor referenced at the RHS of 

its Declarations statement.  The values of the variables referenced from this 
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Repository cannot be altered by a policy. Most of these variables are predefined 

in the global policy file, but the application-level policy developer may declare 

new context-variables representing sensor values, or execution context or 

statistic-calculation-variables when required.  

The context-variables are of type numeric (float, integer or percentage) or non-

numeric (Boolean, string, time or date) variables.  

Note 1: Typically, the values of a numeric context-variable, if it has fixed, known, 

upper and lower bounds, are expressed as percentages of their maximum value.  

2. The calculation-variables 

The “CalcVar” Repository includes the calculation-variables that are declared 

and are assigned value directly at the Declarations Section statements of the 

global or application policy, representing constants or expressions using 

constants or context-variables values or already known history values of 

adaptation-variables (like current or last adaptation) values. 

The calculation-variables are variables (of type integer, float, percentage, 

Boolean, or string) that are constants, or composite variables from expressions of 

known value at policy execution. They may include at the RHS expression, 

context-variables or adaptation-variables of known value (i.e. of previous 

adaptation) or other calculation-variables. They are used in the Criteria conditions 

as comparison threshold values or modifiers (multipliers in expressions) or in the 

adaptation-rules of a Policy as reference values or modifiers at the RHS. 

The ContextVar Repository includes all the declared context-variables of the 

global and application policies, either “physical” context-variables from various 

context sensors, or statistic-calculation-variables by the Statistical Analysis 

Module.  

The “composite” context-variables equal to an expression including the value 

of another “physical” context-variable. Abstract-level conceptual or formula-based 

variables, that may be assigned a value like constants or modifier values used in 

Criteria statements or adaptation statements may also be declared and then used 

in the policy files. 

3. QoS-Variables 

Each QoS variable is a set of two attribute references, the named QoS variable 

and the corresponding binding margin, to a general QoS variable name. Any 

global or application policy adaptation-statement adapting a QoS variable, 

adapts individually both attributes through the same adaptation-statement.  
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Declarations of global variables are allowed only in the global policy. However, 

the application-level developer may use the “::” operator to assign an 

application-specific QoS variable to a global variable reference, through a 

statement in the Declarations section of the application policy file. In this case, 

the variable at the LHS of the Variable declaration statement substitutes the 

variable at the RHS of the Variable declaration statement, and all references of 

that variable are replaced. In this case, the application-specific QoS variable 

should be of the same units and domain with the global variable. Otherwise, in 

the Declarations statement, the RHS should additionally include the required 

numeric modifier factor (example in the Declarations section).  

Each global variable is a set of references to either specific serviceRequest-

Name variables or general variable names, which will automatically be 

associated to specific serviceRequest “QoS variables” of that name.  

The QoSVar repository includes all the QoS adaptation-variables that are or 

may be involved in a Service Request. At the global-level Policy pre-defined QoS 

adaptation-variables are declared. They are called in this work “global QoS 

adaptation-variables” and are common QoS variables whose values can be 

altered by global-level or application-level policy statements. Global variables are 

preset to automatically reference certain common QoS variable names, in order 

to enforce certain variables to be global.  

4. The Volare Configuration-Variables 

The ConfigVar repository includes the reserved names adaptation-variables 

that directly affect how the Volare middleware operates, called Volare 

configuration-variables. These adaptation-variables are preset and can only 

take values at policy execution through the global policy adaptation-rules. The list 

and information on these variables is available in a subsequent paragraph.   

The adaptation-variables (of type float, integer, Boolean or string), represent the 

operation parameters of the middleware or the SR QoS variables. Through their 

values, assigned at adaptation time, they define the SR and middleware 

adaptation behavior to a context change.  

The adaptation-variables are distinguished by their purpose in:  

“QoS adaptation-variables”, that represent the adapted QoS values for the 

adapted service request, and in the Middleware reserved  

“Configuration adaptation-variables”, that provide self-adaptive character to 

the middleware. 
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5. The “auxiliary” Variables 

The auxiliary-variables are policy -declared variables that are introduced by the 

global or the application policy for decision-making purposes and take values at 

policy execution. They may represent Mutually Exclusive Configuration Variants, 

or virtual parameters that may be assigned values at a Consecutive Execution 

Cycle (CEC), serving for further decision-making on dependent variables at the 

next CECs.    

The AuxiliaryVar Repository includes the auxiliary adaptation-variables that 

are used for purposes of facilitating decision-making at policy execution, like 

weight-based MESC selection, and are declared and used in adaptation-rules of 

any Policy and are resolved across both Policies at policy execution.  

6. The Service Request Variables 

The variables, context, QoS variables or calculation-variables declared and used 

in an application policy concerning the Service Request. 

Most of these variables are pre-determined by the global policy Declarations 

section.  

The ServiceRequests repository includes all the specific application-level policy 

QoS variables for each service request that Volare may intercept and are 

represented as adaptation-variables during runtime. Values of the application-

specific QoS adaptation variables referenced by ServiceRequests may only be 

altered by adaptation-statements of its specific application’s Subpolicies. If 

however an application-specific QoS variable is assigned to a global variable 

through a Declarations statement in the application policy file, then it may also be 

adapted by adaptation-statements on this global variable in the global policy. This 

repository will automatically include all QoS variables included in a service 

request. The ServiceRequests.activeRequest variable group represents the 

service request intercepted by the Service Request Manager of the Service 

Request Module. 

At the application policy Variables Declaration section, every ServiceRequests 

variable should be declared as QoS variable. 

5.5 Policy File Structure 

The Volare Adaptation Policy Specification Language (APSL) is a two level policy 

language, the global-level policy for the middleware operation, also called global 

policy and the application-level policy also called application policy, one for each 



 
 
   

88 
 

service request. The global and the application policies for every relevant 

application, for consistency each is embodied in a policy file edited in plain text 

form, taking a suitable name.   

Each policy file is composed of three required sections – even if one of them is 

empty (for instance the Declarations section of an application policy): the 

(Variables) Declarations section, the Criteria section and the Subpolicies 

section. Each of these sections will be described in subsequent paragraphs. 

5.5.1 Variables Declarations 

1. Variables Naming Convention 

The names of variables or policy files and Subpolicies start from a letter and may 

only have alphanumeric characters as well as the symbols “-“ or “_”, without 

empty spaces or other non-printing characters. 

The names of the policy files, Subpolicies or Repositories start with a capital 

letter. 

The names of the context, calculation or adaptation-variables start with a low 

letter. 

Reserved names are the names of the APSL keywords and operands as well as 

the names of the Volare configuration-variables and start with a small letter. 

Each Policy, Subpolicy, Repository or variable name should be unique along both 

the global and the application policy file. This is especially important to the 

application policy developer, who should design the application-level policy file 

with the global policy file in mind. Of course the application may make use of the 

context, calculation and common-adaptation-variables and of the global QoS 

variables declared in the global policy. Additionally, the naming conventions of 

JAVA are followed for the variables names. 

2. Variables Declaration Format 

Variable declarations may be commonly used in both global and application-level 

policies, but may be declared in a policy file only once for each variable. In the 

“Variables Declaration” section of the global-level policy all the context and 

adaptation-variables (including the global QoS and the Volare configuration-

variables) are declared. Note that some of the QoS variables are pre-declared as 

members of global variable sets by the global-level policy developer. In a similar 

manner, the context-variables will generally also be declared by the global-level 

policy developer, and Volare configuration-variables are preset.  
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The application-level policy developers will generally only have to declare the 

new application-specific QoS variables in the serviceRequests repository and 

occasionally context-variables representing new context sensors or statistic-

calculation-variables in the ContextVar Repository. 

In the Variable Declarations section several generic variable declaration notations 

are supported, according to each specific case, as explained below. 

3. Variable Declaration Notation 

The general variable declaration notation is:  

typeId Repository-Name.variable-Name == itemReference;    (1) 

where: 

typeId may be: float, integer, percentage, Boolean, string, time or date 

Repository-Name is the name of one of the six repositories in § 5.2.4 

variable-Name is the name of the new variable, starting with a small letter 

itemReference may be:  

(a) For context-variable declaration, a reference to the middleware module and 

the specific Sensor that provides the context values, for instance: 

ContextMonitoringM.timeNow or StatisticalAnalysisM.dataSufficiency 

(b) For statistic-calculation-variable declaration, a reference to the Statistical 

Analysis Module middleware module and the specific notation that provides 

the statistic function, namely: 

itemReference = 

StatisticalAnalysisM.parameterID.periodID.statisticTermID (2) 

where: 

parameterID is the variable whose values are evalueated statistically 

periodID denotes the period of time over which the values will be evaluated 

statisticTermID denotes the statistic function to apply on the selected values. 

The Statistical Analysis Module supports several “periods” (repeated activity 

episodes), like: Recheckcycle, Bindingcycle, Session, Dischargecycle, Daily, 

Monthly  

and several “statisticTerms” (statistic functions) over the values of 

parameterID concerning theb periodID, like: Sum, Max, Min, Avg, Stdev, 

UpperConfLim etc. 
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(c) For QoS adaptation-variable declaration, a reference to the software 

component and the specific parameter it serves, namely: 

BindingM.bitrateQoSReq 

(d) For calculation-variable declaration, the value (for a constant) or the 

formula/expression that assigns a value to this variable as a function of 

known entities (i.e. of the working memory data). 

(e) For configuration-variable declaration, a reference to the software component 

and the specific parameter it serves, for instance: 

ContextMonitoringM.recheckRate 

(f) For auxiliary-variable declaration, a reference to the software component and 

the specific parameter it serves, for instance: AdaptationM.costUseratio  

4. Declaration Notation Assigning a Variable to another Variable  

The declaration follows the format below, with eq. Symbol the “::”: 

Repository-Name1.variable-Name1 == Repository-Name2.variable-Name2;

 (3) 

or, for already declared variables: variable-Name1 & variable-Name2,  

variable-Name1 :: Variable-Name2;          

 (3a) 

where: variable-Name1 & variable-Name2  are the names of the two variables, 

repository-Name is the name of the corresponding variable repositories. 

The new variable should be of the same type and units with the corresponding 

initial variable, Otherwise see Declarations Rule 3, at the RHS of the Declarations 

statement, the appropriate modifier expression should be added. In this way, a 

service request QoS variable may be assigned to a global variable. 

// Example: Assigning a new name to a variable  

ServiceRequests.Request1.qosVariable1 == Global.qosVariable2; 

Request1.qosFarenheit == Global.qosCelsius*(qosFarenheit - 32) + 5; 

 

 

 

 

 

 



 
 
   

91 
 

 

 

 

Figure 5-1 – Variable Declarations Example 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declarations{ 

// 1. Context-variables Declaration Statements    

percentage ContextVar battery  == ContextMonitoringM.batterySensor; 

percentage ContextVar bandwidth == ContextMonitoringM.bandwidthSensor; 

string ContextVar userPref == ContextMonitoringM.userPrefSensor;  

time ContextVar timeNow == ContextMonitoringM.timeNowSensor; 

time ContextVar startTime == ContextMonitoringM.startTimeSensor; 

string ContextVar activeRequest == ServiceRequestM.activeRequest; 

float ContextVar batteryDischargecycleMax == 

StatisticalAnalysisM.battery.Dischargecycle.Max; 

float ContextVar cloudCostMonthly == 

StatisticalAnalysisM.cloudCostRecheckcycle.Monthly.Sum;  

// 2. Adaptation-variables Declaration Statements  

integer ConfigVar recheckRate == ContextMonitoringM.recheckRate; 

Boolean ConfigVar renegotiate == BindingM.renegotiate; 

percentage QoSVar bitrateQoSReq == BindingM.bitrateQoSReq; 

float QoSVar costQoSReq == BindingM.costQoSReq; 

float ServiceRequests.activeRequest.costQoSReq1 == BindingM.costQoSReq1; 

percentage ServiceRequests.activeRequest.bitrateQoSReq1== 

BindingM.bitrateQoSReq1; 

// 3. Calculation-variables Declaration Statements 

integer CalculationVar maxBandwidth == 384; 

integer CalculationVar cycleStepsMax == 3; 

// Monthly Data Allowance by the SP in MBs 

float CalculationVar monthlyDataAllowance == 4000; 

// Monthly Cost Allowance by the SP for services on the Cloud in pounds 

float CalculationVar monthlyCloudCostAllowance == 5; 

string CalculationVar myName == “PPapakos”; 

float CalculationVar duration == timeNow – startTime; 

float CalculationVar rediscoveriesPer5min =  rediscoveries*300/(duration + 1); 

// 4. Variable Equivalence Declaration Statement   

costQoSReq1 :: costQoSReq; 

bitrateQoSReq1 :: bitrateQoSReq; 

//5. Configuration-variable Declaration 

Integer ConfigVar recheckRate == ContextMonitoringM.recheckRate; 

float AuxiliaryVar resourceUseratio == AdaptationM.resourceUseratio;   

}; 
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5. Variables Declarations Rules 

The following Declarations Rules should be observed in every policy file, in order 

to avoid execution errors: 

Declaration Rule 1: If a declared context-variable is referenced at the RHS of a 

Declarations statement of a calculation-variable, then the referenced context-

variable should be already declared. 

Declarations Rule 2: If an application-specific QoS variable is assigned to a 

global QoS variable, then it should have the same units (or be dimensionless) 

and have the same domain with the reference global variable. If units or scale 

adjustment is required between the two variables, then it is included in the 

equivalence declaration statement assigning the second variable to the first.  

5.5.1 Adaptation-Rules  

According to the Volare APSL, in a policy file (global or application) every 

adaptation-rule is of the paradigm: If “conditions” Then “action”. The “action” 

of each adaptation-rule in Volare is a value assigning statement to the referenced 

at the LHS adaptation-variable and is called in this work “adaptation-statement” 

(A/St).  

From all the adaptation-rules with the same “If conditions”, the “If conditions” are 

grouped together in the common “Criteria” conditions group, while the respective 

“actions” (i.e. adaptation-statements) are grouped together as the corresponding 

“Subpolicy”.  Thus the Volare adaptation-rules are separated and grouped 

together in Criteria and Subpolicies sections.  

5.5.2 Criteria 

This section holds the sets of Criteria that enable the activation of each 

Subpolicy. 

Each Criteria starts within the Criteria section of the policy file, and includes 

predicates with numeric or non-numeric expressions, denoted as follows: 

Criteria{  

 [n1] Criteria Criteria-Name1{ 
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 Condition Numeric expression  [ = | > | < | >= | <= | <> ]  value | 

expression; 

 … 

        }; 

 [n2] Criteria Criteria-Name2{ 

 Condition non-numeric expression [ = | <> ]  non-numeric value; 

  … 

        };  

 [n3] Criteria Criteria-Name3{ 

 Condition Boolean [ = | not ] True/False; 

  … 

        };  

}; 

5.5.3 Subpolicies 

The building block of each Policy Rules section of a policy file is the Subpolicy. 

Every Subpolicy consists of a number of adaptation-statements under the 

Subpolicy-name, representing multiple adaptation strategies through the values 

assigned to the adaptation-variables at policy execution time, when the Criteria 

conditions group that corresponds to the Subpolicy is satisfied by the current 

context. 

Each Subpolicy lies within the Subpolicies section of the policy file, denoted as 

follows: 

Subpolicies{ 

 Subpolicy Subpolicy-name1{ 

  Adaptation-statement1; 

… 

   }; 

 Subpolicy Subpolicy-name2{ 

 … 

   }; 

}; 

1. Adaptation-Statements (A/Sts) 
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The building block of each Subpolicy is the adaptation-statement, through which 

the value at the RHS is assigned to the adaptation-variable referenced at the 

LHS.   

Through the Volare operands and keywords, an adaptation-rule takes the general 

form: 

[overridesAsUpperLimit | overridesAsLowerLimit | overridesAll | overrides | yields 

| yieldsAll ] Adaptation-Variable-Name = Adaptation-Variable-Value (value | 

expression) [“(bindingMargin)”] (weight);                   (1) 

Rule 1: An adaptation-statement is valid if it has at least an adaptation-variable 

name at the LHS and at the RHS a value/expression to be assigned for the 

adaptation-variable. 

Rule 2: When no value is assigned to the binding-margin attribute at the RHS of 

an adaptation-statement concerning a QoS adaptation-variable, then at policy 

execution time the Policy Engine Manager (PEM) assigns the default value 

provided by the reserved configuration-variable defaultBindingMargin in the 

global-level policy. 

2. Priority Assigning to Adaptation Rules 

Priority to each adaptation rule is assigned indirectly through keywords, optionally 

prefixed at the LHS of adaptation-statements, namely the mutually exclusive:  

“overrides” or “yields” keyword or the lack of it and the policy file of origin. From 

the matched adaptation rules at any Policy Engine Cycle, only those of the 

highest priority level are to be selected at the “select Rules” Step of the Policy 

Engine Cycle. 

Volare supports seven (7) implied priority levels on adaptation rules in 

descending order: overridesAll + global policy, overridesAll + Application policy, 

overrides + Global policy origin, overrides + Application policy origin, no keyword 

(normal priority level), yields + Application policy origin, yields + global policy, 

yieldsAll + Application policy, yieldsAll + Global policy origin.  

3. Expressions at the adaptation-statement RHS 

An adaptation-statement may have at the RHS a numeric or Boolean or string 

type value or expression, depending on the adaptation-variable (adaptation-

variable) type:  

If the adaptation-variable represents a numeric variable, then it may be a 

possibly repetitive combination of the arithmetic operands (+, -, *, /, ^) acting on 
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numeric entities like constants and/or references to the values of Volare context 

and/or adaptation numeric variables, providing a numeric value. 

If the adaptation-variable is of Boolean type, then it should also provide a 

concrete Boolean value or its negation through the not() operand. 

If the adaptation-variable is of string type, then it should provide a string value. 

4. Stored Values Term Definition in use in adaptation-rules 

The following definitions concern objects used in adaptation-rule expressions (i.e. 

in both Criteria conditions and/or adaptation-statements): 

new values of the context-variables or of the adaptation-variables, is called the 

new values of the context-variables derived from the Context Monitoring Module 

or the newly calculated but not yet implemented values of the adaptation-

variables, 

current value of a context or an adaptation-variable is called the value of the 

variable that is still in force, 

previous value of a context, QoS or non-QoS adaptation variable is called the 

corresponding value of the variable at the previous implemented adaptation, 

lastAdaptation value of a context or adaptation variable is called the value of the 

variable that is used at the last adaptation in force implemented adaptation, 

unadapted value is called the corresponding value for a QoS variable that 

belongs to the un-adapted service request launched by the application. 

These values may be used in Criteria conditions or expressions in adaptation-

statements, like: bitrateQoSRequest = 0.8*(bitrateQoSReq.unadapted + 

bitrateQoSReq. current)/2 +  

0.1*(bandwidth.new + bandwidth.current + bandwidth.previous)/3;. 

Note 1: The Volare Policy Engine maintains log of the current-values of the 

context and the adaptation-variables as well as of the previous, the new and the 

unadapted values as the “working memory” of the Policy Engine, so that they 

may be used in formulas, in Criteria and in the RHS expressions in adaptation-

statements when required. 

5. Stored variables values in a RHS expression of adaptation-rules 

Rule 1: In any adaptation-statement or Criteria conditions, by convention, 

whenever at the RHS within an expression context or adaptation-variables are 

referenced instead of constants, then unless otherwise clearly expressed through 

the special notation above: 
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a) the values of the context-variables referenced in the RHS are the new values, 

b) the values of the QoS adaptation-variables that may be referenced in the 

RHS within an expression are the unadapted service request values, 

c) the RHS calculated value is the execution-value for the adaptation-variable 

referenced at the LHS of this adaptation-rule. 

5.5.4 Application-level Policy 

The application-level Policy (one for each application) deals with adapting the 

QoS levels of specific application service requests for services on the Cloud. 

Each application-level Policy consists of several Subpolicies that specify different 

adaptation-rules, suited to different context situations and representing different 

adaptation strategies.  

The application policy-name takes the specific service request name such as 

“Video-streaming”.  

The Subpolicy-names are linked to the Subpolicies specified in the Policy 

Rules section with each Subpolicy corresponding to a Criteria conditions group of 

the same name. At policy execution, when all the Criteria conditions are satisfied, 

the appropriate Subpolicies are matched and their adaptation-statements form 

the conflict set and are to be further evaluated for selection and execution. 

Each policy file may have at each Consecutive Execution Cycle up to one default 

Subpolicy, named Default. The Subpolicy Default – one in each policy file and 

CEC – adaptation-statements at policy execution are always matched at any 

context conditions. 

1. Criteria for an application-level Policy 

In this example, in addition to the Subpolicy Default, the HighQuality Subpolicy 

can only be matched when the HighPerformance Subpolicy’s criteria are also 

satisfied. In that case at policy execution, both the HighQuality and 

HighPerformance Subpolicies adaptation-rules are matched and will be 

considered for selection and execution. At policy execution the Volare Policy 

Engine Manager evaluates sequentially each Criteria in the Criteria section of the 

Composite-Policy based on the current context. Once a Criteria conditions group 

are satisfied, then the Subpolicy and its adaptation-statements are matched and 

they will be further evaluated for selection and execution. Multiple Subpolicies 

may be matched at the same time from the global-level and the application-level 
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policies, thus creating a composite-agenda for selection and execution through 

participative weighted contribution to the adaptation results. 

However, in the above example depending on the memory context-variable, it is 

possible that only HighPerformance and of course any Subpolicy with “default” 

condition will be matched, at which point the adaptation will be the one specified 

by the selected adaptation-rules of those two Subpolicies only.  

Figure 5-2 - Criteria Section of an application-level Policy File 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Subpolicies 

In an application policy the Subpolicies section specifies the actual adaptation 

behaviour for the service to which the policy corresponds. Which Subpolicies are 

matched depends on the Criteria section specified above.  

Note 1: Only adaptation-variables concerning the service request can be adapted 

by the middleware, not the internal application behaviour or the application 

configuration. 

Example: Subpolicies section of an Application Policy File 

Subpolicies {   

Subpolicy DefaultApp{ 

Criteria{  

[1] Criteria HighQuality{ 

  bandwidth > 50; 

  bandwidth > 40; 

  case{ 

  userPrefr = “LowCost”; 

  or 

  userPref = “SaveBattery”; 

   }; 

}; 

[2] Criteria HighPerformance{ 

  bandwidth > 50; 

  battery > 50; 

  userPref <> userPref.lastAdaptation;  

}; 

.. 

}; 
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qosVariable1 = qosVariable1* constant1 * ContextVariable1 

(wSgen*0.50); 

  qosVariable2 = value2 [15] (wSres*0.25); 

  overrides qosVariable3 = qosVariable3* constant2 (wSdisr*0.40); 

  overrides qosVariable1 =  value31 (wScost*1.00); 

  qosVariable1 = value4 [20] (wSres*0.80); 

  yields qosVariable2 = value5 (wSperf*0.50); 

      }; 

 Subpolicy Subpolicy-name1{ 

  overrides qosVariable1 = contextVariable1 [12] (wSperf*0.20); 

  qosVariable2 = Value5 [15] (wSres*0.20); 

  overridesAsLowerLimit qosVariable2 = 0.1*bandwidth [0] 

(wSgen*0.25); 

        }; 

 Subpolicy Subpolicy-name2{ 

  yields qosVariable1 = qosVariable1* value3 (wSres*0.50); 

  qosVariable2 = value4 [35] (wSperf*0.30); 

          }; 

 ... 

}; 

5.5.5 Global-level Policy 

The global-level Policy takes the name “Global” and deals with adapting:  

 global QoS variables, the behaviour of the Volare middleware and of the 

adaptive Service Discovery and Binding on the Cloud Functionality offered to 

independent applications to the current context, through adaptation of the 

configuration-variables. It consists of the Variables Declaration section, the 

Criteria section and the Subpolicies section. It consists of several Subpolicies that 

specify different groups of adaptation-rules, suited to different situations. 

Note 1: In the global policy Variables Declarations section, all the global context 

and configuration-variables are declared, so that the application-level developer 

may only need to declare only application-specific context or application-specific 

QoS adaptation-variables.  
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1. Criteria of the Global Policy 

Figure 5-3 – Global Policy Criteria 

Criteria{ 

 [1] Criteria Subpolicy-Name1{ 

  battery > batteryLevelHigh; 

  bandwidth < bandwidthLevelHigh; 

 userPref = “Normal”; 

  or 

  battery > 40; 

             bandwidth > bandwidthLevelMedium; 

 userPref = “HighBirtrate”; 

                                  }; 

 [2] Criteria Subpolicy-name2{ 

  battery < 40; 

  case{ 

   userPref <> “Normal”; 

   or 

   userPref <> “HighQuality”; 

   }; 

            }; 

 ... 

}; 

The criteria for the global-level policy are structured identically to the application-

level one, only the policy name is “Global”. Same rules that apply to application-

level policy criteria also apply to global-level policy criteria. 

2. Subpolicies of the Global Policy  

The major differences between an application-level and a global-level policy are: 

The global policy manages the Volare middleware configuration variables, 

affecting its behaviour and the SD & Binding Functionality. If no global-level 

policy is present, Volare will simply not adapt its behaviour. At the same time, the 

global policy assigns default values to the global QoS adaptation-variables. 

The application policy may only affect the SR QoS adaptation-variables.   
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Note 1: As it can be seen, Volare is capable of modifying the middleware 

behaviour (self-adaptation), as well as adapting global QoS variables and their 

attributes (the binding threshold margin) and is able to adapt to the current 

context the parameters of the adaptive Service Discovery and Binding 

Functionality.  

Figure 5-4 - Global Policy Synoptic Example 

Policy Global{ 

Subpolicies{ 

       Subpolicy Default{ 

         overrides qosVariable1 = qosVar1* value1  [20] (wScost*0.25); 

         qosVariable2 = value2 [15] (wSgen*0.30); 

         VolareSetting1 = value3 * contextVariable2 (wSdisr*0.40); 

         overrides VolareSetting2 = booleanValue1 (wSres*0.30); 

         yields qosVariable1 = value4 (wSperf*0.20); 

                     }; 

        Subpolicy Subpolicy-name1{ 

         yields qosVariable1 = qosVariable1* value4 [15] (wSres*1.00); 

         qosVariable2 = value [35] (wScost*0.20);        

              overridesAsUpperLimit VolareSetting1 = value51 (wSperf*0.80); 

         VolareSetting2 = booleanValue2 (wSgen*0.50); 

                               }; 

  … 

}; 

Note 2: As defined in the application-level policy specification language, 

keywords such as overrides and yields have different priorities when in the 

global-level policy. Specifically, overrides in the global-level policy will always 

take precedence over the application layer. On the other hand, yields will always 

yield in favour of the application layer specification. 

5.6 Conflict Resolution Mechanism 

When more than one execution-value is provided for an adaptation-variable, 

then we have a conflicting set of execution-values. A conflict prevention strategy 

at policy execution is enabled by the Volare middleware through the following 

rules and constraints: 
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The global variables may be common between the application-level and global-

level policy. 

A conflict resolution methodology is also structured and implemented by Volare, 

based on the principles, approach and rules described below. 

There is a significant possibility of intra-policy conflict as well as of inter-policy 

conflict between application and global-level policies, caused whenever there is 

more than one execution-value for an adaptation-variable provided by the 

selected and executed adaptation-statements of the Composite Policy.  

The Volare policy specification language provides to the developer the following 

powerful techniques, supporting the conflict resolution strategy in calculating the 

final resolved-value.  

5.6.1 The Volare Conflict Resolution Directives 

Once the appropriate rules are matched from the Composite-Policy based on the 

“matched Criteria”, we are left with the Matched-Composite-Policy, which 

includes all the appropriate rules with Criteria conditions satisfying the current 

context data, but without the necessary conflict resolution.  

The next step is to execute the Conflict Resolution Directives (CRDs), leading to 

the final list of adaptation rules to be executed, the Agenda. The following 

Conflict Resolution Directives are applied, in sequence at policy execution in 

order to calculate the resolved-values of the adaptation-variables: 

CRD1.  At the “Select Rules” step of the Policy Engine out of the Matched-

Composite-Policy adaptation-rules, the Conflict Resolution Directives 

for rule selection select for each head-predicate, only the highest 

priority adaptation-rules.  

The priority level that is derived for each A/St by the prefixed (or missing) 

keyword and the policy file of origin is as follows: 

1  “overridesAll” + global policy  

2  “overridesAll” + Application policy  

3  “overrides”  

4     no keyword 

5  “yields” 

6  “yieldsAll” + Application policy  

7  “yieldsAll” + Global policy  

0  “overridesAsUpper (or Lower) Limit 
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All the lower priority adaptation-rules on the same head predicate are ignored 

and all the highest priority adaptation-rules selected for each adaptation-variable 

form the Agenda. 

CRD2.  At the “Execute Rules” step of the Policy Engine, all the selected (one 

or more) adaptation-rules of the Agenda on the same head predicate 

(adaptation-variable) are sequentially calculated and their execution-

values are provided for “participative weighted contribution to the 

adaptation results”. 

CRD3.  At the “Execute Rules” step of the Policy Engine all adaptation-

statements on numeric adaptation-variables with the 

“overridesAsUpper(or Lower)Limit” are executed. For each such 

numeric adaptation-variable, the strictest limit value is retained as the 

resolved-limit-value as follows: 

On UpperLimit, the smallest value is retained as the resolved-limit-value; 

On LowerLimit, the highest value is retained as the resolved-limit-value. 

Before the “participative weighted contribution” calculation is implemented, for 

each adaptation-variable with an Upper or Lower-limit-value, all execution-values 

are modified to conform to the appropriate limit value(s).   

CRD4.  If at the “Execute Rules” step of the Policy Engine there is only one 

execution-value for an adaptation-variable in the Agenda, then this 

value is adopted as the resolved-value for this adaptation-variable, 

after it is modified to conform to any eventual Upper or Lower-limit-

value. 

CRD5.  If at the “Execute Rules” step of the Policy Engine more than one 

execution-values are derived concerning the same numeric 

adaptation-variable, then the resolved-value of the numeric 

adaptation-variable is calculated as the weighted average of all 

relevant numeric execution-values, after they are modified to 

conform to any eventual Upper or Lower-limit-value for this 

adaptation-variable.  

CRD6.  If at the “Execute Rules” step of the Policy Engine more than one 

execution-values are derived concerning the same non-numeric 

(Boolean or string type) adaptation-variable, then:     
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The optimal resolved-value is the execution-value with the maximum sum of 

weights (Majority Rule on the sum of weight values).  

If the weight sums of the two conflicting values are equal, then no application-

level adaptation is performed for that adaptation-variable and the current value 

remains. 

CRD7.  If the sum of weight values of all the selected adaptation-rules on an 

adaptation-variable is equal to zero, then the next highest priority 

adaptation-rules are selected and executed.  

5.6.2 Participative Weighted Contribution Directives  

1. Participative Weighted Contribution Over Numeric Variables 

For numeric variables, when an adaptation-variable x is common among n 

selected and executed Subpolicies and xi represents each of the n execution-

values, with a weight wi, the adaptation will calculate as resolved-value x the 

simple weighted average of: 

 1 <= i <= n and i, n Є N         (1)  

where n is the number of selected Subpolicies where there is a execution-value 

for the adaptation-variable x and where xi denotes the adaptation-variable 

execution-values and wi  the weights. 

If the adaptation numeric variable is of type integer, then the equation (1) 

becomes: 

resolved-value int(x), where  x = Σwi*xi/Σwi, i = 1 to n, n Є N              (1a) 

2. Participative Weighted Contribution Over Non-Numeric Variables 

When conflict exists on more than one execution-value for a Boolean type 

adaptation-variable, the value with the highest sum of weights will be used.  

When the two different execution-values have equal sums of weights, then no 

adaptation is done for that adaptation-variable and the existing value remains.  

In case of inter-policy conflict between two or more execution-values of a non-

numeric adaptation-variable with the overrides keyword, then precedence takes 

the global over the application-level policy value.  

If two or more execution-values from adaptation-rules in the same policy have an 

overrides keyword, then the higher weight value becomes the resolved-value. 
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5.7 Policy Files Maintenance 

To facilitate the updating of policy files, the Volare APSL allows the developer to 

write in plain text simple policy updatefiles with the name of the target policy file 

but ending in “.upd”. The Policy Update File follows the same structure as a 

normal policy file, referencing only the section(s) concerned by the changes. The 

following two keywords are available to specify adding or removing a declaration 

statement or a Criteria conditions group and/or a Subpolicy or replacing a whole 

section with a new one: add/remove{ } keywords 

The update inserts the new text lines that are new or to be removed under the 

corresponding section title, within the appropriate command: add or remove{ };. 

A Subpolicy or a Criteria group is added and/or removed as a whole. For 

instance: 

 Figure 5-5 – Policy File Update Example: Policy-Name.upd  

Policy Policy-Name{ 

Declarations{ 

remove{ 

float CalculationVar wG13 = 0,17; 

     };  

add{ 

float CalculationVar wG13 = wG17*bandwidth*0.10; 

}; 

Criteria{ 

add(or remove){ 

[1] Criteria G1{ 

... 

                     }; 

                }; 

}; 

Subpolicies{ 

add(or remove){ 

Subpolicy G1{ 

... 

                        }; 



 
 
   

105 
 

                }; 

   }; 

};. 

The Policy Files Manager, when notified for a new policy file update, implements 

Policy File Maintenance. Policy file security issues are ensured through the use 

of an appropriate ID & password, by the Policy Files Manager. 

With the use of the keyword remove over each section name of the policy file, 

even the whole old Policy statements are removed and the new added 

statements allow whole Policy replacement by an updated one. 

5.8 Related Work 

We will refer mainly to custom-made APSLs for authoring of obligation policies for 

DCAA for mobile middleware and applications, like CARISMA [6], CHISEL [7], 

RAINBOW [59], RAM [24], CARE [69], MIMOSA [36].   

A general purpose or domain-specific Adaptation Policy Specification Language 

for Policy authoring is required for policy-based systems, defining the rules model 

after the Event - Condition-action or simply the Condition-action model, a rule 

priority assigning mechanism, Conflict Resolution Directives [34][12][44][39], 

keywords and operators and the rules form.  

CARISMA [6], using the Condition-action model, has introduced a micro-

economic auction-type Conflict Resolution mechanism, using dynamically 

updatable application profiles for setting User needs and application resource 

requirements. CHISEL [7] with rules after the Event Condition Action model, 

introduces dynamically Policy rules for unanticipated situations.    

Additional requirements are needed if adaptation-rules from more than one entity 

are considered at policy execution.   

Few APSLs have some of the features that Volare APSL is introducing. The use 

of weight values in adaptation-rules has been used in Goal and Utility-based 

projects, but in different concept, in order to evaluate the utility of a state out of 

different adaptation dimensions [84]. CARE [69] makes use of a weight value in 

every adaptation-rule for the purpose of assigning priority value to each rule. The 

Volare APSL is the only one in our knowledge in the mobile DCAA research field 

that allows multiple rules to be selected at policy execution and a Participative 

Weighted-Contribution mechanism.  
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Concerning the object of adaptation implementation: (a) on the middleware or 

framework components, like CARISMA [6], HERA [31], Volare [17], Q-CAD [15], 

ODYSSEY [40], ReMMoC [23] or (b) on the components of the custom-made 

adaptive application, like: QuAMobile [18], QuA [22], RAM [24], MADAM [18], 

MUSIC [26], PLASTIC [25], or on both like MobiPADS [20]. 

MIMOSA [36] and its predecessor CARE [69], although of a different scope to 

Volare, present a distributed middleware that implements Conflict Resolution on 

context Profiles and Policies by different (User and Service Provider Operator). In 

this feature, of aggregating multiple Profiles and Policies and their Conflict 

Resolution, Volare also includes this functionality but with totally different 

mechanism.     
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6 Weight-Based Adaptation Reasoning Technique 

& Methodology 

In chapter 4 the unique or unusual developer-visible features of the Volare APSL 

were presented – that are also supported by the middleware – with most 

important ones: (i) possibly multiple rules selectable at any context instance on 

the same adaptation-variable – each with a weight function value, (ii) two policy 

support with inter-policy conflict resolution, (iii) hierarchic multi-cycle policy 

execution, (iv) notation for statistical inference based on the usage data on policy 

-specified parameters. 

In chapter 3 “Project Overview” the motivation and requirements have been 

discussed for a novel rule-based adaptation reasoning technique (ART), which 

employs the Volare APSL features supported by the DCAA middleware leading to 

specific advantages on adaptation policy authoring in comparison to the action-

based technique, like:  

 Application-transparent adaptation according to the current context and the 

adaptation logic requirements and goals of the SR on CSD by a mobile 

application independent to the middleware, without any code change and with 

minimal burden on the application policy developer, 

 Adaptation logic balancing the goals and constraints of all three stakeholders: 

the middleware policy developer, the application policy developer and the 

user.  

 High behavioural (parameter adaptation) variability with quasi-linear instead 

of combinatorial increase to the number of rules, in comparison to an 

equivalent action-based policy.  

 Capability for dynamic fine-tuning of the adaptation logic by the user without 

policy updates by integrating a configurable User Preferences Model.  

 Easy introduction in the adaptation logic of unanticipated at middleware 

design time quantitative Long Term Performance Goals (LTPGs) over finite 

horizons.  

 Fine-grained, gradual adaptation.     

Since a main and distinctive feature of the Volare approach for rule-based 

adaptation policy development consists in assigning a weight value to every 

adaptation-rule, denoting the relative importance of its execution-value at policy 

execution, the proposed ART for policy design & implementation is called in this 

work: weight-based adaptation reasoning technique or shortly weight-based 
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technique – abbreviated as WBART – to distinguish it from the action-based, 

goal-based or utility-based ARTs.  

Reference is made in this work for comparison to policies designed in the action-

based adaptation reasoning technique – which is also rule-based – since the 

goal-based and the utility-based techniques, as described in subsection §2.3, 

follow a different and more burdensome approach for policy development and for  

middleware operation requiring at policy execution the evaluation of all the 

system states, and are recommended mostly for complicated scenarios with 

dynamic service composition, which are outside the frame of this work.  

The following subchapters describe an outline of the weight-based technique and 

the relevant methodology that has been developed to assist the policy developer 

in policy authoring. 

6.1 The Weight-Based Adaptation Reasoning Technique 

The three established adaptation reasoning techniques (ARTs) described in §2.3 

are all based on the principle of a single adaptation-rule that may be selected at 

policy execution for each adaptation-variable.  

Note that every adaptation-rule selectable at policy execution at any contextual 

situation instance represents a complex adaptation decision, as it needs to 

represent multiple adaptation interests. It is argued that each such “situation-

action” conventional adaptation-rule is equivalent in adaptation results to a set of 

multiple selectable adaptation-rules built in the weight-based technique and 

stemming from different targeted adaptation reasoning viewpoints that in this 

work are called adaptation-concerns. Thus at each contextual “situation” where 

the action-based policy would have only one adaptation-rule selectable for each 

head predicate, a weight-based equivalent policy may have more than one, with 

each adaptation-rule serving the goals of an adaptation-concern.    

In this way the weight-based technique for the development of an expressive 

adaptation policy, aims to specify at any considered contextual situation the 

required adaptation actions by developing instead of just one, possibly multiple 

adaptation-rules expressing every associated adaptation-concern through 

possible the same adaptation-variables.  

This main and unique feature on purpose introduced in the Volare APSL, 

consisting in allowing possibly multiple selectable adaptation-rules per 

adaptation-variable serving different adaptation-concerns, lays the foundation of 

the WBART through specification of the adaptation actions at each context sub-
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domain (i.e. the adaptation-rules) separately for each associated adaptation-

concern. Of course for simple adaptation actions representing only one 

adaptation-concern, one adaptation-rule may be sufficient at any context sub-

domain.   

6.1.1 Weight-Based Adaptation Concepts 

The following definitions are necessary to describe the Volare weight-based 

technique on policy development for middleware-driven dynamic context-aware 

adaptation of the SR for CSD by mobile applications. 

Remark: Compound words that are defined and used in this work with a specific 

interpretation are spelled with a hyphen between them. For instance, statistic-

calculation-variables are a specific category of calculation-variables declared in a 

policy according to the APSL notation for policy-based statistic inference on 

usage data. 

Context & Adaptation Profile of a mobile scenario for middleware-driven DCAA 

is called in this work the context, adaptation and intermediate variables declared 

and used in the Policy (context-variables, QoS adaptation-variables, middleware 

configuration-variables, calculation-variables, etc.) and their data structure. 

Adaptation Space of the middleware is called in this work the set of adaptation 

objectives concerning the middleware scope, for the given context & adaptation 

profile and middleware expected operation.   

Adaptation-Concern, also abbreviated as adaptation-concern, is called in this 

work every one of the developer selected major minimally overlapping specific 

adaptation reasoning viewpoints, each with a feasible adaptation objective in 

conformity to the scenario context & adaptation profile. These adaptation-

concerns are interpreted to cover the whole scenario adaptation space, called the 

Adaptation-Concerns Model. 

Note: As an example, CPU optimization is a perfectly reasonable adaptation 

reasoning viewpoint. However, if the scenario context & adaptation profile does 

not monitor or control CPU, then it does not represent a feasible adaptation 

objective and should not be defined as an adaptation-concern but it can be 

represented by the nearest in scope Resource Use Optimization adaptation-

concern.   

Adaptation-Strategy, also abbreviated as adaptation-strategy, is called in this 

work the collection of adaptation-rules within a policy file that serve a specific 

adaptation-concern over the whole valid context domain. 
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Note: The adaptation-concern and adaptation-strategy concepts are different but 

in a one-to-one mapping. The adaptation-concern is a viewpoint of interest to the 

developer with a feasible adaptation objective. The adaptation-strategy is the 

entity that represents the collection of adaptation-rules in the policy file that serve 

this adaptation-concern over the valid context domain. 

Weight function value of every adaptation-rule is named in this work a non- 

negative value less or equal to 1, representing the relative importance that the 

execution-value of the adaptation-rule carries at policy execution to the 

adaptation results, according to the APSL participative weighted contribution 

(PWC) procedure, as described in §5.6.  

Variation Point (VP) of the considered adaptable system, is called in this work 

every specific concern of structural or algorithmic or operation mode or parameter 

adaptation character for which more than one mutually exclusive alternative sets 

of actions are executable at adaptation at a context instance, while retaining the 

same functional properties. 

Structural or Algorithmic Variation Point (SAVP) of the considered adaptable 

system is called in this work every VP of structural or algorithmic character (i.e. 

where the alternative mutually exclusive alternative sets of actions are active-on-

demand components or algorithms).  

Behavioral Variation Point (BVP) of the considered adaptable system is called 

in this work every VP on behavioral settings (parameter) adaptation for a given 

MESC. 

Variants of a VP of the considered adaptable system are called in this work the 

mutually exclusive alternative sets of adaptation actions concerning a VP that are 

executable at adaptation at a context instance. The variants of a VP are 

expressed in a weight-based policy by alternative mutually exclusive Criteria - 

Subpolicies within an adaptation-strategy. Depending on the character of a VP, 

its variants are called Structural or Algorithmic Variants (SAVs) or Behavioral 

Variants (BVs). 

Mutually Exclusive System Configuration (MESC) is called in this work every 

alternative configuration of the considered adaptable system with a different 

structural or algorithmic variant. 
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6.1.2 The Generic Adaptation-Concerns & Strategies Model 

The generic Adaptation-concerns & Strategies Model is described below, 

developed by the weight-based methodology, covering the adaptation space with 

the following selected five basic adaptation-concerns: 

1. Generic Operational Constraints Adaptation-Concern 

This adaptation-concern includes the adaptation interests concerning generic 

constraints and global invariants as well as default values for parameter 

adaptation. The respective adaptation-strategy is denoted as Sgen. It concerns 

generic adaptation actions independent of the user preference mode.  

Practically, the middleware should be able to operate at a basic level without 

optimization or fine-grained adaptation or integrated user preferences – only with 

the Generic Operational Constraints adaptation-strategy rules.  

2. Performance Optimization Adaptation-Concern  

It concerns adaptation interests aiming at optimal performance specifying QoS 

requirements according to the selected user preference mode. The respective 

adaptation-strategy is denoted as Sperf. 

3. Resource Use Optimization Adaptation-Concern 

It concerns adaptation interests aiming at resource use optimization, like battery 

power, CPU, RAM, storage memory. The respective adaptation-strategy is 

denoted as Sres. 

4. Cost Optimization Adaptation-Concern  

It concerns adaptation interests related to optimization on cost-related 

parameters or goals, like the cost of binding to the cloud, respecting the credit 

allowances set by the CSPs, respecting the priceMax policy ceiling value for 

cloud services, etc. The respective adaptation-strategy is denoted as Scost. 

5. Disruption Minimization Adaptation-Concern 

It concerns adaptation interests for minimizing operation disruption at runtime by 

delays, rediscoveries or frequent change of QoS due to bandwidth drops or not 

unnecessary rediscovery/rebinding etc. The respective adaptation-strategy is 

denoted as Sdisr. 

6.1.3 Importance of the Adaptation-Concerns Model 

Once the scenario relevant adaptation-concerns are selected, in the depth that is 

of interest to the scenario, the corresponding adaptation-strategies are also 

automatically defined by their adaptation-concerns. In Table 6-1 the generic 
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Adaptation-concerns Model is depicted with the corresponding adaptation-

strategies, which is used at policy authoring of the case study.  

1. Reasons for defining the Adaptation-concerns Mode 

The determination of the scenario Adaptation-concerns & Strategies Model plays 

an important role in policy design in the WBART, for the following reasons: 

Table 6-1 – The Generic Adaptation-Concerns & Strategies Model 

Adaptation-Concern Corresponding Adaptation-Strategy 

Generic Operational 

Constraints 

 

Generic Operational Constraints Adaptation-Strategy 

Performance Quality Performance Optimization Adaptation-Strategy 

Resource Use 

Optimization 
Resource Use Optimization Adaptation-Strategy 

 

Cost Optimization 

 

Cost Optimization Adaptation-Strategy 

Disruption & Delays 

Minimization 
Disruption Minimization Adaptation-Strategy  

 

 Since possibly multiple adaptation-rules on the same adaptation-variable may 

be selected at policy execution, it makes clear for which different specific 

concern every rule stands for, although more than one different rules  may 

specify action on the same adaptation-variable. 

 It determines the major adaptation reasoning viewpoints around which the 

global and each application policy will be structured, and on which viewpoints 

it can be most easily fine-tuned by the user or later modified or enriched. 

 Since in the weight-based technique policy development is implemented as a 

synthesis of overlapping independent policies (the adaptation-strategies), 

each serving an adaptation-concern, determining the focal viewpoint for every 

adaptation-strategy is crucial for policy development. 

 It allows seamless integration of the User Preferences Model in the policy, 

since the weight values of all adaptation-rules in every adaptation-strategy, 
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vary uniformly with the user preference mode. For instance by setting the 

user preference mode from “Normal” to “LowCost”, the execution-values of 

the selectable adaptation-rules of the Cost Optimization adaptation-strategy 

take higher importance at policy execution, influencing the final adaptation 

results. 

2. Adding New Adaptation-Concerns to the Generic Model  

Each adaptation-concern of the generic Adaptation-Concerns & Strategies Model 

may be extended, at the global policy developer’s discretion if the Context & 

Adaptation Profile supports it, in more specific adaptation-concerns thus 

permitting more fine-grained adaptation space segmentation. For instance the 

Resource Use Optimization adaptation-concern may be analyzed in the 

adaptation-concern for RAM and for CPU and for battery use optimization, if the 

scenario Context & Adaptation Profile supports feasible adaptation objectives. 

The advantage for each additional adaptation-concern & adaptation-strategy 

would be the introduction of an additional set of strategy-weight-coefficient (SWC) 

values, one for each user preference mode, which would allow more fine-grained 

adaptation at the cost of additional SWCs at the UPI configuration. 

Note: It should be noted that shrinking the generic model to less than five 

adaptation-concerns is also allowed, if the developer so wishes. At the extreme, 

the model may be represented by a single adaptation-concern covering the 

whole adaptation space and in this case the policy imitates an action-based 

policy, with the policy being a single adaptation-strategy with a single strategy 

weight coefficient, thus eliminating partly the fine-tuning capability.   

3. Introducing in the Policy the Adaptation-Concerns & Strategies Model 

The Adaptation-Concerns & Strategies Model is defined at the global policy 

design stage through comments in the policy and has to be respected by all 

application policies. It is indirectly expressed through the strategy-weight-

coefficients that are introduced at the configuration of the User Preference 

Interface and through the weight functions of every adaptation-rule, as defined by 

the recommended Weight Assigning Strategy described in §6.3, in the form:  

(weight function) = (wSstrat * wRule);  

like: (weight) = (wSgen * 0.80). However, different forms of the weight function 

may be adopted, as extensively mentioned in §6.3.   
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6.1.4 Weight-Based Adaptation Reasoning 

The fundamental characteristics of the weight-based adaptation reasoning are 

presented and discussed below: 

1. Policy Structured Around Selected Adaptation-Concerns 

To every adaptation-concern corresponds an adaptation-strategy, i.e. a collection 

of the adaptation-rules serving the relevant adaptation-concern across the valid 

context domain. Every adaptation-strategy in the policy is built as an independent 

policy representing an adaptation-concern. At policy execution, the APSL 

participative weighted contribution directives (PWC procedure) derive the 

adaptation results according to the weight- and execution-values of all selected 

adaptation-rules from different adaptation-strategies. An adaptation policy in the 

WBART may thus be considered as a synthesis of overlapping independent 

policies, the adaptation-strategies, through adaptation-rules over the valid context 

domain, with each adaptation-strategy serving a specific adaptation-concern.  

2. Multiple Rules Possibly Selectable at policy execution 

The most innovative feature of the Volare APSL lies on a different approach on 

the characteristic of conflict resolution directives, by setting the terms and 

conditions to allow at policy execution possibly more than one matched  

adaptation-rules of the highest priority and on the same head predicate 

(adaptation-variable) to be selected and executed. The Volare APSL establishes, 

for all selected and executed adaptation-rules on the same adaptation-variable, 

participative weighted contribution procedure to the adaptation results, applying 

the weighted average rule for the numeric variables or the majority rule for 

Boolean or string type variables. Thus from possibly multiple execution-values on 

the same adaptation-variable at policy execution, only one resolved-value will be 

chosen as adaptation choice per adaptation-variable, either of numeric or of non-

numeric type.  

Special precautions are taken at policy development so that the possibly multiple 

selectable adaptation-rules on the same adaptation-variable at policy execution 

will not lead to inconsistencies, as is analyzed in the next paragraphs.  

3. Rules Specifying Variant Selection 

This thesis focuses on the difference between the two paradigms at policy 

execution: the action-based adaptation reasoning with single selectable rule 

vs. the weight-based adaptation reasoning with possibly multiple selectable 

rules per adaptation-variable. In both cases, a single resolved value out of the 
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single or multiple selected rules for every adaptation-variable will be provided. 

The great difference between the action-based and the weight-based technique 

in string or Boolean variant selection needs to be noted, typically representing a 

structural or algorithmic or operation mode variant selection process.   

a) Action-based variant selection 

In an action-based policy the selectable rule for each adaptation-variable will be 

matched and then selected and executed by its priority and its predicates that are 

satisfied by the current context, in a policy cautiously designed to have a single 

rule selectable per adaptation-variable at any context instance. If additionally, the 

rule represents a structural variant that requires also parameter adaptation, then 

the parameter adaptation settings may be assigned through rules on the relevant 

adaptation-variables with the same predicates and again a single rule for each 

adaptation-variable will be selected for parameter adaptation.  

b) Weight-based variant selection 

In a weight-based policy it is possible to have more than one adaptation-rules of 

the same priority and with predicates satisfied by the current context that are 

selected on the same adaptation-variable. Then the participative weighted 

contribution directives (PWC procedure), through the weight- and execution-

values for each adaptation-variable, will select the resolved-value.  

This is the weight-based variant selection paradigm – which differs from the 

action-based one – by allowing all rules expressing mutually exclusive feasible 

variants under the current context – to be selected through priority level and 

predicates. Then through the APSL PWC procedure an additional weight-based 

selection level is introduced, reflecting the current user preferences through the 

weight values of all the selected rules on the same adaptation-variable.  

Weight values in a weight-based policy may change with the current user 

preference mode. Consequently, the weight-based variant selection technique 

introduces a more subtle selection of the most user-desirable variant among 

feasible ones under the current context, allowing the current user preference to 

influence – not deterministically – the adaptation choice.   

This characteristic is useful in cases where more than one of several mutually 

exclusive variants are technically acceptable (feasible) under the current context 

and fine-grained decision-making is required for final selection on user 

preferences through the weight values.  

c) Adaptation Reasoning Differences at Specifying Variant Selection  
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In the action-based policy, the developer would introduce additional selection 

predicates, so that only a single most appropriate variant will be selected with 

design time criteria.  

In the weight-based policy, the developer does not need to specify in such detail 

the predicates for the variant selection adaptation-rules. It is only needed to 

specify the predicates allowing the feasible variants to be selected. Then at policy 

execution, the rules for the one or more than one feasible variant will be selected 

and the PWC procedure will select as most appropriate to the current user 

preferences, the one with higher sum of weights.  

6.1.5 Specifying Mutually Exclusive Variants 

The weight-based methodology for describing 2 or 3  or eventually n mutually 

exclusive variants of a VP, suggests specifying the n-1 variants through mutually 

exclusive Criteria conditions and leave as default (in the default Criteria-

Subpolicy) the nth variant (the one requiring the most complicated criteria 

conditions) to be selected by default when all other variants are not selected.  

At any context instance the adaptation-rule representing the nth variant is by 

default selected, and possibly another adaptation-rule if its Criteria conditions are 

satisfied. Two cases are possible: 

a. Numeric Variant Selection – If the associated adaptation-variable 

representing the nth variant is numeric, then the adaptation-rule should have 

a lower priority level than the rules with the other variants, so that it will not be 

selected unless it is the only rule matched for this adaptation-variable. 

b. Non-numeric Variant Selection – If the associated adaptation-variable 

representing the nth variant is of Boolean or string type, then it is sufficient for 

the default variant adaptation-rule to have the same priority level but lower 

weight value than the adaptation-rules of the other variants, since through the 

PWC procedure, the higher weight value adaptation-rule will determine the 

variant selected.  

By using the weight-based variant selection, the developer may prevent intensive 

predicate specification for all adaptation-rules, and at the same time make sure 

that in any case only one of the mutually exclusive variants will be selected, as in 

the global policy example:   

 [2] Criteria G2_DEFAULT{ 

    Default; 

 };  

      // 2nd CEC: At High Battery Use Ratio, high attainable values allowed for QoSvars 
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      [2] Criteria G2_BATTERYLTPG_HIGH{ 

                  batteryRefRate > 100;  

  battery >= 50 

                  or 

                  userPref = "HighQuality"; 

      }; 

     // 2nd CEC: At Very Low Battery level, abrubtly reduced attainable values for QoSVars 

      [2] Criteria G2_BATTERYLTPG_VLOW{ 

                  battery < batteryEmergencyLevel; 

                  userPref <> "HighQuality"; 

                  or 

                  battery < 1.5 * batteryEmergencyLevel; 

                  batteryRefRate > 100; 

                 userPref <> "HighQuality"; 

      }; 

 [2] Subpolicy G2_DEFAULT{ 

      batteryLTPGVariant = “LowBat” (wSres*0.20); 

 }; 

6.1.6 Ensuring Policy Consistency  

Eventual selection of incompatible adaptation-rule(s) on structural or parameter 

adaptation may lead to severe inconsistencies. This danger risks to be 

accentuated due to the weight-based mechanism for SV variant selection through 

the multiple selectable rules that the WBART introduces. The solution to this 

problem lies on the principles established for consistency by the weight-based 

technique at policy design in order to eliminate the danger of inconsistent 

adaptation-rules selected and executed, exploiting the specially developed multi-

cycle policy execution feature of the Volare APSL: 

1. Pre-determined adaptation-variables  

The adaptation-variables declared and used in adaptation policies conforming to 

the Volare approach are only: (i) the pre-determined middleware configuration-

variables, (ii) the global QoS variables common for all service requests, and (iii) 

the application-specific QoS variables of the service request. No direct 

programming commands are allowed.  

2. Participative Weighted Contribution Directives (PWC procedure) 

By “adaptation-rule selection and execution” at policy execution in the Volare 

approach, it is meant that each selected adaptation-rule will provide its execution-
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value on its adaptation-variable. The resolved value for every adaptation-variable 

is established of all derived execution-values by the middleware Policy Engine 

according to the APSL conflict resolution PWC procedure, as described in §6.5.  

Resolved-value selection according the PWC procedure for a string or Boolean 

type adaptation-variable representing a structural/algorithmic or operation mode 

SV, will be the execution-value with the higher sum of weights. Resolved-value 

selection according to the PWC procedure for a numeric variable will be the 

weighted average of the execution-values.  

3. Directives on structural adaptation in the weight-based technique 

The following two directives are applied for specifying adaptation-rules on 

structural adaptation in the weight-based technique:  

a. The adaptation-rules specifying structural or algorithmic or operation-mode 

variant selection are to be evaluated for matching, selection and execution at 

the first CEC at each multi-cycle policy execution. Ιf there are dependencies 

(structural sub-variants) then the appropriate adaptation-rules for structural 

sub-variant selection may be specified at the next CEC. 

b. Adaptation-rules on a Structural VP for variant selection may be specified in 

two ways: Firstly, by mutually exclusive Criteria conditions or priority levels so 

that only a single rule is selected indicating the selected variant, as in the 

action-based policy. Alternatively, multiple adaptation-rules representing 

variants of a SVP that are valid under the current context may be selected at 

policy execution. In this case, weight-based selection of the most appropriate 

SV will be implemented by the Policy Engine according to the PWC 

procedure, based on the weight values of the selected adaptation-rules under 

the current user preference mode.          

4. Directive on parameter adaptation in the weight-based technique 

Structural, algorithmic or “operation mode” variant selection at policy execution 

typically requires the appropriate parameter adaptation through relevant rules 

specifying parameter settings. However, in a weight-based policy with multiple 

selectable rules at policy execution, the selected rules for the usually numeric 

variables that specify parameter adaptation may also represent the different 

alternative feasible variants whose predicates were satisfied by the current 

context. Consequently, at policy execution not all selected rules on behavioral 

(parameter) adaptation may be compatible with the variant to be chosen, since 
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they may represent mutually exclusive variants, thus raising the danger for 

incompatible rules selection.  

The following directive is applied for specifying adaptation-rules on parameter 

adaptation in the weight-based technique:  

a. Adaptation-rules specifying behavioral (parameter) adaptation on a 

structural/algorithmic or operation-regime variant, should be assigned a cycle- 

declaration subsequent to the one(s) at which the SV(s) are chosen.   

b. Adaptation-rules specifying behavioral (parameter) adaptation on a 

structural/algorithmic or operation-regime variant are to be specified with 

additional variant-specific or MESC-specific predicate, determining to which 

variant(s) or MESC(s) are compatible. This requirement ensures that these 

may be matched, selected and executed at policy execution, only after the 

associated SV or MESC has been chosen in the previous CEC.    

In this way at the systematically established by the weight-based technique multi-

cycle policy execution, first the most appropriate SV(s) will be selected under the 

current context. Then at the next CEC(s) only the behavioral (parameter) 

adaptation rules compatible to the already selected in the previous CEC(s) MESC 

will be matched, selected and then executed, providing the parameter settings 

through the PWCP on each relevant adaptation-variable. If the policy has no 

structural or algorithmic or operation-mode variant, but only a single configuration 

and there are no dependencies between the adaptation-variables, then the 

weight-based policy can be designed for execution in a single CEC. 

6.1.7 The WBART Methodology - Generic Models & Procedures 

The Volare approach in order to facilitate the development of adaptation policy 

logic, has developed a methodology and makes available several policy 

authoring methodological tools, like generic models, procedures and an offline 

testing & verification Policy Engine Simulator and associated tools specially 

designed to assist the adaptation policy developer. These policy development 

tools are referenced below in the order they are usually used in conceptual 

design and policy development. 

1. Generic Models Assisting Policy Design & Implementation  

Four generic models relevant to the mobile scenario have been designed, each 

on a different aspect of policy development. Every one of these models can be 

adopted or be adapted (modified, enriched or truncated) to the current scenario. 
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They provide - to a certain extent - generic conceptual design for the adaptation 

policy logic in appropriate textual form, together with the global policy file generic 

declarations part, which can be easily adapted by the developer to a modified 

scenario case. These generic models or procedures are:  

a. The generic “Context & Adaptation Profile”, which is described in the case 

study in §7.3. 

b. The generic “Adaptation-concerns & Adaptation Strategies Model”, already 

described above in §6.1.2. 

c. The configurable “User Preferences Model”, described in §6.4. 

d. The generic LTPG Design Model, that is described in §6.5. 

2. Generic Procedures Assisting Policy Design & Implementation  

Similarly, methodological procedures for adaptation policy authoring according to 

the weight-based paradigm have been developed to assist easy modification of 

the generic models and authoring of the global or application policy file. These 

generic or procedures are:  

a. The recommended Weight Assigning Strategy (WAS), that is described in 

§6.3. 

b. The User Preferences Model configuration procedure described in §6.4. 

c. The WBART synoptic Policy Authoring Procedure, described in §6.7. 

3. Testing & Verification Tools Assisting Policy Design & Implementation  

The simulated policy execution & Verification application “PEVapp” has been 

developed for offline (of the mobile device) for testing, verification and evaluation 

of the adaptation policy by simulated policy execution on automatically generated 

test suites. It is described in §6.6 and in Appendix B, while the PEVApp User 

Guide is in Appendix E. 

The methodological policy development tools referenced above are roefly 

described in the following paragraphs. All the above tools provide assistance for 

the development of the adaptation policy logic but are recommended, not 

obligatory.  

Based on the APSL innovative features described in the previous chapter, the 

WBART characteristics on policy design for scenarios of mobile middleware 

DCAA of the SR on the cloud by mobile applications are presented below, 

different to established research practice [18][22][34][56][61]. 
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6.2 Two Level Policy Support 

The adaptation logic for guiding dynamic context-aware adaptation of a SR for a 

cloud service by a mobile application in the Volare approach is based on two 

policy files. Firstly the global-level policy file, installed with the middleware and 

specifying adaptation-rules for the middleware components adaptation as well as 

global (common for all or most SRs) QoS variables. Secondly the (unanticipated 

at middleware design time) application-level policy file, specific for every 

application, that manages the adaptation of the SR application-specific QoS 

variables and may also affect the middleware adaptation.  

The middleware, at an active SR on the cloud by a mobile application having an 

application policy file stored in the Policy Files Directory, automatically parses 

and merges the global and the application policy file creating a “Composite 

Policy” that drives the adaptation. 

These two policy files, the global and the application policy file for the active 

application, are typically authored by different entities. The adaptation-rules of the 

active “Composite Policy” are expected to operate in common, in conformity and 

without inconsistencies at every CSD session of the respective application.  

6.2.1 Influencing adaptation by both policies 

As a consequence a major task of the policy developers involved consists first in 

assigning to the adaptation-rules appropriate priority levels for inter-policy conflict 

resolution and selection of the appropriate adaptation-rules, as well as 

appropriate weight values for the PWC procedure to derive the final adaptation 

choices on possibly multiple selected adaptation-rules on the same adaptation-

variable. 

Additionally it is expected for each of the two adaptation policy files to influence 

the adaptation choices on adaptation-variables of common interest, while 

avoiding the danger of inconsistencies.  

One way to avoid eventual inconsistencies might be to separate the control of the 

global policy on the middleware configuration-variables and of the application 

policy on the SR QoS-variables. This is allowed, and can be established by the 

application developer optionally assigning higher priorities on the adaptation-

rules for the SR QoS-variables, while the global policy developer may use the 

“overridesAll” keyword on the adaptation-rules concerning the middleware 

configuration-variables. However it is considered a severe loss in the adaptation 

behaviour management by the adaptation logic, if this separation of adaptation 
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“jurisdiction” takes place unnecessarily, as the application policy developer may 

have an influential role concerning also the middleware adaptation, while the 

global policy developer may set operation goals and seek them through 

adaptation of the global QoS-variables. Additionally, it is expected that the 

application policy through appropriate adaptation-rules will assist at achieving the 

established LTPGs and will conform to the User Preferences Model specified by 

the global policy. 

The Volare approach recommends that the global policy includes adaptation-

rules on the global QoS variables, common for all (or most SRs), and that the 

application policy establishes adaptation-rules on the middleware configuration-

variables of interest to the SR adaptation. Consequently the WBART employs the 

APSL characteristics at developing the adaptation-rules, in three ways: 

a. Enabling inter-policy conflict resolution for adaptation-rules on common 

“global” QoS variables and middleware configuration variables across the two 

policies assigning appropriate priority levels through keywords. 

b. Enabling each policy to safeguard the normal range on its proprietary 

adaptation-variables, overriding more restricting or extreme settings by the 

other policy, by making use of the overridesAsUpperLimit or 

overridesAsLowerLimit keyword to set upper/lower limit values ensuring 

effective operation. In this way, the global policy can safeguard a 

configuration-variable range against unreasonable increase or decrease by 

an application policy statement, and the same is true for the application policy 

concerning the global QoS variables.  

c. Enabling participative weighted contribution to the adaptation choices through 

the weight values for the possibly multiple selected rules on same adaptation-

variables, thus allowing joint adaptation influence across both policies.  

6.2.2 Facilitating the Application Policy Authoring Task 

The weight-based technique declares all context-variables, the middleware 

configuration-variables and the global QoS-variables as well as the required for 

common LTPGs intermediate variables at the global policy. 

The application policy developer has to focus only on declaring the application-

specific variables, while having direct access to use any declared variable of the 

global policy for adaptation-rule development, thus facilitating its task without re-

declaration. 
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6.3 The Weight-Assigning Strategy (WAS) 

The Volare APSL requires a weight function value for each adaptation-rule, 

representing its relative importance in comparison to the other selectable 

adaptation-rules on the same adaptation-variable under the current context, 

expressing also the user preference on the adaptation-strategy importance. This 

means that at changing user preference mode, the relative importance of all 

adaptation-rules of an adaptation-strategy may change significantly in 

comparison to the other strategies.  

The Volare APSL does not specify the form of the weight function, which is up to 

the developer and the scenario. Two approaches are open to the developer for 

assigning a weight value to every adaptation-rule, described below. 

6.3.1 Manual Weight-Assigning 

The manual weight assigning allows the developer of the policy file to evaluate 

and assign the appropriate weight value or expression to each adaptation-rule 

within the “()” symbol postfixed at the RHS of every adaptation-statement.  

Example: bitrateQoSReq = 0.8*bandwidth (0.85); 

Note: However, if the developer inserts the weight value of every adaptation-rule 

as numeric value instead of formula as described below, the possibility for fine-

tuning the policy through the User Preferences Interface and the strategy-specific 

structure for reviewing a policy file are eliminated.  

6.3.2 Recommended Weight Assigning Strategy (WAS) 

The WBART provides a generic WAS for assigning a weight function to each 

adaptation-rule of the policy based on reasoning and scenario-specific 

considerations, such as: the relative importance of the adaptation-strategy to 

which the adaptation-rule belongs, the adaptation-variable “role” in the 

adaptation-strategy and the current user preference mode. The basic relation for 

the weight function value of an adaptation-rule is given below by: 

rule weight value =  

strategy-weight-coefficient x rule-weight-coefficient                 (1)  

Example: bitrateQoSReq = 0.8*bandwidth (wSgen * 0.50); 

The Volare generic Weight Assigning Strategy (WAS) assigns to each 

adaptation-rule a weight function that is the product of several weight coefficients, 

each representing a non-negative value less or equal to 1, as explained below. 

1. The Strategy Weight Coefficients (SWCs) 
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The strategy weight coefficient (SWC) denoted as wSstrat (0 <= wSstart <= 1) 

for each adaptation-strategy is a value/expression denoting its relative 

importance in comparison to the others under each user preference mode. 

Default SWCs values are assigned by the global policy developer for every user 

preference mode at the UPI configuration.  

2. The Strategy Weight Coefficient Modifiers 

The strategy weight coefficients default values may be customized by the user at 

the User Choices Profile (UCP) for each application by the strategy weight 

coefficient modifiers denoted as uSstrat. They take non-negative values that the 

user may assign through the UPI when defining the User Choices Profile (UCP) 

for each specific application, within margins defined by the developer. The UPI 

dispatches to the middleware at runtime the user-set values that modify the 

default values at the current user preference mode:  

wSstrat = wSstratdefault * uSstrat       (2),    where:  

wSstrat denotes the current strategy weight coefficient, 

wSstratdef denotes the default strategy weight coefficient value, initially set by 

the developer at the UPI configuration,  

uSstrat denotes the respective strategy weight coefficient modifier value (with 

default value 1), representing a non-negative value number set by the user, 

within upper & lower limits set by the developer in order to preserve the relative 

importance for every adaptation-strategy at each user preference.  

The SWCs are declared as float type context-variables at the global policy and 

their current value under the selected user preference mode is provided by the 

UPI. For example: float ContextVar wScost == UPI.wScostdef *uSstrat;  

Consequently, equation (2) becomes for each Adaptation-strategy: 

wSgen = Sgen * uSgen             (2a) 

wSperf = Sperf * uSperf            (2b) 

wSres = Sres * uSres             (2c) 

wScost = Scost * uScost            (2d) 

wSdisr = Sdisr * uSdisr            (2e)  
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Table 6-2 – Case Study Default Strategy Weight Coefficient (SWC) Values  

      User Preference    Normal SaveBattery LowCost HighQuality 

Adaptation-strategy N S L H 

Adaptation-strategy Sgen 

Generic Operat. 

ConsrCoConstraint

s  

1.00 1.00 1.00 1.00 

Adaptation-strategy Sperf 

Performance 

Optimization 

0.80 0.50 0.50 0.80 

Adaptation-strategy 

Scost Cost 

Optimization 

0.50 0.50 0.80 0.20 

Adaptation-strategy Sres 

Resource 

Optimization 

0.50 0.80 0.50 0.20 

Adaptation-strategy Sdisr 

Runtime Disruption 

Minimization 

0.40 0.40 0.40 0.10 

At each user preference mode, through the formulas (2a) to (2e), the UPI 

dispatches to the middleware as numeric context-variables the current Strategy 

Weight Coefficients values.  

3. The Rule Weight Coefficients 

The Rule Weight Coefficient denoted as wcRule is a non-negative 

value/expression/function <= 1, independent of the user preference mode, 

assigned by the developer and expressing the relative importance of the 

“operating role” of the adaptation-rule in comparison to the other selectable 

adaptation-rules on the same adaptation-variable, since evidently not all the 

adaptation-rules in the policy on an adaptation-variable are of equal importance.  

This value is deduced by the developer by considering issues such as: the 

context sub-domain that the adaptation-rule represents (i.e. the Criteria 

conditions of the adaptation-rule), the adaptation-rule implied priority level 

(through keywords and policy of origin) and the “operating role” of the adaptation-

rule.    

4. The final Rule Weight Function 

Based on the above analysis, the weight function value assigned to every 

adaptation-rule is the product of the three above described weight coefficients, as 

specified by relation (1) above. The UPI provides to the middleware the current 

Strategy Weight Coefficient value, thus: 

wSstrat = wSstratdef  * uSstrat                  (2) 

The overall weight equation for the adaptation-rule weight wRule becomes: 

wRule = wSstrat * wcRule              (3) 
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Equation (3) is the final equation used in each RHS parenthesis of every 

adaptation-rule, with the wcRule (adaptation-rule weight coefficient) preferably 

assigned by the developer in numeric form, like in the example adaptation-

statement of Sgen:  

bitrateQoSRequest = 0.7 * bandwidth [20] (wSgen * 0.40); 

Note that the developer may add additional factors to the weight function for 

every adaptation-rule. A variable-weight-coefficient may be added, to signify the 

relative importance of the specific adaptation-variable to all the rules in an 

adaptation-strategy that may take a different value in another adaptation-

strategy. For instance, bitrateQoSReq may have a different relative importance in 

rules of the Sperf than I rules of the Scost adaptation-strategy. Similarly, the 

developer may specify the rule weight coefficient context-dependent.  

Remark: In the recommended Weight Assigning Strategy, the weight coefficients 

are not context-dependent, at the exception of the SWCs that are user 

preference mode dependent. Consequently, the weight values express the user’s 

preference on the relative importance of every adaptation-strategy. 

6.4 The Volare Configurable User Preferences Model 

As attested by numerous research works [6][41][36][45][69] and surveys [13][61] 

commented in Ch. 2, satisfactory adaptation of a DCAA mobile middleware to 

context change requires incorporation of user preferences – even at runtime. In 

fact, on resource constrained mobile devices with variation in network availability 

and bandwidth, there can be no QoS guarantee but a compromise between what 

is attainable and what the user preferences are at QoS or indirectly at resources 

or cost. User preferences are needed, to indicate which QoS dimensions – which 

in a wider sense may be and are expressed by the weight-based methodology as 

adaptation-strategies – have higher desirability for the user.  

The Volare User Preferences Model refers to the adaptation of the SR and of the 

middleware configuration and is generic enough to express user preferences on 

generic quantitative crosscutting concerns – common for all supported 

applications – such as: resource management, performance level desirability, 

cost of binding, disruption minimization or binding cost strategy.  

The WBART integrates dynamically in the adaptation logic the user preferences 

through a User Preferences Interface (UPI) application operating as a virtual 

multi-sensor, informing the Context Monitoring Module of the middleware on the 

current user preferences.  
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The Volare middleware acknowledges the need for dynamically declared user 

preferences and allows the user to alter user preferences at runtime at two 

different dimensions of increasing complexity through the UPI: 

a. The short-term User Preference Mode selection, even at runtime – since 

change of user preference triggers adaptation – for establishing the policy-

based adaptation behavior corresponding to the selected Mode.  

b. The User Choices for each application, denoting the global policy 

customization encoded in a User Choices Profile (UCP) for each 

application. Through the UPI the middleware provides the opportunity to the 

user, to modify the default values on pre-determined at policy design time 

parameters – within authorized percentage limits (usually between 80% – 

125% of the default value).  

6.4.1 The User Preference Modes 

The User Preferences Interface (UPI) application allows the user to easily select 

the desired user preference among several mutually exclusive ones, representing 

real-life alternatives on crosscutting concerns, valid for every application. As a 

typical example for the current scenario, the following four user preference 

modes have been defined:  

UP Mode: HighQuality or Normal or LowCost or SaveBattery       

The adaptation behavior description of each user preference mode of the case 

study global policy is given below in Table 6-3, as provided by the generic model 

of user preference modes by the WBART methodology. 

The user preference mode influences the adaptation behavior in two ways: 

Firstly, through the Weight Assigning Strategy, since the SWC table (see Table 6-

2 above) provides different default SWC values at each user preference mode, 

indicating a change in the relative importance and consequently the contribution 

of each adaptation-strategy and by consequence of their selectable adaptation-

rules to the adaptation results.  
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Table 6-3 – The Generic User Preference Modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondly, as a context element in the Criteria predicates, since at each user 

preference mode there are typically adaptation-rules specific to it (if it is a 

relevant context for the adaptation-strategy) that represent the recommended 

adaptation behavior. Changing user preference mode through the UPI even at 

runtime establishes a different policy-based behavioral pattern, activating policy 

execution and adaptation influenced by the user preference specific adaptation-

rules under the current context. Not all adaptation-rules depend on the user 

preference mode. 

User Preference: Normal (N) 

Guideline: The Normal mode is the default user preference mode and allows 

full use of the resources, with bitrate = 0.8*unadapted value. Set strategy-

weight-coefficients at almost equal weight coefficients at the SWCT. 

User Preference: LowCost (C) 

Guideline: The Cost Optimization adaptation-strategy becomes dominant: 

a) by a reduction of the cost preference value on binding price of the “Normal” 

value;  

b) by increasing the relative importance of the strategy-weight-coefficient 

Scost at the SWCT, making it dominant. 

User Preference Mode: SaveBattery (S) 

Guideline: The Resource Optimization Adaptation-strategy becomes 

dominant, reducing power consumption in anticipation of extended mobile use 

before recharging by: 

a) reducing the technically attainable bitrate QoS request of the “Normal” 

value; 

b) by increasing the relative importance of the adaptation-strategy Sres 

through appropriate value at the SWCT and making it dominant. 

User Preference: HighQuality (H) 

Guideline: The Performance Optimization adaptation-strategy Sperf becomes 

dominant, ignoring eventual low resource, cost or disruption levels, like battery 

power level or higher than normal cost of binding: 

a) by setting the QoS Request parameters values at the maximum 

attainable levels; 

b) by setting the Sperf strategy-weight-coefficient dominant at the SWCT. 

 



 
 
   

129 
 

Remark:  In Volare the User Preferences Model follows a reserved approach on 

the frequency and degree of active user intervention, since the middleware never 

actively requests user intervention for decision-making in contrast to other work 

like [28][36][69].  

6.4.2 The Scenario User Choices Profile 

In adaptation logic, the adaptation reasoning – when, how and how much to 

adapt – is defined by certain parameters, either comparison parameters in the 

Criteria predicates – specifying when to adapt, or in the adaptation-rule 

adaptation actions as action parameters, specifying the measure of the 

adaptation action for each selected adaptation-rule. 

In Volare the User Preferences Interface (UPI) is a configurable by the global 

policy developer multi-sensor application with a number of numeric and string 

variables, that to each one may be assigned a name, a default value and a 

variation range, so that the User may easily insert her preferences at will.  

Figure 6-1 – Sample User Interface screen for Policy Customization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1a          Figure 6-1b 

Through the UPI the middleware provides the opportunity to the user on pre-

determined at policy design time numeric comparison, action or weight coefficient 
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parameters, to modify the default values – within authorized percentage limits 

(usually between 80% – 125% of the default value).  

The UPI dispatches at every monitoring recheck period the current sensor values 

set by the user to the Context Monitoring Module, corresponding to policy -

declared UPI-based context-variables.  

In the case study scenario example the user (see Fig. 6-1b) customizes the 

default values of the Strategy Weight Coefficient (SWC) of the adaptation-

strategies at every user preference mode. In the above figures, the four 

strategies are Spref, Sres, Sabs and Sdist. The initial default values of the 

customizable parameters such as the SWC are set by the global policy developer 

at the User Preferences Interface configuration (or at the global policy as 

calculation-variables).  

Based on the above, the User Choices Profile (UCP) should include default 

values and modifiers for at least the four following adaptation logic parameters: 

a. The default Strategy Weight Coefficients for each user preference mode, with 

upper/lower bounds for fine-tuning by the user. The case study default SWC 

values are presented in Table 6-2 above. 

b. The global policy LTPG goal values, since these values are user-specific. For 

instance, the user will need to insert her own monthly data volume allowance 

(4000 MBs/month) or the monthly credit allowance (5 pounds/month) for 

services on the cloud, as specified in the contract with the MNSP. Similarly, 

customizable constants related to LTPGs metrics, may also be configured. 

c. The global policy developer configures the UPI setting the customizable 

parameters, like selected comparison or action parameter values defining the 

“High” or “Low” or “Very low” threshold level of a context-variable or metric at 

which the adaptation behavior should change. For instance: take no action for 

a LTPG on a consumable resource, as long its level is higher than 80% of the 

budget. On the contrary, take strict actions if the resource comes at very low 

level (say <20%).               

In this way the user may create her customized User Choices Profile (UCP) for 

the adaptation behaviour of the middleware and the SR of each application. The 

customized UCP for each application is saved by the UPI and is automatically 

recalled – instead of the default UCP – at a service request of the relevant 

application to customize the UPI default settings and consequently provide the 

customized values to the adaptation logic parameters. 
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6.4.3 Optional Extensions of the User Preferences Model 

It should be noted that the Volare configurable User Preferences Model is 

scenario-specific, configurable and may include at the same time multiple levels 

of mutually exclusive or concurrent user preference options, as follows: 

UP Feature: Business or Personal (on different cost/performance 

requirements); 

UP Functional Feature: Wi-Fi or GSM (on different functional requirements); 

UP Disability Feature: Video + Audio or Audio only or Audio + low QoS 

Video (on different QoS requirements).   

Thus, the current user preference mode may be a vector of preferences on more 

than one level of mutually exclusive variants. In these cases, the user selects the 

desired variant for each user preference feature. At policy execution, each 

selected context element influences which adaptation-rules will be matched to be 

further evaluated form selection and execution. For instance the “Business” 

feature may indicate a different binding cost strategy (company expenses vs. 

personal expenses) and different QoS settings, that will be matched under the 

context element User Preference: “Normal” and the option: “Business”. Each 

level of user preference mode features is declared as a string type context-

variable. The UPI dispatches the current user preference vector of feature 

value(s) to the Context Monitoring Module dynamically.  

6.5 Quantitative Long Term Performance Goals (LTPGs) 

It is important to distinguish between two types of adaptation concerning the 

adaptation reasoning temporal horizon dimension: 

a. Short Term Performance Goals are called in this work policy-based 

performance goals in consideration of only the context parameters current 

values or values of the current application session (in the scenario: session of 

service discovery and binding on cloud services). At a new session, 

adaptation reasoning restarts based on the current context without any sense 

of continuity, but simply on policy-based: If current conditions … Then 

actions.    

b. Long Term Performance Goals, abbreviated as LTPGs, are called in this 

work quantitative performance goals on repeated activity cycles managed by 

the adaptation policy that span over a period of many application sessions, 
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until a temporal pre-determined limit or otherwise until a predefined 

parameter limit has been exceeded.  

This second adaptation approach is more challenging and more “intelligent”, 

demanding more on abstract-level policy logic. It may concern optimization over a 

consumable resource, like optimizing battery power within the battery-recharging 

schedule, or keeping binding cost on services on the cloud within a monthly 

renewable (or additive) credit allowance. In more general terms it may concern 

optimization or respect of constraints on a performance metric over a time period 

(week, month, etc.) or until an increasing or decreasing parameter value limit is 

reached.  

6.5.1 Introducing Long Term Performance Goals in the Policy  

A main feature of the Volare approach and the WBART methodology consists in 

creating the capability for introduction and use in the policy of quantitative LTPGs 

over finite horizons that supersede the duration of a cloud service discovery 

(CSD) session.  

Adaptation policy with Long Term Performance Goals (LTPGs) depends on the 

current context not only within a session as in short term adaptation, but also 

insistently over the whole Long Term Performance Goal horizon time. 

Consequently, it requires capability from the Policy Specification Language to 

define metrics required for monitoring performance and guiding the adaptation 

based on usage data that span at least over one LTPG horizon context & 

adaptation history. Adaptation through LTPGs differs significantly from typical 

short-term condition-action adaptation based on the current context of the active 

CSD session, since they concern a full temporal trajectory (sequence of 

decisions on successive condition-action occurrences) and they are assessed for 

the degree of success or failure at the end of their finite horizon.  

LTPGs are expressed through adaptation-rules of the global or the application 

policies or of both. In the case study both cases are supported, either of 

individual LTPGs in only one policy or LTPGs served by adaptation-rules across 

both policies. 

6.5.2 Functional Requirements to Support LTPGs 

The design and use of LPTGs in the adaptation policy requires support by the 

APSL and the mobile middleware, on the following non-trivial characteristics:  

1. Declaration capability for new unanticipated variables  
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Declaration capability for new unanticipated calculation- or statistic-calculation-

variables supported by the APSL is required, so that the developer may declare 

new metrics representing cumulative LTPG performance within the horizon 

duration so far, as expressions of declared context- or adaptation-variables or 

statistical inference on their usage data.  

2. Middleware capability for context & adaptation history recording  

Middleware capability for context & adaptation history maintenance, by recording 

at regular specified intervals the values of all declared (and consequently 

monitored or evaluated) context or adaptation or intermediate variables, in the 

device Context & Adaptation History Database (CAHiD) and maintaining it. The 

Volare middleware includes the Context & Adaptation History Module (CAHiM) 

that is charged with usage history database management, aggregation and 

maintenance (see Ch. 4 on the middleware implementation).  

3. Middleware capability for statistic inference on declared parameter 

Middleware capability for statistic inference on declared parameter stored on the 

usage data.  

The Volare APSL provides notation for declaration of statistic-calculation-

variables, supported by the middleware Statistical Analysis Module, in the form:  

typeID CalcVar parameterID == parameterID.PeriodID.StatisticTermID, on 

numeric declared parameters and the periods and statistic terms supported by 

the middleware, (see ch.5.4).  

6.5.3 The LTPG Design Model 

Every quantitative LTPG is considered as a consumable real or virtual resource 

that is gradually depleted but should preferably not be totally consumed till the 

end of each horizon.  

Adaptation of an LTPG is considered as a behavioural adaptation (parameter 

adaptation) VP with different behavioural variants selectable under different 

context conditions to assist achieving the goal by the end of the horizon. LTPG 

performance monitoring has to be instituted, with the current context “augmented” 

to include LTPG-related monitoring metrics at any point in time within the LTPG 

horizon. The LTPG control strategy consists in defining LTPG resource 

availability levels, at each of which a different behavioural variant representing 

adaptation-rules on the control variables will be matched and selected specifying 

the appropriate adaptation through the following LTPG design model, at each of 
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the two Policy Authoring stages: the Policy Design and the Policy Development 

stage. 

1. Policy Design Stage 

For an LTPG to be mapped through adaptation-rules in the policy, at the 

preparatory Policy Design Stage it is required by the developer to analyse, define 

and declare in the policy the following parameters:   

a) Assign the LTPG to an Adaptation-Strategy 

This task concerns the classification of the LTPG in the most related adaptation-

concern & strategy, so that its adaptation-rules will have the associated strategy-

weight-coefficient.  

b) Define & Declare the LTPG related Parameters  

LTPG related Parameters – The main parameters that typically characterize a 

quantitative LTPG need to be identified and declared, like:  

horizonDuration: the horizon duration (fixed or variable), for instance the 

discharge period for battery LTPG, or the monthly period for the Credit or Data 

Volume LTPGs. This value is indirectly defined by selecting the pre-defined 

statistic “Period” that corresponds to the horizonDuration.   

resourceAllowance: the max value of the LTPG resource  that is not to be 

exceeded. Typically this parameter is either declared as a constant calculation-

variable or as a user-customizable UPI context-variable. 

resourceVLowLevel: threshold parameter representing the very low level of the 

LTPG resource at which emergency adaptation-rules are matched and selected 

for adaptation, in order to keep LTPG performance on track. 

c) Define & Declare LTPG Monitoring Metrics 

LTPG Monitoring Metrics – The LTPG performance over its horizon may be 

monitored by several metrics that are defined and declared as calculation or 

statistic-calculation-variables by the developer and are used in the policy for 

decision-making purposes. The weight-based methodology suggests the 

following six main metrics, measuring both the resource use and the time passed 

within the LTPG horizon: 

a. The “durationTillNow” Metric 

durationTillNow: the time duration from the beginning of the current horizon 

period till now, in appropriate units. 

b. The “resourceUsed” Metric 
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resourceUsed: the resource used within the durationTillNow time duration from 

the beginning of the current horizon period till now, in appropriate units. 

c. The “Resource Use Ratio” Metric 

The resourceUseratio evaluates the considered real or virtual resource use from 

the beginning of the current horizon till now, vs. the whole horizon allowance or 

prediction (implied percentage type): 

resourceUseratio = 100 x resource used / resourceAllowance    (1) 

d. The “LTPG Duration Ratio” Metric 

The durationRatio is required to indicate the time interval so far within the known 

or estimated horizon duration (implied percentage type): 

durationRatio = 100 x duration till now / horizonDuration          (2) 

The above two ratios represent “criticality” levels on LTPG performance for the 

achievement of an LTPG, in the sense that the higher their values are the more 

difficult it is to correct by adaptation any deviations from the goal sought. As 

“criticality” indicators may be used in the adaptation-rules, for instance in order to 

decide (in the predicates) or to specify (in the adaptation-statements) the 

magnitude of corrective adaptation actions.  

e. The “Resource Reference Rate” Metric 

The model defines as resourceRefRate the implied percentage type metric: 

resourceRefRate =  

100 x (resource used / duration till now) * (horizonDuration / 

resourceAllowance)              (3) 

2. Policy Development (Adaptation-Rules Authoring) Stage 

Once the LTPG related parameters and monitoring metrics have been defined in 

the previous Policy Design Stage, the LTPG control strategy lies on determining 

the following elements: 

 Define the LTPG sufficient condition(s), that if it is respected then the LTPG is 

achieved by the end of the horizon time 

 Identify control adaptation-variables 

 Define LTPG resource availability levels  

 Define a behavioral variant at each availability level (typically at the “Low” or 

“VLow” level), in the form of a Criteria-Subpolicy pair with adaptation-rule(s) 

on the control variable(s), imposing the required adaptation. 
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Consequently at the Policy Development Stage (adaptation-rules authoring), the 

following procedural successive actions need to be followed in order to 

successfully map an LTPG in adaptation-rules:  

a) Define the LTPG Sufficient Condition   

One or more quantitative constraints have to be defined that should represent a 

sufficient condition of “correct operation” of the system over the remaining finite 

horizon time interval concerning the LTPG, which if respected by the end of the 

LTPG horizon, then the goal will be achieved. 

The LTPG Sufficient Condition Constraint – For an unknown usage pattern, 

the LTPG design model adopts the following “naïve” constraint: 

resource used / time till now <= resourceAllowance / horizonDuration   (4)  

  

(resource used / time till now) / (resourceAllowance / horizonDuration) (4a), 

which is an empirical sufficient condition when lacking usage pattern information 

for achieving the LTPG by the end of the horizon. The constraint (4a), substituting 

for monitoring metrics (3), becomes: 

resourceRefRate <= 100              (5) 

Remark: Note that constraint (4a) or (5) is cumulative over the LTPG horizon 

duration, in the sense that even if for a time interval within the horizon duration 

the metric resourceRefRate exceeds the limit, if later the resource use rate is 

reduced – for instance by appropriate adaptation actions – then it may again 

cumulatively satisfy by the end of the horizon duration the upper limit constraint 

and the LTPG will be achieved. 

b) Define LTPG Resource Availability Levels 

Based on the above metrics, parameters and the sufficient condition (5), define 

different LTPG resource availability levels – by comparing the current monitoring 

metrics values against threshold parameter values – with each level requiring 

different adaptation actions. Practically, instituting up to 3 levels of availability 

levels for behavioural adaptation for every quantitative LTPG may often be 

considered satisfactory – in the sense that it usually ensures both goal fulfilment 

and satisfactory adaptation behaviour, in the following manner: 

 At High resource availability – with resourceUseratio and resourceRefRate 

within acceptable limits – no restrictions need to be imposed on the control 

variable(s) 
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 At Low resource availability level – when monitoring metrics like: 

resourceUseratio or the consumption rate resourceRefRate exceed set limits 

– gradual restrictions are imposed  in proportion to the discrepancy of the 

current performance metric from the set level value 

 At Very Low availability level – indicated by reaching resourceUseratio =< 

resourceEmergency level – more abrupt adaptation actions are to be 

specified, that may need to lower substantially the quality of the requested 

cloud service in order to achieve the goal by the end of the horizon.  

This step constitutes the design of a LTPG resource availability level assessment 

algorithm, classifying the current instance in one of the selected levels. 

In §7.4, a segment of the case study global policy file presents a generic LTPG 

availability levels classification algorithm, introduced through appropriate 

adaptation-rules at the 2nd CEC of the global policy file rules section. 

c) Identify the LTPG Control Variable(s) 

Control Variable(s) – Control variables are adaptation-variables, either 

middleware configuration-variables or QoS-variables, whose adaptation may 

influence the resource consumption of the resource considered. For LTPGs set in 

the global policy, it may be that the global QoS-variable(s) may not be effective at 

managing the LTPG. In this case adaptation-rules in every application policy 

should be specified for fulfilling the LTPG at the end of its horizon.    

For instance, for the Monthly Credit Allowance Management LTPG, the 

costQoSReq global QoS-variable may be an appropriate control variable. For 

battery or data volume management the bitrate QoS variable of an application 

policy may be a control variable. 

d) Define the Behavioural Adaptation Variants for the LTPG 

In the weight-based methodology every quantitative LTPG is considered as a 

behavioural VP with several mutually exclusive behavioural variants, each 

expressing a collection of adaptation-rules matched and selected when its 

common predicates are satisfied, for influencing the required adaptation to keep 

the LTPG on track.  

A simple and practical procedure adopted by PAM for LTPG control consists in 

classifying the availability of the real or virtual resource representing the LTPG, in 

typically three (or eventually more than three if more fine-grained analysis is 

required) resource availability classes as “High”, “Low” or “Very Low” 

(abbreviated as VLow), depending on predicates established through the 
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monitoring metrics. At each LTPG resource availability level established through 

the related adaptation-rules in the 2nd CEC, the corresponding behavioral variant 

of the LTPG VP includes the adaptation-rules that specify the required 

adaptation. This takes place at the 3rd CEC, with a BV corresponding to each 

resource availability level.     

e) Prefixed vs. Usage-based Adaptation on LTPGs 

Two adaptation viewpoints are distinguished in this work on the support of policy-

based quantitative Long Term Performance Goals: 

1. LTPG Control by Prefixed Metrics & Threshold Parameters 

At the LTPG management by prefixed metrics & threshold parameters, 

performance metrics and decision-making for each LTPG are influenced by the 

context through prefixed common sense but empirical estimates on the usage 

evolution within the time horizon, like the date-based criterion. The date-based 

criterion, expresses the prior belief that the activity will continue using the 

specified resource or budget till the end of the LTPG current period, 

proportionally to the number of days still to come, i.e.: 

Date-based criterion = (days till now / expected days in the period) x (budget 

used / total budget) (1). 

It is a common-sense measure for decision-making on LTPG control without any 

usage data and the case study makes systematic use of it.   

2. LTPG Control by Usage-based Metrics & Threshold Parameters 

At the usage-based adaptation on the contrary, statistical analysis of the usage 

model may provide insights in the future system behaviour and permit a better 

estimation on the course of action to achieve the LTPGs, thus allowing smoother 

and less abrupt adaptation (and resultant operation) to achieve the LTPG.  

LTPG performance through consideration of the device usage model may 

improve the policy performance assessment on goal achievement without undue 

constraining other uses. However, it requires specifying at the policy level 

statistical inference parameters based on the usage model and sufficiency of 

historic data.  

The usage-based criterion expresses the prediction estimate for the rest of 

the current LTPG period as function of the usage model statistics. 

Since typically there is one user for each mobile device, with personal habits, 

favourite activities on the device use etc., the usage model may well provide 

useful information in optimizing an initial arbitrary estimation for an LTPG.  
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6.5.4 Usage-Based Policy Self-Optimization 

In the previous paragraphs an LTPG design model of typically three resource 

availability levels (“High”, “Low”, “VLow”) is described, defined by LTPG metrics 

taking values within predetermined sub-domains, that presents simplicity in 

establishing the LTPG adaptation and practicality in achieving the goal. Typically 

the threshold value resourceVLowLevel (for instance 20% of the resourve level) 

is used referring to the resourceRatio, which in combination with the other 

defined LTPG monitoring metrics assess the current resource availability level. 

Then at the current availability level the appropriate behavioral variant is 

activated imposing restrictive adaptation actions.  

The collection of adaptation-rules (Criteria-Subpolicy pairs) in the adaptation logic 

that constitute adaptation reasoning on pre-determined threshold parameter 

values is called in this work: control-layer. However, managing a LTPG over its 

horizon with unknown usage pattern and stochastic variation through a prefixed 

“control layer” of adaptation-rules, may not be effective, especially since it refers 

to a sequence of adaptation actions on successive CSD sessions.  

This is the reason that a “supervisory layer” of adaptation-rules is required, so 

that in case that the LTPG is not achieved, appropriate corrective actions are 

taken on the “control layer” to improve its effectiveness, making it stricter or more 

relaxed, depending on the LTPG results.   

This way, the adaptation logic may be enriched with capability to automatically 

evaluate its past behavior on LTPG horizons scale and verify if each goal has 

been fulfilled or missed and even evaluate how effectively this was done and take 

corrective actions at the beginning of a new LTPG horizon.  

The collection of adaptation-rules that selects alternative algorithms or adapts 

threshold parameters on existing algorithms on the basis of horizon scale results 

is called in this work: supervisory-layer (or change management layer). It serves 

to establish automated self-optimization of the control-layer adaptation-rules in 

the adaptation logic by modifying threshold parameters, through policy-based 

supervisory-layer adaptation-rules designed to reason and act on a slower time 

scale than the control-layer, on horizon time scale usage data. 

The Volare approach, establishing usage data recording and statistical analysis-

support by the middleware, allows the developer to introduce in the adaptation 

logic this supervisory-layer of policy self-optimization.  
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In the case study this self-optimization of the adaptation logic is demonstrated by 

supervisory-level adaptation-rules that are matched and selected at any policy 

execution after the end of an LTPG horizon, verifying if the associated LTPG has 

been achieved or not. Then, on the basis of this evaluation, different algorithms 

and threshold parameters values are introduced in the control-layer adaptation-

rules for the new time horizon. As this supervisory-layer evaluation may concern 

algorithmic alternatives, as different or modified algorithms are activated, the 

relevant adaptation-rules are assigned to the first CEC.  

A simple application of supervisory-layer adaptation-rules in the case study global 

policy consists in monitoring success or failure of the LTPG at the end of the last 

horizon and adapting the resourceVlowLevel (initially set at 10% - at which 

“VLow” level restrictions are imposed at the control variable(s)), thus enlarging 

the “Low” and “VLow” availability levels range and reducing the “High” level 

range, enabling restrictive behavioral variants to control adaptation. Additionally, 

the actionCoeff parameter, influencing the action value for the control variable(s) 

may also be adapted accordingly. Of course this is only a simple demonstration 

of the capability offered by the Volare approach to the policy developers, as 

applied in the case study in chapter 7.   

6.5.5 Limitations in the Use of LTPGs in the Adaptation Policy 

Two main limitations are set in the current Volare version for introduction of 

quantitative LTPGs in the policy. Firstly, in the current Volare version, the finite 

horizon of a LTPG should coincide with one of the time periods supported by 

Statistical Analysis Module of the middleware. Secondly, all LTPG monitoring and 

decision-support metrics that are based on statistical inference should be in the 

form of a statistic term from the ones supported by the middleware. 

If these two requirements are satisfied, the APSL and the middleware support the 

declaration and calculation/retrieval of unanticipated at middleware design time 

statistic-calculation-variables or of declared calculation-variables referencing 

them for metrics monitoring LTPG performance during each episode. 

6.6 Policy Testing & Verification  

The methodology developed concerning the weight-based adaptation reasoning 

technique has designed a detailed and extensive testing, verification & evaluation 

process for the adaptation logic, described in detail in Appendix C. It makes use 

of a specially designed simulated policy execution & verification application 



 
 
   

141 
 

named PEVApp for offline automated generation and execution of test suites and 

the verification and evaluation of the simulated dynamic results.  

As part of its functionality, the middleware keeps record of the context & 

adaptation data at each monitoring row in the Context & Adaptation History 

Database (CAHiD).  The CAHiD data may be extracted and used independently 

of the middleware for verification, evaluation or validation purposes.  

In the following paragraphs the dynamic testing and verification techniques for 

the middleware and the adaptation policy are outlined, as well as the strategy for 

test suites generation on each technique and the adequacy criteria. Based on the 

context data & results derived by the offline simulated dynamic testing, a rules 

fault detection algorithms have been designed for detecting policy logic 

“irregularities” that do not stop the program flow but constitute rule faults.  

The phases for the adaptation logic (policy) testing, verification & eventual 

evaluation are described in the following paragraphs.  

1. Automated Policy Syntactic Correctness Verification 

Every policy is first verified on syntactic correctness through an initial policy 

syntax evaluation by the relevant Syntactic Correctness Verification Tool, 

verifying basic data-flow testing prerequisites, like: no variable used but 

undeclared, no variable declared but unused, variable declared twice, Criteria 

non-corresponding to Subpolicies, etc. Such errors detection, including typing 

errors, helps avoid a lot of troubleshooting when editing a new or updating an 

existing policy. 

2. Automated Offline Test Suite Generation & Execution  

Test suites on the developed policy are automatically derived on developer-

selected options, based on the predicate coverage strategy [71][73]. These test 

suites may be automatically enriched, based on the domain testing strategy [72] 

concerning the context sub-domain boundary values, where may be higher 

probability for rule faults, with tentative adequacy criterion 100%.  

Automated repeated execution of the test suites is implemented offline by the 

Policy Editing & Verification Assistant tool.  Test cases with failures are recorded 

for debugging, while the dynamic data are stored for evaluation.  

3. Automated Analysis of Results by Fault Detection Algorithms 

The real extracted usage data from the mobile or the test suite execution data are 

evaluated for rule faults detection that are not evident as test case failures. Sama 
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et al [55] have published an approach for static verification of the adaptation logic 

of CAAAs. However, the foundation of the approach in [55] is based on the 

consistency algorithm, which is not relevant in Volare since multiple adaptation-

rules on one head predicate may frequently be selected in the Volare APSL-

compatible policies.  

Volare shares the basic thinking with [55] on rules fault detection and has 

developed rule fault patterns identification and detection algorithms, adjusted to 

the Volare APSL compatible adaptation policy for detecting faults and anomalies, 

based not on static analysis as in [55], but on the analysis of the context & 

adaptation real or simulated execution data through Policy Editing & Verification 

Assistant tool. The faults detected are recorded in a separate output sheet, so 

that the developer/tester may evaluate them and take corrective actions.  

4. Policy Editing & Performance Evaluation 

PEVApp provides specific tools like the Policy Editing & Verification Assistant, 

assisting the policy developer at evaluating policy performance through 

automated charts on simulated policy execution dynamic results on test suites. 

Additionally, it assists the developer at analysing at each context instance the 

adaptation-rules matched & selected and the weight-based driven adaptation 

choices. The provided semi-automated tables and charts assist the developer in 

policy authoring.    

Table 6-4 – A view of the Policy Editing & Verification Assistant Tool 

 

5. Automated Metamorphic Relations Verification 

In this work use is made of Metamorphic Relations (MR), that are expected 

2  <== cycleNo
38  <== Total Number of Matched Adaptation Statements 89% 34  <== Total Number of Selected Adaptation Statements 

15  <== Total Number of Adaptation Variables Involved 

SELECTED  ADAPTATION  STATEMENTS

No MATCHED ADAPTATION-STATEMENTS
 RULE 

PRIORITY

ROW 

No

Overall 

Select 

A/St
SELECTED ADAPTATION STATEMENTS

WEIGHT 

VALUE

RESOLV

ED-

VALUE

bitrateQoSReq bitrateQoSReq 48

1 overridesAsUpperLimit bitrateQoSReq = 0.8*bandwidth [30] (wSgen * 1.00); 0 241 1 overridesAsUpperLimit bitrateQoSReq = 0.8*bandwidth [30] (wSgen * 1.00); 1.000

2 overridesAsUpperLimit bitrateQoSReq = 0.4*0.8*nominalBandwidth [20] (wSperf * 1.00); 0 313 2 overridesAsUpperLimit bitrateQoSReq = 0.4*0.8*nominalBandwidth [20] (wSperf * 1.00); 0.800

3 overridesAsLowerLimit bitrateQoSReq = 0.05*nominalBandwidth [20] (wSgen * 1.00); 0 394 3 overridesAsLowerLimit bitrateQoSReq = 0.05*nominalBandwidth [20] (wSgen * 1.00); 1.000

4 bitrateQoSReq = 0.8*bandwidth [20] (wSperf * 1.00); 4 330 4 bitrateQoSReq = 0.8*bandwidth [20] (wSperf * 1.00); 0.800

5 yieldsAll bitrateQoSReq = 0.7*bandwidth [15] (wSgen * 0.100); 6 395

6 yieldsAll bitrateQoSReq = 0.8*bandwidth [20] (wSgen * 0.200); 7 229

costQoSReq costQoSReq 9.92

7 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.100); 4 314 1 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.100); 0.050

8 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.10); 4 331 2 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.10); 0.050

9 yieldsAll costQoSReq = 0.8*maxCostPref [18] (wSgen * 0.100); 6 396

10 yieldsAll costQoSReq = 0.8*maxCostPref [20] (wSgen * 0.200); 7 230

POLICY EDITING & VERIFICATION ASSISTANT
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relations not in the input/output data of a test case but between sets of input and 

output data of the test suite results [70].  

Table 6-5 – Automated Composite Policy Verification Tool 

 

The MR idea is implemented for checking appropriately sorted context & 

adaptation data derived from the simulated dynamic testing on their conformity to 

predetermined scenario-specific MR. If violation of the MR is identified then a 

behavioural fault is detected. Such Metamorphic Relations have been identified 

in this work and are used for policy verification, especially w.r.t. the user 

preference context element, where at the same or similar other context data, 

some adaptation-variables like bitrateQoSReq and costQoSReq should be 

 ON COMPOSITE POLICY: 

15/01/2013 

 Adequacy Criteria Evaluated Total %  

 Predicate Coverage 2800 2900 96.6 

 Domain Testing Boundary Values Coverage 400 420 95.2 

 I. Dynamic Testing Failures Assessment 

 Dynamic Testing Failures Assessment 2920 2920 100.0 

 II. Dynamic Testing Fault Detection Failed Evaluated %  

 Dead Criteria 0 26 0.0% 

 Dead Conditions 3 72 4.2% 

 Dead Rules 3 121 2.5% 

 Rules Unmatched 3 121 2.5% 

 Dead Adaptation Actions (Non-numeric) 1 4 25.0 

 Rules with Dead Adaptation Action 4 121 3.3% 

 Unreachable States 4 121  3.3 

 III. Metamorphic Relations Verification Failed Evaluated %  

 bitrateQoSReq 0 2920 0.0% 

 costQoSReQ 0 2920 0.0% 

CUMULATED RESULTS EVALUATION 

AUTOMATED DYNAMIC TESTING & FAULT DETECTION VERIFICATION 

G1A1 - APP1 

 Criterion: HighQuality >= Normal >= (LowCost, SaveBattery) 

Test Cases  
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decreasing when moving from “HighQuality” user preference to “Normal” and 

then to “LowCost” or “SaveBattery”.        

6. Simulation-based Policy Evaluation on LTPGs 

An important use of the simulated policy execution PEVApp application consists 

in designing test suites or in using real usage data offline, and evaluate policy 

performance at achieving the LTPGs by the end of their horizons, by modifying 

policy parameters. Through the automated chart-making on the offline simulated 

dynamic results, the developer may have an evaluation of the policy performance 

before installing it on the device.      

In Table 6-4 is depicted the Overall Testing & Verification Results Table on the 

real global policy, detailing the rule fault patterns and detected errors, as provided 

by the Automated Testing & Verification Tool on the test suites generated by the 

PEVApp application.   

6.7 The Weight-Based Policy Authoring Methodology 

Based on the above mentioned innovative features, the weight-based adaptation 

reasoning technique has developed the Policy Authoring Methodology (PAM), 

to assist the global or application-policy developers to design, develop, test & 

verify the adaptation policy for implementing middleware-based dynamic context-

aware adaptation on the active SR for cloud service discovery by a mobile 

application. 

The three Policy Development Stages 

Based on the conceptual viewpoints described in §6.1 to §6.6, policy design & 

implementation in the weight-base technique proceeds through the following 

three conceptual successive stages:  

a. Policy Design Stage (Stage 1) 

Analyze System – Identify Requirements & Goals – Declare Variables 

b. Policy Rules Development Stage (Stage 2)  

Specify the Adaptation-Rules for Structural/Algorithmic and for Behavioral 

Adaptation 

c. Policy Testing & Verification Stage (Stage 3) 

Test, Verify & Validate the Policy. 

Each of the three stages includes successive steps that need to be followed – 

typically in an iterative manner, as new elements derived at subsequent steps 

may impose re-evaluation of decisions made at a previous step – in order to 

finally develop a global or application-level adaptation policy for middleware-
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driven SR DCAA in the weight-based technique. The steps are shown 

synoptically in the following Figure 6-2. 

Figure 6-2 – POLICY DEVELOPMENT FLOW DIAGRAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ANALYZE 

SCENARIO 

STEP 1– Define the scenario  

Context & Adaptation Variables 

STEP 2 – Define the Ad/Concerns 

& corresponding Ad/Strategies 

 

STEP 9 – Identify Behavioral VPs 

– At next CEC under each SAV 

build behavioral adaptation-rules 

under each MESC 

STEP 4 – Define the 

Weight-Assigning Strategy 

 

Step 12 - Validate 

Policy 

 

 

Step 10 – Review Policy – Merge 

Rules in Criteria-Subpolicies 

 

USE POLICY 

STEP 5 - Define Long Term 

Performance Goals 

 

 

 

 

Step 11 – Test & Verify Policy 

 

STEP 8 – Identify SAVPs – At 1st 

CEC, specify rules for each SAVP 

Variant 

 

 

 

 

STEP 3 – Define the 

User Preferences Model 

 

 

STEP 6 – Define & Declare 

Intermediate Variables 

 

 

 

 

STEP 7 – Define the Policy Rules 

Part Segments & CECs 

 



 
 
   

146 
 

 

 

In chapter 7 at the case study implementation, this procedure will be analytically 

applied step by step.  

6.7.1 Stage 1 – Policy Design Stage 

Analyze System – Identify Requirements & Goals – Declare Variables 

The Policy Design Stage represents the adaptive system analysis and policy 

authoring preparatory activity, where requirements are identified, goals are set 

concerning various viewpoints of the adaptation process, and the Variables 

Declaration policy section is specified.  

Step 1. Define the Context and Adaptation Variables 

Context & Adaptation Variables in this work is called the set of policy file context- 

and adaptation-variables and their data structure. These variables are 

predetermined for the middleware or for each SR and are specified by declaration 

statements at the Declarations section of the policy file.  

The context-variables, defined at middleware design time, represent: (i) the 

middleware-supported monitoring context sensors and (ii) the UPI user-

customizable user preference context-variables as in Step 5 below is analytically 

described. 

The adaptation-variables are distinguished in:  

a. the middleware configuration-variables, that specify adaptation of the 

middleware components as described in §4.3 and are predetermined at 

middleware design;  

b. the QoS-variables of the active application SR, which are application-specific, 

except of the global QoS-variables that are common for all applications and 

are defined in the global policy (in the case study: costQoSReq).  

The generic Context & Adaptation Profile for the case study global policy is 

described in §7.3.  

Step 2. Define the Adaptation-concerns & corresponding Strategies  

In the weight-based technique the scenario adaptation space is distinguished 

conceptually in several major adaptation-concerns. The global policy developer 

defines the adaptation-concerns of interest to the scenario as major conceptual 

targeted adaptation viewpoints for designing the adaptation behavior.  



 
 
   

147 
 

The generic Adaptation-concerns & Adaptation Strategies Model described in 

§6.1 with the most generic concerns of common use may be adopted, or it may 

be modified, if adding new adaptation-concerns pays in finer-grained adaptation, 

since this action would increase the number of strategy weight coefficients.   

Step 3. Specify the Weight Assigning Strategy 

The weight-based methodology provides the recommended Weight Assigning 

Strategy (WAS) described in §6.3, through the weight function value through the 

default format: weight function = wSstrat * uSstrat * wcRule (or a developer-

modified one), specifying the factors default values:  

a. The default wSstrat strategy weight coefficients (SWCs) for each user 

preference  

b. The default uSstrat strategy-weight-coefficient-modifiers set to 1 – allowing 

for future user customization of the SWCs 

c. The rule weight coefficient wcRule depending on the specific role of each 

rule in the adaptation-strategy. 

According to the recommended WAS procedure, when configuring the User 

Preferences Interface to the scenario the SWCs are specified for each 

adaptation-strategy and under each user preference mode.  

The rule-weight-coefficient wcRule for each adaptation-rule will be specified by 

the developer at a later stage when all adaptation-rules are finalized. 

Step 4. Configure the User Preferences Model through the UPI 

As analytically described in §6.4, the weight-based methodology provides a 

configurable User Preferences Model on crosscutting concerns, that is initially 

configured by the global policy developer at the two following levels: 

a) Define Alternative User Preference Modes 

At policy development time, the global policy developer is expected to define a 

qualitative “generic adaptation behavior description” for each user preference 

mode and to design the Performance adaptation-strategy (Sperf) with adaptation-

rules specifying a different adaptation behavior under each user preference 

mode. Each of the user preference modes is chosen to simulate a real-life 

situational approach that a typical user may encounter. For example in the 

generic Volare scenario: the default Normal, the LowCost, HighQuality and 

SaveBattery mode, each is indicative of the corresponding adaptation behavior.  

b) Configuring the User Choices Profile (UCP) 
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The UPI application provides some default context-variables, basically numeric 

ones, communicating the default or user-customized values to the middleware. 

Through the UPI the developer configures the User Choices Profile (UCP) by 

assigning to each UPI sensor an indicative short title for identification, a default 

value and optionally for numeric variables upper and lower customization limits 

for user fine-tuning (for instance: 0.80 to 1.25 of the default value).  

These user-customizable UPI context-variables, are initially determined by the 

global policy developer at UPI configuration with default values, and may be:  

a. The Strategy Weight Coefficients that modify the relative importance of the 

rules of every adaptation-strategy under each user preference mode. 

b. The goal/constraint parameter value(s) for each LTPG of the global policy. 

c. Parameter values influencing adaptation, either as comparison threshold 

values in Criteria conditions or as action threshold values in adaptation-

statements.  

The default UCP may later be customized by the user, even for each specific 

application, and is automatically stored. Once an active application launches SR 

on the cloud, the middleware will load the associated UCP and extract and 

introduce in the policy the customized values through the UPI context-variables.  

Step 5. Define Long Term Performance Goals  

A main feature of the weight-based methodology is the introduction and use in 

the policy of Long Term Performance Goals over finite horizons that supersede 

the duration of a CSD session. The LTPG design model actions, as it is 

analytically described in §6.5, at this stage consist only in the following 

procedural actions: 

a) Define & Assign the LTPG to an Adaptation-Strategy 

Define and assign the LTPG in the most related adaptation-concern & strategy, 

so that all its adaptation-rules will have the associated strategy-weight-coefficient.  

b) Define the LTPG Monitoring & Control Strategy 

Define how LTPG performance within the horizon duration is to be monitored, 

mutually exclusive resource availability levels, control-variables and the 

adaptation actions required at each resource availability level. 

Step 6. Declare the Policy Intermediate Variables 

Declaring the intermediate variables is an iterative task of the Policy Design 

Stage for the policy developer, cyclically around Steps 1 to 6, as the policy design 

proceeds.  The need for these intermediate variables is scenario-specific and it is 
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the natural result of the analysis and design work previously described in Steps 2 

to 5: 

a) Declare the non-LTPG-related Parameters 

 The Volare APSL – as described in chapter 5 – in addition to the context- and 

adaptation-variables that are pre-determined by the middleware and the SR, 

supports the declaration and use of intermediate variables, namely (i) calculation-

variables (reprenting constants, metrics and statistical inference parameters 

through statistic-calculation-variables on the usage data), as well as the policy-

driven auxiliary-variables facilitating decision-making at policy development.  

b) Declare the LTPG-related Parameters  

Especially for each LTPG, it will be required to declare statistic-calculation-

variables to establish the metrics required for monitoring performance, decision-

making and controlling adaptation for achieving the LTPGs within their temporal 

horizons. As in §6.5.3, three collections of variables need to be declared: 

a. Declare the LTPG-related parameters that characterize it, as calculation-

variables: resourceAllowance, resourceVLowLevel. horizonDuration is 

indirectly defined by selecting the corresponding “period” for the statistic-

calculation-variables, like: “Monthly”, “Daily”, etc.   

b. Declare the LTPG-related monitoring metrics for LTPG performance 

assessment and decision-making metrics concerning goal achievement within 

the horizon duration, used to guide the LTPG-related adaptation. The typical 

five monitoring metrics for an LTPG with a single quantitative constraint are, 

as analytically described in §6.5.3: durationTillNow, ltpgDurationRatio, 

resourceUsed, resourceUseratio, resourceRefRate. 

c. Declare the LTPG-related auxiliary-variables, like the LTPG resource 

availability levels, or other LTPG-related auxiliary-variables representing 

alternative algorithms or metrics.  

6.7.2 Stage 2 – Policy Rules Development Stage 

Stage 2 refers to the adaptation-rules development stage, after requirements are 

identified, goals are set and variables are declared in Stage 1. It concerns the 

development of adaptation-rules through the Steps 7, 8, 9 & 10 described below. 

Step 7. Define Consecutive Execution Cycle (CEC) Policy File Segments  

According to the Policy Authoring Methodology of the weight-based technique, 

the adaptation-rules section of a policy file is typically distinguished in segments, 

each containing the adaptation-rules to be evaluated for matching and execution 
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at a specific consecutive execution cycle (CEC). It is possible, typically for 

application policy files, to have only one CEC segment (i.e. all adaptation-rules 

are to be evaluated for matching and selection at one CEC).   

Recommended Structure of a policy file Adaptation-Rules Section  

The PAM recommended structure of the adaptation-rules section of a policy file, 

suggests three CEC segments. 

a) 1st CEC Segment of the Policy File 

The 1st CEC segment of the global policy file includes Criteria-Subpolicies 

composed of:  

a. Adaptation-Rules on Policy Engine Configuration-Variables 

The adaptation-rules that specify values concerning the Policy Engine 

configuration-variables, which are resolved at the default 1st CEC and are equired 

for further policy execution, like: cyclesMax (denoting the number of CECs to be 

executed) and defaultBindingmargin (denoting the default binding margin for 

every QoS-variable without a specifiedbinfing margin value). 

b. Adaptation-Rules on Structural or Algorithmic Variant Selection 

The adaptation-rules that specify variant selection on structural (or functional) 

VPs (for instance specifying the On or Off state of active-on-demand sensors or 

functionalities – like Wi-Fi On or GPS On), or on algorithmic VPs on mutually 

exclusive algorithm selection or algorithm modification (through alternative 

metrics and threshold parameters values to be used by the algorithms at policy 

execution).     

b) 2nd CEC Segment of the Policy File 

The 2nd CEC segment of the policy file typically includes Criteria-Subpolicy pairs 

composed of the adaptation-rules that assess LTPGs performance (usually as 

“High” or “Low” or “VLow” LTPG resource availability level) through auxiliary 

(policy-driven) variables. In this way, the assessment for each LTPG may be 

used at the adaptation-rules of the next CEC as predicate for both the global and 

application policy adaptation-rules, specifying the required adaptation-actions at 

each availability level. In fact, the 2nd CEC policy file segment includes the 

adaptation-rules of the LTPG resource availability level assessment algorithm for 

each LTPG of the global or the application policy.  

c) 3rd CEC Segment of the Policy File 

The 3rd CEC policy file segment includes the Criteria and corresponding 

Subpolicies containing the bulk of adaptation-rules specifying values to the 

remaining middleware configuration variables as well as the QoS-variables 
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representing parameter adaptation for the “control-layer” of the adaptation logic. It 

concerns adaptation-rules for both “long” and “short-term” adaptation goals.  

Remark: This structure of the adaptation-rules section of a policy file in typically 3 

CEC segments, recommended especially for the global policy, assists the 

application policy developers to more easily understand the global policy 

structure and easily identify the LTPGs performance assessment levels and use 

them directly in their adaptation-rules. Usually an application policy only needs to 

have adaptation-rules specified for the 3rd CEC, except if there are 

dependencies – in which case more CECs may be required or if there are 

application-specific structural or algorithmic variants for the 1st CEC or 

application-specific LTPGs with resource availability assessment at the 2nd CEC.   

Step 8. Specify 1st CEC Rules on Structural/Algorithmic Adaptation 

The policy developer needs to identify eventual Structural or Algorithmic Variation 

Points (SAVPs), whose valid combinations of variants constitutes alternative 

Mutually Exclusive Configuration Variants (MESCs). Since the middleware 

manages the policy-based adaptation of the middleware components and of the 

active SR on the cloud, alternative structural or algorithmic or configuration 

variants specified in the global policy may concern only the following issues:  

a. Adaptation-rules concerning configuration-variables that configure the 

middleware Policy Engine parameters required for policy execution, like: 

cyclesMax or defaultBindingmargin. 

b. Adaptation-rules specifying selection of eventual alternative structural 

variants – predetermined at middleware design time – determining the state 

for active-on-demand sensors or functionalities or algorithms. Additionaly, 

Adaptation-rules specifying selection of eventual alternative algorithmic 

variants, through alternative metrics concerning conditions or actions 

influencing the adaptation.  

All adaptation-rules associated with the above objectives, as discussed in Step 7, 

need to be included at the 1st CEC to ensure consistency according to the 

recommended directives in §6.1.4 (or at the first CECs if there are dependencies 

among structural or algorithmic variants to be considered). In this way, the 

resulting values of the associated configuration- or QoS- or auxiliary-variables 

may be used as predicates in the rules of subsequent CECs.  

The successive procedural actions to be followed are:  

a) Develop the Adaptation-Rules on Policy Engine Configuration 
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Develop the adaptation-rules concerning configuration of the Policy Engine 

middleware configuration-variables required for policy execution, like: cyclesMax 

and defaultBindingmargin. 

b) Develop the Adaptation-Rules on Structural or Algorithmic VPs 

a. Identify the Structural or Algorithmic Variation Points (SAVPs) 

The policy developer needs to identify and analyze the structural or algorithmic 

Variation Points (SAVPs) concerning the issue a. or b. above. Every SAVP is 

attached to the most relevant adaptation-concern, so that adaptation-rules that 

specify adaptation on it will belong to the respective adaptation-strategy (and will 

have the associated SWCs). 

b. Identify for each SAVP the structural or algorithmic Variants (SAVs) 

The developer identifies for each SAVP the mutually exclusive structural or 

algorithmic variants (SAVs) and defines through predicates their context sub-

domains. Such SAVs may be active-on-demand sensors or functionalities, like: 

Wi-Fi On vs. Wi-Fi Off, GPS On vs. GPS Off, etc. They may be alternative 

algorithms or metrics, like:  usage-based vs. prefixed metrics, each with 

alternative variants of algorithmic character. The valid combinations in the 

examined scenario of these mutually exclusive SAVs compose the alternative 

MESCs and influence the required adaptation.  

c. Develop the Adaptation-Rules on Structural or Algorithmic VPs 

For every SAVP within each adaptation-strategy, develop the adaptation-rules 

specifying each variant and assign them to the first CEC, while excluding 

eventual non-valid combinations of SAVs through the adaptation-rules. 

Step 9. Develop Adaptation-Rules on Behavioral VPs 

At policy execution, once the structural or algorithmic variant (SAV) for each 

active SAVP has been selected at the first CEC, their parameter settings under 

the current context have to be defined. This is implemented in the weight-based 

technique with adaptation-rules assigned at subsequent consecutive execution 

cycles (CECs).  

The adaptation-rules on behavioral adaptation (parameter settings) should be 

distinguished in typically three categories: (i) SAV-exclusive adaptation-rules, (ii) 

adaptation-rules common only in several SAVs, and (iii) adaptation-rules 

common to all SAVs.  
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Applying the consistency directives discussed at §6.1.4, two precautions are 

taken by the policy developer to prevent matching, selection and execution of 

behavioral adaptation rules belonging to non-selected SAVs:   

a. The behavioral (parameter) adaptation rules should be specified with a cycle 

declaration subsequent to the CEC at which the adaptation-rules specifying 

SAVs selection are assigned. In this way at policy execution, the already 

chosen at the first CEC SAVs are known. 

b. SAV-specific adaptation-rules on parameter adaptation should have as 

predicate in their Criteria conditions a reference to the supported SAV(s), in 

order to ensure only compatible adaptation-rules matching at policy 

execution. 

The following successive actions are followed: 

a) Identify the Behavioral VPs and their BVs 

Identify the behavioral VPs on LTPGs or on short-goals and their mutually 

exclusive behavioral variants (BVs) along with their context sub-domains. Assign 

every behavioral VP to an adaptation-strategy. 

b) Specify the Parameter Adaptation Rules for each BV 

Within every adaptation-strategy and for each SAVP (or MESC), specify the 

behavioral adaptation rules for each BV, through which the parameter settings 

adaptation of the associated configuration- and/or QoS- and/or eventual auxiliary-

variables will be specified at each context instance. 

c) Specify the Parameter Adaptation Rules for LTPGs 

Specifically for parameter adaptation on LTPGs – which are considered as 

behavioural VPs – the following successive actions are taken: 

a. Define LTPG Resource Availability Levels 

Define different resource availability levels – based on comparing monitoring 

metrics against threshold parameter values – with each level requiring different 

adaptation actions corresponding to a different LTPG BVP behavioural variant. 

b. Identify the Control Variables 

Identify one or more “control” adaptation-variables, whose adaptation at each 

CSD, may direct the LTPG towards accomplishing the goal. 

c. Develop the Adaptation-Rules at each Resource Availability Level 

Develop adaptation-rules to suitably adapt the values of the control variables at 

each resource availability level. 
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Step 10. Review the Policy 

a) Review the policy until all goals and requirements are satisfied  

Review the policy statements to make sure that all used variables are correctly 

declared, requirements and goals are expressed by adaptation-rules and all rules 

have a weight function value corresponding to the related adaptation-strategy.   

b) Restructure the adaptation-rules in Criteria – Subpolicy pairs 

Group together the rules with common cycle-declaration (CEC) and common 

Criteria, restructuring them in Criteria-Subpolicies pairs. 

6.7.3 Stage 3 – Policy Testing & Verification Stage 

Stage 3 – Test & Verify and Validate the Policy  

This is the final policy authoring stage that is also considered interactively with 

the previous stages. It includes Steps 11 & 12. 

Step 11. Test & Verify the Policy 

a) Test the Policy 

Note: According to the IEEE Glossary of Software Engineering Terms 610.2-

1990, Testing is the process of operating a system or component under specified 

conditions, observing or recording the results, and making an evaluation of some 

aspect of the system or component.  

A simulated policy execution & verification application (PEVApp) is provided by 

the WBART methodology for offline automated test suite generation and 

simulated policy execution for testing Volare-compatible policies. A testing 

procedure is applied for any new policy for syntax correctness, failures and rules 

fault detection, as described in §6.6.   

b) Verify the Policy  

Note: According to the IEEE Glossary of Software Engineering Terms 610.2-

1990, Verification is the process of evaluating a system or component to 

determine whether the products of a given development phase satisfy the 

conditions imposed at the start of that phase.  

The above referenced simulated policy execution application (PEVapp) allows 

evaluation of real or test suite-derived simulated context and adaptation data 

through automated charts and calculation tables.  

This offline analysis tool also allows simulated evaluation of the effectiveness of a 

Composite Policy to achieve the LTPGs within their horizons over the examined 

real or simulated usage models.  
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It may also be used to demonstrate offline the expected adaptation behavior to 

the policy developer, through automated charts on simulated execution results 

over test suites, thus assisting in appropriate policy evaluation and necessary 

corrections.   

Step 12. Validate the Policy  

After being tested and verified, a policy is validated by comparison of real or 

simulated to expected results. 

Note: According to the IEEE Glossary of Software Engineering Terms 610.2-

1990, Validation is the process of evaluating a system or component during or at 

the end of the development process to determine whether it satisfies specified 

requirements.  

6.8 Authoring an Application Policy  

For a mobile application launching service discovery for a cloud service, in order 

to be subscribed for SR DCAA by the Volare middleware, it is needed to 

download and store in the Volare policy files directory of the device an application 

policy for the adaptation of the service request QoS-variables, and eventually for 

influencing adaptation on the middleware operation configuration-variables. 

For the application policy design and implementation, reference is made again to 

the 3 Policy Development Stages and the 12 Policy Authoring Procedure Steps 

described in §6.7. 

The application policy is expected to conform to the following generic issues as 

established by the global policy: 

a. Adopt and use the Context & Adaptation Profile declared by the global policy 

and add only the application-specific QoS or the required intermediate 

variables.  

b. Conform to the User Preferences Model, as it is configured in the global 

policy for each user preference mode and specify the adaptation-rules 

expressing the indicated adaptation behaviors. Note that the application 

policy developer has no access to the configuration of the UPI and the default 

values of the User Choices Profile. 

c. Use the same Weight Assigning Strategy and the adaptation-concerns & 

adaptation-strategies set at the global policy and the UPI SWCs. 

d. Conform to the quantitative Long Term Performance Goals set by the global 

policy for all applications launching cloud service discovery, and specify the 

application-specific adaptation-rules in relevance to LTPGs, with the same 
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behavior in mind. It is only required to use in the application policy the same 

performance assessments derived by the global policy adaptation-rules 

concerning every LTPG. 

e. Develop the application policy considering that it is expected to operate within 

the framework of the two-level Composite Policy. Assign to every rule: (i) 

priority level for intra- and inter-policy conflict resolution, (ii) a weight function 

value demonstrating its relative importance at policy execution, according to 

the WAS format. Rule priority levels assigned through keywords ensure the 

integrity of critical rules from inter- or intra-policy conflict and overriding. 

6.9 Related Work 

6.9.1 Adaptation Reasoning Techniques 

Unlike all listed in §2.4 policy-based approaches [34][18][30], only the Volare 

APSL conflict resolution directives have the characteristics of allowing eventually 

multiple adaptation-rules to be selected and executed, establishing PWCP for the 

calculation of the adaptation results through the execution- and weight-values of 

the selected adaptation-rules. This characteristic elicits a different, more 

expressive adaptation reasoning approach based on the situation – action 

paradigm.    

RAINBOW [59] on adaptation reasoning extends architecture-based adaptation 

by adopting architectural styles to tailor the adaptation infrastructure by encoding 

the developer’s system-specific knowledge, identifying adaptation strategies and 

system concerns. Rainbow makes no attempt to tackle mobile environment 

requirements. Volare is using the two terms: adaptation-strategies and 

adaptation-concerns, although in a different meaning and within a different 

conceptual environment. RAINBOW bases the adaptation strategies on situation-

action rules, which specify exactly what to do in certain situations. So does 

Volare albeit from multiple complementary adaptation-concerns, through the 

multiple selectable adaptation-rules feature and the WBART methodology. 

MIMOSA [36] and its precursor CARE [69] implement Conflict Resolution on 

adaptation policy adaptation-rules originating from different entities (User, Service 

Provider) on the same head predicates, setting a resolution mechanism through 

adaptation-rule priority assigning leading to a single adaptation-rule selectable for 

each head predicate. Volare makes use of conflict resolution directives and 

participative weighted contribution common-sense rules, allowing eventually 
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multiple adaptation-rules to be selected and contribute to the adaptation results 

according to a relative importance (weight-value) procedure.  

The use of weights is extensive in the literature, not only in the mobile policy-

based DCAA area, for calculating contributions to a parameter by multiple 

dimensions. However to our best knowledge, it is the first time a weight values 

based approach is used allowing multiple adaptation-rules to be selected and 

contribute to the adaptation results.   

6.9.2 The User Preferences Declaration Mechanism 

As attested by numerous research works [41][42][43][82][83] and surveys 

[13][61][103], satisfactory adaptation of a DCAA middleware to context change 

requires incorporation of user preferences – even at runtime. The user has 

his/her opinion of what high quality is and this opinion may change at runtime 

with the user’s mood, the situation, or current interests [41]. Research papers on 

policy-based CAA mobile systems have approached the user preferences 

viewpoint from many different angles.  

The first approach consists in equipping the application with an appropriate user 

preference declaration tool. HERA [31] uses adaptable user preferences set at 

application load time, as well as the dynamic user browsing history. In project [28] 

on e-commerce, the user sets dynamically preferences on the desired content 

with a fully developed User Interface. CARISMA [6] makes use of application 

profiles originating by applications, dynamically including in them user 

preferences, resource requirements and appropriate policy and similarly does Q-

CAD [15]. 

The second approach for incorporating user preferences in the adaptation 

consists in doing so at the middleware level. CHISEL [7] dynamically updates 

policy adaptation-rules, including changing user preferences on policy at runtime. 

In MIMOSA [36] on the contrary, use is made of a full user preference declaration 

process and User Interface at each execution of an application, fine-tuning every 

service request.  

Volare’s middleware User Preferences Interface (UPI) – in contrast to the other 

works referenced – provides the UPI in addition to each application eventual UI, 

and elicits explicit alternative user preference declaration and dynamic fine-tuning 

of the adaptation behavior on policy-based generic quantitative cross-cutting 

concerns, common for all or most applications. Such generic concerns may be: 

optimal performance (highest bitrate), or low battery power use or low binding 
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cost use, etc. It refers by necessity to generic concerns since it should cover 

different applications of unanticipated purpose and functionality.  

6.9.3 Long Term Performance Goals in the Policy 

Time-related tasks are not new in programming. In fact many above referenced 

research projects deal with device energy management as a time-related task 

with a goal. However, this is typically handled as a custom-solution in each 

project.  

Research surveys on CAA make extended and in depth references to adaptation 

reasoning paradigms and viewpoints, but the issue of systematic support of 

policy-based LTPGs with finite horizons is not directly referenced [30], [33], [54], 

[56], [61], [74], [80], [81], [82] – with the exception of Kakousis et al [34] and [98].  

Inspiration in this field was given by articles like [10] and [79] on self-adaptive 

software, and [53][55][75][77] and [99-100] on goal-oriented requirements 

engineering, that provided the impetus to examine common long term goals on 

repeated activities over finite horizons on mobile DCAA scenarios. Such common 

cases may involve management strategies over: monthly cost allowance on the 

cloud, monthly data volume allowance, battery power management and minimum 

level preservation over every discharging period, or quality metric goals over a 

time horizon, goals that are conventionally managed by the user, but could well 

be managed by the middleware adaptation logic 

This Thesis considers LTPGs as time-related tasks over a sequence of similar 

stochastic events and actions, seeking to achieve a quantitative goal. Goal 

achieving over a sequence of stochastic context changes and relevant actions 

requires adaptation reasoning capability enriched with appropriate history 

information retrieval and statistical analysis over the usage data [99][100]. 

Although higher complexity specification languages like KaOS [39][100] do 

support goal-based management, in this work the simple Volare declarative DSL 

is enriched with notation for statistic-calculation-variables for declaring metrics 

over usage history parameters and the middleware is enabled for data storage 

and maintenance and simple statistical analysis functionalities. 

In this work each quantitative LTPG is abstracted as a virtual consumable 

resource, so that a common formulation can be designed for easy and 

unanticipated introduction in an adaptation policy without any middleware code 

change.  
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7 Case Study 

In the previous chapters 4, 5 and 6 of this Thesis, the three main constituents of 

the Volare Approach (the mobile middleware, the APSL and the weight-based 

adaptation reasoning echnique and methodology) have been presented.  

In this chapter, the case study describes the detailed development of the global 

and the application policy for a mobile application launching cloud service 

discovery (CSD). The case study adaptation logic implementation is presented as 

realized by two of the motivating example stakeholders referenced in §3.1.1, 

namely: Jacob – the global policy developer, and Ronald – the developer of the 

mobile application launching cloud service discovery.  

Since the Volare middleware supports dynamic context-aware adaptation for the 

optimization of the SR on cloud services by mobile applications, it is especially 

appropriate for “long-binding applications” like: audio- or video-streaming, 

navigation or video-calling – demanding adaptation even at runtime – in 

comparison to “one-shot” applications like web browsing. Consequently, the case 

study refers to a video-streaming application for service discovery and binding to 

services on the cloud. 

7.1 Prototype Development & Operation 

7.1.1 The Infrastructure designed  

This chapter describes the elements of the infrastructure built in order to 

investigate the feasibility of the Volare approach by real or simulated data of the 

device performance on monitored parameters at alternative monitoring scenarios, 

and evaluate the contributions of the project. 

1. The Prototype Middleware Modules  

The Volare middleware prototype – whose conceptual model is described in 

chapter 4 – main modules: Context Monitoring M., Adaptation M. with a Policy 

Engine, Service Request M., Binding M., Context & Adaptation History M. 

(CAHiM) were designed and installed on a HTC Hero smartphone.  

A generic UPI application was also designed and installed for selecting & 

changing user preference.  

The Volare Policy Files directory for the global and the application policies was 

created at the manual middleware installation on the mobile device storage disc. 

2. The Generic Global Policy File 
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A global policy has been developed and stored in the reserved Volare Policy 

Files Directory. It contained the Declarations part on all non-statistic-calculation-

variables, and the Criteria and Subpolicies part without any LTPG related 

adaptation-rules. It was a simpler policy than the case study full policy described 

in §7.4. It was tested and verified. 

The User Preferences Model was configured by setting the values of declared 

user-customizable parameters (User Choices Profile according to §4.2 and §6.4) 

without requiring the use of the UPI application. The user-customizable variables 

were declared in the policy not as context- but as calculation-variables and 

appropriate values were directly assigned – for instance: float CalcVar priceMax = 

0.0024; – setting the maximum price per MB downloadable from a cloud service 

to 0.0024 GBPs/MB). The disadvantage vs. UPI configuration is that these 

parameters keep the set values constant until policy update, while through the 

conceptual UPI they can be modified directly by the user, even at runtime. 

3. Video-streaming Mobile Application 

A generic mobile video-streaming application VSTREAM (of no adaptation 

capability) has been developed as described in §7.2 and installed on the mobile. 

4. Application Policy File 

A simple application policy file was designed and installed, tested and verified,  

including only the generic part without the LTPGs of the full policy file described 

in §7.5 and listed in Appendix and B. No statistic-calculation-variables or LTPG 

associated variables were declared and any LTPG related adaptation-rules were 

omitted at this stage.  

5. Test-bed with four cloud services designed in Amazon S3 

A test-bed with four cloud video provisioning services on the same content but 

with different QoS levels has been designed on Amazon S3 cloud provider, with 

characteristics described in chapter §7.2.3. 

6. A Virtual Cloud Service Broker/Provider for Service Selection 

A test CSB/CSP has been designed and installed on the mobile device. Its task 

consists in receiving the adapted SR of the video-streaming application and 

discover from the available four cloud services of the test-bed the cloud service 

with QoS levels most fitting to the SR. Then, it dispatches a Service Offer and if 

the middleware Binding Module accepts the Service Offer, service binding is 

instantiated to the selected service, as described in  §7.2.4.  
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7.1.2 Middleware Expected Operation 

At a SR on the cloud launched by a mobile application having an application 

policy stored in the Volare Policy Files Directory, as described in Ch. 4, the 

Volare middleware transparently to the application intercepts the launched SR, 

adapts it to the current context (including the current user preference mode) and 

policy requirements and goals and forwards the adapted SR to the CSP for 

appropriate service discovery. 

It receives a Service Offer by the CSP and evaluates it on the basis of the SR 

QoS values and the binding margins established at policy execution (i.e. the 

allowed deviations). If the Service Offer is within acceptable margins, then it is 

accepted and service consumption begins.  

If at runtime of service binding the context changes and policy execution derives 

new SR QoS terms values that are assessed on policy-based parameters as 

being in significant deviation to the current in force QoS provisioning values, then 

service rediscovery will take place at runtime under new QoS values for the SR.        

7.1.3 Prototype Operation 

The above prototype executables (middleware, video-streaming application, 

virtual CSP) were installed on a smartphone Samsung HTC Hero with O/S 

Android 2.1. The device has operated for a period of more than a month with 

CSD sessions taking place at various times every day at the developer’s 

instigation, while the device was also used at other times for non-cloud 

conventional use (phone calls, SMS, MMS, surfing the web, audio, gaming, etc.). 

The following parameters were recorded automatically by the CAHiM database 

during each operation step at each repeated recheck cycle (of policy-based 

duration, typically: 30 or 20 or 10 s) at different successive operation steps 

during every CSD session. 

1st Step: Context monitoring – The middleware database recorded, within 

every CSD session. the monitored context data values at each monitoring 

“recheck” period: 

 the dataRowNo, the CSD sessionNo and the date and rowStartTime and 

rowEndTime of each recheck cycle   

 the battery level value at the beginning and end of each recheck cycle (the 

last one being also the value at the beginning of next recheck cycle within 

CSD session) 
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 the bandwidth value, as described below, as well as the connectionType 

(network) indication (E or 3G or H) 

 the userPref current value from the UPI 

 at the first recheck cycle of each CSD session, the webMBs, web MBs 

downloaded through the MNSP at the ended non-cloud session. 

2nd Step: Policy execution (calculation) – Similarly at the same data row, the 

CAHiD database recorded the new policy execution results on the above data, 

namely the QoS-variables (global and application-specific) and the middleware 

configuration-variables values.   

3rd Step: QoS evaluation decision-making on rediscovery – At runtime policy 

execution only, the decision by the QoS evaluation mechanism of the Binding M., 

on rediscovery or no rediscovery (continue as before without adaptation if policy-

based thresholds on the difference between the new and the in force QoS values 

is not exceeded).  

4th Step: Adapted SR dispatch to the CSP – In case the decision in the 

previous step is for discovery or rediscovery, the SR QoS terms are adapted by 

the Binding M. on the new policy execution results and the SR is dispatched to 

the virtual CSP.  

5th Step: Service discovery or rediscovery by the CSP – In case of service 

(re-) discovery, the virtual CSP receives the adapted SR and executes service 

discovery from the test-bed of four cloud services and (since all are available) 

selection of the fittest to the SR QoS terms. The corresponding Service Offer is 

dispatched to the BindingM.  

6th Step: Service Offer evaluation – The BindingM intercepts the Service Offer 

by the CSP and evaluates it on policy-based parameters on whether the service 

offered satisfies the adapted QoS terms and policy derived preferences through 

the binding margins. In the middleware prototype the BindingM only accepts the 

Service Offer and binds to the service, and only in the case of runtime 

rediscovery it may reject the SO (continuing as before).  

7th Step: Service Binding or Binding Continuation for the recheck time 

period – The middleware specifies by policy execution the duration of each 

recheck cycle – except if there is manual termination of the CSD session by the 

application. The video-streaming application at initial discovery or rediscovery 

binds to the discovered service or it continues operating in the already bound 
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service. The Context MonitoringM monitors and the CAHiM records the values for 

the service binding, at the recheck cycle namely:  

 the corresponding bound serviceID and the QoS terms values  

 the value of cloudMBs (MBs downloaded during at the recheck period on the 

current CSD session) by the end of the recheck cycle 

 the value of cloudCost due to the cloudMBs downloaded by the end of the 

recheck cycle. 

These repeated seven operation steps at each recheck cycle at a CSD session 

are terminated at the end of each CSD session and the middleware remains idle, 

however measuring eventual webMBs through the MNSP during the non-cloud 

activity, till next CSD session.  

7.1.4 Brief Description of the Video-Streaming Application 

Video-Streaming Activity 

Video-streaming enables users to start video playback while the content is being 

downloaded. Users can watch video on their mobiles, either through a web 

browser or through a mobile application. Depending on the CSP, a different 

application may be required for different providers or video containers [128][110].    

The CSP (or CSB) is provisioning authorized users through their MNSP contract, 

with videos of the requested content at different qualities and different encoding 

bitrates depending on the SR QoS terms, at a price per MB downloaded 

depending on market factors (demand, traffic load, QoS terms, etc.).  

At a typical streaming session, the video content is transferred in two stages: the 

initial buffering stage followed by the steady state stage [128]. At the buffering 

stage the data transfer is limited to the end-to-end available bandwidth. The 

video begins playback when a sufficient amount of data is available in the device 

buffer and does not wait for the buffering stage to end. In the steady state stage, 

the average download rate should be slightly larger than video encoding bit rate. 

The buffering stage ensures that the device has a sufficient amount of data to 

compensate for variations in the end-to-end available bandwidth during video 

playback.     

The Video-streaming application VSTREAM 

A shallow adaptation mobile video-streaming application “VSTREAM” has been 

developed for streaming videos by binding to a video-provisioning cloud service 

through a cellular Mobile Network Service Provider (MNSP).  
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The application is installed on Evelyn’s smartphone along with the Volare DCAA 

middleware and is subscribed to it, by having downloaded and stored an 

application policy file in the Policy Files Directory of the mobile device.  

The mobile device user, Evelyn, at different times in the day through the 

VSTREAM application requests video-streaming through application- or user-

selected Cloud Service Provider(s) (CSPs), on world or local or entertainment or 

scientific or cultural news, financial information on the stock exchange, etc. 

Evelyn has a Mobile Network Service Provider (MNSP) contract authorizing a 

monthly allowance of 4000 MBs downloadable through the cellular network and 5 

pounds/month allowance for binding to the referenced cloud services.  

7.1.5 A Virtual CSP/CSB on video-streaming cloud services 

A virtual CSB/CSP has been designed and installed on the mobile device, as part 

of the infrastructure designed for the evaluation of the Volare approach described 

in §8.1. The virtual CSP receives the adapted SR of the video-streaming 

application and makes use of a hard-coded service selection algorithm to identify 

the most fitting discovered and available service from alternative video 

provisioning cloud services on the same content but different QoS terms that 

have been designed as a test-bed on Amazon S3.  

The service selection algorithm used by the virtual CSP 

The CSP discovers cloud services on the same content and ranks on how well 

they fit the Service Request QoS terms. Suppose that the received adapted SR 

has n QoS terms and for the QoS term i, the SR and respective Service Offer 

values are respectively denoted as: QoSReqi and QoSOffi, 1 <= i <= n. 

It is required for each QoS term i value percentage difference not to exceed the 

binding margin bMi plus rediscQoSThreshold: 

If bMi >= 0 then: 

0 <= 100 x (QoSOffi – QoSReqi) / QoSReqi <= bMi + rediscQoSThreshold  (1) 

If bMi < 0 Then  

100 x (QoSReqi – QoSOffi) / QoSReqi >= bMi - rediscQoSThreshold   (2) 

In order for an offered service to be accepted, the above constraints (1) to (2) 

should be satisfied for every QoS term value of the Service Offer. The same 

mechanism is applied when at runtime, the new SR QoS values are evaluated 

(as Service Offer QoS values) against the last adaptation in force QoS values.  
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Then, it dispatches a Service Offer and if the middleware Binding Module accepts 

the Service Offer, service binding is instantiated to the selected service (see 

§7.1.5), otherwise a new SR on modified QoS terms is launched.  

7.1.6 Test-Bed for selection of Cloud Services   

A test-bed has been designed at Amazon’s Simple Storage Service (S3), 

simulating a virtual CSP with the capability to provide four different streaming 

cloud services, on the same video content in four different video qualities and 

encoding bitrates, at a cost per MB downloaded.  

It is assumed in the case study that the cost per MB is not the same for all 

service qualities, due to marketing reasons.  

Table 7-1 presents the basic characteristics of the four cloud services described, 

while several other QoS terms values are supposed to depend on the current 

demand and are specified at the Service Offer in response to a SR by the 

VSTREAM application. 

Table 7-1 – The Case Study alternative Services on the Cloud 

SERVICE 

ID 
s1 s2 s3 s4 Units 

Max Ref. 

Value 
Units 

Cost per MB 

costQoSProv 
60 70 80 100 

% Max 

Reference 

Value 

0.0024 
pounds/

MB 

Encoding 

bitrate 

bitrateQoS 

Prov 

28 56 128 256 Kbps 
 

KB/s 

frames per 

second 

fpsQoSProv 

67 73 80 100 

% Max 

Reference 

Value 

30 

frames 

per 

second 

Reliability 

QoSProv 
91 92 93 94 %   

 

7.2 The Monthly Duration Usage Data 

During the monthly operation of the middleware, the usage data were recorded 

and from time to time transferred at device idle time, since no aggregation 

capability was yet provided to the database module.  

The two important goals for the derived usage data consist in: 
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 evaluating adaptation behaviour with the initial Composite Policy and 

identifying challenges, 

 serving to provide a context usage model that may be employed for 

simulation of the adaptation behaviour in more complicated policies with 

LTPGs alternative monitoring scenarios.  

Some further details are provided below, since these usage data will provide the 

basis for evaluation purposes and drawing of conclusions. The following issues 

were to be resolved to obtain the usage data: 

 monitoring issues on context parameters  

 data aggregation to more compact but meaningful usage data. 

7.2.1 Monitoring Issues on battery, bandwidth, recharge time 

Battery – The battery level indications at each recheck period were monitored 

and recorded in integer percentage units (this is the precision given by the 

system), thus at small recheck cycle time intervals (of 10 to 30 s) there is no 

evident battery drop. This caused the need for usage data aggregation, in order 

to provide data on longer time intervals.   

Bandwidth – The bandwidth indications are not provided by the O/S or a device 

application, only the connection type on the mobile network: E for EDGE, 3G for 

UMTS and H for HSDPA or HSPA is polled and recorded. As a result, the 

following procedure was put in effect during the one month operation of the 

infrastructure. A freeware speed test application has been installed and was 

activated by the developer/user just before the beginning of a CSD session and 

the derived value (average of three times) was inserted manually as bandwidth 

value, just before the CSD session. At each recheck time during runtime of a 

CSD session, the middleware monitors the connection type at the O/S and if it 

changed from the previous recheck period at a steadily kept value, indicating 

bandwidth change, then a predetermined typical bandwidth middle-range value 

was adopted by the middleware, as in Table 8-1 below. As a result, if at the 

recheck time, a steady change from the initial connection type was monitored, for 

instance from 3G to E or H, then the bandwidth value recorded was the prefixed 

middle-range value in 8-1. Note than the eventual bandwidth error is of minimal 

importance in service selection, since the video encoding bitrates for service1 

and service2 (28 and 56 KB/s in corresponding data rates) correspond 

respectively to E or 3G, and only services 3 & 4 (128 and 256 KB/s respectively 

in equivalent data rates) correspond to H. For instance, having a bandwidth 
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corresponding to 80 KB/s instead of 125 KB/s could not lead to selection of a 

different service than service2 (on bandwidth reasons), since service 3 (128 

KB/s) would require 128/0.8 = 160 KB/s.  

Figure 7-1 – Prefixed Bandwidth Values per Connection Type 

Connection type  Typical avg value at middle-range of connection type  

EDGE 320 KB/s corresponding to a data rate of 40 KB/s 

3G (UMTS) 1000 KB/s corresponding to a data rate of 125 KB/s 

H (HSDPA) 3000 KB/s corresponding to a data rate of 375 KB/s 

Bandwidth values, for chart visibility reasons, will be referenced in this work not 

as bit rates (kbps) but at the equivalent data rate units (KB/s).  

Non-cloud Session battery drop – The battery drop from the end of the last 

CSD session to the next (i.e. the battery drop of a non-cloud activity session), is 

the difference of the battery levels monitored respectively at the end of the 

previous and the beginning of the new CSD session, recorded in the database. It 

should be noted that as the battery level accuracy provided by the device is in 

integer % values, often the battery drop for short time intervals is a zero value.    

Battery discharge cycles during the monthly period – The developer/user 

established battery recharge of the mobile device during the considered monthly 

by the end of every 3rd day. Every new battery discharge cycle was identified 

and recorded by the middleware by the notable increase in battery level at the 

beginning of the first CSD session of the next day. The beginning battery level in 

a new battery discharge cycle is the new value first monitored after recharge.   

7.2.2 Deriving the Context Usage Model – Assumptions 

Consider a battery discharge cycle period of three days. At the each recheck 

period of (30, 20 or 10 s) within each CSD session, the middleware monitors and 

records the context-variables values, including battery level. The mobile device 

activity can be distinguished in succession of one cloud activity (CSD) session 

followed by one non-cloud activity session (with phone calls, SMS, MMS, 

stand-by duration, gaming, audio, etc.) and so on.  

If the mobile device usage data is kept intact on non-cloud activity sessions and 

also the start and end times (and consequently durations) of cloud activity (CSD) 

sessions, then modified usage models can be established by modifying only 

within the CSD sessions, context parameters like: bandwidth or user preference 

mode or a user choice value at the User Choices Profile. In this case by 
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modifying a context parameter value within a CSD session, the associated 

context- and adaptation-variables may change value too, for instance: battery 

drop or cloudMBs or cloudCost values within every recheck period (i.e. MBs 

downloaded and the associated cost at recheck cycle at CSD session), if a 

different service is discovered at bound with different QoS terms.    

a) Assumption for battery drop within a non-cloud activity session  

The assumption is made that, if the mobile device usage context data is kept 

unchanged on all non-cloud activity sessions (with assumed unchanged activity, 

like: phone calls etc.), then battery drop within each non-cloud activity session 

(from the end of the previous CSD session till the beginning of the next CSD 

session) is expected to remain the same, even though context parameters at the 

previous CSD session (like: bandwidth, battery level or user preference/user 

choices) may change. The underlying theoretic basis is that battery drop of a 

mobile device (and in in general of energy drop) in a specified period depends 

only on the activities during this period and their duration and is independent of 

the initial (starting) level of battery power. 

Once the battery levels at beginning and end of each CSD session are recorded, 

then the battery drop for each incumbent non-cloud session are directly deducted 

and may be used on modified CSD sessions, assuming non-cloud activity 

sessions intact.    

Usage data aggregation – Since the prototype generic CAHiM did not have 

aggregation capability, aggregation has been implemented on the usage data 

offline on each adaptation occurrence within CSD sessions (each with at least 

one adaptation – the initial adaptation). Within a CSD session there may be tens 

of recheck cycles and corresponding data rows, but the service bound to may be 

the same (no adaptation). Occasionally, adaptation occurs and binding to a new 

service due to significant context change.  

All data rows within an adaptation cycle may be aggregated, retaining the 

bandwidth at which adaptation occurred, while the time duration and the values 

of increasing/decreasing parameters (battery drop, cloudMBs, webMBs, 

cloudCost, etc.) are all updated at the total adaptation cycle duration. This lead 

the usage data from an initial database with about 1800 data rows (one at every 

recheck cycle) to 217 adaptation cycle aggregated data rows.     

Aggregation to adaptation cycles increases the time interval of the context 

monitored and reduces context data uncertainties, especially for battery drop, 
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since in this way battery drop now is calculated in minutes instead of 10, 20 or 30 

seconds.  

b) Assumption on Systematic Monitoring Errors  

Noise is introduced in the simulation study data by the device monitored context 

parameters values due to the fact that the device indications on physical 

parameters on battery are approximate values to the nearest integer, and for 

bandwidth values at runtime to even larger scale intervals.  

Note though that at each comparison of outcomes, all other parameters 

(including noise from approximate context data) are the same at all considered 

monitoring scenarios, consequently this error is practically the same (or with 

small difference) in all outcomes. 

The device usage context data recorded on a monthly period is listed in Appendix 

G for documentation and reproducibility purposes and will be used for evaluation 

purposes in chapter 8. The chart in Fig. 7-1 refers to the usage data. 

7.2.3 The Context Usage Model  

The usage data refer to 217 adaptations that have taken place within a sequence 

of 154 CSD sessions over a monthly period, of total duration of CSD sessions on 

the cloud: 42.999 s, aggregated out of almost 1800 recheck cycle data rows. 

From the aggregated usage data, the context data corresponding to the 

sequence of adaptations within the recorded CSD sessions were isolated in a 

two-dimensional context data matrix, as they present the basis for simulation 

studies, called in this work the context usage model.  

The context usage model data, also used in the regression analysis above, are 

detailed in Appendix G for documentation and reproducibility purposes and will 

be used for simulations in chapter 8.   

The following chart on usage data parameters is demonstrating policy execution 

results on device adaptation behaviour QoS parameters: bitrateQoSReq & 

costQoSReq over the monthly usage data period. In dotted lines context 

parameters like: battery level, bandwidth, creditUseratio, dataUseratio, 

creditRefRateand dataRefRate, as derived by the infrastructure with adaptation 

logic consisting of the generic policy files described in §7.1. 
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Figure 7-2 – QoS Variables over the Monthly Usage Data  

 

7.3 Outline of the Adaptation Logic 

As described in chapter 4, at an active SR on the cloud by a mobile application, 

the adaptation logic is constituted of a Composite Policy automatically formed by 

the middleware by merging the global policy adapting the middleware operation 

and serving generic goals and the application policy for the application-specific 

adaptation. 

Each Volare compatible policy file (global- or application-level) includes a 

Variables Declarations part, and a Policy Rules part further distinguished in a 

Criteria part with the groups of predicates of the adaptation-rules with common 

predicates and CEC and a Subpolicies part with the groups of the corresponding 

adaptation-statements.   

1. Policy Variables Declarations Part 

A policy file includes an extensive Variables Declarations part for the context-, 

configuration- and QoS-variables, as well as for the intermediate variables 

(declared as calculation, statistic-calculation or auxiliary-variables) since it 

ensures the declaration and monitoring of all the variables involved.  

To facilitate the task of the application policy developer, all variables declared in 

the global policy may directly be used (as named) in the predicates or adaptation-

statements of the application policy without re-declaring them. 

2. Policy Rules Part 
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In a Volare policy file, when naming the Criteria-Subpolicy pairs of the policy file, 

the following indicative application developer-friendly format is suggested:  

Xn_OBJECTIVE_CHARACTERISTIC, where: 

X = G for global policy and A for application policy, 

n stands for the corresponding cycle declaration (CEC), 

OBJECTIVE stands for the objective served by this Criteria-Subpolicy name, 

CHARACTERISTIC is optional and stands for eventual characteristic of this 

Criteria-Subpolicy pair within this objective. For instance: 

“G1_CREDITMETRICS_ USGBASED” or “G1_DATAMETRICS_PREFIXED”, or 

“G2_DATALTPG_HIGH” or “G2_BATTERYLTPG_LOW”.  

7.3.1 Global Policy Objectives & Structure 

The global policy aims at managing the middleware DCAA operation activities:  

a. context monitoring on device resources, user preferences on the UPI and 

external and computing environment parameters (like bandwidth, GPS, etc,),  

b. adaptation reasoning through the Policy Engine,  

c. initial service request (SR) interception and policy-based SR adaptation, as 

well as adaptation of the middleware components,  

d. functionality for offered service evaluation and either binding, or service 

request adjustment and rediscovery.  

Additionally, the global policy integrates the User Preferences Model by 

configuring the UPI for user preference mode selection and customization of the 

adaptation logic on predetermined threshold parameters. Finally, it introduces 

quantitative LTPGs on cross-cutting concerns, common for all applications.  

It should be noted, that the global policy is designed without anticipating the 

applications that may subscribe to and use the middleware. Additionally, it is 

understood that it may be modified concerning several features for each type of 

mobile device, like additional sensors and capabilities.  

The global policy file includes an extensive Variables Declarations part for the 

supported context- (including the user preferences context-variables), 

configuration- and global QoS-variables, as well as for the intermediate variables 

(declared as calculation-, statistic-calculation- or auxiliary-variables) since it 

ensures the declaration and monitoring of all the variables involved, with the 

exception of the application-specific ones. 

Policy Rules Structure in CEC Segments  
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According to the Policy Authoring Methodology of the weight-based adaptation 

reasoning technique, the adaptation-rules part of a policy file is typically designed 

in three consecutive execution cycles (CECs). Jacob adopts the above generic 

model for the global policy, since it there are concerns for all three CECs, as 

follows: 

1st CEC – At the 1st CEC part of the global policy file, adaptation-rules Criteria-

Subpolicies are included on:  

The adaptation-rules concerning configuration-variables that configure the 

Adaptation Module Policy Engine parameters required for further policy 

execution, like: cyclesMax or defaultBindingmargin. 

The adaptation-rules concerning configuration-variables that specify variant 

selection on structural (or functional) VPs (for instance specifying the (non-

default) activate state of active-on-demand sensors or functionalities – like Wi-Fi 

On or GPS On), as well as on algorithmic variant selection or algorithm 

modification (through alternative metrics and threshold parameters values to be 

selected and used at policy execution).  

The 1st CEC segment includes 4 Criteria-Subpolicy pairs, one common for all 

three LTPGs – concerning the use of usage-based metrics, and one LTPG-

specific for every one of the three quantitative LTPGs of the global policy on: 

battery power, credit and data volume, specifying threshold parameters for the 

resource availability level assessment algorithm and the adaptation actions 

algorithm for each LTPG. Additionally, the “Default” Criteria-Subpolicy includes 

the adaptation-rules specifying the default “prefixed” metrics and default 

threshold parameter values for the LTPG algorithms.  

2nd CEC – The 2nd CEC segment of the global policy is designed by Jacob to 

include the adaptation-rules concerning the LTPG resource availability level 

assessment algorithm of reach LTPG, thus serving as a reference for the 

common LTPGs that concern both the global and every application policy.  

It includes 6 LTPG-specific Criteria-Subpolicy pairs, two for every one of the three 

quantitative LTPGs of the global policy on: battery power, credit and data volume, 

specifying the “High” or “VLow” resource availability level for each LTPG, and 1 

“Default” Criteria-Subpolicy specifying the default “Low” resource availability level 

for each LTPG (with lower weight values).  

3rd CEC – The 3rd CEC segment of the policy includes the Criteria and 

corresponding Subpolicies containing the adaptation-rules specifying values to 
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the remaining middleware configuration-variables, as well as the global QoS-

variables representing parameter adaptation for the “control-layer” of the 

adaptation logic. It concerns adaptation-rules for both “long” and “short-term” 

adaptation goals. Namely: 4 Criteria-Subpolicies on the user preferences BVP 

(one for each user preference), 3 Criteria-Subpolicies for the Monthly Credit 

LTPG BVP – corresponding to the “High”, “Low” and “VLow” availability levels, 

and 1 “Default” Subpolicy including the adaptation-rules on default values or 

invariants.     

7.3.2 The Application Policy Objectives and Structure 

The case study mobile application concerns video-streaming, an especially 

demanding task for mobile systems both on the computational load and on the 

cellular data transfer activity of the mobile device. 

The application policy, based on the current context as monitored by the 

middleware through the global policy context-variables and the Composite Policy 

requirements and goals, aims at specifying the application-specific QoS-variables 

for discovery of the most appropriate service. A fundamental requirement is to 

ensure at all times a video encoding bitrate value >= 80% of the available 

bandwidth, so that the play-back quality is not perturbed. If however the context 

changes at runtime, typically due to bandwidth variation, then adaptation is 

required and rediscovery of another cloud service provisioning the same content 

at a different more appropriate quality, as it is calculated by the policy execution.    

The application policy developed by Ronald specifies the parameter adaptation 

for the SR QoS-variables, as well as eventual middleware configuration-variables 

of interest to the application. Although most of the required variables are declared 

by the global policy and the LTPGs availability levels are also specified in the 

global policy 2nd CEC, Ronald has to specify the adaptation actions for the battery 

and data volume LTPGs that may be managed by the bitrate application-specific 

QoS-variable as control variable.   

An additional, application-specific short-term goal is designed by Ronald, 

concerning runtime disruption minimization at video-streaming time at a CSD 

session if rediscoveries per 5min exceed a threshold value, by only accepting 

rediscovery at runtime if it is technically unavoidable (like bandwidth drop). For 

instance, rediscovery due to bandwidth increase or due to gradual battery drop or 

due to high credit use at runtime within such a CSD session is to be rejected.      
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All adaptation-rules of the application policy concern the 3rd CEC of the 

Composite Policy and are included in 14 Criteria-Subpolicies.   

7.4 PAM – Authoring the Global Policy 

Authoring a global policy file in the weight-based technique requires 

implementing the procedural 12 Steps described in §6.7 and takes place at the 

aforementioned three successive Policy Development Stages, that are presented 

below in sub-subsections 7.4.1 to 7.4.3, and in the sequence indicated.  

Each of the three Stages is autonomous to a certain degree and typically iteration 

is required over the Steps mentioned, for corrections or enrichment at policy 

design and implementation. Finalization of each Stage is required for advancing 

to the next one, although iterative review of Steps of previous Stages may be 

necessary.  

Enumeration of the procedural Stages and Steps identical to §6.7 will be kept, to 

facilitate the developer or reader to correspond the issues in the Policy Authoring 

Methodology in §6.7 to its application on the case study in this chapter.  

This procedure is most important for the global policy efficient authoring as it 

requires all the steps that are described below, in comparison to application 

policy authoring where many steps are unnecessary or of marginal burden since 

they are already implemented at the global policy development.   

7.4.1 Stage 1 – Policy Design Stage 

Step 1. Define the Context and Adaptation Variables 

The context-variables (like: battery, CPU, bandwidth etc.) are predefined at 

middleware design time, while the user preferences context-variables are 

configured at the User Preferences Interface in Step 5 below.  

The adaptation-variables include: (i) the middleware configuration-variables 

which are already defined at middleware design time, described in Table 4.3, and 

(ii) the global QoS-variables which are common for all applications.  

The Table 7-2 below presents the case study global policy context- and 

adaptation-variables.   
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Table 7-2 – Case Study Context & Adaptation Profile 

 Context-variable 

ID 
Description 

Datatype/ 

Units 
Example 

Device & Computing Environment 

battery  Remaining Battery level percentage/% 80 

Network 

commChannel 
Active Communication 

Channel 
string / -  

“GSM” or “Wi-

Fi” 

bandwidth The current max data rate integer / KB/s 384 

User Preference Parameters provided through the UPI 

userPref The User Preference Mode 

 

string / - 

 

“Normal”, 

“LowCost”,                            

“SaveBattery”, 

“HighQuality” 

allowOptimization 
“Allow usage-based 

Optimization?” 

string / - 

 
“Y”, “N” 

priceMax 

Maximum price of the cloud 

service resources per MB 

downloaded. 

float / 

pounds/MB 

0.003 pounds 

 per month 

Strategy-weight-

coefficients (SWCs) 

One SWC for each 

adaptation-strategy & user 

preference. 

float / - 
>= 0 

<= 1 

cloudCostMonthlyAllo

wance 

Monthly cost allowance on 

cloud services 

float  / 

pounds/month 

5 pounds per 

month 

overallMBsMonthlyAllo

wance 

Monthly data volume 

allowance by the MNSP 
float / MBs 4000 MBs 

minBatteryLevel 

Minimum battery level 

reserved for emergencies 

at the discharge cycle 

percentage / - 20 % 

serviceID 
The serviceID that the 

device is currently bound to 
string / - service3 

costQoSProv 
Provisioning cost (%) of the 

current Recheckcycle 
percentage /- 80 
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Adaptation-

variables 
Description 

Datatype / 

Units 
Example 

Middleware configuration-variables 

See §4.3 

Predetermined middleware 

components configuration 

variables 

  

Global QoS-variables 

costQoSReq 
The SR max requested 

price per MB rate 

percentage / % 

of unadapted 

value 

80 

responseTimeQoSreq 
The SR max req. response 

time 
float / s <= 0.7 s 

availabilityQoSReq The SR min req. availability float / - >= 0.96 

Step 2. Define the Adaptation-Concerns & Adaptation-Strategies 

Following the weigh-based technique and the provided generic models, Jacob 

finds satisfactory for the scenario and decides to adopt the generic Adaptation-

concerns & Adaptation Strategies Model on the five major adaptation-concerns 

that need to be considered at policy design, as described in §6.1.2 and outlined 

synoptically in Table 7-3 below.  

The policy will be built around these five targeted adaptation viewpoints through 

adaptation-rules belonging in the corresponding five adaptation-strategies.  

Table 7-3 – The Volare Five Generic Adaptation-Concerns/Strategies 

 

 

 

 

 

Step 3. Configure the User Preferences Model through the UPI 

As indicated in the methodology in §6.4, the global policy developer configures 

the Volare User Preferences Model through the User Preferences Interface (UPI) 

application, assigning names and values to each sensor representing a user 

preference element. The configuration operates at two levels, as described in the 

following paragraphs. 

1 Adaptation-concerns/Strategies 

1.1 Sgen – Adaptation-strategyategy: Generic Operational Constraints 

1.2 Sperf – Adaptation-strategyategy: Performance optimization 

1.3 Sres – Adaptation-strategyategy: Optimization of resource (battery) use  

1.4 Scost – Adaptation-strategyategy: Optimization of cost of binding  

1.5 Sdisr – Adaptation-strategyategy: Minimization of disruption at runtime  
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a) Configuring the alternative User Preference Modes at the UPI 

Jacob decides that the default four user preference modes: “HighQuality”, 

“Normal”, “LowCost” and “SaveBattery”, as specified by the generic User 

Preferences Model of the Volare methodology (see Table 7-5), are fully 

satisfactory for the considered scenario.  

The User Preferences Model allows the user to select, even at runtime, for the 

context element userPref representing the user preference mode, one of four 

available user preference modes:  

 At userPref = “HighQuality” to bind at the service with the highest attainable 

QoS terms values, without restriction on device resources 

 At userPref = “Normal” to bind at a service with high QoS values taking into 

consideration the resource levels and policy constraints 

 At userPref mode = “LowCost” or “SaveBattery” to bind at a service with 

reduced QoS values, in view of expected (not necessarily monitored) low 

availability in battery power or credit for binding to cloud services. 

Table 7-4 – User Preference Mode specific Adaptation-Rules 

User Preference Relevant Adaptation-Rules 

Normal 
Set SR the generic QoS terms at high values and 

costQoSReq at 100% of the unadapted value. 

 

HighQuality 

 

Set all SR QoS terms at maximum attainable values (<= 

unadapted values). No restrictions even at decreasing 

resources (battery, credit, data volume, etc.).  

Set recheckRate at 10 secs for frequent monitoring. 

LowCost 
Set the binding price global QoS term costQoSReq at a 

reduced binding price. 

 

SaveBattery 

 

Set battery power related SR QoS terms values at 50% of 

the Normal value to reduce power consumption.  

Set recheckRate to 30 secs to reduce power consumption. 

Jacob also decides that the scenario does require a 2nd layer of user preference 

options, but not like the generic:  “business” vs. “personal”, or “data roaming On” 

vs. “data roaming Off”, but instead for the new parameter: “Allow Usage-based 

Optimization” with options “Y” or “N”. Consequently, he configures the first string 

type UPI sensor as “user preference mode” and the second string type UPI 
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sensor with the above parameter on the two selectable alternative options and 

inactivates the remaining available string type sensors of the UPI.      

b) Specifying the default Strategy Weight Coefficients 

Jacob decides to increase the default number of adaptation-concerns and 

strategies to 6, creating a new one on the Data Volume LTPG (Sdat), which is not 

the same with the Cost adaptation-strategy.  

Jacob specifies the default User Choices Profile by first configuring the 20 

numeric strategy-weight-coefficient (SWC) sensors (4 user preference modes x 5 

adaptation-strategies), assigning a name, a default value and an upper and lower 

percentage margin to each one of them, already presented in Table 7-4.  

By default the remaining wSgen (i.e. the single SWC of the Generic Adaptation-

concerns adaptation-strategy) is set to 1 (the maximum weight coefficient value) 

at any user preference mode, since this adaptation-strategy represents 

adaptation-rules independent of the current user preference and of the highest 

importance, and is specified by a declaration statement as constant calculation-

variable in the policy.  

Table 7-5 – Case Study Default Strategy Weight Coefficient (SWC) Values  

SWC / 

userPref 
Normal SaveBattery LowCost HighQuality 

Upper 

Bound 

Lower 

Bound 

Sgen 1.00 1.00 1.00 1.00   

Sperf 1.00 0.50 0.50 0.80 1.00 0.00 

Scost 1.00 0.50 0.80 0.20 1.00 0.00 

Sres 1.00 0.80 0.50 0.20 1.00 0.00 

Sdat 1.00 0.80 0.50 0.20 1.00 0.00 

Sdisr  1.00 0.40 0.40 0.10 1.00 0.00 

The above 24 SWCs (four last rows) that depend on the UPI are declared as 

context-variables (i.e. in the ContextVar Repository).  By default the maximum 

value of a SWC is 1 and the minimum value is 0. The declaration statements for 

the SWCs in the global policy may be: 

float CalcVar wSgen == 1.00; 

float ContextVar wSperf == 1.00 * UPI.wSperf; 

float ContextVar wScost == 0.80 * UPI.wScost; 

float ContextVar wSres == 0.50 * UPI.wSres; 

float ContextVar wSdisr == 0.20 * UPI.wSdisr; 
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float ContextVar wSdat == 0.80 * UPI.wSdat; 

c) Configuring other UPI-related context-variables 

The UPI allows sensors configuration (assigning a name, a default value and 

eventually a customization margin for the user) for other global policy parameters 

that may or should be customized by the user.  

Such parameters values (constants) may be goal values or related threshold 

values on Long Term Performance Goals, which will be set at the definition of 

every LTPG. For example, although the metrics for LTPGs are specified in the 

policy as calculation-variables, default values for some parameters or goals, may 

alternatively be declared as context-variables, so that they may be user-

customizable through the UPI: 

float ContextVar monthlyCreditAllowance == 5.0*UPI.creditAllowance; 

specifying monthly credit allowance for binding to cloud services to 5 £/month, 

float ContextVar monthlyDataAllowance == 4000*UPI.dataAllowance; 

specifying monthly data allowance through the MNSP to 4000 MBs/month, 

float ContextVar minBatteryLevel == 20*UPI.batteryVLowLevel; 

specifying the minimum battery level that the battery should preserve for eventual  

emergency needs by the end of the discharge cycle.  

Similarly, several threshold parameters in the Criteria conditions or the 

adaptation-statements may be declared as context-variables, user-customizable 

through the User Choices Profile, declared in the generic format of the APSL: 

[float | integer | percentage] ContextVar parameterID == numeric-

value*UPI.parameterID;.  

Step 4. Specify the Weight Assigning Strategy 

Jacob adopts the generic Weight Assigning Strategy, recommended by the 

weight-based technique and the weight function format in §6.3, through the two 

explicit coefficients (strategy and rule weight coefficients). The SWCs monitored 

at the UPI, take into consideration the selected current user preference mode, as 

well as the strategy-weight-coefficient-modifiers that may be set by the user at 

the UCP customization (default value  is 1.0) : 

rule weight function = wSstrat * wcRule 

Thus, at the and of the RHS of each adaptation-statement, Jacob will assign the 

rule weight function in the format: “(wSstrat * wcRule);”.              

The following PAM-determined actions are implemented in Step 4:  
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a) Setting the strategy-weight-coefficients SWCs 

The strategy-weight-coefficients (SWCs) – one for every adaptation-strategy 

under each user preference mode – are specified when configuring the UPI as 

described in Step 5 below.  

b) Setting the rule-weight-coefficients wcRule 

Jacob will determine the rule-weight-coefficient wcRule when each rule is 

specified, in relation to its role and relative importance, after consideration of the 

other adaptation-rules on the adaptation-variable that may be selectable at policy 

execution through overlapping Criteria conditions. For instance, one such case 

may refer to specifying mutually exclusive variants, as described in §6.2.3.   

Step 5. Define Long Term Performance Goals  

Jacob, as discussed previously, decides to introduce in the global policy three 

quantitative LTPGs on crosscutting concerns, common for all applications 

launching CSD:  

 The Credit LTPG with monthly horizon, aiming at not exceeding the monthly 

cost allowance for binding to cloud services: 5 GBP/month in the case study).  

 The Data Volume LTPG with monthly horizon, ensuring that the monthly data 

volume allowance for MBs downloaded for web and cloud services through 

the MNSP is not exceeded (4000 MBs/month in the case study).  

 The Battery Use LTPG on battery power preservation with horizon the 

periodic battery discharge cycle, aiming to retain by the end of each cycle a 

user-customizable minimum battery power level minBatteryLevel for 

eventual emergency needs (20% at the case study).  

Following the LTPG design model of the weight-based technique presented in 

§6.5, Jacob considers each LTPG as a real or virtual consumable resource over 

its finite horizon, with one one or more constraints on a monotously increasing or 

decreasing metric.  

The Monthly Credit LTPG is briefly analysed below as an example, while the two 

other LTPGs are analysed in Appendix F.  

At the Policy Design Stage, Step 5 consists in defining each LTPG, the 

parameters and metrics required for monitoring and decision-making, and its 

control strategy through adaptation of control variable(s). 

1. Monthly Credit Allowance LTPG 

Successive Procedural Actions  

a) Define the LTPG & Assign it to an Adaptation-Strategy 
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Goal: The policy-based Monthly Credit LTPG aims at not exceeding the monthly 

cost allowance while binding to services on the cloud. This adaptation logic goal 

is of primary interest to Evelyn – and any mobile device user with relatively 

intensive use of cloud service discovery – otherwise she would need to enter 

frequently her account to check the currently remaining credit value, use the 

“LowCost” user preference mode to decrease the binding cost, or reduce binding 

to cloud services to avoid exceeding the credit allowance.  

Jacob’s ambition is, through the global policy, to provide the adaptation logic 

framework for satisfying this LTPG transparently to each application and the user. 

This LTPG is evidently assigned to the Cost Optimization adaptation-strategy 

(Scost), and is considered as a behavioral VP it concerns parameter adaptation 

of the SR QoS-variable costQoSReq (which is also a global QoS-variable).    

Cost of Cloud Service – Pay as you Go. The cost of binding to a cloud service 

is proportional to the cloud resources used (in the case study: the MBs of the 

video downloaded), but with price per MB possibly different for each different 

service provisioned at different QoS terms.  

b) Define the LTPG Monitoring & Control Strategy 

Jacob selects as monitoring and control strategy for the LTPG, the LTPG design 

model in §6.5: 

 Define the required LTPG-related parameters and monitoring metrics 

 Define the credit availability “High”, “Low” and “VLow” levels, through 

threshold parameter values on the monitoring metrics 

 Define as control variable the global QoS-variable costQoSReq, denoting the 

maximum price per MB downloaded 

 At each of the three credit availability level, define the appropriate actions 

concerning the costQoSReq QoS-variable.     

Step 6. Declare the Policy Intermediate Variables 

The Volare APSL – as described in chapter 5 – in addition to the context- and 

adaptation-variables, supports the declaration and use of intermediate variables, 

constants, metrics, statistical inference parameters (calculation-variables and the 

subcategory of statistic-calculation-variables on the usage data), as well as the 

policy-driven auxiliary-variables facilitating decision-making at policy 

development.  

Non-LTPG-related Intermediate Variables 
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The need for these intermediate variables is policy -specific and it is the natural 

result of the analysis and design work previously described in Steps 2 to 5. 

Declaring the intermediate variables is an iterative task of the Policy Design 

Stage for the policy developer, cyclically around Steps 1 to 6, as the policy design 

proceeds. See excerpts from the global policy declarations: 

Table 7-6 – Global Policy Intermediate Variables Declaration 

      // Calculation-variables Declarations    

       // float value E [0, 1], indicating the Sgen SWC   

         float CalcVar wSgen == 1.00; 

       // integer value indicating the total number of days from the beginning of the data history   

         integer CalcVar daysNo == StatisticalAnalysisM.daysMonthly.Overallhistory.Count; 

       // No of months from beginning of history storage, indicating the No of Monthly Periods   

        integer CalcVar monthsNo == StatisticalAnalysisM.monthsNo; 

       // integer value indicating the rediscoveries occurred during current session  

         integer CalcVar rediscoveries == StatisticalAnalysisM.rediscoveries; 

       //  Name of the current day  

         string CalcVar dayName == StatisticalAnalysisM.dayName; 

       // integer value indicating the rediscoveries occurred during current session   

         integer CalcVar sessionAdaptations == rediscoveries + 1; 

       // integer value indicating the current Adaptation No   

integer CalcVar adaptationNo == 

StatisticalAnalysisM.sessionAdaptations.OverallHistory.Count; 

       // integer value indicating the current inSessionRecordNo 

  integer CalcVar inSessionRecordNo == 

StatisticalAnalysisM.cloudDurationRecheckcycle.Session.Count; 

       // integer value indicating the current dischargecycleNo   

       integer CalcVar dischargecycleNo == 

StatisticalAnalysisM.dischargecycle.overallHistory.Count; 

       // The duration (in seconds) on Cloud Service Discovery (CSD) during the current Session 

float CalcVar cloudDurationSession == 

StatisticalAnalysisM.cloudDurationRecheckcycle.Session.Sum; 

       // The Max duration value (in seconds) on CSD in current Dischargecycle period   

float CalcVar cloudDurationDischargecycleMax == 

StatisticalAnalysisM.cloudDurationDischargecycle.Dischargecycle.Max; 
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       // The Max time interval duration (in seconds) in every Dischargecycle period  

float CalcVar overallDurationDischargecycleMax == 

StatisticalAnalysisM.overallDurationDischargecycle.Max; 

LTPG-related Intermediate Variables  

Especially for LTPGs, it will be required to declare parameters and statistic-

calculation-variables in order to establish the metrics required for monitoring 

performance, decision-making and adaptation for achieving the LTPG within 

horizon duration.   

a) Define & Declare the LTPG-related Parameters  

The main LTPG-related parameters for each single quantitative goal are:  

 resourceAllowance denoting the LTPG Max resource value. In this case the 

term creditAllowance is declared as a user-customizable UPI context-

variable initially equal to 5 pounds/month: 

      // float, indicating the LTPG value for Monthly cost allowance for cloud services   

      float ContextVar creditAllowance == UPI.creditAllowance; 

 resourceVLowLevel denoting the LTPG resource very low availability level 

value. In this case the term creditVLowLevel is declared as an implied 

percentage auxiliary-variable initially equal to creditInitialVLowLevel, a user-

customizable UPI context-variable with default value 10% of the 

creditAllowance: 

 // float, user-customizable context-variable, 10 % of the creditAllowance  

        float ContextVar creditInitialVLowLevel == 10 * UPI.creditInitialVLowLevel; 

b) Declare the Monitoring Metrics 

The typical monitoring metrics for each single quantitative goal are:  

durationTillNow and ltpgDurationRatio, which are the same for both LTPGs 

with “Monthly” period, and resourceUsed, resourceUseratio and 

resourceRefRate, as defined in §6.5.3: 

 ltpgDurationRatio = 100 x durationTillNow / horizonDuration; 

 resourceUsed = resource used till now (in resource measurement units); 

 resourceUseratio = 100 x resourceUsed / resourceAllowance; 

 resourceRefRate = 100 x resourceUseratio / ltpgDurationRatio. 

For each monthly LTPG (credit & data volume), the metrics: durationTillNow and 

ltpgDurationRatio are the same and consequently are declared once only.  

The middleware at every active SR on the cloud, starts monitoring context at a 

recheckRate (initially every 30 seconds, except when at user preference mode = 
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“HighQuality” every 10 seconds) and records current context-variables values 

including the serviceID bound to and the related QoS provisioning terms 

(bitrateQoSProv, costQoSProv and priceMax) as described in §7.1, and 

calculates the resulting values at every consecutive Recheckcycle, as follows: 

 cloudDurationRecheckcycle is the duration in seconds of each Recheckcycle 

during a CSD session ; 

 cloudMBsRecheckcycle represents the MBs downloaded during each CSD 

Recheckcycle time interval; 

 webMBsRecheckcycle represents the MBs that have been downloaded 

through the mobile network before the current CSD session – for instance for 

web services – which also count for the Monthly Data Allowance in addition to 

the cloudMBsRecheckcycle; 

 overallMBsRecheckcycle represents the total cloud & web MBs downloaded 

during each CSD Recheckcycle time interval; 

 cloudCostRecheckcycle represents the binding cost during each CSD 

Recheckcycle time interval, corresponding typically to the product of the unit 

price of the bound service per MB downloaded times the MBs:        

cloudCostRecheckcycle = cloudMBsRecheckcycle * costQoSProv * priceMax. 

Below is a global policy excerpt with the declaration of the Credit LTPG 

monitoring metrics. 

Table 7-7 – Global Policy Credit LTPG Metrics 

       // The Monthly Credit LTPG Parameters & Monitoring Metrics 

       // float value, indicating the LTPG value for initial credit LTPG VLowLevel ( = 10%)    

       percentage CalcVar creditInitialVLowlevel == 10; 

       //Duration (in seconds) on CSD during the current monitoring Recheckcycle  

       integer CalcVar cloudDurationRecheckcycle == 86400 * (rowEndTime - rowStartTime);  

       //MBs of data downloaded on CSD during the current monitoring Recheckcycle  

       integer CalcVar cloudMBsRecheckcycle == StatisticalAnalysisM.cloudMBsRecheckcycle ; 

       //The cost of binding on a cloud service during the current monitoring Recheckcycle   

      float CalcVar cloudCostRecheckcycle == StatisticalAnalysisM.cloudCostRecheckcycle; 

       //The cost incurred on CSD  in the current Monthly period till now  

       float CalcVar cloudCostMonthly ==  

StatisticalAnalysisM.cloudCostRecheckcycle.Monthly.Sum; 

       // integer value indicating the current day number  in the current month   

       integer CalcVar daysMonthly == StatisticalAnalysisM.daysNo.Monthly.Count; 

       // integer value indicating the total number of days in the current month   

       integer CalcVar totalDaysOfMonth == StatisticalAnalysisM.totalDaysOfMonth; 
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       // The monthly Duration Ratio, common for both LTPGs  

      percentage CalcVar monthlyDurationRatio == 100 * ((daysMonthly - 1 + rowStartTime) /  

totalDaysOfMonth); 

       // The usage-based Credit Use Ratio over the current Monthly period  

      percentage CalcVar creditUseratio == 100 * (cloudCostMonthly / creditAllowance); 

       // The decision-making float type auxiliary variable, modifying Credit VLowLevel 

      float AuxiliaryVar creditVLowLevel; 

       // It represents the selected date-based or usage-based based cost use rate metric   

      float AuxiliaryVar creditRefRate; 

       // The decision-making float type auxiliary variable: actionCoeff, initially equal to 1.0 

      float AuxiliaryVar creditActionCoeff; 

       // The decision-making string type auxiliary variable for the Credit LTPG Variants 

      string AuxiliaryVar creditLTPGLevel; 

7.4.2 Stage 2 – Policy Rules Development Stage 

Stage 2 refers to the adaptation-rules development stage, after requirements are 

identified, goals are set and variables are declared in Stage 1. It concerns the 

development of adaptation-rules through the Steps 7, 8, 9 & 10 described below.  

At this Stage 2 of adaptation-rules development, Jacob focuses on identifying 

and specifying Variation Points first of structural or algorithmic character and then 

of behavioral character, with mutually exclusive alternative variants whose 

combination defines the valid alternative MESCs, in the successive Steps 

described below.  

Step 7. Policy Structure in Consecutive Execution Cycle Segments 

According to the Policy Authoring Methodology of the weight-based technique 

described in §6.7, Jacob will design the adaptation-rules section of the policy file 

in the recommended 3 CEC segments policy structure: 

1st CEC: The adaptation-rules specifying: (i) Policy Engine middleware 

configuration-variables, (ii) structural variants and/or algorithm selection, and (iii) 

“supervisory-layer” algorithmic variant selection.  

2nd CEC: The adaptation-rules specifying resource availability level assessment 

for each of the LTPGs. 

3rd CEC: The bulk of the “control-layer” adaptation-rules specifying behavioral 

(parameter settings) adaptation of the configuration-variables and global QoS 

variables, under each selectable structural and algorithmic variant of the 1st CEC. 
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Every CEC segment of a policy file, global or application-level, may include up to 

one “default” Subpolicy (with Criteria void of predicates, with only the “default” 

keyword) – thus matched at every context instance, and as many as required 

Criteria-Subpolicy pairs.    

Step 8. Specify Adaptation-Rules on Structural or Algorithmic Adaptation 

The 1st CEC segment of the global policy file includes Criteria-Subpolicies 

composed of:  

a. the adaptation-rules specifying Policy Engine parameters required for policy 

execution, like: cyclesMax or defaultBindingmargin; 

b. the adaptation-rules that specify variant selection on structural (or functional) 

or algorithmic VPs (for instance specifying the (On or Off) state of active-on-

demand sensors or functionalities – like Wi-Fi On or GPS On) or algorithm 

selection or modification at policy execution.     

The following successive actions are implemented, in order to specify the 

associated adaptation-rules: 

a) Develop the Adaptation-Rules on Policy Engine Configuration 

Several middleware configuration-variables are also determining the 

configuration and operation of the Policy Engine for interpreting and executing 

the composite adaptation logic. Such configuration-variables need to be adapted 

at the first CEC, so that their adapted values may be known and used at the next 

CECs by the Policy Engine are the variables: cyclesMax and 

defaultBindingMargin. In this way Jacob allows the application policy developer(s) 

to optionally contribute to Policy Engine configuration.  

For instance although the global policy may set a value of 3 for cyclesMax, 

denoting that the Policy Engine will operate policy execution in three CECs, the 

application policy may introduce an adaptation-rule with higher priority setting 

cyclesMax = 4, if there are dependencies to be considered for the adaptation of 

application-specific QoS variables at the 4th CEC. Thus, the new resolved-value 

of cyclesMax = 4 may come up from the adaptation. 

Excerpt of the global policy  

      Subpolicy G1_DEFAULT{ 

              defaultBindingMargin = 20 (wSgen * 0.20); 

              overridesAsUpperLimit defaultBindingMargin = 50 (wSgen * 1.00); 

              yields cyclesMax = 3 (wSgen * 0.20); 

  };   
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b) Identify the Structural or Algorithmic Variation Points (SAVPs) 

In this case study, there are not alternative structural configurations concerning 

alternative structural componnents, like GPS On or Off, or alternative 

communication channels like Wi-Fi On or Off, although they could be introduced.  

Instead Jacob, the global policy developer, decides to give emphasis in the use 

of algorithmic VPs that aim to optionally optimize the adaptation logic at the 

beginning of each new LTPG horizon episode, by evaluating the results after the 

end of each LTPG horizon (potentially in relation also to recorded previous LTPG 

performance results).  

Each algorithmic VP consists of two mutually exclusive variants on the selection 

of alternative metrics or parameter values that modify the LTPG resource 

availability level assessment algorithm for each LTPG or the adaptation actions 

corresponding to each availability level. This algorithm modification takes place if 

the context & adaptation data history is considered adequate for statistic 

inference (through hypothesis testing predicates) and if the last episode usage 

data justify the use of it for optimizing the policy. 

In the case study, Jacob introduces four VPs of algorithmic character – each with 

two variants – concerning the battery power, the monthly credit and the data 

volume LTPGs: 

a. The first algorithmic VP concerns the choice of “prefixed” vs. “usage-based” 

metrics (statistically-inferred through the recorded usage data and 

representing better the usage model) for each of the three LTPG resource 

availability assessment algorithms. 

b. Every one of the other three algorithmic VPs, corresponding to each of the 

three LTPGs, specifies alternative threshold parameters values that modify 

two algorithms by adapting threshold parameters values. If at the last episode 

(LTPG horizon) the LTPG allowance value has been exceeded (goal failure), 

then by increasing the VLowLevel parameter value, the LTPG resource 

availability level assessment algorithm is modified with domain of the “High” 

availability level being reduced – since it is defined as: 100 – VlowLevel, and 

the domains for “Low” or “VLow” levels being enlarged, thus switching 

adaptation to more restrictive actions at the new LTPG horizon. Secondly, 

specifying the increase of the actionCoeff parameter from its default value, 

the LTPG-related adaptation algorithm is modified leading towards more 

intense adaptation actions. 
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Thus at the first CEC of the global policy, Jacob defines four algorithmic VPs, 

each with 2 mutually exclusive variants, raising the number of alternative variants 

to: 2 x 2 x 2 x 2 = 16 algorithmic variants.       

c) Develop Adaptation-Rules on each Structural or Algorithmic VP  

As described in Such mutually exclusive structural or algorithmic variants that 

influence the required adaptation are in the case study the three VPs for usage-

based vs. prefixed metrics and threshold parameters: (i) for the battery power 

LTPG within the resource optimization adaptation-strategy, (ii) for the monthly 

credit allowance LTPG within the cost optimization adaptation-strategy, (iii) for 

the data volume allowance LTPG again within the cost optimization adaptation-

strategy.  

Note that all rules on the same adaptation-variable should be assigned the same 

cycle declaration.   

Table 7-8 - Case study algorithmic VPs at the 1st CEC 

      // 1st CEC: Setting default values to configuration-variables   

      [1] Criteria G1_DEFAULT{ 

                   default; 

      }; 

      // 1st CEC:  "PREFIXED or UG-BASED CRITERIA FOR METRICS" 

      [1] Criteria G1_BATTERY_USGBASED{ 

                   daysNo > 30; 

                   monthsNo > 1; 

                   minBatteryLevel > batteryDischargecycleMin; 

                   allowOptimization = "Y"; 

      }; 

      // 1st CEC:  "PREFIXED or USG-BASED CRITERIA FOR CREDIT LTPG MONITORING" 

      [1] Criteria G1_CREDIT_USGBASED{ 

                   daysNo > 30; 

                   monthsNo > 1; 

                   creditUseratioMax > 100; 

                   allowOptimization = "Y"; 

       }; 

      // 1st CEC:  "PREFIXED or USG-BASED CRITERIA FOR DATA VOLUME LTPG MONITORING" 

      [1] Criteria G1_DATA_USGBASED{ 

                   daysNo > 30; 

                   monthsNo > 1; 

                   dataUseratioMax > 100; 

                   allowOptimization = "Y"; 

      }; 

 
      Subpolicy G1_DEFAULT{ 

              batteryVLowLevel = minBatteryLevel (wSperf * 0.20); 
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              creditVLowLevel = creditDataInitialVLowlevel (wScost * 0.20); 

              dataVLowLevel = creditDataInitialVLowlevel (wScost * 0.20); 

              creditActionCoeff = 1 (wScost * 0.20); 

              dataActionCoeff = 1 (wScost * 0.20); 

      }; 

      Subpolicy G1_BATTERY_USGBASED{ 

              batteryVLowLevel = minBatteryLevel + 10 (wSres * 1.00); 

      }; 

      Subpolicy G1_CREDIT_USGBASED{ 

              creditVLowLevel = creditDataInitialVLowlevel + 10 (wScost* 1.00); 

              creditActionCoeff = 110/100 (wScost * 0.20); 

      }; 

      Subpolicy G1_DATA_USGBASED{ 

              dataVLowLevel = creditDataInitialVLowlevel + 10 (wScost * 1.00); 

              creditActionCoeff = 110/100 (wScost * 0.20); 
     }; 
 

               Table 7-9 – Algorithmic SAVPs in the global policy  

 

 

 

 

 

ALGORITHMIC VPs CEC Subpolicies 

Concerned 

Algorithmic 

Variants 

Prefixed vs. Usage-based 

LTPG Metrics 

1st G1_DEFAULT 

G1_METRICS_USGBASED 

2 

Battery LTPG Parameters 

Adaptation 

1st G1_DEFAULT 

G1_BATTERY_USGBASED 

2 

Credit LTPG Parameters 

Adaptation 

1st G1_DEFAULT 

G1_CREDIT_USGBASED 

2 

Data LTPG Parameters 

Adaptation 

1st G1_DEFAULT 

G1_DATA_USGBASED 

2 

Step 9. Specify Adaptation-Rules on Behavioral VPs 

At policy execution, once the SAV for each active SAVP has been selected at the 

first CEC, their parameter settings under the current context have to be defined. 

The adaptation-rules on behavioral adaptation (parameter settings) should be 

grouped in typically three sets: (i) SAV-exclusive adaptation-rules, (ii) adaptation-

rules common only in several SAVs, and (iii) adaptation-rules common to all 

SAVs.  

Consistency Directives at Specification of Behavioral Adaptation  

Applying the consistency directives discussed at §6.1.4, two precautions are 

taken by the policy developer to prevent matching, selection and execution of 

behavioral adaptation rules belonging to non-selected SAVs:   
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a. The behavioral (parameter) adaptation rules should be specified with a cycle 

declaration subsequent to the CEC at which the adaptation-rules specifying 

SAVs selection are assigned. In this way at policy execution, the already 

chosen at the first CEC SAVs are known. 

b. SAV-specific adaptation-rules on parameter adaptation should have as 

predicate in their Criteria conditions a reference to the supported SAV(s), in 

order to ensure only compatible rules selection. 

The following successive actions are implemented according to PAM: 

a) Identify the Behavioral VPs and their BVs  

Identify the behavioral VPs on LTPGs or on short-goals and their mutually 

exclusive behavioral variants (BVs) along with their context sib-domains.  

Assign every behavioral VP to an adaptation-strategy. 

 

                Table 7-10 – Behavioral VPs in the global policy  

 

b) Specify the Parameter Adaptation Rules for each behavioral VP 

Within every adaptation-strategy and for each SAVP, specify over the whole 

context sub-domain of each SAV, the behavioral adaptation rules for parameter 

BEHAVIORAL VPs CEC Subpolicies 

Concerned 

Behavioral 

Variants 

Battery LTPG Level 

Assessment BVP 

2nd G2_BATTERYLTPG_HIGH 

G2_BATTERYLTPG_LOW 

G2_BATTERYLTPG_VLOW 

3 

Monthly Credit LTPG Level 

Assessment BVP  

2nd G2_CREDITLTPG_HIGH 

G2_CREDITLTPG_LOW 

G2_CREDITLTPG_VLOW 

3 

Monthly Data LTPG Level 

Assessment BVP 

2nd G2_DATALTPG_HIGH 

G2_DATALTPG_LOW 

G2_DATALTPG_VLOW 

3 

User Preference Modes BVP 

through the User 

Preferences Model 

3rd G3_NORMAL 

G3_HIGHQUALITY 

G3_LOWCOST 

G3_SAVEBATTERY 

4 

Monthly Credit LTPG 

Adaptation Actions 

BVP 

3rd G3_CREDITLTPG_HIGH 

G3_CREDITLTPG_LOW 

G3_CR4EDITLTPG_VLOW 

3 
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settings adaptation of the associated configuration- and/or QoS- and/or eventual 

auxiliary-variables.  

Adaptation-rules should have as predicate in their Criteria conditions a reference 

to the SAV(s) they are compatible (or inversely excluding incompatible SAV(s)) 

with, in order to avoid incompatible rules selection. In the case study for each 

variant-specific adaptation-rules, it is sufficient to define in their predicates the 

relevant SAV.  

Within every adaptation-strategy, under eavh SAV and for each behavioral VP, 

specify over the whole context sub-domain of each BV, the behavioral adaptation 

rules that express adaptation on the associated configuration- and/or QoS- 

and/or eventual auxiliary-variables.   

Rules on parameter adaptation settings with common Criteria in an adaptation-

strategy are grouped together as Criteria-Subpolicy pairs and constitute the 

alternative BVs of each BVP of the adaptation-strategy. Typically, some 

behavioral Criteria-Subpolicy pairs may be valid for all SAVs, other Subpolicies 

are SAV-specific and some are valid for only several SAVs.  

c) Specify the Parameter Adaptation Rules for each LTPG 

Specifically for LTPGs – which are considered as behavioral VPs – the following 

steps are applied, which are described here for the Monthly Credit LTPG: 

a. Set Credit LTPG Performance Assessment Levels 

Jacob implements the weight-based methodology LTPG control strategy, 

consisting in classifying credit LTPG availability at any context instance as “High” 

or “Low” or “VLow”, so that appropriate actions can later be specified. 

As described in §6.5.3, Jacob declares a threshold parameter that will be pivotal 

for LTPG management: creditVLowLevel = remaining percentage of the 

resource monthly allowance that switches to emergency adaptation (initial value 

= 10%). Through it, Jacob will later specify the rules that assess LTPG resource 

availability as “High”, “Low” or “VLow”. Jacob establishes three credit availability 

levels: High, Low and VLow, by declaring in the policy the required auxiliary-

variable creditLTPGVariant: 

string AuxiliaryVar creditLTPGVariant;  

taking values: “HighCredit” or “LowCredit” or “VLowCredit”. 

The credit availability levels “High”, “Low” or “VLow” are specified by Jacob 

through adaptation-rules in the 2nd CEC of the policy, as indicated in the mutually 
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exclusive Criteria-Subpolicies below, where the “default” Criteria-Subpolicy 

represents the default value. 

Table 7-11 – Credit LTPG Resource Availability Level Assessment  

      // 2nd CEC: Setting the default value to the creditLTPGVariant   

      [2] Criteria G2_DEFAULT{ 

                   default; 

      }; 

      Subpolicy G2_DEFAULT{ 

             creditLTPGVariant = "LowCredit" (wScost*0.10); 

      }; 

      // 2nd CEC: Define the “HighCredit” availability level 

     // Allow up to 20% violation on creditRefRate at up to 50% of total allowance 

    // or creditRefRate <= 100 And creditUseratio >= creditLTPGVLowLevel 

      [2] Criteria G2_CREDITLTPG_HIGH{ 

                  creditUseratio <= 100 – 50 

                  creditRefRate <= 120; 

                  Or 

                  creditUseratio <= 100 - creditEmergencyLevel; 

                  creditRefRate <= 100; 

                  Or 

                  userPref = "HighQuality"; 

      }; 

      // 2nd CEC: At High Credit level, costQoSReq = 100 

      Subpolicy G2_CREDITLTPG_HIGH{ 

             creditLTPGVariant = "HighCredit" (wScost*0.80); 

      }; 

      // 2nd CEC: At Very Low Credit level, reduced values are set for costQoSReq 

     // Set “VLowCredit” when: creditUseratio > 100 And creditRefRate > 100  

      [2] Criteria G2_CREDITLTPG_VLOW{ 

                  creditRefRate > 100; 

                  creditUseratio > 100 – creditLTPGVLowLevel; 

                  userPref <> "HighQuality"; 

      }; 

      Subpolicy G2_CREDITLTPG_VLOW{ 

             creditLTPGVariant = "VLowCredit" (wScost*0.80); 

      }; 
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As it is evident, if the above two Criteria: G2_CREDITLTPG_HIGH or 

G2_CREDITLTPG_VLOW – with conditions defined on the monitoring metrics – 

are not satisfied by the current context, then the default value “LowCredit” will be 

selected in the G2_DEFAULT Subpolicy.  

b. Select the control variable(s) 

Control variable for the Credit LTPG in the global policy is the global QoS-

variable costQoSReq representing a tentative maximum service request value for 

price per MB from the sought cloud service. At the same time it implements a 

second more important task: as costQoSReq is reduced, the services offered for 

the same video content are typically of lower quality and consequently of reduced 

encoding bitrate. For instance instead of an “optimal” quality at video encoding 

bitrate = 256 KB/s, the  service corresponding at video encoding bitrate = 128 

KB/s will have half the MBs, while at 56 KB/s less than a quarter of the initial 

video file size in MBs, consequently reducing several times the implied cost of 

service consumption (binding cost).  

The cost of binding at any CSD session depends on the MBs downloaded x price 

per MB for the provisioned service during the duration of each adaptation. Note 

that a CSD session may include more than one successive binding to different 

services of the same content at different QoS levels, because of dynamic 

context-aware adaptation due to significant context change and service 

rediscovery.  

c. Develop the Adaptation-Rules at each Resource Availability Level 

Develop adaptation-rules to suitably adapt the values of the control variables at 

each resource availability level. 

For managing this LTPG Variation Point, Jacob defines at the 3rd CEC three 

Criteria-Subpolicy pairs for each of the three availability levels: 

G3_CREDITLTPG_HIGH when creditLTPGVariant = “HighCredit”, 

G3_CREDITLTPG_LOW when creditLTPGVariant = “LowCredit”, 

G3_CREDITLTPG_ VLOW, when creditLTPGVariant = “VLowCredit”. 

Switches from “High” to “Low” or “VLow” credit level situation or the inverse are 

possible within each monthly period, if the metrics values improve or deteriorate 

depending on the extent of use of cloud services, restricting or allowing 

respectively higher QoS terms at CSD. At “HighCredit” instances maximum 

costQoSReq attainable values (100% of the maximum threshold priceMax) are 

allowed. At “LowCredit” instances, reduced costQoSReq values are imposed, 
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higher as the deviation of the creditRefRate metric value from the “correct 

refernce rate” (100). At “VLowCredit” minimal costQoSReq values are specified.   

Since the control variable costQoSReq specifying a maximum value for the cloud 

service per MB is a global QoS-variable, the whole LTPG management is 

implemented by the global policy specifying the costQoSReq value, as designed. 

However, the application policy may also have adaptation-rules on costQoSReq 

as well. Below is a policy segment with the global policy adaptation action rules, 

concerning the Credit LTPG Adaptation Actions algorithm: 

Table 7-12 – Credit LTPG Adaptation Actions Algorithm 

      // 3rd CEC: At HighCredit, allow max costQoSReq  

      [3] Criteria G3_CREDITLTPG_HIGH{ 

                   creditLTPGLevel = "HighCredit"; 

      }; 

      // 3rd CEC: At LowCredit, reduce costQoSReq  

      [3] Criteria G3_CREDITLTPG_LOW{ 

                   creditLTPGLevel = "LowCredit"; 

      }; 

      // 3rd CEC: At VLowCredit, reduce costQoSReq further 

      [3] Criteria G3_CREDITLTPG_VLOW{ 

                   creditLTPGLevel = "VLowCredit"; 

      }; 

     Subpolicy G3_CREDITLTPG_HIGH{ 

             costQoSReq = costQoSReq [-20] (wScost*1.00); 

      }; 

      Subpolicy G3_CREDITLTPG_LOW{ 

             overridesAsUpperLimit costQoSReq = 0.90 * costQoSReq (wScost * 0.50); 

             overridesAsLowerLimit costQoSReq = 0.70 * costQoSReq (wScost * 0.50); 

             costQoSReq = costQoSReq - costQoSReq * creditActionCoeff * (1 + creditRefRate/100) * 

(1 + creditUseratio/100) * (1 + monthlyDurationRatio/100) / 6 [-12] (wScost*1.00); 

      }; 

      Subpolicy G3_CREDITLTPG_VLOW{ 

             overridesAsUpperLimit costQoSReq = 0.70 * costQoSReq (wScost * 0.50); 

             costQoSReq = costQoSReq - costQoSReq * creditActionCoeff * (1 + creditRefRate/100) * 

(1 + creditUseratio/100) * (1 + monthlyDurationRatio/100) / 6 [-12] (wScost*1.00); 

      }; 

Step 10. Review the Policy 

The following successive actions at policy development for reviewing policy 

development are implemented at Step 10: 
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a) Review the policy until all goals and requirements are satisfied  

Jacob reviews the policy statements to make sure that all defined and used 

variables are correctly declared, that all requirements and goals and all SAVPs 

and BVPs are expressed by adaptation-rules, and every rule has a weight 

function with SWC corresponding to the related adaptation-strategy.  

b) Restructure the adaptation-rules in Criteria – Subpolicy pairs 

Jacob groups together the adaptation-rules with common cycle-declaration (CEC) 

and common Criteria, restructuring them in Criteria-Subpolicies pairs. 

7.4.3 Stage 3 – Policy Testing & Verification Stage 

Stage 3: Test & Verify and Validate the Policy  

This is the final stage of the Policy Authoring Methodology, that is also 

considered interactively with the previous stages. It concerns Step 11: Test & 

Verify the Policy, and Step 12: Validate the Policy. 

Step 11. Test & Verify the Policy 

As described in §6.6, the following two successive actions are implemented.   

a) Test the Policy 

Jacob runs the global policy file on the simulated policy execution & verification 

application (PEVApp) for Volare-compatible policy files that is provided by the 

weight-based methodology, first for identifying eventual syntax errors. Once 

these errors are corrected, the offline automated test suite generation is activated 

and the simulated policy execution on the test suite(s) generated. Failures are 

identified and corrected.   

b) Verify the Policy  

The simulated policy execution application (PEVapp) allows evaluation of real or 

test suite-derived simulated context and adaptation data through automated 

charts and calculation tables. For testing the global policy a very simple 

application policy may be used, since the global policy may be self-supported for 

initial testing.  

Jacob verifies offline the expected adaptation behavior, through automated 

charts on simulated execution results over generated test suites, for policy 

evaluation and necessary corrections.   

On the derived simulated results, the PEVApp rules fault detection algorithms 

may be applied for identifying eventual dead rules, dead predicates etc. A visual 

tool may also assist for comparative “Metamorphic Relations” evaluation, i.e. 
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relations that the adaptation results should comply to, on given context sets 

relations, For instance the adaptation results can be verified through automated 

charts for each certain adaptation-variable results under different user preference 

mode, expecting decreasing values, moving from “HighQuality” to “Normal” and 

to “LowCost” or “SaveBattery” mode under the same other context data. 

Step 12. Validate the Policy  

After being tested and verified, Jacob validates the policy file by comparison of 

real or simulated results to expected results.   

7.5 PAM – Authoring an Application Policy 

For a mobile application launching service discovery for a cloud service, in order 

to be subscribed for SR DCAA by the Volare middleware, it is required to 

download and store in the Volare Policy Files directory of the device an 

application policy for the adaptation of the service request QoS-variables, and 

eventually for influencing adaptation on the middleware operation configuration-

variables. 

For the application policy design and implementation, reference is made again to 

the three Policy Development Stages and the 12 Steps of the Policy Authoring 

Methodology described in §6.7. 

Ronald, the application policy developer, should be aware of the Volare weight-

based methodology, as well as of the general orientation of the middleware 

global policy or the family of global policies on different products, the parameters 

used and supported and the goals set, since it concerns the same application for 

several types or families of mobile devices on the same platform.  

Remark: The global policy developer has the possibility to specify all rules in the 

highest rule priority level, thus forbidding intervention of the application policy. 

However, it is suggested that this may take place for only the most critical 

operations, and allow the application policy developer access to the adaptation of 

the middleware configuration-variables. 

The application policy is expected to conform to the following generic issues as 

established by the global policy: 

a) Conform to the User Preferences Model, as it is configured in the global 

policy for each user preference mode and specify the adaptation-rules 

expressing each user preference-indicated adaptation behavior. Note that the 

application policy developer has no access to the configuration of the UPI and 

the default values of the User Choices Profile. 
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b) Use the Weight Assigning Strategy and the adaptation-concerns & 

adaptation-strategies defined at the global policy. 

c) Conform to the quantitative Long Term Performance Goals set by the global 

policy for all applications launching cloud service discovery, and specify the 

application-specific adaptation-rules in relevance to LTPGs, with the same 

behavior in mind. It is only required to use in the application policy the same 

performance assessments derived by the global policy adaptation-rules 

concerning every LTPG. 

d) Develop the application policy considering that it is expected to operate within 

the framework of the two-level Composite Policy. Assign to every adaptation-

rule: (i) priority level for intra- and inter-policy conflict resolution, (ii) a weight 

function value demonstrating its relative importance at policy execution, 

according to the WAS format, (iii) a cycle declaration (CEC) corresponding to 

the adaptation-variable concerned.  

The whole application policy is attached with brief comments in Appendix B of the 

Thesis.  

7.5.1 Stage 1 – Analyze System - Identify Requirements & Goals  

This is the design stage of the application policy and the developer has to define 

the requirements and short term goals, eventual new LTPGs, and how to cope 

with established User Preferences Model and generic LTPGs. Steps 2 to 4 are 

integrated in the global policy. 

Step 1. Define the Context & Adaptation Profile 

All context- or configuration- or global QoS-variables are predetermined at the 

global policy file, as well as most of the calculation- and auxiliary-variables.  

Ronald only needs to declare the SR application-specific QoS-variables 

bitrateQoSReq (video encoding bitrate) and fpsQoSReq (frames per second), in 

addition to the global ones (costQoSReq, availability, reliability and throughput), 

already declared in the global policy. 

Additionally on the intermediate variables, Ronald, having analyzed the 

requirements and goals of the application policy, needs only to declare any 

application-specific intermediate variables, namely any metrics that are required 

for the application policy authoring. 

                    Table 7-13 – Application-specific SR QoS-variables 

QoS-Variable ID Represented Quantity TypeID / Units 
Typical 

Value 



 
 
   

198 
 

bitrateQoSReq 
The SR max video 

encoding bitrate requested 
Integer / in KB/s 256 KB/s 

fpsQoSReq 
The SR min requested 

frames per second 

percentage / % 

of Max 

unadapted value 

Unadapted 

Max value = 

30 fps 

The developer needs only declare the application-specific service request QoS-

variables and any application-specific calculation- or auxiliary-variables or service 

request related context-variable, that may be required for the adaptation-rules. 

The developer may directly reference in the adaptation-rules all declared 

variables in the global policy without re-declaring them. 

If a service request QoS-variable is also a global QoS-variable under a different 

name, then a declaration-statement of equivalence is required, assigning the 

application variable to the respective global variable. 

Table 7-14 - Application Policy Declarations 

      // App Policy VSTREAM - context-variables Declarations  

       //  The corresponding to the bound to serviceID bitrateQoS on current CSD   

       integer ContextVar bitrateQoSProv == ContextMonitoringM.bitrateQoSProv;  

      // End of context-variables declarations of the Application Policy VSTREAM 

       // QoS Variables Declarations      

       // QoS Variables that are common with the global QoS of the are not declared again 

       // The following QoS Variables are application-specific QoS variables  

       // The Service Request bitrate QoS value for the service requested on the Cloud  

      float QoSVar bitrateQoSReq == ServiceRequest.activeRequest.bitrateQoSReq; 

       // The Service Request "frames per second" QoS value for the service requested on the Cloud (typically: 23 to 27)   

      integer QoSVar fpsQoSReq == ServiceRequest.activeRequest.fpsQoSReq; 

      // End of QoS-variables declarations of the Application Policy VSTREAM 

Steps 2, 3 & 4  

Step 2: Defining the adaptation-concerns and adaptation-strategies, Step 3: 

Defining the Weight Assigning Strategy and setting the SWC values and Step 4: 

Configuring the User Preferences Model, are completely the tasks of the global 

policy. The application policy developer has only to adopt and conform to the 

global policy choices in these matters. 

Step 5: Introducing LTPGs in the Application Policy  

Similarly, for the common LTPGs for all applications, the global policy should 

have declared all the required monitoring and decision-making metrics and the 
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LTPG resource availability assessment Criteria-Subpolicies for each context 

instance at the 2nd CEC part of the policy file. Consequently the task of the 

application developer is mainly focused, based on the LTPG performance 

assessments specified in the global policy, on specifying through adaptation-rules 

the required adaptation actions on the application-specific control QoS-variables 

at the next CEC part of the application policy – in this case at the 3rd CEC.   

Ronald has the task to specify adaptation-rules conforming to the established 

behavioural VPs concerning the battery power use LTPG and the monthly data 

volume LTPG, for which the application-specific QoS-variable bitrateQoSReq is 

the most appropriate control variable. 

a) Battery LTPG Adaptation Control Strategy 

The Resource (battery power) Use LTPG of the global policy concerns battery 

power preservation with horizon the periodic discharge cycle and target to retain 

by the end of each cycle a percentage of battery for emergency needs. Already 

through adaptation-rules of the 2nd CEC part of the global policy, the LTPG 

availability levels are selected.    

Ronald uses as control variable the bitrate of the SR bitrateQoSReq for battery 

power management. Reducing the video encoding bitrate, for instance instead of 

a nominal video encoding bitrate of 256 KB/s – request a 128 KB/s (or 56 or 28 

KB/s) video, will reduce significantly both the device power use from CPU, 

storage, playback and data reception through the cellular network. 

Consequently, at the Low and VLow availability levels, gradual restrictions on the 

allowed bitrateQoSReq value will be imposed, in increasing relation to values of 

the LTPG monitoring metric batteryRefRate and the criticality level metrics: 

batteryUseratio and monthlyDuratioRatio.   

b) Data Volume LTPG Adaptation Control Strategy 

The Data Volume LTPG with monthly horizon, aims at ensuring that the monthly 

data volume allowance for MBs downloaded from the Web or the Cloud is not 

exceeded, which cannot be served by rules in the global policy, as no such global 

variables are declared. Consequently, this LTPG is defined in the global policy, 

and the adaptation-rules concerning the availability level are included in the 2nd 

CEC. Every application policy should design rules to serve this goal on the 

appropriate QoS-variable. 

By reducing at the Low or VLow data volume availability levels the SR bitrate 

QoS Request value – although leading to a lower quality video – the MBs to be 
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downloaded may be reduced by several times and consequently the data volume 

may be under control. Ronald selects as more appropriate control variable the 

bitrateQoSReq, imposing at the Low and VLow availability levels gradual 

restrictions, in increasing relation to values of the LTPG monitoring metric 

batteryRefRate and the criticality level metrics: batteryUseratio and 

monthlyDuratioRatio.   

Step 5. Declare Intermediate Variables 

Ronald declares the following application-specific intermediate-variables that are 

required for monitoring, like eventually repeated rediscoveries during a CSD 

session (rediscovPer5min) in order to take measures to reduce it. 

Declarations{ 

       // Calculation-variables Declarations      

       // The current session rediscoveries expressed per 5 min eq. Session on current CSD   

      float CalcVar rediscovPer5min == rediscoveries * 300 / (cloudDurationSession + 1); 

7.5.2 Stage 2 – Policy Rules Development Stage 

Step 7: Defining the CEC segments of the Policy Rules Section 

No structural or algorithmic variants need to be defined at the application policy. 

Consequently, no 1st CEC adaptation-rules are required. 

Similarly, no application-specific LTPG is defined, only short-term adaptation 

goals and the global policy battery and data volume LTPGs are relevant. 

Consequently no 2nd CEC adaptation-rules need to be specified for the 

application policy.  

Only at the 3rd CEC the adaptation-rules for the adaptation of the QoS-variables 

will be specified, based on the context-context-variables, metrics and 

intermediate variables already declared in the global policy.  

Step 8. Specify Rules on Structural/Algorithmic Adaptation 

No structural or algorithmic or operation mode specifying adaptation-rules are 

application-specific. Consequently no rules are designed for the 1st CEC part of 

the policy. 

Step 9. Specify Rules on Behavioral Adaptation 

At Stage 3 Ronald’s task consists in building the adaptation-rules for the 

behavioral variants of interest to the application SR, either common behavioral 

variants established by the global policy behavioral VPs or application-specific 

ones.   
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All adaptation-rules specifying parameter settings for the SR QoS-variables or 

eventually the middleware configuration-variables will be included in the 3rd CEC 

part of the Policy, along with the similar adaptation-rules of the global policy.    

Table 7-15 – Application Policy Parameter Adaptation Excerpt 

// 3rd CEC: At Low Data Budget, low attainable values are set for QoSvar: bitrateQoSReq  

[3] Criteria VSTREAM3_DATALTPG_LOW{ 

            dataLTPGVariant = "LowData"; 

}; 

Subpolicy VSTREAM3_DATALTPG_LOW{ 

     overridesAsUpperLimit bitrateQoSReq = 0.40 * bitrateQoSReq [-20] (wScost*1.00); 

     bitrateQoSReq = 0.20*bitrateQoSReq + 0.20 * bitrateQoSReq * (100 / (dataRefRate + 100))  

     [-12] (wScost*1.00); 

     fpsQoSReq = 0.85*fpsQoSReq [10] (wScost*1.00); 

Ronald has to specify adaptation-rules for the application-specific QoS-variables 

for each behavioral variant (BV) of the following behavioral VPs: 

a) The Alternative User Preference Modes BVP 

Four mutually exclusive Criteria-Subpolicy pairs are built, specifying settings for 

QoS-variables related to each BV of the User Preferences Model VP, namely the 

four user preference modes “HighQuality”, “Normal”, “LowCost” and 

“SaveBattery” within the Sperf adaptation-strategy. 

b) The Battery LTPG BVP over every Discharge Cycle 

Three mutually exclusive Criteria-Subpolicy pairs are built, one for each BV of the 

Battery LTPG VP, namely for High, Low and VLow availability levels, within the 

Sres adaptation-strategy. 

c) The Monthly Data Volume LTPG BVP 

Three mutually exclusive Criteria-Subpolicy pairs for each BV of the Data Volume 

LTPG VP, namely on High, Low and VLow availability level, within the Scost 

adaptation-strategy, with adaptation-rules on QoS-variables related to the 

monthly data volume LTPG, namely the bitrateQoSReq. 

d) The Monthly Credit LTPG BVP 

This LTPG is fully covered in the global policy and Ronald does not specify 

additional adaptation-rules on it.  

e) The Runtime Disruption Minimization BVP  

Ronald introduces an application-specific VP within the Disruption Minimization 

adaptation-strategy, aiming at minimizing disruption at runtime by rediscoveries 
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due to context or QoS variation. Although every runtime adaptation aims to best 

adapt the service discovery & binding to the current context, there is a penalty for 

the user (delay, change of performance characteristics, etc.) and one of the goals 

is to avoid rediscoveries that offer less to user satisfaction than the disruption 

cost that may be incurred, especially for a video-streaming application.  

This session-level goal aims at retaining within each session period the metric: 

rediscPer5min below a policy -specified value.    

Ronald uses two options to minimize rediscoveries at runtime, first by increasing 

the rediscQoSThreshold and secondly by assigning the “NoAdapt” option to the 

middleware configuration-variable preferredVariant, thus specifying adaptation 

rejection at runtime, if no important context change imposes it.  

Ronald establishes through appropriate Criteria conditions two disruption levels: 

“LowDisruption” at which no adaptation action is specified (configuration-

variables set at the default values in the default Subpolicy), and “HighDisruption” 

at which the configuration-variables are modified, through the 

VSTREAM3_HIGHDISRUPTION and the VSTREAM3_DEFAULT Criteria-

Subpolicy pairs. 

Table 7-16 – Disruption Minimization BVP 

      // 3rd CEC At High Disruption condition, max values set for rediscQoSThreshold or 

rediscContextThreshold   

      [3] Criteria VSTREAM3_HIGHDISRUPTION{ 

                 rediscovPer5min > 1;  

                 inSessionRecordNo > 1; 

                 bandwidth > 1.25 * bitrateQoSProvLast; 

                 userPref <> "HighQuality"; 

      }; 

        Subpolicy VSTREAM3_DEFAULT{ 

                 preferredVariant = "Adapt" (wSdisr * 1.00); 

       }; 

      Subpolicy VSTREAM3_HIGHDISRUPTION{ 

             overridesAll rediscQoSThreshold = 10 (wSdisr*1.00); 

             preferredVariant = "NoAdapt" (wSdisr*1.00); 

      }; 
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             Table 7-17 – Behavioral VPs in the Application Policy 

7.5.3 Stage 3 – Policy Testing & Verification Stage 

The Steps 11 & 12 of Stage 3 of the Policy Authoring Methodology are of 

importance also at application policy authoring. Since the adaptation logic is 

composed of the already existing global policy and the application policy, once 

the application policy file is built and reviewed, the PEVapp offline simulation 

tools may be used for: 

a. Testing the syntax correctness of the policy  

b. Creating automatically test suites generated on developer-selected available 

options on policy predicate coverage and domain testing strategies  

c. Activating offline repeated Composite Policy execution on the test suite(s) to 

test for failures and verification of results 

d. Evaluating the simulated dynamic results for detecting rules faults like dead 

predicates, dead adaptation-statements, etc.    

e. Through semi-automated generation of charts on the test suites execution 

results, drawing conclusions on the effectiveness of the adaptation.  

Ronald uses the PEVApp tool on all above.  

Figure 7-3 – Policy execution Results across a Monthly Usage Model 

BEHAVIORAL VPs CEC Subpolicies Concerned Behavioral 

Variants 

User Preference Modes BVP 

through the User 

Preferences Model 

3rd VSTREAM3_NORMAL 

VSTREAM3_HIGHQUALITY 

VSTREAM3_LOWCOST 

VSTREAM3_SAVEBATTERY 

4 

Battery LTPG Adaptation 

Actions BVP 

3rd VSTREAM3_BATTERYLTPG_HIGH 

G3_BATTERYLTPG_LOW 

VSTREAM3_BATTERYLTPG_VLO

W 

3 

Monthly Data Volume LTPG 

Adaptation Actions 

BVP 

3rd VSTREAM3_DATALTPG_HIGH 

VSTREAM3_DATALTPG_LOW 

VSTREAM3_DATALTPG_VLOW 

3 

Runtime Disruption BVP 3rd VSTREAM3_DEFAULT 

VSTREAM3_DISRUPTION_HIGH 
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7.6 Related Work 

The issue of efficient energy management for a mobile device is a most critical 

one for mobile equipment and especially one of the most constrained types: 

smartphones. An analytic description of power consumption in a smartphone per 

activity and component system is given in NICTA [92] and [94]. Different 

approaches for saving energy in mobiles are been researched and applied.  

One trend, with basic example DYNAMO [93], implements a cross-layer active 

energy saving strategy by modulating CPU voltage and backlight intensity and 

similarly does AURA [91] with management strategies using MDP techniques. In 

[97] the User talk time is taken as an explicit variable and with MDP techniques 

power mgmt is implemented to make the battery last as requested.  

Another – mostly MCC-oriented – trend consists in offloading part of 

computationally intensive tasks on the Web or the Cloud and is extensively 

researched with works like CloneCloud [27], MAUI [96], CasCap [67] etc, with 

always the question which application tasks may be offloaded at a positive 

energy surplus. Video-streaming without transcoding is clearly not a candidate.  

A third trend makes use of prefetching-friendly and/or delay-tolerant applications, 

eventually executing cellular or Wi-Fi communication when the signal is strong 

and with appropriate packet modulation for energy savings, like: Stratus [29], 

ENVI [89], eTime [90] etc. Dropbox [53] saves energy of mobile devices by 

storing and synchronizing mobile data on Amazon S3 storage system.  



 
 
   

205 
 

Volare is tasked with Cloud Service Discovery (CSD) and implements energy 

Mgmt during CSD through application-level DCAA. It adapts the active 

application Service Request as well as the middleware configuration variables, 

not simply according to the current energy level but considering the power level 

within the current battery discharge cycle and the expected remaining battery 

use. It evaluates power usage with respect to the estimated remaining time 

interval till recharging and based on this evaluation - not only at an initial SD but 

even at runtime - it may impose adaptation to a more appropriate service with 

lower quality and energy needs. 
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8 Evaluation of the Project  

In the “Introduction” section of this Thesis where the Research Hypothesis is 

defined, a clear reference is made to the goals of this research project, 

presenting the Volare approach for assigning through a mobile adaptive 

middleware policy-based DCAA to the SR of mobile applications launching cloud 

service discovery (CSD). The scope of the Volare approach includes especially 

the more demanding “long-lasting” mobile applications on service discovery (like 

media-streaming, tele-conferencing, navigation applications, etc.) that require 

dynamic adaptation capability.  

The Volare approach is composed of the following three constituents: 

 the mobile adaptive middleware, with a User Preferences Interface 

application, to be installed on the mobile device 

 the Volare Adaptation Policy Specification Language (APSL), and 

 the Weight-based (WB) Adaptation Reasoning Technique & 

Methodology 

with the two last constituents supporting the development of the adaptation logic. 

The Volare approach incorporates several novel characteristics concerning the 

authoring of external adaptation logic and the middleware-based adaptation, 

enabled through specific features of the aforementioned three constituents. 

Qualitative Evaluation of the Volare Components 

Examining the three constituents of the Volare approach, and comparing their 

characteristics with the corresponding requirements in §3.3, §3.4, §3.5, all three 

constituents have covered the requirements set. 

The middleware only had missing modules – in comparison to the conceptual 

model speciofied in §3.4 and described in chapter 4, namely the Statistical 

Analysis Module, which was not required in the policy since no LTPGs were 

introduced in the policy for the usage data. Similarly the UPI, described in §4.2 

and §6.4, was imitated by changes in the policy, at any new session user 

preference change was required. 

As a consequence, the qualitative evaluation has identified that all requirements 

set were respected at the runs executed.  
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Contributions 

As described in the “Introduction” of this Thesis (chapter 1) and the Project 

Overview (chapter 3), the Volare approach is characterized by the following main 

contributions: 

1. Dynamic context-aware middleware-based adaptation at CSD sessions 

of the SR of unanticipated mobile applications not custom-made to the 

middleware and transparently to them 

2. Two-level policy structure of the adaptation logic 

3. Integration of a configurable dynamic User Preferences Model in the 

adaptation logic through a User Preferences Interface application (UPI) 

4. Policy authoring allowing multiple rules, each with a weight value, to be 

selectable at policy execution on the same adaptation-variable 

5. Defining major adaptation-concerns and design the adaptation logic in 

overlapping sub-policies (adaptation-strategies), each serving an 

adaptation-concern over the valid context domain  

6. Introduction of quantitative LTPGs in the adaptation logic over finite 

horizons exceeding many times a CSD session 

7. Policy rules distributed in multiple consecutive execution cycles (CECs) 

8. Policy authoring with high behavioral variability, by-passing the 

combinatorial explosion  

Although some of the above contributions may have been used in some way 

individually by other research papers for DCAA of mobile applications, Volare 

claims the unique combination of all these features that are introduced by the 

APSL and the weight-based adaptation reasoning approach and are supported 

by the middleware, leading to benefits that will be evaluated in the following 

subsections.  

Evaluation Research Questions 

The following Research Questions are raised, to assist in the evaluation of this 

project, each corresponding to one of the contributions of the Thesis: 

RQ1: Can adapting the QoS levels of a service request (SR) launched by a 

mobile application before service discovery and binding, based on the device 

current context and policy requirements and goals, lead to discovery of more 

fitting services and to more efficient use of device resources? 

RQ2: Does enabling mobile applications SRs adaptation that takes into account 

both the device’s capabilities and application’s requirements, by utilizing two-level 
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policy architecture, provide advantages in policy authoring while reducing policy 

complexity? 

RQ3: Can we enable the user to influence the QoS levels adaptation of the SRs 

launched by mobile applications, by either customizing and/or dynamically fine-

tuning on-the-fly the adaptation behaviour on cross-cutting concerns? 

RQ4: Would adding in the policy quantitative long term goals over finite horizons 

enable the user to delegate to the adaptation logic long term resource and/or 

quality management? 

RQ5: Would utilizing a policy architecture using multiple simultaneously activated 

adaptation rules per adaptation-variable allow easy incorporation of multiple 

adaptation-concerns in the policy? 

RQ6: Can we enable policy authoring of adaptation policies with high behavioural 

variability while reducing the combinatorial explosion by using multiple adaptation 

rules per adaptation-variable? 

RQ7: Can the use of multiple execution cycles in the adaptation policy allow for 

further reduction in the number of rules necessary to model specify adaptation 

behaviour? 

Evaluation of the Volare approach will proceed through one or more RQs in 

reference to each contribution of the Thesis. The evaluation on each RQ will be 

based on two evaluation methods: 

 Qualitative issues, such as issues of structure or methodology, will be 

evaluated by the logical arguments presented.  

 Quantitative issues may additionally be assessed by comparing the results 

attained by the case study derived simulated usage results, through the 

infrastructure designed concerning selected performance metrics of the 

mobile device at alternative monitoring scenarios.   

Evaluation Strategy 

Reasoning – Although usage data are of primordial importance to demonstrate 

how the real system behaves and to validate a project, it does not always provide 

sufficiently strong evidence on verifying the influence of each specific parameter 

to the adaptation behavior – even for relatively simple systems with few 

parameters. This is due to context parameters stochastic variation (bandwidth, 

user preferences, battery drop at cloud and non-cloud activity, services 

availability, etc.), that at the usage data are out of the control of the researcher. 

On the other side, analytic description of the system behavior is not available.  
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Consequently, the influence of each specific parameter or function in adaptation 

behavior may be evaluated more effectively, if it is possible to simulate the 

system behavior on the same sequence of context data, in alternative runs 

having the considered parameter at different values along with simulated 

correlation of associated data, and then compare the alternative simulated 

operation outcomes.  

Example – As an example of this argument, the following two charts represent 

the policy execution results and context parameters on the same context usage 

matrix of the case study, but with one modification. In Fig. 8-1 there are the real 

context usage data over a monthly period, with alternating user preference 

causing frequent change of adaptation behavior, while Fig. 8-2 depicts the same 

parameters but at only one user preference (UP = “Normal). It is clear that 

isolating one discreet values parameter at one value at each run, may prove 

illuminating on the questions under investigation.  
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Figure 8-1– Monthly SR QoS parameters with UP changes 

Dataseries: 3LTPG_3CEC_USGM&4UPs_All24 

 

 

Figure 8-2 – Monthly SR QoS parameters with UP = “Normal” 

Dataseries: 3LTPG_3CEC_USGM&NO_All24 

 

Simulation Setting – Fig. 8-1 and 8-2 depict the two main policy execution QoS 

parameters bitrateQoSReq and costQoSReq along with context parameters, at 

the initial adaptation of the last CD session of each day over the monthly context 

usage model. Fig. 8-1 represents the initial context usage model with alternating 

UPs, while in Fig.8-2 the same context usage model is set at user preference UP 
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=”Normal”. Within the monthly period, 11 battery discharge cycles are fully shown 

with dropping battery level till recharge at each fourth day.  

Result Analysis – In both figures the generic constraint: bitrateQoSReq <= 

0.8*bandwidth (1) is always applied, demonstrated by how the bitrate graph 

tends to be parallel to the bandwidth graph. Similarly at the first battery discharge 

cycles, due to VLow battery level, bitrateQoSReq is further reduced at the VLow 

battery points (battery LTPG rules), at all UPs except “HighQuality”.  

Considering the differences in the two charts, in Fig. 8-1 in both QoS parameters 

graphs the peaks are due to occasional UP = “HighQuality” that imposes the 

highest attainable values for the QoS parameters without consideration of other 

constraints.  When the UP changes to another one, a drop in the graph values is 

apparent.  

On the contrary Chart 8-2 data with UP = ”Normal”, obviously allows to verify the 

gradual costQoSReq reduction as the creditUseratio increases. Chart 8-2 is 

much more helpful in validating and verifying the adaptation behavior, having 

isolated by simulation specific parameters at fixed values.      

8.1 Quantitative Evaluation Methodology 

For this purpose, the chosen, results-based, quantitative evaluation strategy for 

each RQ – where appropriate – consists in deriving simulations of the mobile 

device performance metrics over a period associated to the RQ in consideration, 

based on alternative monitoring scenarios for the context parameter of interest, 

and then comparing the outcomes on performance evaluation metrics. 

In this perspective the evaluation study makes use of the recorded by the mobile 

device context usage model (derived from the usage data) on a CSD sessions 

sequence over a monthly period, and then runs simulations of the device 

adaptation behavior on the same CSD sessions monthly sequence, modifying 

one context parameter value at a time.  

In the next paragraphs follows the design of the simulation methodology, 

concerning the main parts: 

 the design of monitoring scenarios (context data matrices), based on the 

initial context usage model described in §7.2 and Appendix G 

 the device adaptation behavior simulation methodology that will produce the 

simulated artifacts (simulated usage data) for comparison and evaluation.  
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Two sets of artifacts are required by the simulation case study: 

 test suite(s), in this case the monitoring scenarios described in §8.1.3, each 

with different values on a specific parameter 

 the simulated context & adaptation data matrix resulting from the simulation 

study on the sequence of CSD sessions over each monitoring scenario. 

The simulation study will apply alternative monitoring scenarios providing 

simulated results on the mobile device performance – by simulating adaptation 

and operation results over the sequence of CSD sessions of the context usage 

model within the selected temporal horizon. Comparison of the alternative device 

performance results with each monitoring scenario, will provide the opportunity 

for drawing and documenting conclusions on each RQ. 

Based on the infrastructure designed as outlined in §7.1 and the real monthly 

usage data and the assumptions presented and the derived context usage model 

in §7.2, a RQ simulation-based evaluation methodology has been designed on 

three consecutive stages, applicable for each monitoring-scenario (input context 

data set), when simulating the middleware operation: 

1. Define the appropriate Monitoring Scenarios 

Define the Monitoring Scenarios (context data matrices), the horizon(s) of interest 

to the RQ under examination, by modifying the basic context usage model (data 

matrix) on the selected parameter(s) of interest, setting alternative values. 

2. Implement Simulated Device Operation on each Monitoring Scenario 

Implement repeated simulated device operation imitating the device functions 

concerning the video-streaming application and deriving the observable metrics 

values at each successive recheck cycle of the monitoring scenario. 

3. Compare the alternative Simulated Results on the Monitoring Scenarios 

The results of the RQ-related device performance metrics will be compared at the 

end of the simulated device operation on the selected monitoring scenarios, 

evaluating the influence of the differentiated parameter concerning the RQ in 

consideration.  

8.1.1 Designing the Monitoring Scenarios 

In order to be able to evaluate the simulated device performance, by comparing 

RQ-related performance parameters influence on adaptation behavior metrics 

over alternative input (context) data matrices, appropriate monitoring scenarios 

need to be developed. These monitoring scenarios will cover the full sequence of 
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CSD sessions as well as of non-cloud activity sessions within the monthly (or in 

some cases the discharge cycle) horizon, adopting the context usage model of 

the recorded usage data values (§7.2) – thus also keeping intact the non-cloud 

activity sessions. Only a specific context parameter will be modified at a time. 

The context data fields of the data matrix may be distinguished in two categories:  

1. Fixed Context Data  

The fixed (non-modified) context data drawn from the context usage model are:  

 sessionStartTime, sessionEndTime, sessionNo, adaptationNo, 

dischargecycleNo of each CSD session within the monthly horizon,  

 the webMBs downloaded through the MNSP while surfing the web at each 

non-cloud session (from the sessionEndTime of each CSD session till next  

sessionStartTime), that count for the monthly data volume LTPG, 

 the recorded batteryDrop at each non-cloud activity session of the mobile 

device (like: phone calls, SMS, MMS, surfing the internet, stand-by power 

drop, etc.) is denoted as nonCloudbatteryDropj for the pair j of non-cloud and 

cloud sessions,  

 the initial battery level at each new battery discharge cycle at the first CSD 

session, denoted as batteryInitial.   

2. Modifiable Context Data of the Monitoring Scenarios 

The remaining context data required by the Policy Engine for policy execution at 

the beginning of each recheck time within CSD sessions are: 

 bandwidth at each recheck cycle; 

 user preference mode at each recheck cycle; 

 the values of the user-customizable context-variables (like: priceMax or the 

SWCs, etc.). 

By modifying a context parameter, like: bandwidth, user preference or a user-

customizable context-variable value, alternative monitoring scenarios are defined 

and used in the following subsections. For instance in Fig. 8-2 vs. Fig. 8-1, only 

the UP has been modified from the context usage model, and has been set to 

“Normal”.   

8.1.2 Regression Analysis for cloud session battery drop  

A challenge for simulating the device adaptation behavior using the aggregated 

context data model derived above is the lack of a known relation to calculate 

battery drop within a CSD session. The aim is to calculate the approximate 
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battery drop at every successive monitoring period (called “recheck cycle”) 

within each simulated CSD video-streaming session, as a function of recorded 

context parameters associated with energy consumption, based on the device 

usage data recorded over a monthly period (see §7.2 and Appendix G).  

Current research indicates that mobile device energy consumption increases with 

more intensive calculations burden for CPU and RAM (by higher video-encoding 

bitrate), as well as with more intensive communication burden (by higher 

download data rate), especially if bandwidth is not high in relation to the 

download bitrate (on an analysis in smartphone energy sinks, refer to [92][94]). 

Consequently, the following energy consumption related context parameters are 

chosen:   

 the cloudDuration of the monitoring period within the CSD session  

 bandwidth monitored at this period within the CSD session 

 the video-encoding bitrate bitrateQoSProv at which the device was 

downloading MBs from the bound serviceID at the monitoring period. 

 the above parameters in the form of the csdProduct product:  

csdProduct = cloudDuration x bitrateQoSProv / bandwidth  

Table 8-1 – Regression Analysis Statistics on Battery Drop 

 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.899417526

R Square 0.808951886

Adjusted R Square 0.80716639

Standard Error 0.322871238

Observations 217

ANOVA

df SS MS F Significance F

Regression 2 94.46097627 47.23048813 453.0683408 1.20858E-77

Residual 214 22.30860899 0.104245836

Total 216 116.7695853

Coefficients Standard Error t Stat P-value

Intercept 0.038889046 0.058585561 0.663799158 0.507533365

cloudDuration 0.004457853 0.000217464 20.49925523 2.18388E-52

csdProduct 0.012175169 0.000682972 17.82674964 3.51961E-44

Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.076589613 0.154367704 -0.076589613 0.154367704

cloudDuration 0.004029207 0.004886499 0.004029207 0.004886499

csdProduct 0.010828955 0.013521382 0.010828955 0.013521382
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Based on the usage data recorded and through regression analysis, a battery 

drop relation has been found – applying ideas on battery level drop rates 

discussed in [42] and on smartphone power use in [92] and [94] – of the form: 

battery drop =  0.0331 + 0.00445 * cloudDuration + 0.121 * cloudDuration * 

 bitrateQoSProv / bandwidth      (1), in % battery drop 

with multiple coefficient of determination R2 = 0.815 for the multiple regression, 

which is considered satisfactory for the evaluation study purpose.  

The regression analysis statistics are indicated in Table 8-1, based on 216 usage 

data rows by the aggregated monthly usage data. The aggregation of the initial 

usage data allowed the reduction of errors in the monitored battery drop values, 

by integrating over longer time intervals.  

Thus, relation (1) with parameters is retained as sufficiently accurate for 

simulating battery drop at each recheck cycle within a CSD session of the 

particular video-streaming application VSTREAM on the mobile, while assuming 

intact all non-cloud sessions (and all other eventual device parallel activities). 

As discussed in [92] and [94], different devices and different applications may 

have different battery drop rates. Consequently this battery drop simulation on 

CSD sessions serves only as a proof of concept and cannot be generalized to 

other mobiles or applications. Additionally, some noise is included in the data by 

the battery level indication in % battery values and in bandwidth, since the 

monitored battery level values were rounded to the nearest integer with some 

error. Note however that the noise form not very accurate values is similarly 

introduced in all monitoring scenarios, thus all compared outcomes include a 

similar error.  

8.1.3 Development of Simulation Calculation Functions 

In order to implement the simulation of the device adaptation behavior on the 

case study video-streaming application, it is required to develop several 

calculation algorithms in imitation of specific functions of the device software 

components (middleware, application, CSP).  

1. Battery level calculation at each simulated recheck cycle 

Within a battery discharge cycle, consider recheck cycle j of the cloud session i 

(just after the non-cloud session i, since non-cloud and cloud sessions are 

typically interchanged) and referenced as recheck cycle i,j.  At the first recheck 

cycle of the 1st cloud session of a new discharge cycle: 
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batteryStartcloudsession1,1 = batteryInitial          (1) 

The battery levels at the beginning and end of each recheck cycle are denoted as 

batteryStartcloudsessionCyclei,j and batteryEndcloudsessionCyclei,j, and may be 

calculated as follows, according to the battery drop formula in §8.1.2:    

batteryEndcloudsessioni,j = batteryStartcloudsessioni,j – (16/3600)*cloudDurationi,j 

+ (40/3600) * cloudDurationi,j * bitrateQoSProvi,j / bandwidthi,j     (2) 

if j = 1 (i.e., 1st recheck cycle of the cloud session i), then 

batteryStartcloudsessioni,1 =  

batteryEndcloudsessioni-1,j’ – nonCloudbatteryDropsessioni-1,     (3) 

where j’ is the last recheck cycle of the previous cloud session i-1. 

Thus the battery level calculation algorithm is established through these three 

formulas and is applied successively at the beginning and then at the end of each 

recheck cycle of a cloud session.    

2. Calculation of context- or history-dependent parameters  

The calculation-variables that depend on the context and on the last recheck 

cycle usage data like: cloudMBs, webMBs, cloudCost, increasing monthly data 

volume, decreasing allowances, etc., are updated at each recheck cycle to their 

new values and used as context data at the next recheck cycle. The simulation 

study calculations need to include the updating of all these non-constant 

parameters, declared as calculation-variables in the policy, before providing the 

new values to the Policy Engine Working Memory. 

3. Simulating the SR QoS levels evaluation mechanism  

After a simulated policy execution, the simulation tool simulates the middleware 

QoS evaluation algorithm (as described in §4.5.2 and §4.7.1) is imitated and 

evaluates the SR QoS levels to reach the decision to implement rediscovery or 

not (i.e. to reject policy execution results and continue as before), employing the 

associated policy-based threshold parameter values. 

4.  Simulating the CSP service selection mechanism  

At the simulation procedure, the simulation tool simulates the virtual CSP 

component. Since the CSP service selection algorithm is known as well as the 

four available cloud services with their QoS levels, a simulation function 

implements the service selection at each recheck cycle, deriving the offered 

service QoS levels.   
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8.1.4 The Simulation Procedure 

The simulation procedure implements repeated cycles of simulated service 

discovery and binding to a cloud service over a sequence of CSD sessions, 

introducing successively each context data row of the data matrix, deriving the 

simulated policy execution SR QoS terms values, simulating the SD and binding 

to the discovered service and starting or continuing consumption of the bound 

service.  

Developer-Guided Simulation Tool 

An automated, developer-guided offline tool has been designed, incorporating 

the Policy Engine, to implement sequential policy execution of the context data 

rows for each monitoring scenario context data matrix, deriving the new 

adaptation QoS levels and middleware configuration-variables values based on 

the current context. The simulation tool needs to simulate also the CSP activity 

on service discovery and service selection from the test-bed, as well as the 

activities of the middleware modules, functions described in §8.1.2      

The Simulation Procedure Operating Steps 

The simulation procedure at each repeated recheck cycle within every simulated 

CSD session, implements successively the following simulated operation steps: 

1st Step: Get the new context data – At each new simulated recheck cycle, the 

new data row includes all device and middleware operation parameters declared 

in the policy as context-variables (like: battery drop, bandwidth, user preference,  

webMBs, etc.), as well as the updated by the last simulated recheck cycle context 

or history dependent calculation-variables.  

2nd Step: Initiate policy execution (calculation) – Execute simulated policy 

execution on the current context data row and derive the new adaptation 

calculation results concerning the QoS-variables values and the middleware 

configuration values.  

3rd Step: QoS evaluation decision-making on rediscovery – If the recheck 

cycle concerns a CSD session at runtime, the decision-making algorithm of the 

BindingM on rediscovery, decides on policy-based threshold parameters if 

adaptation & rediscovery results are to be implemented or not, based on the 

deviation between current and new QoS terms values. At the initial policy 

execution in a CSD session however, service discovery is directly implemented 

without evaluation.  
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4th Step: SR adaptation and dispatch to the CSP – In case the decision of the 

previous step is for discovery or rediscovery, the SR QoS terms are adapted by 

the new policy execution results and the SR is dispatched to the CSP.  

5th Step: Service discovery & selection by the CSP – The simulated CSP 

receiving the SR QoS values executes service discovery from the test-bed of four 

cloud services and (since all are available) selection of the fittest service and a 

builds and dispatches a simulated Service Offer.  

6th Step: Service Offer evaluation – If the recheck cycle represents the first on 

in a CSD session (initial service discovery), the simulated Service Offer 

evaluation mechanism of the (§8.1.2), accepts the Service Offer and binds to the 

selected service. If the recheck cycle represents a runtime adaptation at a CSD 

session, the simulated Service Offer evaluation mechanism  (§8.1.2), evaluates 

the SO and either accepts it and binds to the selected service, or it continues as 

before if the offered service is the same or there is no significant benefit or need 

for adaptation.  

7th Step: Service consumption for the recheck time period – The simulated 

results specify by policy execution the duration of each recheck cycle – except if 

there is manual termination of the CSD session by the application. The simulation 

tool based on the corresponding bound serviceID and the QoS terms values 

calculates the values associated calculation-variables of the Composite Policy, 

that represent the adaptation behaviour of the system. 

End of this repeated cycle at the last context data row of the monitoring scenario 

data matrix. 

8.1.5 Common characteristics of the simulation study 

Comparisons are supported by developer-guided semi-automated charts of the 

simulation tool on the selected parameters of interest from the derived simulated 

usage data.    

1. Charts Presentation 

Through the charts below, we examine several selected context data matrices 

over a full monthly cycle or a battery discharge cycle (from full battery to very low 

battery).  

In each chart a different bandwidth variation may be introduced (including fixed 

bandwidth data series as reference), while battery level is dropping with time.  



 
 
   

219 
 

The battery level graph typically indicates a battery discharge cycle every 3 days 

and imposes bitrate reduction, mainly when battery <= 30%. 

Dotted lines in the Charts depict the basic context-variables and monitoring 

metrics of the LTPGs, in contrast to the full lines of the depicted results on QoS-

variables.  

Usually the 6 most common context-variables and LTPG metrics depicted are: 

 battery level (at % full scale) at the beginning of each recheck cycle 

(adaptation) depicted, thus presenting each battery discharge cycle by the 

decreasing battery level 

 bandwith typically in equivalent data rate units (KB/s) 

 creditUseratio and dataUseratio (% of the respective allowance already 

spent) 

 creditRefRate and dataRefRate, the decision-making metrics on High or 

Low or VLow LTPG availability level, with “correct” values <= 100. If values 

>= 100, then Low or VLow assessment is taken. 

The main QoS-variables derived by policy execution, depicted in the charts with 

bold continuous line, are: 

 bitrateQoSReq, typically in equivalent data rate units (KB/s) 

 costQoSreq (at % of the priceMax parameter value – for comparison). 

Of importance on the simulated usage data depicted in each chart is the user 

preference selection (one UP or alternating UPs).  

2. Bandwidth restriction on the highest attainable bitrateQoSReq values 

For client – server network communications reasons, the current bandwidth value 

imposes the technical constraint that: bitrateQoSReq <= 0.8*bandwidth  (1) 

As it is obvious, any bandwidth value decrease causes a constraint to the 

bitrateQoSReq, expressed by the HighQuality bitrateQoSreq graph, since at UP 

= “HighQuality” it takes the maximum technically attainable value bitrate 

respecting constraint (1).  

8.2 Dynamic Context-Aware Adaptation of the SR by 

mobile applications  

RQ1: Can adapting the QoS levels of a service request (SR) launched by a 

mobile application before service discovery and binding, based on the device 

current context and policy requirements and goals, lead to discovery of more 

fitting services and to more efficient use of device resources? 
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The solution chosen by the Volare approach in order to minimize the adverse 

effects for a mobile application launching CSD due to mobility and subsequent 

context variation  and constrained mobile resources – as discussed extensively in 

§2.1 – consists in adapting not the active application launching CSD, but instead 

adapting: (i) the SR QoS terms – even at runtime context change by activating re-

discovery, (ii) the mobile middleware assigning the DCAA capability (through 

adaptation of its configuration variables).  

8.2.1 Research Question Issues Investigation  

RQ1 raises two issues, distinguished in the following two research questions: 

RQ1a: Can adapting the SR QoS levels based on the current context lead to 

discovery of more fitting services? 

RQ1b: Can adapting the SR QoS levels based on the current context lead to 

more efficient use of device resources? 

a) Investigating RQ1a 

At a CSD session, given that the mobile device may be at a state of low 

bandwidth or low resources (like: battery or credit availability) or user preference 

for constrained requirements, it is evident that the current context and the policy 

constraints and goals lead to an optimal QoS derived at policy execution, and the 

most fitting service for discovery and binding to is the one with QoS terms closest 

to it. If at a CSD session, the SR QoS levels are not specified in relation to the 

current context and policy requirements and goals but represent prefixed values, 

then performance problems may appear at various contextual situations.  

For instance at the case study video-streaming application, there may be:  

Low bandwidth situation – If the video-encoding bitrate provisioned by the CSP 

is higher than 80% of the current bandwidth, delays are to be expected and 

application performance degradation due to bandwidth lower than required by the 

video-streaming process [128][110]. For example, if the video encoding bitrate 

provisioning value is 256 KB/s and the available bandwidth is 150 KB/s, binding 

to this service will lead to long delays.  

Low battery situation – Similarly, if current battery level is low, discovering and 

binding to a high QoS levels service with high demand on device resources will 

further intensively reduce power level, that risks to leave the device without 

enough power before re-charge time. 
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User preference situation – As described in chapter 7, Evelyn (the user) may 

set her preference for “LowCost” or “SaveBattery” mode, or set the priceMax 

maximum value per MB downloadable from the cloud service bound to. 

Predetermined and non-adapted SR QoS levels at CSD are incompatible with 

user preferences – which by default represent compromise between what is 

desirable and what is attainable under the circumstances.   

Consequently, only policy-based context-aware adaptation of the SR may lead to 

the discovery of the most fitting service.   

b) Investigating RQ1b 

A mobile device has consumable resources like battery power or a ceiling value 

at other resources like CPU or RAM, etc. Similarly, the adaptation policy may 

introduce consumable “virtual resources” like: monthly credit allowance on cloud 

services, monthly data volume allowance through the mobile network, etc.     

By “more efficient use of device resources” at a CSD session in RQ1, it is meant 

that policy-based context-aware service discovery should ensure that physical or 

virtual consumable resources are spent with caution. This requirement may be 

implemented in different policy-based ways, either by a simple policy of the form: 

“If battery < Low Level A Then …” with adaptation action on specified resource 

levels, or in a more advanced form as in Volare by introducing in the policy LTPG 

models with consideration of each resource time horizon, resulting in monitoring 

resource use metrics and taking corresponding adaptation actions on the SR 

QoS levels within the LTPG horizon. Consequently, it is argued that only policy-

based context-aware adaptation of the SR QoS on mobile applications launching 

CSD can manage efficiently physical or virtual (policy-based) consumable 

resources or constrained resources with a ceiling value, as the following 

simulation artifacts will attest. 

Simulation Setting 

In order to demonstrate the critical importance of policy-based context-aware 

adaptation on the efficient use of cloud services and of the device physical or 

virtual (policy-based) resources, the simulation study examines two adaptation 

cases employing the same monitoring scenario, namely the context usage model 

that includes a sequence of 154 CSD sessions over monthly duration. The only 

difference between the two cases, as explained below, is that at the first 

adaptation case the SWCs values of all adaptation-strategies in the “Composite 

Policy” (except the default Sgen) are set to 0, while at the second adaptation 

case all SWCs have their default values.  
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1. Very Shallow Adaptation Case 1 

At this case, very shallow SR adaptation is implemented and only on the video-

encoding bitrate so that:  

bitrateQoSReq = 0.8*bandwidth           (1)  

to ensure that the video-streaming will continue without delays.  

No constraints are imposed for other resources (like: battery level, monthly credit 

or data volume allowance or battery level) while the context usage model dispays 

an average battery discharge time of 3 days. 

The case study global and application policy files for the video-streaming 

application are used, but the SWC coefficients are set to zero: 

wSpref = wScost = wSres = wSdat = 0           (2) 

As described in chapters 4 and 5, at policy execution all adaptation-rules with 

SWC =0 are overridden (a testability feature of the Volare APSL and the Policy 

Engine) for overriding easily all rules of one (or more than one) adaptation-

strategy to examine the adaptation behavior with or without it.  

In this case of SWCs = 0, at policy execution only the adaptation-rules of the 

Sgen adaptation-strategy are evaluated by the Policy Engine, specifying only 

default values and generic shallow adaptation of the bitrate in relation to the 

bandwidth (formula (1) above).  

All constraints existing in the adaptation-rules of the other adaptation-strategies 

on battery, data volume, credit LTPGs or user preferences are overridden, 

allowing maximum attainable value to bitrateQoSReq (as long as it is <= 

0.8*bandwidth) and maximum values to costQoSReq, two SR QoS-variables that 

mainly determine the selected serviceID (on cost and bandwidth issues).   

2. Full Adaptation Case 2 

In this case, the same monthly context usage model is used and the same policy 

files, but with the SWCs at their default values as indicated in Table 7-6 of the 

case study. Depending on the context, the selected rules at policy execution on 

the consumable resource LTPGs may specify QoS level values reduced in 

comparison to the maximum attainable values, to help achieve the LTPGs. 

Result Analysis 

The selected parameters from the sequential policy execution results on the two 

adaptation cases are depicted in the two charts 8-1 & 8-2. In order to improve 

visibility of results, only the last daily CSD session every day in the month is 

depicted in the charts, with the evolution of selected metrics. 
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Figure 8-3 – Adaptation Case1: Very Shallow Adaptation 

Dataseries: 3LTPG_3CEC_USGM&4UPs_SIMPLE 

 

 

Figure 8-4 - Adaptation Case 2 – Full Adaptation with LTPGs 

Dataseries: 3LTPG_3CEC_USGM&4UPs_All24   

 

Each of these charts demonstrates selected context & adaptation parameters 

values over the full monthly period of the usage data sequence of CSD sessions. 

The full lines in blue and red represent the video-encoding bitrate bitrateQoSReq 

QoS request in KB/s and the costQoSReq of the service requested in percentage 
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of the policy priceMax value.  The dotted lines represent the context parameters: 

bandwidth in KB/s (upper chart part), battery level % (lower chart part), 

creditUseratio and dataUseratio in % of the respective credit or data allowance. 

The battery level (% full scale) dotted line at the lower chart part, makes distinct 

the 11 successive decreasing line segments of battery discharge cycles.   

Comparison of Figs. 8-3 & 8-4 – Adaptation Case 1 vs. Adaptation Case 2 

Case 1 -- Since the SR is adapted at nominal QoS levels, high QoS bitrate and 

nominal cost QoS levels service is discovered and bound to at each adaptation, 

thus leading to high resources use. Case 2 – On the contrary in case 2, the SR is 

adapted to in a context-aware manner, thus leading to discovery of more services 

with more fitting QoS, economizing on device resources.   Specifically:  

bitrateQoSReq  – Case 1 – It is clear from the bandwidth & bitrateQoSReq lines 

that bitrate follows the formula bitrateQoSreq = 0.8*bandwidth (1), without any 

other restriction from battery level drop, or credit or data volume increase, at the 

very shallow Adaptation Case 1. Case 2 – It is additionally clear from the 

bandwidth & bitrateQoSReq line graphs that in this case the bitrate QoS request 

values are reduced when battery is low and when dataRefRate exceeds 100. 

costQoSReq – Case 1 – This QoS-variable is specified at 100% the maximum 

attainable value. Case 2 – In this case costQoSReq value is reduced when 

creditRefRate exceeds 100%, since credit is being spent at a faster than 

expected rate.   

creditUseratio – Case 1 – The resulting parameters credit use ratio already at 

the 11th day of the month has covered the credit allowance and by the end of the 

month escalated to  254.9%. Case 2 – The resulting credit use ratio in this case 

does not exceed 100% by the end of month, thus ensuring that the credit goal is 

achieved. 

dataUseratio – Case 1 – The data volume use ratio exceeds the monthly 

allowance by the 16nth day and escalates to 174.5% by the end of month. Case 

2 – The data volume use ratio does not exceed the monthly allowance by the end 

of month and escalates only to 87%. 

Min battery level – Case 1 – The average value of the minimum battery level at 

the end of each discharge cycle is 18.4% instead of the minimum 20% 

postulated. Out of the 10 full discharge cycles in the month there, have been 6 

LTPG failures with battery level min < 20% to shallow adaptation logic. Case 2 – 

The average value of the minimum battery level at the end of each discharge 

cycle is 27%, satisfying the LTPG of minimum 20% battery level. 
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Table 8-2 above recapitulates key values of the parameters considered in the 

above two adaptation cases, to focus numerically on the different outcomes.  

Table 8-2 – Characteristics of Monthly Usage Results in Charts 8-3 & 8-4 

Parameter Considered – Units Shallow Adaptation 

Adaptation Case 1 

Full Adaptation 

Adapt. Case 2 

CSD Sessions 153 153 

Data rows 1843 1604 mon. cycles 

No of Adaptations 217 208 adaptations 

Max price per MB downloaded 0.0024 GBP/MB 0.0024 GBP/MB 

Total MBs downloaded 6977 MBs 3513 MBs 

Data Volume Allowance  MBs 4000 MBs 4000 MBs 

dataUseratio % 174.5% 87.8% 

Cloud Cost Monthly     GBP 12.75 GBPs 4.71 GPBs 

Monthly Credit Allowance GBP 5 GBPs 5 GBPs 

creditUseratio % 254.9% 94% 

No of battery discharge cycles 10 10 

Average Min battery level   % 18.4% 27.16% 

Failures in Min Bat. Level 20% 6 failures in 10 1 failure in 10 

Table 8-3 – Distribution of services bound during the month in Fig. 8-3 

serviceID service1 service2 service3 service4 Total 

Duration 1730 9283 20310 11676 42999 

% 4.0% 21.6% 47.2% 27.2% 100% 

Table 8-4 – Distribution of services bound during the month in Fig. 8-4  

serviceID service1 service2 service3 service4 Total 

Duration 13604 21924 6494 977 42999 

% 31.6% 51.0% 15.1% 2.3% 100% 

Conclusions -- The conclusions drawn on the RQ1a & b are the following:  

 The policy-based context-aware adaptation of the SR QoS levels is 

absolutely required for discovery of the most fitting service 

 Policy-based context-aware adaptation of the SR QoS levels allows the 

adaptation logic to ensure that the device physical or virtual (policy-defined) 

resources can be managed efficiently as in the adaptation case 2 where all 

LTPGs are achieved, while in the shallow adaptation case 1 all goals failed. 

8.2.2 Implications 

In both the above examples, generic adaptation on the bitrateQoSreq (the video-

encoding bitrate) was established by the adaptation logic even in case 1. If this 
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generic adaptation did not exist, and the SR had only a nominal unadapted value, 

than in all cases where bandwidth were smaller to the bitrateQoSReq, long 

delays would be expected and unsatisfactory operation for video-streaming.    

In the two above examples on the same context usage model, the middleware-

based Volare DCAA approach enables improved performance for mobile 

applications with no inherent adaptation capability, by enabling capability for 

service discovery with QoS levels corresponding to the current needs of the 

mobile user, with benefits like:   

a) Satisfactory performance quality and minimization of delays due to fitting 

video encoding bitrate in relation to the current bandwidth  

b) Optimized use of policy-based physical (battery) or virtual resources like cost 

of binding on the Cloud, by adapting the service request QoS levels to the 

current context (including user preference requirements), and thus 

discovering a fitting service that allows reasonable use of the resources, and 

relieving the user from the burden of monitoring them and acting accordingly.  

c) Dynamic context-aware adaptation at runtime, at significant discrepancy 

between current and new QoS levels due to context change, is also required 

for long service bindings, since context variation at runtime may make the 

service bound to not fitting to the new current context.    

8.3 Two-level Policy Structure of the Adaptation Logic 

RQ2: Does enabling mobile applications SRs adaptation that takes into account 

both the device’s capabilities and application’s requirements, by utilizing two-level 

policy architecture, provide advantages in policy authoring while reducing policy 

complexity? 

Typically for policy-based adaptation logic that takes into account both the 

device’s capabilities and the application’s requirements, the firmware 

(middleware) developer and each application developer should cooperate to 

develop the specific adaptation logic for each application that answers to the joint 

requirements. However, as the purpose of the Volare approach is to enable for 

support by the middleware of unanticipated mobile applications launching cloud 

service discovery (CSD) in an easy way for the application developer, without 

requiring a joint cooperated effort of different developers, two-level policy 

architecture has been adopted.  

The Volare Composite Policy Procedure -- At an active SR by a mobile 

application with a stored application policy, the adaptation logic – called in this 
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work “Composite Policy” – is automatically created by the middleware by parsing 

and merging two policy files: the firmware “global” policy file and the active 

“application” policy file. Then, at each policy execution the Policy Engine runs the 

“Composite Policy”, the middleware updates the context-variables and the 

statistic-calculation-variables (Working Memory), and new values for the QoS-

variables and the middleware configuration-variables are calculated.  

This solution leads for each active application to a “Composite” adaptation logic 

that also covers the active application requirements, but with the firmware part 

prefixed. All the middleware-supported context-variables are predetermined in the 

global policy as well as the global QoS variables and any intermediate variables 

for the global policy constraints and goals, while the application declares the 

application-specific QoS and eventually required intermediate variables.   

Benefits in using the “Composite Policy” -- The Volare two-level policy 

architecture, by having all middleware-supported context-variables and the global 

QoS-variables as well as required intermediate variables (calculation- or 

auxiliary-variables) declared at the global policy, facilitates the task of the 

application policy developers that only need to declare application-specific QoS-

variables.  

Similarly, it is the global policy developer’s task to configure the User Preferences 

Model and to define the User Choices Profile and the SWCs, thus totally relieving 

the application developer of this burden, while all these declared parameters may 

be directly used in the application adaptation-rules.   

On adaptation-variables common across both policies (global QoS-variables and 

configuration-variables) the application policy developer may introduce in the 

application policy file the required rules, thanks to the Volare approach 

characteristics of: (i) allowing multiple rules in the “Composite Policy” (i.e. across 

both policies) that may be selectable at policy execution and (ii) inter-policy 

conflict resolution capability through priority assigning by keywords, (iii) the 

weight expression for each rule. These three features allow the application policy 

developer to author rules on the common for both policies adaptation-variables, 

although such rules may exist in the global policy – selectable under the same 

context instance, and: 

 either to set a higher priority to a rule on a common adaptation-variable, thus 

overriding global policy selectable rules on this variable; 

 or to specify the weight expression so that all selectable rules across both 

policies may contribute to the adaptation result.  
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Through these characteristics, the complexity of application policy authoring is 

reduced to the minimum necessary, while allowing the policy developers for 

unanticipated applications to easily provide the application policy, having read the 

global policy and conforming to its constraints and goals, but without the 

obligation to cooperate with the global developer in order to build a joint policy.  

8.4 Integrating a configurable User Preferences Model 

RQ3: Can we enable the user to influence the QoS levels adaptation of the SRs 

launched by mobile applications, by either customizing and/or dynamically fine-

tuning on-the-fly the adaptation behaviour on cross-cutting concerns? 

Mobile applications may have a User Interface for setting preferences, but this is 

an application-specific feature. The middleware assigning DCAA capability is 

expected to support different mobile applications launching CSD and its 

adaptation logic may have goals and requirements on quantitative or qualitative 

characteristics on adaptation behaviour common for all applications, such as 

managing resources cost, battery, data volume, rediscoveries at runtime, etc. 

These goals or requirements should be user-customizable, without the need to 

update the policy.  

The solution the Volare approach introduces to satisfy this need for a 

customization tool on common issues of the middleware adaptation logic for 

every mobile application assigned SR DCAA capability, consists in installing a 

configurable by the developer User Preferences Interface (UPI) application, that 

operates as an external multi-sensor dispatching to the middleware the current 

user preferences (see also related subsections §6.4 and §4.2).  

1. Global Policy Parameters Customization  

The global policy developer configures through the UPI the User Preferences 

Model, specifying the customizable parameters, their default values and 

upper/lower bounds (for numeric parameters) in the User Choices Profile (UCP).  

Then customization of the global policy on the customizable parameters by the 

user is easy through the UPI, by modifying the default values at the User Choices 

Profile. Such parameters configured through the UPI and the global policy to be 

user-customizable are: the LTPG goals, threshold parameters, maximum allowed 

price per MB downloaded, whether adaptation at runtime should be restrained on 

LTPG issues or not to prevent frequent rediscoveries, etc. Such parameters may 

be either quantitative or decision-making parameters (string or Boolean type). 
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Since the global policy is common for every mobile application installed on the 

device that is subjected to SR DCAA through stored application policy, this UPI 

feature allows uniform adaptation behaviour customization on all application 

sessions. Consequently it facilitates the customization by the user, without policy 

update, of operation goals that concern all applications, such as respecting 

LTPGs on credit or data volume on a monthly cycle or battery drop within a 

battery discharge cycle, or avoiding non-necessary rediscoveries at runtime, etc.  

2. User Preference Mode Selection  

Another need detected when running the prototype, is the capability for the user 

to impose dynamically different adaptation behaviour on common characteristics 

for all applications, in response to a change of user intentions or real-life needs. 

As described in §6.4, the UPI application when configured by the global policy 

developer allows user preference mode selection – by selecting on-the-fly one of 

several policy-based options, like: “HighQuality”, “Normal”, “SaveBattery”, 

“LowCost” – with each option specifying alternative adaptation behaviour. 

Demonstration of effectiveness of the configurable User Preferences Model 

– In the following examples is demonstrated the effectiveness of the Volare 

configurable User Preferences Model through the UPI for customization or fine-

tuning of the adaptation behaviour by the user on cross-cutting concerns on the 

case study video-streaming application, through simulations run on monitoring 

scenarios based on the context usage model.    

8.4.1 Simulation Setting 

The 4 User Preference (UP) Graphs – The parameter graph at each User 

Preference shows the differentiated adaptation behavior as derived by policy 

execution for each UP, under all other context conditions the same. 

Battery Discharge Cycle – The battery level in the chart within the Battery 

Discharge Cycle (time indications omitted for simplicity) is dropping from a 

maximum (full charging) to a minimum value. In the monthly model, there are 11 

discharge cycles. The batteryUseratio, depicted by a dotted line, is steadily 

increasing and is one of the monitoring metrics for specifying adaptation for the 

Battery LTPG.   

The bandwidth restriction on the highest attainable bitrateQoSReq values –

For client-server network communications reasons, the current bandwidth value 

imposes the technical constraint that: bitrateQoSReq <= 0.8*bandwidth (1). As 
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it is obvious, any bandwidth value decrease causes a constraint to the 

bitrateQoSReq, expressed exactly by bitrateQoSReq graph at UP = 

“HighQuality”, where it takes the maximum technically attainable value respecting 

constraint (1) without any other constraint (except at VLow battery).  

Remaining Context or Calculation Input Parameters – In addition to the basic 

context-variables bandwidth and battery, the LTPG monitoring metrics 

“creditUseratio” & “creditRefRate”, and “dataUseratio” & “dataRefRate”, are all 

depicted with dotted lines in contrast to the full lines of the QoS-variable(s). In 

order to better differentiate on the influence of each context-variable on the 

results, we construct and group together a family of Charts for each parameter 

within the same Battery Discharge Cycle. In these successive charts, we 

examine the change of one context variable at a time, along with the Battery 

Discharge Cycle at each of the 4 Ups, producing the following charts:   

a) A chart depecting only the battery variation (and the dependent 

batteryUseratio) and bandwidth at affixed high value, as reference Chart, 

demonstrating the influence of the Battery Mgmt LTPG.  

b) A chart with bandwidth dropping in 3 steps along the Discharge Cycle, to 

demonstrate parameter changes with bandwidth drop.   

c) A chart with regularly repeated bandwidth variation, to demonstrate 

parameter changes with bandwidth drop.   

2. The most used Context Data Series used for the Charts  

DataSeries_1 – Fixed bandwidth along a Battery Discharge Cycle 

DataSeries_1 have a fixed high bandwidth value along the whole Battery 

Discharge Cycle. It serves as reference for the other context data series and their 

respective charts that have varying input parameters in addition to battery and 

batteryUseratio.   

DataSeries_2 – 3 Step fixed bandwidth along a Battery Discharge Cycle 

DataSeries_2 have a decreasing bandwidth value scaled in 3 steps along the 

Battery Discharge Cycle. It serves to demonstrate the decreasing bandwidth 

constraining influence on bitrateQoSReq due to constraint (1).  

DataSeries_3 – 5 Step variation bandwidth along a Battery Discharge Cycle 

DataSeries_3 have a regularly repeated bandwidth values profile in 5 intervals 

across the Battery Discharge Cycle. It serves to demonstrate the adaptation 

behavior in varying bandwidth conditions at different batteryUseratio values, 
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demonstrating the Battery Mgmt LTPG influence on the parameter under 

consideration. 

Dataseries_4 - Monthly Usage Model Data at each of the 4 UPs 

The Monthly Usage Model data comparison purposes have been simulated with 

each of the four User Preference Modes. It serves to demonstrate the adaptation 

behavior across the monthly horizon, with increasing consumption of resources. 

However, case-specific context models may be used also, with simulation-based 

usage data. 

8.4.2 Results Analysis 

1. Charts with adaptations within a full Battery Discharge Cycle (3 days)  

1st Parameter: bitrateQoSReq -- In Figure 8-1 above the adapted bitrate QoS 

Request (bitrateQoSReq) parameter graphs are depicted, with results provided 

under each of the 4 User Preference Modes. The X-axis depicts policy 

executions at initial Cloud Service Discovery sessions within a full Battery 

Discharge Cycle data series, with bandwidth and all other context parameters at 

the same values for all UPs. 

Figure 8-5 – SR bitrateQoSReq Graphs/UP without bandwidth variation 

     Dataseries_1: Context data within a full Battery Discharge Cycle 

 

Main Remarks 

a) Influence of the Battery Mgmt LTPG with the batteryUseratio 
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It is noted – according to the Adaptation Policy – that as the batteryUseratio value 

is increasing above the 100% gridline, it causes a gradual drop in bitrateQoSReq, 

depending on the current UP (except at “HighQuality” where the ratio is ignored). 

Similarly, at VLowBattery (< 25%), the VLowBat adaptation-rules of the 

application policy cause a steep bitrateQoSReq value drop. The difference of 

bitrateQoSReq graph (and consequently of the SR) at each alternative UP, under 

the same other context data, demonstrates the alternative adaptation behavior 

that the user may impose dynamically through the UPI. 

In Figure 8-2 below, the adapted bitrate QoS Request (bitrateQoSReq) graphs 

are depicted with results provided under each of the 4 User Preference Modes by 

policy execution at initial Cloud Service Discovery sessions. Here we are using 

decreasing bandwidth values scaled in 3 steps within the Battery Discharge 

Cycle and all other context parameters at fixed values. 

Figure 8-6 – SR bitrateQoSReq Graphs/UP with 3 Step bandwidth variation 

Dataseries_2: Context data within a full Battery Discharge Cycle 

 

Main Remarks 

In addition to the equally valid previous remarks (a) and (b), it can be noted: 

c) Constraining Influence of decreasing bandwidth on bitrateQoSReq 

At each bandwidth value step in the chart, the bitrateQoSReq is abruptly reduced 

as imposed by constraint (1) in (a) above, to allowable levels.  
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d) Constraining Influence of the increasing metric batteryUseratio > 100  

The same explanation on the “irregular” delay that bitrateQoSReq values 

expected at bandwidth value step 2, as the decreasing graphs due to the policy-

based gradual adaptation should have started earlier – as soon as the 

batteryUseratio exceeded 100 (the 100 gridline in the chart). And in fact the 

adaptation-rules provided values were decreasing, but the decrease has been 

abruptly pruned, since the max values should have been <= 0.8*bandwidth = 

0.8*180 = 144. This policy-based value pruning by constraint (1) is the reason 

why the 4 graphs show this “peculiar” delay in conforming to the Battery Mgmt 

LTPG when the batteryUseratio becomes > 100. 

Figure 8-7 – SR bitrateQoSReq Graphs/UP with bandwidth variation 

Dataseries_3: Context data within a full Battery Discharge Cycle 

 

In addition to the previous remarks (a), (b), (c) and (d) above, it can be noted:  

e) Constraining Influence of the increasing metric batteryUseratio > 100  

In the figure 8-7 above, the adapted bitrate QoS Request (bitrateQoSReq) 

graphs under the 4 user preference modes is depicted, as calculated by policy 

execution at initial CSD along a Battery Discharge Cycle, with repeated regular 

bandwidth variation, but at decreasing battery level and increasing battery use 

metric of the Battery Mgmt LTPG. These metrics impose gradual reduction on the 

bitrateQoSReq values, under each user preference mode while all other context 

parameters are at fixed values.  
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2nd Parameter Chart: costQoSReq 

In the following charts, the QoS-variable costQoSReq is depicted along a full 

Battery Discharge Cycle, as derived by policy execution under the Dataseries_1 

context model, with fixed bandwidth and all other context parameters the same, 

under each of the 4 user preference modes (UPs).  

   Figure 8-8 – SR costQoSReq Graphs/UP without bandwidth variation 

Dataseries_1: Context data series within a full Battery Discharge Cycle 

 

Remarks It is evident that every UP, even under all other context parameters the 

same, specify different adaptation behaviour to the costQoSReq. Only three 

graphs are shown, since for costQoSReq  UP = “Normal” or “SaveBattery” gives 

the same results. It is noted though the clear difference in successively 

decreasing levels for costQoSReq from the “HighQuality” UP (blue line) to the 

“Normal” or “SaveBattery” UPs (red line coverung the green line) and to the bown 

line corresponding to UP = “LowCost”.     

Adaptation influence of User Preference Mode selection -- Modifying the SR 

QoS-variables by selecting a different user preference mode under the same 

other context conditions, typically leads to discovery of a different service that 

modifies application performance quality, MBs downloaded and cost. In the 

following charts in Figs. 8-9. 8-10 and 8-11 with CSD sessions and adaptations 

along a battery discharge cycle, the difference in battery drop, in rate of MBs 
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downloaded, or in the cost of binding on cloud services, is clearly demonstrated 

for alternative simulated runs on the same other context data.  

Figure 8-9 – Battery Level Graphs per User Preference 

Usage Model USGM1 within a full Battery Discharge Cycle 

 

 

Figure 8-10 – creditUseRatio over Monthly Context Model – 4UPs 

Dataseries_6: 3LTPG_3CEC_USG1M_All24_4UP 
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Figure 8-11 – creditUseRatio over the Monthly Context Usage Model – 4UPs 

Dataseries_6: 3LTPG_3CEC_USG1M_All24_4UP 

 

2. Charts with adaptations along the full Monthly Context Usage Model 

Results along the Monthly Usage Model on dataUseRatio & creditUseRatio 

The following two charts: 8-10 and 8-11 depict the cumulative variables:  

 dataUseRatio in % of the data allowance (which multiplied by 4000 MBs 

yields the downloaded MBs evolution)  

 creditUseRatio in % of the credit allowance (which multiplied by 5 GBPs 

yields the cost evolution within the month in GPBs/month),  

but with values derived over a full run of the monthly context usage model for 

each of the 4 UPs. These charts serve for demonstrating quantitatively the 

difference in adaptation behavior at different user preference modes on 

cumulative parameters over a monthly period. The percent metrics dataUseRatio 

and creditUseRatio have been used instead of the monthly parameters for MBs 

and cost, for chart scale reasons. Note the max values at end of month per UP. 

User Pref HighQuality Normal LowCost SaveBattery 

dataUseRatio% 174% 87% 88% 79% 

MBs 6196 2698 2708 2360 

creditUseRatio% 256% 94% 74% 94% 

Cost GPBs 12.8 4.7 4.0 4.7 
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Results along the Monthly Usage Model on bitrateQoSReq & costQoSreq 

The following two charts: 8-12 and 8-13, also depict the basic QoS variables 

bitrateQoSReq and costQoSReq respectively, but with values derived over a full 

run of the monthly context usage model for each of the 4 UPs. The bandwidth 

variation depicted is the one of the monthly context usage model. 

In the two charts 8-12 and 8-13 below, it should be noted that battery level and 

the monitoring metrics depicted: creditUseratio, creditRefRate, dataUseratio and 

dataRefRate correspond only to the “Normal” UP. It is evident that their evolution 

within the monthly usage model would be different under each UP, but as the 

visibility on the chart would be impaired if more metrics were depicted, only the 

ones under UP = “Normal” are demonstrated. 

For bitrateQoSReq in Chart 8-12 – It is clear from the chart that all previous 

remarks (a) to (d) are valid also on the monthly usage model. The blue line 

corresponding at UP = HighQuality also indicates the application of constraint of 

bandwidth on the bitrateQoSReq maximum values. Additionally, the influence of 

the Battery LTPG that imposes bitrate drop at the very low points in Very Low (< 

30%) battery level (defined by the orange dotted line) at the first 3 and at the 9th 

battery discharge cycle is clear.  

 

 

Figure 8-12 – bitrateQoSReq along the Monthly Usage Model at each UP  

Dataseries_4: 3LTPG_3CEC_USGM_All24_4UP GRAPHS 
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Figure 8-13 – costQoSReq along the Monthly Usage Model at each UP  

Dataseries_4: 3LTPG_3CEC_USGM_All24_4UP GRAPHS 

 

At the same time, the difference in the adaptation behavior by each UP is 

fundamental on bitrateQoSReq and in consequence to the service with fitting 

QoS to be selected at SD for consumption.  

For costQoSReq in Chart 8-13 – Since costQoSReq is not influenced in the 

policy by the external context (bandwidth or battery level), the only parameters 

that influence it are the current UP on the one side and on the other side the 

Credit LTPG metrics. As the creditUseratio increases (dotted blue line) or the 

creditRefRate (dotted green line) is above 100, there is also gradual reduction at 

the QoS parameter values.  

8.4.3 Implications 

We can make the following remarks on the charts in the previous figures, from 

fig. 8-3 to fig. 8-13: 

1. Graphs conformity to the User Preference Metamorphic Relation  

It is noted that the Metamorphic Relation referenced before is clear. Under same 

all other context conditions, the bitrateQoSReq and costQoSReq values conform 

to the expected inequality: 

HighQuality value >= Normal value >= (LowCost value or SaveBattery value) (2) 

Similar conclusions are drawn from Figs. 8-9 to 8-11, on adaptation dependent 

parameters, like cloudMBs, cloudCost, or battery drop within a battery discharge 
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cycle. This is a testability feature of the User Preferences Model that allows 

qualitative verification of the adaptation behavior on test suites or through charts, 

on whether relation (2) is respected. 

2. User Preference-dependent distinct alternative Adaptation Behavior.  

In all charts, a clear differentiation of behavior is evident. It is a great advantage 

to enable the user, easily and on-the-fly, to select a UP and have the appropriate 

adaptation behavior in case of constrained resources through “SaveBattery” or 

“LowCost”, full technically attainable performance at other times through 

“HighQuality”, or the standard high performance through the “Normal” UP. 

In all charts of this subsection with overlapping graphs of adaptation-related  

parameters, either QoS-variables (like costQoSReq or bitrateQoSReq) or 

adaptation-dependent (like MBs, cloudCost,  battery drop), it is clear that the 

change of user preference mode does affect the adaptation behavior of the 

system.  

3. Enabling the User to Fine-tune the Adaptation Behavior 

Finally, although not directly referenced in the charts considered, through the 

UPI, the user is empowered without the need for policy updates, to customize the 

adaptation logic on the LTPG goal values, setting for instance the value for 

battery Very Low Level, or credit allowance, or data volume allowance, etc. This 

is a useful feature of the Volare approach and is valid for all mobile applications 

assigned SR DCAA at CSD sessions.    

8.5 Introducing LTPGs 

RQ4: Would adding in the policy quantitative long term goals over finite horizons 

enable the user to delegate to the adaptation logic long term resource and/or 

quality management? 

A Long Term Performance Goal (LTPG) introduced by this work, constitutes a 

particular type of adaptation-rules cluster in the adaptation logic, because it 

reasons not only on the current context and the current application session but 

on a stochastic sequence of many recurrent sessions within a finite temporal 

horizon, by the end of which a quantitative goal should have been achieved, and 

then a new LTPG episode starts (see §6.5 for a more detailed description). 

For enabling the policy developer to introduce LTPGs in the adaptation logic in a 

systematic and not in a custom-made manner, requires: 

 supporting functionality by the middleware for storing relevant information on 

the past sessions within the LTPG horizon, i.e. a data base, 
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 supporting functionality by the middleware for a minimum of statistic functions 

that allow information retrieval from the database and statistical processing 

and monitoring of periods over which the statistic functions are applied  (from 

the most simple of calculating the new sum of a parameter at each policy 

execution to more wide statistic functions), 

 the APSL capability to allow the developer to declare and use in the policy of 

metrics derived by specified statistic functions on the database data over s 

specified horizon, 

 a design template on adaptation reasoning for building and introducing the 

LTPG cluster of adaptation-rules in the policy.  

The LTPG concept and design model, to the best of our knowledge not 

encountered – at least in a non-custom but systematic manner -- in the relevant 

literature on mobile middleware, is one of the fundamental contributions of this 

Thesis.  

It entails a development cost for endowing the middleware and the APSL with the 

capabilities referenced and then developing LTPGs in the adaptation logic. Yet, it 

allows the user to delegate supervisory tasks to the adaptation logic, like: monthly 

credit or data volume allowance or battery level Mgmt, not simply in the sense of 

monitoring performance or resource use metrics, but of actively intervening to 

adapt the system behaviour at the successive CSD sessions, transparently to the 

application and the user, so that the set goal tends to be achieved by the end of 

its horizon, if the related applications use does not exceed certain limits. 

Concerning RQ4, on whether setting LTPGs over finite horizons enables the user 

to delegate long term resource or quality management to the adaptation logic, the 

following examples will demonstrate if and to what extent such tasks on a 

sequence of CSD sessions may be delegated to the policy logic.  

In the case study adaptation logic, three LTPGs are set in the global policy, 

supported also by the video-streaming application policy (see §7.4 and §7.5): 

 the Monthly Credit Allowance LTPG, with goal not to exceed the contractual 5 

GBP/month by the MNSP on MBs from cloud services, adapting the 

costQoSReq QoS-variable; 

 the Monthly Data Volume LTPG, with goal not to exceed the 4000 MBs/month 

on data downloading through the MNSP on cloud and non-cloud services, 

adapting the bitrateQoSReq QoS-variable; 



 
 
   

241 
 

 the Battery Level LTPG, with goal to retain by the end of each discharge 

cycle at least 20% battery level, adapting the bitrateQoSReq QoS variable. 

8.5.1 Simulation Setting     

To answer RQ4, several simulated runs of the device operation are derived on 

different monitoring scenarios, alternative of the monthly context usage model 

already described in §7.2. five alternative monitoring scenarios on the monthly 

context usage model are designed on the following parameters with all other 

parameters intact: priceMax, fixedBW, no constraints:  

 Fig. 8-14 with priceMax = 0.0024 GBPs/MB, at the context usage model, it 

remains as the standard case study reference. 

 Fig. 8-15 with priceMax = 0.0016 GBPs/MB, at the context usage model, 

 Fig. 8-16 with priceMax = 0.0032 GBPs/MB downloaded from cloud services,  

 Fig. 8-17 with fixed bandwidth of 400 KB/s at the basic priceMax: 0.0024. 

 Fig. 18 with the original context usage model, but with adaptation-rules on the 

LTPGs overridden by setting wSdat = wScost = wSres = 0, so that only the 

bitrateQoSReq – bandwidth constraint is followed. 

8.5.2 Result Analysis         

The Table 8-5 on the simulated outcomes concerning the three LTPGs on these 

five monitoring scenarios run over the whole monthly context models, shows that 

the goals have been achieved except at extreme usage cases, as in Fig. 16 (33% 

higher priceMax), or in Fig. 8-17 (fixed maximum bandwidth 400 KB/s) and Fig. 8-

18 which serves for upper bound reference since the LTPG adaptation-rules are 

overridden.  

LTPG failures have been noted on the Credit LTPG (in Figs. 8-16 to 8-17) only 

and of small deviation. The other 2 LTPGs seem to have been well defended. 

Only in the extreme scenario of Fig. 8-18, where no LTPGs were in action, the 

limits have been exceeded.  

All three LTPGs are successful in the standard scenario of Fig. 8-14. Fig. 8-15 

has a priceMax value 33% smaller than the case study value, leading to an 

inversion: instead of the Credit LTPG being the bottleneck, in this case the Data 

Volume LTPG risks of getting out of limit.  

Table 8-5 also details the time percentage each service has been bound, from 

the one with lowest price & QoS (service1) to the ones with successively higher 

price & QoS (service4). In all scenarios same total monthly duration on the cloud. 
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Table 8-5 – Performance Metrics for each Monthly Monitoring Scenario  

Parameter  Units Fig. 8-14 Fig. 8-15 Fig. 8-16 Fig. 8-17 Fig. 8-18 

Days duration d 31 31 31 31 31 

Cloud duration s 42999 42999 42999 42999 42999 

CSD sessions  154 154 154 154 154 

Adaptations  217 217 217 217 217 

priceMax GBPs 0.0024 0.0016 0.0032 0.0024 0.0024 

creditUseratio % 95.5% 75.45% 103.16% 105.85% 254.99% 

cloudCost GBPs 4.78 3.77 5.16 5.29 12.75 

dataUseratio & 87.8% 98.87% 76.9% 91.10% 174.44% 

cloudMBs MBs 3510 3955 3074 3644 11077 

Battery Min % 30.96 29.42 32.9 37.62 18.44 

Battery Min Avg % 26.21 25.60 26.9 32.06 12.53 

service1 % 31.6% 9.5% 45.4% 41.8% 4.0% 

service2 % 51% 67% 44.7% 45.4% 26.2% 

service3 % 15.1% 21% 8.4% 3.4% 47.4% 

service4 % 2.3% 2.1% 1.6% 9.5% 27.4% 

 

 

Figure 8-14 – credit & dataUseratio along the Monthly Usage Model  

Dataseries_4: 3LTPG_3CEC_USGM&4UPs_AllSWCs_24 
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Figure 8-15 – credit & dataUseratio along the Monthly Usage Model 

Dataseries_5: 3LTPG_3CEC_USGM&4UPs_AllSWCs_16 

 

 

Figure 8-16 – credit & dataUseratio along the Monthly Usage Model 

Dataseries_6: 3LTPG_3CEC_USGM&4UPs_AllSWCs_32 
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Figure 8-17 – credit & dataUseratio along modified Monthly Usage Model 

Dataseries_6: 3LTPG_3CEC_USGM&4UPs_FxdBW400_All24 

 

 

 

Figure 8-18 – credit & dataUseratio along the Monthly Usage Model 

Dataseries_6: 3LTPG_3CEC_USGM&4UPs_AllSWCs=0_24 

 

 



 
 
   

245 
 

RQ4a -- Can the user delegate reliably the supervision on such LTPGs to the 

adaptation logic?  

The answer in this RQ, as the Table of results 8-5 indicates, is that there may be 

extreme scenarios where the duration on CSD applications and/or the contextual 

situations may exceed the limit goal. For instance the scenario in Fig. 8-16 has a 

priceMax value 33% higher than the case study normal value. Similarly the 

scenario in Fig. 8-17, with fixed maximum bandwidth presents the upper limit at 

the monthly duration of CSD sessions considered. 

It should be noted that the policy examined in the case study neither forbids the 

user to continue utilizing the applications, nor warns her even if the limits tend to 

be exceeded. The important fact is that the middleware, guided by the adaptation 

logic, monitors the goal metrics, adapts to keep the system on track as much as 

possible and even in case of LTPG failure, it reduces the deviation from the 

target. We note in Figs. 8-16 and 8-17, that even with 33% higher priceMax value 

(0.0032 instead of 0.0024) than the basic value, or with steady maximum 

bandwidth, violations are small in size. On the other side, in Figure 8-18, a policy 

with only bitrateQoSReq adjustment to 0.8*bandwidth, the resource use levels on 

the same context usage model attained were extraordinary, of the order of 254% 

for credit and 174% for data volume. Consequently and in relation to the 

threshold values set in the policy, the adaptation logic achieves very efficient 

management of the LTPG limits, in comparison to shallow adaptation examples.    

8.5.3 Implications -- Policy Self-Optimization on LTPGs 

RQ4b: Can the developer establish policy self-optimization based on usage 

history for long term goals over finite horizons? 

In addition to the possibility for relieving the user form several supervisory tasks 

and delegating them to the adaptation logic, LTPGs over finite horizons offer the 

potential for policy self-optimization in order to better achieve their goals in the 

future, based on the experience gained. This can be managed by certain 

supervisory level adaptation-rules that evaluate each LTPG at the end of its 

horizon for failure or success, or even on how well it performed. For instance, the 

goal of not exceeding the credit allowance may have been achieved by a large 

margin, but it was gained by systematically binding to very low QoS services and 

an optimization of the policy is necessary. Since the middleware has already in 

place usage data database Mgmt and a minimum of statistic functions support, 

evaluation of successes or failures at the end of each episode horizon LTPG may 
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lead to usage-based improved monitoring and adaptation metrics that can be 

developed by policy self-optimization.  

Policy Self-Optimization Example  

As a simple example in the case study policy, for each LTPG there is an initial 

percentage value “VLowLevel” that is used to define the High – Low or VLow 

resource availability for each LTPG and guide the intensity of adaptation. For 

credit and data volume LTPGs the initial value of creditVLowLevel = 

dataVLowLevel = 10%. By increasing the value of the parameter VLowLevel, the 

context sub-domain where the assessment will be Low or VLow increases and 

the action taken leads to slower parameter increase. 

In the case study global policy, three Criteria – Subpolicies at the 1st CEC, one for 

each LTPG, check at the end of each month on the average success or failure of 

the corresponding LTPG. In case of failure of one LTPG, the corresponding 

VLowLevel parameter is immediately increased, so that at the next monthly 

episode it will defend the goal more efficiently. In the monitoring scenario in Fig. 

8-16, at priceMax = 0.0032 GBPs/MB an LTPG failure occurred at the end of the 

month (see Table 8-5).  

The monitoring scenario was run for two consecutive months with identical 

context data series (the monthly context usage model). As Fig. 8-19 shows, at 

the end of the second month, the Credit LTPG had succeeded, because the 

policy-based parameter creditVLowLevel has increased at the beginning of the 

2nd month from 10% to 19.9%, and the result for creditUseratio has been 98.3% 

instead of 103.16%.   

This is a simple but demonstrating example of employing the added features 

introduced in the APSL, the middleware and the adaptation reasoning 

methodology for supporting LTPGs, to further explore policy self-optimization on 

the LTPG performance through learning from successes or failures and drawing 

conclusions from the usage pattern. Note that this self-optimization takes place 

transparently to the application and the user at horizon-level time scale.  

For this task, supervisory level adaptation-rules are specified, at the CEC have 

been specified that adapt the algorithm threshold parameters: “Prefixed” or 

“Usage-based” VLowLevel parameter value, in the adaptation-strategies that 

evaluate LTPG availability level and impose (or not) adaptation action (reducing 

the QoS levels at next adaptation).  The chart 8-19 depicts the sequence of 

adaptations on the same monthly context model repeated twice.    
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Example of Policy self-optimization at the next horizon after LTPG failure 

Figure 8-19 – credit & dataUseratio along the Monthly Usage Model 

Dataseries_6: 3LTPG_3CEC_USG2M&4UPs_AllSWCs_32 

 

 

8.6 Reducing the combinatorial explosion 

A great challenge at adaptation policy development is the combinatorial increase 

in the number of adaptation-rules to specify adaptation behaviour when there is 

high variability in both the number of Variation Points (VPs) and the number of 

mutually exclusive variants (MEVs) of each VP [101]. If k is the number of VPs of 

a system and nVPi is the number of variants of VPi, then the number of 

adaptation states tends to increase with the product in relation (1):   

 Nstates = nVP1 x nVP2 x … x nVPk  (1) 

Every adaptation state of the system requires a set of adaptation-rules to specify 

adaptation, at least one state-specific rule on one adaptation-variable. In the 

weight-based adaptation reasoning technique, ways are explored for by-passing 

the combinatorial explosion mainly from behavioral variability – in the scope of 

the Volare approach -- on cross-cutting concerns like optimal performance and 

resources use. By behavioral variability in this work is meant parameter 

adaptation mainly on quantitative parameters, in contrast to structural or 

variability.  

The idea consists in building the adaptation-rules concerning behavioral 

variability not on a contextual “situation” basis, but on wider context sub-domains 
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and have multiple rules expressing different adaptation interests to be activated 

at any given context simultaneously on the same adaptation-variable and define 

the adaptation by participative weighted contribution.  

8.6.1 Overlapping Sub-Policies Policy Architecture 

RQ5: Would utilizing a policy architecture using multiple simultaneously activated 

adaptation rules per adaptation-variable allow easy incorporation of multiple 

adaptation-concerns in the policy? 

A main characteristic of the Volare approach and specifically of the APSL 

consists in establishing a policy architecture that allows multiple simultaneously 

activated adaptation-rules per adaptation-variable. In contrast, the also rule-

based Action-based adaptation reasoning technique, allows only one rule per 

adaptation-variable to be selected at policy execution. 

The aforementioned characteristic of the Volare approach allows specifying 

adaptation on multiple simultaneously activated rules, and permits the building of 

the adaptation-rules in sub policies, where each one represents a major 

adaptation interest, called in this work adaptation-concern. In this way, the 

adaptation policy may be built in sub-policies, each serving an adaptation-

concern.  

For instance, in the case study policy, 6 major adaptation-concerns were adopted 

as covering the adaptation-space. As a consequence, the adaptation policy is 

built in 6 collections of adaptation-rules (the adaptation-strategies), with each one 

serving its adaptation-concern: generic operational constraints (Sgen), battery 

Mgmt (Sres), credit Mgmt (Scost), data volume Mgmt (Sdat), performance Mgmt 

(Sperf), disruption Mgmt (Sdat). This breakdown of the adaptation object in 

almost independent adaptation-strategies. facilitates the task of the policy 

developer.  The balance for the simultaneously activated rules of the adaptation-

strategies at any context on the same adaptation-variable, is established by the 

Weight Assigning Strategy.       

8.6.2 High Behavioral Variability while reducing the Combinatorial 

Explosion 

RQ6: Can we enable policy authoring of adaptation policies with high behavioural 

variability while reducing the combinatorial explosion by using multiple adaptation 

rules per adaptation-variable? 
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A main characteristic of the weight-based approach consists in building the 

adaptation policy in adaptation-strategies, with each one representing the rules 

that serve an adaptation-concern.  

As described in section 6, we distinguish the Variation Points (VPs) in:  

 structural or algorithmic VPs, each of which has a number of mutually 

exclusive structural or algorithmic variants that define the alternative mutually 

exclusive system configurations (MESCs),   

 behavioural variants are sub-collections of rules that can be simultaneously 

activated on the same adaptation-variables. 

Typically one behavioural variant from each behavioural VP is selected at each 

context instance, leading to multiple selected adaptation-rules on the same 

adaptation-variables from all relevant BVs.  

Example from the Case Study on the Video-Streaming Application  

1. Algorithmic or Structural VPs & MESCs  

Suppose, as described in §7.4 and 7.5 in case study, that the adaptive system 

has 3 algorithmic VPs, each with 2 mutually exclusive algorithmic variants: 

 Credit LTPG: prefixed or usage-based threshold parameters  

 Data Volume LTPG: prefixed or usage-based threshold parameters  

 Battery LTPG: : prefixed or usage-based threshold parameters 

This analysis distinguishes 3 VPs of algorithmic character, each with two 

variants, and consequently the number of alternative mutually exclusive 

configurations (MESCs) = NMESCs-COMB = 2 x 2 x 2 = 8.  

2. Behavioral VPs and BVs  

Suppose that for each MESC there are in total 4 behavioral VPs on cross-cutting 

concerns, each with 3 mutually exclusive behavioral variants (MEBVs): 

 Battery Mgmt LTPG VP with High – Low – VLow   

 Monthly Credit Mgmt LTPG VP with High – Low – VLow  

 Monthly Data Volume Mgmt LTPG VP with High – Low – VLow  

 Performance Mgmt VP with the 4 alternative user preference MEBVs 

(HighQuality - Normal – SaveBattery – LowCost) 

with all the MEBVs of each behavioral VP covering the valid context domain.    

In total there are: NBVs-COMB = 3 x 3 x 3 x 4 = 108 behavioral adaptation states, 

corresponding to each of the 8 MESCs of algorithmic character.  

This leads to 8 x 108 = 864 different adaptation states.  
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In the Action-based technique, with a single rule selectable at policy execution 

at a situation for each adaptation-variable, the developer would have to design: 

NMESCs-COMB x NBVs-COMB = 8 MESCs x 128 behavioral adaptation states = 864 

adaptation states. Each of these different adaptation states has to be specified by 

a collection of rules for each relevant adaptation-variable (at least one rule that is 

state-specific), defining the context sub-domain and the adaptation action.  

In the Weight-based technique though, since under each MESC the MEBVs 

are compatible, the developer would have under each MESC, NBVs-SUM = 3 + 3 + 

3 + 4 = 13 alternative behavioral adaptation states and for each one of them, 

would need to build a Subpolicy with rules for the relevant adaptation-variables.  

In total for the 8 MESCs there would be instead of the 864 states, only: 8 x 13 = 

104 alternative adaptation states, i.e. the combinatorial product of the MESCs 

times the sum of MEBVs: NMESCs-COMB x NBVs-SUM, instead of the combinatorial 

product of both factors: NMESCs-COMB x NBVs-SUM needed Subpolicies.  

Note that in both action- and weight-based techniques usually not all behavioral 

rules are MSC-specific. So many behavioral rules will be the same for more than 

one algorithmic variant or MESC, with possibly wider context sub-domains and 

only few variant-specific rules would need to specify MESC-specific behavior.  

3. Policy designed in multiple Consecutive Execution Cycles (CECs)  

RQ7: Can the use of multiple execution cycles in the adaptation policy allow for 

further reduction of the number of rules necessary to model complex adaptation 

behaviour? 

If the weight-based policy design includes multiple CECs, then the stratagem on 

behavioral adaptation described in the case study in global and application policy 

(see §7.4 and §7.5) can be applied, assigning to auxiliary-variables the 

parameters for the “usage-based” vs, “prefixed” algorithmic variants. This is 

possible if the algorithmic variants refer to alternative threshold parameters or 

metrics or values to be selected at different context conditions, and which are 

required to be used in other rules (either in predicates or in adaptation actions).  

Analytically, the following procedure is implemented at policy execution: 

 At the first CEC part, the adaptation-rules selecting the algorithmic variants 

would be selected and calculated yielding, say in pseudocode: 

If conditions1 … Then batteryVLowLevel = “PrefixedBatVLL” 

Else batteryVLowLevel = “Usage-basedBatVLL” 
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 At the second CEC, instead of having alternative Subpolicies with 

“PrefixedBatVLL” and other with “Usage-basedBatVLL”, through a policy-

driven declared auxiliary-variable batVLL, there will be a single rule in each 

case with batVLL, which will have already been calculated at the 1st CEC.   

Then in our example, instead of 128 Subpolicies we would need only 13 BVs + 8 

MESCs = 21 Subpolicies, (if all MESCs were representing metrics or values – as 

in the 8 variants of the case study), which is a distinct policy “shortening” on 

equivalent adaptation.   

The adaptation states to be specified are still 8 X 128 = 864 adapattion states 

NMESCs-COMB x NBVs-COMB = 8 MESCs x 128 behavioral adaptation states = 864 

Now in the example of the case study “Composite Policy”, in Appendix A and B, 

there are 31 Criteria – Subpolicies and a total of 142 adaptation-statements, i.e. 

142 adaptation-rules of the form: ”If condition … Then action”. As a consequence, 

there is a radical reduction in a Volare “Composite Policy” in the required number 

of adaptation-rules to specify the adaptation with 3 algorithmic VPs and 4 

behavioral VPs, of totally 864 adaptation states. 

4. Cost – Benefit on the Number of Policy Rules 

We note that since in the weight-based technique there are multiple rules 

selectable from relevant adaptation-strategies, a weight-based policy may usually 

have up to 1 rule per adaptation-variable and per Subpolicy in the adaptation-

strategy.  

At the same time, the number of rules increases quasi-linearly with the sum of 

MEBVs: NBVs-SUM instead of the combinatorial size NBVs-COMB of behavioral 

adaptation states.  When 3 x NBVs-SUM < NBVs-COMB (3a)  

the advantage in the number of rules lies with the weight-based technique.   

Especially if the advantage above mentioned in (3) may be used by designing the 

policy in CECs, then (3a) becomes:  

3 x (NBVs-SUM + NMESCs-SUM) < NBVs-COMB x NMESCs-COMB (3b),  

and the benefit is much greater. 

The higher the behavioral variability, the more extensive is the benefit for our 

technique, since the rules required to be authored and the context sub-domains 

considered increase quasi-linearly with the sum of BVs instead of combinatorial 

increase in the action-based adaptation reasoning. 



 
 
   

252 
 

8.7 Key Differences of the Volare APSL to other APSLs 

As analytically described in subchapters 2.4, 3.4 and 4.6 [18][22][34], there are 

three established main techniques on policy-based adaptation reasoning: the 

Action-based [7][58][69], the Goal-based [74][75] and the Utility-based one 

[18][19][84], although there are research attempts on hybrid forms of adaptation 

reasoning [68][77]. The key differences of the Weight-based Adaptation 

Reasoning Technique to the three other are emphasized below. 

1. Multiple Selectable Rules on the same Head Predicate 

The most important innovative characteristic of the VARE APSL, in contrast to all 

other Policy Specification Languages described in Chapter 2, consists in Conflict 

Resolution Directives allowing at policy execution all the highest priority matched 

rules to be selected, even more than one on the same head predicate. Thus, 

possibly more than one rule on the same adaptation-variable may be matched, 

selected and executed. 

2. Participative Weighted Contribution mechanism – 

In order to avoid inconsistencies the Volare APSL establishes Conflict Resolution 

Directives applying the Weighted Participative Contribution Rules for deriving the 

adaptation results from all the execution-values provided by the selected rules, 

based on the weight value of each selected rule: the weighted-average rule for 

numeric adaptation-variables and the majority rule on the sum of weights for the 

non-numeric adaptation-variables.  

3. Multiple Consecutive Execution Cycles at Policy Execution  

Another characteristic of the Volare APSL consists in optionally building the 

adaptation policy in more than one segment, each to be evaluated in 

Consecutive Execution Cycles. Consequently not all adaptation-rules are 

evaluated for matching and selection in one Policy Engine cycle, but in 

consecutive cycles specified in each Criteria-Subpolicy pair cycle declaration 

number. This characteristic establishes hierarchic policy by first calculating the 

architectural or operational main mutually exclusive modality variant(s) and in 

successive cycles the dependent adaptation-variables.  

4. Building the Policy in Adaptation-Strategies 

Building the policy not on the notion of a single rule selectable at any context 

instance and adaptation-variable, which is allowed without being the systematic 

practice, but in adaptation-strategies - each being a collection of the rules 
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designed to serve an adaptation-concern (a targeted adaptation viewpoint) 

over the whole valid context-domain. The adaptation-concerns need to cover the 

whole adaptation space as described in subchapters 4.2 – 4.3 and by the 

methodology in subchapters 6.1 – 6.2. Thus every global or application policy 

composed of parallel smaller, independent, specific-goal oriented sub-policies 

that cover the whole of adaptation interests. 

In the Action-based situation-action methodology [18][34], the developer 

considers each contextual “situation” and decides on the corresponding “action”. 

On the contrary, in the weight-based adaptation reasoning technique, every 

situation-action rule within an adaptation-strategy is built oriented to serve an 

adaptation-concern and may typically be overlapping with other rules on the 

same adaptation-variable serving other adaptation-concern(s), selectable jointly 

at policy to drive the adaptation.  

Additionally, the design of the policy file in Volare as a synthesis of rules under 

each MECV takes a top–down approach. Firstly, by horizontally defining the 

scenario adaptation-concerns & adaptation-strategies, secondly, by identifying 

existing alternative feasible MECVs of structural or algorithmic character 

adaptation, and finally under each MECV, specifying behavioral adaptation by 

developing the corresponding rules within every adaptation-strategy over the 

whole valid domain.  

8.8 Benefits of the Volare Approach         

The Volare approach aims at assigning through a mobile middleware DCAA 

capability to the SR of independent mobile applications launching service 

discovery, (i) by identifying the most appropriate QoS terms under the current 

context and policy and adapting the SR, and (ii) at runtime monitoring the context 

and re-adapting the SR activating rediscovery – if context change justifies it.  

The Volare approach provides benefits for the three system stakeholders: the 

global and the application policy and the mobile device user, outlined in the 

following paragraphs.  

8.8.1 Advantages for the Adaptation Logic Developers 

The weight-based adaptation reasoning technique innovative features like the 

identification of adaptation-concerns and building the adaptation policy logic in 

the corresponding adaptation-strategies, presents advantages especially in 

cases of high behavioral variability. Building a policy in the weight-based 
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approach for a scenario that lies within its scope, delivers certain advantages in 

comparison to the conventional action-based approach. 

1. Support of two-level policies 

The Volare middleware includes a mechanism for automated merging of the the 

global policy for the middleware operation and the application policy for the 

application specific QoS requirements, in one “Composite Policy” driving the 

adaptation. All middleware supported context-variables, LTPG metrics and global 

QoS-variables are declared in the global policy. 

This constitutes a significant advantage for the application policy developer, who 

only has to specify application-specific adaptation, conforming of course to the 

global policy requirements and goals. The application policy may make direct use 

of all declared variables in the global policy. These characteristics make the 

application policy developer’s task easier and lower the development cost.   

2. The Volare configurable User Preferences Model 

The Volare configurable User Preferences Model, supported by the UPI 

application to communicate dynamically user preferences changes to the 

middleware, is uniquely integrated in the policy structure not only through the 

user preferences context elements but also through the Strategy Weight 

Coefficients. It is very easy for the developer to configure the generic model and 

adjust it to the scenario, setting the default UCP values for the adaptation logic, 

while allowing the user to customize or fine-tune the adaptation behaviour.   

3. Introducing LTPGs in the Policy 

The Volare approach allows the developers to introduce Long Term Performance 

Goals in their policies, which otherwise would be an impossible task without 

extensive development if the middleware and the APSL does not support it, and 

have the possibility to easily review or modify them.  

4. Testability of the Volare Adaptation Strategies 

An advantage of the WB adaptation technique is the fact that it provides a great 

testability potential for each adaptation-strategy, either simply on top of the 

Generic Operational Constraints adaptation-strategy or in parallel to the other 

ones. The weight-based technique provides the opportunity through the UPI (or 

the policy ) to just set to 0 the SWCs for one or more adaptation-strategies at the 

User Choices Profile (UCP) and have the relevant adaptation-strategy inactivated 
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without modifying the policy file, just for testing and adaptation behavior 

verification reasons.  

5. Reducing Context Hazards 

As described in [55][71], CAAAs face context hazards for the adaptation process 

due to differences in the sensed context the information represented by 

propositional context-variables, because of asynchronous notifications of context-

variables values. The Volare middleware eliminates this danger by supplying at 

each policy execution, only the last – most recently updated -- set of context data 

values for the adaptation values calculation. Thus, the Policy Engine execution 

prevents context hazards, by prohibiting asynchronous context updates at the 

Working Memory level.   

6. Smaller Number of Rules with wider predicate context sub-domains 

In Volare often the contextual “situation” is not defined by a context sub-domain 

and the selectable rule, but by optionally more than one selectable rules on wider 

and overlapping context sub-domains. For instance the rule on bitrateQoSReq 

representing the relevant battery LTPG Subpolicy and the rule representing the 

data volume LTPG Subpolicy, and the rule on the current user preference mode 

performance Subpolicy, do have wide and overlapping context sub-domains and 

jointly specify adaptation for this QoS-variable under the current context. This 

leads to the result that the predicates of rules in Volare are of wider and usually 

overlapping context domain coverage.  

Thus typically a smaller number of rules in total is required for specifying 

adaptation than in an action-based equivalent policy , which requires adaptation-

rules at each adaptation state (contextual situation), even though in Volare policy 

there may be more than one rule on the same adaptation-variable selectable at 

any context, depending on the size of behavioral variability considered. 

8.8.2 Benefits of the Volare Approach perceived by the User 

1. Adaptation Policy Customization Capability by the User  

The user may easily customize the adaptation behavior so that the 

application/middleware behaves differently on developer set user-customizable 

parameters of the adaptation logic, without intervening in the policy. For instance, 

the user may decide to make the binding cost strategy stricter and/or set a more 

cautious attitude towards a resource like battery power. In Volare, it is easy for 

the user to modify through the UPI the default User Choices Profile enhancing 
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the relative importance of the relevant adaptation-strategy, thus fine-tuning the 

adaptation behavior. Additionally the user may modify the LTPGs goal values or 

other user-customizable provided threshold parameter values.  

2. Selection of Alternative User Preference Modes  

The user may select a User Preference Mode, selectable on-the-fly at runtime by 

the UPI among several policy-based alternative adaptation behavior patterns 

corresponding to real time user mood or needs. In fact, every user preference 

mode constitutes a different adaptation behavior.    

3. Relieving the User from Supervisory Tasks through LTPGs 

Long Term Performance Goals over finite horizons introduced in the policy allow 

the adaptation logic to undertake device operation supervisory tasks and relieve 

the user from the burden to monitor on constraints like remaining battery level or 

monthly data volume or monthly credit for binding on the cloud and take relevant 

actions for reducing resource use. Besides, LTPGs in the policy may manage the 

task much more effectively and smoothly for the device operation at CSD 

sessions, than occasional decisions on the part of the user.      

4. Savings at the cost of binding  

From the charts in §8.5, it can be seen that both the application performance by 

(re)discovering the more appropriate QoS request values under a frequently 

changing context and the cost of binding on the cloud are optimized, versus an 

unadapted or only initially adapting application (static adaptation), especially for 

long-lasting applications like media-streaming, navigation, etc. 

The improvement realized concerns not only application performance but also on 

the savings on the cost of binding to the cloud service with variable context, since 

it is annoying for the user to pay additional cost on cloud services when 

exceeding the monthly allowance.   

8.8.3 Benefits in the mobile CSD applications performance 

Evaluation, presented in Chapter 8, through RQs on the contributions of this 

project, using prototype results and simulations, has shown:  

Application Performance Benefits 

 Noticeable improvements in the performance of mobile applications launching 

CSD, in the sense that by adapting the SR to the optimal QoS, delays and 

energy-sink services due to bandwidth higher than required are avoided      
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 Optimal management of the device resources, as demonstrated by the 

Battery LTPG charts in 8.6 

 Reduction in disruptions due to rediscovery through disruption minimization 

rules   

 Prevention of binding degradation at runtime, by establishing dynamic 

context-aware adaptation at runtime 

 Naturally, due to the domain nature, the efficiency results might be widely 

different depending on the case study, adaptation policies, context data 

sequence and the service provision options available to the CSP. 

Eventual Benefits for the Service Provider 

Additionally, if the economies of scale for a Service Provider on the cloud to its 

registered users are considered, by providing dynamic adaptation to the mobile 

applications through a DCAA middleware, it certainly sums up to considerable 

savings. Of course, on an individual basis, most depends on the network 

bandwidth variability for each specific user. 

8.9 Evaluation Discussion 

The evaluation, using prototype results and simulations, has shown noticeable 

improvements by the Volare policy-based service-level dynamic context-aware 

adaptation concerning CSD sessions of mobile applications, on several different 

dimensions that are synoptically outlined below.  

As demonstrated in §8.2 a mobile application without context-aware service-level 

adaptation capability, can suffer significant setbacks in changing context. Long 

delays would be expected at a video-streaming session, both initially at the 

beginning of the VSD session as well as during play-back period depending on 

the bitrate to bandwidth ratio value, in cases where the requested video-encoding 

bitrate does not match the bandwidth by a safety margin. In the example in Table 

8-2, the data volume downloaded during the CSD video-streaming sessions 

running a shallow adaptation simulation on the monthly duration usage data 

model, lead to results that were 174% higher that the MNSP contract data 

volume allowance vs. 87% for the full adaptation policy result. Additionally, when 

binding at high QoS request values in the same shallow adaptation manner, the 

cost of binding in the same case reached 255 % of the credit allowance vs. 94% 

in the full adaptation policy case. The cost of binding on cloud services would be 

high by selecting services at high QoS without control on price and the capability 
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for the user to control the increasing cost of binding to the cloud and the cost by 

exceeding the MNSP data volume limit would be to reduce use of cloud services. 

From the charts in §8.2 we can see that both the application performance by 

(re)discovering the more appropriate QoS Request values under a frequently 

changing context and the cost of binding on the Cloud are optimized, versus an 

unadapted or only initially adapting application (static adaptation), especially for 

long lasting applications like media-streaming. For instance the monthly average 

of min battery level value before recharge time was 18,4% vs. a LTPG target of 

min 20% (for eventual emergencies), in comparison to an achieved average 

value of 27.2% for the full adaptation policy run under the same monthly context 

data matrix.    

Without dynamic adaptation, we would have a flat horizontal line corresponding 

to the unadapted QoS Request value (or the initial discovery value, without 

dynamic adaptation) for each QoS variable of the Service Request or for each 

Middleware Configuration variable. On the contrary with a full adaptation policy, 

note in Table 8-5 comparing alternative monitoring scenarios of Fig. 8-15 against 

Fig. 8-17, both on the same other context data but Fig. 8.15 on the typical 

monthly context usage model while Fig. 8-17 on fixed high bandwidth of 400 KB/s 

– a reference upper bound scenario. The standard reference case in Fig. 8.15 

achieved by the end of the monthly period 95.5% of the credit allowance vs. 

105.9% of the fixed high bandwidth case (still very near the goal value, under the 

circumstances) and data use ratio respectively 87.8% vs. 91.1% for the fixed high 

bandwidth case.    

Continuing from a user-perspective, the mobile user is able to enjoy satisfactory 

performance under variable context and through the User Preferences Interface 

is entitled to select the User Preference Mode that best suites current, session-

specific needs, when launching a mobile application on the Cloud, or customize 

the adaptation logic. As evidenced by the evaluation in §8.4, different QoS 

Request values are derived at each alternative user preference mode. Note that 

the improvement realized by user preference mode selection, not only in 

application performance but also on the savings on the cost of binding to the 

cloud service under variable context (mainly bandwidth, battery and user 

preference), may be significant for the user when viewed on a monthly or yearly 

basis. It certainly will incite the user to implement case-specific expenses control 

by selecting the appropriate user preference mode at each session, instead of 

the default ”Normal” Mode.      
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Similarly, evaluation in §8.5 on LTPGs introduced in the policy, demonstrates the  

great advantage to let the adaptation logic take care of the service discovery on 

battery or credit or data volume Mgmt, by selecting the optimal QoS at each 

case.  

Naturally, due to the nature of the domain, the efficiency results might be widely 

different depending on the case study, adaptation policies, data series used and 

the service provisioning options available to the CSP/CSB. 

 Additionally, if we consider the economies of scale for a Service Provider on the 

Cloud to its registered users, by providing dynamic adaptation to the mobile 

applications through a DCAA middleware, it certainly sums up to considerable 

savings. Of course, on an individual basis, most depends on the network 

bandwidth variability for each specific user. 

The above evaluation shows significant benefits in cost and resource costs by 

using dynamic adaptation and rebinding of Cloud service bindings.  

On qualitative issues from the application developer point of view, evaluation in 

§8.3 showed that the development burden for the application developer is 

significantly reduced if all context and global QoS variables are already declared, 

as well as the global policy generic constraints and goals. All the developer has 

to do is specify the SR application-specific adaptation, having direct access to the 

context-variables or declared metrics of the global policy.  

Another important issue deriving from the evaluation in §8.6, is the fact that the 

structure of the policy in multiple eventually simultaneously selectable at policy 

execution adaptation-rules per variable, allows for shorter implementations of 

high behavioral variability adaptation behaviors concerning multiple adaptation-

concerns, compared to the conventional single rule approaches. This is because 

the Volare policy language enables the developer to develop separate sub-

policies specific to each group of contextual data that can affect the adaptation 

process, and then bind them all together, instead of having to develop a full 

separate policy for each possible contextual situation. In this way the 

combinatorial explosion maybe by-passed, if the rule of thumb: 

.  When 3 x NBVs-SUM < NBVs-COMB (3a)  

the advantage in the number of rules lies with the weight-based technique. In the 

case study, with 142 adaptation-rules of the Composite Policy, 864 adaptation 

states were specified, as demonstrated in §8.6.2. 
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9 Conclusion and Future Work 

In conclusion, the dynamic adaptation of service requests for cloud services in 

mobile systems is an issue that has yet to be sufficiently addressed by the 

current state-of-the-art. In this report, we present a solution to this problem via 

the Volare adaptation reasoning approach, which presents an innovative weight-

based approach to adaptation reasoning. We implement this approach with the 

Volare middleware, a context-aware, client-side, dynamically adaptive 

middleware, offering DCAA functionality to the service request of applications 

residing above it on service discovery and binding on the Cloud, without 

interrupting or changing the code of the applications or the services in any way. 

The overview and requirements of the project were presented in chapter 3. In the 

previous chapters 4, 5, 6, each of the three constituents of the Volare approach 

are presented and their implementation in the case study of chapter 7. Chapter 8 

verifies that these constituents satisfy the requirements identified in subsections 

§3.4, §3.5 and §3.6 and the approach achieves its target as demonstrated by the 

quantitated results through prototype and simulations runs in §8.2 to §8.6.  

9.1 Conclusions 

The central contribution of this project is the “Volare approach”, a client-side 

policy-based adaptation scheme for implementing dynamic context-aware 

adaptation to the commercial service request (SR) of a mobile application to an 

application-selected cloud service broker or provider provisioning alternative 

services of the same content at different QoS levels.  

As demonstrated in §8.2 a mobile application without context aware service-level 

adaptation capability, can suffer significant setbacks in changing context. Long 

delays would be expected at a video-streaming session, both initially at the 

beginning of the VSD session as well as during play-back period depending on 

the bandwidth value, in cases where the requested video-encoding bitrate does 

not match the bandwidth by a safety margin. In the example in Table 8-2, the 

data volume downloaded during the CSD video-streaming sessions running a 

shallow adaptation simulation on the monthly usage data model, lead to results, 

in extreme cases, that were 174% higher that the MNSP contract data volume 

allowance vs. 87% for the full adaptation policy result. In addition, when binding 

at high QoS request values in an unadapted manner, the cost of binding in the 

same case reached 255 % of the credit allowance vs. 94% in the full adaptation 

policy case. The cost of binding on cloud services would be high by selecting 



 
 
   

261 
 

services at high QoS without control on price and the capability for the user to 

control the increasing cost of binding to the cloud and the cost by exceeding the 

MNSP data volume limit would be to reduce use of cloud services. These 

ofcourse are rather extreme cases where the available bandwidth was, on 

average, less than what’s needed to receive the QoS levels requested by default. 

As connection stability increases, and the context changes decrease, the benefit 

of adaptation becomes significantly less. The evaluation still showed average 

battery savings of 8.8% on a typical usage model, as well as cost savings closer 

to 5% on more modest context changes. 

The project aims to support the discovery of the most appropriate service found 

under the current context and the adaptation logic requirements, by performing 

parameter adaptation on the QoS levels of the service request, then evaluating 

the offered service QoS levels, and either binding to it or adjusting the SR and 

launching re-discovery.  The case study for this project used Cloud services. 

The Volare approach presented in this Thesis is composed of three integrated 

constituents each of which participates for the contributions of this work, 

described in §1.5 to be employed successfully. 

The mobile DCAA support middleware that implements the adaptation 

functionalities itself. 

The Adaptation Policy Specification Language (APSL) that allows the 

developer to specify the adaptation behavior required. 

The weight-based adaptation reasoning technique (WBART) that guides the 

adaptation policy development process.  

The requirements of each constituent are outlined in §3.3 -- §3.4 -- §3.5 and are 

analyzed in detail in chapters 4, 5 and 6 respectively. 

The Volare middleware monitors the context of the mobile device and then 

proceeds to dynamically perform parameter adaptation on the QoS levels of the 

service request accordingly. This enables the application to choose the most 

appropriate services conforming to the current needs of the client. Dynamic 

monitoring of the QoS levels and available resources allow for rebinding during 

runtime, which can increase system reliability avoiding long delays and reduce 

resource costs. Dynamic monitoring of the QoS levels and available resources 

will allow for rebinding during runtime. 

Evaluation, presented in Chapter 8, using prototype results and simulations, has 

shown noticeable improvements in the performance of mobile applications 
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launching CSD, in the sense that by adapting the SR to the optimal QoS, delays 

and power draining services due to bandwidth higher than required are avoided. 

From the charts in §8.2, it can be seen that both the application performance and 

the cost of binding on the cloud are optimized by (re)discovering the more 

appropriate QoS request values under a frequently changing context, versus an 

unadapted or only initially adapting application (static adaptation), especially for 

long-lasting applications like media-streaming, navigation, etc. The improvement 

realized concerns not only application performance but also on the savings on 

the cost of binding to the cloud service with variable context.  With a full 

adaptation policy, we see in Table 8-5 a comparison of alternative monitoring 

scenarios of Fig. 8-15 against Fig. 8-17, both on the same other context data but 

Fig. 8.15 on the typical monthly context usage model while Fig. 8-17 on fixed high 

bandwidth of 400 KB/s – a reference upper bound scenario. The standard 

reference case in Fig. 8.15 achieved by the end of the monthly period 95.5% of 

the credit allowance vs. 105.9% of the fixed high bandwidth case (still very near 

the goal value, under the circumstances) and data use ratio respectively 87.8% 

vs. 91.1% for the fixed high bandwidth case.    

The middleware is augmented with a User Preferences Interface (UPI) 

application operating as a user preferences multi-sensor, that enables the user to 

customize or fine-tune the adaptation logic on cross-cutting concerns for all 

applications subscribed to the middleware through an application policy. The UPI 

additionally enables the user to select one among alternative user preference 

modes, imposing alternative real-life adaptation behaviors, like” “LowCost” or 

“SaveBattery” or “HighQuality” or “Normal”. 

To allow developers to customize the adaptation behaviour of the middleware as 

appropriate for each application the Volare policy language was created, a 

simple, declarative Adaptation Policy Specification Language (APSL) for 

policy-based DCAA on mobile systems, utilizing a multiple weightd adaptation 

rules per QoS variable as well as a novel Conflict Resolution procedure.  

The Volare middleware and policy language use a combination of a two level 

policy architecture, as described §7.4-7.5. It is composed of the platform global 

policy and the active application policy concerning the SR adaptation. Through 

the application policy, the width and breadth of adaptation can be allowed to 

depend also on the platform and the device resources, in cases where the 

application developer cannot predict the platform his application will be run on, 

which is fairly common in mobile applications development. This allows the 
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mobile device’s firmware developer (via the global policy) to also influence the 

adaptation process and to account for each mobile device’s unique resource 

characteristics, through adaptation-rules on the same adaptation-variable. This 

approach makes the application policy developer’s task easier and lower the 

development cost significantly compared to a more typical situation-action 

architecture, by enabling separate adaptation policies to be developed to 

specifically address the needs of individual mobile devices and applications. The 

developer of the application adaptation policy does not need to develop separate 

adaptation policies for each possible mobile device his application may be 

deployed on. 

To further assist developers in creating the relevant adaptation policies, the 

Volare Weight Based Adaptation Reasoning Methodology was also 

developed, a process for specifying independent, competing, adaptation-

strategies that control the adaptation process, offering better understanding and 

leveraging access of the adaptation-concerns to the user. This includes a set of 

generic Models, Procedures and methodology Tools that have been designed, to 

facilitate in the task of adaptation policy editing.  Further methodological tools, 

procedures and generic models, as well as testing & verification tools, were 

developed, such as the PEVApp, which including automated test suites 

generation and offline repeated policy execution and charts presentation on test 

suite results. 

The weight-based adaptation reasoning technique characteristics like the 

identification of adaptation-concerns and building the adaptation policy logic in 

the corresponding adaptation-strategies, presents advantages especially in 

cases of high behavioral variability(see §6.1-6.2) . Building a policy in the weight-

based approach for a scenario that lies within its scope, delivers certain 

advantages in comparison to the conventional action-based approach. 

Determination of the major adaptation-concerns around which the policy will be 

built, and building it as a set of independent adaptation-strategies, each of which 

is the collection of adaptation-rules that serve a specific adaptation-concern over 

the valid context domain. The weight-based adaptation reasoning technique may 

lead, when there is high behavioral variability, to policy authoring significantly 

shorter in the number of rules and simpler in testing and verification than an 

equivalent “action-based” policy (see ch. 6 and §8.6 for detailed analysis). Thus, 

as seen in §8.6, the fact that the structure of the policy in multiple eventually 

simultaneously selectable at policy execution adaptation-rules per variable, 
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allows for shorter implementations of high behavioral variability adaptation 

behaviors concerning multiple adaptation-concerns, compared to the 

conventional single rule approaches. This is because the Volare policy language 

enables the developer to develop separate sub-policies specific to each group of 

contextual data that can affect the adaptation process, and then bind them all 

together, instead of having to develop a full separate policy for each possible 

contextual situation.  

A further advantage of the WB adaptation reasoning is the fact that it provides a 

great testability potential for each adaptation-strategy, either simply on top of the 

Generic Operational Constraints adaptation-strategy or in parallel to the other 

ones. The weight-based technique provides the opportunity through the UPI to 

selectively deemphasize specific sets of adaptation-rules over other, according to 

which adaptation strategy they are associated to, without modifying the policy file, 

facilitating testing and adaptation behavior verification.  

The weight-based adaptation reasoning technique and the developed 

methodology also supports the introduction in the policy of unanticipated at 

middleware design time quantitative Long Term Performance Goals (LTPGs) with 

finite horizons spanning over many binding sessions, as discussed in subchapter 

6.4, without any hard coded middleware provision, thus allowing for long term 

resource management. This improves long term resource efficiently as seen in 

Table 8-5, while it also eliminates the need for user supervision to manage limited 

resources or monetary budget. For instance the monthly average of min battery 

level value before recharge time was 18,4% vs. a LTPG target of min 20% (for 

eventual emergencies), in comparison to an achieved average value of 27.2% for 

the full adaptation policy run under the same monthly context data matrix.    

Finally, the User Preferences Model, supported by the UPI application to 

communicate dynamically user preferences changes to the middleware 

integrates user preferences in the policy structure. Thus, user may easily 

customize the adaptation behavior so that the application/middleware behaves 

differently on developer set user-customizable parameters of the adaptation logic, 

without intervening in the policy. As evidenced by the evaluation in §8.4, different 

QoS Request values are derived at each alternative user preference mode. Note 

that the improvement realized by user preference mode selection, not only in 

application performance but also on the savings on the cost of binding to the 

cloud service under variable context (mainly bandwidth, battery and user 

preference), may be significant for the user when viewed on a monthly or yearly 
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basis. It certainly will incite the user to implement case-specific expenses control 

by selecting the appropriate user preference mode at each session, instead of 

the default”Normal” Mode.     . 

Naturally, due to the domain nature, the efficiency results might be widely 

different depending on the case study, adaptation policies, context data 

sequence and the service provision options available to the CSP. Additionally, if 

the economies of scale for a Service Provider on the cloud to its registered users 

are considered, by providing dynamic adaptation to the mobile applications 

through a DCAA middleware, it sums up to considerable savings. Of course, on 

an individual basis, most depends on the network bandwidth variability for each 

specific user. 

9.2 Scope and Limitations 

Although the current scenario involves service discovery on the cloud, the Volare 

approach may support other mobile middleware-based adaptation scenarios as 

well. The basic constraints of the Volare approach, as defined in the current 

project, are the following: 

1. It is required that the adaptation actions are expressed as values of the 

adaptation-variables that are distinguished in the pre-defined middleware 

configuration variables such as operation parameters and modalities of the 

middleware components, or in the active Service Request QoS variables. By 

consequence, in addition to the Service Request adaptation, the allowed 

adaptation actions are limited to the middleware configuration variables 

values set at middleware design time. 

2. It can only support scenarios with adaptation models that correspond to the 

declared adaptation-variables. Consequently, unanticipated adaptation 

behaviours that may not be covered by the adaptation-variables already 

declared and incorporated in the middleware modules design cannot be 

supported. 

3. For Volare APSL-compatible adaptation policies simplicity and clarity, no 

functions are allowed in the adaptation-rules (in the predicates or the 

adaptation statements), only algebraic expressions with the operators {+,-,*,/ 

}, or ^ (power) or abs (absolute value).  

4. Volare supports high behavioural variability in the policy and unanticipated 

introduction of statistic-calculation-variables on the supported by the 

Statistical Analysis Module. However, the statistical functions for statistic-
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calculation-variables and the “periods” are predetermined at middleware 

design time. Consequently, only LTPGs on supported “horizons” and metrics 

on supported statistic functions and “periods” can be defined. 

5. Currently, the middleware and language only support a single service binding 

active at a time. Further conflict resolution directives would have to be 

developed to support multiple simultaneous service bindings, as they need to 

prioritize using a common pool of resources.  

9.3 Vision and Further Perspectives  

The research work presented in this Thesis can be further expanded in various 

directions. In this section, we quickly discuss the ones that in our opinion are the 

most promising or the more useful. 

1. Further Simulation-based Policy Optimization on LTPGs Parameters 

On optimization problems where the objective function is not explicitly known (of 

closed form), the typical optimization methods cannot be applied [85][86][87] [33]. 

optimization is even more difficult when parameters of stochastic nature 

intervene, like mobile bandwidth variation. In our case of mobile dynamic context-

aware adaptation with Long Term Performance Goals, considering the adaptation 

process where a Composite Policy through a Policy Engine provides an 

adaptation values output vector in response to a context vector, assessment of 

the policy performance on a LTPG can only be evaluated over a sequence of 

adaptations covering the whole temporal horizon of the LTPG. Additionally, due 

to the random character of certain parameters like: bandwidth variation, session 

duration, user preference etc., this sequence of binding cycles is a stochastic 

sequential decision-making process [87]. 

Suppose we would like to compare the performance of a Long Term Performance 

Goal over a specified horizon on two different values of a policy parameter, 

typically a parameter in the adaptation-rules concerning this LTPG. At first we 

need a performance assessment criterion for the LTPG. Due to the stochastic 

nature of the process, we need to collect or design appropriate context data 

samples containing single or multiple horizons of the LTPG and run repeated 

simulated execution on each of these samples representing real or virtual 

sequences of CSD sessions, get the average performance assessment for each 

parameter value and then compare the two results. 

Of course even for one continuous or even discrete parameter, many runs of the 

above simulation-based optimization procedure will have to be executed, 



 
 
   

267 
 

evidently making the computation very intensive for a mobile device of limited 

resources. In the case of more than one parameter (multi-criteria optimization), or 

more than one LTPGs, this is even more difficult.  

However, the simulated repeated execution could be implemented on a remote 

component on the web or the cloud, with access to the device context & 

adaptation history and simulation tools (like a simulated Policy Engine) and 

application of MLTs. This is a challenge for future work: automated simulation-

based policy optimization on LTPG parameter(s) based on the recorded Usage 

Model.  

2. Enlarging the DCAA support to independent CAA Applications 

On the middleware side, instead of just adapting the application service request 

and the middleware components, the middleware may also support Context 

Aware Adaptive Applications (CAAAs) that may have a Volare compatible policy 

and use the Volare Policy Engine for adaptation calculation.  

This extension would require a few simple functionalities, such as: dynamic 

dispatching of the application-specific adaptation results, or enriching the 

middleware Event Service with application-specific events triggering adaptation. 

3. Establishing Coordinated Adaptation on concurrent Applications 

Coordinated DCAA middleware operation with multiple applications supported by 

the middleware in parallel [64][42]. In this case, the middleware global policy 

should also provide rules on coordinated adaptation and the middleware 

mechanisms for shared resources and bandwidth shaping.  

4. Dealing with Uncertainty 

On scenarios “dealing with uncertainty” [56][76][34], we consider that our Weight-

based approach is in fact provided with a conceptual “relative importance 

calculus” that may well be applied on reasoning for both the context information 

trustworthiness provided – thus influencing the gravity of a context change to the 

corresponding adaptation actions(s) – as well as on multiple adaptation actions. 

Our Weight-based approach provides the reasoning tools for evaluating 

adaptation on uncertain context information, resolving to the most fitting 

adaptation under uncertainty conditions and may be made productive in this 

perspective. 

5. Implementation of the Volare Approach to other Domains 
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Use of the Volare Weight-based Approach in related research areas like Security, 

Dynamic Service Composition, Resource Discovery on the Cloud, Fault handling 

as well as in other fields of mobile CAA would be of great interest. 
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APPENDIX A: The Global PolicyExample  

// Composite Policy: Global & VSTREAM Application Policy  

//  Global Policysetting 3 Policy Consecutive Execution Cycles (CECs) at each policy execution  
// for adaptation                   
// 1st Cycle: 2 Subpolicies for decision-making on the use of Date-based vs. Usage-based 
// Criteria                                                                                       
// 2nd Cycle: DEFAULT + HIGHQUALITY + NORMAL + LOWCOST + SAVEBATTERY +  
// VLOWBATTERY  

// + LOWBUDGET + 2 HIGH - LOW DISRUPTION = 9 Subpolicies                                                                                                                     

// 3rd Cycle - 2 Subpolicies: Implement Calculated Adaptation or Not                                                                                                      

// Application Policy on Video-streaming from services on the Cloud  - 1st & 2nd policy 
// execution Cycles  Subpolicies            
// 1st Cycle: 2 Subpolicies for decision-making on the use of Date-based vs. Usage-based  
// Criteria                                              
// 2nd Cycle: DEFAULT + HIGHQUALITY + SAVEBATTERY + LOWCOST + NORMAl +  
// VLOWBATTERY + HIGHBATRES + LOWBATRES  
// + HIGHCOSTBUDGET + LOWCOSTBUDGET + HIGHDATABUDGET + LOWDATABUDGET =  12  
// Subpolicies. 

 

// BRIEF EXPLANATIONS ON THE STATISTICAL ANALYSIS MODULE (SAM)   

// The Statistical Analysis Module (SAM) provides to the Global and Application Policy  
// developers a Volare middleware tool for controlled access to cumulative or statistic context 
// & adaptation history of values of pre-declared variables, by declaration in the Policy of 
// statistic-calculation-variables, based on the following pre-determined characteristics:     
 
// parameterID: representing declared variables in the Global or Application Policy, thus 
// taking values at policy execution;  
// periodID: representing pre-determined repeated time periods, like: Bindingcycle, Session, 
//Daily, Dischargecycle, Monthly;     
// statisticTermID : representing pre-determined statistic terms, like: Sum, Max, Min, Avg, 
//Stdev, UpperConfLim.     
// SAM supports the declaration of statistic-calculation-variables, in the following declaration 
//notation:                                 

// typeID  ContextVar varName == StatisticalAnalysisM.parameterID.periodID.statisticTermID;                                              

 

      // 1. Variables custom-naming convention 

// If applicable, atomic context-variables or calculation-variables are custom-named by the   
// following suggested naming-convention: varName => parameterIDperiodID 
// (e.g. cloudCostSession, durationRecheckcycle).                           
// If applicable, statistic context-variables or composite calculation-variables are custom- 
// named by the  following suggested naming-convention: varName =>  
// parameterIDperiodIDstatisticTermID (e.g. batterySessionMax).              

 

      // 2. The atomic context-variables      

// The atomic context-variables that form the basis for the cumulative or statistic-calculation-
// variables are either context  parameters like: bandwidth, battery, userPref etc., or  
// cumulative quantity parameters over the relevant most generic period, typically the   
// “Recheckcycle". These atomic cumulative context-variables are:                                        
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// cloudMBsRecheckcycle = The MBs of data downloaded during the current Recheckcycle;                                                        

// cloudDurationRecheckcycle = The duration in seconds of the current Recheckcycle till now;                                                  

// cloudCostRecheckcycle = The cost incurred by the binding on the Cloud service during the  
// current Recheckcycle.       

 

      // 3. Other computing-environment variables data    

// In addition to the above atomic context-variables, all other variables declared in the Global  
// or Application Policy (calculation, configuration or adaptation (QoS) variables), get a  
// calculated and recorded value at policy execution. 
// The APSL provides the formulation and the middleware through SAM supports the  
// declaration of new statistic- context-variables for the deduction of useful information from 
// the declared variables recorded data.                               

 

 

      // 4. The cumulative or statistically-inferred "statistic-calculation-variables"                                                                                        

// Based on the above atomic context- or calculation-variables, cumulative parameters over 
// higher periods are declared, like:    
// cloudCostMonthly, cloudDurationSession, cloudMBsDaily etc, as well as statistic parameters  
// on them.                       
// We distinguish "cloudDuration" which is the duration on Cloud Service Discovery (CSD) and  
//"overallDuration".       
// "overallDuration" within a periodID denotes the time interval from the beginning of the 
// current period till now.   
// Only the "overallDurationDischargecycle" is declared as statistic context-variable, while  
// "overallDurationDaily" or "overallDurationMonthly" are declared as calculation-variables  
// using the timeNow  context-variable, while for periods: "Recheckcycle", "Bindingcycle" and 
// "Session", cloudDuration = overallDuration (there is no idle time interval in them).     

 

      // 5. The "periods" currently supported by the Statistical Analysis Module:                                                                                      

// Recheckcycle = the period between two consecutive monitorings at launched Cloud Service 
// Discovery Request                                   
// Bindingcycle = the period of each discovery at binding on the cloud at a Service Level  
// Agreement  QoS values                                
// Session = period starting when an App launches SR on the Cloud until the end of the  
//application SR.                            

// Daily = period starting from 00:00:01 till now (until the end of the current day).                                                                       

// Dischargecycle = period from the last battery charging till now (untill the next recharging).                                               

// Monthly = the period starting the fist of the current month till now (until end of the month).                                   

// OverallHistory = the period of the recorded context & adaptation history of the device.                     

 

      // 6. The "statisticTerms"  currently supported by the Statistical Analysis Module (SAM):                                                         

// Sum = Returns the sum of the values of the numeric parameterID within the specified  
// periodID.                                    
// Max = Returns the maximum of the numeric parameterID values within the specified  
// periodID.                                      

// Min = Returns the minimum of the numeric parameterID values within the specified 
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// periodID.                                       

// Avg = Returns the average of the numeric parameterID values within the specified periodID.                                           

// Stdev = Returns the Standard Deviation of the numeric parameterID values within the  
// specified periodID.                
// UpperConfLim = Returns the Upper Confidence Limit on the parameterID values over the  
//specified periodID.          

 

 

      // 7. The policy-based Long Term Performance Goals (LTPGs) 

// Four policy-based LTPGs, each over a finite horizon, are served through the Global or the  
// Application Policy A/Rs. Their goals  
// are fulfilled over many sessions and require monitoring over cumulative context &  
// adaptation history parameters. For each LTPG it is specified: (a) serving Adaptation-strategy  
// rules, (b) time horizon, (c) monitoring variable(s), (d) control (SR QoS) variable(s).   
// A - Monthly Cost for binding to services on the Cloud LTPG < Monthly Cloud Cost Allowance - 
// global policy  
// Characteristics: (a) Adaptation-strategy: Served by A/Rs of the Cost Adaptation-strategy,  
// (b) Horizon: Monthly, (c) Monitoring variable: 

// costUseratio, (d) Control variables: primary costQoSReQ & secondary bitrateQoSReq.  

// B - overall Monthly Data (in MBs) for Web and Cloud services LTPG: within Monthly  
// Allowance by Mobile SP - Global & Appl. Policy 
// Characteristics: (a) Adaptation-strategyategy: Served by A/Rs of the Cost Adaptation- 
// strategy, (b) Horizon: Monthly, (c) Monitoring variable: 

// dataUseratio, (d) Control variables: primary bitrateQoSReQ.  

// C - Battery Power Mgmt LTPG over every battery Discharge period  - Global & Application  
// Policy 
// Characteristics: (a) Adaptation-strategyategy: Served by A/Rs of the Resource (battery)  
// Adaptation-strategyategy, (b) Horizon: Dischargecycle period, (c)  

// Monitoring variable: batteryUseratio, (d) Control variable: bitrateQoSReq.  

// If the "dataSufficiency" context-variable is "Y", then staistically inferred modifiers are used  
// in the resourceUseratio metrics for each LTPG, tuned to the specific usage pattern by the  
// Statistical Analysis Module. 

 

        // 8. Gradual Adaptation 

// Gradual policy-based adaptation takes place, at least for the major QoS variables like: 
// bitrateQoSReq and costQoSReq, not by assigning to adaptation-variables continuous (linear,  
// quadratic etc) value expressions as functions of appropriate  continuous context metrics.   

 

       // 9. The Six Adaptation Strategies in the Global and the Application Policy 

// The Generic Operational Constraints Adaptation-strategyategy: specifying A/Rs ensuring  
// generic operational constraints  
// The Performance Optimization Adaptation-strategyategy: In Global & App Policy specifies 
// the User Preference adaptation nehavior 
// The Cost Optimization Adaptation-strategyategy: In the Global and App Policy handles the  
// Monthly Cost Mgmt LTPGs  
// The Resource (battery power) Optimization Adaptation-strategyategy: In Gobal & App Policy 
// handles the Dischargecycle Battery LTPG 

// The Monthly Data Volume LTPG Adaptation-strategyategy: In the Global  & App Policy  
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// manages the data volume LTPG 

// The Disruption Minimization Adaptation-strategyategy: In the Global & App Policy manages  
// runtime dusruption minimization  

// End of general comments on the Policy 

 
// The Global policy  specifies the settings for the operation of the Volare middleware and the  
// SD & Binding Functionality 

Policy Global{ 

Declarations{ 

       // Context-variables Declarations   

       // Data Row No of data storage since the beginning of the History Database   

      integer ContextVar dataRowNo == ContextMonitoringM.dataRowNo; 

       // The current date with format: "DD/MM/YY" 

       date ContextVar dateNow == ContextMonitoringM.dateNow; 

       // The current time at which the data row context data are stored - format: hh:mm:ss  

       time ContextVar rowStartTime == ContextMonitoringM.rowStartTime; 

       // The time at the end of the recheckcycle (till next monitoring) - format: hh:mm:ss  

       time ContextVar rowEndTime == SContextMonitoringM.rowEndTime; 

       // Usage Model Row No of Cloud Service Discovery from the Usage Model 

      integer ContextVar usgRowNo == ContextMonitoringM.usgRowNo; 

       // Session No of Cloud Service Discovery since the beginning of the History Database   

      integer ContextVar sessionNo == ContextMonitoringM.sessionNo; 

       // string value indicating the selected User Preference Mode  

       string ContextVar userPref == UPI.userPref; 

       // float type value indicating the current bandwidth in KB/s                       

       float ContextVar bandwidth == ContextMonitoringM.bandwidthSensor; 

       // percentage indicating the current battery level percent of the total battery capacity  

       percentage ContextVar battery == ContextMonitoringM.batterySensor; 

       // percentage value indicating at a new CSD session the battery drop caused by the  
       //occurred non-cloud activity   
       percentage ContextVar nonCloudbatteryDrop ==                                 
ContextMonitoringM.nonCloudbatteryDrop; 

       // percentage value indicating the battery level at the end of the current monitoring row   

       percentage ContextVar endRowbattery == ContextMonitoringM.endRowbattery; 

       //  Non Cloud MBs of data downloaded from Web referred to the current Recheckcycle  

       float ContextVar webMBsRecheckcycle == 
ContextMonitoringM.webMBsRecheckcycleSensor;  
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       // The cost coefficient for converting the percentage costQoSReq & costQoSProv values in 
       // real cost  ( = 0.0024 pounds/MBs) 

       float ContextVar priceMax == UPI.priceMax;  

       // float value E [0, 1], indicating the Performance Opt. Adaptation-strategy. Weight Coeff.  
      // under the current User Preference   

       float ContextVar wSperf == UPI.wSperf; 

       // float value E [0, 1], indicating the Resource Opt. Strategy Weight Coefficient (SWC) under 
       // the current User Pref. 

       float ContextVar wSres == UPI.wSres; 

       // float value E [0, 1], indicating the Cost Opt.  Strategy Weight Coefficient (SWC)under the 
       // current User Pref. 

       float ContextVar wScost == UPI.wScost; 

       // float value E [0, 1], indicating the Disruption Minim. Strategy Weight Coeff. (SWC) under  
       // the current User Pref. 

       float ContextVar wSdisr == UPI.wSdisr; 

       // float value E [0, 1], indicating the Data Volume Strategy Weight Coeff. under the current  
       // User Pref. 

       float ContextVar wSdat == UPI.wSdat; 

       // float value, indicating the LTPG value for Monthly cost allowance for services on the 
Cloud ( = 5 pounds/month)    

       float ContextVar creditAllowance == UPI.creditAllowance; 

       // float value, indicating the LTPG value for Monthly data allowance by the MNSP ( = 4000  
       // MBs/month)    

       float ContextVar dataAllowance == UPI.dataAllowance; 

       // string value denoting the communication channel currently active 

       string ContextVar commChannel == ContextMonitoringM.commChannel; 

       // Cost incurred on CSD during the current Recheckcycle  

       percentage ContextVar costQoSProv == ServiceRequest.cloudCostProv;  

      // End of context-variables declarations  

 

      // Calculation-variables Declarations    

       //  Name of the current day  

       string CalcVar dayName == StatisticalAnalysisM.dayName; 

       // float value E [0, 1], indicating the Generic Operational Constraints  Adaptation-strategy  
       //Weight Coefficient   

       float CalcVar wSgen == 1.00; 

       // integer value indicating the current Adaptation No   

       integer CalcVar adaptationNo == 
StatisticalAnalysisM.sessionAdaptations.OverallHistory.Count; 
       // integer value indicating the adaptations occurred during current session (value = 1 at  
       // initial SD)  

       integer CalcVar sessionAdaptations == StatisticalAnalysisM.adaptationNo.Session.Count; 
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// integer value indicating the rediscoveries occurred during current session (rediscoveries = 0 
// at initial SD)  

       integer CalcVar rediscoveries == sessionAdaptations - 1; 

       // integer value indicating the current recheckCycle number within the CSD session 

       integer CalcVar inSessionRecordNo == StatisticalAnalysisM.dataRowNo.Session.Count; 

       // No of months from beginning of history storage, indicating the No of Monthly Periods   

      integer CalcVar monthsNo == StatisticalAnalysisM.monthsNo; 

       // integer value indicating the total number of days from the beginning of the data history 
       // storage   

       integer CalcVar daysNo == StatisticalAnalysisM.daysMonthly.Overallhistory.Count; 

       // integer value indicating the current dischargecycleNo   

       integer CalcVar dischargecycleNo == 
StatisticalAnalysisM.dischargecycle.overallHistory.Count; 

       // Allow or not  usage-based Policy self-optimization at next month, if an LTPG has failed  

       string CalcVar allowOptimization == "Y"; 

       //  Duration (in seconds) on CSD during the current monitoring Recheckcycle  

       integer CalcVar cloudDurationRecheckcycle == 86400 * (rowEndTime - rowStartTime);  

 

       // The battery LTPG Parameters & Monitoring Metrics 

       // float value, indicating the LTPG value for minimum battery level at every Dischargecycle  
       // ( = 20%)    

       float ContextVar minBatteryLevel == UPI.minBatteryLevel; 

       // The assumed duration of the battery Dischargecycle period for  the date-based criterion 
       // (=330000 s)  

       float CalcVar overallDurationDischargecycleEstim == 259200;  

       //  Overall Duration (in seconds) on CSD during the current Recheckcycle  

       integer CalcVar overallDurationRecheckcycle == 
StatisticalAnalysisM.overallDurationRecheckcycle;  

       //  Overall Duration (in seconds) on CSD during the current battery Dischargecycle  

       integer CalcVar overallDurationDischargecycle == 
overallDurationRecheckcycle.Dischargecycle.Sum;  
       // percentage value indicating the Min battery level of the current Dischargecycle (after last 
recharging)  
      percentage CalcVar batteryDischargecycleMin == 
StatisticalAnalysisM.battery.Dischargecycle.Min; 

       // The battery Duration Ratio  over the estimated Discharge cycle time period 

      percentage CalcVar batteryDurationRatio == 100 * overallDurationDischargecycle / 
overallDurationDischargecycleEstim; 

       //  Cloud Duration (in seconds) on CSD during the current battery Dischargecycle  

       integer CalcVar cloudDurationDischargecycle == 
StatisticalAnalysisM.cloudDurationRecheckcycle.Dischargecycle.Sum;  
       // The asumed Cloud sessions duration within a Dischargecycle period for  the date-based  
       // criterion  ( = 7000 s) 
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       float CalcVar cloudDurationDischargecycleEstim == 7000;  

       // The decision-making float type auxiliary variable, modifying  the Battery LTPG Mgmt 

      float AuxiliaryVar batteryVLowLevel; 

       // decision-making auxiliary variable for Battery LTPG level availability: "HighBat" or  
       // "LowBat" or "VLowBat" 

      string AuxiliaryVar batteryLTPGLevel; 

 

       // The Monthly Credit LTPG Parameters & Monitoring Metrics 

       // float value, indicating the LTPG value for initial credit LTPG VLowLevel ( = 10%)    

       percentage CalcVar creditInitialVLowlevel == 20; 

       //  MBs of data downloaded on CSD during the current monitoring Recheckcycle  

       integer CalcVar cloudMBsRecheckcycle == StatisticalAnalysisM.cloudMBsRecheckcycle ; 

       // The cost of binding on a cloud service during the current monitoring Recheckcycle   

      float CalcVar cloudCostRecheckcycle == StatisticalAnalysisM.cloudCostRecheckcycle; 

       // The cost incurred on CSD  in the current Monthly period till now  

       float CalcVar cloudCostMonthly == 
StatisticalAnalysisM.cloudCostRecheckcycle.Monthly.Sum; 

       // integer value indicating the current day number  in the current month   

       integer CalcVar daysMonthly == StatisticalAnalysisM.daysNo.Monthly.Count; 

       // integer value indicating the total number of days in the current month   

       integer CalcVar totalDaysOfMonth == StatisticalAnalysisM.totalDaysOfMonth; 

       // The monthly Duration Ratio, common for both LTPGs  

      percentage CalcVar monthlyDurationRatio == 100 * ((daysMonthly - 1 + rowStartTime) / 
totalDaysOfMonth); 
       // The usage-based Credit Use Ratio over the current Monthly period, for decision-making  
       // on the Monthly Credit LTPG  

      percentage CalcVar creditUseratio == 100 * (cloudCostMonthly / creditAllowance); 

       // decision-making auxiliary variable for Credit LTPG Level Availability: "HighCredit" or  
       // "LowCredit" or VLowCredit" 

      string AuxiliaryVar creditLTPGLevel; 

       // The decision-making float type auxiliary variable, modifying  Credit VLowLevel 

      float AuxiliaryVar creditVLowLevel; 

 

       // The Monthly Data Volume LTPG Parameters & Monitoring Metrics 

       // float value, indicating the LTPG value for initial data volume LTPG VLowLevel ( = 10%)    

       percentage CalcVar dataInitialVLowlevel == 10; 

       // The MBs of data downloaded  on CSD  in the current Monthly period till now  

       float CalcVar cloudMBsMonthly == 
StatisticalAnalysisM.cloudMBsRecheckcycle.Monthly.Sum; 
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       // The web MBs of data downloaded  through the MNSP but not on CSD  in the current  
       // Monthly period  

       float CalcVar webMBsMonthly == StatisticalAnalysisM.webMBsRecheckcycle.Monthly.Sum; 

       // The sum: cloudMBsMonthly + externalMBsMonthly downloaded through the MNSP 

      float CalcVar overallMBsMonthly == webMBsMonthly + cloudMBsMonthly; 

       // The date-based Data Use Ratio over the current Monthly period, for decision-making on 
       // the Monthly Data LTPG  

      percentage CalcVar dataUseratio == 100 * (overallMBsMonthly / dataAllowance); 

       // The decision-making float type auxiliary variable, modifying Data Volume VLowLevel 

      float AuxiliaryVar dataVLowLevel; 

       // Auxiliary variable for Data Volume LTPG level availability: "HighData" or "LowData" or 
       //  "VLowData" 

      string AuxiliaryVar dataLTPGLevel; 

 

       // Parameters for Prefixed vs. Usage-based LTPG Metrics 

       // The duration (in seconds) on CSD  in the current day till now  

       float CalcVar cloudDurationDaily == 
StatisticalAnalysisM.cloudDurationRecheckcycle.Daily.Sum;  

       // The MBs of data downloaded  on CSD  in the current day till now  

     float CalcVar cloudMBsDaily == StatisticalAnalysisM.cloudMBsRecheckcycle.Daily.Sum;  

       // The cost incurred on CSD  in the current day till now  

       float CalcVar cloudCostDaily == StatisticalAnalysisM.cloudCostRecheckcycle.Daily.Sum;  

       // The duration (in seconds) on CSD  in the current Monthly period till now  

       float CalcVar cloudDurationMonthly == 
StatisticalAnalysisM.cloudDurationRecheckcycle.Monthly.Sum;  
       // The date-based battery use ratio over the current Dischargecycle period, for decision- 
       //making  on the battery LTPG  
      float CalcVar batteryRefRate == 100 * ((100 - battery) / overallDurationDischargecycle) * 
(overallDurationDischargecycleEstim / (100 - minBatteryLevel)); 
       // The current Monthly date-based Credit Reference Rate, for decision-making on the  
       // Monthly Credit LTPG  

      float CalcVar creditRefRate == 100 * creditUseratio / monthlyDurationRatio ; 

       // The date-based Data Reference Rate Metric over the current Monthly period, for  
       // decision-making on the battery LTPG   
      float CalcVar dataRefRate == 100 * (overallMBsMonthly / (daysMonthly - 1 + 
rowStartTime)) * (totalDaysOfMonth / dataAllowance); 
       // the monthly average Min battery level of the Discharge cycles, to compare with the goal 
minBatteryLevel   
      float CalcVar batteryDischargecycleMinMonthlyAvg == 
StatisticalAnalysisM.batteryDischargecycleMin.Monthly.Avg; 

       // Other Parameters and Metrics 

       // The duration (in seconds) on Cloud Service Discovery (CSD) during the current Session 

      float CalcVar cloudDurationSession == 
StatisticalAnalysisM.cloudDurationRecheckcycle.Session.Sum; 
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       // float value indicating the Max value of creditRatio in the current Monthly Period    

      float CalcVar creditUseratioMax == StatisticalAnalysisM.creditUseratio.Monthly.Max; 

       // float value indicating the Max value of dataRatio in the current Monthly Period  

      float CalcVar dataUseratioMax == StatisticalAnalysisM.dataUseratio.Monthly.Max; 

       // Runtime Disruption Minimization calculation-variables for restricting non-absolutely  
       // necessary rediscoveries  
       string CalcVar batteryLTPGLevelLastAdapt == 
StatisticalAnalysisM.batteryLTPGLevel.Session.LastAdaptation; 
       string CalcVar creditLTPGLevelLastAdapt == 
StatisticalAnalysisM.creditLTPGLevel.Session.LastAdaptation; 
       string CalcVar dataLTPGLevelLastAdapt == 
StatisticalAnalysisM.dataLTPGLevel.Session.LastAdaptation; 
       // Runtime Disruption Minimization auxiliary-variable, values: "Current" or  
       // "LastAdaptation"  

       string AuxiliaryVar selectedLTPGLevel; 

      // End of calculation-and auxiliary variables declarations  

 

       // The middleware configuration-variables Declarations   

      // The recheck period in seconds for the Context Monitoring Module to update context  
      // values  

      integer ConfigVar recheckRate == ContextMonitoringM.recheckRate; 

      // The allowed max number of renegotiation attempts at CSD  

      integer ConfigVar renegotiationAttempts == BindingM.renegotiationAttempts; 

      // The allowed max percentage deviation from QoS request value at re-negotiation for CSD  

      percentage ConfigVar renegotiationAdjustment == BindingM.renegotiationAdjustment; 

      // The allowed max percentage deviation from QoS request to QoS provisioning values for  
      // binding to a service  

      percentage ConfigVar discoveryAccuracy == BindingM.discoveryAccuracy; 

      // The default binding margin for a QoS variable without specific margin value  

      percentage ConfigVar defaultBindingMargin == BindingM.defaultBindingMargin; 

      // The number of seconds that the middleware will delay monitoring for binding 
      // stabilisation   

      integer ConfigVar rebindingDelay == BindingM.rebindingDelay; 

      // It denotes whether after rebinding the middleware will delay monitoring for the  
      // rebindingDelay interval  

      string ConfigVar rebindingRecheck == BindingM.rebindingRecheck; 

      // The min percentage discrepancy between new and last.adapted QoS values for  
      // adaptation implementation  

      percentage ConfigVar rediscQoSThreshold == AdaptationM.rediscQoSThreshold; 

      // The specified number of Policy Consecutive Execution Cycles at each policy execution for  
      // adaptation 

       integer ConfigVar cyclesMax == AdaptationM.cyclesMax; 
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// The parameter for selection of predetermined options for the middleware, like: "Adapt"  
// or "NoAdapt" 

       string ConfigVar preferredVariant == AdaptationM.preferredVariant; 

      // End of configuration-variables Declarations!  

 

       // The QoS Adaptation-variables Declarations   

       // The Service Request cost QoS value for a service on the Cloud as max cost/MB on the  
       // service requested   

      float QoSVar costQoSReq == AdaptationM.costQoSReq; 

       // The Service Request Availability QoS value for the service requested on the Cloud  

      float QoSVar availabilityQoSReq == ServiceRequest.activeRequest.availabilityQoSReq; 

       // The Service Request Response Time QoS value for the service requested on the Cloud  

      float QoSVar responseTimeQoSReq == ServiceRequest.activeRequest.responseTimeQoSReq; 

       // The Service Request Reliability QoS value for the service requested on the Cloud  

      // End of QoS-variables Declarations!  

      // End of Declarations section!  

}; 

 
Criteria{ 

      // 1st CEC: Setting default values to configuration-variables   

      [1] Criteria G1_DEFAULT{ 

                   default; 

      }; 

      // 1st CEC:  "PREFIXED or UG-BASED CRITERIA FOR METRICS" 

      [1] Criteria G1_BATTERYLTPG_USGBASED{ 

                   daysNo > 30; 

                   monthsNo > 1; 

                   minBatteryLevel > batteryDischargecycleMinMonthlyAvg; 

                   allowOptimization = "Y"; 

      }; 

      // 1st CEC:  "PREFIXED or USG-BASED CRITERIA FOR CREDIT LTPG MONITORING" 

      [1] Criteria G1_CREDITLTPG_USGBASED{ 

                   daysNo > 30; 

                   monthsNo > 1; 

                   creditUseratioMax > 100; 

                   allowOptimization = "Y"; 

       }; 

      // 1st CEC:  "PREFIXED or USG-BASED CRITERIA FOR DATA VOLUME LTPG MONITORING" 

      [1] Criteria G1_DATALTPG_USGBASED{ 

                   daysNo > 30; 

                   monthsNo > 1; 

                   dataUseratioMax > 100; 

                   allowOptimization = "Y"; 
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      }; 

      // 2nd CEC: Setting default values to configuration-variables   

      [2] Criteria G2_DEFAULT{ 

                   default; 

      }; 

      // 2nd CEC: BATTERY AVAILABILITY LEVEL ASSESSMENT 

      [2] Criteria G2_BATTERYLTPG_HIGH{ 

                  battery >= 100 - batteryVLowLevel - 20; 

                  or 

                  userPref = "HighQuality"; 

      }; 

      [2] Criteria G2_BATTERYLTPG_VLOW{ 

                  battery < batteryVLowLevel; 

                  userPref <> "HighQuality"; 

      }; 

      // 2nd CEC: CREDIT AVAILABILITY LEVEL ASSESSMENT 

      [2] Criteria G2_CREDITLTPG_HIGH{ 

                  creditRefRate <= 100; 

                  creditUseratio <= 100 - creditVLowLevel; 

                  or 

                  userPref = "HighQuality"; 

      }; 

      [2] Criteria G2_CREDITLTPG_VLOW{ 

                  creditRefRate > 100; 

                  creditUseratio > 100 - creditVLowLevel; 

                  userPref <> "HighQuality"; 

      }; 

      // 2nd CEC: DATA AVAILABILITY LEVEL ASSESSMENT 

      [2] Criteria G2_DATALTPG_HIGH{ 

                  dataRefRate <= 100; 

                  dataUseratio <= 100 - dataVLowLevel; 

                  or 

                  userPref = "HighQuality"; 

      }; 

      [2] Criteria G2_DATALTPG_VLOW{ 

                  dataRefRate > 100; 

                  dataUseratio > 100 - dataVLowLevel; 

                  userPref <> "HighQuality"; 

      }; 

      // 2nd CEC: RESTRICTING NON-ABSOLUTELY NECESSARY RUNTIME ADAPTATIONS 

      [2] Criteria G2_RESTRICT_RUNTIME_ADAPTATIONS{ 

                 inSessionRecordNo > 1; 

                 userPref <> "HighQuality"; 

       }; 

      // 3rd CEC: Default Subpolicy with default or generic operational constraints  adaptation- 
      // statements               
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      [3] Criteria G3_DEFAULT{ 

                   default; 

      }; 

      // 3rd CEC: At User Pref. = "HIGHQUALITY" maximum attainable values are allowed for the  
      // A/Vs without reservations   

      [3] Criteria G3_HIGHQUALITY{ 

                   userPref = "HighQuality"; 

      }; 

      // 3rd CEC: At User Pref. = "NORMAL" normally high attainable values are allowed for the  
      // A/V under reservations  

      [3] Criteria G3_NORMAL{ 

                   userPref = "Normal"; 

      }; 

      // 3rd CEC: At User Pref. = "LOWCOST", costQoSReq 50% reduction under additional  
      // reservations  

      [3] Criteria G3_LOWCOST{ 

                   userPref = "LowCost"; 

      }; 

      // 3rd CEC: At User Pref. = "SAVEBATTERY", increase recheckRate - declrease costQoSReq  

      [3] Criteria G3_SAVEBATTERY{ 

                   userPref = "SaveBattery"; 

      }; 

      // 3rd CEC: At HighCredit, allow max costQoSReq  

      [3] Criteria G3_CREDITLTPG_HIGH{ 

                   creditLTPGLevel = "HighCredit"; 

      }; 

      // 3rd CEC: At LowCredit, reduce costQoSReq  

      [3] Criteria G3_CREDITLTPG_LOW{ 

                   creditLTPGLevel = "LowCredit"; 

      }; 

      // 3rd CEC: At VLowCredit, reduce costQoSReq further 

      [3] Criteria G3_CREDITLTPG_VLOW{ 

                   creditLTPGLevel = "VLowCredit"; 

      }; 

}; 

       // End of Criteria section!  

 
Subpolicies{ 

       // Start Subpolicies section!  

      // 1st CEC: Adaptation-rules for specifying structural or algorithmic or configuration  
      // parameter values 

      Subpolicy G1_DEFAULT{ 

              defaultBindingMargin = 20 (wSgen * 0.10); 

              overridesAsUpperLimit defaultBindingMargin = 50 (wSgen * 0.10); 

              yields cyclesMax = 3 (wSgen * 0.10); 

              overridesAsUpperLimit cyclesMax = 5 (wSgen * 0.10); 

              batteryVLowLevel = minBatteryLevel + 10 (wSgen * 0.10); 
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              creditVLowLevel = creditInitialVLowlevel (wSgen * 0.10); 

              dataVLowLevel = dataInitialVLowlevel (wSgen * 0.10); 

      }; 

      Subpolicy G1_BATTERYLTPG_USGBASED{ 

              batteryVLowLevel = minBatteryLevel + 20 (wSres * 1.00); 

      }; 

      Subpolicy G1_CREDITLTPG_USGBASED{ 

              creditVLowLevel = creditInitialVLowlevel + 10 (wScost* 1.00); 

      }; 

      Subpolicy G1_DATALTPG_USGBASED{ 

              dataVLowLevel = dataInitialVLowlevel + 10 (wSdat * 1.00); 

      }; 

      // 2nd CEC: LTPGs AVAILABILITY LEVEL ASSESSMENT 

      Subpolicy G2_DEFAULT{ 

             selectedLTPGLevel = "Current" (wSgen*0.10); 

             batteryLTPGLevel = "LowBat" (wSgen*0.10); 

             creditLTPGLevel = "LowCredit" (wSgen*0.10); 

             dataLTPGLevel = "LowData" (wSgen*0.10); 

      }; 

      Subpolicy G2_BATTERYLTPG_HIGH{ 

             batteryLTPGLevel = "HighBat" (wSres*0.50); 

      }; 

      Subpolicy G2_BATTERYLTPG_VLOW{ 

             batteryLTPGLevel = "VLowBat" (wSres*0.50); 

      }; 

      Subpolicy G2_CREDITLTPG_HIGH{ 

             creditLTPGLevel = "HighCredit" (wScost*0.50); 

      }; 

      Subpolicy G2_CREDITLTPG_VLOW{ 

             creditLTPGLevel = "VLowCredit" (wScost*0.50); 

      }; 

      Subpolicy G2_DATALTPG_HIGH{ 

             dataLTPGLevel = "HighData" (wSdat*0.50); 

      }; 

      Subpolicy G2_DATALTPG_VLOW{ 

             dataLTPGLevel = "VLowData" (wSdat*0.50); 

      }; 

      Subpolicy G2_RESTRICT_RUNTIME_ADAPTATIONS{ 

             selectedLTPGLevel = "LastAdaptation" (wSdisr*1.00); 

             batteryLTPGLevel = batteryLTPGLevelLastAdapt (wSdisr*1.00); 

             creditLTPGLevel = creditLTPGLevelLastAdapt (wSdisr*1.00); 

             dataLTPGLevel = dataLTPGLevelLastAdapt (wSdisr*1.00); 

       }; 

      // 3rd CEC: QoS-variables calculations for SR adaptation 

      Subpolicy  G3_DEFAULT{ 

             yields costQoSReq = costQoSReq [-20] (wSgen * 0.10); 
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             overridesAsUpperLimit renegotiationAttempts  = 12  (wSgen * 0.10); 

             overridesAsLowerLimit renegotiationAttempts = 0 (wSgen * 0.10); 

             overridesAsLowerLimit discoveryAccuracy = 2 (wSgen * 0.10); 

             recheckRate = 30 - 10*rediscoveries (wSgen * 0.50); 

             overridesAsLowerLimit recheckRate = 5 (wSgen * 0.10); 

             overridesAsUpperLimit rediscQoSThreshold = 12 (wSgen * 0.10); 

             yields renegotiationAttempts = 10 (wSgen * 0.10); 

             yields renegotiationAdjustment = 5  (wSgen * 0.10); 

             yields rebindingRecheck = "FALSE"  (wSgen * 0.10); 

             yields rebindingDelay = 10  (wSgen * 0.10); 

             yields discoveryAccuracy = 5  (wSgen * 0.10); 

             yields rediscQoSThreshold = 5 (wSgen * 0.10); 

             availabilityQoSReq = 96/100 [30] (wSgen*0.10); 

             responseTimeQoSReq = 70/100 [-24] (wSgen * 0.10); 

       }; 

       Subpolicy G3_HIGHQUALITY{ 

             costQoSReq = costQoSReq [-20] (wSperf*1.00); 

             overridesAll renegotiationAttempts = 10 (wSperf*0.20); 

             overridesAll renegotiationAdjustment = 5  (wSperf*0.20); 

             overridesAll rebindingRecheck = "FALSE"  (wSperf * 0.20); 

             overridesAll rebindingDelay = 10  (wSperf*0.20); 

             overridesAll discoveryAccuracy = 5  (wSperf*0.20); 

             overridesAll recheckRate = 10  (wSperf*0.20); 

      }; 

      Subpolicy G3_NORMAL{ 

             costQoSReq = costQoSReq [-20] (wSperf*1.00); 

             overridesAll renegotiationAttempts = 10 (wSperf*0.20); 

             overridesAll renegotiationAdjustment = 5  (wSperf*0.20); 

             overridesAll rebindingRecheck = "FALSE"  (wSperf*0.20); 

             overridesAll rebindingDelay = 10  (wSperf*0.20); 

             overridesAll discoveryAccuracy = 5  (wSperf*0.20); 

      }; 

      Subpolicy G3_LOWCOST{ 

             overridesAsUpperLimit costQoSReq = 0.80 * costQoSReq [-40] (wScost * 1.00); 

             costQoSReq = 0.75 * costQoSReq [-20] (wScost * 1.00); 

             overridesAll renegotiationAttempts = 10 (wScost*0.20); 

             overridesAll renegotiationAdjustment = 5  (wScost*0.20); 

             overridesAll rebindingRecheck = "FALSE"  (wScost*0.20); 

             overridesAll rebindingDelay = 10  (wScost*0.20); 

             overridesAll discoveryAccuracy = 5  (wScost*0.20); 

      }; 

      Subpolicy G3_SAVEBATTERY{ 

             costQoSReq = costQoSReq [-20] (wSres*1.00); 

             overridesAll renegotiationAttempts = 3 (wSres * 0.20); 

             overridesAll renegotiationAdjustment = 6  (wSres * 0.20); 

             rebindingRecheck = "FALSE"  (wSres * 0.20); 
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             rebindingDelay = 10  (wSres * 0.20); 

             overridesAll recheckRate = 30 (wSres * 1.00); 

             overridesAll discoveryAccuracy = 7  (wSres * 0.20); 

             overrides recheckRate = 30 (wSres * 1.00); 

      }; 

      Subpolicy G3_CREDITLTPG_HIGH{ 

             costQoSReq = costQoSReq [-20] (wScost*1.00); 

      }; 

      Subpolicy G3_CREDITLTPG_LOW{ 

             overridesAsUpperLimit costQoSReq = 0.90 * costQoSReq (wScost * 0.50); 

             costQoSReq =  2.20 * costQoSReq * (1 / (1 + creditRefRate/100)) * (1 / (1 + 
creditUseratio/100)) * (1 / (1 + monthlyDurationRatio/100)) [-12] (wScost*1.00); 

      }; 

      Subpolicy G3_CREDITLTPG_VLOW{ 

             overridesAsUpperLimit costQoSReq = 0.80 * costQoSReq (wScost * 0.50); 

             costQoSReq =  costQoSReq * (1 / (1 + creditRefRate/100)) * (1 / (1 + 
creditUseratio/100)) * (1 / (1 + monthlyDurationRatio/100)) [-12] (wScost*1.00); 

      }; 

      // End of Declarations of the Global Policy   

}; 

      // End of the Global Policy   

}; 
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APPENDIX B: The Application Policy Example 

// Begin Application Policy  

Policy VSTREAM{ 

Declarations{ 

      // App Policy context-variables Declarations  

       // string value indicating the active appID  

       string ContextVar appID == ServiceRequest.activeRequest.appID; 

       // string value indicating the serviceID bound to till now 

       string ContextVar serviceID == ServiceRequest.serviceID; 

       // The corresponding to the bound to serviceID bitrateQoS on CSD during the current  
       // Recheckcycle  

       integer ContextVar bitrateQoSProv == ContextMonitoringM.bitrateQoSProv;  

      // End of context-variables declarations of the Application Policy VSTREAM 

 
       // Calculation-variables Declarations      

       // The value of current session rediscoveries expressed per 5 min eq. Session on CSD  in the 
       // current Session  

      float CalcVar rediscovPer5min == rediscoveries * 300 / (cloudDurationSession + 1); 

       // float value indicating the costQoSProv last value  

      float CalcVar bitrateQoSProvLast == StatisticalAnalysisM.bitrateQoSProv.Monthly.Last; 

      // End of calculation-variables declarations of the Application Policy VSTREAM 

 
       // QoS Variables Declarations      

       // QoS Variables that are common with the global QoS of the Global Policyare not declared 
again - if they have the same name   

       // The following QoS Variables are application-specific QoS variables  

       // The Service Request bitrate QoS value for the service requested on the Cloud  

      float QoSVar bitrateQoSReq == ServiceRequest.activeRequest.bitrateQoSReq; 

       // The Service Request "frames per second" QoS value for the service requested on the  
       // Cloud (typically: 23 to 27)   

      integer QoSVar fpsQoSReq == ServiceRequest.activeRequest.fpsQoSReq; 

      // End of QoS-variables declarations of the Application Policy VSTREAM 

 
      // End of Declarations of the Application Policy    

}; 

 
Criteria{ 

      // 3rd CEC Default Subpolicy for default values  and upper/lower limits for QoS variables   

      [3] Criteria VSTREAM3_DEFAULT{ 

                  default; 

       }; 

      // 3rd CEC At User Pref. = "HighQuality" max attainable values for the unadapted value are 
allowed for QoS variables   

      [3] Criteria VSTREAM3_HIGHQUALITY{ 

                  userPref = "HighQuality"; 

       }; 
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      // 3rd CEC At User Pref. = "Normal" optimal attainable values are allowed for QoS variables   

      [3] Criteria VSTREAM3_NORMAL{ 

                  userPref = "Normal"; 

       }; 

      // 3rd CEC At User Pref. = "SaveBattery" optimal attainable values of 50%% the unadapted 
value are allowed for QoS variables   

      [3] Criteria VSTREAM3_SAVEBATTERY{ 

                  userPref = "SaveBattery"; 

       }; 

      // 3rd CEC At User Pref. = "LowCost" optimal attainable values of 50%% the unadapted 
value are allowed for QoS variables   

      [3] Criteria VSTREAM3_LOWCOST{ 

                  userPref = "LowCost"; 

      }; 

      // 3rd CEC: At High Battery Use Ratio, high attainable values are allowed for the QoSvars - 
mainly bitrateQoSReq  

      [3] Criteria VSTREAM3_BATTERYLTPG_HIGH{ 

                   batteryLTPGLevel = "HighBat"; 

      }; 

      // 3rd CEC: At Low Battery Use Ratio, gradually reduced attainable values are set - mainly 
bitrateQoSReq  

      [3] Criteria VSTREAM3_BATTERYLTPG_LOW{ 

                   batteryLTPGLevel = "LowBat"; 

      }; 

      // 3rd CEC: At Very Low Battery level, abrubtly reduced attainable values are set for 
bitrateQoSReq  

      [3] Criteria VSTREAM3_BATTERYLTPG_VLOW{ 

                   batteryLTPGLevel = "VLowBat"; 

      }; 

      // 3rd CEC: At High Data Budget, high attainable values are set for QoSvars:  bitrateQoSReq  

      [3] Criteria VSTREAM3_DATALTPG_HIGH{ 

                   dataLTPGLevel = "HighData"; 

      }; 

      // 3rd CEC: At Low Data Budget, low attainable values are set for QoSvar: bitrateQoSReq  

      [3] Criteria VSTREAM3_DATALTPG_LOW{ 

                   dataLTPGLevel = "LowData"; 

      }; 

      // 3rd CEC: At Very Low Battery level, abrubtly reduced attainable values are set for 
bitrateQoSReq  

      [3] Criteria VSTREAM3_DATALTPG_VLOW{ 

                   dataLTPGLevel = "VLowData"; 

      }; 

     // End of Criteria section of the Application pPolicy 

}; 

Subpolicies{ 

        Subpolicy VSTREAM3_DEFAULT{ 

              overridesAsUpperLimit bitrateQoSReq = 0.8 * bandwidth [-40] (wSgen*1.00); 

              yields bitrateQoSReq = 0.8 * bitrateQoSReq [-15] (wSgen*0.10); 
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              yieldsAll costQoSReq = costQoSReq [-18] (wSgen*0.10); 

              yields fpsQoSReq = 0.96*fpsQoSReq [10] (wSgen*0.10); 

             availabilityQoSReq = 96/100 [20] (wSgen * 0.80); 

             responseTimeQoSReq = 60/100 [-24] (wSgen * 0.50); 

             rediscQoSThreshold = 5 (wSgen * 0.50); 

       }; 

       Subpolicy VSTREAM3_HIGHQUALITY{ 

             bitrateQoSReq = bitrateQoSReq [-10] (wSperf*1.0); 

             costQoSReq = costQoSReq [-20] (wSperf*1.00); 

             fpsQoSReq = fpsQoSReq [16] (wSperf*0.50); 

       }; 

      Subpolicy VSTREAM3_NORMAL{ 

             bitrateQoSReq = bitrateQoSReq [-20] (wSperf*1.00); 

             costQoSReq = costQoSReq [-20] (wSperf*1.00); 

             overridesAsUpperLimit fpsQoSReq = 0.98*fpsQoSReq [20] (wSperf*1.00); 

             fpsQoSReq = 0.98*fpsQoSReq [20] (wSperf*1.00); 

      }; 

      Subpolicy VSTREAM3_LOWCOST{ 

             costQoSReq = 0.78*costQoSReq [-20] (wScost*1.00); 

             bitrateQoSReq = bitrateQoSReq [-20] (wScost*1.00); 

      }; 

      Subpolicy VSTREAM3_SAVEBATTERY{ 

             overridesAsUpperLimit bitrateQoSReq = 0.50*bitrateQoSReq [-12] (wSres*0.50); 

             bitrateQoSReq = 0.45 * bitrateQoSReq [-20] (wSres*1.00); 

             costQoSReq = costQoSReq [-20] (wSres*1.00); 

             overridesAsUpperLimit fpsQoSReq = 0.93*fpsQoSReq [16] (wSres*1.00); 

             fpsQoSReq = 0.93*fpsQoSReq [16] (wSres*1.00); 

      }; 

       Subpolicy VSTREAM3_BATTERYLTPG_HIGH{ 

             bitrateQoSReq = bitrateQoSReq [-20] (wSres*1.00); 

             fpsQoSReq = fpsQoSReq [16] (wSres*1.00); 

       }; 

      Subpolicy VSTREAM3_BATTERYLTPG_LOW{ 

             overridesAsUpperLimit bitrateQoSReq = 0.50 * bitrateQoSReq [-20] (wSres*1.00); 

             bitrateQoSReq = 0.60 * bitrateQoSReq * (1 / (1 + batteryRefRate/100)) * (2 - 
battery/100) * (1 / (1 + batteryDurationRatio/100)) [-12] (wSres*1.00); 

             fpsQoSReq = 0.93*fpsQoSReq [12] (wSres*1.00); 

      }; 

      Subpolicy VSTREAM3_BATTERYLTPG_VLOW{ 

             overridesAsUpperLimit bitrateQoSReq = 0.20 * bitrateQoSReq [-20] (wSres*1.00); 

             bitrateQoSReq = 0.30 * bitrateQoSReq * (1 / (1 + batteryRefRate/100)) * (2 - 
battery/100) * (1/(1 + batteryDurationRatio/100)) / 2 [-12] (wSres*1.00); 

             fpsQoSReq = 0.90*fpsQoSReq [16] (wSres*1.00); 

             overrides recheckRate = 30 (wSres*0.80);  

      }; 

      Subpolicy VSTREAM3_DATALTPG_HIGH{ 
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             bitrateQoSReq = bitrateQoSReq [-20] (wSdat*1.00); 

             fpsQoSReq = fpsQoSReq [20] (wSdat*1.00); 

             defaultBindingMargin = 24 (wSdat*1.00); 

      }; 

      Subpolicy VSTREAM3_DATALTPG_LOW{ 

             overridesAsUpperLimit bitrateQoSReq = 0.50 * bitrateQoSReq (wSdat * 1.00); 

             bitrateQoSReq =  bitrateQoSReq * (1 / (1 + dataRefRate/100)) * (1 / (1 + 
dataUseratio/100)) * (1 / (1 + monthlyDurationRatio/100)) [-12] (wSdat*1.00); 

             fpsQoSReq = 0.90*fpsQoSReq [10] (wSdisr*1.00); 

      }; 

      Subpolicy VSTREAM3_DATALTPG_VLOW{ 

             overridesAsUpperLimit bitrateQoSReq = 0.20 * bitrateQoSReq (wSdat * 1.00); 

             bitrateQoSReq =  bitrateQoSReq * (1 / (1 + dataRefRate/100)) * (1 / (1 + 
dataUseratio/100)) * (1 / (1 + monthlyDurationRatio/100)) / 4 [-12] (wSdat*1.00); 

             fpsQoSReq = 0.85*fpsQoSReq [10] (wSdat*1.00); 

      }; 

      // End of the Subpolicies Part  

     }; 

// End of Application Policy  

}; 
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APPENDIX C: Middleware & Policy Testing and 

Verification 

When it comes to testing & verification the VOLARE middleware is capable of 

operating: 

a) On real data, providing DCAA support to an application with the User 

activating a service request for service discovery and binding on the Cloud; 

b) On virtual context data on an inserted Test Suite or individual test cases, by-

passing Context Monitoring and feeding virtual context data in sequence from 

a Context Data Matrix.   

As part of its functionalities, the middleware keeps record of the Context & 

Adaptation data in the Context & Adaptation History Database (CAHiD).  The 

CAHiD data may be extracted and then may be used independently of the 

middleware for static verification, evaluation or validation purposes, since the 

mobile device cannot have the resources required for a static evaluation of a 

large data volume and external Automated Static Verification Tools have been 

designed.  

In the following paragraphs we describe the dynamic testing and verification 

techniques selection for the middleware and the adaptation policy, as well as the 

strategy for test suites generation on each technique and the adequacy criteria. 

Based on the dynamic testing context data & results, a static analysis 

methodology and tools have been designed for detecting policy logic 

“irregularities” that do not stop the program flow but constitute rule faults.  

1. Strategy & Tools for Dynamic & Static Verification 

The middleware operation is basically verified through the following steps: 

a) Dynamic Testing 

Firstly, we test the middleware and the Adaptation Policy observing the 

middleware CAA operation on real usage data, recording the context & 

adaptation data and verifying that it operates satisfactorily, 

Secondly, Automated Dynamic Testing on appropriately designed Test Suites 

with adequacy criteria will be implemented. 

b) Static Verification of the Context & Adaptation Data derived 
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Based on the context and adaptation data of the dynamic testing, Automated 

and/or Tester-guided Static Analysis is implemented, for rules faults and logical 

irregularities detection and correction. 

Additionally, we compare the extracted CAHiD data to an already independently 

validated application on Policy Engine simulation, called PEVApp, with execution 

data on the same Composite Policy and on the same real and/or virtual test 

cases. 

c) Testing Techniques Selection 

For the Testing & Verification of the middleware and the Policy, we shall select 

appropriate Grey Box Testing Techniques for the Middleware and White Box 

Testing Techniques for the Adaptation Policy from the testing repertory proposed 

by the computing community. Since our purpose is to test the middleware and at 

the same time verify its adaptation logic, the Policy, we need to combine the two 

test activity categories.  

We shall launch both Dynamic Testing of the middleware and the Policy on 

appropriately designed Test Suites and Static Analysis of the derived and 

recorded Context & Adaptation Data. 

The choice of the most appropriate testing techniques for the program and the 

Policy under test as well as the extent and targeting of coverage and adequacy 

criteria that define the number of test cases is a major strategic decision. We 

choose as Verification Techniques, those that in combination provide joint 

validation on the subjects of our Verification and Validation, namely: (a) the 

Middleware Verification on APSL-compatible policies; (b) The Policy Verification 

for Rules Faults; (c) the joint Middleware – Policy Validation. 

A hybrid solution of several Software Testing & Verification Techniques will be 

implemented for maximum efficiency, using Automated Testing & Verification 

Tools for Automated Testing Suites Design & Generation and Automated Static 

Results Analysis, with developer-guided fine-tuning to focus on suspected output 

anomalies.   

2. Dynamic Testing Techniques 

Automated joint Dynamic Testing of the Middleware and the Policy logic will be 

implemented by the repeated execution on the middleware on context data Test 

Suites, in addition to real-time operation context & adaptation data.  

On Dynamic Testing, we will verify the program for failures, excessive execution 

duration and unreasonable results. 
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Testing Techniques Selection 

Some of the most widely implemented software testing techniques are adopted, 

namely: (a) for code coverage, the condition/predicate-coverage, (b) the domain-

testing strategy for boundary values of the context sub-domains [ ][ ]. These 

techniques, based on fine-grained criteria, guide the generation of test suites so 

that most different paths will execute and weaknesses will become apparent. 

a) The Predicate-coverage & Statement-coverage Testing Strategy 

We choose from the Code-based techniques the Predicate-coverage & the 

Statement-coverage Strategies based on the Adaptation Policy predicates, as 

it is the most appropriate for combining at the same time testing of the 

Middleware and the Policy, not only on dynamic verification where it is the Policy 

predicates that influence path/branch change, but also in view of the planned 

input/output Static Verification for Rules Fault Detection and Adaptation Logic 

inconsistencies. 

The testing strategy is designed to detect errors in the control flow of the 

middleware in application of the Policy. The predicates of the Policy partition the 

input space into a set of mutually exclusive context sub-domains. Values from 

each context sub-domain correspond to a particular program path and represent 

input data points which cause that path to be executed.  

As coverage targets and adequacy criteria, we set: 100% for Policy 

Predicate-coverage and 100% for Policy Statement-coverage. Of course, if 

some statements or predicates prove “infeasible”, we will try to exercise them 

though manual test cases or they will be identified as faulty “dead” predicates or 

statements.    

b) The Domain-Testing Strategy 

Domain-testing will also be partly adopted as one of the main testing techniques, 

in combination with the Predicate-coverage Testing technique, for the Dynamic 

Verification of the Middleware and of the Policy through selection of boundary 

values test cases of the context sub-domains. 

It is essential to orient Dynamic Testing of the middleware with or without the 

main Policy, to context values equivalence classes that present the higher 

probability of fault presence. Such equivalence classes include boundary values 

of context sub-domain, alternative variables types, as well as sub-domains with 

higher fault percentage. 

c) Usage-based Testing Approach 
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Since it is essential that User generated input will be preferentially tested and in 

our middleware the User input is fairly limited (in the Policy, typically the User 

Preference selection only), all four alternative input values for User Preference 

will be exhaustively used in building the Testing Context Data Matrix.  

For the above reasons, the Automated Test Suite Design will include hybrid 

elements for the above techniques and will be developer-guided to add additional 

required test cases. 

3. Static Testing Techniques 

As documented in research papers [55][70][71], the Dynamic Verification 

techniques cannot discover some program failures, neither is it possible to 

increase much the number of test cases due to the combinatorial explosion 

problem with the number of variables and their sub-domains. Thus, we choose a 

combination of the Dynamic Testing with Static Analysis of the context & 

adaptation data. 

The Static Analysis of the Context & Adaptation Data aims at identifying Rules 

Faults through indications of “irregular adaptation behaviour patterns”, like: 

 “Dead” policy rules, predicates, statements or adaptation-values not selected 

over a representative set of context data covering the whole context domain, 

or eventual live-lock or dead-lock rules, 

 Illogical adaptation results that are in conflict with expected relations between 

context & adaptation data, indicating an anomaly caused by errors in Policy 

Rules Policy Rules, 

 Irregular adaptation results values clustering on several sub-ranges, instead 

of covering the whole variables ranges.  

Such irregular adaptation results patterns indicate faults in rules that lead to 

erroneous adaptation. Two main Static Testing Strategies will be adopted: 

4. Rule Faults Detection Strategy 

The Rule Faults Detection strategy is described in [55], with algorithms that allow 

Rule Fault patterns to be detected. However, the Weight-based Policies, due to 

specific features, are not compatible with the described symbolic testing 

technique and a different technique is developed, requiring first the Dynamic 

Testing context & adaptation data, on which appropriate rule fault detection 

algorithms may run to identify rules with suspected faults.     

5. Metamorphic Relations Verification Testing Technique 
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Metamorphic Relations Testing aims at investigating existing known or expected 

relations between input and output data produced of the dynamic test cases and 

verifying that there is no anomaly by violation of these relations [ ][ ]. Of course 

these relations are scenario-specific but we consider them very important for 

identifying otherwise hidden logical weaknesses in the Policy, by evaluating if the 

selected and appropriately sorted sets of results correspond to selected input 

data. 

6. Middleware Verification Implementation 

First, we will start with testing and verifying the middleware on Test Policies. 

a) Preliminary Functional Testing with Test Policy & Debugging 

a. Build & Verify Test Policies of increasing complexity 

A simple virtual Preliminary Test Policy will be built, with: 

 Declarations statements on all APSL – supported types of variables of all 

Repositories, 

 Predicates with all logical & arithmetic operators & operands 

 Adaptation-rules on all supported types 

 All other features of the Policy Specification Language. 

This policy will be verified each time it is modified, on syntactic correctness.  

b. Manual/Automated Functional Testing, Debugging  

Then a Manual Dynamic Testing and debugging process will be implemented. 

b) Dynamic Testing with the Real Policy on a Test Suite 

a. Build & Verify Real Adaptation Policy 

The real Adaptation Policy will be built and verified on syntactic correctness.     

b. Test Suite Generation  

Based on the real Policy, a Test suite of context data is prepared by the 

Automated Testing Suite Generator Tool. The Automated Testing Suite 

Generator applies the developer’s instructions on Testing Strategies 

selection for the Test Suite generation.   

c. Automated Dynamic Testing 

The Automated Repeated Policy Execution Tool is used and dynamic testing 

is implemented, based on the Test Suites. The results are stored for further 

static analysis. 

c) Joint Middleware & Policy Verification Strategy 
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For reasons explained in the following paragraphs, due to the specific 

features of the VOLARE APSL and unlike the conventional Action-based 

rules, a Weight-based Policy is difficult to be submitted to Static Verification 

on Rule Faults Detection on symbolic analysis only without dynamic testing 

results.  Consequently, the real Policy Static Verification will be implemented 

jointly with the already partly verified Middleware.   

Verification of the Real (not Test) Adaptation Policy will be based:  

 On Automated Syntactic Correctness Verification by the appropriate Tool; 

 On Automated Dynamic Testing by the middleware on an appropriately 

generated Test Suite, as well as on Real-Time operation; 

 On Automated and Tester-guided Static Testing (Analysis) of the 

extracted Context & Adaptation Data from the Dynamic Testing and from 

the real-time operation. 

7. Automated Dynamic Verification of the Middleware and Policy 

a) Automated Test Suites Design & Generation  

For each context-variable used in Criteria conditions (or adaptation-

statements), all threshold values are automatically identified for the sub-

domains referenced in the Criteria conditions (or eventually in adaptation-

statements). This concerns:  

 the recording of every alternative value referenced for the discrete 

context-variables Boolean or string-type, and  

 the identification  of threshold values for each sub-domain referenced for 

each continuous (numeric) context-variable. 

For each context-variable declared and referenced in the Policy File, its 

domain of values is identified: 

 For Boolean context-variables, the alternative states are True and False. 

 For every string-type context-variable, the alternative values are identified 

and stored. 

 For numeric context-variables, all its upper and lower sub-domain values 

are identified. For instance if for a percentage variable, we identify the 

following three context conditions, then we identify: 

 contextVar1 > val1 

 contextVar1 = val2 

 a * contextVar1 - val3 =< 0   /* a <> 0 */ 
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with sorted constants, say: val1 > val2 > val3/a, and additionally the absolute 

higher and lower values (say: 0 and 100), we have the following upper/lower 

boundary values for the sub-domains: 100, val1, val2, val3/a, 0. 

Use of the Automated Testing Suite Generator Tool of the PEVApp is 

made for the automated Testing Suite generation, based on alternative 

options provided to the developer for the suite design.  

The program implements Test Suite generation for each sub-domain of a 

context-variable, based on predetermined selectable strategies. A 2-

dimensional Context Data Matrix is prepared, with first row header each 

context-variable and in each next row, each test case. 

b) Automated Dynamic Verification based on the Test Suites 

Repeated policy execution is implemented, feeding as context data each row 

of data values of the Test Suite and recording at each Policy Execution, not 

only the context data & adaptation results as well as the intermediate 

calculation values, but additionally for further Static Analysis: 

 The Policy statements executed 

 the Criteria/Subpolicies or individual predicates satisfied, 

 the A/Rs selected and executed. 

The Dynamic Testing based on the Test Suites will be implemented on the 

Mobile middleware on the device and – for comparison purpose - on the 

already independently validated simulated Policy Engine on PEVApp. 

8. Automated Static Verification Strategy 

Further rules verification is of paramount importance for the correct operation of 

rule-based CAA middleware-based applications for detecting faults that escaped 

the Dynamic Testing. We introduce an approach and an Automated Static 

Verification Tool of the Context & Adaptation data derived by the Dynamic 

Testing, consisting in rule fault detection through appropriate algorithms, looking 

for adaptation behavior different from the apparent intention of the policy 

developer.   

The verification of the adaptation policy logic is based on the identification of 

adaptation rules fault patterns for the VOLARE APSL-compatible Policy Files. 

The following papers [55] [70] have influenced our work, but we follow a different 

policy-based DCAA Rules Fault Detection approach. The major differences with 

the referenced work on rule fault detection for CAAA’s and our work are due the 

following two main reasons: 
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 The VOLARE APSL compatible Policy Files at policy execution may match, 

select and execute multiple A/Rs on the same head predicate, which is 

considered an inconsistency by the classical verification approaches. In 

VOLARE the Conflict Resolution Directives allow for participative weighted 

contribution to the adaptation results. Consequently the inconsistency check 

is not valid in VOLARE Policy Files. 

 The VOLARE approach on adaptation policy logic verification needs to make 

use of the APSL specific, proprietary features, like (i) rule priority assigning 

through keywords and (ii) the weight value at each A/R, that require Policy 

Execution to define which are the selected modalities that define a system 

state at each context condition. Without Policy Execution, the state matrices 

cannot be evaluated. 

Consequently, in order to launch static verification for rules faults, we need to 

make use of the Dynamic Testing adaptation data on appropriate test suites and 

then static verification on the derived data is implemented.  

a) Comparison of Dynamic Testing Results with the Simulation 

The Context & Adaptation Data of the CAHiD are extracted and evaluated that 

they are the same with those derived by Repeated Policy Execution by the 

already validated simulated Policy Engine of PEVApp on the same Test Policy. 

Otherwise, a fault is detected.    

b)  Automated Static Rule Faults Detection 

The Fault Patterns that have been identified for VOLARE APSL compatible Policy 

Files based on syntactic and behavioral rule faults are described below. A Fault 

Pattern is deduced from the “reasonable” demand that in a Policy, each 

adaptation-rule and each adaptation action encoded in the Policy, should satisfy 

some requirements of adaptation reasoning “correctness”. Lack of this 

“correctness” identifies a Fault Pattern for the specific rule, predicate, or 

adaptation action.  

The following “correctness requirements” have been identified for the adaptation-

rules in adaptation logic and their lack detects the existence of the relevant rule 

fault to the verification approach.  

a. Criteria Liveness Requirement 

There should be at least one set of context data, which leads to the satisfaction 

of all the predicates of a Criteria conditions group 

b. Subpolicy Liveness Requirement 
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There should be at least one set of context data, which leads to the selection and 

execution of at least one adaptation-statement in the corresponding Subpolicy. 

c. Rule Liveness Requirement 

There should be at least one set of context data, which leads to the selection and 

execution of each Rule in every Subpolicy.  

d. Adaptation Action Liveness Requirement 

There should be at least one set of context data, which leads to the selection 

(and execution) of each adaptation-statement of a non-numeric A/R in all its 

alternative non-numeric values. A Boolean A/V should take both values at 

different context values, a string-type A/V should take all alternative values 

identified in the Policy, and a numeric adaptation-variable at least one value. 

e. 1st Stability Requirement – Preventing Adaptation Cycles 

Adaptation Cycles identified by the execution of the same adaptation at a specific 

context value/range should be prevented. 

f. 2nd Stability Requirement – Preventing Adaptation Races  

Adaptation Races, identified through execution of the same sequence of 

adaptations at a specific context value/range, should be prevented. 

The Automated Rule Faults Detection is implemented through the Automated 

Rule Faults Detection Tool of the PEVApp. 

a) Static Analysis on Metamorphic Relations 

Metamorphic Relations are expected relations not in the input/output data of a 

test case, but between sets of input and output data. Faults are detected if there 

is anomaly by violation of these relations [ ][ ]. Of course these relations are 

scenario-specific but we consider them very important for identifying otherwise 

hidden logical weaknesses in the Policy, by evaluating if the selected and sorted 

sets of results corresponding to selected input data are “the expected ones” by 

the developer.  

In our scenario, we have expected relations or trends that selected context – 

adaptation data sorted according to certain criteria should exhibit. For instance 

after multiple Policy Executions on a Test Suite, we may have context & 

corresponding results appropriately selected and sorted. On these selected and 

sorted data an automated verification may be implemented on the conformance 

to expected behaviour:    

a. Evaluating bitrate QoS Request values vs. increasing bandwidth values 
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Keeping all other context fixed, or within specified limits, we would expect a 

non-negative trend on consecutive results values corresponding to ascending 

context values. If an anomaly is identified, it requires a careful guided review 

of the Policy. 

b. Evaluation of several A/V values under same context but different User 

Preference 

With all other context values fixed, some numeric A/Vs values calculated under 

different User Preference, need to follow some relation, like:  

A/V)HighQuality >= A/V)Normal >= { A/V)LowCost. A/V)SaveBattery}      

 (1)  

We intend to identify and use such “reasonable relations” to validate the Policy 

(and the middleware) on logical as well as eventual functional errors, by 

Relations Evaluation of the Context & Adaptation data, collected from dynamic 

testing on appropriately designed test suites and appropriately sorted.   

9. Related Literature on Middleware & Policy Verification 

Policy Verification 

Sama et al [55] have published an approach for static verification of the 

adaptation logic of CAAAs. VOLARE shares the basic thinking on Rules Fault 

Detection and has also developed an approach for Policy File verification, but 

adjusted to the VOLARE APSL and adaptation-rules. The basis of the approach 

in [55] is based on the consistency algorithm, which is not relevant in VOLARE 

since multiple adaptation-rules on one head predicate may be selected under a 

certain context. Consequently a different approach has been adopted for 

detecting faults and anomalies, based on the analysis of the Context & 

Adaptation Data derived by the Dynamic Testing, as explained extensively in 

paragraph 7.5. 

Metamorphic Relations are expected relations not in the input/output data of a 

test case, but between sets of input and output data of the Test Suite results. 

Faults are detected if an anomaly is detected by violation of these relations [70].          

10. Middleware & Policy Results Evaluation & Validation 

a) Verification Adequacy Criteria 

As the verification activities will be implemented on the middleware and the real 

Policy, we will need to deduce Verification Adequacy Criteria on the extent and 

depth of Dynamic and Static Testing. 
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At the present, we have set as adequacy criteria, 100% predicate-coverage and 

100% statement-coverage of the Policy, or as high as it is attainable, to account 

for eventual “infeasible” predicates or statements, that will be tested manually.  

On the real data operation of the mobile, testing will be focused mostly on the 

other middleware components.     

b) Faulty Rules Correction 

The errors identified by execution failure will be debugged. The faulty rules are 

identified directly or indirectly through the detection of faults or “non-correctness” 

in the results.  

Rule correction by modification of the Criteria conditions, priority etc, or 

elimination of them if they are redundant, is the developer/tester’s responsibility.  

Remarks – Discussion on the Verification Challenges 

a) The “technical” faults issue  

Some of the faults detected may be just “technical” faults in the sense that, as the 

middleware Global Policy is generic for supporting different alternative 

applications, some rules may not be activated for the current application or the 

current Fine-tuned Application Profile (i.e. threshold settings) of the User 

Choices. It is possible that some adaptation action or rule triggering (selection 

and calculation) may be reserved for other Apps and since the Global Policy 

cannot be application specific, a context sub-domain of a rule may not be live for 

all apps. 

b) Complicated Context – Adaptation Model 

For scenarios/Policies with complicated Context & Adaptation Model and 

complex propositional context variables (i.e. predicates) the Automated Test 

Suite Design & Generation may not be possible. In such cases, Test Suite design 

or results evaluation requires developer guidance. 

c) The Combinatorial Explosion Issue in Dynamic Verification 

It is apparent that the test cases number of Testing Suites (i.e. the alternative 

context data sets of values) is the product of the number of alternative values for 

each context-variable. As the number of the context-variables and/or the number 

of alternative context data values generation or the different sub-domains for the 

numeric variables increase, there may be a combinatorial explosion of 

data/results. This is why both the dynamic and static Policy File verification takes 

place at an appropriate workstation. 



 
 
   

311 
 

d) Static Metamorphic Relations Testing – The advantage of the User 

Preference Model 

As it is apparent, our approach on the Adaptation Policy Logic Rule Detection 

examines also the adaptation domain coverage by the Policy Logic and is not 

limited only in individual rule fault patterns [55] and “adaptation-action liveness”, 

but identifies adaptation “results” violating expected adaptation behavior, through 

the metamorphic testing strategy.  

Critical in Static Verification of rules faults is the User Preference Model with the 

policy-based modes that are designed to impose a scaled adaptation behavior on 

some A/Vs. The conclusion is that for Static Verification on Relations between 

context & results, it is important to appropriately design the User Preferences 

Model, so that it can assist a gradual, scaled, adaptation behavior that is more 

easily verified.      

11. Automated Composite Policy Verification Process  

A Policy Execution & Verification Application (PEVApp) has been designed 

simulating a VOLARE APSL-compatible Policy Engine, with Automated 

Verification Tools that assist the developer on Testing & Verification. By 

introducing relevant context data, Policy Execution is enacted providing and 

recording the context data and the intermediate and final adaptation results.  

PEVApp is operating on a workstation and has been independently validated as 

operating correctly on Policy Execution against a Test Suite of context data with 

recorded and verified adaptation results conforming to the VOLARE APSL and 

the Composite Adaptation Policy.  

It also helps validating the middleware, since it is verified that it consistently 

provides the same results with PEVApp on Policy Execution. PEVApp includes 

the Verification Tools referenced below.  

Since the Dynamic & Static Verification may lead to a large number of data and 

results with different storage, sorting, evaluation or graphic visualization needs, 

PEVApp and the Automated Verification Tools are based on MS EXCEL 10 

spreadsheets, coded in Visual Basic for Applications (VBA).  

Another basic reason for this decision is the fact that policy logic verification is 

open ended concerning verification and evaluation on non-predefined aspects 

and EXCEL provides the developer/tester or the advanced User wishing to test 

a policy with an excellent tool with many options for further fine-grained tester-
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guided evaluation as well as storage of the context & adaptation data for future 

testing and reference. 

12. Policy Testing & Verification Tools 

For testing and verification purposes, we have developed a simulated policy 

engine application, called in this work Policy Execution & Verification Application 

– PEVApp, for offline simulated policy execution and verification of adaptation 

policy files compatible to the Volare APSL. This application allows offline testing 

& verification of every new global or application policy on syntactic correctness, 

on semi-automated developer-guided generated test suites.  

A more complete description on Policy Testing & Verification implemented 

including adaptation-rules fault detection is given in Appendix C and the PEVApp 

User Guide in Appendix E. 

Several automated or developer-guided testing & verification tools have been 

developed custom-made to the Volare APSL, and are included in the PEVApp: 

a) A Simulated Policy Engine & Rule Verification Assistant 

A Simulated Policy Engine for offline policy execution on Volare APSL-compatible 

policy files has been constructed and independently verified. A Policy Execution 

and Verification Application (PEVApp) has been developed. 

Table 0-1 – A view of the Policy Editing & Verification Assistant Tool 

 

b) Automated Test Suite Generator 

A test suite is automatically generated based on several testing strategies for 

policy predicate coverage, domain testing, context sub-domains boundary values, 

as well as domain-testing suggested extra values, by letting the developer/tester 

2  <== cycleNo
38  <== Total Number of Matched Adaptation Statements 89% 34  <== Total Number of Selected Adaptation Statements 

15  <== Total Number of Adaptation Variables Involved 

SELECTED  ADAPTATION  STATEMENTS

No MATCHED ADAPTATION-STATEMENTS
 RULE 

PRIORITY

ROW 

No

Overall 

Select 

A/St
SELECTED ADAPTATION STATEMENTS

WEIGHT 

VALUE

RESOLV

ED-

VALUE

bitrateQoSReq bitrateQoSReq 48

1 overridesAsUpperLimit bitrateQoSReq = 0.8*bandwidth [30] (wSgen * 1.00); 0 241 1 overridesAsUpperLimit bitrateQoSReq = 0.8*bandwidth [30] (wSgen * 1.00); 1.000

2 overridesAsUpperLimit bitrateQoSReq = 0.4*0.8*nominalBandwidth [20] (wSperf * 1.00); 0 313 2 overridesAsUpperLimit bitrateQoSReq = 0.4*0.8*nominalBandwidth [20] (wSperf * 1.00); 0.800

3 overridesAsLowerLimit bitrateQoSReq = 0.05*nominalBandwidth [20] (wSgen * 1.00); 0 394 3 overridesAsLowerLimit bitrateQoSReq = 0.05*nominalBandwidth [20] (wSgen * 1.00); 1.000

4 bitrateQoSReq = 0.8*bandwidth [20] (wSperf * 1.00); 4 330 4 bitrateQoSReq = 0.8*bandwidth [20] (wSperf * 1.00); 0.800

5 yieldsAll bitrateQoSReq = 0.7*bandwidth [15] (wSgen * 0.100); 6 395

6 yieldsAll bitrateQoSReq = 0.8*bandwidth [20] (wSgen * 0.200); 7 229

costQoSReq costQoSReq 9.92

7 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.100); 4 314 1 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.100); 0.050

8 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.10); 4 331 2 costQoSReq = 0.8*maxCostPref [20] (wSabs * 0.10); 0.050

9 yieldsAll costQoSReq = 0.8*maxCostPref [18] (wSgen * 0.100); 6 396

10 yieldsAll costQoSReq = 0.8*maxCostPref [20] (wSgen * 0.200); 7 230

POLICY EDITING & VERIFICATION ASSISTANT
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to select one from several pre-defined alternative options for context data 

generation. 

c) Automated Test Suite Repeated Policy Execution 

On the test suites generated, PEVApp enables automated offline execution on 

the Simulated Policy Engine application and context and adaptation data 

recording for further automated static analysis. 

In the Table 6-4  below Policy Editing & Verification Assistant Tool is depicted, 

demonstrating which adaptation-rules are matched and selected under a given 

context data test case, priority settings, weight values and adaptation results. 

This tool may assist the developer at adaptation policy authoring.  

d) Automated Policy Rules Faults Detection  

Our approach on rules fault detection verification is implemented as follows. A 

fault detection algorithm is designed for each fault pattern. These algorithms are 

executed sequentially on the context & adaptation data derived by simulated 

policy execution offline, or on real data extracted from the database and identify 

the specific fault category in each relevant test case, for troubleshooting. More 

details are provided in Appendix C. 
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APPENDIX D: The Context Usage Model 

The usage model initial data over a one month period, on154 CSD sessions and 

217 adaptations (and bindings to cloud services), are listed below for 

documentation purposes. Based on these data is the regression analysis of 

Table 8-1 and the monitoring scenarios described in §8.1.3. 

Table D-1 – The Context Usage Model Values  

usg 

Row 

No 

session 

No 
dateNow 

usg 

StartTime 

usg 

EndTime 
userPref bandwidth 

battery  

Recharge 

nonCloud 

battery 

Drop 

CSD 

battery 

Drop 

1 1 01/07/13 9:12:41 9:15:11 Normal 200 94 0 2 

2 1 01/07/13 9:15:11 9:17:06 Normal 100 
 

0 1 

3 2 01/07/13 9:45:42 9:50:11 LowCost 250 
 

0 2 

4 3 01/07/13 13:23:32 13:26:02 HighQuality 180 
 

2 2 

5 3 01/07/13 13:26:02 13:27:07 HighQuality 90 
 

0 1 

6 4 01/07/13 17:55:11 17:57:11 Normal 320 
 

2 2 

7 4 01/07/13 17:57:11 17:59:01 Normal 160 
 

0 1 

8 4 01/07/13 17:59:01 18:00:57 Normal 384 
 

0 1 

9 5 01/07/13 19:14:43 19:17:13 Normal 120 
 

0 1 

10 5 01/07/13 19:17:13 19:18:01 Normal 60 
 

0 0.5 

11 6 02/07/13 9:24:11 9:28:04 LowCost 160 
 

8 2 

12 7 02/07/13 11:31:46 11:36:10 SaveBattery 260 
 

1 3 

13 8 02/07/13 13:46:04 13:50:57 Lowcost 150 
 

1 3 

14 9 02/07/13 17:34:16 17:36:46 Normal 200 
 

2 2 

15 9 02/07/13 17:36:46 17:38:12 Normal 100 
 

0 1 

16 10 02/07/13 18:53:14 18:54:44 Normal 300 
 

0 1 

17 10 02/07/13 18:54:44 18:57:06 Normal 150 
 

0 1 

18 11 03/07/13 8:54:11 8:58:55 Normal 150 
 

8 3 

19 12 03/07/13 11:44:56 11:50:06 LowCost 320 
 

1 2 

20 13 03/07/13 13:34:11 13:39:08 SaveBattery 280 
 

1 2 

21 14 03/07/13 18:11:13 18:17:44 LowCost 150 
 

2 4 

22 15 03/07/13 18:55:11 19:02:07 Normal 240 
 

0 2 

23 16 03/07/13 19:46:57 19:52:26 Normal 100 
 

0 3 

24 17 04/07/13 9:12:41 9:14:41 Normal 280 91 0 1 

25 17 04/07/13 9:14:41 9:16:31 Normal 140 
 

0 1 

26 17 04/07/13 9:16:31 9:18:06 Normal 384 
 

0 1 

27 18 04/07/13 11:44:56 11:50:06 LowCost 320 
 

1 2 

28 19 04/07/13 13:23:20 13:25:50 HighQuality 80 
 

0 2 

29 19 04/07/13 13:25:50 13:28:10 HighQuality 50 
 

0 1 

30 19 04/07/13 13:28:10 13:30:12 HighQuality 160 
 

0 2 

31 20 04/07/13 16:44:37 16:49:11 LowCost 160 
 

2 3 

32 21 04/07/13 19:24:40 19:25:56 HighQuality 300 
 

1 1 

33 22 05/07/13 9:24:11 9:28:11 Normal 140 
 

8 3 

34 22 05/07/13 9:28:11 9:29:15 Normal 280 
 

0 0.5 
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35 23 05/07/13 11:24:56 11:29:01 LowCost 340 
 

1 2 

36 24 05/07/13 13:44:17 13:46:47 Normal 100 
 

1 2 

37 24 05/07/13 13:46:47 13:47:16 Normal 50 
 

0 0.5 

38 25 05/07/13 18:11:21 18:15:51 Normal 200 
 

2 3 

39 25 05/07/13 18:15:51 18:16:44 Normal 384 
 

0 0.5 

40 26 05/07/13 19:45:36 19:51:08 LowCost 300 
 

1 2 

41 27 06/07/13 8:47:55 8:50:25 Normal 100 
 

8 2 

42 27 06/07/13 8:50:25 8:52:55 Normal 50 
 

0 2 

43 27 06/07/13 8:52:55 8:53:00 Normal 200 
 

0 0.5 

44 28 06/07/13 10:11:56 10:14:16 HighQuality 160 
 

0 2 

45 28 06/07/13 10:14:16 10:16:46 HighQuality 80 
 

0 2 

46 28 06/07/13 10:16:46 10:17:07 HighQuality 320 
 

0 0.5 

47 29 06/07/13 13:44:23 13:49:00 Normal 340 
 

2 2 

48 30 06/07/13 17:55:11 18:01:04 SaveBattery 330 
 

2 2 

49 31 06/07/13 19:24:44 19:30:56 SaveBattery 400 
 

0 2 

50 32 07/07/13 10:33:41 10:35:41 Normal 290 90 0 1 

51 32 07/07/13 10:35:41 10:37:31 Normal 145 
 

0 1 

52 32 07/07/13 10:37:31 10:39:06 Normal 384 
 

0 1 

53 33 07/07/13 12:24:55 12:30:55 LowCost 300 
 

1 3 

54 34 07/07/13 17:44:11 17:46:41 Normal 200 
 

3 2 

55 34 07/07/13 17:46:41 17:48:03 Normal 100 
 

0 1 

56 35 07/07/13 19:35:26 19:37:56 Normal 100 
 

1 2 

57 35 07/07/13 19:37:56 19:40:06 Normal 50 
 

0 1 

58 35 07/07/13 19:40:06 19:40:33 Normal 200 
 

0 0.5 

59 36 07/07/13 20:10:07 20:15:46 LowCost 320 
 

0 2 

60 37 08/07/13 11:34:23 11:38:02 LowCost 220 
 

9 2 

61 38 08/07/13 12:44:21 12:46:21 Normal 80 
 

0 1 

62 38 08/07/13 12:46:21 12:47:05 Normal 50 
 

0 0.5 

63 39 08/07/13 13:24:36 13:27:06 Normal 110 
 

0 2 

64 39 08/07/13 13:27:06 13:28:11 Normal 55 
 

0 1 

65 40 08/07/13 19:10:21 19:12:11 HighQuality 400 
 

3 1 

66 40 08/07/13 19:12:11 19:14:11 HighQuality 200 
 

0 1 

67 40 08/07/13 19:14:11 19:17:55 HighQuality 384 
 

0 3 

68 41 09/07/13 9:11:16 9:12:46 Normal 200 
 

8 1 

69 41 09/07/13 9:12:46 9:16:21 Normal 200 
 

0 2 

70 42 09/07/13 11:15:10 11:20:01 LowCost 320 
 

1 2 

71 43 09/07/13 13:41:25 13:48:58 SaveBattery 280 
 

1 3 

72 44 09/07/13 18:11:23 18:17:34 SaveBattery 250 
 

2 2 

73 45 09/07/13 19:05:11 19:12:02 LowCost 400 
 

0 2 

74 46 10/07/13 8:55:11 9:03:06 Normal 150 91 0 4 

75 47 10/07/13 10:11:44 10:14:14 Normal 100 
 

0 2 

76 47 10/07/13 10:14:14 10:16:24 Normal 50 
 

0 1 

77 47 10/07/13 10:16:24 10:17:33 Normal 200 
 

0 1 

78 48 10/07/13 13:31:45 13:32:45 LowCost 320 
 

2 0.5 

79 48 10/07/13 13:32:45 13:38:24 LowCost 320 
 

0 2 

80 49 10/07/13 18:05:23 18:10:01 Normal 340 
 

2 2 
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81 50 10/07/13 19:14:44 19:17:45 LowCost 360 
 

0 1 

82 51 11/07/13 8:48:12 8:54:23 SaveBattery 150 
 

8 3 

83 52 11/07/13 9:23:11 9:28:01 LowCost 300 
 

0 2 

84 53 11/07/13 13:24:45 13:29:07 Normal 340 
 

2 2 

85 54 11/07/13 18:01:34 18:05:15 LowCost 400 
 

2 1 

86 55 11/07/13 19:11:44 19:17:02 LowCost 380 
 

0 2 

87 56 12/07/13 8:46:13 8:51:29 LowCost 180 
 

8 2 

88 57 12/07/13 9:11:15 9:17:11 LowCost 240 
 

0 2 

89 58 12/07/13 13:22:45 13:25:15 Normal 100 
 

2 2 

90 58 12/07/13 13:25:15 13:27:01 Normal 50 
 

0 1 

91 59 12/07/13 17:49:34 17:55:04 Normal 260 
 

2 2 

92 60 12/07/13 19:23:16 19:29:12 LowCost 240 
 

0 2 

93 61 13/07/13 8:40:21 8:45:12 Normal 200 92 0 3 

94 62 13/07/13 9:11:19 9:15:23 HighQuality 240 
 

0 3 

95 63 13/07/13 13:02:11 13:07:00 Normal 340 
 

2 2 

96 64 13/07/13 18:02:43 18:06:55 LowCost 350 
 

3 1 

97 65 13/07/13 19:19:33 19:23:27 LowCost 240 
 

0 1 

98 66 14/07/13 8:49:23 8:53:04 LowCost 150 
 

8 2 

99 67 14/07/13 9:24:13 9:26:43 Normal 100 
 

0 2 

100 67 14/07/13 9:26:43 9:28:07 Normal 50 
 

0 1 

101 68 14/07/13 11:44:25 11:48:17 Normal 380 
 

1 2 

102 69 14/07/13 13:34:42 13:37:21 LowCost 180 
 

1 1 

103 70 14/07/13 17:33:24 17:37:06 Normal 380 
 

2 2 

104 71 14/07/13 19:12:58 19:18:01 Normal 160 
 

1 3 

105 72 15/07/13 9:45:11 9:47:11 Normal 280 
 

9 1 

106 72 15/07/13 9:47:11 9:49:01 Normal 140 
 

0 1 

107 72 15/07/13 9:49:01 9:50:28 Normal 384 
 

0 1 

108 73 15/07/13 11:45:52 11:47:52 HighQuality 320 
 

1 2 

109 73 15/07/13 11:47:52 11:49:52 HighQuality 160 
 

0 2 

110 73 15/07/13 11:49:52 11:51:03 HighQuality 384 
 

0 1 

111 74 15/07/13 12:44:17 12:49:02 Normal 200 
 

0 3 

112 75 15/07/13 17:55:23 18:02:49 LowCost 380 
 

3 2 

113 76 16/07/13 9:05:27 9:10:12 Normal 220 94 0 2 

114 77 16/07/13 10:27:49 10:30:19 HighQuality 180 
 

0 2 

115 77 16/07/13 10:30:19 10:31:03 HighQuality 90 
 

0 0.5 

116 78 16/07/13 13:14:48 13:17:18 Normal 120 
 

1 1 

117 78 16/07/13 13:17:18 13:19:48 Normal 60 
 

0 1 

118 78 16/07/13 13:19:48 13:19:55 Normal 240 
 

0 0.5 

119 79 16/07/13 17:55:34 18:01:36 Normal 200 
 

2 3 

120 80 16/07/13 19:12:24 19:16:46 LowCost 240 
 

0 2 

121 81 17/07/13 9:11:15 9:15:49 Normal 140 
 

8 3 

122 82 17/07/13 10:31:56 10:33:46 HighQuality 280 
 

0 1 

123 82 17/07/13 10:33:46 10:34:48 HighQuality 140 
 

0 1 

124 83 17/07/13 13:12:36 13:17:10 Normal 340 
 

1 2 

125 84 17/07/13 18:06:44 18:08:44 Normal 120 
 

3 1 

126 84 17/07/13 18:08:44 18:10:37 Normal 60 
 

0 1 
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127 85 17/07/13 19:11:42 19:15:38 LowCost 360 
 

0 1 

128 86 18/07/13 8:42:23 8:46:16 Normal 230 
 

8 2 

129 87 18/07/13 9:11:13 9:13:33 HighQuality 80 
 

0 2 

130 87 18/07/13 9:13:33 9:16:03 HighQuality 50 
 

0 2 

131 87 18/07/13 9:16:03 9:17:55 HighQuality 160 
 

0 1 

132 88 18/07/13 13:24:39 13:29:47 Normal 320 
 

2 2 

133 89 18/07/13 18:23:14 18:28:09 LowCost 340 
 

3 2 

134 90 18/07/13 19:11:15 19:17:40 Normal 240 
 

0 2 

135 91 19/07/13 8:47:23 8:50:06 LowCost 140 93 0 2 

136 92 19/07/13 9:54:11 9:55:41 Normal 320 
 

0 1 

137 92 19/07/13 9:55:41 9:57:51 Normal 160 
 

0 2 

138 92 19/07/13 9:57:51 9:59:46 Normal 384 
 

0 1 

139 93 19/07/13 13:18:11 13:20:41 Normal 80 
 

2 2 

140 93 19/07/13 13:20:41 13:22:03 Normal 50 
 

0 1 

141 94 19/07/13 18:05:44 18:09:17 LowCost 220 
 

3 1 

142 95 19/07/13 19:11:26 19:16:03 SaveBattery 320 
 

0 2 

143 96 20/07/13 9:41:54 9:45:18 LowCost 200 
 

9 1 

144 97 20/07/13 10:35:41 10:39:57 Normal 260 
 

0 2 

145 98 20/07/13 11:58:12 12:01:56 LowCost 300 
 

0 1 

146 99 20/07/13 13:12:24 13:15:49 Normal 240 
 

0 1 

147 100 20/07/13 15:33:40 15:37:12 Normal 160 
 

1 2 

148 101 21/07/13 9:36:41 9:41:11 LowCost 200 
 

11 2 

149 102 21/07/13 11:15:22 11:16:52 Normal 300 
 

1 1 

150 102 21/07/13 11:16:52 11:19:02 Normal 150 
 

0 1 

151 102 21/07/13 11:19:02 11:21:28 Normal 384 
 

0 1 

152 103 21/07/13 13:11:21 13:18:54 LowCost 280 
 

1 3 

153 104 21/07/13 15:44:23 15:49:07 Normal 270 
 

1 2 

154 105 22/07/13 8:40:12 8:42:42 Normal 180 92 0 2 

155 105 22/07/13 8:42:42 8:44:09 Normal 90 
 

0 1 

156 106 22/07/13 9:10:15 9:14:11 LowCost 260 
 

0 2 

157 107 22/07/13 13:28:11 13:31:07 Normal 240 
 

2 2 

158 108 22/07/13 18:11:46 18:14:55 Normal 260 
 

2 2 

159 109 22/07/13 19:07:49 19:10:52 HighQuality 220 
 

0 2 

160 110 23/07/13 8:46:13 8:50:58 Normal 150 
 

8 3 

161 111 23/07/13 9:11:55 9:14:46 LowCost 180 
 

0 1 

162 112 23/07/13 13:25:49 13:29:11 LowCost 220 
 

2 1 

163 113 23/07/13 18:20:11 18:24:14 Normal 360 
 

3 3 

164 114 23/07/13 19:18:44 19:22:16 Normal 180 
 

0 2 

165 115 24/07/13 8:51:23 8:57:08 LowCost 180 
 

8 3 

166 116 24/07/13 9:30:34 9:35:23 Normal 240 
 

0 3 

167 117 24/07/13 13:18:11 13:22:55 Normal 200 
 

2 3 

168 118 24/07/13 18:11:34 18:16:55 LowCost 230 
 

3 2 

169 119 24/07/13 19:11:43 19:17:36 LowCost 160 
 

0 2 

170 120 25/07/13 8:52:11 8:55:23 Normal 150 90 0 2 

171 121 25/07/13 9:36:44 9:39:14 Normal 160 
 

0 2 

172 121 25/07/13 9:39:14 9:41:24 Normal 80 
 

0 2 
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173 121 25/07/13 9:41:24 9:42:35 Normal 320 
 

0 1 

174 122 25/07/13 13:20:17 13:26:45 LowCost 200 
 

2 2 

175 123 25/07/13 18:07:56 18:11:38 Normal 220 
 

2 2 

176 124 25/07/13 19:11:45 19:15:37 LowCost 240 
 

0 1 

177 125 26/07/13 8:49:53 8:52:23 Normal 200 
 

8 2 

178 125 26/07/13 8:52:23 8:53:22 Normal 100 
 

0 1 

179 126 26/07/13 9:24:12 9:27:16 LowCost 180 
 

0 2 

180 127 26/07/13 13:11:49 13:15:03 Normal 360 
 

2 2 

181 128 26/07/13 18:12:39 18:16:12 Normal 380 
 

3 1 

182 129 26/07/13 19:11:44 19:15:04 LowCost 400 
 

0 1 

183 130 27/07/13 9:18:44 9:24:11 LowCost 200 
 

8 3 

184 131 27/07/13 10:35:22 10:37:22 Normal 340 
 

0 1 

185 131 27/07/13 10:37:22 10:39:12 Normal 170 
 

0 1 

186 131 27/07/13 10:39:12 10:41:06 Normal 384 
 

0 1 

187 132 27/07/13 12:45:17 12:50:06 LowCost 240 
 

1 2 

188 133 27/07/13 15:03:36 15:06:06 Normal 120 
 

1 1 

189 133 27/07/13 15:06:06 15:08:11 Normal 60 
 

0 1 

190 134 27/07/13 17:11:23 17:13:53 HighQuality 80 
 

1 2 

191 134 27/07/13 17:13:53 17:16:13 HighQuality 50 
 

0 1 

192 134 27/07/13 17:16:13 17:17:34 HighQuality 160 
 

0 1 

193 135 27/07/13 18:05:28 18:11:57 Normal 350 
 

0 2 

194 136 28/07/13 9:30:33 9:32:33 HighQuality 300 89 0 1 

195 136 28/07/13 9:32:33 9:33:56 HighQuality 150 
 

0 1 

196 137 28/07/13 12:11:34 12:13:04 Normal 300 
 

1 1 

197 137 28/07/13 12:13:04 12:15:06 Normal 150 
 

0 1 

198 138 28/07/13 14:11:05 14:14:43 LowCost 290 
 

1 2 

199 139 28/07/13 15:33:45 15:37:01 LowCost 300 
 

0 1 

200 140 29/07/13 8:51:23 8:55:08 LowCost 210 
 

10 2 

201 141 29/07/13 9:30:34 9:33:04 Normal 180 
 

0 2 

202 141 29/07/13 9:33:04 9:34:23 Normal 90 
 

0 1 

203 142 29/07/13 13:18:11 13:22:55 Normal 340 
 

2 2 

204 143 29/07/13 18:11:34 18:15:55 LowCost 240 
 

3 1 

205 144 29/07/13 19:11:43 19:16:36 LowCost 120 
 

0 2 

206 145 30/07/13 8:50:34 8:56:12 Normal 200 
 

8 2 

207 146 30/07/13 9:11:23 9:17:55 LowCost 240 
 

0 2 

208 147 30/07/13 13:23:14 13:28:03 Normal 320 
 

2 2 

209 148 30/07/13 18:08:55 18:10:45 HighQuality 340 
 

2 1 

210 148 30/07/13 18:10:45 18:12:55 HighQuality 170 
 

0 2 

211 148 30/07/13 18:12:55 18:13:09 HighQuality 384 
 

0 0.5 

212 149 30/07/13 19:11:23 19:15:29 Normal 280 
 

0 1 

213 150 31/07/13 8:47:15 8:51:07 LowCost 100 90 0 2 

214 151 31/07/13 9:14:45 9:17:03 Normal 200 
 

0 1 

215 152 31/07/13 13:20:17 13:24:11 LowCost 350 
 

2 1 

216 153 31/07/13 18:09:23 18:13:34 Normal 260 
 

2 1 

217 154 31/07/13 19:18:34 19:22:56 Normal 240 
 

0 2 
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APPENDIX E: The Weight-Based Adaptation 

Mathematical Model 

The Volare policy-based DCAA Model is expressed through the different 

conceptual components of the Policy Logic and the Context & Adaptation Profile 

for the middleware and an application. We abstract the values of the Boolean 

variables as 0 or 1 and the respective values of the discreet string type variables 

as integer values: 1, 2, 3 etc corresponding to the respective string values.  

Referring to the scenario Context & Adaptation Profile, we have:    

-  The vector of the context-variables: 

CV = {cv1, … cvi, … cvm}, 1 =< i =< m, i and m ∈ N      (1) 

where: cvi ∈ 𝐂𝐕𝐢 ∁ R and CV ∁ CV1 X CV2 X CVm∀ i,m ∈ N, where CV is the 

context-space 

-  The vector of the adaptation-variables:  

AV = {av1, …,avj avn}, j and n ∈ N          (2) 

where: avj ∈ 𝐀𝐕𝐣 ∁ R and AV ∁ AV1 X AV2 X … AVn   1 =< j =< n and j, n  ∈ N 

Policy File Representation 

The scenario Adaptation Space Segmentation Model identifies: 

- The vector of adaptation-strategies SX of the policy file X (X = G or A)  

XP = {SX1, SX2, …, SXs}, s E N 

(for example in the scenario, the number of A/S of the Global Policy is is 8).  

- The vector of MESCs represented in the policy file XP, X ∈ {G, A}, 

corresponding to the Global or the Application A policy file:  

MESC = {MESCX1, …, MESCXd ,MESCXv}, 1 =< d =< v,  v & d ∈    (3a) 

- The vector of adaptation-rules for each adaptation-strategy:  

SXi = {ARXi1, ARXi2, …, ARXik}, k E N, 1 =< i =< k        (3b) 

- Each adaptation-rule ARXi of the policy file GP or AP, represents a single row 

matrix of dimensions 1x5:  

ARXi = {prXi, AVidXj, evXi, bmXi, wXi},  1 =< i =< r   i, r ∈  N           (4) 

where r denotes the number of A/Rs in the policy file and AVidi denotes the 

corresponding A/V (head predicate)  

prXi  is an optional priority assigning keyword (“overrides”, “yields”, etc),  
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AVidXj is the A/V id of the A/V concerning the A/RXi,  

evXi is the execution-value assigned to adaptation-variable AVidXj by the A/R,  

bmXi is an optional value for the binding margin if the adaptation-variable is a 

QoS adaptation-variable and  wXi is the obligatory weight function value for the 

A/R ARXj of the policy file X. 

The DCAA relation is expressed as follows: AV = f(CV, GP, AP, UP)      (5) 

where:  CV stands for the context-variables vector (except “User Preference”),  

GP stands for the Global Policy adaptation-rules,  

AP stands for the Application Policy adaptation-rules,  

UP stands for the current User Preference Mode,  

where UP = {“Normal”, “LowCost”, “SaveBattery”, “HighestBitrate”}  AV 

stands for the vector of the adaptation-variables. 

Policy Execution 

1. At policy execution, the Policy Files Manager creates the Composite-Policy 

composed of all the A/Rs of the p A/Ss of the Global and the q A/Ss of the 

Application Policy  File, which may be represented by the CP matrix of p+q X 

5 dimensions with subscript GA indicating the G and A policy files:  

CPGA Matrixp+qX5 = {PRGA, AVGA, EVGA, BMGA, WGA}, with some elements or 

whole rows of elements equal to zero        (6)    

where: PR, AV, EV, BM and W stand for vertical vectors of p+q elements, as 

follows: 

PRGA  = {prGA1,… prGAj, …, prGAp+q}  where 1 =< i =< p+q    (6a) 

 AVidGA  = {AVidGA1, …, AVidGAi, … AVidGAp+q} where AVid denotes each 

adaptation-variable  

id                 (6b) 

 EVGA  = {evGA1, …, evGAi, ,,, evGAp+q} where evGAi denotes the execution-

value of the  

respective A/R              (6c) 

 BMGA  = {bmGA1, … , bmGAi, … , bmGAp+q} where bmGAi denotes the binding 

margin if  

the respective adaptation-variable is a QoSVariable, otherwise it is 0.  

  (6d) 
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 WGA  = {wGA1, … , wGAi, … , wGAp+q} where  wGAi denotes the weight value 

for the  

respective A/R i.                  (6e) 

2. The following Execution Data Matrix of dimensions r X 4 of adaptation-rule 

elements is derived from the r selected under the current context and 

executed A/Rs, around the m adaptation-variables, after the Policy Engine 

Manager through the Conflict Resolution Directives has eliminated all the 

lower priority A/Rs: 

Execution Data Matrix r X 4 =  

(

  
 

𝑨𝑽𝒊𝒅𝟏 𝒆𝒗𝟏 𝒃𝒎𝟏 𝒘𝟏
𝑨𝑽𝒊𝒅𝟐 𝒆𝒗𝟐 𝒃𝒎𝟐 𝒘𝟐
… … … …

𝑨𝑽𝒊𝒅𝒋 𝒆𝒗𝒊 𝒃𝒎𝒊 𝒘𝒊
… … … …

𝑨𝑽𝒊𝒅𝒓 𝒆𝒗𝒓 𝒃𝒎𝒓 𝒘𝒓)

  
 

                        (6) 

where: AVidj denotes the adaptation-variable AVid of the selected A/R j 1 =< 

j =< r and j, r ∈  

N 

3. The Policy Engine Manager restructures the Execution Data Matrix into m 

sub-matrices, one for each adaptation-variable, of dimensions 3XkQoS, if the 

adaptation-variable is a QoSVariable of the service request where kQoS is the 

number of selected A/Rs: 1 =< j =< kQoS =< p+q 

AVidi Data Matrix kQoSX3 = 

(

 
 
 

𝒆𝒗𝟏 𝒃𝒎𝟏 𝒘𝟏
𝒆𝒗𝟐 𝒃𝒎𝟐 𝒘𝟐
… … …
𝒆𝒗𝒋 𝒃𝒎𝒋 𝒘𝒋
… … …

𝒆𝒗𝐤𝐐𝐨𝐒 𝒃𝒎𝐤𝐐𝐨𝐒 𝒘𝐤𝐐𝐨𝐒)

 
 
 

                      (7a) 

For the each of the rest adaptation-variables that are not QoS Variables, a data 

matrix of dimensions 2 x p is derived: 

 AVidi Data Matrix p x 2 =  

(

 
 
 

𝒆𝒗𝟏 𝒘𝟏
𝒆𝒗𝟐 𝒘𝟐
… …
𝒆𝒗𝒋 𝒘𝒋
… …
𝒆𝒗𝐩 𝒘𝐩)

 
 
 

                                      (7b) 

Consequently, at policy execution if there are p adaptation-strategies of the 

Global policy file, then there are (up to) p execution-values for each adaptation-

variable (and especially for the QoSVariables, if there are also q adaptation-

strategies in the Application policy file, then we have p+q execution-values).  
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Two vectors (or one matrix px2) of adaptation results are provided for each 

adaptation-variable on the execution-values evi, and the weight values wi (and 

concerning the QoSVariables the binding margin values bmi): 

- For every adaptation-variable AVidi the Policy Engine Manager forms the 

following three execution data values vectors:  

- EVi = [evi1, evi2,…, evij, … ,evik]           (8a) 

- Wi = [wi1, wi2, …, wij, …, wik]            (8b)  

- and if it is a QoSVariable, BMi = [bmi1, bmi2,…, bmij, … ,bmik]    (8c) 

where i denotes the adaptation-variable AVidi  and  1 =< i =< k and i, k ∈ N 

- For every numeric adaptation-variable, we have:  

𝒂𝒗𝒊 =∑ (𝒆𝒗𝒋 ∗ 𝒘𝒋)
𝒌

𝒋=𝟏
 / ∑ 𝒘𝒊𝒌

𝒋=𝟏      𝒘𝒉𝒆𝒓𝒆 j = 1 to k, with j and k ∈ N   (9a) 

1 =< j =< k with j, k ∈ N 

- Additionally, for every numeric QoS adaptation-variable, concerning the binding 

margin we have:   𝒃𝒎𝒊 = ∑ (𝒃𝒎𝒊 ∗ 𝒘𝒊)
𝒌
𝒊=𝟏  / ∑ 𝒘𝒊𝒌

𝒊=𝟏 , i = 1 to k, with I, k ∈ N     (9b) 

- However, for every non-numeric (Boolean or string type) adaptation-variable, 

and any variant values var1, var2,…, vark we have the sums of weight values 

over each variant value:  

∑wij)over var1, ∑wij)over var2, …, ∑wij)over vark 

The maximum sum of weight values over a variant, specifies the resolved-value 

for this Boolean or string-type adaptation-variable, i.e. max {∑wij)over var1, 

∑wij)over var2, …, ∑wij)over vark} defines the variant Boolean or string-type 

resolved-value, i.e. the selected variant value. 

Weight Assigning Strategy 

The vector of weight function values for each adaptation-rule ARid of an 

adaptation-variable AVj (1 =< j =< n, with j, n ∈ N), from the (Global or 

Application) policy file XP:  

WXrj = {wxr1, wxr2, ..., wxrn}, where in the scenario X = G or A (for the application 

A). 

The weight function wARid for the A/R: ARid is a function of the following 

variables:  

wArid = g(Sid, UP, CV, ARid)           (10) 

where UP and CV are defined above and 
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Sid denotes the Adaptation-strategy to which the A/R belongs, 

ARid denotes the A/R represented uniquely by the relevant adaptation-variable 

and its Criteria conditions, 

AVid denotes the adaptation-variable assigned value by the A/R. 

The Weight Assigning Strategy of the Weight-based Methodology defines three 

weight coefficients:  

a) The Adaptation-strategyategy weight coefficient under each User Preference 

Mode, denoted as  ws, with wSidUP  = f(Sid, UP)        

  (11a) 

b) The A/R Adaptation Rule weight coefficient within the A/S, denoted as wAR, 

with  

wARid = h(Sid, AVid)           (12) 

in the sense that within a Policy, two A/Rs on the same adaptation-variable 

have possible different relative importance due to the Adaptation-strategy 

they belong to and the Criteria Conditions they represent. 

c) The Strategy Weight Coefficient Modifier under each User Preference mode,  

denoted as uSid, representing a value typically between 0.80 – 1.25, that the 

User may set at the User Choices Profile UCP through the User Interface 

(UI), customizing the default Strategy Weight Coefficients values:  

The default value for each uSid is: uSid = 1.00            (13) 

d) The weight function for each A/R ARid is given by the product of the three 

weight coefficients:  

weightARid = wSid)UP * uSid)UP * wARid      (14) 

since the term wSid)UP * uSid)UP is provided as a context-variable by the 

User  

Interface, denoted as wSid)correlated, equation (14) becomes equivalent to 

the  

equation: weightARid = wSid)correlated * wARid    (14a) 

with wSid)correlated provided as context-variable value. 

 


