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Abstract

This thesis seeks to explain the economic determinants of matches between shipowners and

oil traders within a spatially explicit market for shipping crude oil. Previous approaches to

modeling the tanker shipping market have employed an aggregate approach in which there is

a single trade route and one market clearing price. This reduced form of trade ignores the

inherently spatial nature of the tanker shipping market in which the matches, market prices, and

speed ships travel reflect the demand for shipping crude oil on different trade routes, the supply

of ships available in each location, and agents’ opportunity costs and future expectations.

A matching model of the crude oil spot tanker market was developed in which the charac-

teristics of ships and traders is reflected in the market price. The method employs a matching

model to understand how supply equilibrates with demand to determine the set of shipping

contracts exchanged and their prices as a function of the other agents in a competitive market.

Results described in this thesis show that the contracts that form in equilibrium depend on

the demand for oil cargoes in each load area market and the supply of available ships within

proximity to the market. Additionally, agents’ opportunity costs and future expectations has

also been found to influence the matching and contract prices. When ships are differentiated by

physical characteristics (including energy efficiency) and location, results show that ships which

are the most favored by physical characteristics cannot compete as strongly with less preferred

ships located closer to the market. These findings can be used to inform industry stakeholders

about strategic operating and investment decisions. They are also useful for environmental

policy makers because they explain the key drivers of ship movements given ships’ reliance on

carbon-intensive fuel for propulsion.



Acknowledgements

I would like to express my great appreciation to my supervisors Neil Strachan, Lars Nesheim

and Tristan Smith. Neil’s guidance and emphasis on seeing the big picture concepts has al-

lowed me to complete the PhD. Lars has been extremely helpful in his technical knowledge

and provided valuable insights. His enthusiasm for the tanker shipping market and patience

in explaining concepts is greatly appreciated. Tristan’s support for my topic from the start of

the PhD to the end and his help with understanding the engineering and modeling aspects of

shipping has also been instrumental.

I would also like to thank Ali Sepahsalari, Malcolm Pemberton, Andrew Smith, and Roar

Adland for providing useful comments on my thesis. A special thanks also to my colleagues

Eoin O’Keefe, Nish Rehmatulla, Lucy Aldous and others at the UCL Energy Institute who

have not only been great resources but have enhanced my PhD experience. I am grateful to

my sponsors, UCL Energy Institute and Lloyd’s Register, for the financial support they have

provided.



Contents

1 Introduction 14

1.1 Background and context of study . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Global economic, energy, and environmental context . . . . . . . . . . . . . . 19

1.3 Aim and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Contributions to existing knowledge . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Overview of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Literature review 24

2.1 Maritime economics literature . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Reduced form models . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Resource allocation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Transportation optimization models . . . . . . . . . . . . . . . . . . . 30

2.2.2 Dynamic economic models . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Matching models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Summary of the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Description of the Industry 35

3.1 Demand for crude oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Crude oil trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Crude oil pricing and trading . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Market structure, tanker shipping contracts, and supply side factors . . . . . . . 43

3.3.1 Tanker fleet and market structure . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Tanker shipping contracts . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Supply side factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Industry Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Spot fixing: agents and process . . . . . . . . . . . . . . . . . . . . . 52



Contents 5

3.4.2 Voyage optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Model Structure 56

4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 General Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 The theoretical static matching model . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Supply side of the market . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Demand side of the market . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Pairwise surplus function . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Matching economy, assignment problem and competitive equilibrium . . . . . 64

4.4.1 Matching economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Assignment definition and associated conditions . . . . . . . . . . . . 65

4.4.3 A competitive equilibrium associated with a linear programming problem 66

4.4.4 Model outputs and intra-allocation of the pairwise surplus . . . . . . . 67

4.5 Specification of the matching surplus . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 The trader’s revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Shipment costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.3 A quasi-myopic option value . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.4 A forward-looking option value . . . . . . . . . . . . . . . . . . . . . 72

4.5.5 The matched optimal speed . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Specification of the surplus to remain unmatched . . . . . . . . . . . . . . . . 73

4.6.1 The trader’s surplus to remain unmatched . . . . . . . . . . . . . . . . 73

4.6.2 The ship’s surplus to remain unmatched . . . . . . . . . . . . . . . . . 74

4.7 A Forward Looking Dynamic Matching Game . . . . . . . . . . . . . . . . . . 75

4.7.1 Time and sequence of events . . . . . . . . . . . . . . . . . . . . . . . 76

4.7.2 Solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Data and Descriptive Statistics 79

5.1 Fixtures dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Major trading regions and trade flows . . . . . . . . . . . . . . . . . . 81

5.1.2 Fixture demand, cargo size, and capacity utilization . . . . . . . . . . . 82

5.1.3 Prices and other descriptive statistics . . . . . . . . . . . . . . . . . . . 85

5.2 Worldscale benchmark dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 93



6 Contents

5.3 Fleet register dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Aggregate trade statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Ship movements dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Model Estimation 100

6.1 Trader state variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Oil revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Ship state variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Location of ships and supply . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Duration of journeys . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.3 Cost of journeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Prices on journeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Second step: estimate the endpoint conditions . . . . . . . . . . . . . . . . . . 114

6.4.1 Numerical computation of continuation values . . . . . . . . . . . . . 119

6.4.2 Numerical results: continuation values for ships . . . . . . . . . . . . . 119

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Results 125

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.1 What determines the intra-allocation of the surplus? . . . . . . . . . . 126

7.2 Quasi-myopic matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Forward-looking matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Prices in the model compared to historical data . . . . . . . . . . . . . . . . . 143

7.5 Optimal speed simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.6 Social welfare, speed and emissions . . . . . . . . . . . . . . . . . . . . . . . 146

7.7 Static Model Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.7.1 Simulation 1: impact of higher fuel prices . . . . . . . . . . . . . . . . 147

7.7.2 Simulation 2: increase in supply in one location . . . . . . . . . . . . . 154

7.7.3 Simulation 3: demand shock . . . . . . . . . . . . . . . . . . . . . . . 154

7.7.4 Simulation 4: simultaneous demand and higher fuel price shock . . . . 155

7.7.5 Simulation 5: Multidimensional matching . . . . . . . . . . . . . . . . 158

7.8 Dynamic Matching: Solving for a fixed point . . . . . . . . . . . . . . . . . . 165

7.9 Dynamic Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.9.1 Dynamic Simulation 1: Permanent demand shock . . . . . . . . . . . . 172



Contents 7

7.9.2 Dynamic Simulation 2: Permanent carbon tax . . . . . . . . . . . . . . 174

7.10 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.10.1 Matching results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.10.2 Agent earnings and prices results . . . . . . . . . . . . . . . . . . . . 178

7.10.3 Speed results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8 Discussion and Conclusions 182

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.1.1 Economic determinants of matches between ships and traders in a spa-

tially explicit tanker model . . . . . . . . . . . . . . . . . . . . . . . . 182

8.1.2 Determinants of the division of surplus in matches between ships and

traders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.1.3 Factors influencing speed . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1.4 Impact of supply side (fuel price increase, physical ship characteristics)

and demand side changes (demand shock) on the market in terms of the

matching, earnings and prices and speeds . . . . . . . . . . . . . . . . 188

8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2.3 Static modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.2.4 Dynamic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Appendices 194

A Glossary of shipping terms 195

B Table of Symbols 200

C Chapter 3 204

C.1 Tanker shipping company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.1.1 Spot fixing process (Aframax division) . . . . . . . . . . . . . . . . . 204

C.1.2 Voyage Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

C.1.3 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

C.2 Interview with a tanker shipbroker . . . . . . . . . . . . . . . . . . . . . . . . 207



8 Contents

D Chapter 5 and 6 210

D.1 Chapter 6 Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Bibliography 222



List of Figures

1.1 A ship’s sailing trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Market equilibrium in bulk shipping (Engelen et al., 2006) . . . . . . . . . . . 16

1.3 Spot freight rates compared to marginal cost (Adland and Strandenes, 2007) . . 19

3.1 Share of Oil Production by Region. Source: BP, 2012. . . . . . . . . . . . . . . 36

3.2 Source: IEA, 2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Source: BP, 2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 World Oil Price (Source: Energy Information Administration, 2011.) . . . . . . 41

3.5 Source: Clarkson Research, 2012a. . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Capacity utilization, cargo size, DWT (tonnes) and Year of Build. Source:

Clarkson Research (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Expected route distance and cargo size (2011). Source: Clarkson Research

(2012a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Left: WS multiplier by route; Right: WS Multiplier and Crude Oil Prices, chg.

Source: Clarkson Research (2012a) . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Annual Benchmark Prices (2007-2011). Source: Worldscale Association (2012). 95

5.5 DWT Distribution of VLCC fleet (tonnes). Source: Clarkson Research (2012b). 97

6.1 Cluster Analysis of Ship Characteristics. Source: Clarkson Research (2012b) . 104

6.2 Ship availability estimation algorithm . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Historical prices of VLCC freight rates and second hand values. Source: Clark-

son Research, 2012c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Terminal Option Values in long-run scenario ($ m. ): Wa = W x(xaj,t+1, T+1);

Wb = W x(xbj,t+1, T + 1); Ww = W x(xwj,t+1, T + 1) . . . . . . . . . . . . . . 121

6.5 Terminal Option Values in 2011 ($ m.): Wa = W x(xaj,t+1, T + 1); Wb =

W x(xbj,t+1, T + 1); Ww = W x(xwj,t+1, T + 1) . . . . . . . . . . . . . . . . . 122

7.1 Short ship scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



10 List of Figures

7.2 Long ship scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 Impact of a competitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Matches and surplus factors (M1cs2011; 0=No Match, 1=Match), $ m. . . . . 133

7.5 Number of matches and surplus (million $) factors (Model 1; 0=No Match,

1=Match) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 Number of matches and surplus (million $) factors (M2cslr; 0=No Match,

1=Match) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.7 Number of matches and surplus (million $) factors (M2cs2011; 0=No Match,

1=Match) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.8 Matched speeds (knots) in M1oslr vs. M2oslr . . . . . . . . . . . . . . . . . . 146

7.9 Factors affecting matched speed (knots) Cost/Option Values in million $ . . . . 147

7.10 Ship Option Values ($ m.) where Type refers to its Ptype (Bigger is Better) . . 161

7.11 Ship Option Values ($ m.) where Type refers to its Ptype (Energy Efficiency

Rules), $ m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.12 Kernel density of match surplus and its components ($ m.) (Bigger is Better) . 163

7.13 Kernel density of match surplus and its components ($ m.) (Energy Efficiency

Rules) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.14 Match surplus distribution and its components ($ m.) by physical type and

location (Bigger is Better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.15 Match surplus distribution and its components ($ m.) by physical type and

location (Energy Efficiency Rules) . . . . . . . . . . . . . . . . . . . . . . . . 168

7.16 Dynamic simulation of earnings under M3 (Baseline, $ m.) . . . . . . . . . . . 169

D.1 Benchmark Residuals vs. Fitted . . . . . . . . . . . . . . . . . . . . . . . . . 218

D.2 Histogram of Residuals (Multiplier Regression) . . . . . . . . . . . . . . . . . 221



List of Tables

3.1 Crude Oil Imports and Exports in 2011 . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Tanker fleet composition (m.Dwt) . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Load Areas (VLCC class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Discharge Regions (VLCC class) . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Cargo volume by vessel type, 2007-2011 . . . . . . . . . . . . . . . . . . . . . 81

5.2 VLCC fixtures volume by load area, 2007-2011 . . . . . . . . . . . . . . . . . 82

5.3 Volume by discharge area, 2007-2011 . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Top trade flows by area, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Average number of fixtures per week and cargo size . . . . . . . . . . . . . . . 85

5.6 Share of total volume by load area (censored vs. uncensored), 2007-2011, (%) . 88

5.7 Share of total volume by discharge area (censored vs. uncensored), 2007-2011,

(%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Comparison of censored and uncensored variables (median values) . . . . . . . 90

5.9 Comparison of fixtures dataset to World Fleet Register dataset (median values) 91

5.10 Legend for Figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.11 Worldscale flat rate assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Imputed cargo demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Imputed ships available to match (baseline model) . . . . . . . . . . . . . . . . 104

6.3 Ship Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Multidimensional impact on model parameters . . . . . . . . . . . . . . . . . 106

6.5 Parameters affected in Bigger is Better vs. Energy Efficiency Rules . . . . . . . 106

6.6 Analysis of variance table of benchmark regression . . . . . . . . . . . . . . . 111

6.7 Elasticity of freight rates with respect to fuel . . . . . . . . . . . . . . . . . . . 115

6.8 Analysis of variance table of benchmark regression . . . . . . . . . . . . . . . 116

6.9 Option values for discharge areas (million dollars, Wb = W x(xbj,t+1, T + 1)) . 123

6.10 Option values for load areas (million dollars, Wa = W x(xaj,t+1, T + 1) . . . . 124



12 List of Tables

7.1 Static model simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Determinants of price (short scenario, one ship and trader type), million (m.)

dollars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 Determinants of price (long scenario, one ship and trader type), m. $ . . . . . . 128

7.4 Determinants of price (multiple ship types, one trader type) . . . . . . . . . . . 129

7.5 Matching with myopic policy (M1cs2011) . . . . . . . . . . . . . . . . . . . 131

7.6 Ship earnings: results from M1cs2011 compared to W x(xj,t+1, T + 1) . . . . 134

7.7 Factors affecting earnings and prices (M1cs2011) . . . . . . . . . . . . . . . . 135

7.8 Forward-looking matching with long-run option values (M2cslr) . . . . . . . 137

7.9 Differences in matches (M1=M1cslr vs. M2=M2cslr) . . . . . . . . . . . . . 139

7.10 Ship earnings: results fromM2cslr andM2cs2011 compared toW x(xj,t+1, T+

1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.11 Factors affecting earnings and prices (M2cslr) . . . . . . . . . . . . . . . . . 141

7.12 Factors determining matches on REDS-PHIL route (M2cslr) . . . . . . . . . . 143

7.13 Comparison of multiplier prices in baseline models (Model 1 and 2) to historical

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.14 Social welfare, speed and emissions . . . . . . . . . . . . . . . . . . . . . . . 148

7.15 Price elasticities for a 5% transitory fuel shock (M2cs2011) . . . . . . . . . . 150

7.16 Price elasticities for fuel shock (M2os2011) . . . . . . . . . . . . . . . . . . . 152

7.17 Factors affecting price changes in 5% fuel shock compared to the baseline

(M2cs2011 and M2os2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.18 Difference in matches and prices (M2os2011 vs. change in Chinese trade flow

shares) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.19 Difference in matching (M2os2011 vs. 10% Chinese demand shock) . . . . . 157

7.20 Price elasticities (fuel shock vs. fuel and demand shock) . . . . . . . . . . . . 159

7.21 Surplus components and prices for the BRZ-SCH route (top: Bigger is Better,

bottom: Energy Efficiency Rules) . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.22 Differences between static and dynamic matching (M2os2011 and M3) . . . . 167

7.23 Ship earnings: initial guess, static, and dynamic values . . . . . . . . . . . . . 170

7.24 Trader earnings: initial guess, static, and dynamic values . . . . . . . . . . . . 171

7.25 Comparison of historical, M2os2011 and M3os2011 prices . . . . . . . . . . 172

7.26 Ship earnings: dynamic demand shock compared to static and dynamic baseline

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.27 Price elasticities for $40 carbon tax (M3cs2011) . . . . . . . . . . . . . . . . 175



List of Tables 13

7.28 Price elasticities for $40 carbon tax (M2os2011 vs. M3os2011) . . . . . . . . 176

B.1 Table of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.2 Table of symbols (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.3 Table of symbols (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D.1 Missing geographical data for all VLCC fixtures . . . . . . . . . . . . . . . . . 210

D.2 Missing geographical data for all VLCC fixtures with prices . . . . . . . . . . 210

D.3 Trade flows by Area, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

D.4 Trade flows by Area, 2011 (continued) . . . . . . . . . . . . . . . . . . . . . . 212

D.5 Representative load, discharge and waiting areas . . . . . . . . . . . . . . . . . 213

D.6 Benchmark regression results . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

D.7 Benchmark regression results (continued) . . . . . . . . . . . . . . . . . . . . 215

D.8 Benchmark regression results (continued) . . . . . . . . . . . . . . . . . . . . 216

D.9 Benchmark regression results (continued) . . . . . . . . . . . . . . . . . . . . 217

D.10 Multiplier regression results . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

D.11 Multiplier regression results (continued) . . . . . . . . . . . . . . . . . . . . . 220



Chapter 1

Introduction

1.1 Background and context of study
The oil tanker shipping industry is an integral part of a complex energy infrastructure where

getting the right sort of oil to the right place with the right ship at the right time is crucial.

These product, space, and time features are particularly important because of the combination

of inelastic demand for crude oil shipments and the geographical dispersion of tanker shipping

market activities across regions where oil is produced and where it is refined and consumed. As

such, large tanker ships almost always have to sail empty to another oil source once they unload

their cargo, thus incurring a cost that is proportional to the distance travelled. The spatial nature

of the market means that ships may not compete as strongly with ships located farther away

from a source due to the presence of transportation costs and time preferences of oil traders. In

addition to this spatial differentiation, ships can also distinguish themselves by their size, age,

reputation, and energy efficiency, adding complexity to understanding how these resources are

allocated in the spot market 1 for tanker shipping services.

Tankers are often compared to taxis, normally carrying only one customer’s cargo from

an oil source to a sink and taking on new assignments with new customers whenever they

are available. Although some ships ferry between the same load and discharge area, most

shipowners are free to send the ship wherever they choose after they discharge the cargo. Figure

1.1 below depicts a trajectory of a ship from its starting location l to a load port a to a discharge

port b and a future destination l′.

a bl l′

Figure 1.1: A ship’s sailing trajectory

1A shipping contract on the spot market is negotiated shortly (within a few days to two weeks normally) and
specifies the carriage of a particular cargo aboard a named ship between two points (for example, from the Arabian
Gulf to the US Gulf), the loading and discharge dates, and the payment due to the carrier. The market in this case
refers to a sub-market or class of tankers (ranked by size) and not the total tanker shipping market.
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If l is a discharge port, the ship could match with an oil trader (the shipper) or it could

remain unemployed or unmatched. If it matches with a trader, it sails to a to pick up the cargo.

After the ship has dropped off the cargo at b, it can reposition to another location l′, which

depends again on whether it has matched to an oil trader or not. On the other hand, if the

shipowner decides not to match, it has to reposition to a waiting area near a load area where

oil traders demand cargoes to be lifted. Shipowners must anticipate future demands from the

discharge location because of the cost of repositioning to another load area. For example, if a

shipowner has a choice between a voyage from the Arabian Gulf to Japan or the Arabian Gulf

to the US Gulf, they have to assume that the first voyage will likely require the ship to ballast

directly back to the Arabian Gulf, while the voyage to US Gulf will offer the possibility of

loading out of West Africa next, considered to be a backhaul. The shipowner must therefore

know the state of all markets and make decisions as to which voyage will provide the best

returns, keeping in mind what the next voyage might look like (Reardon, 2011).

Despite the inherently spatial nature of the tanker market, since Tinbergen and Koop-

mans’ seminal works on the tanker freight market (Tinbergen, 1931, 1934; Koopmans, 1939)

many studies (Norman and Wergeland, 1981; Wergeland, 1981; Hawdon, 1978; Beenstock

and Vergottis, 1993; Evans and Marlow, 1990; Evans, 1994; Strandenes, 1986; Engelen et al.,

2006; Adland and Strandenes, 2007, among others) have modelled the market for bulk shipping

(which includes the tanker market) using a classical supply/demand equilibrium framework in

which there is a single trade route and one market clearing price. In this framework, the market

is assumed to be perfectly competitive, given the large number of shipowners, ease of market

entry and exit, and the dissemination of shipping market prices by ship brokers (Evans, 1994).

The equilibrium price in the tanker freight market is determined by the marginal cost of the last

unit of transportation required to satisfy transport demand, where demand is typically assumed

to be inelastic.

Figure 1.2 (Engelen et al., 2006) depicts the aggregate short-run transport supply and de-

mand curves and the equilibrium prices at two intersection points, E0 and E1. At low freight

rates, the supply of transportation services is very elastic because rates are low enough to induce

shipowners to withdraw a considerable number of ships from the market. All vessels withdraw

from the market at the point where the trading losses are greater than the costs of lay-up. As

fuel costs represent a significant portion of total operating costs, only ships which are the most

fuel efficient can operate in this depressed state of the market. In the figure, it assumed that

energy efficiency decreases with age. Below E0, a large increase in demand only pushes freight

rates up slightly because ships immediately come out of lay-up at a relatively low marginal cost.
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The optimal speed of the fleet is used to calculate the variable costs (operational
and voyage costs) of the marginal vessel with age g which needs to be deployed in
order to meet transport demand. As figure 4 shows, at each time step, the algorithm
searches both the new clearing speed and the age of the last-used vessel. The variable
cost of this vessel is the marginal cost or the equilibrium freight rate.

One could argue that it is preferable to run a young fleet because of the lower
variable costs as compared with older ships. Shipowners, however, must also take
into account the capital costs of a vessel, as an old ship may already have been
completely written off or may have been purchased at a time when interest rates were
low. In fact, interest rate volatility may in itself cause the costs of a new ship to
exceed that of an old one.

Moreover, we do not enter the debate concerning the correct specification of the
variable cost of the last-employed vessel [28]. We calculated the variable costs of
different reference trips which can be initiated in the endogenous shipping model.
In figure 5, the methodology is validated and the spot rates for some reference trips
are plotted. Not only do the scale effects become apparent, but so too does the
interdependence between the different rates, as these clearly move in concert.

2.2. New-building market
The new-building market aims to anticipate long-term demand for transport
capacity. The time lag between the ordering and the delivery of the vessel explains
part of the structural inequality in shipping. This delay also triggers additional
dynamic behaviour within the system.

In this market model, we need an order rate, delivery time and a new-building
price. Following Adland and Strandenes [29], we approximate the ordering
behaviour with a random Poisson distribution, as the ordering is a discrete decision.
It goes without saying that the healthier the freight market, the greater the
probability of new tonnage being ordered. We impose that the ordering behaviour
depends on the average of both the Time Charter Equivalent of the spot rate and
a 6-month time charter [30]. The period charter price can be seen as a term structure
of the spot rate over the considered period and hence may be calculated as a
smoothed spot price (minus voyage costs) over that period [31]. Subsequently,
we corrected this tariff using Sterman’s technique of integrating semi-rational
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At a higher demand level, the supply of ships gets scarce and is rationed to shippers. In this

scenario, an equivalent increase in demand increases the freight rate by a larger amount as the

freight rate is set by the least efficient ship. Between E0 and E1, the curvature of the supply

curve becomes much steeper as the fleet is fully employed and variations in supply can only be

brought about by changes in speed, time spent in port and under repair, and by the route trav-

elled. Finally, when no further transport is available in the current period, the freight rate can

reach very high levels as the supply curve is perfectly inelastic. This is considered an unstable

situation, as shippers will look for cheaper supply sources (Stopford, 2009).

To derive the aggregate supply, the supply curve for an individual ship or a group of ships

with the same energy efficiency (and in this case age category g) is first determined. The optimal

speed is used to calculate the marginal costs of the marginal ship where speed is a function of the

current period’s freight rate, price of fuel, distance and the ship’s technical efficiency (Stopford,

2009). Fuel consumption and speed are related by a cubic function such that reducing the

sailing speed by 20% will reduce the bunker consumption by about 50% (Ronen, 1982). The

distance used to calculate the optimal speed per ship is based on a representative route. Annual

supply per ship (measured in tonne-miles) is equal to (speed x 24 x average loaded operating

days per year x operating tonnage) where the average loaded operating days are estimates from

data. The aggregate supply curve is comprised of the horizontal summation of all the marginal

cost curves of the ships in the fleet.

The aggregate supply/demand model of the freight rate however has some fundamental

weaknesses and shortcomings. First, the assumption that ships’ only opportunity cost of trading
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in the market is lay-up is outdated. Lay-up is “only of importance during times of severe

structural imbalances in the shipping markets, such as in the tanker markets in the mid-1980s”

(Adland and Strandenes, 2007). In recent years, there has been a tendency for idle large tankers

to wait fully operational in the loading area (Kennedy, 2002) given the cost to maintain their

certification approval for the oil majors. Any tanker inactive for a minimum of six months will

be required to undergo an expensive survey before being considered for use and the costs of

returning it to service are prohibitive (Lloyd’s List, 2012a). Instead, if ships do not match, their

opportunity costs depend on the prospects of matching in the next period. These opportunity

costs depend on its location relative to the next best cargo shipping opportunity in a load area.

The assumption of one trade route in the aggregate model simplifies the ship’s movements

to shuttle between a to b (see Figure 1), whereas there are many load and discharge areas which

form trade routes in the global tanker market. This simplification might have been justified

in past decades due to the dominance of the Arabian Gulf-Northern Europe route (Devanney,

1971), but changing trade flows due to demand from Asia and new oil production areas has

increased the spatial complexity of ship movements 2 creating opportunities for repositioning

strategies that influence ship movements through locational and speed choice. Kaluza et al.

(2010) studies global cargo movements using information on the geographical position of ships

and finds that oil tankers follow short-term market trends and have trajectories across different

ports appearing to be essentially random. This can lead to situations in which the flow inbound

to an area is often not equal to the flow out of an area, creating imbalances over time in the

allocation of capacity over space.

Understanding the process through which prices are formed in the global tanker market

is particularly important because of the existence of multiple regional shipping markets. Stop-

ford (2009) defines a shipping market according to the origin-destination pair (i.e., Arabian

Gulf-Japan, Arabian Gulf-Northwest Europe, West Africa-U.S. Gulf, etc.). A broader mar-

ket definition from competition policy (Davis and Garces, 2010) defines a market in terms of

“the products that impose constraints on each other’s pricing or other dimension of competition

(quality, service, innovation).” In the context of the global shipping market, geographical loca-

tion plays an important role in defining the set of ships that can serve each shipping market.

Assuming that all ships can operate on each route, the importance of the availability of geo-

graphically dispersed ships depends on the shipper’s time preference for the ship to pick up its

cargo. The shorter the duration between when the shipper comes to market to find a ship and

the required date of loading, the smaller is the subset of ships that can meet this demand.
2an act of changing physical location or position; a particular manner of moving.
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Pirrong (1993) is one of the few authors to discuss the influence of time and space factors

in the spot market for bulk shipping. He refers to these factors as creating “temporal speci-

ficities” that can sometimes encourage costly haggling between shippers and carriers over how

to split the rents, particularly if they rely on spot contracts because each party may have large

opportunity costs if they do not match together. He argues that several factors affect the severity

of temporal specificities, including the availability of geographically dispersed supply sources

for the shipper and the competition in the shipping market. He defines a shipping market as

competitive when there are a large number of ships arriving to carry cargo and a sufficiently

large number of shippers placing orders in the load area for a particular route.

Another simplifying assumption is that the freight market operates in a perfectly com-

petitive environment. A condition of perfectly competitive markets is that the products are

homogenous, a strong assumption given their aforementioned differences. Adland and Stran-

denes (2007) estimate the marginal cost of the last unit of transportation (Figure 1.3) on a

benchmark route compared to the actual freight rate and find that fluctuations in marginal costs

cannot explain the much larger fluctuations in freight rates. Birkeland (1998) noted that a spot

freight rate which clears a market reflects the vessels available in a particular area at a partic-

ular time,“exhibiting short-term fluctuations which seem to bear little, if any, relationship to

its marginal cost.” Instead, many authors have focused on explaining the changes in the freight

rate level caused by the shipbuilding cycle (Tinbergen, 1934; Koopmans, 1939; Zannetos, 1966;

Beenstock and Vergottis, 1993; Stopford, 2009) and the volatility in ship prices caused by the

lag between when a ship is ordered and delivered (time to build constraints) (Kalouptsidi, 2013).

Another drawback of these models is the long time horizon. Beenstock and Vergottis

(1993) discuss the drawbacks of modeling the tanker industry as one world market over a time

horizon of a year. They suggest that a more disaggregate model may be particularly important

in the oil market, where “speculative purchases are an important component of demand, and

where the timing of oil trades in the short-run is not independent of associated fluctuations in

freight rates.” Surprisingly, none of the studies employing an aggregate approach have a time

period of less than one month.

With the exception of Zannetos (1966), there is also no consideration of intertemporal

decision making for shippers and shipowners which is particularly important in an industry

which has highly volatile market prices. Shippers can negotiate a contract a month or more in

advance of the agreed on loading date and ships can decide to wait to match depending on the

market conditions. Furthermore, expectations about future market conditions can also impact

the speed ships travel (Evans, 1994).
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vessels in the fleet at that point in time3 together with the realised spot freight
rate. The method of calculation is identical to that behind Figure 1 and all
spot freight rates refer to the 2005 Worldscale schedule. We also note that,
in general, most of the variation in the refusal rate is due to changes in the
bunkers price rather than changing fleet composition.

The results in Figure 2 clearly support the assertion that the refusal rate
for the least efficient vessels in the fleet represents a lower bound to the spot
freight rate process. We also note that, with the exception of 2001/02, the
VLCC fleet appears to typically have been fully employed (though not
necessarily fully utilised). The observation that several inefficient vessels
(our estimates suggest about 5 per cent of the fleet) would have been idle
in late 2002 corresponds very well to what actually occurred in the
market (Kennedy, 2002). Importantly, Figure 2 suggests that the spot
freight rate in the tanker markets frequently reach levels that are unrelated
to the marginal cost of transport, producing supernormal profit to owners4

and suggesting that the fleet is sailing at its practical short-run capacity.
This represents a challenge to the classical maritime economic theory, as
the perfectly competitive market model will be insufficient to describe
market dynamics completely. Instead, researchers may need to consider

Figure 2
Spot Freight Rate Process vs. Marginal Cost

20

40

60

80

100

120

88-naJ

98-n aJ

09-naJ

19-n aJ

29-naJ

39-n aJ

49-n aJ

59- naJ

69-n aJ

79-n aJ

89-n aJ

99-naJ

00-n aJ

10-n aJ

20- naJ

30-n aJ

40-naJ

50- naJ

WS

Spot freight rate

Breakeven rate least efficient vessel

Breakeven rate 95th Percentile vessel

3We here include vessels that have been scrapped during the sample period.
4In the extreme case, on November 12, 2004, the TCE spot freight rate (that is, after all voyage costs) for
a 1970s-built turbine tanker reached $182,450/day according to Clarkson Research. This compares to
operating costs of around $11,000/day and negligible financing costs.

Journal of Transport Economics and Policy Volume 41, Part 2

198

Figure 1.3: Spot freight rates compared to marginal cost (Adland and Strandenes, 2007)

Finally, there are several limitations of representing demand as a function of exogenous

aggregate trade demand. First, there is no quantification of the willingness to pay of the shipper.

This is important because of the implications for shipowners to earn quasi-rents when there is

a demand shock. Evans (1994) argues that a large and sudden increase in demand may lead

to the supply function becoming perfectly inelastic, leading to ships earning quasi-rents. The

aggregate model cannot explain the conditions under which this situation would occur due to

spatial and temporal factors. Second, to derive the optimal speed, existing studies assume that

the freight rate is independent of speed (Ronen, 1982; Beenstock and Vergottis, 1993; Evans

and Marlow, 1990; Evans, 1994; Strandenes, 1999; Corbett et al., 2009). This assumption is

contrary to industry reports which state that speed can be negotiated between the shipper and

shipowner (Lloyd’s List, 2011). For example, a higher speed may result because a shipper has

a higher willingness to pay for the service.

1.2 Global economic, energy, and environmental context
International shipping has encountered several challenges in recent years. The cost of heavy

fuel oil has more than tripled since 2000 and ships remain heavily reliant on oil for propulsion

given the limitations of alternative energy sources and economically viable technological solu-

tions. The Rotterdam 380 bunker fuel price averaged $138.4 per ton in 2000, $234 per ton in

2005, $345.1 per ton in 2007 and $639.6 per tonne in 2012 (Clarkson Research, 2012c). At

same time, the international economy entered a global recession at the end of 2007, resulting
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in a decrease in shipping demand which has been slow to recover. With fuel costs accounting

for a large share of operating costs (50-60%) (World Shipping Council, 2008), some tanker op-

erators have adopted “slow steaming” (Ranheim, 2012), a practice used in container shipping

to cut significant costs off their fuel bill due to loss-making freight rates by traveling at speeds

below their as-designed speed. With little prospect of near-term radical technical efficiency im-

provement (IMO, 2010), some industry leaders are touting operational energy efficiency (which

includes slow steaming) as the new norm (Jorgensen, 2010) while others are more skeptical, ar-

guing that once the market picks up, operators will be back to steaming at “gas guzzling” speeds

(UNCTAD, 2013).

The industry also faces the threat of regulation of international shipping carbon emissions

through either a carbon tax or trading scheme. Ships engaged in international trade accounted

for 2.7% of the world’s carbon emissions in 2007 (IMO, 2009). Emissions reductions are

feasible through technical and operational measures, as well as market-based polices. But in the

absence of global policies to control carbon emissions from international shipping, emissions

are predicted to increase by between 200 and 300 percent by 2050 due to expected growth in

international seaborne trade (IMO, 2009).

The future global energy map is also being redrawn amid the rise in oil and gas production

in the United States, which will have a strong bearing on the tanker trade. The International

Energy Administration expects the U.S. to become a net exporter of natural gas by 2020 and

overtake Saudi Arabia as the largest global oil producer by the same year, before becoming

completely self sufficient in energy by 2035 (IEA, 2012b). Understanding the economic drivers

of ship movements across different trade routes will be even more important in a future with

growing shipping volumes and changing trade routes. As aggregate emissions is the summation

of emissions from both cargo-carrying and repositioning voyages, it is important to quantify the

extent to which demand and supply side factors influence these movements especially if carbon

pricing is applied in global emissions reductions schemes.

1.3 Aim and research questions
The aim of this study is to understand the economic determinants of matches between traders

and ships within a spatially explicit market for shipping crude oil. To address this aim, it is
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useful to answer a number of more specific research questions:

• What determines the assignment of ships to traders (and therefore who is unmatched)

given the spatial distribution of ships across locations in the oil tanker shipping industry?

• What determines the division of surplus in the matches between ships and traders and

therefore equilibrium prices?

• What are the influencing factors of the contract (matched) speed and ballast (unmatched)

speed?

• What are the impacts of supply side and demand side changes on the market in terms of

matching outcome, earnings, prices and speed?

Given the energy and environmental context of this study, an increase in the fuel price, hetero-

geneity in the physical characteristics of ships, and a carbon tax will be simulated on the supply

side. On the demand side, a transitory and permanent demand shock will be simulated. Finally,

the impact of a simultaneous demand and fuel price shock will be addressed.

1.4 Contributions to existing knowledge
My contribution to the literature is by developing a micro level model of the tanker shipping

market that incorporates different agents’ choices and types of agents, including geographical

location and energy efficiency of ships. Specifically, this research makes several contributions

to the literature:

• It provides the first known theoretical and empirical matching model of the tanker market

to:

– explain the process through which prices are formed in the global tanker market as

a function of individual agents trading in regional shipping markets

– quantify intertemporal decision making for ships and traders

– incorporate detailed demand side modeling at the micro level, including the trader’s

willingness to pay for transport service

– investigate short-run decision making at a temporal resolution of one week

• It provides an understanding of the economic drivers of ship movements, in terms of both

locational decisions and speed.
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• It offers insight into the interaction between different shipping markets. For example,

the conditions under which a demand shock to one market will ripple through to other

markets.

1.5 Overview of the study
To achieve this study’s aim, I review the literature relevant to the thesis in Chapter 2. I discuss

the need to incorporate the spatial dimension of the market and the motivations of different

agents in order to understand their matching patterns and contracts. In Chapter 3, I introduce the

crude oil and tanker shipping market that is the basis for formulating the problem and introduces

two key features of industry. First, demand for oil is inherently uncertain and volatile and will

be modeled as exogenous. Second, supply adjusts slowly to new entrants because of the time

it takes to build a ship (one to three years (Stopford, 2010)) and therefore market entry can be

excluded from the short-run framework. While in the market ships have the option to go into

lay-up, this typically represents a small percentage of the fleet, and therefore the model will

focus on changes in supply through operating speed and locational choice.

In Chapter 4, I present the model structure which is divided into a static and dynamic

matching model. A matching model is one theoretical framework for modeling the equilibrium

formation of prices and can be used to explain the earnings of buyers and sellers when they form

a contract together. In the model, firms are ships. Earnings are endogenously determined each

period in a transferable utility matching game solved by maximizing the social welfare of the

global tanker shipping industry which is equivalent to computing the competitive equilibrium.

The game allows traders and shipowners to be unmatched and for different decision making

approaches - quasi-myopic and forward looking. The method builds on previous work of single

agent optimization (Rust (1987) and Devanney (1971)) and Chiappori et al. (2009) on matching

models. The model is flexible to allow ships to adjust their speed in the matched and unmatched

portions of their journeys. The modeling work is segmented into three parts. The baseline

model focuses on understanding the spatial dimension of the global tanker shipping market by

differentiating ships by their geographical location, holding physical characteristics constant in

a static framework. It also aims to understand how the characterization of different agent beliefs

affects the matching. This baseline model is used to simulate transitory changes to the market.

The model is then extended to a multi-dimensional space in which ships are differentiated by

their geographical location and physical characteristics. The third variation is exploring the

dynamics of tanker shipping by modeling the baseline matching model in a dynamic setting

which allows the simulation of permanent changes such as a demand shock and a carbon tax.
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In Chapter 5 I describe the five datasets that were used to estimate the model and discusses

the uncertainty of the data. The model focuses on a particular subset of the tanker shipping

market - the Very Large Crude Carrier (VLCC) market - which is the largest size class of tanker

ships. The model is estimated using a dataset which combines a sample of data on VLCC

shipment transactions, data on the technical specifications of the tanker fleet, aggregate trade

data, and prices on routes. In Chapter 6, I describe the estimation strategy and the inputs to the

model as described in Chapter 5. In Chapter 7, I present the results of the static and dynamic

matching models. Finally, I provide a discussion of the insights gained from the model results,

their contribution to the literature and their limitations in Chapter 8.



Chapter 2

Literature review

Research in maritime economics has been devoted to understanding the equilibrium formation

of freight rates and the interdependence between the freight rate and the ship market which

includes the second hand, newbuild and scrapping markets. The first section presents a re-

view of the approaches used in the maritime economics literature with a focus on the modeling

of the freight market in the short-run.1 The second section discusses methods used to solve

resource allocation problems including matching models, transportation optimization models,

and dynamic models. Finally, the last section concludes by summarizing the main gaps in the

literature and need for micro level modeling of the matching of ships to traders.

2.1 Maritime economics literature
Previous models of the freight market can be divided into two types: aggregate structural mod-

els and reduced form models. Earlier models of the freight market followed a classical sup-

ply/demand aggregate model. Estimation of the freight rate using this approach employed a

structural econometric model, typically assuming inelastic demand and instantaneous market

clearing (Tinbergen, 1931, 1934; Koopmans, 1939; Norman and Wergeland, 1981; Werge-

land, 1981; Hawdon, 1978; Beenstock and Vergottis, 1993). These models were incapable of

replicating the short-run volatility in the freight rate. Later structural freight rate models tried

to capture volatility in the freight rate (Tvedt, 1996; 2003; Engelen et al., 2006; Adland and

Strandenes, 2007; Furset and Hordnes, 2013) by incorporating a stochastic element in demand

and activity in the ship market using monthly rather than annual data. The advancement of

econometric techniques changed the focus of researchers’ attention to modeling the freight rate

using reduced form models. These models were either autoregressive or multivariate (Lund-

gren, 1996; Clark et al., 2004; Hummels, 2007; Beverelli, 2010; Alizadeh and Talley, 2011,

among others). Autogressive models were applied in order to understand the time series prop-
1In the short-run, capital is fixed, but ship owners can change their output by adjusting their speed, changing

their route, or going into lay-up.
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erties and stochastic nature of the freight rate, while more general multivariate reduced form

models were used to understand the micro-level determinants of the freight rate, including the

variation in prices observed across different trade routes.

2.1.1 Structural models

As discussed in the introduction, earlier studies employing an aggregate structural approach do

not investigate the impact of the distribution of supply and demand for transport in different

regions in order to understand how supply equilibrates with demand. Instead, there is one

trade route and a single market clearing price which is equal to the marginal cost of the last

unit of transportation required to meet aggregate transport demand. The assumption of one

trade route inherently ignores the fact that competitors in the spot market are geographically

distinguishable. Studies providing justification for this simplification either explained that trade

was dominated by one route (Devanney, 1971) or assumed that the market is efficient (Evans,

1994; Strandenes, 1999).

The market efficiency hypothesis (EMH), developed by Eugene Fama (Fama, 1970) as-

serts that financial markets are “informationally efficient” and as a consequence, one cannot

consistently achieve returns in excess of average market returns on a risk-adjusted basis. This is

because prices on traded assets are assumed to already reflect all publicly available information

and instantly change to reflect publicly available new information. If the notion of market effi-

ciency prevails in the freight market, then no arbitrage profit can be made by trading in different

shipping markets and therefore ship owners earn the same profits on each route. This statement

contradicts the persistent differences in earnings across shipping markets observed in the data

(Clarkson Research, 2012a; Adland, 2012). Adland and Strandenes (2006) provide the example

of the impact of a public announcement from the cartel of Organization of Petroleum Export-

ing Countries (OPEC) on the intention to reduce the output of oil in three months time. While

this is public information, the “current spot freight rate for large tankers need not reflect this

information, as the spot freight rate is a result of the near-term (in the order of weeks) effective

supply of ships and cargoes in a given loading area.”

As a consequence of assuming one trade route, there is no modeling of ship owners’ op-

portunity costs to relocate to another area. This provides a very limited picture of the drivers

of ship movements, which can quickly adjust to short term market trends (Kaluza et al., 2010).

Another drawback which was previously discussed is the long time horizon of the models, such

that the short-run impact of changes in supply/demand (between weeks for example) on freight

rates is overlooked.

In addition to the limitations on the supply side, demand is typically modeled as completely
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inelastic. This is based on the fact that on some routes there is no modal substitute and freight

rates constitute only a small fraction of the final good price. This assumption is held to be

sufficient as long as freight rates do not become very high relative to the value of the cargo.

Koopmans (1939) points out that the pattern of oil trade is influenced by refineries’ oil quality

standards and trade agreements and these considerations would be relaxed at times when the

freight rate represents a significant portion of the commodity value. Wergeland (1981) is one

of the few studies to estimate the demand elasticity with respect to the freight rate. Using

maximum likelihood estimation, he finds that aggregate transport demand is positively related

to the level of world trade and negatively to freight rates, but the price elasticity of demand is

very inelastic at -.007. However, there is no investigation of individual shippers’ willingness to

pay to understand the demand elasticity at high freight rate levels.

The theoretical aggregate model also ignores intertemporal decision making. Zannetos

(1966) is one of the few authors to provide a theoretical framework for analyzing the impact

of expectations on the inter-period substitution of shippers and shipowners. For example, if

shippers believe that the change in prices in the future will be greater than the current increase

in price, then they will rush to the market to secure tonnage which can lead to an increase

in current period demand. Despite his insightful theory about inter-period substitution effects

in the tanker market, he does not present a complete empirical model for spot rates which

incorporates this theory.

By ignoring future periods, speed is modeled as a function of only the tradeoff between

the ship’s revenue and costs in the current period. Evans (1994) acknowledges that “shipowners

should, if possible, take into account likely fixtures and estimated freight rates for consecutive

voyages in determining optimum speed...actual steaming speed should be adjusted upwards or

downwards in harmony with movements in the freight market whether or not a further fixture

has been contracted.” However, he then caveats his disregard of future periods in his optimum

speed equation by stating that “it is doubtful, however, whether in practice such adjustments are

generally made although the rational shipowner observing freight rates soaring would undoubt-

edly order his fleet to steam at maximum speed.” Strandenes (1999) justifies using the same

optimum speed irrespective of the trade route by stating that, “in equilibrium, the optimal speed

for a vessel must be the same, irrespective of the actual trade. If not, the owner may profit from

moving a vessel into a trade where optimum speed is higher, since higher speed increases the

cargo lifted by the vessel in a specific period.” Although studies have their own positive hypoth-

esis about speed in the maritime economics literature, there has been no empirical investigation

of tanker speeds to substantiate these claims.
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The earlier aggregate structural models are estimated using an econometric structural ap-

proach. The short-run supply is specified to be a function of the annual operating fleet tonnage,

variable operating costs, and the freight rate using data averaged over a long time horizon

(quarterly or annual time interval). By assuming that the market clears and therefore supply

and demand are equal, the freight rate can be solved in reduced form. The studies find world

oil trade, the fleet tonnage and bunker prices to be determinants of the aggregate freight rate.

Tinbergen’s seminal contribution (Tinbergen, 1931) was to estimate the non-linear shape of the

supply curve. Supply was determined by the fleet size, costs (using bunker prices as a proxy),

and the freight rate. Beenstock and Vergottis (1993) show that the implied elasticities derived

from Tinbergen’s supply equation are .94 for fleet size, -.23 for bunker prices, and 0.59 for

freight rates implying almost unit elasticity with respect to the fleet and a negative relationship

between bunker prices and supply.

A few academic works have attempted to capture both supply-side information and the

stochastic nature of the freight rate using a stochastic structural model (Tvedt, 1996; 2003;

Engelen et al., 2006; Adland and Strandenes, 2007; Furset and Hordnes, 2013). Instead of

applying an econometric approach to estimate supply, the supply curve is estimated using data

on the fleet’s technical specifications to determine the implied tonnage supplied to the market

at different freight rates. This approach has the same theoretical framework as the classical

supply/demand model, assuming there is one benchmark trade route so that the potential for

geographical arbitrage in freight rates is ignored and allows such models to measure the sup-

ply curve in deadweight tonnage units. In these models, volatility is included in the freight

rate through a stochastic element in the demand function and the ship market (aggregate new-

building/scrapping). While these aggregate forecasts of the freight rate could be insightful for

long-run investment purposes, they are not useful for predicting the short-run and often abrupt

changes in the freight rate and for understanding differences in freight rates across different

trade routes.

2.1.2 Reduced form models

Inspired by the developments of financial economics, a number of studies beginning in the

1990s applied reduced form autoregressive models to model the freight rate (Dixit and Pindyck,

1994; Bjerksund and Ekern, 1995; Tvedt, 1997; Veenstra, 1997; Adland and Cullinane, 2005).

One of the objectives of these models is to understand the statistical properties of the data,

including testing for stationarity and cointegration between the spot freight rate and other vari-

ables (see Glen and Martin, 2005 for a survey). This required examining the data at more

frequent time intervals (quarterly and monthly). However, the reliance on autoregessive models
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disregards important supply-side information about the geographical distribution of ships, size

of the order book, and stock characteristics (capacity of the fleet, age, and average speed) which

lessens the predictive capability of these models.

A more recent reduced form approach (Lundgren, 1996; Clark et al., 2004; Hummels,

2007; Mirza and Zitouna, 2009; Beverelli, 2010; Alizadeh and Talley, 2011) has been to model

the freight rate as a function of a number of exogenous explanatory variables. Variables used to

explain the freight rate include (a) demand for shipping services (volume of trade and macroe-

conomic variables such as industrial production); (b) supply side variables (global fleet size for

the relevant vessel type, distance, oil price); (c) product characteristics (the value of the good,

the ad-valorem tariff, the elasticity of import demand); (d) market structure variables (number

of firms operating on a route); (e) institutional variables (legislation, regulation and bilateral

trade agreements); and (f) route specific effects. Only a few of these studies applied to bulk

shipping have investigated the microeconomic determinants of freight rates using specific ves-

sel and voyage details. Beverelli (2010) and Alizadeh and Talley (2011) both include tanker

route specific dummy variables to understand the variation in prices across different routes con-

trolling for other factors.

Alizadeh and Talley (2011) is the only study that incorporates both vessel and voyage

details for estimating tanker freight rates. They estimate the Worldscale multiplier (see the

glossary in Appendix A for the definition) on major tanker routes and find it can be explained by

the Baltic Dirty Tanker Index (also known as BDTI, a price index of freight rates), the hull type

of the ship, the utilization of the ship, the age, the volatility of the BDTI, and a route specific

dummy variable to identify the route. However, they specify a separate regression to explain

the days between the fixture date and the first day a ship can load the cargo, which is incorrectly

defined as the laycan period. The system of simultaneous equations is solved using Three Stage

Least Squares. For VLCCs, they find that there is a negative estimated coefficient for westward

routes and the West Africa-China route compared to other routes which can be explained by the

back haul opportunities. The multiplier discounts the benchmark rate (which is representative

of the roundtrip cost) more than other routes. The paper has several limitations. First, they

incorrectly explain the contractual process which renders their justification of a simultaneous

relationship to be weak. Second, they do not discuss the problems arising from using censored

fixture data collected by shipbrokers which has a potential to bias their results (Cridland, 2010).

Third, there is no inclusion of the fuel price and time effects.

Several studies (Hawdon, 1978; Beenstock and Vergottis, 1993; Lundgren, 1996; Hum-

mels, 2007; Poulakidas and Joutz, 2009; Mirza and Zitouna, 2010; Beverelli, 2010) have par-
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ticularly focused on the link between oil prices or bunker prices and freight rates. Poulakidas

and Joutz (2009) model the West Africa-United States Gulf spot tanker rates as a function of the

West Texas intermediate crude oil spot prices, 3-months futures contract rates and the United

States weekly petroleum inventories using a Vector Autoregression model. They find that the

increase in demand for oil increases tanker demand which increases tanker rates. Second, when

the spread between the 3-month futures contract is trading above the spot price there is upward

pressure on tanker rates. Third, when the day’s supply of crude oil inventories increases, the

spot tanker rate declines.

Glen and Martin (2005) discuss the difficulty in predicting a priori the correlation between

tanker freight rates and oil prices in a reduced form model. This is because a rise in oil price

could be caused by an increase in demand or a reduction in the supply of oil due to a shock to

the overall world supply. The former would increase demand for transportation, resulting in a

positive association, whereas the latter could lead to a fall in the demand for oil transport and

an expected fall in the freight rate. There is also complexity in understanding this relationship

given the correlation between oil prices and bunker prices as bunker fuel is a derivative of the

crude oil refining process (UNCTAD, 2013). However, movements in the bunker price are also

determined by other factors, such as growing demand for bunkers from the world fleet and refin-

ery distillate processing (Clarkson Research, 2012c). Finally, the reduced form model can only

test the relationship between freight rates and oil/bunker prices within the variation of historical

data. Given the nonlinearities in the supply curve, the freight rate elasticity with respect to the

bunker price would not necessarily hold outside the region of historical variation and therefore

cannot be used to simulate a radical change in the bunker price. Given the magnitude of the

change in bunker prices in recent years and shipowners’ dependence on bunker fuel to propel

their ships, this is an important area of research.

2.2 Resource allocation models
Resource allocation models are concerned with understanding the efficient allocation of goods

to people and in some cases, the process through which equilibrium prices are formed for these

goods. These models have a rich history in economics and operations research because they

provide a way to analyze the way in which people may have different preferences for goods,

how prices can decentralize the allocation of goods to people, and the way in which these

prices can lead to a socially optimal outcome. There are three classes of models I will discuss:

transportation optimization models, dynamic economic models and matching models.
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2.2.1 Transportation optimization models

Transportation optimization models are used in the operations research literature to match re-

sources (trucks, cars, planes) to tasks (transportation of cargo) where these entities have a num-

ber of attributes. In this formulation, each driver and load is represented individually, making

it possible to capture attributes of each driver (number of miles to travel to pick up the load,

ability to pick up on time, etc.) and load (location, etc.) at a high level of detail.

There has been little application of the resource allocation problem in shipping that focuses

on the spot market for bulk shipping (also referred to as tramp shipping). Instead, the majority

of research in this domain has applied optimization models to industrial shipping applications

in which the shipper is also the shipowner and therefore the objective is to schedule vessels in

the most cost efficient way (see Christiansen et al. (2004) for a survey of these models). The

possible reasons for the lack of research on tramp shipping optimization models include the

shipping industry having had a long tradition for manual routing based more on a “gut” feel for

the market, the industry is highly secretive about their strategies, and there are a large number of

small operators who do not have the resources for research (Christiansen et al., 2004). Studies

that have applied optimization methods to tramp shipping (Appelgren, 1969, 1971; Bausch et

al., 1998; Fagerholt, 2004) have focused on the problem of scheduling long-term contracted

cargoes and optional cargoes that become available on the spot market. While the formula-

tion includes realistic geographical routing characteristic of the bulk shipping market, it is not

designed to model the equilibrium price in the spot market for bulk shipping nor the interac-

tions between different agents because it focuses on the operations of one shipping company.

Furthermore, the models are static assignment problems which contain no value of future peri-

ods. This is problematic considering the need to anticipate future demands when repositioning

resources.

Transportation assignment problems can also have a time dimension. In a dynamic setting,

information about resources and tasks changes over time, and decisions have to balance profits

now and in the future (Psaraftis, 1988; Spivey and Powell, 2004). In these problems, a value

function known as Bellman’s equation (Bellman, 1957; Dixit and Pindyk, 1994) is used to

represent both the current period’s profits and the value of expected future profits. The problem

is solved recursively using dynamic programming, a method which breaks the problem up into

a number of sequential decisions. This problem can suffer from the “curse of dimensionality”

if the state space is too large. Devanney (1971) uses dynamic programming to solve for the

optimal operating decision for a ship owner where the decisions include time chartering a ship,

transacting in the spot market, going into lay-up or scrapping the ship in each time period. He
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avoids the curse of dimensionality by reducing the spatial dimension to one trade route and

assumes inelastic demand.

Approximate Dynamic Programming has emerged as a powerful technique for solving

dynamic programs that would otherwise be computationally intractable given their large state

space (Powell, 2011). Simao et al. (2008) apply this technique to a large-scale trucking fleet

management problem. The model differentiates trucks by a number of attributes, including lo-

cation. The objective is to build a model that closely matches the actual operational statistics

of a company’s truck driver movements of loads over time. The model maximizes the expected

sum of all the profits generated by matching trucks to cargo loads, where the profit includes

an approximation of the Bellman equation and is solved using linear programming. Although

these models provide insight into the actual movements of resources over time and include ex-

pectations about earnings in future periods, they are not designed to model a market and have a

limited representation of demand. Demand is represented by “loads” which arrive continuously

and randomly and therefore there is no representation of the decisions of the buyer.

Several studies in the operations research literature have focused on determining the opti-

mal speed of ships given its significance in determining profits over the voyages of ships. Ronen

(1982) determines a daily optimal speed which is dependent on whether the ship is in an income

generating leg (transiting from a load area to a discharge area) or a repositioning (ballast) leg.

Similar to the optimal speed function in the aggregate model, he solves for the optimal speed in

the income generating leg by assuming that income (and hence the freight rate) is independent

of speed, thereby ignoring the possibility that income is endogenously determined by the speed.

In addition, there is no consideration of the influence of future periods on speed. In the ballast

leg, the problem is formulated to minimize costs, which includes the daily alternative value of

the ship in order to factor in the opportunity cost of slow steaming. Devanney (2010) follows a

similar approach for optimizing speed on a single trade route. In both approaches, the opportu-

nity cost is a constant value, such that there is no consideration of the state of shipping markets

in different regions.

2.2.2 Dynamic economic models

Dynamic programming has also had a long tradition in economics for solving problems of

optimization over time. There is a large body of research focusing on the estimation of dynamic

economic models, such as Conrad and Clarke (1987), Rust (1987), Hotz and Miller (1993),

Adda and Cooper (2003) on single agent dynamics and Bajari, Benkard and Levin (2008),

Pakes (2007), Aguirregabiria and Mira (2007), Jofre-Bonet and Pesendorfer (2003) and others

on dynamic games. The main focus of these papers is on the drivers of the decision to enter and



32 Chapter 2. Literature review

exit a market in strategic settings of imperfect competition where there are multiple equilibria.

Estimated per period payoffs are used to recover value functions, which in turn give values for

entry, exit, prices and quantities. Kalouptsidi (2013) is the only application of a dynamic game

to the bulk shipping market, but her focus is on the impact of demand uncertainty and time to

build on investment and ship prices rather than freight market dynamics.

2.2.3 Matching models

Matching models with transferable utility are used to understand who matches with whom when

the population of buyers and sellers is heterogenous. Associated with each match is a gain or

economic surplus which is match-specific. This gain is not only a function of the characteristics

of the buyer and seller forming a match but also the distribution of supply and demand in the

market. Therefore the bargaining power between the pair is endogenized (Chiappori et al.,

2009). There is a large body of literature studying matching models with transferable utility

in marriage markets, labor markets and the matching of students to schools (Gale and Shapley,

1962; Roth and Sotomayor, 1990; Kelso and Crawford, 1982; Mortensen and Pissarides, 1994;

Diaz and Jerez, 2013).

The seminal paper in matching models was Koopman and Beckman’s 1957 paper on As-

signment Problems and the Location of Economic Activities (Koopmans and Beckman, 1957).

This paper develops methods for solving and analyzing problems in the efficient allocation of

indivisible resources using linear programming. They show that there are prices associated

with the solution to this linear assignment problem which have the property of preserving the

optimal assignment under decentralized profit-maximizing decision making. For this property

to hold, it must be the case that the market is competitive. Another assumption in matching

markets with transferable utility is there are personalized prices because they allow bilateral-

specific utility. The most popular metric is maximizing the sum of all individuals’ valuations or

the social welfare of the group in the matching. Although this mechanism maximizes the total

utility, this does not mean that this will give everyone their preferred object; it therefore must

allow agents to make transfers amongst themselves.

The equilibrium concept in matching models is stability. This concept was formalized

when two mathematical economists, David Gale and Lloyd Shapley (Gale and Shapley, 1962),

asked the question about whether it would be possible to design a college admission process that

was self-enforcing. What they meant by self-enforcing was there was a matching (in this case,

colleges to students) that lead to stable assignments, such that no one would want to deviate

from their existing pairings.

General methods for solving static matching problems can be broken into two problem
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types. In the first method, only one buyer can be assigned to one seller. Linear integer program-

ming can be used to solve this type of linear assignment problem to ensure these constraints are

met (Matousek and Gartner, 2007). The second method relaxes this restriction using linear pro-

gramming (LP), which dates back to mathematicians Gaspard Monge (1781) and Kantorovich

(1958) who won the nobel prize in 1975 for using LP to solve resource allocation problems

related to transportation. The technique was introduced to reduce the computational time of the

solution. The Monge-Kantorovich transportation problem changes the interpretation of a one-

to-one matching or assignment problem to allow fractional assignments. Thus LP problems are

suitable when a buyer may be matched to multiple sellers and vice versa; shipping is a natural

application because ships can load multiple cargoes in different locations up to their capacity.

Chiappori et al. (2009) show there is equivalency between a matching model with transferable

utility and an optimal transportation linear programming problem.

Although it has been recognized that models examining how buyers and sellers trade with

each other would be useful to explain the pricing in the spot market for bulk shipping (Adland

and Strandenes, 2007), actual modeling is sparse. A recent paper by Tvedt (2011) uses a match-

ing model to derive a short-run equilibrium freight rate in the VLCC market, including some

aspects of the bargaining process. However, the model is simplistic in that it only considers one

representative trade - all vessels sailing to AG at a constant speed - whereas the shipping sector

is global and speeds can potentially vary a lot. In addition, demand is assumed to be completely

inelastic such that there is no consideration of intertemporal decision making.

2.3 Summary of the literature
Previous approaches in maritime economics contain a number of simplifying assumptions that

limit their usefulness to describe supply, demand and hence the equilibrium freight rate. Specif-

ically, aggregate structural models (including stochastic partial equilibrium models) do not

model the distribution of supply and demand in different shipping markets, intertemporal de-

cision making of agents, willingness to pay for the shipping service, nor the expectations of

agents in the freight market in one framework. Time series models disregard important supply-

side information which lessens the predictive capability of these models. Finally, reduced form

models only model the marginal effects of variables on the freight rate and cannot explain how

radical changes in these variables (such as the fuel price) might affect both the freight rate and

ship movements.

In addition to the limitations on modeling the equilibrium freight rate, the aforementioned

models of the freight market cannot explain the characteristics that lead certain agents to match
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with each other. Understanding these matches (and therefore who is unmatched), can also pro-

vide useful information on ship movements (and therefore loaded and ballast days), the implied

supply of ships in each area, and the earnings of each agent as a function of their bargaining

power. There has been renewed interest in applying matching models to markets with contracts.

A class of these models uses linear programming which makes it possible to model transporta-

tion problems at the micro level, taking into account the impact of future information on the

current decision. This level of detail, common in transportation optimization models, is impor-

tant for understanding whether agents are forward-looking in the tanker market and to model

the impact of radical changes on the shipping system and for fundamental purposes has not

been satisfied by existing approaches.



Chapter 3

Description of the Industry

This chapter describes the tanker industry in the context of the crude oil and Very Large Crude

Carrier (VLCC) shipping markets and provides the basis for formulating the structure of the

model. The discussion is divided into two parts. The first part uses quantitative data to de-

scribe the demand side for crude oil and crude oil transportation and the supply side of the

tanker market, examining the tanker fleet and tanker market structure, the types of tanker ship-

ping contracts and the factors influencing the short-run and long-run supply of tanker shipping.

The demand side of the market for crude oil is important because it influences an oil traders’

willingness to pay for oil transportation. The second part uses qualitative data from industry

interviews that were conducted with two companies in the shipping industry as part of this study

to corroborate and enhance the quantitative analysis of the industry.

3.1 Demand for crude oil

3.1.1 Crude oil trade

The demand for shipping oil is derived from world demand for oil which cannot be met by

domestic production or pipeline supply. At the buyer end of the crude oil market are refineries

who refine crude oil and at the seller side of the spectrum are oil producers. The flow of crude

oil from producer to end user can be described using a number of layers of analysis starting

with actual oil production (the first layer). The second layer is the mapping from oil producers

to exporters, and the third layer is determining how much oil is shipped by pipeline and ship.

3.1.1.1 Sources

Figure 3.1 shows the oil producers 1 by region in 2011. The Middle East is the largest producer,

producing a third of total oil production, followed by Europe and Eurasia (which includes Rus-

sia) at 21.0%, North America (16.8%), Africa (10.4%), Asia Pacific (9.7%), and South and
1Includes crude oil, shale oil, oil sands and NGLs (the liquid content of natural gas where this is recovered

separately).



36 Chapter 3. Description of the Industry

North America

S. & Cent. America

Europe & Eurasia

Middle East
Africa

Asia Pacific

Oil Production (2011)

Figure 3.1: Share of Oil Production by Region. Source: BP, 2012.

Central America (9.5%). The main use of crude oil is as an input to be processed into refined

products such as gasoline for the transportation sector and ethylene for the petrochemical sec-

tor. The intensity of the refining process depends on the type of crude oil. Crude oil comes

in different grades, classified by its gravity and sulphur content, where oil that is lighter (high

gravity) and contains less sulphur is more valuable. Low sulphur oils are referred to as sweet

crude oils, whereas oil with a relatively high sulphur content are referred to as sour crude oils.

Table 3.1 shows crude oil imports and exports by region and selected countries in 2011.

The top three importers of crude oil are Europe (24.5%), the US (23.5%), and China (13.4%),

while the top three exporters of crude oil are the Middle East (46.4%), Russia (16.9%) and West

Africa (11.8%).

The third layer maps exports of oil into sea and pipeline. Russia exports most of its oil
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via pipeline to Europe and Canada to the U.S. Therefore the largest exporters of total seaborne

crude oil are the Middle East, West Africa, and South & Central America.

Table 3.1: Crude Oil Imports and Exports in 2011

Crude Imports Share Crude Exports Share

Country/Region Million Tonnes % Million Tonnes %
US 445.0 23.49 1.0 0.05

Canada 26.6 1.40 111.7 5.89
Mexico - - 67.5 3.56

S. & Cent. America 18.7 0.98 139.0 7.33
Europe 464.2 24.50 12.9 0.68

Former Soviet Union - - 319.3 16.85
Middle East 10.7 0.56 879.4 46.41

North Africa 21.0 1.11 72.3 3.81
West Africa - - 224.1 11.83

East & Southern Africa 2.4 0.13 16.6 0.88
Australasia 26.8 1.41 14.2 0.75

China 252.9 13.35 1.5 0.08
India 169.7 8.96 0.1 0.00
Japan 177.3 9.36 -

Singapore 55.1 2.91 0.7 0.04
Other Asia Pacific 224.4 11.84 34.3 1.81

Total World 1894.7 1894.7

Source: BP, 2012.
Tonnes=metric tonnes
3.1.1.2 Sinks

Oil demand growth is largely now centered in the transportation sector, which accounted for

61.5% of total consumption in 2010 (IEA, 2012a), given the rise in global motorization and

freight transport and the fuel limited substitution possibilities. Geographically, global oil de-

mand has shifted to non-OECD countries as shown in Figure 3.3 as disposable income in Asia

and South America has risen. The Asia Pacific region surpassed North America as the largest

consumer of oil in 2004. China’s consumption dominates the region, with an extensive refinery

building program underway and is expected to match US oil consumption within the current

decade (Braemar Market Insight, 2012). At the same time, the US has increased its domestic

production and sourced oil from Canadian tar sands production.

The shift in demand to the Far East has implications for tanker tonne-miles; a journey

from Ras Tanura, Saudi Arabia to LOOP, US is 13,424 nautical miles (via the Cape of Hope)

or about 41 days, whereas a journey from Ras Tanura to Ningbo, China is 5717 nautical miles

or about 18 days. In 2001, the Middle East’s share of oil exports to the US and Europe was

14.6% and 18.6%; by 2010 these shares decreased to 9.2% and 12.5%, respectively (BP, 2012).

Meanwhile, China’s share increased from a meager 3.6% to 12.7% in 2010.
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3.2 Crude oil pricing and trading
The pricing of oil in the 1960’s and 70’s was based on a fixed pricing system by OPEC. The

oil price shock in 1973 led refiners to diversify their portfolio of oil sources which was enabled

by the oversupplied oil market in the 1980’s. This initiated oil spot trading, also called physical

markets, which eliminated price controls by the producer and gave more control to the con-

sumers (Fattouh, 2011). The emergence of spot markets attracted a large number of oil traders

from oil trading houses and more recently hedge funds - who act as intermediaries, buying oil

from oil producers and selling it to refineries.

The price of a particular crude oil sold by a producer is set at a premium or discount

compared to a benchmark crude. The differential between the reference price and the agreed

price is often agreed at the time when the deal is concluded and could be set by an oil exporting

country or assessed by a price reporting agency (Fattouh, 2011). There are three benchmarks

used to set prices: Brent crude oil, West Texas Intermediate (WTI), and Dubai Mercantile

Exchange (DME) Oman. Each has its own associated futures exchange used for pricing in

different markets. These benchmark prices are identified or assessed prices carried out by oil

pricing reporting agencies (namely Platts and Argus) which is required because not all bilateral

transactions are observed.

All crude oil is not created equally; oil is differentiated by its gravity and sulphur content.

Crude oils that are light (higher degrees of gravity) and sweet (low sulphur content) are usually

priced at a premium to heavy, sour (high sulphur content) crude oil grades because they require

less refining to turn them into products. A general trend is the standardization of the grade

of fuel, though there is still much variation due to different country regulations and refiners’

technology. When a buyer of crude oil trades with a seller, the parties have to decide the grade

of the oil, the volume, which party is responsible for shipping it, what the payment terms are,

the basis of pricing and payment and the person responsible for quality assurance of the oil

grade (Chapplow, 2013).

Although the spot market has increased the liquidity of the market, it has also introduced

more volatility in the oil price (Benigni, 2007; Ellefsen, 2010) which can sometimes be extreme

in the oil markets (Figure 3.4).

This is particularly problematic due to the long delivery time (sometimes more than a

month) involved between when an oil cargo transaction is completed, loaded onto a ship and

delivered to a discharge port. The risk of the price changing between when a cargo is purchased

and sold has lead to the emergence of hedging techniques known as derivatives (Downey, 2009).

Derivatives help to protect physical barrels from price volatility by locking in a price in the



3.2. Crude oil pricing and trading 41

Year

W
or

ld
 o

il 
pr

ic
e 

(n
om

in
al

 $
/b

ar
re

l)

2000 2005 2010

20
40

60
80

10
0

12
0

14
0

Figure 3.4: World Oil Price (Source: Energy Information Administration, 2011.)



42 Chapter 3. Description of the Industry

future. Typical derivatives in the oil market are forward contracts, swaps, and future contracts

and their value depends on the underlying market structure of the oil market. The most common

derivative in the physical market are forward contracts, which are privately negotiated over-the-

counter (OTC) transactions in which a buyer and a seller of an oil cargo agree on a price and a

delivery date and there is a commitment to deliver the cargo at a specified forward price (which

can be agreed upon in advance or at the time of delivery). Delivery is usually between 1 and

45 business days after the trade date (Reuters, 2000). The contract is settled in cash using a

physical price index, such as Platt’s Crude Oil price.

Another common type of derivative to hedge against the oil price is a futures contract. The

futures market trades oil much like stocks. They are traded on an exchange and change owners

very quickly and physical delivery is rare (Reuters, 2000). Although oil futures rarely take

physical delivery, they are useful market indicators, conveying information about the current

state of the market and of market expectations. A buyer of a futures contract is betting that

the future spot price will increase, while a seller bets that it will decrease. The term structure

of prices for future delivery - between for example the price of the front month and twelfth

month futures contracts - is one key indicator of market participants’ expectations. There are

two trading strategies according to the difference between the spot and futures price. If the

spot price is trading at a premium to the futures (or forward) price, the market is described as

“backwardation” and there is tightness in the current market. The tightness is caused by some

risk or fear in the market, and this causes oil to be bought today rather than a few years in the

future, driving up the current price. If the spot price is trading at a discount to the futures (or

forward) price, then the market is described as “contango.” The latter effect causes oil traders

to hoard oil until the spot price increases above the futures price, either by storing it in tanks

at the destination port or delaying the ship’s arrival into port by hiring the vessel for additional

days (called offshore floating storage) (Krauss, 2009). In this case, if the ship’s delivery date has

expired, the trader is responsible for paying demurrage. Demurrage rates depend on the strength

of the tanker market. A decrease in the spot oil price in the future provides an incentive for the

oil trader to wait. Therefore volatility has an impact on the trader’s option value of waiting,

trader revenues, the number of traders demanding oil in each period and the importance of

demurrage.

Although the majority of crude oil trading is through forward contracts (Chapplow, 2013),

another contractual arrangement is a long-term contract (Fattouh, 2011). These contracts are

negotiated between buyers and sellers for the delivery of a series of oil shipments over a period

of time, usually one or two years. They specify the parcel size to be delivered, the delivery
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schedule, the actions to be taken in case of a default, and the pricing method for the oil shipment.

Oil companies supplying crude oil to their refineries will use these types of contracts.

3.3 Market structure, tanker shipping contracts, and supply side

factors

3.3.1 Tanker fleet and market structure

The majority of tanker shipments are for crude oil, reflecting the location of refineries which

are typically near consumption areas. The total volume of global crude-oil shipments reached

55.3 million bpd in 2012. Crude oil carried on board tankers accounted for two thirds of this

total with a total volume of 1.78 billion tonnes in 2012 (UNCTAD, 2013).

There are five ship size categories, ranging from about 50,000 to around 450,000 dead-

weight tonnes (DWT): Handymax (50,000 or less), Panamax (50,001-80,000), Aframax

(80,001-120,000), Suezmax (120,0001-200,000), and VLCC (200,000 +). Table 3.2 shows

that of the 492 million tonnes of capacity in 20122, VLCCs accounted for 37.9% and 52.3% of

tanker capacity transporting crude oil.3

Table 3.2: Tanker fleet composition (m.Dwt)

2008 2009 2010 2011 2012 (Dec 1) No. in 2012

VLCC (200,000+) 151.7 159.6 163.2 176.1 186.3 609

Suezmax (120-200,000) 54.6 59.1 63 68.5 72.5 469

Aframax (80-120,000) 81 87.8 93.1 96.6 97.4 911

Panamax (60-80,000) 26 27.4 28.2 29.4 30.1 417

Small (10-60,000) 90.1 97.6 101.1 104.1 105.8 3351

Total (m.Dwt) 403.4 431.5 448.6 474.7 492.1 5757

VLCC total share (%) 37.6 37.0 36.4 37.1 37.9 10.6

VLCC crude tanker share (%) 52.8 52.1 51.1 51.6 52.3 30.6

Source: Clarkson Research, 2012b.
The shipping industry treats each size class as a different shipping markets. Vessels in

different size categories vary in the type of product they carry, the routes they take, and the

trade flows they serve. Economies of scale make larger vessels more fuel efficient per tonne-

mile, but the length of the route, port and canal constraints, and shippers’ cargo size preferences
2As of December 1, 2012.
3Suezmax and Aframax tankers also transport crude oil.
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means there are different optimum sizes for trade routes according to these parameters. Larger

ships dominate long haul routes where fuel costs account for a larger proportion of operating

costs. However the size restrictions of many ports limits VLCCs geographical coverage. Data

from Clarkson Research (2012b) shows that the tanker industry has around 1,750 firms, with the

largest firm, Mitsui O.S.K. Lines accounting for only 2.6% of total output. A large proportion

of firms own only a few ships; seventy-five percent own 5 or fewer ships, with 42% owning only

one ship. As such, some tanker companies pool their ships together to form tanker “pools” to

operate as a fleet, sharing the profits of this joint operation. A subset of 129 firms own VLCCs;

the largest firm is Mitsui which owns 4.9% of the fleet, followed by National Iranian Tanker at

3.8%. The industry is competitive in terms of the distribution of output shares. Lun et al. (2012)

perform a detailed analysis of the tanker market and finds that there is competition in the spot

market. Compared to other industries, the scope for ships to differentiate themselves is much

narrower. Ships differ by age, the shipyard where it was built, the reputation of the shipowner,

their energy efficiency, and their geographical location. Because of the spatial dispersion of

ships across different locations and the time preference of shippers, there are situations when

ships can take advantage of other ships’ being farther away in order to strategically price their

service above marginal cost.

3.3.2 Tanker shipping contracts

3.3.2.1 Types of contracts

Shipping market contracts, also referred to as “charters”, are negotiated between the ship-

per which requires transportation of oil between two ports, and the “carrier”, typically the

shipowner. A charterer arranges the transportation required by the shipper. In practice, there are

a number of different types of contracts in shipping, including spot contracts, forward contracts,

and medium to long-term contracts which involve different arrangements between the charterer

and shipowner. Spot contracts are negotiated within a short period of time (typically two days

to two weeks) before the loading of the cargo. The loading date can be up to 6 weeks in the fu-

ture from the fixture date so they operate like a forward market (Adland and Strandenes, 2007).

Forward-contracts are similar to spot contracts but are negotiated farther in advance, usually a

month or more before the agreed loading date. Medium contracts are typically arranged as time

charters and long-term contracts are known as contracts of affreightment (see Stopford (2009)

for an overview). In a time charter, the charterer hires a ship for a specified period of time (from

a month to several years) and pays a fixed hire rate which includes the cost of crew. Similar to

leasing a car, the charterer pays the fuel costs of journeys undertaken.

For this analysis, I will focus on the spot market, which is accounts for 70% of the fleet
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(Stopford, 2009). Charterers can work for either an oil major - a vertically integrated company

involved in exploration, production, refining, marketing - or a trading house and work closely

with oil traders. Oil majors also own their own fleet of ships to transport a portion of the oil ship-

ments they make. Brokers serve as intermediaries, working for either a charterer or a shipowner

to communicate information about the market when fixing a ship and earn a commission from

the deal. Charterers in tanker shipping are dominated by oil majors. These companies have a

division for trading and shipping business operations. The core of their upstream business is

to market crude oil and sell it for the highest negotiable price, purchase most of the crude oil

used as a feedstock for their refineries, import and export petroleum products to align supply to

local demand, and select and charter safety-vetted tankers to transport cargo to its destination

without mishap.

In the spot market, a ship is “fixed” to transport cargo from A to B for a price per tonne

(called a fixture) or a total freight rate in lumpsum dollars (Platts, 2012). The terms of the

contract include a speed. In the current market, this is typically 13.5 knots with an option to

speed up (though this option is getting less popular due to high bunker prices) (Shipbroker,

2011; Ship Operator, 2012). It is common practice to designate just the load area and discharge

area at the time that the fixture is settled between the charterer and the shipowner (Downey,

2009). This allows the charterer the flexibility to decide on the exact port within the region

later on. Ports are classified into regions according to their proximity to a common sea area, as

opposed to regional definitions from the UN that are land-based, and region will be synonymous

with area in this study. Tables 3.3 and 3.4 list the regions which are associated with VLCC

tanker fixtures.
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Table 3.3: Load Areas (VLCC class)

LoadArea Name

AG Arabian Gulf
ARG Argentina
BALT Baltic Sea
BRZ Brazil
CAR Caribbean
CMED Central Mediterranean
ECC East Coast Canada
ECMX East Coast Mexico
EMED Eastern Mediterranean
JAP Japan
KOR Korea
REDS Red Sea
SPOR South Pacific Oceania Region
UKC United Kingdom Continent
USG US Gulf
WAF West Africa
WCSA West Coast South Africa
WMED Western Mediterranean

Source: Clarkson Research, 2011.
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Table 3.4: Discharge Regions (VLCC class)

DischargeArea Name

AG Arabian Gulf
BRZ Brazil
CALI California
CAR Caribbean
CMED Central Mediteranean
ECC East Coast Canada
ECI East Coast India
EMED Eastern Mediteranean
JAP Japan
KOR Korea
NCH North China
PHIL Philippines
REDS Red Sea
SAF South Africa
SCH South China
SPATL South Pacific Atlantic
SPOR South Pacific Oceania Region
THAI Thailand
TWN Taiwan
UKC United Kingdom Continent
USAC US Atlantic
USG US Gulf
WCI West Coast India
WCSA West Coast South Africa
WMED Western Mediteranean

Source: Clarkson Research, 2011.
Due to port restrictions, VLCCs operate 18 load regions (17 regions less than other crude

tankers) and 25 discharge regions (12 less than other crude tankers). Not all loading areas are

near oil fields; some are connected to crude oil storage sites (i.e., Korea and Bahamas in the

Caribbean).

3.3.2.2 Contract pricing

In the tanker spot market, the price for transporting cargo by tanker ship is called the freight rate

and is normally expressed as a function of two components. The first is an annual benchmark

called the Worldscale (WS) flat rate (nominal $ per tonne) to allow for an apples-to-apples

comparison of different sized ships on roundtrip voyages. The rate represents the voyage costs

for a standard vessel and is calculated on a roundtrip basis based on the assumption that the

vessel will have to ballast to some other destination empty, although there is no obligation to

sail back to the port of origin. The rate is determined by the distance, a standard vessel’s fuel

consumption, an average service speed, a benchmark bunker price, and the port costs for each

combination of ports.
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The second component of the freight rate is a Worldscale (WS) multiplier. The multiplier

adjusts the flat rate. A WS multiplier of 100 equals the WS flat rate; a WS multiplier of 50

means the spot rate is one half of the flat rate. In contrast, a time charter rate is specified in

$/day terms and reflects capital, operating costs and the prevailing market conditions. The spot

and time charter markets are part of the same shipping market and shipowners often tradeoff

between operating in the spot market and chartering out their vessels. Given the volatility in

the spot freight rate, the spot market can be more risky but can be highly lucrative given good

market conditions. A time charter contract is more stable as it locks in a fixed rate over a longer

time period (6 months to 3 years normally) (Clarkson Research, 2012a).

It is common in shipping to report a Time-Charter Equivalent (TCE) Rate $/day as a way

to compare the two markets. It is calculated by subtracting all voyages costs from all voyage

revenue, and then dividing by the number of days in the voyage. TCE allows for a comparison

of returns for different voyages for the same ship, or the same voyage completed by different

ships. As the numbers being compared relate to the given voyage and not to items like how the

ship was financed and make assumptions about the ballast voyage and speed, it does not give

the actual earnings for a shipping company (Clarkson Research, 2012d).

Spot and charter contracts are arranged over the counter by brokers who serve as the in-

terface between charterers and shipowners. The brokers’ objective is to forge an agreement

between the oil company and the shipowner at a mutually acceptable price. Often there are two

brokers involved, one for each agent. Tvedt (2011) provides a description of the bargaining

process. When a charterer needs a vessel for transportation of oil from a loading location to a

refinery, it calls up a broker or a number of brokers, typically 15-20 days before it wants the

cargo shipped as it might take that long to get a vessel to the loading area. The charterer’s bro-

ker announces to its network of shipowner’s brokers. The shipowner’s brokers are in constant

contact with the shipowners who advertise when their ships will be available. The shipowner’s

broker drafts a list of ships available in the market and gets an asking price (valid for a certain

amount of time) from the shipowner, which it passes onto the charterer’s broker. The game

is now in the charterer’s hands to come up with a counteroffer. Normally, a charterer will not

accept the first offer, making counteroffers. Now it is the shipowner’s turn to either accept the

offer, continue bargaining, or work with another cargo. Part of a broker’s job is to know the

market conditions in order to offer advice. The ship’s location, the ask prices from the other

ships, time preference of shipowners and charterers as well as other cargoes, are all important

factors in the bargaining process.
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3.3.3 Supply side factors

3.3.3.1 Short-run supply

Supply in the short-run is determined by the number of voyages that shipowners carry out and

is restricted by the current fleet stock. The number of voyages is influenced by voyage distance,

route choice (where there are multiple routes between origin and destination), speed, and days

in port. The major route choice for VLCCs is on westward journeys (i.e., from the Middle

East to US Gulf), where ships can take either the Suez Canal or go around the Cape of Good

Hope (tip of South Africa). Because of draught restrictions, the first option requires the ship to

partially unload the cargo at the start of the Sumed pipeline in the Red Sea, transit the Suez,

and pick up an equivalent shipment on the Mediterranean Coast. The second option is to sail a

longer distance around the Cape of Good Hope.

Costs can be divided into fixed and variable costs. In a competitive market, agents supply

to the market where marginal (variable) cost equals price. Based on Stopford (2009), operating

costs are considered as fixed costs and will be treated as such in this analysis under the as-

sumption that they are incurred regardless of whether a ship is employed. Voluntary insurance

to cover piracy zones is assumed to be separate from general insurance because it depends on

the voyage and will therefore be included in variable costs. Capital costs depend on the way

the ship has been financed. Ships are a large upfront investment; the price of a new VLCC

costs around $100 million (Clarkson Research, 2012a). There are a variety of ways ships can

be financed, including maritime funds, but on the whole, financing is through traditional own-

ers’ equity and senior-secured bank debt finance (O’Callahan, 2011). Shipowners often refer

to their “break-even rate.” This is a daily fixed cost rate which includes interest expense. For

VLCCs, this rate was around $30,100 per day in 2011 (Frontline, 2011). Finally, in a com-

petitive market, firms add on the opportunity cost of trading per unit of output to the marginal

production cost (Sijm, Neuhoff, and Chen, 2006) which in shipping equals the rental rate or the

time charter rate ($/day). In theory, the time-charter rate should at least cover daily operating

and capital costs for firms to break even.

Variable costs include fuel, port charges, and canal dues. There are two key non-linear

relationships in shipping that affect fuel costs. The first key relationship is between the size

of a ship and fuel cost. Economies of scale in shipping exist because of the physical property

that the water resistance on a ship’s hull does not increase at the same rate as the volume of the

hull (Smith et al., 2013). The second key non-linear relationship is between fuel consumption

and speed, which is typically approximated by a cubic law. Fuel costs currently comprise the
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greatest voyage cost, which is approximately two-thirds4 (Stopford, 2009). Other variable costs

include canal costs which consist of canal tolls, extra insurance risk premium for transiting the

piracy zone of Somalia and the use of services such as tugs, pilotage and mooring.

As ships age, their fuel efficiency deteriorates. In general, older vessels have lower em-

ployment prospects over newer ones because they are viewed as more risky and have higher fuel

costs per tonne-mile. For example, “The anaemic tanker market has left 1970s-built, turbine-

powered VLCCs and ULCCs queuing up in the Middle East Gulf (MEG) with bleak employ-

ment prospects” (Kennedy, 2002). The importance of fuel efficiency has increased due to the

significant rise in the fuel price in recent years. Figure 3.5 shows the price of heavy fuel oil

(HFO) since 1990 in Singapore and Fujairah which are major bunkering areas. Since 1990, the

price of HFO has risen more than 5 fold, beginning its ascent in 2005, averaging $645 per tonne

in 2011.

Another consequence of aging vessels is their risk profile changes due to hull deterioration,

leaving it more vulnerable to oil spill accidents. Following the Exxon Valdez oil spill, the U.S.

required ships to have a double hull, leading to quality differentiation (Strandenes,1999).

As Chapter 2 described, the short-run describes the market in which the stock of ships is

fixed but ships can change their status. According to Clarkson Research (2012b), they can have

the following status:

1. In port

2. At sea

3. Loitering

4. In floating storage

5. Laid-up

6. In long term storage (greater than 60 days)

Data on fleet statistics contains information on ships’ status, but it is not completely accu-

rate, comprehensive, nor up to date. The data (Clarkson Research, 2012b) shows that of the 602

ships in the fleet in 2012, 4 were laid-up and 2 were in long term storage. This represents less

than 1% of the market, having a negligible impact on the market. Floating storage is a strategic

option for traders and producers. Traders use it when the oil price is not high enough to sell
4Subject to the price of fuel
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Figure 3.5: Source: Clarkson Research, 2012a.
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the cargo, and producers use it when their tank farms are full (Davis, 2007). According to Gib-

son (Gibson, 2013), a ship brokerage firm, floating storage has been negligible (0%) between

2010-2012, accounting for 7% of supply in 2010.

3.3.3.2 Long-run supply

In the long-run, supply changes due to new entrants and exits. Shipowners buy vessels, adding

to the stock of the fleet, and sell ships in the scrap market when they reach maximum age or

when prices for scrap metal outweigh the present value of the ship. The shipping market is

characterized by cycles of booms and depressions. A sustained momentum of high freight rates

creates shipowner purchasing wealth and expectations that rates will continue to surge, which

leads to new orders (see Stopford, 2009 for an overview of the shipbuilding cycle). New en-

trance into the market is lagged by the time to build a ship, which can take between 1-3 years on

average, depending on the productivity of the shipyard and the number of orders. Any down-

ward pressure on future demand can therefore create an oversupply of ships, exemplified by

the 2008 financial crisis. Given the high rates of return during a boom however, shipowners

are willing to suffer zero or even negative profits for multiple time periods, waiting for periods

where the demand jumps high and the supply response is limited (Kalouptsidi, 2013). Accord-

ing to Stopford (2009), “Each company faces the challenge of navigating its way through the

succession of booms and depressions that characterize the shipping market.” Giving a specific

example, “For several years the company had accepted this drain on its cashflow, in the hope

that the market would improve.” The market would improve in a depression if some shipowners

scrapped their vessels. However, the competitive nature of the market and the debt tied to banks

ensures that there is no cooperation in reducing output. Of course, shipowners can only absorb

so much loss before they go bankrupt, exemplified by companies filing for bankruptcy in 2012.5

3.4 Industry Interviews
This section describes the key findings of two interviews conducted with a major tanker ship-

ping company (Tanker Operator, 2012) and a shipbroking and shipping research company

(Shipbroker, 2011).6

3.4.1 Spot fixing: agents and process

• The broker typically arranges the deal for either the shipowner and trader or both. More

recently, there is one intermediary representing both parties such as Exxon Mobil - Clark-
5Since the 2008, the financial crisis has helped to drive shipping companies into bankruptcy, including Overseas

Shipping Group, General Maritime Corp., Korea Line Corp., Britannia Bulk Plc, Armada (Singapore) Pte Ltd. and
Transfield ER Cape. (Church et al., 2012)

6The names of companies were kept anonymous for confidentiality reasons.
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sons - Greece, though sometimes there are two brokers representing both sides or the

shipowner directly approaches the charterer.

• Oil majors and independent oil trading houses demand oil shipping services. Oil majors

have more predictable contracts with oil production companies (for example, Shell works

with Statoil in Norway) and they need oil shipped to Shell’s refineries and use the left-

over oil (after supplying the oil refineries) to sell oil on the spot market which is more

speculative. Major oil trading houses are Vittal and Glencore.

• Shipowners advertise their ships on a daily basis through email with brokers. They are

responsible for knowing when they will arrive in port.

• The bargaining process between the shipowner, broker and trader can take between 5

minutes and two weeks. The broker draws up a list of candidates, eliminating ships

which are too small or too unreliable because of port inefficiencies.

• The shipowner normally provides an ask price to the trader using the previous day’s

Worldscale rate as a starting point and factors in the daily bunker price as a proxy for

costs. The shipowner runs a voyage calculation of what they would make, taking into

account where they would ballast next, but some shipowners make poor economic de-

cisions partly because they need cash to pay the bank. Port costs can be high in some

areas so sometimes it makes sense to wait than make a bad decision. Brokers also use the

demand/supply ratio to advise clients, and shipowners take advantage of a bottleneck to

exploit the price and put up the price.

• The speed is negotiated by the charterer and the shipowner which is based on the type of

ship and the cost. The shipowner does a number of different prices and tries to pick what

is attractive for other commercial drivers, including where the next voyage is going to be

picked up and which way prices are going. The speed is typically between 13-14.5 knots

for the laden voyage. There can be an option to speed up, though this option is becoming

less popular due to high bunker prices.

• Ships which are over 15 years are viewed as more risky by charterers. The trader doesn’t

provide information about the cargo size they choose, but it is related to port restrictions.

• The route choice is not always based on the shortest distance. It is influenced by piracy

and port dues (high in the Suez canal), and time. VLCCs that go through the Suez have

to unload their cargo in the Sumed pipeline and pick it up in Ain Sukhna. These are
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sometimes picked up by Aframaxes which can enter ports in the Mediterranean rather

than just Rotterdam.

3.4.2 Voyage optimization

• The oil market has changed to the advantage of the shipowner in recent years due to new

areas of oil production opening up, new demands from China and India, and historical

trade relationships changing. Hugo Chavez (the past president of Venezuela) fell out

with the US so now Venezuela is shipping oil to China. Traditionally trade was dominant

on the AG-US route and back, but now there is more demand from the Far East. The

shipowner has to make more decisions about which direction to go based on the market,

and can profit since the Worldscale benchmark is based on a round-trip cost. Often times,

ships go around the Cape of Good Hope more slowly to avoid the Suez. It will also sail to

the area with the most options and want to fix their ship at the port of discharge to ensure

they get another job.

• Ships try to fix (sell the ship for hire) their ship at discharge areas, and will typically

never go to a load area unless they have a cargo to pick up. If a ship still hasn’t fixed, then

it goes to a waiting area in Fujairah located in the Arabian Gulf or West Africa, another

waiting hub to look for the next fix. Shipowners use AIS data to track each other to see

where the ships are to decide where to wait for loading. The waiting time can be a couple

of days or a couple of weeks, depending on the market.

• Shipowners almost never know the exact destination until they are within close proxim-

ity to the destination area. This depends on the type of trader; oil majors generally know

where they are going whereas there is more uncertainty with traders because it is a spec-

ulative game based on the volatility in the market. If oil traders are not ready to unload

their cargo, they will pay the shipowner a demurrage rate to compensate for the extra

days not included in the contract or a storage rate.

• The speed in the ballast voyage is a trade-off between fuel costs and time costs. If the

next voyage is known, then the voyage is optimized for the laycan period. The speed is

also adjusted for other factors such regulations around berthing in daylight (in Japan) and

demurrage rates. If the demurrage rates are high then it is more profitable to sit around

instead of slow steaming. The ballast leg is where there are more differences between

owners; some companies run their ships at 9 knots because they have newer ships but

many ships are forced to go faster, at 13 knots or so due to design speed and safety

restrictions.
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• Shipping companies use financial instruments to purchase bunker fuel in advance or

bunker in Fujairah and Singapore 95% of the time for re-fueling their ships.

3.5 Summary
This chapter has described the demand for crude oil transportation as being derived from world

demand for crude oil. The crude oil market is a complex business involving many agents, which

was described using quantitative and qualitative data. The major seaborne exporters described

are the Middle East, West Africa and the South and Central America, while the major importers

are countries in the Far East, India, and the US. A general shift of global oil demand to non-

OECD countries has shifted seaborne trade to the Asia Pacific region, which surpassed North

America as the largest consumer of oil in 2004. The largest volume of oil traded physically is

on the forward market. Trading behavior is governed by expectations of the market in relation

to current prices and the relationship was classified as being either a backwardation or contango

market, but long-term contracts between oil producers and oil majors also exist.

The tanker market was described as a competitive market, with the largest firm represent-

ing only 3% of the total output. Two types of contracts, spot and time charter, and their pricing

were examined. The market was characterized in terms of short-run and long-run determinants

and the cyclicality of the industry was explained. The interviews provided confirmation of some

of the quantitative data findings and additional information about voyage optimization strate-

gies. The key findings from this analysis were that shipping companies reposition to the Arabian

Gulf or West Africa when they do not have a fixture lined up whereas the option to lay-up is

rare. Operators adjust their speed for fuel and time costs, which include future expectations

about the market. Another finding was that there is heterogeneity in speeds, particularly in

ballast, with some ships going significantly slower compared to others due to perceived design

speed and safety restrictions. Changes in trade patterns have increased the spatial complexity of

these repositioning voyages which provides opportunities for shipowners to earn better profits.



Chapter 4

Model Structure

The previous two chapters described the market structure of the tanker industry as competitive.

This assumption lays the foundation for modeling the key agents in the tanker shipping industry

as behaving competitively in a matching (assignment) game. In this chapter, a two-sided 1

matching model is constructed for allocating charterers (oil traders) to ships (shipowners) which

can be used to simulate the VLCC market. This is a resource allocation problem in which ships

are the resources and traders have tasks (the shipment of oil) that need to be completed by the

resources. I will compute a competitive equilibrium allocation which includes the assignment

(which buyers match with which sellers) and the set of prices that result from each assignment.

In a competitive equilibrium, each agent chooses the task that maximizes his profits given

the current prices such that the quantity supplied is equal to quantity demanded. In a matching

economy, an alternative way to compute an equilibrium is to find the allocation that maximizes

the total valuation of the assignment (the social surplus) subject to the constraints on resources

and tasks. The multipliers on these constraints are used to construct prices, and the allocation

and prices that result from solving this problem is a competitive equilibrium.

This study reports prices generated from the model both as a total rate for chartering a

ship, expressed as a lumpsum in dollars and as a percentage of Worldscale flat rates or the WS

multiplier (multiplier units). The total freight rate (hereto referred to as the freight rate) is useful

as it simplifies the price derivation using the model’s inputs and outputs which will be derived in

this chapter. It is equivalent to the revenue for shipping the cargo. Nevertheless, as the industry

negotiates the majority of rates using the multiplier, Chapter 7 will also present results of the

implied WS multiplier price using a simple accounting relationship between the total rate from

the model, an estimated benchmark price in Chapter 6, and an average cargo size.

The simplest way to compute the competitive equilibrium is to solve a linear programming
1The shipping market is two-sided because there are two key user groups, traders and shipowners, that provide

each other with economic benefits.
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program, which is a simple but large combinatorial optimization problem where the combina-

tions to be optimized are the surpluses from the pairings of agents. The condition that agents

must match (i.e., buyers to sellers and vice versa) or not places a constraint on the utility that

each agent can achieve. Associated with the constraint is a shadow price or marginal value of

using the resource, formally known as the Lagrangian multiplier on the constraint. The multi-

plier captures the sensitivity of the optimal solution to a small change in the availability of that

resource, holding everything else constant. The problem is solved as if the traders and shipown-

ers are a joint venture, and the payoff (surplus) of assigning a ship to a trader’s cargo demand

is the revenue from assigning the resource to the cargo demand minus the cost of the shipment

plus the ship’s option value to be in the discharge location. The problem is then decentralized

through the Lagrange multiplier on the constraints.

Outcomes that maximize social surplus are efficient when there is no other outcome in

which all payoffs are at least as large and one is larger which would result in a higher sum of

payoffs. Certain informational conditions must be met to guarantee this outcome in a matching

economy. Each trader needs to know only the freight rates that are relevant to the shipping route

he is considering and the profitabilities of his cargo given these matching possibilities.

Matching problems can also have a time dimension. The problem of matching buyers

(traders) to sellers (shipowners) at a single point in time is called a static matching problem,

while the problem of dynamically assigning ships to traders is a dynamic matching problem. In

a dynamic setting, information about resources changes over time and the previous matching

can impact the current and the expected future matching can influence the present one. The

static problem is like solving the dynamic version for one period. In both problems, ships and

traders are each characterized by a set of attributes, where the surplus generated will depend on

the attributes of each resource and task. Ships do not have to be used and cargoes demanded by

traders do not have to be met, although there is a cost for holding either one which takes into

account each agent’s inter-temporal choices.

In order to understand the fundamentals of the matching game, the model is first described

for the static case and then extended to a dynamic model. The following approach is applied:

1. Define the environment: description of environment and attributes of agents.

2. Specify the general model assumptions used to build the model.

3. Describe the agent behavior and payoffs of matching or remaining unmatched. Two

strategies for shipowners (Policy 1 = quasi-myopic; Policy 2 = forward looking policy)

define their expectations about the future. In the quasi-myopic policy, shipowners only
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consider the cost of returning to the original loading area after they finish their current

journey, whereas the forward looking policy considers future employment prospects in

terms of profits earned.

4. Describe the solution algorithm for the one period matching game: the matching model

can be analyzed as a linear programming problem.

5. Describe the timing, sequence of events and the solution algorithm for the two period

model for the dynamic matching game.

4.1 Environment
This section uses the formulation of assignment games with transferable utilities to describe a

competitive spot market for shipping crude oil. The model consists of N z potential shipping

contracts, Ny potential buyers and Nx sellers, where buyers are oil traders and sellers are firms

who own ships. A ship is a shipowner and the terms will be used interchangeably. Time is

discrete and the unit is one week. Traders and ships interact in the market place every week and

decide whether to match or remain unmatched.

Agents are characterized by a vector of attributes that define the type space of each. The

model abstracts from reality by excluding charterers and brokers who typically work as inter-

mediaries with traders and ships to find a ship that is suitable. A trader i at time t has a type

vector yi belonging to a set of trader types Y embodying its characteristics. Likewise, a ship j

has a type vector xjt belonging to a set of ship types Xt. To allow for the possibility that some

agents choose not to participate and remain unmatched, each set includes a “dummy” agent

type from the other side of the market. A dummy ship type ∅x is a partner for any unmatched

trader types, and ∅y is a dummy trader type for any unmatched ship types. The set of ship and

trader types are defined as:

Xt = {xjt}Jj=0

Y = {yi}Ii=0

(4.1)
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where:

x0t dummy ship type, ∅x

y0 dummy trade type, ∅y

J number of ship types

I number of trader types

Each trader who participates in the market obtains profits from the shipping service z

which is derived from a vector of ship attributes. The model is a partial equilibrium model of

the tanker market which considers only the market for shipping large cargoes using Very Large

Crude Carriers (VLCCs), the largest class of tankers, and therefore assumes that the demand

for VLCCs is a function of the relative prices of VLCCs in the market. In practice, tankers in

smaller size categories (Suezmax and Aframax) also transport crude oil but are less competitive

with VLCCs on long trade routes where VLCCs dominate trade given economies of scale in

shipping.

Each oil trader owns a quantity of oil (> 200, 000 tonnes) that needs to be shipped. Profits

depend on the expected oil price arbitrage between locations, the freight rate, and the estimated

time of the ship’s arrival to the load and destination area. A trader also has the option to remain

unmatched in the current period, in which case it has to store the oil at a cost at the load area

and ship it next period.

A trader’s type has 4 dimensions that affect profits and costs:

yi =


a

b

qb

βy

 =


a is a location in the load location set A

b is a location in the discharge location set B

Cargo size (barrels)

Discount factor


Ships are located in different locations at the start of the period; locations are sea areas

and include load areas, discharge areas, and waiting areas. Waiting areas are sea areas located

near a load area where ships can sit idle until they match with trader. A shipping firm has to

choose a trader to match with and its associated cargo to load and move if one is available.

Alternatively, it has the option of moving empty to another location (even if a load is available)

and remain unmatched in the current period. There is a value to remaining unmatched for

both agent groups, which differs from most of the matching literature (see Shapley and Shubik

(1972) and Chiappori, McCann and Nesheim (2009)) that assigns a value of 0 to null matches.

When a shipping firm has a fixture prospect, it has to consider factors such as the cost associated
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with the number of nautical miles the ship must move empty to pick up the cargo, the ability of

the operator to deliver the cargo on time, and the possibility of fixing the ship after unloading

the cargo at the destination port.

Ships are characterised by 7 dimensions that affect profits and costs at time t:

xjt =



l

ω

α

vd

k

cr

βx


=



Current location of ship l ∈ A ∪ B ∪W

Deadweight tonnage of ship

Age

Design speed

Daily fuel consumption (tonnes)

Daily opportunity costs

Discount factor


Ship j of type xjt changes over time because of changes in its location, whereas its physical

attributes are constant during the model period. The current location of a ship is a vector of all

location sets l ∈ A ∪ B ∪W , whereW is a vector of waiting locations. The discount factor is

used to discount the expected payoff in future periods at the time of matching.

A contract z has one attribute:

zt = vop = average matched speed

Contracts can be specified with either a constant or “optimal” speed. A constant speed is

reasonable given the stickiness of changes in speeds dictated in the clause of the contract; cur-

rently industry practitioners use 13.5 knots in their calculation of earnings per day for modern

VLCCs and this is the constant speed used in the model. According to a statement from the

chief of Frontline in 2011 (Lloyd’s List, 2011), a leading shipping company, “We are trying to

discuss with the charterers if there is a possibility of a lower speed, but so far they seem to prefer

to maintain 13 or 13.5 knots, but that is a discussion we are always having.” However, there is

no rule of thumb, and the optimal speed model variant relaxes this assumption to represent the

case when speed is bargained over in the contract. Once a ship has matched to a trader, it is

assumed that the ship must sail at this speed from its current location to the discharge location.

4.2 General Model Assumptions
The following general model assumptions apply across all models of different policy types,

justified by Chapter 2 (Literature Review) and Chapter 3 (Description of Industry):
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1. Traders demand cargoes above 200,000 tonnes to be shipped from a load area.

2. The aggregate number of ships and cargo quantity demanded are exogenously deter-

mined.

3. Oil traders live until they make a shipment and then “die,” replaced by a new trader

drawn from a truncated normal distribution of trade demand. They are impatient; there

are opportunity costs for waiting to ship oil because each week they buy oil and have to

pay a storage cost for the days until the ship arrives at port.

4. Ships can only match at discharge and waiting areas, and once they are matched, they

cannot match to another trader until they discharge the cargo at the discharge area.

5. There are no search costs for matching.

6. The market is competitive. Ships consider market conditions, but do not focus on analyz-

ing how rival ships will respond if they take particular decisions.

7. Where there are multiple routes, ships travel on the route most travelled for the area-area

pair based on a distribution.

8. Agents are rational and maximize profits.

4.3 The theoretical static matching model
I first develop the theoretical static matching model for the tanker market. The static model is

defined as one period model and is the same as solving for the terminal period T in a finite

horizon dynamic model.

4.3.1 Supply side of the market

The supply side of the market is defined as follows:

• A ship j has characteristics defined by its type xjt described in section 4.1.

• The vector n(xjt, t) = [n(x1t, t), ..., n(xJt, t)] holds the quantities of each ship type xjt

at time t.

• If a ship j matches with a trader i, it receives a payoff W x(xjt, t) equal to:

max
yi

[P (xjt, yi, t)− C(xjt, yi, t) + βxW x(xj,t+1, t+ 1)] (4.2)

where:
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1. P (xjt, yi, t) is the freight rate in lumpsum units ($).

2. C(xjt, yi, t) is the shipment cost which includes the fuel and opportunity costs as-

sociated with traveling from the ship’s current location to the discharge location.

3. W x(xj,t+1, t+ 1) is the expected future payoff from the discharge location, known

as the option value for ship i of type xj,t+1 defined by the function g(xjt, yi, t)

which determines the ship’s discharge location.

The option value depends on the policy employed. Policy 1 approximates the option

value using a “quasi-myopic” approximation. In shipping, it is almost always the case

that ships must ballast empty to another load area after they have dropped off the cargo at

the discharge location and discounting the future completely would ignore this cost. The

option value in Policy 1 is therefore the discounted cost of returning to the original load

area. I include this policy in the model for two reasons; the first is simply for comparison

purposes, and the second is because we do not know whether shipowners are forward-

looking. In contrast, Policy 2 includes the value of employment in future periods, but

because the freight rate is volatile, there is uncertainty about future payoffs. Therefore

the shipowner only looks ahead one period.

The forward-looking policy differs from the quasi-myopic policy in two ways. First,

the repositioning cost from the current period’s match in Policy 1 is the repositioning

cost from the discharge location back to the same load area where the ship matched,

whereas in Policy 2 the ship considers other load area locations such that it is an expected

repositioning cost. The second difference is the option value in Policy 2 also includes

the expected future payoffs if it matches to a trader or if it doesn’t match to a trader and

has to relocate to a waiting area. It is important to include these future payoffs when

considering different matching options because there could be instances in which the

repositioning costs are similar between two matches, but the future matching payoffs are

different because they are specific to the load and/or waiting area. The option value is

discounted by βx which equals 1/(1 + rx)d(xjt,yi), where rx is the discount rate and the

discounting is over the duration d(xjt, yi) of the current voyage.

• If a ship j doesn’t match with a trader i, it has to relocate to a waiting area w ∈ W . In

the model, this is equivalent to matching to a dummy trader ∅y and the payoff (the ship’s

surplus) of this match is equal to:

s(xjt, ∅y, t) = s̃(xjt, ∅y, t) + βxjt,d(xjt,∅y)W x(g(xjt, ∅y), t+ 1) (4.3)
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where g(xjt, ∅y) denotes the function determining the ship’s type which includes its new

location when it remains unmatched. In the model, there are two waiting areas: one in

Fujairah in the Arabian Gulf and the other in West Africa and the surplus from these

matches are:

s(xjt, ∅y1 , t) = s̃(xjt, ∅y1 , t) + βxjt,d(xjt,∅y1 )W x(g(xjt, ∅y1), t+ 1)

s(xjt, ∅y2 , t) = s̃(xjt, ∅y2 , t) + βxjt,d(xjt,∅y2 )W x(g(xjt, ∅y2), t+ 1)

where ∅y1 represents the dummy trader in Fujairah and ∅y2 is the dummy trader in West

Africa. The maximum value of these options will be the preferred unmatched option:

s(xjt, ∅y, t) = max [s(xjt, ∅y1 , t), s(xjt, ∅y2 , t)] (4.4)

4.3.2 Demand side of the market

The demand side of the market is defined as follows:

1. A trader i has characteristics defined by its type yi described in section 4.1.

2. The vector n(yi, t) = [n(y1, t), ..., n(yI , t)] is a vector holding the quantities of each

trader type.

3. If a trader i matches with a ship j, it receives a payoff W y(yi, t) equal to:

max
xjt

[π(xjt, yi, t)− P (xjt, yi, t)] (4.5)

where π(xjt, yi, t) is the profits from the sale of the oil, and P (xjt, yi, t) is the freight

rate in lumpsum units ($) if a trader of type yi matches to a ship of type xjt.

4. If a trader i doesn’t match with a ship j then it has to pay a storage cost to store the oil in

the load area until it can match with a ship. In the model, traders which are unmatched

match to a dummy ship ∅x with a payoff (surplus) equal to:

s(∅x, yi, t) = s̃(∅x, yi, t) + βy,d(∅x,yi)W y(yi, t+ 1) (4.6)

where s̃(∅x, yi, t) is the storage cost and W y(yi, t + 1) is the expected future payoff in

the next period.
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4.3.3 Pairwise surplus function

The combined payoff of a match between a ship and trader is known as the pairwise surplus

function. It provides the total valuation of a ship of type xjt matched to a trader of type yi and

equals the sum of the payoffsW x(xjt, t) andW y(yi, t) from equations 4.2 and 4.5 respectively:

s(xjt, yi, t) = max
zt

[
(
π(xjt, yi, t)− P (xjt, yi, t)

)
+

+
(
P (xjt, yi, t)− C(xjt, yi, t) + βxW x(xj,t+1, t+ 1)

)
]

= π(xjt, yi, t)− C(xjt, yi, t) + βxW x(xj,t+1, t+ 1)

= s̃(xjt, yi, t) + βxW x(xj,t+1, t+ 1)

= W x(xjt, t) +W y(yi, t)

(4.7)

Because the pairwise surplus function includes a transfer of P (xjt, yi, t) from the trader to

the ship, the freight rate cancels out. The surplus function can be split into the current period’s

surplus s̃(xjt, yi, t) and the surplus in the future period βxW x(xj,t+1, t+ 1).

4.4 Matching economy, assignment problem and competitive equi-

librium
This section defines the matching economy, assignment problem, and competitive equilibrium

associated with a linear programming problem. The matching economy is first described which

will be used to formulate the assignment problem. The assignment problem is solved as a linear

programming problem. A competitive equilibrium is derived from the solution to the linear

programming problem.

4.4.1 Matching economy

A matching economy at time t consists of:

1. A vector n(xjt, t) = [n(x1t, t), ..., n(xJt, t)] consisting of the quantities of each ship

type xjt.

2. A vector n(yi, t) = [n(y1, t), ..., n(yI , t)] consisting of the quantities of each trader type

yi.

3. A set Θt = Xt ×Y of possible assignment pairs θt such that each trader type yi ∈ Y and

each ship type xjt ∈ Xt is at most one pair in Θt.
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4. A surplus function s: Θt 7−→ Rt giving the value s(xjt, yi, t) of each pair of ship and

trader type; s(∅x, yi, t) for an assignment of a trader to a dummy ship; s(xjt, ∅y, t) for an

assignment of a ship to a dummy trader.

4.4.2 Assignment definition and associated conditions

Definition 1. An assignment (or a matching) is defined as a non-negative function m mapping

Θt into Rt. For a particular pair (xjt, yi, t) where j > 0 and i > 0, the value m(xjt, yi, t) > 0

represents the number of traders of type yi that are matched to a ship of type xjt and to the

shipping contracts. For j = 0, the value m(xjt, yi, t) or m(∅x, yi, t) represents the number of

traders who are not matched. Similarly, for i = 0, m(xjt, yi, t) or m(xjt, ∅y, t) represents the

number of unmatched ships.

A feasible assignment is one in which all traders are assigned to ships and satisfies the

following constraints:

∑
yi∈Y

m(xjt, yi, t) = n(xjt, t) ∀ xjt and t (4.8)

∑
xjt∈Xt

m(xjt, yi, t) = n(yi, t) ∀ yi and t (4.9)

m(xjt, yi, t) ≥ 0 (4.10)

Equation 4.8 captures the constraint on ships; the assignment of traders and dummy traders

to a particular type of ship cannot exceed the total amount of ships of that type. Equation 4.9

captures the constraint on traders; the assignment of ships and dummy ships to a particular type

of trader cannot exceed the total amount of traders of that type. Equation 4.10 restricts the

assignment to be positive because a negative assignment is not allowed.

Traders and ships can be matched to more than one ship and trader type respectively.

Following Chiappori, McCann and Nesheim (2009), the interpretation of a positivem(xjt, yi, t)

for a trader of type yi assigned to multiple ship types xjt is a conditional distribution implied

by m(xjt, yi, t) as a mixed strategy for trader yi.

Definition 2. An outcome of the matching game is defined as a triple

(m(xjt, yi, t),W
x(xjt, t),W

y(yi, t)) where (W x(xjt, t),W
y(yi, t)) is a payoff corresponding

to m(xjt, yi, t). Following the literature (Roth and Sotomayor, 1990), an outcome is stable if
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for any assignment pair θt:

W x(xjt, t) +W y(yi, t) ≥ s(xjt, yi, t) (4.11)

In other words, a match is stable if two conditions are met:

1. No matched agent would be better unmatched.

2. No two agents of type xjt and yi, who are not matched together, would prefer being

matched together compared to their current pairing. If s(xjt, yi, t) > W x(xjt, t) +

W y(yi, t), then a ship and trader could improve their payoff by leaving their current

situation and rematching so matching could not be stable.

Definition 3. A feasible assignment is optimal at time t if it maximizes the sum of surpluses:

∑
(xjt,yi)∈Θt

m(xjt, yi, t)s(xjt, yi, t) (4.12)

4.4.3 A competitive equilibrium associated with a linear programming problem

Definition 4. A linear programming problem is the problem of maximizing or minimizing a

linear function (the objective function) subject to linear constraints.

The linear programming problem of an assignment problem is to choose m(xjt, yi, t) to

maximize:

∑
(xjt,yi)∈Θt

m(xjt, yi, t)s(xjt, yi, t)

subject to:∑
yi∈Y

m(xjt, yi, t) = n(xjt, t) ∀ xjt and t∑
xjt∈Xt

m(xjt, yi, t) = n(yi, t) ∀ yi and t

(4.13)

The solution to an assignment problem using linear programming can be used to compute

a competitive equilibrium (Koopmans and Beckman, 1957). Prices are constructed through

a simple accounting relationship between the multipliers on the resource and task constraints

which equal the ship’s payoff W x(xjt, t) and the trader’s payoff W y(yi, t) respectively. From

the trader’s payoff function, the total freight rate is determined as:

P (xjt, yi, t) = π(xjt, yi, t)−W y(yi, t) (4.14)
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From the ship’s payoff function, the equivalent price is determined as:

P (xjt, yi, t) = C(xjt, yi, t) +W x(xjt, t)− βxW x(xj,t+1, t+ 1) (4.15)

The following definition provides the conditions under which prices and the matching

assignment are in a competitive equilibrium:

Definition 5. A feasible assignment m(xjt, yi, t) and a price vector p satisfy the competitive

equilibrium condition when:

• For every pairing it is the case that all agents maximize their individual surplus:

W y(yi, t) = max
xjt

[π(xjt, yi, t)− P (xjt, yi, t)]

W x(xjt, t) = max
yi

[P (xjt, yi, t)− C(xjt, yi, t) + βxW x(xj,t+1, t+ 1)] (4.16)

• Supply equals demand:

∑
xjt∈X

[m(xjt, yi, t) +m(∅x, yi, t)] = n(yi, t) ∀ yi and t

∑
yi∈Y

[m(xjt, yi, t) +m(xjt, ∅y, t)] = n(xjt, t) ∀ xjt and t (4.17)

4.4.4 Model outputs and intra-allocation of the pairwise surplus

There are four outputs of the model:

1. m(xjt, yi, t): the number of traders of type yi that are matched to a ship of type xjt

2. W x(xjt, t): the payoff for the ship

3. W y(yi, t): the payoff for the trader

4. P (xjt, yi, t): the price or freight rate of each match

5. n(xjt, t+ 1),n(yi, t+ 1): the implied supply of ships and traders in the next period

The matching between two agents is graphically depicted in the figure below for a simple

market where there is one ship type x1 and a trader type y1.

x1

Ship

s(x1, ∅y, t) y1

Trader

s(∅x, y1, t)
s(x1, y1, t)
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Following the literature on the Nash Bargaining Solution (Easley and Kleinberg, 2010),

the ship and the trader are bargaining about how to split the surplus, and suppose that the

total surplus if they match is s(x1, y1, t). But both x1 and y1 have outside options; x1 has the

outside option of s(x1, ∅y, t) and y1 has the outside option of s(∅x, y1, t) which are the values to

remain unmatched. These outside options can be defined as their threat points because they can

leave the negotiation if they do not receive this outside option. If s(x1, ∅y, t) + s(∅x, y1, t) >

s(xjt, yi, t), then no agreement will be reached because they cannot divide the surplus so that

the ship gets at least s(x1, ∅y, t) and the trader gets at least s(∅x, y1, t). Therefore, in order for

them to match, s(x1, ∅y, t) + s(∅x, y1, t) ≤ s(x1, y1, t) (Model Definition 2).

In a match between a ship and a trader, once their outside earnings options are met which is

the minimum requirement to match (in this case, the value to remain unmatched or the dummy

surplus value), they have to decide how to split the rest of the surplus or “ residual pie”. In the

simple example this is given by:

Rpie = s(x1, y1, t)− s(x1, ∅y, t)− s(∅x, y1, t) (4.18)

where Rpie stands for residual pie. With a finite number of agents, the equilibrium con-

ditions impose constraints on individual shares, but there exists in general an infinite set of

intra-match allocations and therefore prices. At the extreme ends of the distribution, an agent

could obtain the entireRpie or 0. Each agent’s share boils down to their relative bargaining abil-

ity. In shipping, bargaining power depends on the market conditions and each agent’s ability to

bargain. In the model, the market conditions fully determine the agent’s share of the surplus.

The global or aggregate VLCC market consists of about six local markets where traders

demand cargo to be shipped from by VLCC (Clarkson Research, 2011). In theory, any VLCC is

capable of serving these local markets, but some ships may be favored more over others based

on their location and physical characteristics. The market conditions depend on the aggregate

demand to supply ratio (aggDSR) or the demand for cargoes to be shipped as a proportion of

the available supply of ships, and the local demand to supply ratio (the demand for ships in the

load area to the supply of ships located in the load area).

Agents are referred to as being either on the short or long side of the market. For example,

if a ship is on the short side of the market, its type is scarce relative to the amount of traders

demanding its service, whereas if it is long there is an excess supply of ships of this type (Diaz

and Jerez, 2013). If an agent is on the long side of the market, it obtains a payoff equal to

the surplus of remaining unmatched, with the interpretation that they are indifferent between
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matching and remaining unmatched.

The aggDSR determines the extent to which agents in each side of the market have the

possibility of extracting any of the residual surplus. If aggDSR < 1, then there is at least one

ship which is long, and the traders’ earnings are determined by the relevant substitution possi-

bilities for the ship which is most favored. On the other hand if aggDSR > 1, then ships are

short and all traders receive their dummy surplus values. This has a Walrasian frictionless mar-

ket flavor, in which traders on the short side of the market trade with probability one (subject

to payoff of remaining unmatched being less favorable), while buyers on the long side are ra-

tioned (Diaz and Jerez, 2013). Demand rationing occurs in markets in which there are capacity

constraints (which applies to the shipping market at least in the short-run).

Taking the case that aggDSR < 1 such that traders have the upper hand in the aggregate

market, if a ship is long it means that the ship’s payoff must be greater than or equal to the payoff

to remain unmatched (Equation 4.19). Equation 4.20 follows from this by solving for the price

a ship must receive in order to match with a trader, which equals the surplus of remaining

unmatched plus the shipment cost minus the discounted option value from the destination:

P (xjt, yi, t)− C(xjt, yi, t) + βxW x(xj,t+1, t+ 1) >= s(xjt, ∅y, t) (4.19)

P (xjt, yi, t) >= s(xjt, ∅y, t) + C(xjt, yi, t)− βxW x(xj,t+1, t+ 1) (4.20)

If on the other hand, a ship is on the short side of the market, the price is given by:

P (xjt, yi, t) = P (xj′t, yi, t) + ∆WTP (xjt, xj′t, yi, t) (4.21)

P (xjt, yi, t) = P (xj′t, yi, t) + ∆π(xjt, xj′t, yi, t) (4.22)

where xj′t is the substitute to xjt and ∆WTP is the trader’s marginal willingness to pay

for the shipping service.

4.5 Specification of the matching surplus
This section provides the specification of the matching surplus (or payoff) function. As dis-

cussed in Section 4.3, the matching surplus function s(xjt, yi, t) consists of the combined pay-

offs to the trader and ship if they match together which is comprised of the trader’s revenue from

the oil cargo, the shipment cost, and the ship’s option value. The section is divided into three

subsections, the trader’s revenue, the ship’s cost function, and the ship’s option value which
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depends on the shipowner’s policy.

4.5.1 The trader’s revenue

As discussed in Chapter 3, a trader’s profits can be complicated and depend on the type of

contract. Oil can be bought on the spot market, in a forward contract or in the futures market.

I focus on the case where oil is bought in the forwards market since this represents a large

majority of the physical oil trading volume. The model assumes that the trader has only one

destination in mind for selling the oil, specified in the exogenous demand vector at time t. This

is a simplifying assumption because in some cases he will consider other markets.

Under this contract type, the expected present value of the net revenue from selling the

cargo at date t+ d is:

π(xjt, yi, t) = βyE(pbt′|xjt, yi, t)− pat )qb)− cstoreqbdla(xjt, yi) (4.23)

where:
E(pbt′|xjt, yi, t) expected average price of oil bought at location a and sold at location b at time t′

t′ t+ d(xjt, yi)

pat the price of oil paid at location a at time t

βy the discount factor

qb cargo size (barrels)

cstore daily storage cost per tonne

dla(xjt, yi) days from the ship’s starting location to the loading area

The discount factor is equal to:

βy =
1

(1 + ry)d
lb(xjt,yi)

(4.24)

where ry equals the interest rate to reflect the inventory cost and d(xjt, yi) equals the total

duration in days until the shipment gets to destination b:

d(xjt, yi) =
φla

24vop
+

φab
24vop

+ dp (4.25)

4.5.2 Shipment costs

Costs are comprised of fuel, port and fixed costs. Fuel cost is a function of distance, speed,

and the price of heavy fuel oil. Fixed costs include operating costs (crew wages, repairs and

maintenance, spares, and insurance) and the capital cost of the ship. The implicit rental rate

(opportunity cost) should approximate these costs and is included in the marginal cost of pro-
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duction as a daily implicit rental rate.

Following the literature (Ronen, 1982; Evans, 1994; Stopford, 2009, among others) fuel

cost2 equals:

cfll′,t = phfok(
vop

vd
)3 φll′

24vop
(4.26)

φll′ distance between two areas l and l′ (nautical miles)

vop operating speed

vd design speed

φll′/24vop days at sea

phfo heavy fuel price ($/tonne)

k daily fuel consumption (tonnes)

The repositioning cost from one location l to another location l′ is:

crepll′,t = cr(
φll′

24vop
) + cfll′,t (4.27)

where cr is the daily rental rate or opportunity cost of trading in the spot market. The

voyage cost from a to b is:

cvoyab,t = cr(
φab

24vop
) + cfab,t + dpcp (4.28)

where dp equals days in port and cp are the daily port costs. Broker commissioning fees

are not included since the model does not include the broker. Combining the repositioning and

voyage costs, the total shipment cost from the ship’s current location l to destination b is:

C(xjt, yi, t) = crepla,t + cvoyab,t (4.29)

Once the cargo is discharged, the owner selects the speed for the ballast leg back to the

load area. Rushing back to a load or waiting area at full speed is not a wise decision if there is

no employment, so the speed of the ballast leg depends on whether the ship is matched or not.

4.5.3 A quasi-myopic option value

With a quasi-myopic policy (Policy 1), it assumed that once the ship drops off the cargo at the

destination b, it sails back to the same loading port a as depicted in the figure below.
a bl a

2The fuel burned is for the main engine. The ship’s auxiliary engine, and impact of draught (payload) and
weather is not modeled.
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The discounted option value equals the discounted repositioning cost to travel from the

discharge location b to the load area a where the ship matched with the trader:

βxW x(xj,t+1, t+ 1) = βx,d(xjt,yi)crepba,t (4.30)

4.5.4 A forward-looking option value

In the forward-looking policy, the ship considers not only the repositioning cost to sail to a load

area, but also the future payoff from the load area if it matches with a trader and the future

payoff if it does not match with a trader and has to relocate to a waiting area. Therefore, if a

ship is at a discharge port b, it has the following options:

1. Go to a load area a ∈ A

2. Go to a waiting area w ∈ W

The option to go to a discharge port is not allowed. The value to be at a discharge area

b ∈ B is then the value to be at each of these locations, weighted by the probability of the

option:

W x(xbj,t+1, T + 1) =
∑
a∈A

P(a|b)
(
− crepba,t+1+

βx,d
ba(xj,t+1,yi)W x(xaj,t+1, T + 1)

)
+
∑
w∈W

P(w|b)
(
− crepbw,t+1+

βx,d
la(xj,t+1,∅y)W x(xwj,t+1, T + 1)

)
(4.31)

It is apparent from this equation that the value to be at b depends on the values of locations

a ∈ A and w ∈ W . Note that the time period when the ship reaches its destination depends on

its location such that it may be greater than T + 1. This notation was used since the average

repositioning time is under one week and allows for simplicity of exposition. I assume that

ships only go to a loading area if it has a cargo to pickup. This assumption is based on several

interviews with the shipping industry. Therefore a ship that is at load area a will pick up cargo

and immediately sail to a discharge area. The option to go to another load area is not allowed

in the model.

The value to be at a load area a ∈ A is the expected value to be at the load area, weighted

by the probability distribution of trade flows from the load area:

W x(xaj,t+1, T + 1) =
∑
b∈B

P(b|a)
(
P (xj,t+1, yi, T + 1)

−cvoyab,t+1 + βx,d
ba(xj,t+1,yi)W x(xbj,t+1, T + 1)

)
(4.32)
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The final type of location is a waiting area. If a ship is at a waiting area w, it will wait at

the waiting area until it has a fixture, at which point it will sail to the load area. The value is:

W x(xwj,t+1, T + 1) =
∑
a∈A

P(a|w)
(
− crnxwait − c

rep
wa,t+1 + βx,d

la(xj,t+1,yi)W x(xaj,t+1, T + 1)
)

(4.33)

where nxwait is the number of days waiting to match with a trader.

4.5.5 The matched optimal speed

The matched speed is optimized in the case when the trader and ship bargain over the speed in

the contract. In Policy 1, this speed is determined by solving for the derivative of the matching

surplus under Policy 1 (Equation ) with respect to speed:

d

dvop
(π(xjt, yi, t)− crepla,t − c

voy
ab,t − β

x,d(xjt,yi)crepba,t) = 0 (4.34)

In Policy 2, the matched speed is optimized by solving for the derivative of the matching

surplus function using the forward-looking option value:

d

dvop
(π(xjt, yi, t)− crepla,t − c

voy
ab,t + βxW x(xbj,t+1, t+ 1)) = 0 (4.35)

The optimal speed depends on the relative magnitude of each parameter and its effect

(positive or negative). A slower speed lowers the oil revenue because the trader has to pay

to store the oil cargo until the ship arrives and through the discounting. For the ship, going

slower increases its opportunity costs, but decreases the fuel cost portion of shipment costs.

The impact of speed on the ship’s option value depends on its sign: if it is positive, then a

slower speed decreases the value, while a negative value is positively impacted by a slower

speed.

4.6 Specification of the surplus to remain unmatched
This section provides the specification for the surplus to remain unmatched for the trader and

the ship. The section is divided into two subsections: the trader’s surplus to remain unmatched

and the ship’s surplus to remain unmatched.

4.6.1 The trader’s surplus to remain unmatched

In theory, if the model is solved repeatedly,W x(xj,t+1, t+1) would be the value of the ship type

xj,t+1 in period t + 1 from the model’s output. However, prior to solving a dynamic matching

model, a good guess can be estimated from data. It can be estimated as follows. The model

assumes the trader has already bought the oil cargo and therefore his alternative is to store the
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oil at the load area until a ship can pick up his cargo. Storage costs are represented as a daily

cost per barrel of oil, which could be either land or floating storage.3 If a trader matches in the

next period, they earn an average expected oil revenue based on potential matches with ships.

This means that their average revenue depends on the location of ships because oil revenue is

discounted by the days at sea. Then the estimated value of a null match for the trader in period

T is:

s(∅x, yi, T ) = E(π̄(xjt, yi, T + 1))− cstoreqbnywait − E(P (xj,t+1, yi, T + 1) (4.36)

where:
π̄(xjt, yi, T + 1) average expected oil revenue at T + 1

cstore daily storage cost per tonne

nywait waiting days until a trader matches to a ship

E(P (xj,t+1, yi, T + 1)) expected freight rate ($) at T + 1

The number of days until a trader matches with a ship nwait equals the days until the

next matching period plus the average days until the trader can match which depends on the

probability of matching. In the model, the probability of matching is a function of the aggregate

demand to supply ratio. I assume that if this ratio is less than 1, then traders can always match

with a ship with probability 1.

4.6.2 The ship’s surplus to remain unmatched

The value to remain unmatched for the shipowner depends on the policy. In the myopic policy,

the shipowner discounts future periods heavily such that he does not consider the potential

revenue earned from waiting. Thus the surplus of a dummy match is:

s(xjt, ∅y, T ) = −creplw,t +−crnxwait (4.37)

In policy 2, the surplus a dummy match is:

s(xjt, ∅y, T ) = −creplw,t + βx,d(l,w)W x(xwj,t+1, T + 1) (4.38)

which is the repositioning cost from location l to w and the option value to be at w defined

by equation 4.22.
3Floating storage is oil stored in a tanker that is anchored.
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4.7 A Forward Looking Dynamic Matching Game
The static matching model requires an estimate of the ship’s terminal option values, the dummy

match values for each agent, the supply of ships available to match and the demand for cargoes

in each location from outside the model. The endpoint values provide an initial “guess” and

rely on many parameters - the freight rates in each location, probabilities of taking different

routes, voyage costs, among others. In a dynamic model, the output from the linear program -

W x(xjt, t) and W y(yi, t) - can be used as input for the ship’s option value in the match surplus

and dummy match surpluses instead of using the endpoint estimates. Although there is an

implied supply of ships which is computed in the model, in this model formulation, I assume

that supply and demand of ships is the same each period and exogenously provided for the one

dimensional ship population. This is equivalent to assuming that the system is in a stationary

equilibrium. Therefore the difference between the static and dynamic models is the option

value for the ship and the dummy match surplus values, and the goal is to understand whether

the earnings (and therefore option values) converge to a stationary value in each location, a

so-called “fixed point” in earnings after the matching model is run for a certain amount of

iterations. For example, if the option values from the model are the same as the respective

terminal option values, then the model has converged in one iteration and the vector of terminal

option values is the best guess. Because the model’s option values are determined endogenously

by the matching surplus function which depends on the model’s supply and demand parameters,

the values in general will not be equal to the terminal values.

The condition in which a value (point) is mapped to itself by a function (i.e., vn =

f(vn−1)) is known as a fixed point in mathematics. In the dynamic programming paradigm,

solving a fixed point problem can be achieved through a numerical algorithm called value iter-

ation by relaxing the condition that vn− f(vn−1) = 0 or vn− vn−1 = 0 and assuming that the

absolute value of the difference is equal to a small number specified by an error tolerance ε. In

the model, I specify ε to be less than 10−4 which is the standard used in the literature (Powell,

2011). The model is solved forwards using value iteration. Using value iteration, the new op-

tion values input for the ship and the trader in the next iteration are a weighted average of the

previous two iterations. The weights are determined by a stepsize parameter λ which generally

weights the previous iteration t − 1 more heavily than iteration t − 2. The stepsize used in

this model is .80. For the first iteration of the model, the static model is run using the terminal

option valuesW x(xj,t+1, T +1) and dummy match surpluses to obtain the first vector of option

values for the ship and trader as output from the model. In iteration 2, the option values for the

ship are equal to a weighted average of the terminal option values W x(xj,t+1, T + 1) used in
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the static model and iteration 1’s option value, according to the stepsize weights. The output

W y(yi, t) is used to update the trader’s dummy surplus. Finally, option values for iterations

t > 2 are specified using the values from the model for iterations t − 2 and t − 1, where the

new option values are equal to the weighted average from these model iterations.

There are certain conditions under which convergence can be met and conditions which

lead to a quicker solution. For convergence, the discount factor has to be between 0 and 1. For a

faster rate of convergence, it has been known that the standard value iteration algorithm suffers

from slow convergence when the discount factor, in this case β, is close to unity. The stepsize

value can also have an impact on the rate of convergence (Powell, 2011).

4.7.1 Time and sequence of events

Time is discrete (weekly) and the horizon is infinite. I assume a fixed supply n(xjt) of ships

and demand for cargoes by traders n(yi). The sequence of events is as follows:

1. At the beginning of the period, all agents have state variables known to them and other

agents.

2. The economy receives an exogenous oil transportation demand shock which corresponds

to n(yi).

3. Ships and traders simultaneously decide to match with each other, or remain unmatched,

generating a surplus (and a freight rate) to both agents. Each agent also generates beliefs

about future opportunities. If a ship matches with a trader, it sails to the load port to

pick up the oil, loads the oil and then drops it off in the discharge port. If a ship does

not match, it sails to one of the waiting areas, optimizing over the options. It waits an

expected amount of weeks based on the probability of matching in the market.

4.7.2 Solution algorithm

As discussed in section 4.6, the model is solved forwards using value iteration.

The exogenous parameters are:

Xexog =
(
n(xjt),n(yi),W

x(xj,t+1, 0), s̃(xjt, yi, 0), s(xjt, ∅y, 0), s(∅x, yi, 0), βx, βy, λ
)

(4.39)

where time 0 represents input from outside the model for the first time step.

The endogenous parameters (model outputs) are:

Xendog =
(
W x(xjt, t),W

y(yi, t),m(xjt, yi, t)
)

(4.40)
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where m(xjt, yi, t) is the vector of the assignment in period t.

The dynamic model is solved in the following steps:

1. Step 1. Initialization: set t = 1, set max t = 1000

(a) Input: n(xjt), n(yi); W x(xj,t+1, 0), s(xjt, ∅y, 0), s(∅x, yi, 0)

(b) Solve the LP problem.

(c) Save outputs W x(xjt, 1), W y(yi, 1).

2. Step 2. Set t = 2

(a) Input n(xjt), n(yi); set W x(xj,t+1, t + 1) = (1 − λ)W x(xjt, 0) + λW x(xjt, 1);

use W y(yi, 1) as input to s(∅x, yi, 2).

(b) Solve LP problem.

(c) Check convergence: if |W x(xjt, t) − W x(xjt, t − 1)| < ε and |W y(yi, t) −

W y(yi, t− 1)| < ε then stop.

3. Step 3. For t > 2

(a) Input n(xjt), n(yi); SetW x(xj,t+1, t+1) = (1−λ)W x(xjt, t−2)+λW x(xjt, t−

1); Set W y(yi, t) = (1− λ)W y(yi, t− 2) + λW y(yi, t− 1).

(b) Solve LP problem.

(c) Check convergence: if |W x(xjt, t) − W x(xjt, t − 1)| < ε and |W y(yi, t) −

W y(yi, t− 1)| < ε then stop. Else go to Step 3.

4.8 Summary
In this chapter, I have described the matching model structure which will be used to compute

the assignment of ships to traders and the earnings for each agent in a competitive equilib-

rium. The model is solved using linear programming which is a simple but large combinatorial

optimization problem where the combinations are the surpluses from the pairings of agents,

including dummy agents. The objective function is to maximize these surpluses subject to the

agent constraints which place restrictions on both the number of resources that can be used to

fulfill cargo demands and the value each agent must earn (the dummy surplus values for each

agent). Associated with solving a linear programming problem are the multipliers on the con-

straints which indicate how valuable each type of agent is in the market. The multipliers can

be used to construct equilibrium prices. One of the assumptions of the model structure was

that the cost of repositioning to the load area is included in the contract price. An alternative
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would be for the ship to pay this cost. Either formulation does not have a significant impact

on the matching results in the competitive equilibrium however. The model has been divided

into two parts: a static one period matching model and a dynamic matching model. The static

model uses an estimate of ship option values and dummy surplus values from data outside the

model, while these values are determined endogenously in the dynamic version. The purpose

of the dynamic model is to solve for a fixed point to see if earnings and matching probabilities

converge, keeping the supply and demand stationary.



Chapter 5

Data and Descriptive Statistics

This chapter describes the datasets used to estimate the model described in Chapter 4. Specifi-

cally, data on the trade demand between the load and discharge areas by VLCC (the trade flow),

the buy price of oil, the expected price of oil in the discharge location, the average cargo size

and discount rate is required to estimate the number of trader types and their cargo demands.

To estimate the number and types of ships, data is required on the supply of VLCCs in each

discharge and waiting area, the technical specifications of the VLCC fleet (age, tonnes per day,

design speed, and DWT), and the daily opportunity cost (or rental rate) of the ship. For the

matching surplus and the surplus to remain unmatched, data on the pairwise distance of all

locations, the bunker price, average operating speed, days in port, per barrel storage cost, and

estimated per-tonne freight rates on specific routes is needed.

Data on oil shipments is extremely valuable data. The OPEC countries have a self interest

in hiding actual production figures in order to renege against their cartel quota and physical oil

traders use shipment information to inform their trading decisions (Downey, 2009). It is difficult

to obtain publicly available data from one source that provides complete information on the oil

shipment trade flows carried by VLCCs and the prices of fixtures. This chapter describes the

five datasets used to estimate the model and documents where there is missing or censored data

that presents a challenge for estimation.

The first dataset consists of a sample of world tanker fixtures of crude oil containing price

and volume information on trade flows, where a trade flow in the model is defined as total

crude oil shipped from load area a to discharge area b. The second dataset contains data on

benchmark prices for trade flows which are used to compute prices. The third dataset provides

data on the VLCC fleet which is used to create physical profiles of ships. The fourth dataset is

a compilation of aggregate trade data used to compute the implied average number of ships in

each area. The fifth dataset provides ship movement characteristics including speed travelled.
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5.1 Fixtures dataset
The fixtures dataset (Clarkson Research, 2011) is a sample of global crude oil tanker voyage

(spot) and time charter contracts for the time period between January 2, 2007 to December 13,

2011. The data contains 39,022 observations grouped into fixture contract details relating to the

shipowner and charterer. Clarkson Research reports the deals for which shipping brokers are

willing to record; some are withheld from the market for confidential reasons (Cridland, 2010).

According to Clarkson Research (2011), “Charter rates for specific fixtures are often omitted

when reported to the market for a variety of reasons. For example, it may just not have been

available when the various brokering houses/the Baltic Exchange reported the fixture. However,

it is safe to assume that on the whole, if the rate is not available, it is more likely than not to

be for confidentiality reasons.” According to the sources, between 2007-2011, approximately

8,000 fixtures or 20% were marked private and confidential and were excluded from the dataset.

The dataset contains detailed information on the fixture, fleet detail, and origin and destination.

The fixture detail includes the fixture date, freight rate, laycan from and to, fixture status,

charterer name, beneficial shipowner, and origin and destination information. Laycan from

and to refers to the earliest and latest dates when the ship can load, respectively. There is

various geographical coverage, with some entries reporting detail to the port level. Rates either

reported in Worldscale (WS), lump sum, US dollars per day (for time charter contracts), or

are not reported at all (reported as 0). I refer to fixtures with prices that are not reported as

censored fixtures, while fixtures that were excluded from the dataset by the data source are

omitted fixtures.

The majority of observations for the voyage contracts are reported in WS units and occa-

sionally quoted in lump sum units depending on the source of the information and the specifics

of the charter party. The lump sum is the gross revenue per voyage.

Fleet register detail on the ship’s physical characteristics includes the vessel name, IMO

number, builder, builder country, flag state, main engine manufacturer, vessel design speed,

vessel daily fuel consumption, and total engine propulsion (horsepower). Table 5.1 shows there

are 9 types of vessels included: Aframax, Capesize, FPSO/FSU, Handy, Offshore, Panamax,

Suezmax, and VLCC. VLCCs account for the largest volume of tonnes lifted (52%) of all vessel

classes. The subset of VLCC fixtures contains 4,873 observations and the remaining discussion

of the fixtures dataset will focus on this subset.
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Table 5.1: Cargo volume by vessel type, 2007-2011

Vessel Cargo Volume Share of Volume

’000 tonnes %

VLCC 1,139,826 51.9
Aframax 506,407 23.1
Suezmax 328,447 15.0
Capesize 120,202 5.5
FPSO/FSU 79,673 3.6
Panamax 9,810 0.4
Offshore 5,022 0.2
Combined 4,720 0.2

Source: Clarkson Research (2011)

5.1.1 Major trading regions and trade flows

In practice, a shipment is from a port in a load area to another port in a discharge area. However,

industry practitioners (Clarkson Research, 2012a, Braemar Insight, 2012) commonly use the sea

area rather than a specific port as the geographical entity in their market activity reports. There

is also a variation in coverage at the port level; the majority of fixtures in the dataset only report

the port for one area (see Tables D.1 and D.2 of the Appendix for documentation of the missing

geographical values for all of the fixtures and fixtures with price data). The study focuses on

trade flows at the area level in order to reduce the computational cost and added uncertainty

with estimation of missing ports.

The majority of cargoes shipped by VLCC originate in the Arabian Gulf (AG), which

accounts for (84%) of all the cargo volume in the fixtures dataset (Table 5.2). The dominant

position of the Arabian Gulf in the tanker oil shipping market implies that there is an imbalance

of ship supply across loading areas.

Two other major areas are the Caribbean (8%) and West Africa (2%). These there regions

can be considered as the “Big Three” which combined accounted for 95% of export volume by

VLCC. Whereas the Middle East holds a considerable lead over other oil producing regions,

demand for crude oil is much more spread out amongst discharge areas, though it has largely

shifted to the Far East. China imports the most crude oil of any area (28%), followed by the

South Pacific Oceania area (15%), Korea (12%), and the US Gulf (9%) (Table 5.3). The only

publicly available data from which to compare these figures is BP’s aggregate trade dataset.

This requires working down from the aggregate crude oil import and exports data by making

assumptions about the share of oil by pipeline and the share of VLCCs transporting crude oil for

each region. BP (BP, 2012) also classifies regions differently than Clarkson Research (Clarkson
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Table 5.2: VLCC fixtures volume by load area, 2007-2011

Area Area Name Volume (’000 tonnes) Share (%)

AG Arabian Gulf 1,093,200 84.16
CAR Caribbean 110,030 8.47
WAF West Africa 29,520 2.27

WMED Western Mediterranean 23,000 1.77
BRZ Brazil 13,549 1.04
UKC United Kingdom Continent 11,480 0.88

ECMX East Coast Mexico 4,595 0.35
EMED Eastern Mediterranean 3,765 0.29
REDS Red Sea 3,200 0.25

CMED Central Mediterranean 2,360 0.18
BALT Baltic Sea 1,440 0.11
USG US Gulf 815 0.06
JAP Japan 785 0.06

KOR Korea 650 0.05
WCSA West Coast South Africa 280 0.02

ARG Argentina 130 0.01
ECC East Coast Canada 130 0.01

SPOR South Pacific Oceania Region 80 0.01

Source: Clarkson Research (2011)

Research, 2011), for example, Central and South America is one region, whereas in Clarkson

Research it is divided into the Caribbean and Brazil. Of the Big Three, AG accounted for 83%

of exports, CAR/BRZ accounted for 11% and WAF for 6%, whereas the implied BP shares for

these three areas are 70%, 10% and 20% respectively. The largest discrepancy with the imports

data compared to the implied BP data (BP, 2012) is the underrepresentation of the US and Japan

in the fixtures dataset and this might lead to an upward bias in the eastward flows, particularly

China which dominates the discharge regions in the Far East.

Table 5.4 shows the regional trade flows which account for more than 1% of the total 2011

(see Appendix A Table D.4 for all trade flows). The Arabian Gulf-Far East trades dominate,

with the Arabian Gulf to South China route having the largest trade flow share (28%) overall.

5.1.2 Fixture demand, cargo size, and capacity utilization

The frequency of weekly VLCC shipment transactions has risen each year between 2007 and

2011, from 15 to 26 (Table 5.5). It appears there are some major discrepancies in the number

of fixtures reported in the fixtures dataset and the number reported by experts in the industry.

According to the VLCC fixtures dataset, an average of 26 fixtures were made per week in 2011.

Backtracking from an annual 6 voyages per year, it is unlikely that the weekly number of fixtures

is 26 because that would imply a very low number of hire weeks, implying that a roundtrip

voyage is 2.86 weeks which is half the time of an expected roundtrip voyage. However, industry
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Table 5.3: Volume by discharge area, 2007-2011

Area Area Name Volume (’000 tonnes) Share (%)

SCH South China 362,720 27.93
SPOR South Pacific Oceania Region 198,130 15.26
KOR Korea 154,120 11.87
USG US Gulf 122,600 9.44
WCI West Coast India 122,240 9.41

THAI Thailand 77,007 5.93
JAP Japan 67,468 5.19

TWN Taiwan 54,574 4.20
CALI California 33,115 2.55
UKC United Kingdom Continent 26,650 2.05

REDS Red Sea 21,306 1.64
ECI East Coast India 17,484 1.35

NCH North China 9,308 0.72
SAF South Africa 8,560 0.66
ECC East Coast Canada 7,003 0.54

PHIL Philippines 5,888 0.45
BRZ Brazil 5,495 0.42

WMED Western Mediteranean 1,905 0.15
SPATL South Pacific Atlantic 830 0.06
USAC US Atlantic 655 0.05

CMED Central Mediteranean 540 0.04
EMED Eastern Mediteranean 490 0.04

CAR Caribbean 260 0.02
AG Arabian Gulf 250 0.02

WCSA West Coast South Africa 130 0.01

Source: Clarkson Research (2011)
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Table 5.5: Average number of
fixtures per week and cargo size

Year Fixtures Cargo Size

tonnes
2007 14.66 266,924
2008 15.70 267,433
2009 17.19 265,533
2010 20.10 266,892
2011 26.16 266,526

Source: Clarkson Research (2011)

experts report that there are around 50-70 fixtures per week and the model will be run with

70 fixtures per week which is more representative of the VLCC shipments required based on

aggregate trade data.1 This suggests that Clarkson Research is underestimating the amount of

fixtures being omitted.

Average cargo size in the dataset has declined. In 2011, the average cargo size was 266,525

(median 265,000), slightly below the 2007 average of 266,924 (see Figures 5.1), suggesting that

the parcel size places a limit on capacity.

Although parcel size has declined, ship size has increased since the 1980’s (Figure 5.1

shows the relationship between DWT and capacity utilization, DWT and year of build. The

negative relationship between DWT and capacity utilization shows that larger ships are not

obtaining higher cargo sizes so their capacity utilization is lower compared to smaller VLCCs.

In theory, there should be a positive correlation between trade route distance and cargo size

because of the extra shipment days and cost. The data does not show that preferences for size

are linearly related to trade route distance (Figure (5.2)); the same cargo size serves routes of

varying distances. Instead, there is some unobserved preference for routes demanding certain

sizes over others, perhaps reflecting the specific customer’s (refinery or trading house) inventory

demand and port size restrictions.

5.1.3 Prices and other descriptive statistics

Only a subset of the VLCC fixtures (72%) reported have price data and will be referred to as the

uncensored fixtures dataset and fixtures with prices that are withheld will be referred to as the

censored dataset. The uncensored fixtures dataset has prices reported in Worldscale multiplier

(WS) units or lump sum dollar units. The majority of observations in the uncensored dataset -

87% or 3,017 observations - have WS units as this is the most common way to report prices in
1Based on conversations with Lloyd’s List Intelligence (Lloyd’s List, 2013) and Gibson Shipbrokers (Gibson,

2013).
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Table 5.6: Share of total volume by load area (censored vs. uncensored), 2007-2011,
(%)

Load Area Area Name All fixtures Uncensored Censored

AG Arabian Gulf 84.2 93.3 96.5
ARG Argentina 0.0 0.0 0.0

BALT Baltic Sea 0.1 0.1 0.0
BRZ Brazil 1.0 1.2 0.9
CAR Caribbean 8.5 0.0 0.0
ECC East Coast Canada 0.0 0.0 0.0

CMED Central Mediterranean 0.2 0.0 0.0
ECMX East Coast Mexico 0.4 0.1 0.4
EMED Eastern Mediterranean 0.3 0.4 0.2

JAP Japan 0.1 0.1 0.1
KOR Korea 0.1 0.0 0.0

REDS Red Sea 0.2 0.4 0.1
SPOR South Pacific Oceania Region 0.0 0.0 0.0
UKC United Kingdom Continent 0.9 0.5 0.6
USG US Gulf 0.1 0.0 0.0
WAF West Africa 2.3 1.9 0.6

WCSA West Coast South Africa 0.0 0.0 0.0
WMED Western Mediterranean 1.8 2.1 0.6

Source: Clarkson Research (2011)

crude oil shipping. For load areas in the Caribbean, Central Mediterranean, East Coast Mexico,

Korea, United Kingdom, and West Coast South America - the majority of fixtures (greater than

50%) are reported as a lump sum. For the Caribbean, fixtures with prices are only reported in

lump sum units.

Censoring is a potential issue if the censored dataset differs from the uncensored dataset

and therefore the datasets need to be compared. Table 5.6 compares the share of cargo volume

for all fixtures (lump sum, WS, and censored prices), the uncensored multiplier dataset, and

the censored dataset. A greater proportion of the reported fixtures with WS units (uncensored)

are from AG because the Caribbean isn’t represented in these datasets. The uncensored and

censored multiplier datasets have similar shares in terms of volume by load area, though the

censored dataset weights the Arabian Gulf more heavily (3.14% lower in the censored dataset).

In terms of volume by discharge area, there is some censoring of fixtures to the Far East (see

table 5.7).

The censored dataset contains less shipowners (95 compared to 120 shipowners) and the

most fixtures that were withheld in the censored dataset were from China Shipping Tankers

which is associated with the censored fixtures to South China. Charterers that withheld the

most fixtures (greater than 3%) were China International United Petroleum & Chemical Co.
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Table 5.7: Share of total volume by discharge area (censored vs. uncensored), 2007-2011,
(%)

Discharge Area Area Name All fixtures Uncensored Censored

SCH South China 27.9 15.3 64.6
SPOR South Pacific Oceania Region 15.3 10.9 8.7
KOR Korea 11.9 15.8 0.0
USG US Gulf 9.4 13.6 4.0
WCI West Coast India 9.4 10.5 7.8

THAI Thailand 5.9 8.3 2.6
JAP Japan 5.2 4.6 3.1

TWN Taiwan 4.2 6.3 1.4
CALI California 2.6 2.7 2.3
UKC United Kingdom Continent 2.1 3.0 1.8

REDS Red Sea 1.6 2.7 1.2
ECI East Coast India 1.3 1.6 1.1

NCH North China 0.7 1.0 0.2
SAF South Africa 0.7 1.0 0.5
ECC East Coast Canada 0.5 0.9 0.2

PHIL Philippines 0.5 0.5 0.2
BRZ Brazil 0.4 0.7 0.2

WMED Western Mediteranean 0.1 0.2 0.1
SPATL South Pacific Atlantic 0.1 0.1 0.0
USAC US Atlantic 0.1 0.1 0.0

CMED Central Mediteranean 0.0 0.0 0.1
EMED Eastern Mediteranean 0.0 0.1 0.1

Source: Clarkson Research (2011)
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Table 5.8: Comparison of censored and uncensored variables (median values)

Variable Units Uncens. Cens. Uncens. China Cens. China

DWT tonnes 301,200 298,500 301,900 297,400
Age years 10 7.7 8.8 6.2

Laycan Day Diff 0 0 1 0
CapUtil 0.89 0.89 0.88 0.89

k tonnes 81.64 78.63 81.64 76.13
WS 57.5 - 57.5 -

Source: Clarkson Research (2011)

(UNIPEC) (55%), ExxonMobil (5%), IOC (3%). UNIPEC became the world’s largest charterer

of oil tankers for the first time in 2012, surpassing Royal Dutch Shell Plc (RDSA), followed

by Vitol Trading Group. (Bockmann, 2013), a shipbroking firm. Among all fixtures, UNIPEC

chartered the most ships, but ranks 8th in the uncensored multiplier dataset. It also appears that

the major charterers - Shell and Vitol Trading - are entirely omitting their fixtures. Shell ranked

8th in the total fixtures dataset and Vitol only reported 4 fixtures. These figures are for all oil

tankers so they do not give precise information for VLCC charterers, but reveal that some of

the major charterers are withholding fixtures.

Aside from geographical and charterer bias, other variables that explain prices (DWT,

age, laycan day difference, capacity utilization, k) in the censored and uncensored datasets are

very similar. Table 5.8 shows a comparison of these variables in the censored and uncensored

datasets. As the majority of censored observations are from China, fixtures that had Discharge

Areas in China were were also compared. The median DWT is higher in the uncensored dataset

(301,200) compared to 298,500 in the censored dataset; capacity utilization is only slightly

lower in the uncensored dataset (88%) compared to 89% in the censored dataset. The median

difference in Laycan days is the same in both datasets. The uncensored dataset represents an

older fleet (10.0 vs. 7.7 years). There are similar results for the uncensored and censored

datasets filtered for fixtures discharging in China which is consistent with the fact that China

represents a large proportion of the censored price data. The uncensored sample contains 721
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Table 5.9: Comparison of fixtures dataset to World Fleet Reg-
ister dataset (median values)

Variable Units Multiplier dataset WFR dataset

Age years 9 8
DWT tonnes 301,428 302,159

k tonnes 89.73 83.67
Design Speed knots 15.7 15.68

Source: Clarkson Research (2011)

ships. Although Clarkson Research included fleet detail, tonnes per day (k) was available only

when the manufacturer provided it. Additional technical specifications were obtained by linking

the dataset to Dataset 3 (the fleet register dataset) which contains the entire current fleet from

which k could be estimated from engineering first principles. The matching was incomplete;

12 ships did not match to an IMO number in Dataset 3. In addition, 29 ships in Dataset 3

had missing design speed so k could not be calculated. Excluding the missing observations

associated with these ships reduced the sample to 2,876 (9.5% less than the uncensored sample)

and 685 ships. Variables in this dataset are almost identical to the uncensored multiplier datasets

and therefore can be treated as missing at random.

Table 5.10: Legend for Figure 5.3

Symbol Route name Cargo size (tonnes)

AG.UKC280 Arabian Gulf-United Kingdom 280,000
AG.JPN265 Arabian Gulf-Japan 265,000

AG.SPOR260 Arabian Gulf-Sout Pacific Oceania Region 260,000
AG.USG280 Arabian Gulf-US Gulf 280,000

WAF.SCH260 West Africa-South China 260,000
WAF.TWN260 West Africa-Taiwan 260,000

AG.WCI265 Arabian Gulf-West Coast India 265,000
WTI Crude Oil West Texas Intermediate Crude Oil Price -
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Figure 5.3 shows the monthly WS multiplier prices between 2007-2011 and the percentage

change of the WS price for the AG-WCI route and the crude oil price from Clarkson Research

(Clarkson Research, 2013). The monthly time series exhibits large fluctuations, reaching a high

of 269 and a low of 21. Note prices are in Worldscale units which are set to a benchmark

price per year. This means that freight rates are not strictly comparable across years since

the benchmark is reviewed annually. Comparing prices within a year, the volatility can be

attributed to changes in supply and demand, the inelastic demand for crude oil, and the time

to build constraints. Two routes (AG-UKC and AG-USG) are on average 20 WS points lower,

and this can be explained by their westward direction which implies they are likely to obtain

a fixture in West Africa or the Caribbean as opposed to eastward routes which have to ballast

back empty to AG. The right hand graph shows the percentage change in Worldscale prices

for the AG-WCI route compared to the percentage change in the crude oil price. The large

fluctuations cannot be explained by the crude oil price alone (which correlates closely with the

bunker price), implying that these fluctuations are partially explained by supply and/or demand

factors. For example, if supply becomes scarce to supply a load area, oil traders have to pay a

higher freight rate in order to ship the oil quickly.

5.2 Worldscale benchmark dataset
The Worldscale benchmark dataset (Worldscale, 2012) was used to compute historical freight

prices observed in the multiplier dataset. The information for the benchmark flat rate is based

on the Preamble from the Worldscale Association’s website and is updated annually such that

there is a separate benchmark price for each port pair, route, and year. Figure 5.4 shows the

distribution of prices per port pair, route, and year between 2007 and 2011 for the sample of

data collected. The black line indicates the median and the box provides the upper and lower

quartiles. Prices were collected for the most likely port pairs on each route in the multiplier

dataset when only the area trade flow was provided in the multiplier dataset. Of the 149 known

distinct year, port-pair combinations in the multiplier dataset, 89% match to a benchmark price

in the benchmark dataset. Of the 59 distinct port-pair combinations represented in the multiplier

dataset, 85% match to an exact benchmark port-pair and this was considered to be sufficient

coverage.The benchmark dataset is an unbalanced panel dataset covering the years 2007-2011.

The data was collected from Worldscale Association’s website. Because the Association does

not have an advanced query system, port-pairs had to be manually collected which was costly

in terms of time. Prices and distances were collected for the shortest distance route and for

pairs where there was more than one route (for example, the Cape of Good Hope (CGH)). The
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Table 5.11: Worldscale flat rate assumptions

Year DWT Speed Sailing k Other T T/port Port time Rental Rate Bunker price

tonnes knots tonnes tonnes tonnes days US $/day US $/tonne
2007 75,000 14.5 55 100 5 4 12,000 318.25
2008 75,000 14.5 55 100 5 4 12,000 328.75
2009 75,000 14.5 55 100 5 4 12,000 554.05
2010 75,000 14.5 55 100 5 4 12,000 341.16
2011 75,000 14.5 55 100 5 4 12,000 467.48

T=tonnes of bunker fuel. Source: Worldscale Association (2012)

median freight rate was $9.47/tonne and mean roundtrip distance was 5352 nautical miles in

2007.

As discussed in Chapter 3, the benchmark rate represents the costs of a roundtrip voyage

for a standard tanker vessel. The rate is comprised of three components: fuel, port and fixed

costs. Table 5.11 shows the Association’s technical assumptions for the standard vessel over the

period 2007-2011. The standard vessel has a total capacity of 75,000 tonnes, fuel consumption

of 55 tonnes per day while sailing, fuel consumption of 100 tonnes for purposes other than

steaming, and a fuel consumption of 5 tonnes in port. In comparison, VLCCs consume 62

tonnes of fuel per day while sailing at an equivalent speed of 14.5 knots and consume 250

tonnes of fuel in port, according to the Second IMO GHG Study (IMO, 2009). The bunker

price is updated annually based on the predicted price for the period. An average time of 4 days

in port for a voyage from one loading port to one discharging port is assumed. The objective for

port costs is to include realistic allowances for all of the port cost items which are levied against

the vessel, even when the port costs are tonnage based. There are more than 20 port due items

listed in the Preamble, although it is not meant to be a comprehensive list. When assessing

port costs, Worldscale bases its allowances for tonnage related charges on the standard vessel,

making no adjustments for any costs that would not be incurred by the standard vessel.

In addition to the flat rate, there are fixed and variable differentials for transiting certain

areas such as the Suez Canal or Panama Canal. A separate flat rate is published for port pairs

where there are alternative routes. Worldscale distinguishes these routes by waypoints, where

major waypoints for VLCCs are the Cape of Good Hope (CGH) (tip of South Africa) and the

Suez Canal (SUE).

Bunker prices are forecasted for the period January 10th to September of the benchmark’s

year. Table 5.11 shows that the forecasted bunker price reached its highest level in 2009 at

$554.05/ tonne. There are significant differences between the forecasted bunker price and the

annual average. In 2011, the margin of error was 28% too low.
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Figure 5.4: Annual Benchmark Prices (2007-2011). Source: Worldscale Association (2012).
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5.3 Fleet register dataset
The fleet register dataset is a monthly dataset of the fleet’s physical characteristics and own-

ership published by Clarkson World Fleet Register. The data was a snapshot of the fleet as of

November 2012 and the VLCC fleet totaled 604 vessels. As discussed, the physical character-

istics that are important determinants of contract prices are age, DWT, design speed, and daily

fuel consumption. Fuel consumption on a journey can be estimated based on the “as designed”

daily fuel consumption (referred to as k), the design speed and operating speed. The data for

k is incomplete, with 43% of the sample missing and was computed based on a simple first

principles engineering equation:

k = KW (MCR)(SFC) ∗ 24/106 (5.1)

where KW is the propulsion power in kilowatts or the maximum output that the main

engine has been set to on board. This is multiplied by an average engine load factor (MCR)

of 75%. SFC stands for specific fuel consumption, representing the grams of fuel burned

per kWh. The kWh units cancel out and we are left with a tonnes per day figure. Total fuel

consumption for a journey depends on k, design speed vd, operating speed vop, and the distance

between the origin and destination φll′2:

ktot = k(
vop

vd
)3 φll′

24vop
(5.2)

Engines have different SFC values, depending on their engine size, age, and the energy

density of the fuel. Typically, SFC is measured in an engine test-bed from the manufacturer.

The SFC value is a function of the ship’s age and the power type of the engine (2-stroke or 4-

stroke). For the thirty three percent of the observations that were missing, values from the IMO

were used as estimates. 3 showing that there has been improvements in efficiency of engines,

which has lead to a decrease in SFC from an average of 190 (1970-1983) to 170 (2001-2007).

Observations with missing design speed values (21%) were not included in the estimation

of ship types because the fuel consumption could not be calculated. This reduced the sample to

536 observations. The mean DWT of the VLCC fleet in 2012 was 304,957 tonnes. There is a

distinct clustering around the median (302,159), with 75% of ships having a DWT of 311,505

or less (Figure 5.5).
2Fuel consumption also depends on the ship’s auxiliary engine and weather conditions.
3The IMO estimates these values by reviewing various CIMAC papers, manufacturer’s catalogues and Diesel

& Gas Turbine Worldwide. The VLCC fleet contains only 2-stroke engines so the engine year of build is what
determines the SFC value.



5.4. Aggregate trade statistics 97

Figure 5.5: DWT Distribution of VLCC fleet (tonnes). Source: Clarkson Research (2012b).

The mean age is 8.33 years, with a median of 8 years and maximum age of 23 years.

Design speeds range from 12.25 to 21.5, with a mean value of 15.68. The estimated Tpd ranged

from a low of 48.95 to 113 tonnes per day, with a mean value of 83.67.

5.4 Aggregate trade statistics
No one trade source provides trade statistics at the VLCC class level; aggregate trade statis-

tics are available for crude oil exports and imports which exists from a number of sources (BP,

Energy Information Administration (EIA), International Energy Agency (IEA), and EU Com-

mission) in various geographical detail. BP (BP, 2012) is the most comprehensive source for

publicly available crude oil data, as it compiles crude imports and exports data from various

government sources. The source provides inter-area total oil movements data by region and

select countries, but does not break this out into oil products (which accounts for 30% of total

imports) and crude oil. For the purposes of estimating seaborne trade, the aggregate data on

total crude imports and exports is sufficient with some modifications. First, to obtain seaborne

trade data, trade movements by pipeline were subtracted from the countries who import and ex-

port by pipeline. The US imports oil from Canada, Europe imports from Russia and the North
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Sea. For the US, there is detailed information on crude oil imports and exports from the EIA

(EIA, 2012) from which an estimate of seaborne imports was obtained by decoupling imports

from Canada. The IEA (IEA, 2012b) has information on net exports from the Baltic Sea which

can be used as an estimate for exports from the Baltic Sea. For European imports, the EU

Commission’s statistics on crude oil imports (EU Commission, 2012) were used to estimate its

seaborne trade.

5.5 Ship movements dataset
Satellite AIS (S-AIS) is a shipboard broadcast system that is used to assist in navigation and

improve maritime safety, transmitting a ship’s identification, position and other critical data in-

cluding its speed over ground. It is a nascent technology; companies started their service around

2010, with improved service in later years due to more satellites being launched. During the

first two years of my PhD, I worked with my colleagues at the UCL Energy Institute4 and Exact

Earth, a data provider for S-AIS data, to acquire data for 2011. Analysis of the dataset was sub-

sequently performed by my colleagues at the UCL Energy Institute for an International Council

on Clean Transportation (ICCT) report (Smith et al., 2013). The analysis required converting

millions of types of messages into useful data on geospatial movement characteristics which

was linked to the world fleet register data. Satellite provides 88% coverage of the 2011 VLCC

fleet, but ship movements near coastal areas is sparse.5 Because of the lack of full coverage

of the VLCC fleet and reliability near coastal areas, the dataset will be used for validation of

speeds simulated in the model instead of as a source of ship supply in each sea area.

Time-weighted speeds were calculated for ballast and laden voyages using data on the

draught (i.e., a low draught means is in ballast because it is not being weighed down by cargo)

for individual VLCCs which had enough sea day coverage. The voyages include those con-

cluded under the spot market and time-charter market as the dataset did not contain information

on contract type. Not all ships had coverage for both types of voyages; 1/4th of the ships did

not have ballast speed and 4% for laden speed. The median ballast speed for ships reporting a

speed was 13.52 compared to 13.24 for laden, almost exactly the same. Speeds are clustered

around their means, with the tails at 9.31 and 15.92 for ballast and 9.38 and 15.55 for laden

voyages.
4Specifically, Tristan Smith and Eoin O’Keefe.
5The reasons for the poor coverage is the increased traffic of other ship’s signals and similar transmitting devices

(for example in the European Area). See Smith et al., 2013.
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5.6 Summary
This chapter described the five datasets that will be used to estimate the model. Overall, despite

the huge amount of dataset linking for this thesis, no one source was available that provided

fully accurate port volume throughput and supply of VLCCs in each area. The fixtures dataset

provides valuable data on the transactions between shipowners and charterers but there is cen-

soring, both in terms of fixtures not reported and the censoring of prices in the sample. The

censoring bias was compared to an aggregate level dataset and the implied VLCC trade shares

suggest that there is an upward bias in trade share from the CAR/BRZ area (corresponding to

Central and South America) for exports, and a downward bias of fixtures from the US. The lim-

itations of the AIS data to remedy these issues was also discussed and it was concluded that it

provides more useful information on speed data. These issues pose a challenge to estimating de-

mand for VLCC shipments and the supply of ships in different areas. Aside from geographical

bias, the fixtures dataset without censored prices did not differ greatly in other characteristics

from the fixtures sample. Data on monthly freight rates exposed the short-run volatility in the

time series, which could not be explained entirely by crude oil and bunker prices which for

some routes is more than double the standard deviation of the oil price.



Chapter 6

Model Estimation

In this chapter, I specify the model estimation method and the parameters used to calibrate the

matching model described in Chapter 4. The model is calibrated to 2011 data which represents

the most recent year of data. The datasets described in Chapter 5 are used to estimate the

following inputs:

1. Types of traders

2. Types of ships

3. Revenue from oil cargoes

4. Cost of journeys

5. Duration of journeys

6. Prices earned on journeys

7. Values of locations for ships (continuation values)

The challenge in the estimation of dynamic games results from the need to calculate the

option value function explicitly. For some problems, the size of the problem increases expo-

nentially with the number of states, making the problem intractable (Powell, 2011). Because

solving a linear program yields a global maximum solution, the algorithm can sufficiently han-

dle large systems with many dimensions. The curse of dimensionality is tackled by discretizing

the agent types based on the observed finite number of ships and traders.

The empirical strategy requires two steps. The first step is to discretize the state variable. A

state variable is all the information required to model the problem from any point in time onward

(Powell, 2011) and will be classified into the agent state and the information state. The agent

state describes the factors that classify each agent type. For the current problem, this requires

discretizing the ships and traders into types as specified in Chapter 4. Ships are characterized by
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their location and physical characteristics (size, age, design speed, energy efficiency) and their

discount rate. Traders have tasks - oil cargoes that need to be shipped - which are characterized

by the load and discharge areas, the buy price, the expected sell price, and the discount rate

which represents their time preference.

The information state includes information other than agent types which is needed to com-

pute the surplus function such as the cost of bunker fuel and the storage cost of oil. These

variables will be estimated as exogenous objects with a probability distribution.

After defining the state variable, the second step is to estimate the endpoint conditions

(input 7). This includes the shipowner’s option value at each location where ships match and

the values for each agent to remain unmatched. The option value is solved by approximating

Bellman’s equation using information included in the state variable on ship and trader types

(inputs 1 and 2) and estimating the cost, duration, and price earned on a journey (inputs 4-6).

These inputs will then be used for solving the matching model in each period to determine the

value of each potential matching combination.

6.1 Trader state variable
The state variable of a trader consists of its shipment location requirement (origin in load loca-

tion set At and destination of cargo in discharge location set Bt), the price the trader paid for

the cargo, the expected price of oil at the destination and the discount rate which embodies the

trader’s time preference. Locations are sea areas defined in Appendix D. A sample of market

shares on shipment routes was estimated using Dataset 1, the VLCC fixtures dataset of regional

trade flows in 2011 (Table D.4).

To arrive at a demand sample, I assume the average number of fixtures are made per week

is 70 based on information provided by the fixtures dataset and industry experts as described in

Chapter 5. Table 6.1 is the estimated demand for fixtures on each route. In the baseline model,

a fixture represents demand for a cargo of 265,900 tonnes, derived by multiplying the baseline

ship’s DWT (302,159 tonnes) by the estimated capacity utilization (88%). The buy price of

oil varies between $104.48 per barrel in BRZ/CAR to $112.01 per barrel in WAF based on the

crude oil spot prices in 2011 from the Energy Information Administration (EIA, 2011). Six

load areas and thirteen discharge areas are represented in the sample. The Arabian Gulf (AG)

which ships oil produced in the Middle East represents the largest crude oil demanded by load

area (81%), followed by the Caribbean (9%), and West Africa (6%), with Brazil (BRZ), United

Kingdom area (UKC) and the Red Sea (REDS) each accounting for 1%.1 These load areas can
1As discussed in Chapter 5, there is some uncertainty in the trade flow shares and demand by load area due to

data being censored. For example, it is possible that West Africa holds a higher share than stated in the fixtures data
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Table 6.1: Imputed cargo demand

TraderID Load End Distance Oil buy price Fixture demand

nm $/barrel cargo units
1 AG CALI 11353 105.84 1
2 AG ECC 12885 105.84 2
3 AG ECC 2698 105.84 1
4 AG JPN 6358 105.84 8
5 AG KOR 6187 105.84 6
6 AG SCH 5729 105.84 24
7 AG SPOR 3671 105.84 2
8 AG THAI 4409 105.84 2
9 AG TWN 5290 105.84 3

10 AG UKC 6360 105.84 1
11 AG USG 13436 105.84 4
12 AG WCI 1358 105.84 3
13 BRZ SCH 10766 104.48 1
14 CAR SPOR 11179 104.48 4
15 CAR WCI 10694 104.48 2
16 REDS PHIL 6358 105.84 1
17 UKC SPOR 9025 111.78 1
18 WAF ECI 6943 112.01 1
19 WAF SCH 9579 112.01 2
20 WAF TWN 9118 112.01 1

Sources: Clarkson Research (2011), AXSMarine (2013), EIA (2011).

be considered as the local shipping markets which serve their respective importing countries.

The cargo size is determined by multiplying a capacity utilization factor of 88% by the DWT

of the ship. The utilization factor is based on the average cargo size to DWT ratio observed in

the VLCC fixtures dataset (Clarkson Research, 2011).

6.1.1 Oil revenue

An oil trader’s expected revenue from the sale of an oil cargo (excluding freight and storage

costs) is a function of the expected oil price arbitrage, the cargo quantity, and the duration of

the voyage. I assume traders have the same expectation about the oil price in each destination;

there is a 10% expected increase and a 5% decrease on average from their buy price, with an

80% chance the price will increase and 20% chance of decreasing. This leads to an average

$3.2 arbitrage profit which is in the range indicated by oil trading experts (Chapplow, 2013).

As discussed in Chapter 4, the duration of the voyage effects revenue in two ways. The first

is the inventory cost a trader has to pay between the time the oil trader buys the oil and sells

it which was assumed to be 15% per annum 2. The second way is the storage cost a trader

and sensitivity analysis will be run to consider this alternative.
2Estimates from McQuilling (2011).
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has to pay for the days waiting for the ship to arrive (the repositioning days). Storage costs

are assumed to be $10 a barrel per year which translates into 3 cents a day (Krauss, 2009).

Given these simplifying assumptions across traders, the attributes that differentiate traders in

the baseline model are shipment location and price at the origin and categorizing traders in this

way yields 20 trader types.

6.2 Ship state variable
The state variable of a ship consists of its location, physical characteristics, and discount rate.

In order to understand the spatial dimension on matching, ships vary by one dimension in their

location and have the same physical characteristics in the baseline model. In the multidimen-

sional matching model, the physical characteristics which are relevant in terms of profits are the

as-designed daily fuel consumption, design speed, DWT, and age. The baseline ship Ptype 0 has

an as-designed daily fuel consumption (k) of 83 tonnes of fuel per day, a design speed of 15.8

knots, DWT of 302,159 tonnes and is 8 years old which represents the average values of the

VLCC fleet. Table 6.2 shows the supply sample for the baseline model. The ShipID uniquely

identifies each ship type. The following sections on the location of ships and supply, duration

of journeys and cost of journeys will explain how the Supply and Rental Rate fields of the sam-

ple were estimated. In the multidimensional matching model, ships vary by their location and

physical characteristics. To develop a manageable state space for the physical characteristics, I

employ clustering techniques using the fleet register dataset, a method that partitions a large set

of vectors into a set of groups based on the distance in the four dimensional space. Figure 6.1

shows the clustering of data for each physical type. Each group is represented by its centroid

which is the center point of the cluster (Table 6.3).

The largest proportion of the sample is of PType 2 with centroid values of 299,998 DWT,

9.3 years, 15.7 knots design speed, and a an as-designed fuel consumption (k) of 79.8 tonnes

per day (see Figure 6.1). The most modern class (PType 1) has increased its DWT with the

highest value at 317,441. It is important to consider these variables together because of the

synergies that exist.

Fuel efficiency of ships is a complicated matter, influenced not only by a vessel’s physical

characteristics, but also by size and the speed a ship travels (among other variables). There

are various ways to measure a ship’s fuel efficiency, but I analyze efficiency based on the fuel

consumption per output (tonne-nautical miles or t-nm). A ship which is more energy efficient

consumes less fuel per t-nm and this translates into less fuel expenditure per t-nm. Economies

of scale exist if the long-run average cost, defined as average variable cost plus average fixed
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Table 6.2: Imputed ships available to match (baseline model)

ShipID Start Supply Type Age DWT k Design speed Rental Rate

years tonnes tonnes knots US $/day
1 CALI 2.1 0 8 302,159 83 16 30,100
2 ECI 1.1 0 8 302,159 83 16 30,100
3 JAP 7.8 0 8 302,159 83 16 30,100
4 KOR 4 0 8 302,159 83 16 30,100
5 NCH 0.3 0 8 302,159 83 16 30,100
6 PHIL 0.2 0 8 302,159 83 16 30,100
7 SCH 10.9 0 8 302,159 83 16 30,100
8 SPOR 5.1 0 8 302,159 83 16 30,100
9 THAI 1.9 0 8 302,159 83 16 30,100

10 TWN 1.2 0 8 302,159 83 16 30,100
11 WCI 6.4 0 8 302,159 83 16 30,100
12 BRZ 0.8 0 8 302,159 83 16 30,100
13 ECC 0.5 0 8 302,159 83 16 30,100
14 SAF 0.1 0 8 302,159 83 16 30,100
15 UKC 10.3 0 8 302,159 83 16 30,100
16 USG 12.7 0 8 302,159 83 16 30,100
17 AG 30 0 8 302,159 83 16 30,100
18 WAF 5 0 8 302,159 83 16 30,100

Sources: Clarkson Research (2011), Clarkson Research (2012b), BP (2012).

Figure 6.1: Cluster Analysis of Ship Characteristics. Source: Clarkson Research (2012b)
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Table 6.3: Ship Types

PType Fleet share DWT Age Design speed k

% tonnes years knots tonnes/day
1 33.0 317,441 4.4 15.9 89.8
2 60.5 299,998 9.3 15.7 79.8
3 6.5 281,050 13.5 15.6 83.1

Sources: Clarkson Research (2012b).

costs, decreases with output. Due to the physical property that the water resistance on a ship’s

hull does not increase at the same rate as the volume of the hull, there are economies of scale

in shipping. In the model, I assume daily fixed costs are the same across ship design types.

Because economies of scale exist in shipping, ships in higher size class categories (i.e. VLCC

compared to Suezmax tankers) can achieve a higher fuel efficiency depending on the cargo size

assumption. However, the data reveals that this property does not always hold; PType 2 has

a higher fuel efficiency than PType 1. Assuming a constant capacity utilization factor of 88%

across ship types, the average fuel cost (fuel cost per t-nm) for PType 2 is the lowest, followed

by PType 3 and PType 1.3

The number of ships of each physical type in the model in each location is determined

by multiplying the fleet share of each type by the number of ships in each location. This is

equivalent to assuming that the distribution of ships of each type is randomly distributed across

locations based on its representativeness in the fleet. This increases the ship type space from

18 types to 54 types #Locations ∗ #PhysicalTypes. It is assumed that traders view ships

which are older than 15 years to have a higher risk profile than younger ships because of their

increased potential for an oil spill. Since the ships in the model are less than 15 years of age, I

do not explicitly model risk aversion to age.

The interaction between size and fuel efficiency adds more complexity to the question of

who matches with whom because these dimensions are not mutually exclusive. Size influences

the trader’s revenue, shipment costs and the ship’s option value, but the impact depends on the

assumption about the capacity utilization rate. For example, despite PType 1’s cost disadvan-

tage over PType 2, PType 1 can earn more revenue by achieving a higher cargo size (16,571

tonnes 4) which would outweigh its higher shipment costs. Given the variation in ship size

amongst the different physical ship types, it is likely that the matching is sensitive to the capac-

ity utilization rate. Two different versions are run to test the sensitivity: Bigger is Better and
3For PType 1 to be more efficient than PType 3, the cargo size needs to be greater than 265,360 tonnes.
4Assuming a maximum capacity utilization rate of .95. A ship’s payload is always below its DWT because

DWT is a measure of how much weight a ship can carry and includes cargo, fuel, fresh water, ballast water,
provisions, passengers and crew.



106 Chapter 6. Model Estimation

Table 6.4: Multidimensional impact on model parameters

Dimension Cargo size Fuel cost Freight rate
Location (l) x x
Capacity (ω) x x x
Design speed (vd) x
As-designed efficiency (k) x

Table 6.5: Parameters affected in Bigger is Better vs. Energy Efficiency Rules

Surplus component Bigger is Better Energy Efficiency Rules
Expected Oil Revenue qb

Shipment Cost vd, k vd, k

Ship Option Value P (xj,t+1, yi, T + 1), C(xjt, yi, t) P (xj,t+1, yi, T + 1), C(xjt, yi, t)

Energy Efficiency Rules. In Bigger is Better, the cargo size is determined by the product of its

capacity times constant capacity utilization rate of 88%. In contrast, Energy Efficiency Rules

assumes a constant cargo size of 265,900 tonnes. The ways in which the different dimensions

impact the primitive parameters in the model are summarized in Table 6.5.

Table 6.5 shows which surplus components vary across ship types in Bigger is Better and

Energy Efficiency Rules respectively. The only difference between the scenarios is the impact

on expected oil revenue through cargo size (qb) in Bigger is Better.

6.2.1 Location of ships and supply

The matching model requires an estimate of the supply of ships available to match in each

period. As discussed in Chapter 4, ships can only match if they are at a discharge or waiting

area. This requires working down from aggregate trade data given that geospatial data was not

available for this study. The supply of ships in different locations and their availability to match

was estimated using the compiled aggregate trade data described in Chapter 5 and the algorithm

is described in Figure 6.2.

Since ships are assumed to be only available in discharge and waiting areas, I start with the

total annual crude oil imports dataset. A first pass estimate of the crude oil imported by VLCC

is to multiply the aggregate import data by the share of the VLCC fleet that transports crude oil

(51% in 2011). Data from Lloyd’s List Intelligence (Lloyd’s List, 2012), a source that provides

seaborne crude movements by vessel, estimated the share was 61% in 2012, 10% higher than

the fleet share. This larger share is more plausible given the dominance of VLCCs on long haul

routes so this share was used in the estimates.

The aggregate data of imports and exports can be considered as a flow, because it is the

import and export demand that is met per year. Weekly estimates of these flows by VLCC were
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Figure 6.2: Ship availability estimation algorithm

obtained by dividing the annual figures by 52 which represents an average weekly flow and ig-

nores seasonal fluctuations. From this number, an implied number of VLCC “import” ships was

calculated by dividing by the average cargo size. This assumes that ships are not partially load-

ing cargo, but this is a reasonable assumption because these fixtures account for only 10% and

typically occur within the same area allowing us to circumvent the issue (Clarkson Research,

2011). Some areas in the aggregate trade dataset do not correspond to the shipping locations

in the model. For these areas, the share of imports that comprise these higher level areas in the

fixtures dataset were applied.

Estimating the number of ships in waiting areas (the Arabian Gulf and West Africa) re-

quires knowledge of the arrival rate and the average time waiting for a fixture. If these param-

eters can be estimated, then Little’s Law 5 can be used to calculate the stock of ships in an

area. Data from Clarkson Research (Clarkson Research, 2012a) on VLCCs Due in the Gulf this

Month was used to work out the average number of VLCCs arriving per week. It was assumed

that the average waiting time was between 1 and 2 weeks in AG (Calderas-Mendez, 2012); an

average 1.5 weeks was assumed. Applying Little’s Law, the stock of ships in AG was estimated
5Little’s Law tells us that the average number of customers in a store (the stock) is equal to the effective arrival

rate times the average time a customer spends in a store. This can be similarly applied to the average number of
ships in a waiting area available to match.
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to be 30. There was more uncertainty estimating the supply of ships in West Africa as it was

not possible to obtain data on arrivals. Data from AIS was used by zooming in on ship activity

near Nigeria and Angola which suggested the number is around 5 ships.

The supply of ships available to match was estimated to be 100.4 ships 6 by summing

the estimates from discharge and waiting areas. The average matching probability is 70%,

computed by dividing the number of cargoes demanded by the supply of available ships. If the

expected number of weeks waiting is given by a geometric distribution and there is an equal

probability for each ship to match, then the expected number of weeks until a ship successfully

matches is given by the expected value of a geometrically distributed random variableX is 1/p.

Then the expected waiting duration is 10 days.

6.2.2 Duration of journeys

The duration of a journey is a function of distance and the ship’s speed. Distances were cal-

culated for the trade flow and repositioning journeys. Despite the reduction in dimension by

aggregating to area level, the calculation of distances is a time consuming task. Because there

was no data readily available, the distances had to be collected manually for each journey. To

reduce the time intensiveness of this task, a representative port (see Table D.5) was designated

for each area-area pair using distances obtained from AXSMarine (AXSMarine, 2013). The

majority of areas are defined narrowly enough that ports are very close to each other, with the

exception of West Africa which has two major ports (Malongo Terminal, Angola and Qua Iboe,

Nigeria) that are located farther away from each other than other areas. The distance assigned to

WAF was a weighted distance from the origin area to the two ports. A large percentage of trade

flows are between the Arabian Gulf and Asia, with the Caribbean and West Africa playing a

smaller role as loading areas. The AG-Asia trade is a much shorter route; from Juaymah, Saudi

Arabia to Ningbo, China it is 5729 nautical miles or about 17 days at a speed of 13.5 knots,

while voyages to USG take 29 days or 12 more days at sea.

Based on the distance for each trade flow, the trade volume on each route, and an assump-

tion about laden speed, the expected duration of a laden voyage is between on 2.73 and 3.03

weeks. The lower bound estimate is the shortest path and for east-west and northbound trips

can involve the Suez canal. Ships do not always take the shortest path; this is because there is

a cost to transiting the Suez, both in terms of the canal costs and the risk of sailing in a piracy

zone. Because I do not have exact data on the proportion of journeys made via the Suez Canal
6It is acknowledged that there will be a margin of error in these estimates because some ships are domestically

owned by governments, used in industrial shipping and on time-charter are not trading in the spot market, though
they will at times lease their ship when they do not require it.
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and Cape of Good Hope, I assumed that northbound journeys to Europe go via Suez.7 Ships

bound for the US Gulf are routed around the Cape of Good Hope. Taking these factors into

consideration, the expected trip length is estimated to be an average 2.87 weeks, a weighted

average of the route market share.

6.2.3 Cost of journeys

The voyage cost is a function of distance, the implicit rental rate, and the type of route. Fuel

consumption is given by the cubic equation in Chapter 4 (Equation 4.26) which takes as input

the ship’s tonnes per day, operating speed, design speed and distance. The distance used is the

representative area to area distance as described in the previous section.

Additional costs apply to the type of route - whether it involves the Suez Canal and the type

of voyage (laden or ballast). By taking the Suez canal, a ship must pay for additional insurance

premiums, extra fuel for faster steaming, security measures such as deployment of armed guards

and Suez Canal tolls. Additional insurance premiums are for War Risk insurance and Kidnap

and Ransom insurance (K&R). K&R insurance is estimated to be $15,000 per trip (Oceans

Beyond Piracy, 2011). While shipowners add on the Suez canal toll costs to the final price of

freight, it is not obvious whether there is pass-through of insurance costs. In the model, it is

assumed that the shipowner bears the full burden of insurance costs. The size of the additional

insurance depends on the level of risk perceived by the insurance underwriter. At times, these

additional premiums can reach upwards of ten percent of the market value of the vessel. For

example, the territorial waters of Somalia are one of the most expensive additional premium

areas, with underwriters charging approximately two percent of market value of the vessel for

a seven-day policy. For a $100 million VLCC, the ship would be forced to pay $2,000,000 in

War Risk insurance. The combined estimated cost was $2,015,000 m. per trip.

Aside from fuel costs, port costs account for the second largest proportion of the variable

costs of a voyage and depend on the port specific pair, cargo size, and ship type. These are

not published separately from the flat rate and not available from one source.8 To simplify the

estimation of these costs, a fixed rate was applied.9

The implicit rental cost was calculated using the average of the 1-year, 3-year and 5-year

time-charter rates from Clarkson (2012) in 2011 which was $30,109 per day. Interestingly, this

is approximately equal to the VLCC break-even rate of Frontline, the major tanker company.
7The EIA estimates that the majority of fully laden ships using the Suez Canal are northbound to the Mediter-

ranean and Northern Europe. On laden journeys, VLCCs have to partially unload their cargo in the Sumed pipeline
and then transit the canal, picking up the cargo on the other side (Trench, 2010)

8Clarkson Research (2012d) uses a variety of sources, ranging from the ports themselves via questionnaires,
owners via brokers, and the Global Ports and Intertanko websites.

9The Worldscale Association includes 4 days in port in their calculations.
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An estimate from Intertanko (Intertanko, 2011) for the fleet was about $32,500 per day.10 This

implies that the fleet was barely breaking even in 2011. Uncertainty analysis was not undertaken

to determine the probability of obtaining a time-charter contract, but companies should factor

in this rate when deciding whether to continue operating or scrap their vessel.

6.3 Prices on journeys
Although freight rates are endogenous in the model, the freight rate in the terminal period

is estimated outside the model using the fixtures dataset described in Chapter 5. This also

serves as a way to understand the important determinants of the freight rate. In theory, the

freight rate should depend on all aspects of the contract and the trade that are known to the two

parties at the point when they sign the contract. The key factors include the origin, destination,

distance, laycan period, the type of crude oil, ship type and trader type. The origin matters

because it embodies the supply and demand characteristics at the origin and the type of crude

that is bought. Different types of crude oil fetch different prices and may affect the resale

value. Destination matters because it affects the profits of the trader (the selling price at the

destination) and the ship option value. Distance affects the duration of the voyage which has

implications for voyage and inventory costs. The laycan period should be positively correlated

with the freight rate because it allows the trader a longer window when the ship can pick up if

the trader wants the option of buying the oil at a later date and the option to cancel the contract if

the expected freight rate in the future is lower. In the spot market, ships differentiate themselves

by their location and reputation.

The total freight rate (in dollars) equals:

Pab,t = PW
ab,Y RP

M
ab,tq (6.1)

where Pab,t equals the total freight rate P (xj,t+1, yi, t) for the specific port pair (ab) and

route at time t. PW
ab,Y R equals the Worldscale benchmark price for the year Y R for the specific

port pair (ab) and route in $/tonne, PM
ab,t is the multiplier in Worldscale multiplier units for the

fixture contract at time t and q is the cargo size in tonnes. The multiplier is agreed upon by both

parties and is determined by the market conditions when the deal is done and the bargaining

power of the two parties.

The freight rate is estimated using an econometric regression. Ideally, if data were avail-

able on benchmark prices for all years and port combinations, the estimated freight rate would

equal the benchmark price times the multiplier. However, because the benchmark sample was
10Number was read from a bar chart.
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Table 6.6: Analysis of variance table of benchmark regression

Df Sum Sq Mean Sq F value Pr(>F)
log(Dist short) 1 378.91 378.91 30933.00 0.0000
log(phfo) 1 17.14 17.14 1398.91 0.0000
λab 130 32.94 0.25 20.69 0.0000
Residuals 1085 13.29 0.01

incomplete, it was necessary to perform separate regressions for estimating the benchmark price

and multiplier. Assuming that the error terms in both equations are independent of each other,

this will produce an unbiased estimate of the price.

As mentioned in Chapter 5, variation in the benchmark price over time can be attributed

to changes in the forecasted bunker price, distance, and the port costs. In the data, we do not

observe port costs. Aside from fuel costs, port costs are the second largest factor in these calcu-

lations and they represent the most subjective portion of forecasting new flat rates (McQuilling,

2010). Since the model is regional, these need to be estimated as a route (area-area) fixed effect

which makes the assumption that areas have similar port costs. This is reasonable because ports

want to be competitive with ports within their area. The dataset did not contain a sufficient

amount of data for 2011 to include time effects, such that variation in port costs per year could

not be estimated. Therefore the regression will estimate an average port cost over 2007-2011.

Port pairs were selected based on the pairs observed in the fixtures dataset. The benchmark

price for the shortest route was regressed on the distance provided in the Worldscale book, the

benchmark bunker price and dummy variables for the area pair (defined as the route) associated

with the port pair. The following linear regression model was estimated for the benchmark

price:

log(PW
ab,Y R) = λab + β1log(φab,Y R) + β2log(phfoY R) + εab,Y R (6.2)

where λab is the route fixed effect, φab is the distance on route ab for the shortest distance

between load port a and discharge port b, and phfoY R is the bunker price in year Y R. Appendix

D, Tables D.5-7 shows the results of the regression and the fitted values against the residuals.

The model fits the data well with an R-squared of .97. A 1% increase in distance increases

the benchmark price by .4%, while the elasticity for the bunker fuel price is .53%. The route

fixed effects are generally negative and significant. The analysis of variance for the benchmark

regression is displayed in Table 6.6. Distance explains 86% of the variation in the data, followed

by the area fixed effect (7%), bunker price (4%) and the remaining unobserved (residuals) (3%).

Whereas the benchmark price is a forecasted cost of shipment between two port pairs in
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a given year for a standard vessel, the multiplier price depends on the economic conditions in

the local markets of a particular trade route ab and the characteristics of the ship. A hedonic

price function can be used to describe the equilibrium relationship between the characteristics

of a product and its price. For example, in the housing market, the price of a house might

be described by its geographical location, size, number of bedrooms, proximity to parks, and

quality. Similarly, the multiplier price can be described by geographical location (the trade

route consisting of a load and discharge area), the physical characteristics of the ship (safety,

age, DWT, capacity utilization, technical efficiency), fuel cost, trader type, and the lagged effect

of prices in the market.

When a trader and shipowner sign a contract, they agree to terms such as the technical

specifications of the ship, speed, trade route and the time period under which the ship must

arrive (known as laydays). Safety is a major priority for traders because of the sums of money

and reputation that is at stake if there is an oil spill. Three variables serve as a proxy for

safety in the dataset - classification society, age, and hull type. A ships’ classification society,

which checks the ship against safety and other requirements, gives an indication of its rating.

For example, societies which are members of IACS (International Association of Classified

Societies), an association which ensures certain safety and regulation standards are met, would

be considered as low risk ships. This variable is also used as a proxy for reputation. Age is

also a risk factor, where older ships, especially those older than 15 years, are considered to bear

significantly more risk due to deterioration of the hull (Shipbroker, 2011). In addition, ships

which have a double hull also reduces the risk of an oil spill and some countries require double

hulls.

Another possible factor affecting prices is capacity utilization. Because shipowners get

paid per-tonne, shipowners might be willing to marginally discount the multiplier price if

the trader is willing to ship a greater size of cargo. As discussed in Chapter 3, typically the

shipowner proposes an “ask” price first, using yesterday’s average freight rate for the specific

trade route a trader is requesting. Traders then submit their bid, and the negotiation process con-

tinues until both parties agree on a price (could be settled in one minute or two weeks according

to industry practitioners). This suggests that the lagged multiplier price is an influencing factor.

Aggregate multiplier data was not available for all routes however, so a price index called the

Baltic Dirty Tanker Index was used (Baltic Exchange, 2012) which represents prices for crude

oil shipments by tankers. Although this includes other ship classes (Suezmax and Aframax),

prices are highly correlated in these markets so it is a good proxy for the VLCC market. An-

other variable that may impact prices is the difference between the fuel price included in the
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benchmark price and the fuel price at the time when the ship is fixed. Because the fuel price is

a large component of voyage costs, this could significantly impact costs. While the benchmark

fuel price was $467 (per tonne) in 2011, the average fuel price in Singapore (a major refueling

location) was $648 in 2011, and varied between $526 and $705 (a standard deviation of $38).

I use a log linear regression model to estimate the hedonic price function. A time dummy

is used to isolate the effect of supply and demand variation once controlling for other charac-

teristics affecting price (see Triplett, 2004 and Nesheim, 2008 for a detailed discussion). Given

these factors, the multiplier prices were regressed against the physical characteristics of the ship

(age, DWT, technical efficiency) and fixed effects for time and route. The model specification

for the multiplier is:

log(PM
ab,t) = λab+β1ωj +β2ω

2
j +β3αj +β4HTj +β5BDTIt−1 +β6log(phfot )+β7Y R+εab,t

(6.3)

where λab is a route fixed effect, ωj is the age of ship j, αj is the capacity,HTj is a dummy

variable for the hull type (single or double hull), phfo is fuel price ($/tonne) during the week of

the fixture date, BDTIt−1 is the lagged Baltic Dirty Tanker Index and Y R controls for annual

time effects. The Baltic Dirty Tanker Index is a price index of time charter equivalent earnings

($/day) of the major crude oil routes weighted by the volume of trade for each route (Baltic

Exchange, 2012).

Tables D.8-9 in Appendix D shows the regression results. Of the 52 routes in the sample,

32 were statistically significant at or below the 5% level. Of these, 4 routes were negative -

AG-ECC, AG-SPATL, AG-UKC and AG-USG. This was also observed in Alizadeh and Talley

(2011); the westward direction implies that ships can obtain a backhaul in the Caribbean or

West Africa such that they can discount the price relative to other routes like those from the AG

to Far East.

Of the physical characteristics, age, DWT and hull type were significant. The signs of the

coefficients for Age and Age-squared suggest a quadratic relationship and this can be explained

by the fact that ships which are greater than 15 years are viewed as more risky. The log of the

lagged BDTI price was also statistically significant (p < .0001) and was approximately unit

elastic; a 1% percent increase in the lagged BDTI price leads to an average increase of 1.2%

in the multiplier price. Because the index includes Suezmax and Aframax vessels which also

transport crude oil, this finding could be picking up the substitution effects between the overall

dirty tanker market and VLCCs. The price elasticity with respect to fuel cost (HFO) was less
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than unit elastic, increasing by an average .244% for a 1% increase in the fuel price. This

estimate falls within the range that other studies have found. Table 6.7 shows a comparison

of studies that have particularly focused on the relationship between oil/bunker prices. They

range from -.31 to 1.7. Economic theory implies that there should be a positive relationship

between the bunker fuel price and the freight rate, as higher costs typically induce a partial

pass-through when the supply curve is upward sloping. Therefore the negative relationship

found in Beenstock and Vergottis (1993) is erroneous.

Yearly time dummies were all significant and accounted for the variation in the data not

explained by the other regressors. They were also used to control for the changing yearly bench-

mark rate which means that the rates are not strictly comparable across years (Vivid Economics,

2010). The year 2009 had the largest impact on prices relative to the 2007 reference year, while

2011 had a negative impact. These findings are consistent with the market, which peaked in

2008 and then plunged to a low in 2011.

The analysis of variance for the multiplier regression is displayed in Table 6.8. The vari-

ables together explain 84% of the variation with the lagged BDTI explaining the largest per-

centage of variation (69%), followed by the HFO price (6%), and the route fixed effect (5%).

Because the dataset is a panel dataset with observations of the same ship and shipowner

across days in a particular year, the assumption that the standard errors are homoskedastic is

questionable (Angrist and Pischke, 2009). I therefore relax the Gauss-Markov homoskedastic-

ity assumption, and account for the fact that there may be several different covariance structures

within the dataset that vary by a shipowner but are homoskedastic within each cluster of trans-

actions by shipowner. Figure D.2 in Appendix D shows the residuals are normally distributed

around 0.

The hedonic price regression is used to estimate prices in 2011 for each physical ship

type per route using each type’s age and DWT, holding design speed and k fixed (representing

average values for 2011). PType 1 had the highest average price, followed by PType 2 and

PType 3. Compared to the baseline, PType 1 was .36% higher, PType 2 was .05% higher and

PType 3 was 2.14% lower.

6.4 Second step: estimate the endpoint conditions
In the second step, the continuation values for the agents are estimated outside the model for

period T + 1. The requirement that W x(xj,t+1, T + 1) take a prescribed value is known as an

endpoint condition. If a ship is at a destination, it has two options. If it matches with a trader,

it will reposition to one of the loading areas a given an average matching probability which
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Table 6.8: Analysis of variance table of benchmark regression

Df Sum Sq Mean Sq F value Pr(>F)
λab 53 30.53 0.58 16.57 0.0000
ωj 1 4.61 4.61 132.64 0.0000
ω2
j 1 5.88 5.88 169.27 0.0000
αj 1 0.67 0.67 19.15 0.0000
log(phfo) 1 32.99 32.99 949.04 0.0000
HTj 1 3.41 3.41 98.09 0.0000
log(BDTIt−1) 1 417.21 417.21 12000.92 0.0000
Y R 4 10.68 2.67 76.84 0.0000
Residuals 2812 97.76 0.03

measures the market’s strength. It only considers repositioning to loading locations which are

not too far away, set according to a threshold distance in the model, and then obtains the value

to be at the loading area. If it doesn’t match with a trader, then it repositions to a waiting area w

until there is sufficient demand for cargo and obtains the value of being at the waiting location.

The option value to be at b is given by 6.4 from Chapter 4:

W x(xbj,t+1, T + 1) =
∑
a∈A

P(a|b)
(
− crepba,t+1 + βx,d

ba(xj,t+1,yi)W x(xaj,t+1, T + 1)
)

+∑
w∈W

P(w|b)
(
− crepbw,t+1 + βx,d

la(xj,t+1,∅y)W x(xwj,t+1, T + 1)
)

(6.4)

From equation 6.5 in Chapter 4, the value to be at a loading area is:

W x(xaj,t+1, T + 1) =
∑
b∈B

P(b|a)
(
P (xj,t+1, yi, T + 1)

−cvoyab,t+1 + βx,d
ba(xj,t+1,yi)W x(xbj,t+1, T + 1)

)
(6.5)

The value to be at a loading area equals the expected revenue from the loading area minus

the expected shipment costs plus the option value to be at the destination. Each possible des-

tination a ship can travel to from the origin area is weighted by the probability of going to the

destination, based on the trade with that area. In the model, ships located at a loading area do

not have the option to go to a waiting area.

As discussed in Chapter 4 (equation 6.6), the value to be at a waiting area is :

W x(xwj,t+1, T + 1) =
∑
a∈A

P(a|w)
(
− crnxwait − c

rep
wa,t+1 + βx,d

la(xj,t+1,yi)W x(xaj,t+1, T + 1)
)

(6.6)

which reflects the model’s specification that ships located at waiting areas are waiting to
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serve demand at a nearby loading area. Therefore, the value to be at a waiting area is the

expected repositioning cost to a loading area plus the value to be at the loading area.

The main data inputs for the value functions are:

1. Transition potentials P(l′|l): the probability of going from one location l to another loca-

tion l′: P(b|a), P(w|a), P(a|b), P(w|b), P(a|w)

2. Ship revenue: P (xj,t+1, yi, T + 1)

3. Voyage cost: cvoyab,t+1

4. Repositioning cost: crepll′,t+1

5. Discount factor: βx,d(xj,t+1,yi)

Given these inputs, the unknowns that need to be computed are W x(xbj,t+1, T + 1),

W x(xaj,t+1, T +1), andW x(xwj,t+1, T +1). The problem is solved by solving a system of linear

equations. This is a deterministic solution representing the expected present value of all future

periods. There are some obvious differences among the value functions; W x(xaj,t+1, T + 1)

is the only function which contains no discounted revenues so intuitively the value should be

higher than W x(xbj,t+1, T + 1) and W x(xwj,t+1, T + 1) which discount W x(xaj,t+1, T + 1) by

the voyage duration from b to a and w to a, respectively. The repositioning costs included in

W x(xbj,t+1, T + 1) and W x(xwj,t+1, T + 1) have more prominence because they are not dis-

counted.

From equations 6.4, 6.5, and 6.6, it is clear that:

∑
a∈A

P(a|b) +
∑
w∈W

P(w|b) = 1∑
b∈B

P(b|a) = 1∑
a∈A

P(a|w) = 1

The probability of going from a load port to a discharge port, P(b|a), was calculated using

the estimated trade flow matrix from step 1. The model does not consider strategic locational

games that predict individual ship movements as a function of other ships’ relocation strategies.

Instead, the probability that a ship moves to a load area compared to a waiting area is based on

the demand to supply ratio of the overall market. The probability of matching with a trader at a

discharge location (
∑

a∈A P(a|b)) is estimated to be 70%, based on the demand to supply ratio
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(fixture demand to available ships). That means the probability of going to any waiting location

from b (
∑

w∈W P(w|b)) is 1 −
∑

a∈A P(a|b) or 30%. There are two reasons to believe ships

will not relocate to all load areas from a given discharge area. If a ship is located far away from

a load area market, it has to pay the repositioning costs of getting to the load area. In addition,

the trader has to wait for the ship to arrive at a rate proportional to distance. Ships compete with

other ships which may be located closer to the trader’s preferred market (load area). Therefore

the matching probability in a discharge location should decrease the farther away a ship is.

Ideally, P(a|b) should be taken from the dataset on ship movements. A first pass approx-

imation used a distance threshold of 9720 nautical miles (equivalent to traversing from Ulsan,

Korea to Malongo Terminal, Angola) based on correspondence with Tanker Operator (2012) of

observed voyages from discharge ports to load ports. Once distances greater than this are elim-

inated, the smaller subset serves as the possible loading areas from b. Using the fixture cargo

volume in each of these areas, I calculate the new trade shares which provides a measure of the

probability of a fixture. This probability is then weighted by the matching probability to obtain

the joint probability of choosing to match with a trader and matching in each load location.

The freight rate was estimated using the estimated freight rate from section 6.5. The cargo

size is calculated by multiplying the DWT times an average capacity utilization factor of 88%

which is estimated from the fixtures dataset.

Voyage and repositioning costs were calculated using the route distances. The bunker price

was set to a constant $645 per tonne representing the average bunker price for 2011. Discount

factors were the most subjective calculation. The discount factor was calibrated to represent

how much shipowners should value future earnings. Bellman’s equation includes all future

periods for the remaining lifetime of the asset. In shipping, this corresponds to the second hand

(resale) price of the ship. In the data, prices for second hand ships are highly volatile. Figure 6.3

shows the prices of Time-Charter Equivalent earnings and second hand values between 2001

and 2011.

There are large fluctuations in both time series, reflecting the volatile nature of the industry

due to the features of the market: aggregate demand for oil is inelastic and supply is lumpy

due to the long lag between the order-book and delivery for ships. Given this uncertainty, the

model only looks ahead one voyage. The values are therefore discounted to the magnitude of

one period profits. This short-term perspective is justified by the literature (Devanney, 2010;

Ronen, 1982) and a statement from Maersk (2012) that “There are alot of cargoes out there

from different customers. It’s all about optimizing over a number of voyages...If I want to take

this cargo from point A to point B, then I want to be able to get a cargo from there onto the next
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Figure 6.3: Historical prices of VLCC freight rates and second hand values. Source: Clarkson
Research, 2012c.

one.”

6.4.1 Numerical computation of continuation values

The equations for W x(xaj,t+1, T + 1), W x(xbj,t+1, T + 1) and W x(xwj,t+1, T + 1) combine to

form a system of linear equations. In matrix form this is:

Aw = b (6.7)

where A is a a square matrix containing all of the coefficients of the unknowns in w and

b is a vector of the constants. In linear algebra, it is required that an equation like (1) has a

unique solution if the rank of A and the rank of the matrix [A b] are both equal to size(w), i.e.,

the number of unknowns. This condition was satisfied. The solution (computed in Matlab) to

equation (1) is:

w = A−1 b (6.8)

6.4.2 Numerical results: continuation values for ships

Under the assumption of a large number of identical shipowners, the second hand sale price of a

ship must equal its expected option value. Given volatility in freight rates, average second hand

sale prices for ships also exhibit variation; Figure (6.3) shows that for a ship aged 10 years,
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the value ranged between $60 million and $165. The estimated option value of a ship in the

previous section is deterministic; it assumes that all of the parameters - including price - are

the same for all future periods. This approach will not therefore capture uncertainty in these

parameters, which can cause prices to change dramatically in the short run. For this reason, the

model will lookahead over a much shorter time horizon - sufficient to capture the expected value

of one journey ahead - by applying a hyperbolic discount rate to the option value. Although

the aforementioned parameters have been estimated for 2011, the year 2011 was considered to

be one of the toughest, though the tanker market is still struggling. Average Worldscale prices

dropped to 51, compared to the longer term average (2000-2012) of 83. These two states -

times of great prosperity and depression - are the defining features of the industry (Serghiou

and Zannetos, 1978).

For this reason, I will generate two freight rate scenarios. The first price scenario simulates

option values using a multiplier calibrated to 2011 price data, and the second scenario is an av-

erage multiplier price over the long-run (representing 2008-2011) holding all other parameters

constant. The multiplier in 2011 was estimated using the price regression from section 6.3 and

takes into account the variation in levels among routes using the geographical fixed effects for

each area. The long-run price scenario is generated by multiplying the estimated prices by the

percentage difference in the average multipliers (61% higher than the 2011 multiplier price).

It was not possible to estimate prices using the hedonic price regression before 2007 because

the larger dataset used to construct this regression was only available for 2007-2011. For the

purposes of the model, it suffices to compare the same shock across routes.

Considering two scenarios is important because a change in the multiplier price can lead

to significant changes in profits which can have implications for the assignment and changes in

speed. In 2011, the market experienced an overcapacity of ships, caused by weak demand and

ships ordered in the 2008 boom which flooded the market.

In the long-run scenario, average profits per voyage excluding the repositioning cost are

an estimated $3.7 million, compared to $1.6 million in the 2011 case, a difference of over $2

million. Voyage costs range from $.3 million to $3.4 million dollars. Given that ships have to

reposition back to a loading area, some routes were loss making as discussed in Chapter 3. In

theory, the expected discounted profits of all future should be close to the value of a second hand

ship to reflect the future expected discounted profits of operating a VLCC. Using a discount rate

of 7% per annum, this value is $145 million, which corresponds to prices during the boom years

of 2000-2011. Figures 6.4 and 6.5 show the distribution of the discounted expected value of one

voyage ahead for the high and low scenarios broken out by type of location: W x(xaj,t+1, T +1),
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Figure 6.4: Terminal Option Values in long-run scenario ($ m. ): Wa = W x(xaj,t+1, T + 1);
Wb = W x(xbj,t+1, T + 1); Ww = W x(xwj,t+1, T + 1)

W x(xbj,t+1, T + 1) and W x(xwj,t+1, T + 1) for the baseline. The values to be at the loading area

a are the highest because profits (excluding the repositioning cost) are not discounted, whereas

the values to be at b and w discount these profits.

Table 6.9 shows the values for discharge areas discounted to represent the profits of one

voyage for both scenarios where Wb = W x(xbj,t+1, T + 1). This represents a weighted av-

erage of the expected repositioning cost and net revenue from one voyage at the load area

plus the expected repositioning cost to a waiting area and the value to be at the waiting area

(W x(xwj,t+1, T + 1)), weighted by the probability of choosing the option which is determined

by the aggregate market conditions. East Coast Canada, United Kingdom Area and the US Gulf

have the highest values while North China, Korea and Japan rank the lowest. The areas with

the highest option values all have similar characteristics - they are located relatively close to

load areas (Caribbean and West Africa) with high option values (Table 6.10), whereas the lower

ranking option values are in the Far East and California, locations which are more isolated

from load areas. These findings are also consistent with the multiplier regression results, which

show that shipowners discount prices on westward routes because they can obtain a backhaul.



122 Chapter 6. Model Estimation

Figure 6.5: Terminal Option Values in 2011 ($ m.): Wa = W x(xaj,t+1, T + 1); Wb =

W x(xbj,t+1, T + 1); Ww = W x(xwj,t+1, T + 1)
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Table 6.9: Option values for discharge areas (million dollars, Wb = W x(xbj,t+1, T + 1))

Area Acronym Area Name Wb Wb

Long-run 2011
ECC East Coast Canada 5.52 0.02
USG US Gulf 5.41 -0.05
UKC United Kingdom Area 5.34 -0.09

CMED Central Mediterranean 5.27 -0.13
WCI West Coast India 4.79 -0.45
ECI East Coast India 4.51 -0.61
SAF South Africa 4.41 -0.66

REDS Red Sea 4.38 -0.68
SPOR South Pacific Oceania Region 4.1 -0.84
THAI Thailand 3.85 -0.98
CALI California 3.66 -1.08
PHIL Philippines 3.61 -1.12
TWN Taiwan 3.58 -1.14
BRZ Brazil 3.54 -1.17
SCH South China 3.42 -1.23
NCH North China 3.31 -1.3
KOR Korea 3.28 -1.32
JAP Japan 3.23 -1.35

In other words, their option value is higher, and controlling for other effects, this lowers the

price. For the Far East, there is a high probability they will relocate to the Arabian Gulf which

has a relatively lower option value than the Caribbean and West Africa. In the formulation of

W x(xbj,t+1, T + 1), repositioning costs are not discounted, whereas for each load area that a

ship chooses to relocate to with a probability greater than 0,W x(xaj,t+1, T +1) is discounted by

the number of repositioning days. Whereas in the long-run scenario, all values are positive and

represent at least $1.7 million in profits, 2011 shows a stark contrast with all negative values.

Discounted profits in load areas are not large enough to offset the expected repositioning costs.

6.5 Summary
In this chapter, the datasets described in Chapter 5 were used to estimate the matching model.

This required estimating the types of traders, oil revenue, types of ships, cost of journeys, du-

ration of journeys, price earned on journeys, and the ship option values. The first step of the

model estimation was to estimate trader and ship types (state variable) and the information state

required to estimate the surplus function in the model. Twenty trader types were estimated

for the demand sample, differentiated by their trade demand and oil buy price. A sample of

ship types in the baseline model was estimated using a combination of aggregate trade data and

waiting area information which added up to 18 ship types. Cluster analysis showed that there
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Table 6.10: Option values for load areas (million dollars, Wa = W x(xaj,t+1, T + 1)

Area Acronym Area Name Wa Wa

Long-run 2011
WMED West Mediterranean 9.29 2.28

UKC United Kingdom 9.28 2.26
USG US Gulf 9.18 2.19

ECMX East Coast Mexico 8.95 2.04
CAR Caribbean 8.87 2.02
BRZ Brazil 8.7 1.94

BALT Baltic Sea 8.39 1.74
WAF West Africa 7.82 1.4

EMED East Mediterranean 7.67 1.31
CMED Central Mediteranean 6.82 0.74
REDS Red Sea 6.3 0.77

AG Arabian Gulf 6.07 0.33
KOR Korea 3.94 -0.96
JAP Japan 3.71 -1.1

are three distinct groups of ships differentiated by their physical type which will be used in a

separate multidimensional matching simulation. A number of uncertainties in the data estima-

tion were discussed; on the demand side the greatest uncertainty was estimating the number of

fixtures per week and the expected sell price of oil. On the supply side, the supply of available

ships to match and port costs were the most uncertain parameters. A regression was run to

explain the determinants of the Worldscale flat rate and multiplier price, revealing that distance

accounts for the largest variance in the flat rate with a much smaller proportion attributed to port

costs and the bunker price. The multiplier regression showed a good fit to the data, with the

area-area route, fuel price, lagged Baltic Dirty Tanker Index explaining the most variation in the

data. Of the physical characteristics tested, age, size and hull type were statistically significant,

with double-hulled, larger and younger aged ships obtaining a higher price on average. Routes

that were westward to the Americas had a negative sign for the route fixed effect, meaning that

prices were lower on average, and this can be explained by the opportunity to obtain a backhaul

as compared to eastward routes. In the second step of the model estimation, the parameters in

the information state were used to estimate the ship option values. These values were consistent

with the finding that values to be in westward locations (i.e., ECC and USG) were higher than

values in the Far East, influenced by the lower repositioning costs to West Africa from west-

ward destinations. Two scenarios were run - a long-run and 2011 scenario - to characterize the

industry’s cyclical behavior of oscillating between boom and bust periods.



Chapter 7

Results

7.1 Introduction
The solution of the matching model yields an assignment of ships to shippers, earnings and

prices that clear the market for these assignments, the valuations of different locations for

shipowners, and the implied supply of ships in future periods. I first provide provide a sim-

ple market example in Section 7.1.1 to illustrate how the model works using data from Chapter

6. In Sections 7.2 and 7.3, I discuss the baseline model results of the static matching model

with option values that reflect different characterizations of agent beliefs where ships are dif-

ferentiated by location (holding physical characteristics constant). The results are compared to

historical data in sections 7.4 and 7.6. Section 7.7 investigates the first order effects and sensitiv-

ity in the static model to a transitory shock to fuel prices, demand for oil cargoes, supply, and a

simultaneous demand and fuel price shock. I then extend the model in Section 7.7.5 to consider

ships which are differentiated by location and physical characteristics. Section 7.8 explores the

dynamic version of the baseline matching model by simulating the model until it converges in

matching probabilities and earnings in each location. Finally, Section 7.9 simulates the impact

of a permanent demand shock and a carbon tax.

The different model variants and simulations are described in Table 7.1. An x in the ta-

ble indicates which features are varied for each simulation. I denote the quasi-myopic1 static

model as Model 1 (M1), the forward-looking static model as Model 2 (M2) and the dynamic

forward-looking model Model 3 (M3). The ship’s option value to be in a discharge loca-

tion βx,d(xjt,yi)W x(xbj,t+1, T + 1) will be denoted as Vb. The quasi-myopic model (M1) and

forward-looking models are run with two scenarios reflecting different freight rates. The 2011

scenario uses the econometric equations in Chapter 6 and data in 2011 to estimate a price

P2011 = P (xjt, yi, t) for each ship type and trade route. Similarly, the long-run price scenario

1Also referred to as myopic as an abbreviation.
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is estimated (Plr = P (xjt, yi, t)) to represent average prices over 2008-2011 for each ship type

and route. Both price scenarios are used as inputs to the trader’s dummy surplus value and the

ship’s option value Vb. Model 2 uses W x
2011 = W x(xj,t+1, T + 1) for the 2011 scenario and

W x
lr = W x(xj,t+1, T + 1) for the long-run scenario, estimated in Chapter 6 as inputs to the

surplus function and ship’s dummy match value. Model 3 uses W x
2011, P2011 and s(∅x, yi, t)

as inputs and then updates these values using a smoothed version of the previous two time

steps’ estimates of W x(xjt, t) and W y = W y(yi, t) as input in the next iteration (see Chapter

4 section 4.6.2). Each model is run assuming either a constant or optimal speed.

7.1.1 What determines the intra-allocation of the surplus?

To illustrate the results, I take the data used to calibrate the model in Chapter 6 and focus on

a simple market where there is one location, one set of ships and one set of traders. Suppose

the market is located in Brazil (BRZ) and ships are located in the Brazilian discharge area. In

addition, the outside option for the trader is $0.4 million and the ship’s outside option is $-1.1

million. If they match, the surplus is $2.3 m. The way they split the surplus is determined by

the demand to supply ratio in the market. As discussed in Chapter 4, when there are fewer

ships than traders demanding cargo in the local market ships are short (Figure 7.1), whereas

ships which are in excess supply are on the long side of the market (Figure 7.2). A symmetric

condition holds for traders. A ship (trader) which is long earns his outside option which in this

example is the dummy match surplus and this has the interpretation that the agent is indifferent

between matching or not matching. In this simple market, the lowest earnings a ship is willing

to accept is the ship’s outside option (in this case, s(xjt, ∅y, t)).

x1

Ships

$− 1.1 m.

Short

y1

Traders

$0.4 m.

Long

s(xjt, yj , t) = $2.3 m.

P (xjt, yi, t) = $5.7 m.

Figure 7.1: Short ship scenario

Figure 7.1 and Table 7.2 show how prices are determined when ships are on the short

side of the market. I denote the ship’s option value from the discharge area as Vb. In this

simple example, when ships are short the price they obtain is determined by equation 4.14 or

the difference between the trader’s willingness to pay ($6.0 m.) and his outside option ($.4 m.)

which equals $5.7 m. The utilization of ships in Brazil is 100% which is equivalent to having

an ExtraRatio of 1 and the locDSR as discussed in Chapter 4, is above 1 such that there are
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Table 7.2: Determinants of price (short scenario, one ship and trader type), million (m.) dollars

Outside option Costs/Revenue Vb Price Earnings

$ m. $ m. $ m. $ m. $ m.
Ships -1.1 2.5 -1.2 5.7 1.9

Traders 0.4 6.0 - -5.7 0.4

more traders than ships. In contrast, when ships are on the long side of the market (Figure 7.2

and Table 7.3), competition amongst ships of the same type drives the ship’s earnings to his

outside option and the price drops to $2.7 m. or 52%. At this price he is indifferent between

matching and remaining unmatched. In the long scenario, ships are not fully utilized such that

ExtraRatio < 1 and locDSR < 1.2

x1

Ships

$− 1.1 m.

Long

y1

Traders

$0.4 m.

Short

s(xjt, yj , t) = $2.3 m.

P (xjt, yi, t) = $2.7 m.

Figure 7.2: Long ship scenario

Table 7.3: Determinants of price (long scenario, one ship and trader type), m. $

Outside option Costs/Revenue Vb Price Earnings

$ m. $ m. $ m. $ m. $ m.
Ships -1.1 2.5 -1.2 2.7 -1.1

Traders 0.4 6.0 - -2.7 3.3

Having described how the intra-allocation is divided between one set of ships and trader

types, I now look at what happens to prices and the intra-allocation of surplus when I differenti-

ate ships across locations keeping demand constant in one location in Brazil. I use the estimated

supply of ships in different locations (Table 6.2) as the ship types in the market. In the baseline

model, there are .80 ships in BRZ and 1 cargo demand for oil in BRZ 3 (on the route BRZ-

SCH). When there is more than one ship type, ships have to compete with other ship types

but can still be short if their service is more desirable than other ship types and they are fully

utilized. In this example, ships in BRZ are short and traders have to consider ships from other

locations to meet their remaining .20 demand. The best alternative for a trader is to match with
2A special case is when supply equals demand in the local market. In this case, the linear program in Matlab

chooses the trader as the receiver of the entire residual pie, as if the trader has all of the bargaining power. A more
realistic outcome would be for them to split the pie which is the Nash Bargaining Solution.

3Load and discharge area definitions are provided in Table D.5 of the Appendix.
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Table 7.4: Determinants of price (multiple ship types, one trader type)

Ships Match W x(xjt, t) s(xjt, ∅y, t) W y(yi, t) s(∅x, yi, t) Rev. Cost Vb Price

$ m. $ m. $ m. $ m. $ m. $ m. $ m. $ m.
BRZ 0.8 0.3 -1.1 2.0 -0.9 6.0 2.5 -1.2 4.1
USG 0.2 -1.6 -1.6 2.0 -0.9 5.2 3.5 -1.2 3.2

a ship in the US Gulf. Note that this is not the ship that is located closest to the BRZ market

(excluding the ship in BRZ). Ships in WAF are closer but are not allocated to this route because

the value to remain unmatched is higher for the ship in WAF. This is consistent with the social

welfare maximizing solution and has the economic interpretation that the ship in USG is willing

to provide its service for a lower price in order not to have to sail empty to a waiting location. I

will refer to this ship as the marginal ship used to meet demand. The presence of ships in USG

increases the competition for the cargo in Brazil, lowering the economic rent that the ship in

Brazil can extract. Figure 7.3 depicts this graphically and Table 7.4 shows the relevant factors

determining prices for each trade.

x1

Ship

$− 1.06 m.

Short

y1

Trader

$2 m.

Long

s(xjt, yj , t) = $2.3 m.

P (xjt, yi, t) = $4.1 m.

x2$− 1.6m.

Long

s(xjt, yj , t) = $0.4 m.

P (xjt, yi, t) = $3.2 m.

Figure 7.3: Impact of a competitor

Ships in BRZ are denoted as type x1 and ships in USG are type x2. Ship x2 serves as a

price threat to x1, sabotaging its ability to extract the maximum economic rent obtained when

there is only one ship type. Ship x1 should receive a premium equal to the difference in the

trader’s willingness to pay which is given by the difference in the trader’s oil revenue in the

match with x1 over x2 ($.85 M). Because there is an excess supply of x2, ship x2 is only able

to obtain its dummy outside option ($-1.06) so the price is determined by equation 4.15 where

W x(xjt, t) equals s(xjt, ∅y, t) and the trader receives earnings of $2 m. if he matches with
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x2. Now the trader must obtain at least this outside option (its threat point) to match with x1

which significantly improves the trader’s bargaining position. Ship x1 must also get at least

the price that x2 receives ($3.2 m.) but it also knows that there is a gain of $.85 m. to the

trader to matching with x1 over x2. Since ships are short in BRZ, the price must equal the

price of x2 plus the trader’s economic benefit of matching with x1 over x2 so the price the ship

can charge is $4.1 m. which exactly equals the sum of the price to match with x2 plus the

economic benefit of matching with x1 over x2. At this price, the trader earns the same amount

in both trades, but the cargo arrives more quickly with ship x1 so he prefers to match with x1.

The price ship x1 can charge has dropped from $5.7 m. to $4.1 m., a 28% decrease or more

than three times the largest change in fuel prices in 2011. This example illustrates the model’s

ability to capture the impact of the presence of a competitor, leading to vastly different prices

depending on the balance between local supply and demand and the competition from other

ships in other locations. Although prices are not unique, the difference in prices when there is

only one ship type and multiple ship types illustrates the model’s capability to model volatility

in prices that characterizes the time series data of tanker freight rates as described in Chapter 5.

It also provides a range of prices we should expect to observe in this market example is given

by {$2.70 m., $5.66 m.} for the BRZ-BRZ-SCH match.

7.2 Quasi-myopic matching
The quasi-myopic model with the 2011 version of the trader’s dummy surplus (M1cs2011)

results in 64 matches between ships and traders. Although there is an oversupply of ships in

the market, two trader types representing 6 cargoes choose not to match. Table 7.5 shows the

matches between ships and traders, the surplus of each match, and the intra-allocation of surplus

between each ship and trader type. The ShipID and TraderID fields denote their type which in

the baseline model varies by location and trade route respectively.

Thirteen out of eighteen ship types match to traders. These ships can be partitioned into

groups serving the local markets AG, BRZ, CAR, REDS, UKC and WAF. Of the traders de-

manding cargo to be lifted in AG, 59% is served by ships in AG, the maximum amount given

the supply of ships in AG. To meet this excess demand, ships are allocated from the Far East

(ECI, KOR, NCH, PHIL, SCH, THAI, TWN, WCI) which are located relatively closer than

other locations in the supply sample. Ships in WAF serve the WAF market because there is

enough supply of ships to meet demand (locDSR = 80%). Ships located in USG serve the

CAR market, while ships in SAF and SPOR serve REDS. Ships which are fully utilized (all

match to traders) are located in AG, ECI, WCI, PHIL, SPOR, THAI, TWN, BRZ, SAF, the ma-
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jority of which serve the AG market. Ship types which are completely unmatched are located

in areas farther away from the local markets (NCH, ECC, CALI, KOR and JAP) and have to

relocate to a waiting area. Partially utilized ships are located in UKC, SCH and WAF and ships

which do not match from these areas also relocate to waiting areas. The myopic model allocates

17 ships (47%) to AG and 19.4 (53%) ships to WAF and the waiting area that is chosen depends

on the cost of relocating to each waiting area, a function of the repositioning distance. Ships

which are located in the Far East relocate to AG and ships in the Americas relocate to WAF.

Figure 7.4 shows the relationship between the number of matches and the surplus and

surplus components (expected oil revenue, shipment cost, and Vb, the ship’s option value to be

at the discharge area) for all possible matching combinations. Each dot represents a potential

match; positive matches belong to group 1 whereas combinations that result in 0 matches belong

to group 0. Group 1 matches have a surplus in the higher end of the distribution of surplus and

this is primarily driven by the higher oil revenue and lower cost of these pairings compared

to other possible combinations. The ship’s option value has a smaller impact, although the

majority of matches occur where Vb is less negative given the positive impact on the surplus.

Matches which are low cost but are in the no match group occur because the resource constraints

restrict the number of ships which can be allocated to routes when ships are short and are

rationed to the matches with the highest surplus.

Traders demanding cargo on the AG-USG and AG-ECC routes do not match to ships. This

is because the surplus of these matches is not large enough to satisfy the stability conditions

(Model definition 2) that each agent must receive at least their dummy surplus values. For

example, trader type 11 which demands cargo on the AG-USG route has to obtain at least

$1.05 m. in order to match, but the surplus to match with ships not already allocated to other

traders is not large enough. Figure 7.5 shows the relationship between the number of matches

and surplus, ship dummy surplus and trader dummy surplus. The reason that the higher (less

negative) surplus values for the ship’s dummy option are not chosen is because the surplus

to match relative to not matching is higher for the majority of these matches. Earnings for

ships in the quasi-myopic model range from $-1.35 m. to $.74 m., while traders’ earnings are

significantly more, ranging from $.39 m. to $4.36 m. The majority of the traders’ share of

the surplus is above 1 because most ships earn negative profits. Trader shares which are under

1 are on routes loading in AG and BRZ and ships serving these routes are located close to

these markets (AG, BRZ, ECI and WCI) and are on the short side of the market. There is a

larger surplus because the repositioning cost is lower given proximity to the market. Table 7.6

shows the ship’s earnings compared to the estimated terminal option values for the long-run and
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Figure 7.4: Matches and surplus factors (M1cs2011; 0=No Match, 1=Match), $ m.

2011 scenarios. The model’s output (W x(xjt, t)) is higher on average compared to the 2011

estimates but lower than the long-run estimates given that the model is calibrated to 2011 data.

Values are significantly higher in AG, BRZ, WCI and ECI because these ship types are able

to extract an economic rent in the AG and BRZ markets. Table 7.7 shows the factors affecting

earnings and prices.

There is a negative correlation between a ship’s distance to the load area and the oil trader’s

revenue due to the storage costs a trader has to pay and the days that the revenue is discounted.

The table shows the outside options for traders and ships. Since traders are short in the aggregate

market, they always have a ship to substitute for. For example, Trader 6 which demands cargo

on the AG-SCH route matches with 19 ships of type 17 located in AG and 5 ships of type 11

located in WCI so the trader’s substitute for ship type 17 is ship type 11. In comparison, ships

are long in the aggregate market, and therefore ship types which are not fully utilized receive

their dummy surplus value s(xjt, ∅y, t). For example, ships in WAF have a 80% utilization rate

so they receive $-.17 m. which equals s(xjt, ∅y, t). Ship option values which are more negative

decrease a ship’s earnings and therefore matches with more negative Vb values lead overall to

lower earnings holding all other parameters constant. Prices are above costs for all matches.
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Figure 7.5: Number of matches and surplus (million $) factors (Model 1; 0=No Match,
1=Match)

Table 7.6: Ship earnings: results from M1cs2011 compared to W x(xj,t+1, T + 1)

ShipID Area PTypeID W x
lr W x

2011 W x(xjt, t)

$ m. $ m. $ m.
17 AG 0 4.11 -0.89 0.74
12 BRZ 0 3.54 -1.17 0.49
11 WCI 0 4.79 -0.45 0.4
2 ECI 0 4.51 -0.61 0.04

18 WAF 0 4.95 -0.38 -0.17
14 SAF 0 4.41 -0.66 -0.29
8 SPOR 0 4.1 -0.84 -0.45
9 THAI 0 3.85 -0.98 -0.73
6 PHIL 0 3.61 -1.12 -1.03

10 TWN 0 3.58 -1.14 -1.04
15 UKC 0 5.34 -0.09 -1.06
13 ECC 0 5.52 0.02 -1.18
7 SCH 0 3.42 -1.23 -1.22
5 NCH 0 3.31 -1.3 -1.29
4 KOR 0 3.28 -1.32 -1.3
3 JAP 0 3.23 -1.35 -1.34

16 USG 0 5.41 -0.05 -1.35
1 CALI 0 3.66 -1.08 -2.3
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By comparison, when the quasi-myopic model is run using the long-run freight rates as

input to the trader’s dummy surplus (M1cslr), all traders types decide to match with ships.

This is because freight rates are much higher in the long-run scenario (63% higher) and these

higher freight rates make it more economical for all traders to match in the current period

because the trader’s dummy surplus is lower. In M1cslr, traders demanding cargo on routes

AG-ECC and AG-USG match to ships from SCH on the AG-ECC route and ships from KOR,

NCH, and SCH on the AG-USG route.

7.3 Forward-looking matching
In this section, I discuss the forward-looking matching results of models M2cslr and

M2cs2011. Model (M2cslr) results in all trader types matching to ships. Table 7.8 shows

the matches between ships and traders, the surplus of each match, and the intra-allocation of

surplus between each ship and trader type. Fourteen out of eighteen ship types match to traders.

Of the traders demanding cargo to be lifted in AG, 53% is served by the supply of ships in

AG. The remaining demand is met by ships from the Far East (ECI, KOR, NCH, PHIL, SCH,

SPOR, THAI, TWN, WCI) which are located relatively closer than other locations in the supply

sample. Because there are enough ships to meet demand in WAF (locDSR = 80%), ships from

other areas are not required. Ships located in USG serve the CAR market, while ships in SPOR

serve REDS. Ships which are fully utilized (all match to traders) are located in AG, BRZ, ECI,

NCH, PHIL, SCH, SPOR, THAI, TWN, and WCI, the majority of which serve the AG market.

Ships which are not utilized at all are located in ECC, CALI, and SAF and have to relocate

to a waiting area. Partially utilized ships are located in KOR, UKC, USG and WAF and ships

which do not match from these areas also relocate to waiting areas. The forward-looking model

allocates all of the ships (30.4) to WAF. This can be explained by the higher option value in

WAF compared to AG in the forward-looking model, which offsets the higher costs for ships

which are located closer to the AG market (ships in the Far East) which would relocate to AG in

the quasi-myopic model. All traders match to a ship because their earnings are larger than the

dummy surplus values which are impacted by the long-run freight cost. Figure 7.6 shows the

relationship between the number of matches and the surplus and surplus components for all pos-

sible matching combinations. Similar to model M1cs2011 and M1cslr, the matches in Group

1 can be explained by higher than average oil revenue and lower than average cost compared to

matches in Group 0 where zero matches occur. The magnitude of surplus is due to the long-run

ship option values, and this leads to a much higher share of the surplus allocated to the ship

compared to the quasi-myopic matching model. The ship’s earnings are higher in this scenario
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Table 7.8: Forward-looking matching with long-run option values (M2cslr)

ShipID TraderID Start Load End Match Supply Surplus W x(xjt, t) W y(yi, t)

$ m. $ m. $ m.
2 6 ECI AG SCH 1.1 1.1 7.16 4.49 2.67
4 4 KOR AG JAP 0.9 4 5.41 3.06 2.35
5 4 NCH AG JAP 0.3 0.3 5.44 3.09 2.35
6 5 PHIL AG KOR 0.2 0.2 5.86 3.42 2.44
7 4 SCH AG JAP 6.8 10.9 5.57 3.23 2.35
7 5 SCH AG KOR 4.1 10.9 5.66 3.23 2.44
8 6 SPOR AG SCH 4.1 5.1 6.67 4.00 2.67
8 16 SPOR REDS PHIL 1 5.1 6.50 4.00 2.50
9 5 THAI AG KOR 0.5 1.9 6.16 3.72 2.44
9 6 THAI AG SCH 1.4 1.9 6.39 3.72 2.67

10 5 TWN AG KOR 1.2 1.2 5.84 3.41 2.44
11 6 WCI AG SCH 6.4 6.4 7.53 4.86 2.67
12 13 BRZ BRZ SCH 0.8 0.8 6.88 5.67 1.21
15 17 UKC UKC SPOR 1 10.3 7.52 4.09 3.43
16 13 USG BRZ SCH 0.2 12.7 5.02 3.81 1.21
16 14 USG CAR SPOR 4 12.7 6.88 3.81 3.07
16 15 USG CAR WCI 2 12.7 7.78 3.81 3.97
17 1 AG AG CALI 1 30 6.95 5.20 1.75
17 2 AG AG ECC 2 30 8.75 5.20 3.54
17 3 AG AG ECI 1 30 9.66 5.20 4.45
17 6 AG AG SCH 11 30 7.87 5.20 2.67
17 7 AG AG SPOR 2 30 8.97 5.20 3.77
17 8 AG AG THAI 2 30 8.57 5.20 3.37
17 9 AG AG TWN 3 30 8.13 5.20 2.92
17 10 AG AG UKC 1 30 9.65 5.20 4.45
17 11 AG AG USG 4 30 8.53 5.20 3.33
17 12 AG AG WCI 3 30 10.14 5.20 4.94
18 18 WAF WAF ECI 1 5 9.27 4.77 4.49
18 19 WAF WAF SCH 2 5 7.60 4.77 2.82
18 20 WAF WAF TWN 1 5 7.85 4.77 3.07
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Figure 7.6: Number of matches and surplus (million $) factors (M2cslr; 0=No Match,
1=Match)

because they include the current and one voyage ahead earnings which have a positive value

($4.45 m. on average). The trader obtains a considerably smaller share, which averages 40%

because the trader’s average earnings are $2.96 m. Table 7.9 shows the differences in ship allo-

cation to routes between modelsM1cslr andM2cslr. Because the only difference between the

models is the ship’s option value, a difference in the allocation of ships to routes occurs when

the relative difference in ship option values is different. For example, the table shows that in

M1cslr a ship in SCH matches on the AG-CALI route over a ship from AG because Vb is less

negative and this has the effect of increasing the surplus. In M2cslr, Vb is greater for the ship

located in AG compared to SCH. The reason that the ship’s option value is less negative for a

ship located farther away is because the option value to be in CALI is discounted by the days at

sea from the ship’s starting location to the ending location which is greater for ships which are

farther away. This reveals that the effect of discounting on the surplus is different depending on

the sign of the ship’s option value: a negative value that is more heavily discounted leads to a

greater surplus but a positive option value which is more heavily discounted leads to a smaller

surplus value. However, this does not adversely affect the matching results in M1cslr. For
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Table 7.9: Differences in matches (M1=M1cslr vs. M2=M2cslr)

Start Load End Match Match Surplus Surplus Vb Vb

M1 M2 M1 M2 M1 M2

$ m. $ m. $ m. $ m.
AG AG CALI 0.0 1.0 1.14 6.95 -2.19 3.63

SCH AG CALI 1.0 0.0 -0.82 4.98 -2.18 3.62
AG AG ECC 0.0 2.0 1.02 8.75 -2.24 5.48

SCH AG ECC 2.0 0.0 -0.94 6.76 -2.24 5.46
KOR AG JAP 0.0 0.9 0.98 5.41 -1.23 3.20
NCH AG JAP 0.0 0.3 1.01 5.44 -1.23 3.20
PHIL AG JAP 0.2 0.0 1.34 5.77 -1.23 3.20

SPOR AG JAP 0.7 0.0 1.91 6.34 -1.23 3.20
THAI AG JAP 1.9 0.0 1.64 6.07 -1.23 3.20
TWN AG JAP 1.2 0.0 1.32 5.75 -1.23 3.20

ECI AG KOR 1.1 0.0 2.47 6.93 -1.20 3.26
PHIL AG KOR 0.0 0.2 1.41 5.86 -1.20 3.26
SCH AG KOR 0.0 4.1 1.21 5.66 -1.20 3.26

SPOR AG KOR 3.5 0.0 1.98 6.43 -1.20 3.26
THAI AG KOR 0.0 0.5 1.71 6.16 -1.20 3.26
TWN AG KOR 0.0 1.2 1.39 5.84 -1.20 3.26
WCI AG KOR 1.4 0.0 2.84 7.30 -1.20 3.26
ECI AG SCH 0.0 1.1 2.64 7.16 -1.11 3.41

SPOR AG SCH 0.0 4.1 2.15 6.67 -1.11 3.40
THAI AG SCH 0.0 1.4 1.88 6.39 -1.11 3.40

AG AG UKC 0.0 1.0 3.10 9.65 -1.24 5.32
SCH AG UKC 1.0 0.0 1.14 7.67 -1.23 5.30

AG AG USG 0.0 4.0 0.83 8.53 -2.34 5.37
KOR AG USG 0.8 0.0 -1.29 6.38 -2.33 5.35
NCH AG USG 0.3 0.0 -1.26 6.41 -2.33 5.35
SCH AG USG 2.9 0.0 -1.13 6.55 -2.33 5.35
SAF REDS PHIL 0.1 0.0 1.91 6.66 -1.17 3.59
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example, ships in AG are fully utilized and allocated to the AG market. Furthermore, as shown

by Figure 7.6, the matching is influenced more by the oil revenue and cost components than by

Vb.

Table 7.10 compares earnings from modelsM2cslr andM2cs2011 to the estimated termi-

nal option values. ComparingW x
lr toW x

M2cslr whereW x
M2cslr is the ship’s earningsW x(xjt, t)

Table 7.10: Ship earnings: results fromM2cslr andM2cs2011 compared toW x(xj,t+1, T+1)

ShipID Area PTypeID W x
lr W x

2011 W x
m2cslr W x

m2cs2011

$ m. $ m. $ m. $ m.
12 BRZ 0 3.54 -1.17 5.67 0.28
17 AG 0 4.11 -0.89 5.2 0.11
11 WCI 0 4.79 -0.45 4.86 -0.23
18 WAF 0 4.95 -0.38 4.77 -0.56

2 ECI 0 4.51 -0.61 4.49 -0.6
14 SAF 0 4.41 -0.66 4.41 -0.92
15 UKC 0 5.34 -0.09 4.09 -1.27

8 SPOR 0 4.1 -0.84 4 -1.08
13 ECC 0 5.52 0.02 3.98 -1.38
16 USG 0 5.41 -0.05 3.81 -1.56

9 THAI 0 3.85 -0.98 3.72 -1.36
6 PHIL 0 3.61 -1.12 3.42 -1.66

10 TWN 0 3.58 -1.14 3.41 -1.67
7 SCH 0 3.42 -1.23 3.23 -1.85
5 NCH 0 3.31 -1.3 3.09 -1.98
4 KOR 0 3.28 -1.32 3.06 -2.01
3 JAP 0 3.23 -1.35 3.04 -2.05
1 CALI 0 3.66 -1.08 2.88 -2.52

from model scenario M2cslr, earnings are lower overall in the model compared to the esti-

mated option values with the exception of BRZ, AG, and WCI which are higher. InM2cs2011,

earnings are lower than W x
2011 except for BRZ, AG and ECI. Table 7.11 shows the factors that

explain earnings in model M2cslr. Take for instance the price that a ship in BRZ obtains from

matching to a trader demanding cargo from BRZ-SCH. The model outputW x
M2cslr is a function

of the trader’s willingness to pay for the service ($6.02 m.) and his outside option ($1.21 m.),

which in this case is determined by the earnings if he were to match with a ship in USG, his next

best alternative. Earnings for ships in USG are equal to the dummy surplus value ($3.81 m.)

because ships in this market are long so the price that a trader has to pay for the USG ship can

be directly calculated using equation 4.15, a function of the shipment cost, earnings, and option

value Vb where earnings equal s(x, ∅y, t) and the price equals $3.96 m. Traders match with the

USG ship because there is a shortage of ships in BRZ. The economic rent that the ship in BRZ

can extract for the BRZ-SCH match is equal to the price of the ship in USG plus the marginal
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willingness to pay for the ship in BRZ over the marginal ship. Earnings in the model reflect the

relevant substitutes in the market, a function of location and the availability of other ships in

the market. In comparison, the earnings from the terminal period are a function of trade flow

shares, probabilities of matching, freight rates and a discount factor which are annual averages

and are estimated with a degree of uncertainty as discussed in Chapter 6.

In the second version of Model 2 (M2cs2011), the 2011 data used to calibrate Vb has

a downward impact compared to M2cslr. This still results in all traders matching to ships

because the surplus is high enough (see Figure 7.7) that the agents can obtain at least their

dummy surplus values in contrast to M1cs2011 where the surplus was not high enough for

two trader types to match. The matching between M2cs2011 and M2cslr is the same except

Figure 7.7: Number of matches and surplus (million $) factors (M2cs2011; 0=No Match,
1=Match)

for the REDS-PHIL route. In M2cs2011, two ship types from SAF and SPOR match on the

REDS-PHIL route. The supply in SAF is fully utilized (.10) because the surplus is higher than

matching with a ship from SPOR and the remainder of the demand (.90) is satisfied by the

ship in SPOR. The rest of the supply in SPOR is allocated to the AG-SCH route. In contrast,

model M2cslr allocates the entire demand on REDS-PHIL route to the ship in SPOR, and the
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Table 7.12: Factors determining matches on REDS-PHIL route (M2cslr)

Start Load End Match Supply s(xjt, yi, t) s(xjt, ∅y, t)

$ m. $ m.
SPOR REDS PHIL 1 5.1 6.498 3.505

SAF REDS PHIL 0 0.1 6.663 4.410
SPOR AG SCH 4.1 5.1 6.668 3.505

ship in SAF remains unmatched. To understand why ships in SPOR are chosen over ships in

SAF, it is necessary to know the surplus values of the potential matches and dummy matches

for the ships s(xjt, ∅y, t).4 Table 7.12 shows the factors determining matches on REDS-PHIL

route in M2cslr. Although the surplus of matching with a ship in SAF is higher ($6.66 m. vs.

$6.49 m.), the value of not matching s(xjt, ∅y, t) for the ship in SAF is relatively higher than

s(xjt, ∅y, t) in SPOR. Both ships would relocate to WAF because the option value is higher in

the waiting area compared to AG.

In M2cs2011, ships which don’t match relocate to WAF (19.4 ships or 64%) and AG (11

ships or 36%) compared to M2cslr which allocated all ships to WAF. The difference can be

explained by the larger weight on repositioning costs in M2cs2011. While the laden speed is

constant in all models, the ballast speed to a waiting area (the unmatched speed) is optimized.

The quasi-myopic model minimizes the cost of the ballast unmatched journey because there is

no incentive to speed up. Ships travel at their minimum speed (8 knots). In Model 2, the ballast

speed depends on future earnings. Ships sail at their minimum speed of 8 knots in the 2011

scenario because Vb values are negative, but travel at a faster average speed of 10.4 knots in the

long-run scenario given significantly higher and positive future profits.

7.4 Prices in the model compared to historical data
Table 7.13 shows prices in models M1cs2011 and M2cs2011 compared to data on freight

rates in 2011 in multiplier units. This was calculated using equation 7.1 and weighted by the

number of matches of each ship type on each route. In model M1cs2011, prices are higher on

average than historical prices (18.3%) whereas prices are lower on average in modelM2cs2011

compared to historical data (-5.4%). The forward-looking model M2cs2011 outperforms the

myopic modelM1cs2011 by a wide margin. The residual sum of squares forM1cs2011 is 249

compared to 56 for M2cs2011.

Differences in prices between the two model versions can be explained by two reasons.

First, the option values are more negative in M1cs2011. If a ship’s option value is negative,
4Since all traders match, we can ignore the traders’ dummy surplus values, though they would be required if

traders did not match.
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the price increases because there are negative profits earned from the discharge area holding all

else constant. Secondly, the differences in the AG market reflect the prices of different marginal

ships in each model. In the quasi-myopic model, the marginal ship is SCH whereas the marginal

ship in the forward-looking model is in KOR. Since each ship is extra, their dummy earnings

determine the price. The dummy earnings for the ship in KOR is lower because it is located

farther away than the ship in SCH and therefore it is willing to accept a lower price in the

market.

Table 7.13: Comparison of multiplier prices in baseline models (Model 1 and 2) to historical data

Load End WS2011 WSM1cs2011 WSM2cs2011 pct diff lvl diff pct diff lvl diff

M1 M2 M1 M1 M2 M2

WS WS WS % WS % WS
AG CALI 50 52 43 4 2.1 -16.6 -7.1
AG ECC 39 43 35 9 4 -11.5 -4
AG ECI 54 79 61 31.5 24.8 11.5 7
AG JAP 53 51 40 -3.5 -1.8 -32.2 -12.9
AG KOR 50 64 45 21.8 13.9 -11.7 -5.2
AG SCH 53 67 54 21 14.1 1.7 0.9
AG SPOR 53 76 61 30 22.7 13.6 8.3
AG THAI 54 73 60 26 19 10.6 6.4
AG TWN 51 70 59 26.9 18.8 13.3 7.8
AG UKC 38 46 32 17.3 7.9 -20.2 -6.4
AG USG 37 44 34 19.1 7.1 -10.3 -3.4
AG WCI 56 98 73 42.8 41.9 23.3 17

BRZ SCH 51 67 40 21 14.1 -26.2 -10.6
REDS PHIL 48 62 49 22.3 13.8 1.3 0.6
WAF SCH 50 67 39 21 14.1 -28.5 -11.1
WAF TWN 47 70 36 26.9 18.8 -30.8 -11.1
Total 18.3 13.0 -5.4 -1.30

WS=Worldscale units
Other reasons that prices differ from historical prices is the demand to supply ratio could

be different from the historical data. As mentioned previously, for a finite number of agents,

these prices are not unique; rather there is a lower and upper bound on the allocation of surplus

which can lead to different prices. Another level of uncertainty is the estimated benchmark

price used to compute the multiplier. As mentioned in Chapter 6, aside from fuel costs, port

costs are the second largest factor in these calculations and they represent the most subjective

portion of forecasting new flat rates (McQuilling, 2010). Port costs are also estimated in the

model and are assumed to be uniform across routes but in practice vary according to the port

authority. The forward-looking model is able to capture the almost 15 point level difference in

westward routes (AG-UKC and AG-USG) compared to eastward routes which was seen in the

data which are lower because of the backhaul opportunity in WAF, whereas the myopic model’s
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prices are higher because it assumes the ship will relocate to AG.

Unfortunately, there was no publicly available data for this study on the trajectories of

ships which could validate the matching.

7.5 Optimal speed simulations
In this model comparison run, the constant matched speed assumption which was analyzed in

the previous sections is relaxed in order to understand how the factors (oil revenue, cost, and

option values) affect speed in the matched state and investigate whether the average matched

speed from the model is close to observed average speeds in 2011. As discussed in Chapter 4,

the optimal matched speed is the speed that maximizes the match surplus (the combined payoff

to the trader and ship) which is equivalent to solving for the match surplus equation’s derivative

with respect to speed. The optimal matched speed applies to the speed the ship sails from its

starting location to its discharge location when it is matched to a trader. Different discount rates

are applied to the oil revenue and ship’s option value to reflect heterogeneity in trader and ship

time preferences. Ships which are not located in the load area market are penalized. In the

model, this is implemented by the storage costs a trader has to pay for the days until a ship

arrives to pick up his cargo and the inventory cost which discounts the oil revenue. Figure 7.8

shows density plots of the matched speeds in Models 1 and 2 with different ship option value

scenarios. They were generated using a kernel density plot which estimates the distribution of

the data based on a histogram of the data rather than a priori distribution assumptions.

InM2os2011, the average matched speed (weighted by the total days spent in the matched

state) is 11.25 compared to 11.19 in M1os2011. The long-run scenario M2oslr has slightly

higher matched speeds because of the higher ship option values (11.34 knots compared to 11.24

in M1oslr). Ballast speeds are broken into matched and unmatched speeds. The matched

ballast speed inM2os2011 is 12.46 compared to the unmatched ballast speed of 8 knots, with a

total weighted average ballast speed of 9.53 knots. This reflects the fact that a larger proportion

of time is spent in the unmatched ballast state. For model M2oslr, ballast speeds are higher -

12.56 compared to 10.39 - because the ship option values are positive, and this results in a higher

average ballast speed of 11.15. Figure 7.9 shows the influence of voyage cost, repositioning

cost, and option values on speed.

The figure shows that the distinct cluster of ships with the highest speed results from a

combination of relatively higher repositioning costs, lower voyage costs, and higher option

values. These matches correspond to ships located in SCH matching on the AG-ECI and AG-

WCI routes, which have relatively higher option values for WCI and ECI. In contrast, the speeds
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Figure 7.8: Matched speeds (knots) in M1oslr vs. M2oslr

which rank the lowest correspond to matches that have zero repositioning costs, high voyage

costs and low option values.

7.6 Social welfare, speed and emissions
Table 7.14 compares the total surplus (social welfare), speed and emissions among the different

baseline models. The long-run forward looking models M1cslr and M1oslr have the highest

social welfare because of the higher option values for the ships. The model with the lowest

social welfare is model M1cs2011 because of the ship’s option value assumptions and constant

speed assumption. The optimal speed variant leads to a higher surplus compared to the constant

speed version in all models because the reduction in cost outweighs the decreased oil revenue to

the trader. This also leads to a reduction in emissions compared to the constant speed models.

The highest total emissions occur in M2cslr which is explained by its high ranking in total

speed. The model with the lowest emissions is M1os2011 because in this model not all traders

match and therefore the tonne-miles is less than the other models. To provide context to speeds

in the model, data from AIS in 2011 shows that the average ballast speed was 13.52 and 13.24

in laden. Data was not available to decipher whether ships were matched or unmatched. The
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Figure 7.9: Factors affecting matched speed (knots) Cost/Option Values in million $

model that is closest to these speeds is M2cslr, where 13.5 is the equivalent laden speed and

10.4 is the ballast speed, which averages to a total speed of 12.6.

7.7 Static Model Counterfactuals
This section considers the impact of transitory shocks on the static matching model. A transitory

shock assumes that the shock lasts one period. An example of a transitory shock is a temporary

supply disruption to oil supplies which causes demand to increase in the current period but

returns to normal in the next period. In the model, this means that expectations (the ship option

value and trader’s dummy match surplus) remain unchanged. I consider changes in fuel prices,

supply, demand, and a simultaneous demand and fuel price shock using the 2011 scenario.

7.7.1 Simulation 1: impact of higher fuel prices

I consider a transitory 5% fuel price shock in models M2cs2011 and M2os2011 by simulating

an increase in the heavy fuel oil price (HFO) above the baseline HFO price of $645/tonne

which translates into $677.25 per tonne. This is a reasonable assumption given the weekly

fluctuations in HFO prices ranged between -5.1% and 9.3% in 2011 for the reference Singapore

380cst bunker price. In the short-run, the impact of an increase in the HFO price increases
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Table 7.14: Social welfare, speed and emissions

Model TSurplus MSpeed UMSpeed TSpeed MCO2 UMCO2 TCO2

$ m. knots knots knots m. grams m. grams m. grams
M1cs2011 130.6 13.5 8 11.5 311,214 37,402 348,616
M1os2011 137.3 11.4 8 10.3 220,827 37402 258,229
M1cslr 124.1 13.5 8 11.9 370,567 31,451 402,018
M1oslr 132.2 11.5 8 10.6 268,041 31,451 299,492

M2cs2011 135.6 13.5 8 11.9 370,567 31,469 402,036
M2os2011 143.6 11.5 8 10.6 268,466 31,469 299,935
M2cslr 630.8 13.5 10.4 12.6 370,721 67,139 437,859
M2oslr 638.4 11.6 10.4 11.3 272,810 67,139 339,948

T=Total; L=laden; BM=ballast matched; M=matched; UM=unmatched

the repositioning and voyage cost because shipowners cannot substitute away from using this

input. A transitory shock increases the price of HFO in the current period but does not impact

future periods. This has the effect of increasing the price of matching in the current period

through the increase in fuel cost for ships who match to traders and who are unmatched and

have to sail empty to a waiting area but does not impact the traders’ option value to remain

unmatched because fuel prices are expected to return to the baseline price in the next period.

The sensitivity of price to cost increases can be measured in terms of the price elasticity and the

cost pass-through rate.

The price elasticity with respect to cost is defined as:

εP =
∆P (xjt, yi, t)

P (xjt, yi, t)
/

∆C(xjt, yi, t)

C(xjt, yi, t)

A unit elastic price change (εP = 1) means that the percentage change in cost leads to

an equal percentage change in price, while less than unit elasticity occurs when the percentage

change in price does not increase by as much as the percentage change in cost, and greater

than unit elasticities occur when the the percentage change in price increases by more than the

percentage change in cost.

The cost pass-through rate is defined as:

CPR =
∆P (xjt, yi, t)

∆C(xjt, yi, t)
∗ 100

where ∆P (xjt, yi, t) and ∆C(xjt, yi, t) are the change in prices and costs respectively.

The price elasticity provides a unit-less measure whereas cost-pass through is used to compare

the level difference in cost compared to price. The extent to which the shipowner can pass the

fuel price increase on to the freight rate depends on the market tightness for the particular ship
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type (measured by its ExtraRatio), the agents’ dummy surplus values, and the speed assump-

tions in the contract. For ships which are long, the price change is a function of the change in

the cost, the ship’s dummy surplus value and Vb which is represented mathematically as:

∆P (xjt, yi, t) = ∆C(xjt, yi, t) + ∆s(xjt, ∅y, t) + ∆Vb (7.1)

For ships which are not located at a waiting area, s(xjt, ∅y, t) will decrease, so the sign

is negative. The impact on Vb depends on the assumption about speed; in the constant speed

case it stays the same. Assuming a constant speed, the change in cost will be greater than the

change in price because ∆s(xjt, ∅y, t) offsets the price increase. In the cases where ships are

already located in the waiting area (ships in AG and WAF), ∆s(xjt, ∅y, t) = 0 such that for

ships which are long, ∆C(xjt, yi, t) exactly equals the ∆P (xjt, yi, t) so the cost pass-through

is 100%. Changes in prices for ships on the short side of the market reflect the change in the

price of the ship type’s substitute and the change in the trader’s willingness to pay for the ship

type over its substitute. Mathematically, this is represented as:

∆P (xjt, yi, t) = ∆P (xj′t, yi, t) + (∆′π(xjt, xj′t, yi, t)−∆π(xjt, xj′t, yi, t)) (7.2)

The first term, ∆P (xj′t, yi, t) represents the change in the substitute’s price and the sec-

ond term is the difference between the change in the willingness to pay (oil trader’s revenue)

between the fuel shock scenario (∆′π(xj , xj′t, yi, t) and the baseline scenario.

Table 7.15 shows that VLCC freight rates are sensitive to fuel price changes, generally

increasing by 2-3.6% (price elasticity .8-1.4) if fuel prices increase by 5% given a constant

matched speed (M2cs2011) in 2011. Cost pass-through rates are between 84 and 221%, aver-

aging 124% (weighted by number of matches per route). Cost-pass through for ship types in

AG, BRZ, ECI, SAF, SPOR, WAF and WCI is greater than or equal to 100%, while cost-pass

through is less than 100% for ship types in KOR, NCH, PHIL, SCH, USG, UKC and TWN. For

ships on the long side of the market, the extent to which ships can pass through the cost depends

on their dummy surplus value. In the WAF market, CPR is 100% because ∆s(xjt, ∅y, t) = 0

since the ship is already located in the waiting area. Ships in AG are also located in a waiting

area, but their cost pass-through rate is above 100% because they are on the short side of the

market and therefore the change in price is determined by equation 7.2, a function of the trader’s

next best (and feasible) substitute service and the relative WTP for matching with AG over the

substitute service.
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Table
7.15:Price

elasticities
fora

5%
transitory

fuelshock
(M

2
cs2011)

Start
L

oad
E

nd
C

ost
pct

Price
pct

ε
P

C
PR

(%
)

D
iff(Speed)

D
iff(M

atch)
E

xtraR
atio

D
iff(s(x

jt ,∅
y ,t))

D
iff(s(∅

x ,y
i ,t))

%
%

%
knots

$
m

.
$

m
.

U
SG

C
A

R
W

C
I

2.54
3.58

1.41
84

0
0

0.49
-0.01

0
U

SG
C

A
R

SPO
R

2.54
2.87

1.13
85

0
0

0.49
-0.01

0
K

O
R

A
G

JA
P

2.54
2.83

1.11
85

0
0

0.2
-0.01

0
N

C
H

A
G

JA
P

2.54
2.81

1.11
86

0
0

1
-0.01

0
U

SG
B

R
Z

SC
H

2.56
2.48

0.97
88

0
0

0.49
-0.01

0
SC

H
A

G
K

O
R

2.54
2.78

1.09
88

0
0

1
-0.01

0
SC

H
A

G
JA

P
2.54

2.73
1.08

88
0

0
1

-0.01
0

U
K

C
U

K
C

SPO
R

2.54
2.65

1.04
88

0
0

0.1
-0.01

0
T

W
N

A
G

K
O

R
2.53

2.68
1.06

91
0

0
1

-0.01
0

PH
IL

A
G

K
O

R
2.53

2.67
1.05

92
0

0
1

-0.01
0

T
H

A
I

A
G

SC
H

2.52
2.61

1.03
98

0
0

1
-0.01

0
T

H
A

I
A

G
K

O
R

2.52
2.52

1
98

0
0

1
-0.01

0
W

A
F

W
A

F
E

C
I

2.47
2.4

0.97
100

0
0

0.8
0

0
W

A
F

W
A

F
SC

H
2.51

1.95
0.77

100
0

0
0.8

0
0

W
A

F
W

A
F

T
W

N
2.51

1.99
0.79

100
0

0
0.8

0
0

SPO
R

R
E

D
S

PH
IL

2.52
2.59

1.03
104

0
0

1
-0.01

0
SPO

R
A

G
SC

H
2.51

2.47
0.98

104
0

0
1

-0.01
0

SA
F

R
E

D
S

PH
IL

2.52
2.52

1
108

0
0

1
-0.01

0
E

C
I

A
G

SC
H

2.49
2.25

0.9
119

0
0

1
0

0
B

R
Z

B
R

Z
SC

H
2.53

1.96
0.78

123
0

0
1

-0.01
0

A
G

A
G

U
SG

2.54
3.05

1.2
127

0
0

1
0

0
A

G
A

G
E

C
C

2.54
3.14

1.24
128

0
0

1
0

0
A

G
A

G
C

A
L

I
2.54

2.27
0.89

128
0

0
1

0
0

W
C

I
A

G
SC

H
2.47

2.12
0.86

133
0

0
1

0
0

A
G

A
G

U
K

C
2.47

3.23
1.31

146
0

0
1

0
0

A
G

A
G

SC
H

2.45
2

0.82
150

0
0

1
0

0
A

G
A

G
T

W
N

2.44
2.05

0.84
153

0
0

1
0

0
A

G
A

G
T

H
A

I
2.42

2.14
0.88

161
0

0
1

0
0

A
G

A
G

SPO
R

2.39
2.24

0.94
169

0
0

1
0

0
A

G
A

G
E

C
I

2.31
2.49

1.08
191

0
0

1
0

0
A

G
A

G
W

C
I

2.22
2.76

1.25
221

0
0

1
0

0



7.7. Static Model Counterfactuals 151

Table 7.16 shows that a fuel price increase of 5% results in price increases of 1.1-

4.0% when speed is optimized (M2os2011), which translates into a price elasticity of .77 to

1.41. Cost pass-through rates are between 57-233%, averaging 153% (weighted by number of

matches per route). The variation reflects the impact of speed on cost, dummy surplus values

and option values. The fuel price increase reduces speed by an average .19 knots reduction

(11.48 to 11.29) compared to the baseline M2os2011. In order to understand the factors that

influence prices, I consider changes in prices for the BRZ-SCH route in the constant and opti-

mal speed cases. Table 7.17 examines the reason for the difference in prices between the ship

in BRZ and USG matching to a trader type on the BRZ-SCH route in the constant and opti-

mal speed baseline and fuel price simulation. The change in the price to match with a ship in

BRZ reflects the change in the price of the ship’s substitute (USG). When speed is constant,

the change in USG’s price reflects the change in the shipment cost and s(xjt, ∅y, t) (the ship’s

option value to be in SCH remains unchanged because the voyage duration is the same). Af-

ter the fuel price increase, the ship’s dummy surplus value decreases (becomes more negative)

because of the increased cost to relocate to a waiting area (in this case, WAF) and the ship’s

bargaining power is now worse. Because of this weaker position, the ship cannot fully pass

through the increase in shipment cost, and the change in price reflects the sum of the change in

shipment cost and the change in its dummy surplus value is $.08 m. giving a price elasticity of

.97. Prices increase by the same amount in BRZ as in USG ($.08 m.) which reflects the change

in earnings of the trader as his willingness to pay is unchanged. This leads to a lower price

elasticity (.78 compared to .97 for USG) and exemplifies how changes in prices in one market

(USG) can ripple through to changes in prices in another market (BRZ).

In the optimal speed version, a higher fuel price negatively impacts the speed at which

ships are willing to supply the transportation service. Because there is a non-linear relationship

between speed and fuel cost, there are diminishing returns to fuel savings and this leads to non-

linear changes in prices. Continuing with the example of ships in BRZ and USG, Table 7.17

shows that speed changes from 10.5 to 10.33 (.17 knots) on the BRZ-BRZ-SCH route compared

to 12.07 to 11.88 (.19 knots) on the USG-BRZ-SCH route. A variation in speed impacts not

only costs and the ship’s dummy surplus value but also the ship’s option value and the oil

trader’s revenue because the duration of the voyage is now longer. This lowers the trader’s oil

revenue and increases the ship’s option value (since it is a negative amount). The change in the

price on the USG-BRZ-SCH route is lower compared to the constant speed case because the

slower speed lowers costs. But this also lowers the trader’s revenue, so its earnings on this route

decrease by $.05 m. The price on the BRZ-BRZ-SCH route is determined by the combination of
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the decreased oil revenue and oil trader’s outside option, which leads to a higher price elasticity

(.95) over the constant speed version. Overall, the matched speed decreases from 11.48 to 11.29

(.19 knots).

7.7.2 Simulation 2: increase in supply in one location

The simple market example from section 7.1.1 in which demand is fixed for one location

(Brazil) and ships are short in BRZ resulted in ships from Brazil and the US Gulf matching in

the BRZ market, while all other ship types remained unmatched. In other words, ships located

in Brazil and the US Gulf were relevant for determining equilibrium prices in the BRZ market.

This result is useful for predicting changes in prices when the supply of ships is increased in

one location and demand is given by Table 6.1, the market demand for all markets. Continuing

with the example of Brazil, when the supply of ships is increased in Brazil and held constant

across other locations, the only prices that change are prices for the matches BRZ-BRZ-SCH.

Prices drop in Brazil when its ExtraRatio switches to 0 and the price is the price that equates

earnings to the ship’s dummy surplus value.

7.7.3 Simulation 3: demand shock

The demand sample was estimated using trade flow shares from the VLCC fixtures data. As

discussed in Chapter 5, there is a margin of error in these estimates because of censoring bias as

identified in Chapter 5. One of the biases is for Chinese imports from West Africa. The VLCC

fixtures data suggests that China imports 89% of its oil from AG, 7% from WAF, and 4% from

BRZ. Using an implied share from the aggregate trade data on oil inter-area movements from

BP (2012) suggests that these trade flow shares could be lower for AG (70%) and higher for

WAF (20%) and BRZ (10%). In order to test the sensitivity of the model to changes in demand

shares on routes to China, I simulate this alternative trade flow scenario. Applying the BP

shares to total demand for shipments in China in the demand sample, trade on the AG-SCH

route decreases by 5.10 cargoes, increases in the WAF market by 3.40 cargoes and 1.7 cargoes

in BRZ compared to the baseline model.

Table 7.18 shows the change in matches between the baseline and the change in Chinese

trade flow shares. A decrease in demand on the AG-SCH route leads price decreases for matches

in the AG market ranging from -2.3 to -21.4%, while an increase in demand on the WAF-SCH

route increases prices for matches in the WAF market by 68.5 to 145.2%. There is no change

in price for the BRZ, UKC and CAR markets. The previous analysis suggested that prices are

affected by a change in demand when the price of a trader’s substitute changes. In the model,

this occurs when a ship type’s position moves from long (short) to short (long) or equivalently
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its ExtraRatio switches from < 1 to 1 or 1 to < 1. Starting with the BRZ-SCH route, prices

remain the same because there is still an excess supply of ships located in USG to absorb the

shock (ExtraRatio increases from .49 to .83) which had previously matched on the BRZ-SCH

route. Thus the demand shock is localized because it can be absorbed by the excess supply of

ships in the local market. In contrast, a shock to demand on the AG-SCH and WAF-SCH routes

should alter prices given the market tightness in the AG market and the increased demand for

ships in WAF. Before the demand shock, the extra ships which matched were located in KOR,

WAF and USG. Ships from AG, ECI, PHIL, SCH, SPOR, THAI, and TWN served the AG-SCH

route. After the demand shock however, the decrease in demand for ships on the AG-SCH route

causes a reallocation of ships from AG-SCH to other routes. Ships from TWN, THAI, SCH

and PHIL drop out, but AG, ECI and SPOR continue to serve the AG-SCH route. Prior to the

demand decrease, all ships serving the AG-SCH route were in a short position and the marginal

ship was SCH. The best substitute for this ship before the decrease in demand was determined

by the price of KOR. After the shock, the marginal vessel changes to SPOR. The price of this

match is determined by a new substitute, the price to match with a ship in SCH. Prices decrease

because the price of this substitute is lower. The decrease in demand also affects other routes

from AG, reflecting the new prices of substitute ships.

A similar logic can be applied to the demand shock on the WAF-SCH route. The shock

tips this ship type’s position from long to short. Ships from SAF and UKC are allocated to the

WAF-SCH route to meet demand. The difference in how prices are affected in the BRZ-SCH

demand shock compared to the AG-SCH and WAF-SCH demand shock illustrate the conditions

under which a shock to one market will cascade through to prices. Despite demand remaining

the same at 70 cargoes, the overall surplus decreases from $143.58 m. to $138.87 m. because

the surplus generated from the additional matches on the USG-BRZ-SCH and WAF-WAF-SCH

routes is less than the change in total surplus from the decrease in ships that match on the

AG-SCH route.

7.7.4 Simulation 4: simultaneous demand and higher fuel price shock

The impact of a simultaneous demand shock to Chinese imports on the AG-SCH, WAF-SCH

and BRZ-SCH route of 10% 5 and a 5% fuel prices increase on all routes is simulated. In order

to understand whether the simultaneous shock will have an additive 6 or non-additive impact

on the results, I first simulate the demand shock and then compare the results from the demand
5China increased its total demand for oil imports (in thousand barrels per day) by 10.4% between 2009 and 2010

(BP, 2012).
6An additive impact means that the sum of the change in prices due to the demand shock and fuel price equals

the change in prices due to the simultaneous shock.
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Table 7.18: Difference in matches and prices (M2os2011 vs. change in Chinese trade flow
shares)

Start Load End PriceDiff Price pct

$ m. %
ECI AG SCH -0.081 -3.2

PHIL AG SCH -0.081 -3.9
SCH AG SCH -0.081 -4.1

SPOR AG SCH -0.081 -3.5
THAI AG SCH -0.081 -3.7
TWN AG SCH -0.081 -4.0
WCI AG USG -0.081 -3.0

AG AG SCH -0.081 -2.8
WCI AG CALI -0.081 -2.3
WCI AG ECC -0.081 -3.2

AG AG ECC -0.081 -3.0
AG AG JAP -0.081 -2.6
AG AG KOR -0.081 -2.6
AG AG UKC -0.081 -4.3

SCH AG TWN -0.079 -4.4
SPOR AG TWN -0.079 -3.7
THAI AG TWN -0.079 -4.0
PHIL AG THAI -0.078 -5.0
SCH AG THAI -0.078 -5.3

THAI AG THAI -0.078 -4.6
TWN AG THAI -0.078 -5.0
KOR AG WCI -0.078 -21.4
NCH AG WCI -0.078 -20.6
SCH AG ECI -0.078 -10.3
SCH AG WCI -0.078 -17.9
SCH AG SPOR -0.078 -6.4
SCH REDS PHIL -0.078 -3.8
SAF REDS PHIL -0.078 -3.1
BRZ BRZ SCH 0.000 0.0
UKC UKC SPOR 0.000 0.0
USG BRZ SCH 0.000 0.0
USG CAR SPOR 0.000 0.0
USG CAR WCI 0.000 0.0
UKC WAF ECI 1.090 145.2
WAF WAF ECI 1.090 68.5
UKC WAF TWN 1.093 64.3
WAF WAF TWN 1.093 42.7
UKC WAF SCH 1.094 58.4
WAF WAF SCH 1.094 40.0
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Table 7.19: Difference in matching (M2os2011 vs. 10% Chinese demand shock)

Start Load End Match Diff.

KOR AG ECI 0.2
KOR AG WCI 2.2
NCH AG ECI 0.3
NCH AG WCI -0.3
SCH AG ECI -0.5
SCH AG SCH 2.4
SCH AG WCI -1.9
USG BRZ SCH 0.1
WAF WAF SCH 0.2

shock, fuel shock, and simultaneous shock. Table 7.19 shows that the 10% Chinese demand

shock causes a reallocation of ships in NCH from the AG-WCI route to AG-ECI and SCH ships

move from AG-ECI and AG-WCI to meet the increased demand on the AG-SCH route. Ships in

SCH which previously served the AG-ECI and AG-WCI routes are replaced by ships in KOR.

Ships in WAF and USG meet demand on the WAF-SCH and BRZ-SCH routes, which they

were previously serving respectively before the demand shock. Prices change for ships serving

most routes that load in AG and REDS. The change in price can be explained by the marginal

vessel (KOR) which is added to the AG-ECI route as a result of the increase in demand on the

AG-SCH route. Before the demand shock, the marginal vessel on the AG-ECI route was SCH;

the demand shock reallocates some of these ships to the AG-SCH route because the surplus is

higher for this matching combination. The marginal ship (KOR) is more expensive because it

is located farther away and this bids up the price on the routes that the other ships serving the

AG and REDS markets must obtain. Note however, that the AG-WCI route is unaffected. This

is because ships from KOR were already serving this route. Prices for the SCH-REDS-PHIL

and SAF-REDS-PHIL matches increase because ships in SCH and SAF are on the short side

of the market and must now obtain a higher price. The change in the price can be explained by

the difference in the oil trader’s earnings between the SCH-AG-ECI and KOR-AG-ECI routes.

The matched speed also increases from 11.48 to 11.53 because the new routes - KOR-AG-ECI

and NCH-AG-ECI - increase the weighted average.
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Table 7.20 shows that the difference in cost is the same between the fuel shock and fuel

and demand shock simulations, but the price elasticities differ on the routes where prices also

change due to the demand shock. There is no difference in price elasticities compared to the

fuel shock simulation on routes where prices did not change due to the Chinese demand shock.

On routes where prices change due to the demand shock, the increase in prices is not additive;

prices increase by less than the additive result. This is because speed adjusts to 11.34 compared

to 11.29 in the fuel shock simulation. However, if the same simulation is run using a constant

speed, the increase is additive.

7.7.5 Simulation 5: Multidimensional matching

In this simulation, ships vary by their location and physical characteristics. As described in

Chapter 6, the model has three distinct physical character types (PType), differentiated by age,

DWT, design speed, and the ship’s as-designed daily fuel consumption (k). This increases

the ship type space from 18 to 54 types (#Locations ∗ #PhysicalTypes). The simulation

considers two scenarios which have different assumptions about cargo size. In Bigger is Better,

the cargo size is determined by a constant capacity utilization rate times the DWT of the ship

whereas scenario Energy Efficiency Rules holds the cargo size constant.

Because ships are dispersed across locations according to their fleet share, with PType 2

having the greatest share (60%) compared to PType 1 (33%) and PType 3 (7%), there is an in-

teraction between location and physical ship types. It is therefore important to first understand

how the surplus differs across physical type holding location constant. I perform a decompo-

sition analysis in order to pin down each of the primitive parameters’ impact on the surplus

components. Starting with the ship’s option values, Figure 7.10 shows that the option values

in Bigger is Better are the highest for PType 1, followed by PType 2 and 3. This is due to a

combination of price and quantity effects which outweigh the increased cost. For example, the

difference in average option values due to the change in qt is $.42 m. between Type 1 and Type

2 while the price difference is $.02 m. all else constant. On the other hand, costs are higher for

PType 1 ($.301 m.) than PType 2. The net effect is a $.14 m. higher earnings in favor of PType

1 over PType 2. Figure 7.11 shows the option values when cargo size is held constant. In this

case, the cost is the most important determinant of earnings and therefore PType 2, the most

energy efficient ship, has the highest values. Table 7.21 shows the difference between surplus

values, surplus components and prices across physical ship types for matches with Trader 13

demanding cargo on the BRZ-SCH route in both scenarios.

In each scenario, ships of all three physical types which are located in BRZ are utilized

first because they command the highest surplus over ship types located in other areas, but the
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Table 7.20: Price elasticities (fuel shock vs. fuel and demand shock)

Start Load End Cost pct Price pct εP Price pct εP ∆εP

fuel fuel fuel fuel & dem. fuel & dem.
% % %

ECI AG SCH 1.3 1.5 1.106 1.5 1.129 0.023
KOR AG SCH 1.4 1.4 1.010 1.5 1.040 0.029
KOR AG WCI 1.3 3.9 3.016 3.9 3.016 0.000
NCH AG WCI 1.3 3.9 2.960 3.9 2.960 0.000
PHIL AG SCH 1.4 1.5 1.033 1.5 1.060 0.027
SCH AG ECI 1.3 2.4 1.837 2.5 1.915 0.078
SCH AG KOR 1.4 1.4 0.979 1.4 1.005 0.026
SCH AG SCH 1.4 1.4 1.021 1.5 1.049 0.028
SCH AG SPOR 1.4 1.8 1.340 1.9 1.387 0.047
SCH AG THAI 1.4 1.6 1.189 1.7 1.227 0.038
SCH AG TWN 1.4 1.5 1.072 1.5 1.103 0.031
SCH AG WCI 1.3 3.6 2.766 3.6 2.766 0.000
SCH REDS PHIL 1.4 1.5 1.076 1.6 1.102 0.026

SPOR AG SCH 1.4 1.5 1.070 1.5 1.095 0.025
THAI AG SCH 1.4 1.5 1.052 1.5 1.078 0.026
TWN AG SCH 1.4 1.4 1.032 1.5 1.059 0.027
WCI AG CALI 1.4 1.6 1.110 1.6 1.126 0.015
WCI AG ECC 1.4 2.3 1.585 2.3 1.606 0.021
WCI AG JAP 1.3 1.4 1.078 1.5 1.098 0.020
WCI AG USG 1.5 2.2 1.523 2.2 1.543 0.020
BRZ BRZ SCH 1.4 1.3 0.948 1.3 0.948 0.000
SAF REDS PHIL 1.4 1.6 1.120 1.6 1.142 0.023

UKC UKC SPOR 1.4 1.3 0.928 1.3 0.928 0.000
USG BRZ SCH 1.5 1.3 0.854 1.3 0.854 0.000
USG CAR SPOR 1.4 1.4 0.970 1.4 0.970 0.000
USG CAR WCI 1.4 1.8 1.230 1.8 1.230 0.000

AG AG ECC 1.4 2.3 1.564 2.3 1.584 0.020
AG AG JAP 1.3 1.5 1.107 1.5 1.126 0.019
AG AG KOR 1.3 1.5 1.123 1.5 1.143 0.020
AG AG SCH 1.3 1.5 1.169 1.5 1.190 0.021
AG AG UKC 1.3 2.4 1.857 2.5 1.889 0.032

WAF WAF ECI 1.3 1.3 0.969 1.3 0.969 0.000
WAF WAF SCH 1.4 1.1 0.753 1.1 0.753 0.000
WAF WAF TWN 1.4 1.1 0.771 1.1 0.771 0.000
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Figure 7.10: Ship Option Values ($ m.) where Type refers to its Ptype (Bigger is Better)

ranking of physical ship types within BRZ differs. In Bigger is Better, PType 1 has the highest

surplus values, followed by PType 2 and 3 because the additional cargo quantity that PType 1

can carry increases the oil revenue and Vb and this outweighs the higher shipment cost; PType 1

earns $.44 m. more than PType 2 and $ 1.7 m. over PType 3. However, in the Energy Efficiency

Rules scenario, shipment cost explains differences in surplus values; PType 2 ranks the highest

in surplus as oil revenue and Vb influence the matching to a lesser degree due to the constant

cargo size. This leads to a premium in earnings on the BRZ-BRZ-SCH match for PType 2 of

$ .33 m. over Type 1 and $.42 m. over Type 3. The differences in prices amongst the three

types (12, 30, 48) located in BRZ reflects the difference in the oil trader’s willingness to pay

between each ship and its best feasible substitute. For example, in the Bigger is Better scenario,

the difference in oil revenue between PType 1 and 2 reflects the additional oil revenue from a

higher cargo size ($ .34 m.). This outweighs the additional shipment cost that PType 1 incurs,

which leads to a lower contract speed than PType 2. Ships of PType 1 in ECC compete with

a PType 2 ship in USG because the surplus is higher. This can be attributed to the higher oil

revenue and ship option value which outweighs the greater shipment cost compared to ship 34.

However, when cargo size is constant in Energy Efficiency Rules, this advantage disappears and
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Figure 7.11: Ship Option Values ($ m.) where Type refers to its Ptype (Energy Efficiency Rules),
$ m.
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PType 2 dominates the matching of ship types from other areas outside of BRZ.

Figures 7.12 and 7.13 show the probability densities of the surplus and surplus components

for the multidimensional ship types which match to traders compared to the baselineM2os2011

model. The mean of the density surplus function is greater in the Bigger is Better simulation

compared to Energy Efficiency Rules; the total social welfare in Bigger is Better is $154 m.

compared to $143 m. in Energy Efficiency Rules. In both scenarios, oil revenue is greater than

the baseline and shipment cost is less than the baseline mean of the density function for cost.

However, the mean of the density for Vb is lower for both scenarios compared to the baseline

due to the influence of PType 3.
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Figure 7.12: Kernel density of match surplus and its components ($ m.) (Bigger is Better)

In Bigger is Better, ships of all physical types match but in varying quantities. PType 1
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Figure 7.13: Kernel density of match surplus and its components ($ m.) (Energy Efficiency
Rules)

is the most utilized 7 (90%), followed by PType 2 (62%) and PType 3 (39%). The interaction

between location and physical type is evidenced by the fact that ships of PType 1 which are

located in close proximity to the local market where they match have the highest surplus. In

contrast, ships of PType 1 which are located farther away (in California and the Far East) are

at a disadvantage to ships of other physical types located closer to the market. The results

show a significant change in matching in Energy Efficiency Rules with PType 2 utilized at a

higher rate (77% compared to 62% in Bigger is Better), 70% for PType 3, and 56% for PType 1.

The difference demonstrates the impact of changes in cargo size. With equal payload, energy

efficiency plays a more important role in the matching.
7The utilization rate is defined as the total matches of its type as a percentage of its total supply to the market
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The distribution of the surplus components for the Bigger is Better scenario (Figure 7.14)

shows the contribution of oil revenue, shipment cost and ship option values to the surplus and

explains the influence of each ship type on the density of the match surplus. Although PType

1 has a lower energy efficiency compared to PType 2, its location in these matches makes it

competitive with the other physical ship types and the higher oil revenue and ship option values

tilt the matching in its favor. In contrast, in Energy Efficiency Rules, the distribution and mean

of shipment costs for PType 1 (Figure 7.15) is lower than the other types because the proximity

to the load area is much more important for these ships to remain competitive. Specifically, the

close proximity to the load area has a positive impact on the oil revenue and ship option values

and a negative impact on the shipment cost. However, due to the distribution of PType 1 across

locations with a variety of distances to the load area, the locational advantage is not enough

to offset the higher shipment costs, leading to a lower matching probabilities compared to the

Bigger is Better scenario.

The analysis of multidimensional matching did not consider radical changes in energy

efficiency because it was calibrated to the current fleet and focused on the short-run. One

speculative long-run question is how much the results would change in the Bigger is Better

scenario if PType 2 had zero fuel costs, holding other costs constant. This is a simplifying

assumption because current technologies for low carbon ships are more expensive and no zero-

carbon technology exists except sailing ships which have to be sailed at a much slower speed

than diesel-run ships. Hence the question posed refers to a what-if scenario in which a zero

carbon ship was available at the same fixed costs as the other ship types. The introduction of

such a ship significantly changes the matching results in Bigger is Better, greatly increasing the

utilization rate of PType 2 from 62% to 87%, and reducing shares in PType 1 from 90% to 45%,

and PType 3 from 39% to 30%.

7.8 Dynamic Matching: Solving for a fixed point
In this section, the baseline model is extended to a dynamic model, M3os2011, using 2011

option values. As discussed in Chapter 4, the difference between the static and dynamic models

is the time horizon and how the ship option values and dummy surplus values are computed.

As discussed in Chapter 4, the static version required an estimate of these values outside the

model, whereas the dynamic version uses the earnings derived from the output of the model

as input for the next time step. The dynamic version assumes that the supply and demand is

stationary in each period and is provided as an exogenous input. The goal is to understand

whether the earnings converge to a stationary value in each location, a so-called “fixed point”
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Figure 7.14: Match surplus distribution and its components ($ m.) by physical type and location
(Bigger is Better)

in option values after the matching model is run for a certain amount of iterations. One of the

ways to reach convergence more quickly is to increase the discount rate of the ship. To reach

convergence, this rate has to be increased to 1000% per annum (2.7% per day) or a .51 discount

factor such that the model converges in 46 iterations. A high discount rate implies that ships

heavily discount the future much more than in the static model. A drawback of this approach is

its affect on Vb, which is lowered by an average $ .77 m. compared to M2os2011.

The fixed point solution of the model (the final iteration) yields a matching of all traders

to ships because earnings are better than the values to remain unmatched. Table 7.22 shows the

difference in matches between the static (M2os2011) and dynamic models. The difference is

due to the surplus values between the models which is affected by the Vb values and the dummy
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Table 7.22: Differences between static and dynamic matching (M2os2011 and M3)

Start Load End Match Match Surplus Surplus Vb Vb

M1 M2 M1 M2 M1 M2

$ m. $ m. $ m. $ m.
AG AG ECC 0.6 0.0 3.50 3.10 0.02 -0.36
AG AG ECI 0.0 1.0 4.63 5.72 -0.60 0.52
AG AG JAP 8.0 0.0 3.13 4.19 -1.34 -0.29
AG AG KOR 6.0 0.0 3.20 4.24 -1.31 -0.28
AG AG SPOR 0.0 2.0 4.15 5.13 -0.84 0.15
AG AG THAI 0.0 2.0 3.87 4.84 -0.98 -0.01
AG AG TWN 0.0 3.0 3.55 4.53 -1.14 -0.16
AG AG UKC 1.0 0.0 4.39 3.84 -0.08 -0.61
AG AG WCI 0.0 3.0 4.97 6.24 -0.45 0.87

ECC BRZ SCH 0.0 0.2 0.64 1.76 -1.22 -0.10
ECI AG SCH 1.1 0.0 2.60 3.63 -1.23 -0.20
ECI AG USG 0.0 1.1 2.56 2.27 -0.05 -0.34

KOR AG WCI 0.8 0.0 2.77 3.75 -0.45 0.57
NCH AG UKC 0.0 0.1 2.19 1.83 -0.08 -0.44
NCH AG WCI 0.3 0.0 2.80 3.79 -0.45 0.57
PHIL AG KOR 0.0 0.2 1.33 2.44 -1.31 -0.20
PHIL AG SCH 0.2 0.0 1.50 2.56 -1.22 -0.17
SCH AG CALI 0.0 1.0 0.38 1.13 -1.07 -0.31
SCH AG ECI 1.0 0.0 2.59 3.52 -0.60 0.35
SCH AG JAP 0.0 8.0 1.07 2.21 -1.34 -0.21
SCH AG KOR 0.0 1.1 1.13 2.25 -1.31 -0.20
SCH AG SCH 0.1 0.0 1.30 2.37 -1.22 -0.16
SCH AG SPOR 2.0 0.0 2.09 3.03 -0.84 0.10
SCH AG THAI 2.0 0.0 1.81 2.78 -0.98 -0.01
SCH AG TWN 3.0 0.0 1.49 2.52 -1.13 -0.11
SCH AG UKC 0.0 0.8 2.32 1.95 -0.08 -0.45
SCH AG WCI 1.9 0.0 2.93 3.93 -0.45 0.59
SCH REDS PHIL 0.9 0.0 1.06 2.08 -1.11 -0.09

SPOR AG ECC 0.0 2.0 2.21 1.88 0.02 -0.31
SPOR AG KOR 0.0 1.6 1.92 3.01 -1.31 -0.23
SPOR AG SCH 5.1 0.0 2.09 3.14 -1.22 -0.18
SPOR AG USG 0.0 1.5 2.04 1.78 -0.05 -0.32
THAI AG KOR 0.0 1.9 1.64 2.74 -1.31 -0.21
THAI AG SCH 1.9 0.0 1.81 2.86 -1.22 -0.18
TWN AG KOR 0.0 1.2 1.32 2.43 -1.31 -0.20
TWN AG SCH 1.2 0.0 1.49 2.55 -1.22 -0.16
USG BRZ SCH 0.2 0.0 0.50 1.63 -1.22 -0.10
WAF AG UKC 0.0 0.1 1.84 1.51 -0.08 -0.42
WAF REDS PHIL 0.0 0.9 0.92 1.95 -1.11 -0.09
WCI AG CALI 1.0 0.0 2.09 2.75 -1.07 -0.40
WCI AG ECC 1.4 0.0 3.12 2.75 0.02 -0.35
WCI AG SCH 0.0 5.0 3.00 4.01 -1.23 -0.22



168 Chapter 7. Results

1 2 3

1
2

3
4

Physical Ship Type

S
ur
pl
us

1 2 3

5.
0

5.
5

6.
0

6.
5

Physical Ship Type

O
il 

R
ev

en
ue

1 2 3

1.
5

2.
0

2.
5

3.
0

Physical Ship Type

S
hi

pm
en

t C
os

t

1 2 3

-1
.5

-1
.0

-0
.5

0.
0

Physical Ship Type

S
hi

p 
O

pt
io

n 
V

al
ue

Figure 7.15: Match surplus distribution and its components ($ m.) by physical type and location
(Energy Efficiency Rules)

surplus values which change the stability requirements. The same ships serve the AG, CAR

and WAF markets but there are different ship types serving the REDS and BRZ markets. Ships

in SAF and SCH serve the REDS market in the static model whereas SAF and WAF serve

REDS in the dynamic model. For the BRZ market, both models allocate ships from BRZ but

the remaining demand is served by USG in the static model and ECC in the dynamic model.

The reason is that the difference in the ship’s dummy surplus between USG and ECC decreases

as earnings in ECC erode given the ship’s long position, and this eventually leads to a higher

difference in surplus relative to the difference in dummy surplus. Of the unmatched ships, 14.10

ships relocate to AG and 16.30 ships relocate to WAF.

Figure 7.16 shows the simulation of earnings and dummy earnings for ships and traders,
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where Dummyy is the earnings if the ship doesn’t match and Dummyx for the trader.

Figure 7.16: Dynamic simulation of earnings under M3 (Baseline, $ m.)

In the first iteration, all traders match to ships, and the solution is equal toM2os2011. The

algorithm then updates the dummy surplus values according to the Step 2 of the dynamic solu-

tion algorithm using the terminal option values and the earnings from the first iteration’s model

output. Earnings increase for ships which are on the short side of the market and decrease for

those on the long side relative to iteration 1 of the model. The trader and ships’ earnings from

iteration 1 of the model are used to compute the new dummy surplus values in the next model

iteration which is discounted by the time waiting until each agent can match in the next period.

The increase can be explained by the traders’ higher earnings compared to the estimated earn-

ings given that these earnings are now determined by the intra-allocation of surplus within the

model. This increase causes some traders to remain unmatched in the 2nd iteration because the

surplus is not large enough to satisfy these higher dummy surplus values. Traders on the routes

AG-CALI, AG-ECC, AG-UKC and AG-USG do not match until their dummy surplus values

decline over the next few iterations. The reason Dummyx declines is due to the discounting

and their position in the market (which is long in the AG market). For example, Trader 1 which

demands cargo on the AG-CALI route has a dummy surplus value of $ -.46 m. in the first
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Table 7.23: Ship earnings: initial guess, static, and dynamic values

AreaName W x
2011 W x

M2os2011 W x
M3os2011 Dummy y M3 Extra

$ m. $ m. $ m. $ m.
AG -0.89 0.22 1.49 1.32 0

WCI -0.45 -0.16 1.13 0.93 0
ECI -0.61 -0.55 0.75 0.57 0

SPOR -0.84 -1.06 0.26 0.12 0
SAF -0.66 -0.89 0.12 -0.04 0
BRZ -1.17 0.41 0.10 -1.22 0

THAI -0.98 -1.34 -0.01 -0.12 0
PHIL -1.12 -1.65 -0.31 -0.37 0
TWN -1.14 -1.67 -0.33 -0.38 0
SCH -1.23 -1.85 -0.50 -0.52 0
NCH -1.30 -1.98 -0.62 -0.62 1
KOR -1.32 -2.01 -0.65 -0.65 1
JAP -1.35 -2.05 -0.70 -0.70 1

WAF -0.38 -0.56 -0.94 -1.12 0
UKC -0.09 -1.27 -1.63 -1.63 1
ECC 0.02 -1.38 -1.70 -1.70 1
USG -0.05 -1.56 -1.82 -1.82 1

CALI -1.08 -2.52 -1.89 -1.89 1

iteration. It matches with a ship in AG and earns 2.73. At the start of the second period, its new

dummy value is 2.35 which equals the discounted earnings in the previous iteration. This value

is too much to satisfy the stability conditions, so the trader continues to remain unmatched until

iteration 5 when the trader’s dummy surplus has declined enough to be able to match to a ship

in WCI and the trader earns $1.76 m. In iteration 6, the matching changes to SCH-AG-CALI

because the trader’s dummy surplus value is low enough to satisfy a matching combination with

a lower surplus. A similar process occurs for other trades, and this has the effect of changing

the matching compared to M2os2011. The surplus differs from the static model because Vb

and the dummy surplus values are different.

Tables 7.23 and 7.24 show the starting guess for earnings for the ship and trader, the static

model solution, the fixed point solution for earnings and dummy surplus values. For ships, the

top five largest values are AG, WCI, ECI, SPOR, and SAF. The reason for higher (and positive)

values for the ship types in these areas is because these ships are on the short side of the market

(Extra = 0). Consequently, these locations also command higher prices and the trader earns

less in these markets compared to markets where ships are on the long side of the market, as

evidenced by traders’ lower earnings in the AG, REDS and BRZ markets. One exception to

this trend is for ships in WAF which are not extra. The reason these ships’ earnings are lower is

because ships in WAF start off being on the long side of the market. In iterations 1-3, Traders
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Table 7.24: Trader earnings: initial guess, static, and dynamic values

Load End W y
2011 W y

M2os2011 W y
M3 Dummy x M3

$ m. $ m. $ m. $ m.
WAF ECI 5.26 4.90 6.20 5.81
UKC SPOR 4.58 4.11 5.36 4.98
WAF TWN 4.70 3.91 5.33 4.94
CAR WCI 4.41 4.30 5.31 4.92
WAF SCH 4.60 3.73 5.19 4.81
CAR SPOR 4.14 3.71 4.87 4.48

AG WCI 4.55 4.78 4.74 4.36
AG ECI 4.30 4.43 4.23 3.85
AG SPOR 3.98 3.94 3.64 3.26

BRZ SCH 2.83 2.06 3.46 3.08
AG THAI 3.81 3.66 3.35 2.97
AG TWN 3.63 3.34 3.04 2.66

REDS PHIL 3.23 2.90 2.90 2.52
AG SCH 3.52 3.15 2.88 2.50
AG KOR 3.43 2.98 2.75 2.38
AG JAP 3.40 2.92 2.71 2.33
AG UKC 3.89 4.17 2.45 2.08
AG CALI 2.73 2.25 1.63 1.26
AG ECC 2.94 3.28 1.62 1.24
AG USG 2.82 3.12 1.52 1.14

18-20 who demand cargo to be shipped from WAF match to ships in WAF. This leaves 1 ship

left and therefore ships are long. In iteration 4, it becomes profitable to allocate .90 ships to

the REDS-PHIL route because the earnings have lowered the stability conditions required to

match. These ships are still long but are close to switching to being short at a utilization ratio

of 98%. In the next iteration as the trader’s dummy surplus value continues to increase on this

route, Trader 10 on the AG-UKC route decides to trade (.10) with WAF so the ship in WAF

is no longer extra. This tips the balance in favor of the ship, and ships in WAF start to earn

more than their dummy surplus value. This process continues until both the ships’ and traders’

earnings have converged.

Table 7.25 shows a comparison of prices in M3os2011, M2os2011 and historical 2011

multiplier prices. Prices are lower overall in the models compared to historical data and this

can be explained by lower speeds in the optimal speed case. The dynamic model does a better

job overall at predicting prices on routes from AG compared to M2os2011, but a poor job on

routes from BRZ and WAF. Prices on these routes are significantly lower and this reflects the

erosion of ship earnings over the model iterations. For the BRZ-SCH route, earnings decrease

over the model simulation because the substitute’s (ECC) prices decrease due to the fact that the
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Table 7.25: Comparison of historical, M2os2011 and M3os2011 prices

Load End WS2011 WSM2os2011 WSM3os2011 pct diff lvl diff pct diff lvl diff

M2 M2 M3 M3
WS WS WS % WS % WS

AG CALI 50 39 36 -27.3 -10.7 -37.4 -13.6
AG ECC 39 32 45 -23.3 -7.4 13.7 6.2
AG ECI 54 28 68 -93.8 -26.1 21.1 14.4
AG JAP 53 55 42 4 2.2 -27.5 -11.4
AG KOR 50 61 50 17.7 10.8 -0.8 -0.4
AG SCH 53 52 61 -2.6 -1.3 13 7.9
AG SPOR 53 35 69 -53.1 -18.4 23.4 16.2
AG THAI 54 37 67 -47.2 -17.3 19.6 13.1
AG TWN 51 38 64 -34.2 -13 20.2 12.9
AG UKC 38 31 41 -24.2 -7.4 8.2 3.4
AG USG 37 30 44 -24.1 -7.2 16.9 7.5
AG WCI 56 23 76 -142.7 -32.9 26.3 20

BRZ SCH 51 39 25 -30.6 -12 -108 -26.5
REDS PHIL 48 41 40 -17.4 -7.1 -20.7 -8.2
WAF SCH 50 36 17 -38.8 -14 -198.2 -33.2
WAF TWN 47 33 15 -41.6 -13.8 -217.5 -32.2

ship is on the long side of the market. A similar process occurs for ships in WAF as previously

described.

The average matched speed is 11.14 in M3os2011 compared to 11.48 in M2os2011. Al-

though the average repositioning cost is greater in M3 and Vb is less in M3, the ship’s higher

discount rate penalizes going faster because Vb is negative and this is consistent with the ship’s

greater impatience over the future compared to the static baseline model.

7.9 Dynamic Counterfactuals
In this section, I consider the impact of a permanent shock on the dynamic matching model. I

consider shocks to demand and the fuel price. A permanent shock impacts every period, which

affects the dummy surplus and Vb values. These values change over the time horizon due to

changes in the matching and discounting.

7.9.1 Dynamic Simulation 1: Permanent demand shock

This simulation considers the impact of a permanent 10% increase in demand for Chinese oil

imports which is the same demand shock considered in the static simulation of a simultaneous

demand and fuel price shock.

The matching results are similar to the dynamic baseline in terms of the types of ships that

serve each route, except for the REDS market which is served by three types of ships (SAF,

SPOR and WAF) compared to the baseline which sources ships from SAF and WAF. The routes
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Table 7.26: Ship earnings: dynamic demand shock compared to static and dynamic baseline
models

AreaName W x
2011 W x

M2os2011 W x
M3os2011 W x

M3os2011 Dummy y M3 Extra

demand demand
$ m. $ m. $ m. $ m. $ m.

AG -0.89 0.22 1.49 1.53 1.35 0
WCI -0.45 -0.16 1.13 1.17 -1.64 0
ECI -0.61 -0.55 0.75 0.78 -0.63 0
SAF -0.66 -0.89 0.12 0.46 -0.1 0
BRZ -1.17 0.41 0.1 0.3 -1.88 0

SPOR -0.84 -1.06 0.26 0.29 0.96 0
THAI -0.98 -1.34 -0.01 0.02 -1.21 0
PHIL -1.12 -1.65 -0.31 -0.28 0.14 0
TWN -1.14 -1.67 -0.33 -0.3 -1.51 0
SCH -1.23 -1.85 -0.5 -0.47 -0.36 0
NCH -1.3 -1.98 -0.62 -0.6 -0.5 0
WAF -0.38 -0.56 -0.94 -0.61 -0.79 0
KOR -1.32 -2.01 -0.65 -0.63 -0.35 1
JAP -1.35 -2.05 -0.7 -0.68 -0.61 1

UKC -0.09 -1.27 -1.63 -1.42 -0.02 1
ECC 0.02 -1.38 -1.7 -1.51 -0.68 1
USG -0.05 -1.56 -1.82 -1.64 -1.42 1

CALI -1.08 -2.52 -1.89 -1.88 0.6 1

with different allocations are associated with the AG and REDS markets (AG-CALI, AG-ECC,

AG-JPN, AG-KOR, AG-SCH, AG-UKC, AG-USG, and REDS-PHIL). To meet the increase in

demand on the AG-SCH route, ships from WCI are reallocated from the AG-USG route and

ships from ECI are assigned to the AG-SCH route. Additional ships from ECC and WAF serve

the BRZ-SCH route and WAF-SCH routes respectively.

Table 7.26 shows the earnings in the demand shock compared to the static model and

dynamic baseline.

Earnings are higher for all locations relative to the dynamic baseline but increase in varying

amounts. The earnings for ships in SAF and WAF increase by the most ($.33 m.), followed

by the UKC ($.21 m.), and BRZ/ECC ($.20). The earnings’ increase is bundled into ship

types which are substitutes for each other, for example SAF and WAF serve the REDS market,

so when demand increases in WAF the price increases in the substitute market in SAF. The

magnitude of the increase reflects the degree of market differentiation, which in this case is a

function of distance.
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7.9.2 Dynamic Simulation 2: Permanent carbon tax

In this simulation, I consider the impact of a permanent carbon tax. According to the IMO

MEPC Report (2010), four carbon tax amounts have been proposed, ranging from $20 per

tonne of carbon to $100. Using a carbon factor of 3.17, this translates into a $63.4 increase

the fuel price up to a $317 increase in the fuel price. In this simulation, I choose to use a $40

carbon tax which is the third highest carbon tax, equivalent to a 20% increase in the fuel price

to $771.80 per tonne fuel price.

Table 7.27 shows the price elasticities and cost pass-through rates for a 20% fuel price

increase when the matched speed is held constant compared to the baseline M3cs2011 model.

Price increases range between 9.0-30.8% (a price elasticity .94-3.2) if fuel prices increase by

20% given a constant matched speed (M3cs2011) using the 2011 scenario. Cost pass-through

rates are between 51 and 186%, averaging 141% (weighted by number of matches per route).

Cost pass-through rates are higher in M3 compared to M2 because now the trader’s dummy

surplus changes given that the shock is permanent. Cost-pass through for ship types in AG,

BRZ, ECI, PHIL, SAF, SCH, SPOR, THAI, WAF and WCI are greater than 100%, while cost-

pass through is less than 100% for ship types in ECC, UKC, USG and WAF. Continuing with

the example of matching on the BRZ-SCH route, the cost pass-through rate for the match BRZ-

BRZ-SCH is greater than 100% compared to 75% for the ECC-BRZ-SCH match. The price

of the ECC-BRZ-SCH match is determined by the shipment cost, the ship’s dummy surplus

value and Vb; the dummy surplus value decreases such that cost cannot be fully passed through.

The change in the price of the BRZ-BRZ-SCH match reflects the change in prices for the ECC-

BRZ-SCH match and the change in price is greater than the change in the cost of shipping for

the BRZ-BRZ-SCH match because costs increase by less than the ECC-BRZ-SCH match. This

leads to a greater than 100% CPR.

Table 7.28 shows the price elasticities and cost pass-through rates for a 20% fuel price

increase when the matched speed is optimized. Price increases range between 4.8-18.3% (a

price elasticity .86-3.51) if fuel prices increase by 20% given an optimal matched speed using

the 2011 scenario (M3os2011). These findings are similar to the static model results in that

speed flexibility negates some of the carbon tax impacts. Cost pass-through rates are between

19 and 328%, averaging 201% (weighted by number of matches per route). Speed reductions

range from .52-.71 knots (average of .42 knots).
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7.10 Summary of Results
The outputs of the matching model can analyzed around three areas: the allocation of ship types

to routes (the matching) determining the trading pattern of ships, the earnings to each agent and

hence equilibrium prices, and the speed of ships which match and those who remain unmatched.

7.10.1 Matching results

The model results show that when ships are differentiated by location, there is a higher proba-

bility that a ship will match to a trader when it is located in close proximity to the local market

relative to ships located farther away. However, the model is sensitive to the relative values

of agents’ options to remain unmatched (dummy surplus values) and this leads to certain in-

stances of ships being matched from farther away relative to other ships. An initial scenario in

which ships have quasi-myopic beliefs about future earnings from the cargo’s destination leads

to lower market shares on some routes and low average speeds. Alternative models were run

with forward-looking ship beliefs, and these models resulted in all traders matching to ships

and higher average speeds compared to the models with quasi-myopic beliefs. For the matches

between ships and traders, the assignment was influenced the most by the oil revenue and the

shipment cost and to a lesser degree by the ship’s option value to be in the destination.

Overall, ships which are unmatched are located farther away from the local markets and

have to relocate to one of two waiting areas - West Africa or Fujairah in the Arabian Gulf. The

allocation of ships to these areas is determined by the dummy surplus values, which reflects

the agents’ future beliefs. In the quasi-myopic model, the assignment of ships to each waiting

area was divided almost evenly, with 47% relocating to AG and 53% to WAF. Ships in this

model base their relocation decision on the minimum distance to each area which determines

the cost; ships which are located in the Americas will relocate to WAF and those in the Far East

and California relocate to AG and therefore the shares reflect the supply of ships that were not

required to meet demand in the current period in the local markets. In contrast, the forward-

looking model is sensitive to the values of the waiting areas and the sensitivity depends on the

magnitude of the value of the waiting area. When the value is calibrated to the long-run average,

this leads to all ships relocating to WAF. A much lower share was estimated from the data to be

in WAF compared to AG, and this might suggest that the estimated value to be in WAF is too

high. In contrast the results ofM2 using the 2011 option value result in 64% of ships relocating

to WAF compared to 36% to AG because the the value to be in each waiting area is less such

that the repositioning costs influence the decision to relocate in WAF.

A 10% increase in demand for Chinese imports from AG, BRZ and WAF leads to a re-
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allocation of ships in NCH from the AG-WCI route to AG-ECI and SCH ships move from

AG-ECI and AG-WCI to meet the increased demand on the AG-SCH route. Ships in SCH

which previously served the AG-ECI and AG-WCI routes are replaced by ships in KOR and

this reallocation is driven by the higher surplus that can be achieved with with this reallocation.

Ships in WAF and USG meet demand on the WAF-SCH and BRZ-SCH routes, which they were

previously serving respectively before the demand shock.

In the multidimensional matching model, there is an interaction effect between location

and physical characteristics. This means that ships can differentiate themselves within a loca-

tion and this leads to a different assignment within a location. The impact of capacity utilization

was tested using two scenarios, one that varies cargo size using a constant capacity utilization

rate (Bigger is Better) and the other which holds cargo size constant (Energy Efficiency Rules).

The estimation of the physical characteristics resulted in the largest ship having a lower fuel

efficiency (fuel burned per tonne-mile) even when using the cargo size assumptions in (Bigger

is Better) so there is a trade-off between cargo size and energy efficiency in this case. The

matching results showed that when cargo size is allowed to vary, the largest ship was utilized

the most compared to more energy efficient ships, but location matters in the probability of

matching. Ships which are the most favored in terms of their physical characteristics but are

located farther away from a local market have a much lower probability of matching compared

to ships which are located closer but have less desirable physical characteristics. In comparison,

when cargo size is held constant in Energy Efficiency Rules, the utilization of ships of the most

energy efficient class is higher.

In the dynamic matching model, matching is driven by the endogenous changes in earnings

which updates the dummy surplus and ship option values. The dynamic model introduces

memory of previous earnings (prices) which is a function of the supply and demand from within

the model compared to the static model which relies on a number of exogenous parameters that

are annual averages of statistics. The evolution of surplus values and dummy surplus values

leads to different results in the dynamic model. For example, in the static model, the dummy

surplus for the ship in WAF and ECC was relatively higher than for ships in USG, and this lead

to an allocation of ships from USG to the BRZ-SCH route. In the dynamic model, these dummy

surplus values decrease such that it makes it viable to allocate ships from ECC to the BRZ-SCH

route and ships from WAF to additional routes which causes WAF ships to be fully utilized.

7.10.2 Agent earnings and prices results

Taking the data used to calibrate the model in Chapter 6, a simple market in which there is

one location (BRZ), one set of ships (ships in BRZ) and one set of traders demanding cargo
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on the BRZ-SCH was simulated in order to demonstrate how the surplus is divided and hence

earnings and prices are determined. It was shown that when ships are on the short side of the

market and there is only one set of ships of the same type, ships obtain the entire residual pie

as defined in Chapter 4. In other words, after the trader receives its dummy surplus value, the

ship earns the rest of the surplus. At the opposite extreme, when ships are on the long side

of this market, they receive only their dummy surplus. Finally, when ships are differentiated

across locations according to the model’s demand sample and keeping demand constant for

the one market in BRZ, ships are short in BRZ and long in other markets, and this increases

competition for the trader’s cargo. This leads to a drop in the short ship’s price from $5.66 m.

to $2.70 m. This example, while simple, illustrates the model’s ability to capture volatility in

prices due to the spatial dimension of the model and provides a range of prices according to the

type of competition a ship faces.

In all model variants, earnings and prices are determined precisely by agents’ position

in the market (short, long). If the agent is short, then the price a ship obtains reflects the

price of the trader’s best feasible substitute and the difference in the willingness to pay for

the favored ship over the substitute. In the baseline model where ships are differentiated by

location, these substitutes reflect the location of other ships, whereas in the multidimensional

model, prices differ within the same location reflecting preferences over one ship type that has

more favorable physical characteristics. Earnings were also compared to the estimated option

values which were calibrated to 2011 and long-run freight rate data. In the quasi-myopic model

(M1cs2011), the model’s output of ship earnings is higher than the 2011 estimates and lower

than the long-run estimates which was to be expected given that the model’s option values are

the discounted repositioning costs to the original load area which increases the price that a ship

must obtain to match compared to the 2011 estimates which include the discounted profits of

one voyage ahead. In the forward-looking model, a comparison of the long-run model M2cslr

to earnings from the long-run terminal period estimates shows that on average, earnings are

lower in the model than the estimates with the exception of several ship types which are on the

short side of the market and the same resulted in a comparison ofM2cs2011 results to the 2011

estimates. This suggests that the estimated values outside the model overestimate the ship’s

option values.

Prices were also compared to historical Worldscale multiplier rates for selected routes

where data was available in 2011. Prices are higher on average than historical rates in

M1cs2011 and lower in model M2cs2011. The reason for these differences is that the op-

tion values are more negative in M1cs2011, which has a positive impact on prices but also
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reflects differences in the marginal ships in the two models. Several reasons were discussed as

to why prices differ, including the uncertainty in the demand to supply ratio, the fact that prices

are not unique in the model and are a function of the finiteness of the agents which provides

bounds on prices rather than exact numbers.

A number of counterfactual simulations were run on M2cs2011 and M2os2011 to under-

stand the impact on earnings and prices due to changes in demand, the fuel price, changes in

trade flow shares and the impact of variation in location and physical characteristics in the static

model under the assumption that it is a transitory shock. It was shown that the extent to which

the shipowner can pass the fuel cost on to the freight rate depends on the ship’s position in the

local markets (if it is short or long) and whether a ship can adjust its speed in the match. When

ships are long, the cost pass through depends on the relative changes between costs, dummy

surplus and option value. Long ships located in the waiting area could pass cost on by 100%

whereas ships which were not had less than 100% cost pass-through. When ships are short, the

change in price reflected the change in the substitute’s price and the change in the difference

between the trader’s willingness to pay for the ship and its substitute. This generally lead to

a more than 100% cost pass-through. In the 5% transitory fuel shock scenario with constant

speed, prices are moderately sensitive to fuel price changes, generally increasing by 2-3.6%. In

the optimal speed case, the price variation increased, ranging from 1.1-4.0% and this greater

variation reflects the impact of the matched speed on the price of the substitute and the will-

ingness to pay. For a permanent shock of 20% to fuel prices given a carbon tax of $40, prices

are expected to increase between 9.0-30.8% for the constant speed case, and 4.8-18.3% for the

optimal speed case.

The extent to which a demand shock affected prices depended on whether the shock could

be localized or rippled through to other trade routes. A shock of 10% to Chinese imports

affecting the AG-SCH, BRZ-SCH and WAF-SCH routes showed that supply from WAF and

USG ship types were able to absorb the demand. Prices did not change on these routes or affect

prices in other markets because these ships were still not fully utilized. In contrast, the demand

shock to the AG-SCH route caused prices to increase for ship types serving the AG and REDS

markets, with the exception of ships serving the AG-WCI route. The price increase can be

explained by the last marginal vessel (KOR) which was added to the AG-ECI route after ships

from SCH serving this route were allocated to the AG-SCH route. Similarly, the change in trade

flow share simulation which caused demand to decrease for SCH ships lead to a drop in prices

on routes previously served by SCH. The price decrease can be explained by the fact that SCH

ships were on the short side of the market prior to the demand shock and changed to a long
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position.

The multidimensional matching illustrated how prices are differentiated not only for ships

located in different locations but also for those in the same location which have different phys-

ical characteristics. Demand rationing for these ships occurred when the ships were on the

short side of the market and prices reflected differing willingness to pay for each physical ship

type. Two scenarios were considered that affected willingness to pay and caused prices to differ

across physical ship types. For example, the Bigger is Better scenario, the willingness to pay

for a larger ship size increased prices over smaller sized ships.

7.10.3 Speed results

A number of model variants of the baseline model with different values of parameters affecting

speed (oil revenue, shipment cost, and ship option values) in the matched state were tested to

understand the sensitivities. The model that resulted in the highest speeds, M2oslr was asso-

ciated with the highest ship option values, while the model with the lowest average matched

speeds was the quasi-myopic model reflecting the fact that when there are profits to be made

on future journeys, it pays to go faster. However, ship option values are only one component

determining the matched speed. The matches with the highest speeds resulted from a combi-

nation of relatively higher repositioning costs, lower voyage costs and higher option values. In

contrast, the speeds which rank the lowest correspond to matches that have zero repositioning

costs, high voyage costs and low option values. In the unmatched state, ships are expected to

go their minimum speed (8 knots in the model) when option values are negative, but speeds

increase to 10.4 when the long-run scenario is run.

Speed clearly has an impact on carbon emissions. In the baseline scenarios, carbon emis-

sions were the highest with the long-run ship option values and the lowest in M1os2011 be-

cause in this model not all traders match (and hence less miles are travelled in the matched

state) and ship option values are low which leads to lower speeds. The fuel price simulations

for the optimal speed case had varying impacts on speed and emissions depending on the level

of the increase. For a 5% increase in the fuel price, speed reduces by an average .13 knots

(10.57 to 10.44) compared to the M2os2011 baseline. This translates into a 3.0% reduction in

emissions. For a 20% increase in the fuel price, the average speed reduction was .42 (10.75 to

10.33), leading to a reduction in emissions by 8.7%.



Chapter 8

Discussion and Conclusions

8.1 Introduction
This chapter discusses the insights that can be gained from the model results, their implications

for the existing literature in maritime economics and their limitations. The aim of this study

is to understand the economic determinants of transactions or matches, between traders and

ships in order to simulate the impact of changes in the system. The scope of the study is the

short-run VLCC tanker market within a spatially explicit market for crude oil. The discussion is

organized around answering the research questions which were structured to achieve the stated

aim:

• What determines the assignment of ships to traders (who matches with whom) given the

spatial distribution of ships across different locations in the oil tanker shipping industry?

• What determines the division of surplus in the matches between ships and traders and

therefore equilibrium prices?

• What are the influencing factors of the contract (matched) speed and ballast (unmatched)

speed?

• What are the impacts of supply side and demand side changes on the market in terms of

matching outcome, earnings, prices and speed?

8.1.1 Economic determinants of matches between ships and traders in a spatially

explicit tanker model

Previous modeling approaches in maritime economics have largely ignored the inherently spa-

tial nature of the tanker market and its impact on the determinants of the types of ships and

traders that match in the marketplace. The study showed that the spatial dimension is criti-

cal for understanding decision making and the equilibrium formation of transactions (called
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matches) between ships and oil traders. A matching model provided the capability to incorpo-

rate the spatial distribution of demand and supply by classifying ships and traders into types.

Ship types were defined in the baseline model by their location in order to identify the impact

of the spatial dimension on the problem. In theory, ships available to match could be located

anywhere in the sea, but to make the model manageable, these locations were a set of discharge

and waiting areas. Traders were characterized by the load and discharge pair (the trade route)

they demanded and their willingness to pay, captured by the profits from selling the oil cargo.

In order to understand who matches with whom, including the decision to remain unmatched,

it was important to value the decisions that the agents - oil traders and ships - could make.

An investigation of the modern tanker industry uncovered that shipowners and traders do make

inter-temporal choices. The model simplified these decisions into two periods, the current pe-

riod and the decision to wait and match in the next period. For oil traders, the choice is a

function of the value of the oil commodity in the future, the storage costs, and the expected

freight rate. This contrasts with the majority of structural modeling approaches in maritime

economics which assume that demand for crude oil is inelastic: there is a quantity of oil that

needs to be shipped immediately. Instead, the approach to estimating demand was inelastic as

demand was exogenously provided but could be shipped one period ahead. For shipowners, a

new approach was taken to value the decision to match or wait one period. The valuation of a

match to a trader required a valuation of the cost of the current match and a quantification of the

implications of being in the discharge area (known as the ship’s option value) once the ship has

fulfilled the current voyage shipment obligations. Two different approaches were taken to value

the option value: a quasi-myopic and forward-looking approach. The conclusions from this

analysis showed that shipowners have forward-looking beliefs. It was concluded from speaking

with shipping industry experts and current shipping newsletters that ships who do not match

with traders or have no employment prospects in the spot market generally relocate to a waiting

area near a major demand market (in the Arabian Gulf and West Africa). Existing structural

modeling approaches in maritime economics do not take into account these location-specific

tactical repositioning decisions.

Results described in this thesis show that the contracts that form in equilibrium depend on

the demand for oil cargoes in each load area market and the supply of available ships within

proximity to the market. Additionally, agents’ opportunity costs and future expectations has

also been found to influence the matching. The location of ships was shown to influence both the

trader’s willingness to pay and the shipment cost, with ship option values playing a smaller role

in determining the matching with traders. The matching was also shown to be endogenously
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determined by the relative supply and demand in the local markets; too few ships in the local

market lead to ships being sourced from other locations. Ships which were located relatively

closer to the local market had a greater probability of matching with traders over ships in more

distant locations, but this was not a rule of thumb. In some matches, the model results showed

that the matching was sensitive to the values placed on the ships’ option to wait (the dummy

surplus). The determination of whether this would occur was due to the relative difference

between the surplus of two contending matches and their dummy surpluses. If the difference in

dummy surpluses was larger, then the ship was chosen that had a lower dummy surplus because

this would lead to a higher social welfare. The economic interpretation is that the ship that is

worse off in terms of its value to remain unmatched would be willing to accept a lower price

in order to match with a trader over not matching. The benefit of this approach is its ability to

incorporate the large stakes, or opportunity costs, involved in shipping due to the geographical

dispersion between the discharge and load areas. As described in Chapter 6, taking into account

the implications of being in the destination is important for some tanker operators. According

to a leading tanker company (Maersk Tankers, 2012),“There are alot of cargoes out there from

different customers. It’s all about optimizing over a number of voyages...If I want to take this

cargo from point A to point B, then I want to be able to get a cargo from there onto the next

one.”

8.1.2 Determinants of the division of surplus in matches between ships and

traders

The conclusions from Chapter 3 confirmed that given the large number of shipowners and a

sufficient quantity of oil traders, the market continues to be very competitive as characterized by

the existing literature. However, as discussed in Chapter 2, the notion that the market is perfectly

competitive is too strong an assumption given the large short-run fluctuations in prices which

do not closely resemble the costs of the last marginal vessel used. It was therefore necessary

to drill down to the micro-level determinants of these transactions to explore whether the short-

run volatility could in part be explained by the spatial distribution of supply and the nature of

demand.

A large determinant in the fluctuations in prices and therefore how the surplus is divided

was found to be a function of the bargaining power of each agent in a match, a feature ab-

sent from most of the previous modeling of tanker rates. The matching model is one way of

generating endogenously the power to each agent in the match, and this power depends on the

relative demand to supply in both the aggregate and local markets and the inter-temporal choices

(dummy surplus values) of each agent. This required a new terminology for the global tanker
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market. The existing theory (since Tinbergen, 1934) classified tanker rates into two regimes:

a regime in which ships are fully employed, and one in which some are unemployed. In the

matching model, this is known as the aggregate market conditions and was defined as the total

demand for cargoes to the available transport supply. This indicator determines whether traders

have any bargaining power or a threat point; in other words whether they have a ship to substi-

tute for that serves as a threat to the ship they would like to match with depends on other traders’

demand in all crude oil markets relative to the supply of available ships. The model setup was

one in which traders do have a threat point (the aggregate demand is less than the aggregate

supply), such that they can always match with a ship. If traders do have a threat point, then it

was termed that traders are on the short side of the aggregate market.

However, it is the local demand to supply in the load area that determines the strength of

this threat point. It was found that ship types which were in scarce supply (more ships than

trader types demanding them as the best option) received a higher share of the surplus than

ships which were in excess supply. Scarcity was defined as the utilization rate of the ship type

or the number of ships of type that were matched to a trader divided by the total ships of that

type. This share of the pie was determined by the trader’s threat point or best substitute ship

which depended on the location of other ships and the demand for those ship types. The price

was equal to the threat point plus the difference in marginal willingness to pay between the two

types of ships. This contrasts with existing maritime structural models, which do not model the

demand side in any detail so there is no understanding of the willingness to pay for different ship

types. On the other hand, when ships were long in the market and therefore in excess supply,

and the price they receive is the price that gives them their dummy surplus, or the earnings if

they remained unmatched. The economic interpretation is that prices would be lowered until

they were indifferent between matching or remaining unmatched.

The uncertainty of the input parameters and the non-uniqueness of prices given the finite-

ness of the ships in the model means that there will be a margin of error in predicting prices.

When modeling under conditions of considerable uncertainty, there is therefore more value in

examining broad trends rather than fixating on absolute values. The uncertainty surrounding

the estimates of prices is discussed in the Limitations Section 8.2.

8.1.3 Factors influencing speed

Chapter 2 discussed the different views about modeling speed in the literature. Vessel speed op-

timization plays an important role in earlier maritime economics models, while later structural

models assume a constant speed given charter party clauses stating a fixed speed, weather con-

ditions or the small margin that it was believed a ship should be operated under. In the matching
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model, the extent to which speed can be optimized depends on whether the ship is employed or

not. It was therefore necessary to distinguish between a “matched” speed and an “unmatched”

speed. The conclusions drawn from the literature, data and interviews with industry is that

speed optimization is important but the extent to which it is being optimized in the matched

state depends on the oil trader. Rather there appears to be some stickiness in changing the speed

in contracts, especially for oil majors which have speed clauses. In recent years, the simultane-

ous downturn of freight rates and higher bunker fuel prices relative to the bunker price priced

into the benchmark flat rate has meant that it would be in shipowners best interest to have more

flexibility over the contract speed. An optimal speed and constant speed were simulated for the

model’s matched state. The optimal speed in the matched state was specified as a function of

the trader’s oil revenue, the shipment cost, and the ship’s option value. The sensitivity of speed

to this parameter was a function of the specification of the equation, and therefore the speeds

from the model reflect this. The optimal speed is sensitive to the assumption that the oil trader

has already purchased the oil cargo and therefore has to store the cargo until the ship arrives,

thus imposing a cost for the days it has to wait until the ship arrives. In some cases however, oil

traders make a simultaneous decision to purchase oil provided there is a ship available to hire.

This would have the effect of lowering the ship’s speed. For the ship, it was important to include

not only the impact of speed on the current voyage in terms of cost, but also the opportunity

cost of time. This opportunity cost was quantified by including the ship’s option value. The

optimal speed equation for the matched state contains some opposing forces; a slower speed

lowers the trader’s oil revenue and the potential rental revenue to the ship while at the same

time lowering the shipment costs. The impact of the ship’s option value depends on its sign;

a negative ship option value would mean that it is better to go slower since there are negative

profits to be made from the discharge area, while a positive option value would be negatively

affected by a slower speed. Ultimately, the results showed that the optimal speed depended on

the relative magnitude and the effect of speed on these parameters.

In the unmatched state, ships are unemployed and have to decide what speed to travel in

their repositioning voyage to a waiting area. In this case, the optimal speed depends on the

shipowner’s decision. This decision is a tradeoff between the repositioning costs (a function of

distance, the fuel price, and the fuel efficiency) and the ship’s option value to be in the waiting

area. When this option value is negative, it makes sense to go as slow as possible, whereas a

positive value will offset the benefits of minimizing costs to relocate.

Anecdotal evidence points to some ships operating at slow-steaming speeds in 2011; ac-

cording to Lloyd’s List (2011), “Maersk’s fleet of 11 VLCCs are traveling at speeds as slow as
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8.5 knots when transiting without cargo to the next load port.” In practice, ships have a time

window to arrive at a load area once they match, which is not included in the model. It would

not be difficult however to extend the model to include an average time window. In addition,

a charter party will provide a speed range rather than one speed (common for oil majors) and

can contain an “utmost dispatch clause” requiring the ship to sail at full speed. According to

Lloyd’s List (Lloyd’s List, 2011), one major London broker of VLCCs said, “Certainly owners

try to have low and high speeds in the charterers’ options of 14.5-15.5 knots and I know a lot of

owners say ‘we’re not going to do that’ [when higher speeds are asked for] and say “we’re not

going to give you the upside on speed because we don’t get compensated for it.”

Aside from just anecdotal evidence, average speed for the 2011 option value scenario was

validated using AIS data as described in Chapter 5. The AIS sample data (Smith et. al., 2013)

shows that VLCC ships sailed at an average of 13.24 (9.38-15.55) knots in laden and slightly

higher in ballast at 13.52 (9.31-15.92 range) knots in 2011. This contrasts with evidence from

Maersk stating super-slow speeds of 8.5 knots in ballast. Both speeds are higher than what

the model predicts should be the optimal speed. There are a few plausible reasons why the

observed speeds are closer to 13 knots in ballast and not 8. It is well-known that the tanker

and bulk shipping companies have expressed concerns about super-slow steaming due to the

belief that operating a ship well below its as-designed speed (around 15 knots) might damage

a ship’s engine. According to Maersk Tankers, “What we have found out is that during times

of difficulties owners have gone down to the most economical speed, which is about 13 knots,”

said Maersk Tankers head of crude Claus Gronborg (Lloyd’s List, 2011). “If you go below that

speed there are some precautions your crew need to take onboard the vessel but in contrast to

common beliefs, no engine modifications as such have to be made,” which Mr. Gronborg said

were technical lessons learned from super-slowing steaming within its Maersk-Line container

ship fleet. The practice was introduced 18 months prior to 2011 and the company “now decides

on a case-to-case basis at what speed each VLCC will travel in ballast to potential crude loading

ports in search of employment.” Another explanation for the difference in economical sailing

speeds among shipowners is that ships have different engine efficiencies which deliver different

savings from slow steaming. This “case-by-case” speed determination by some of the leading

companies is however consistent with the model’s forward-looking optimal speed scenario.

From a modeling perspective, it is important to understand the implications of both the constant

and optimal speed case. The fact that the model predicts slower speeds suggests that traders

have the bargaining power and this is justified by the fact that the aggregate market is in their

favor. In other words, ships have to consider that a higher a speed is better than no fixture.
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8.1.4 Impact of supply side (fuel price increase, physical ship characteristics)

and demand side changes (demand shock) on the market in terms of the

matching, earnings and prices and speeds

A common belief by some industry practitioners is that fuel costs will be fully passed through

to freight prices. The results of this study showed that cost pass-through is not uniform across

all matches and depends on the ship’s position in the market, which in turn determines how

much cost pass-through will result. The variation in cost-pass through for ships on the long side

of their local markets reflected the impact of the fuel price increase on the cost of relocating

to a waiting area (the dummy surplus value). In the 5% transitory fuel price shock, full cost

pass-through resulted when there was no change in relocation cost since they were strategically

located in a waiting area. On the other hand, ships which were located in a discharge area faced

a greater cost to relocate and this decreased their bargaining power through the decrease in the

dummy surplus and less than 100% cost-pass through resulted. For ships on the short-side of

the market, cost pass-through was over 100%, reflecting the change in the price of the ship

type’s substitute and the difference in the change in the trader’s willingness to pay between the

baseline and fuel price increase. In the 5% transitory fuel shock scenario with constant speed,

prices are sensitive to fuel price changes, generally increasing by 2-3.6%. These estimates are

higher than the average price increases suggested by the econometric freight rate regression

which predicted that a 5% increase would increase the price by 1.22%. In the optimal speed

case, the price variation increased, ranging from 1.1-4.0%. This greater variation reflected the

impact of the matched speed on the price of the substitute and the willingness to pay. For

a permanent shock of 20% to fuel prices given a carbon tax of $40, prices were expected to

increase between 9.0-30.8% for the constant speed case, and 4.8-18.3% for the optimal speed

case.

The baseline model provided new insights into the spatial relationship between different

crude oil shipping markets but it was acknowledged that this represents a simplified version of

the tanker market given ships also differ by their physical characteristics (defined in the model

by their size, age, energy efficiency and design speed). Simulating ship types that are differ-

entiated by both location and physical characteristics provided a better understanding of the

interaction effect of location and physical characteristics and the impact on matching proba-

bilities. Existing structural models use data from a fleet register to construct the voyage cost

and assume that the 95th or most energy inefficient ship provides an upper bound on the freight

rate. In contrast, the multidimensional matching model incorporates the impact of physical

characteristics not only on cost but also the trader’s willingness to pay and ship option values
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which combined determine prices. This illustrated how prices are differentiated not only for

ships located in different locations but also for those in the same location which have different

physical characteristics. Demand rationing for these ships occurred when the ships were on the

short side of the market and prices reflected differing willingness to pay for each physical ship

type. Varying location and physical characteristics shows that ships which are the most favored

by physical characteristics cannot compete as strongly with less preferred ships located closer

to the market.

It is a common assumption that bigger ships are more energy efficient given a sufficient

capacity utilization rate. However, the data revealed that this assumption does not always hold;

larger ships can be less energy efficient than smaller ones even accounting for the larger cargo

size. Anecdotal evidence from Cameron (2013), a tanker company, suggests that ships which

were built in recent years (which corresponds to the age group of the largest size category)

were designed to go fast, reflecting the booming market at the time they were ordered. Ships

that have higher design speeds also require a larger engine which can explain the higher energy

requirement. Ships which are bigger can carry more cargo however, and as a consequence this

study showed they are favored over smaller sized ships when the payload is higher. The data

revealed the trend of larger ships being built, but the increase in a ship’s size is limited by the

trader’s cargo size preferences due to land inventory storage costs and the port size restrictions.

Given that the average cargo size for fixtures is 265,000 and the speed of ships has decreased, the

higher matching probability of the more energy efficient ship should send a signal to shipowners

to invest in these ships over larger ships which are less fuel efficient. In fact, there is evidence

that tanker companies (Scorpio, 2013) are beginning to see the payback to investing in more

energy efficient ships because it also provides a premium in the time charter (rental) market.

The uncertainty in trade flow shares was tested using an alternative demand scenario for

Chinese imports and illustrated the conditions under which a demand shock could be localized

or whether it would ripple through to prices on other trade routes. For instance, a change in

demand to the BRZ-SCH route was localized because it could be absorbed by the existing

excess supply of the ship type already allocated to serve the trader’s demand. In contrast, the

decrease in demand on the AG-SCH route and increase in demand on the WAF-SCH route lead

to a decrease and increase in prices respectively on routes with the AG and WAF load area.

Price changes were caused by a change in the position of the last marginal ship’s substitute.

The decrease in demand for AG-SCH cargoes caused a decrease in price because SCH switched

from being short to long, while the change in position of the WAF ship from long to short caused

an increase in price.



190 Chapter 8. Discussion and Conclusions

8.2 Limitations
The new insights that can be gained from the tanker matching model do not come without some

limitations. This section discusses these limitations in terms of data and method. The data

limitations can be attributed mostly to incomplete information on VLCC trade flows and the

supply of available ships to match. There are clear trade-offs between model tractability and

model completeness and these trade-offs are discussed in the method section.

8.2.1 Data

An overarching limitation in the estimation of the model was the reliability of the data. In some

cases, this was because data did not exist, in others because it was not publicly available. As

explained in the relevant chapters, approaches were taken in this study to lessen the impact, but

a full uncertainty analysis was beyond the scope of this study. In addition, the assumption that

ships can only match in discharge and waiting areas is a simplifying assumption to avoid the

complications of modeling ships located anywhere in the sea and the limitations of the datasets

used to estimate supply. In theory, if ship brokers were willing to share this information then

it could provide a better understanding of their availability. Shore-based and satellite-based

AIS data could provide information on the geographical location of ships and could greatly

enhance the supply estimates. Another source of uncertainty in the estimates of supply were

ships owned by governments like China and oil majors which do not trade in the spot market.

There has been a growing trend for government-owned ships to trade only with Chinese oil

traders and this poses as a threat to independent shipowners.

In the multidimensional matching simulation, the matching results clearly depend on the

assumptions made about the distribution of physical ship types across locations. The distribu-

tion was based on the ship type’s fleet share; no assumptions were made about whether specific

physical ship types serve specific routes. The analysis could be enhanced by further under-

standing of port size restrictions which could be added to the model. The interpretation of these

results therefore was to highlight a “what-if” scenario for understanding the influence of energy

efficiency in the matching model rather than calibration to existing data.

8.2.2 Method

As discussed in the data limitations section, there are a number of uncertainties in the data that

required inferences to be made. Second, to make the model tractable, a number of abstractions

were made about the market:

1. There was uncertainty in the purchasing decision of oil caused in part by the lack of access

to oil trading experts given that this information is confidential and would be a breach of
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the company’s policies. The approach taken to modeling demand contains a number of

simplifications. The first simplification was the modeling of the trader’s profits, which

depend on the type of oil trader (oil major, trading house) and the specific contract they

agree to with the purchaser of the oil cargo. The volatility of future oil prices could affect

their inter-temporal decision making about when to purchase and sell the oil and therefore

the period in which they fix a ship and terminate a contract. It is known that some traders

will pay the ship a fee for any extra days that are not included in the contract when the

ship arrives at the port in order to secure a better selling price. Oil cargoes are also sold

on board and this was not included. The timing of the sale could affect the route that is

agreed in the contract (the Suez or Cape of Good Hope). Second, the model assumed

that the oil trader has already bought the oil cargo before a ship is fixed, incurring a cost

to store the oil at the loading area. An alternative is that the timing of the oil purchase

coincides with the fixture date, thus impacting the speed that a ship is required to travel

in the optimal speed version.

2. Another simplification was the modeling of agents in the tanker market. There were a

number of agents not included that play a role in the shipping market, including ship

brokers, charterers and the wholesale purchaser (refineries). These agents could have

an impact on the dissemination of information, and the model did not discuss the process

that leads to equilibrium prices, including an oil traders’ access to different brokers which

could be linked to different shipowners. The bargaining power was also assumed to be

solely a function of the market conditions, which abstracts from the individual agents’

ability to bargain.

3. The model calibration focused on the VLCC sector and therefore limits the equilibrium

prices to be a function of only other VLCC ships in the market. In reality, there could

be substitution effects with other ships that ship crude oil (Suezmax, Aframax), although

this is likely to be less influential on the long-haul routes where VLCCs dominate. The

model could however be extended to include other ship types and this would represented

as another possible match combination.

4. The geographical complexity of ship and weather routing was also not included in the

model. To collect average distances between each of the possible route combinations

was highly data intensive, and the routes included in the model reflect the most travelled

path between the origin and destination. Therefore any changes in the cost of the Suez

Canal or of piracy could alter the routing decisions, impacting the implications for carbon



192 Chapter 8. Discussion and Conclusions

emissions and the supply of available ships.

5. The model also focused on the short-run, which was defined as under one year such that

there was no modeling of investment decisions. Clearly, there could be some market

entrants and the increase in supply was instead modeled as a counterfactual. The fact that

investment was not modeled however does not mean that there are no implications for

investment decisions. Investment decisions are a function of observing the profitability

and utilization of types of ships, and this analysis can be used to inform these decisions.

6. Although the time-charter market is linked with the spot market, the decision to time-

charter was not explicitly represented in the model, although a daily average time-charter

rate was included as the rental rate of capital.

7. Agents took account of the market conditions, but did not consider the locational deci-

sions of individual ships.

8.2.3 Static modeling

The limitations can also be analyzed according to the static and dynamic models. The static

model required the estimation of the dummy surplus and ship option values that rely on spec-

ifying parameters outside of the model, and the greatest uncertainty was estimating the freight

rate, the probability of matching, the discount rate, and the assumptions about the trader’s oil

purchasing decision which are the most influential factors. The freight rate estimation was a

reduced form approach rather than a structural approach, and this meant that modeling a per-

manent shock in the static framework was not possible because the freight rate did not specify

structural demand and supply side parameters, such as GDP and available supply of ships. The

demand and supply balance was encapsulated in the trade flow and yearly time fixed effects

but these represent annual averages. Panel data methods could also explored in estimating the

freight rate to detect variables unobserved by the econometrician, though an OLS model (cor-

rected for clustering) is efficient when there is sufficient data available. Second, it was not

possible to forecast the matching probability in a static framework which was used to calculate

the estimated waiting days and the type of ship a trader was matched to. Instead, an average

matching probability had to be estimated based on the aggregate demand to supply ratio. Third,

the approach to estimating the ship’s option value was deterministic, and therefore it was ac-

knowledged that forecasting the profits of one voyage ahead would be sufficient. The method

to solving for these values using a linear system of equations produced a value of all future

periods, which was then discounted to obtain an estimate of the profits of one voyage and it
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was important that the magnitude was appropriate. It was subsequently learned from the static

matching model that these values overall were slightly higher than the model’s output.

8.2.4 Dynamic modeling

The dynamic modeling approach improved upon some of the limitations of the static model by

using the output from the model to update the estimated dummy surplus and ship option values.

A nice feature of this approach is that it incorporates the fact that ships and traders use the

previous freight rate as a starting point in their negotiations, which is an equilibrium outcome

of the previous trading game. Nevertheless, there are a number of limitations of the dynamic

modeling approach. The first is the assumption of stationary supply and demand which was

made in order to concentrate on searching for a fixed point in earnings. This assumption means

that we lose the richness of using the implied supply of ships in different locations in the next

periods which is commonly deployed in transportation models. Solving a matching model with

an endogenous supply of ships introduces a number of complexities into the analysis. The first

complexity arises from the modeling of ships at sea arriving into areas which started at different

times and different voyage lengths. The voyages are dependent on the route and speed they

travel. As a journey can be up to 8 weeks long, this information needs to be input from outside

the model for up to 8 weeks. The second complexity of using an endogenous supply estimate

is the forecast of the ship option value and dummy surplus values because these values are

dependent on the demand to supply ratio in the aggregate and local markets. The assumption

of stationary supply and demand allows the algorithm to use the previous time step’s values as

input for the next time step’s earnings. Dynamic economic models are typically run backwards

from the last period of the model in order to obtain a forecast of earnings as input to the current

period. In transportation modeling however, this approach loses the ability to use the matching

model’s output of the implied supply of ships arriving into each area in future periods. One

approach to make supply endogenous is to update the supply of ships in each matching area

with the matching from the previous time step. The assumption is that the same matching game

that was played in the current period occurred in the previous periods. The problem with this

approach is if the demand to supply ratio rises in subsequent periods due to a decrease in the

supply of ships in one or more areas. If the earnings in the previous time step is used as the

dummy surplus for the trader, traders will decide to remain unmatched, and in some cases this

could cause no traders to match with a ship. Since the model requires option values for all

locations as input for the next period, if no ships match to traders then there is no value to

update the Vb values. A workaround would be to smooth the supply of ships from the previous

time step with the implied supply from the current period which might be a smoother transition.
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8.3 Future Work
As the limitations outlined, there were a number of simplifications that were made in order to

create a tractable matching model. There are three main priorities for future work to improve

upon which would address some of the limitations of the model. The first would be to focus

on modeling of demand. Specifically, this requires interviewing oil traders (or those who have

left the profession) and refineries and their purchasing decisions in greater detail. This would

enhance the estimates of the willingness to pay and the opportunity costs of trading. It might

require greater complexity in modeling inter-temporal decision making, possibly extending the

decision to match in the current period to be a function of not only the next period but several

periods ahead.

The second extension would be to perform an uncertainty analysis of the model inputs

since they were modeled as deterministic. This requires a quantification of the joint distribution

of the model parameters. Monte Carlo techniques could be used to generate a range of values

for the model outputs. As outlined in the Limitations section, a large uncertainty in the input

data was the supply of ships in each area. These estimates could be enhanced using shore-

based and satellite AIS data. This data is now being used to track ships in different areas and

would be useful not only for inferring the supply distributions in locations but also to verify

the model’s allocation of ships to routes. It could also be useful for working out trajectories of

ship movements across a year. However, it is still necessary to infer the availability of ships

to match which is not provided by the AIS data. This data could also be used to analyze the

physical types of ships in each area and possibly their average waiting times.

Thirdly, the matching model could be extended to include other ships that carry crude oil

(Suezmax and Aframax) and investment decisions about whether to enter or exit the market

and the type of ship to invest in using the implied earnings from the model as input into this

decision. Short-term decisions to time-charter a ship or go into lay-up could also be included in

this framework.

Finally, aside from addressing the limitations, future work could apply the existing model

to the tanker industry by engaging with tanker companies to improve their matching and tacti-

cal repositioning strategies using real-time ship movements and companies’ financial and ship

engineering data.
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Glossary of shipping terms

Aframax

A vessel of 70,000 to 119,000 DWT capacity.

Automated Identification System (AIS)

A system used by ships and Vessel Traffic Service (VTS) principally for the identification

and the locating of vessels. AIS provides a means for ships to electronically exchange ship data

including: identification, position, course, and speed, with other nearby ships and VTS stations.

Backhaul

To haul a shipment back over part of a route it has traveled.

Barrel

A term of measure referring to 42 gallons of liquid at 600 degrees.

Discharge Area

The sea area where cargo is discharged from for means of transport.

Broker

A person who arranges for transportation of loads for a percentage of the revenue from the

load.

Bunker Fuel

A maritime term referring to fuel used aboard the ship. In the past, fuel coal stowage areas

aboard a vessel were in bins or bunkers.

Cargo

Freight loaded into a ship.

Carrier

Any person or entity who, in a contract of carriage, undertakes to perform or to procure the

perfor- mance of carriage by rail, road, sea, air, inland waterway or by a combination of such

modes.

Charter Party
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A written contract between the owner of a vessel and the person desiring to employ the

vessel (char- terer); sets forth the terms of the arrangement, such as duration of agreement,

freight rate and ports involved in the trip.

Charterer

A person who charters something.

Classification Society

An organization maintained for the surveying and classing of ships so that insurance un-

derwriters and others may know the quality and condition of the vessels offered for insurance

or employment. See also ABS, BV, DNV, LR and NK.

Contract of Affreightment

An agreement by an ocean carrier to provide cargo space on a vessel at a specified time

and for a specified price to accommodate an exporter or importer.

Deadweight Tonnage

The number of tons of 2,240 pounds that a vessel can transport of cargo, stores and bunker

fuel. It is the difference between the number of tons of water a vessel displaces light and the

number of tons it displaces when submerged to the load line. An approximate conversion ratio

is 1NT = 1.7GT and 1GT = 1.5DWT.

Demurrage

A penalty charge against shippers or consignees for delaying the carriers equipment or

vessel beyond the allowed free time. The free time and demurrage charges are set forth in the

charter party or freight tariff.

Destination

A penalty charge against shippers or consignees for delaying the carriers equipment or

vessel beyond the allowed free time. The free time and demurrage charges are set forth in the

charter party or freight tariff.

Handymax Vessel

A penalty charge against shippers or consignees for delaying the carriers equipment or

vessel beyond the allowed free time. The free time and demurrage charges are set forth in the

charter party or freight tariff.

Laden

Loaded aboard a vessel.

Laycan

Range of dates within the hire contract must start.

Load Area
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The sea area where cargo is loaded from for means of transport.

Tonne

A metric tonne, 2,204.6 pounds or 1,000 kilograms.

Nautical Mile

Distance of one minute of longitude at the equator, approximately 6,076.115. The metric

equivalent is 1852.

Route

A way or course taken from a starting point to a destination.

Ship

A vessel of considerable size for deep-water navigation.

Shipment

The tender of one lot of cargo at one time from one shipper to one consignee on one bill

of lading.

Shipper

The person or company who is usually the supplier or owner of commodities shipped.

Also called Consignor.

Tankers

Ships fitted with tanks to carry liquid bulk cargo such as crude petroleum and petroleum

products, chemicals, Liquefied gasses (LNG and LPG), wine, molasses, and similar product

tankers.

Bulk Carriers

All vessels designed to carry bulk homogeneous cargo without mark and count such as

grain, fertilizers, ore, and oil.

Suezmax Tanker

A tanker of 120,000 to 199,000 DWT.

Tender

The offer of goods for transportation or the offer to place cars or containers for loading or

unloading.

Time Charter

The hiring of a vessel for a specific period of time; the shipowner still manages the vessel

but the charterer selects the ports and directs the vessel where to go. The charterer pays for all

fuel the vessel consumes, port charges, commissions, and a daily hire to the owner of the vessel.

Time Charter Equivalent

A shipping industry standard used to calculate the average daily revenue performance of
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a vessel. Time charter equivalent is calculated by taking voyage revenues, subtracting voyage

expense and then dividing the entire total by the round-trip voyage duration in days. It gives

shipping companies a tool to measure period-to-period changes.

Tonne-Mile

The movement of a tonne of freight one mile.

VLCC

Very Large Crude Carrier. A tanker of 200,000 to 319,000 DWT. It can carry about 2

million barrels of crude oil.

War Risk

Insurance coverage for loss of goods resulting from any act of war.

Worldscale

A unified system of establishing payment of freight rate in nominal $/tonne for a given oil

tanker’s cargo produced by the Worldscale Association (NYC) Inc. The scale comprises a flat

rate representing the average total cost of shipping oil from one port to another by a standard

75,000 tanker ship for various routes where there are multiple waypoints available.

Worldscale Multiplier

The spot rate, represented as a percentage of the Worldscale flat rate. A Worldscale multi-

plier of 100 equals the Worldscale flat rate, whereas a Worldscale of 50 equals 50% of the flat

rate for a particular port pair and route.

Oil Major

The ”majors” are a group of multinational oil companies given the name due to their size,

age or market position. The majors are typically ”integrated” companies, with divisions in

exploration, production, marketing, refining, transportation and distribution.

Dry Dock

A dock that can be kept dry and that is used for building or repairing boats or ships.

Voyage Charter

The hiring of a vessel and crew for a voyage between a load port and a discharge port.

The charterer pays the vessel owner on a per-ton or lump-sum basis. The owner pays the port

costs (excluding stevedoring), fuel costs and crew costs. The payment for the use of the vessel

is known as freight. A voyage charter specifies a period, known as laytime, for loading and

unloading the cargo. If laytime is exceeded, the charterer must pay demurrage. If laytime is

saved, the charter party may require the shipowner to pay despatch to the charterer.

Fixture

A fixture is a completed negotiation that results in a Charter Party between an Owner and
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a Charterer.

Lay-up

To put (a ship) in dock, as for repairs.
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Chapter 3

Interviews were conducted with the commercial and operations team tanker team at a major

tanker shipping company (Tanker Operator, 2012) and a shipbroker (Shipbroker, 2011). Names

were withheld for confidentiality reasons and are paraphrased.

C.1 Tanker shipping company
The notation Q refers to the interviewer question (asked by me) and A refers to the interviewee’s

answer.

C.1.1 Spot fixing process (Aframax division)

Q: Could you describe a typical spot fixture process, i.e., communication between oil

trader/charterer, ship operators, broker?

A: Typically work through brokers (in Asia and London) but have a number of con-

tacts in the oil industry, sometimes will try to pre-empt the spot market by approaching

traders/charterers directly if I think I know there is a stem (80,000 lots). I don’t work with

some companies because they don’t pay me on time.

Q: Describe how you advertise your available ships to the market: how many days in

advance of unloading current voyage’s cargo?

A: I am constantly advertising on a daily basis. Theres some predictability in the market,

Shell works with Statoil, Shell buys a number of contracts which they use for themselves at

their refineries. Out of these, they might be using some of their own ships to trade oil, with the

remaining amount chartered. Once they’ve supplied their refineries they might have leftover oil

which the oil traders play in the spot market which is speculative.

Q: Freight rate: what factors influence the rate you will offer the charterer? How does the

bunker price factor into the WS multiplier?

A: I use the previous day’s Worldscale rate as a starting point. Use the daily bunker price

as a proxy.
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Q: Bargaining process: how many counter offers and average days till a deal is reached?

A: It can take between 5 minutes to two weeks.

Q: And do the oil traders wait until they have a ship secured before buying oil?

A: As long as they can see from the broker list that there are enough ships in the market,

they will buy the cargo even if they dont have a ship.

Q: Do you ever choose to wait for another charterer prospect if you aren’t happy with the

deal?

A: Yes, I would rather wait than make a bad decision. Some ports are really expensive like

Le Havre. There are some shipowners who really stupid and decide to do a deal and it doesn’t

make economic sense. Others know they will lose money but they have to pay the bank so they

do the deal anyway.

Q: Do you take into account future voyage prospects in loading regions when you decide

to designate a ship to a particular route? What information do you use to anticipate the market?

A: Yes, I run a voyage calculation of what we make, taking into account where I would

ballast to next. Use today’s bunker prices. Finding a bottleneck to exploit and put the prices up

is the name of the game.

Q: When does speed get negotiated, and what is the speed you negotiate for?

A: The speed is calculated based on the type of ship and the cost. On average, it’s about 13

knots. The relationship between speed and fuel consumption is non-linear, so moving from 14

to 13 knots makes a big difference; from 13 to 11.5 knots is not so much. I always say “about”

13 knots in the charter party so that there is no dispute at the end about exact speed. There is a

negotiation on speed, but its often the shipowner who is setting the price (does the calculation at

a number of different prices and tries to pick what is looking attractive for the other commercial

drivers e.g. when the next voyage is going to be picked up and which way prices are going).

The broker is not intelligent, doesnt understand the price/fuel efficiency anyway and also is

not-incentivised because their commission is related to the price of the fixture.

Q: How do you factor in piracy risk?

A: We have a map of the piracy zones we can show you. Piracy is a big deal, if you get

captured, then you lose the cargo and the crew gets taken hostage.

Q: I’ve heard many VLCC’s use the SUMED pipeline to offload cargo and transit the Suez

in order to avoid transiting around the Cape of Hope. Is this a typical practice? How is it priced

with Worldscale?

A: Yes this is common practice, but usually it doesn’t make sense for the VLCC to transit

through the Suez once you’ve dropped off cargo at Ain Sukna because these cargoes are nor-
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mally serving Mediterranean and VLCC’s can only serve Rotterdam. So an Aframax picks up

the cargo at Sidi Kerir.

C.1.2 Voyage Optimization

Q: Do you always choose the shortest route?

A: Not necessarily. We have to factor in piracy and port dues, which are high in the Suez.

Sometimes there is a time imperative and so we go via Suez, even if it is better value to go

around the Cape (e.g. the oil majors).

Q: If you still haven’t sold the ship once at berth, how many days on average will the

ship typically wait? The waiting time can be between 2 and 15 days, depending on the market.

We never go to a berth unless you have a cargo. Sometimes waiting for a couple of days or

sometimes waiting for a couple of weeks. We wait in Fujairah in the Arabian Gulf or West

Africa which is a waiting hub where we look for the next fix if we don’t forward contract.

Shipowners are tracking each other to see where the ships are and decide where to wait for

loading. Use AIS data for this.

Q: I’ve often heard people in the industry say that the ship will set sail to a discharge area

but not know the exact port. If so, how many days in advance does the charterer tell you which

port to unload at?

A: We almost never know the exact destination until getting close to the destination area.

It could be 2 days or even 5 hours before. This depends also on the customer; the oil majors like

Shell or BP know where they’re going versus the oil traders. Deviation claims on a demurrage

rate so wouldnt represent the number of miles. CoA (Contract of Afreightment) cargoes are

more obvious in terms of their destination. Its a holding game rather than a dumping and

getting out game for the oil traders. They like there to be volatility in the prices because that

gives him the chance to make money.

Q: Your company has been a leader in extreme slow steaming not only in containers but

also tankers. What factors influence your decision to slow steam in ballast?

A: It is a trade-off between fuel costs and time costs. If we know the next fixture, then we

optimise for the laycan period, i.e., if laycan allows 2 days to arrive then we’ll use these days

to go slower. We also adjust the speed during the laden voyage, for example you can only berth

in Japan in daylight, and in Singapore to get over the 1 fathom bank. It’s also influenced by

demurrage rates. If we get paid to sit around then we’ll do that instead of slow steaming.

Q: What percentage of contracts use Virtual Arrival?

A: 1 out of every 25 cargoes. On the shorter voyages it just doesn’t make sense. Oil traders

aren’t interested in Virtual Arrival; if they aren’t ready to unload the cargo, they’ll either pay
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the demurrage rate or a storage rate (this could be floating storage).

Q: How do you hedge against volatility in bunker fuel prices?

A: We use swap agreements. Sometimes our container shipping subsidiary has a contract

purchase so we’ll use some of this bunker fuel. Otherwise, we use Fujarah and Singapore for

95% of fuel sales. This is subject to whatever prices you can find for fuel as on the spot charter.

C.1.3 Other

Q: How do you decide when to lay-up a ship?

A: Lay-up, very rare, but has been done so on the Handymaxes. Today we’re making 8-9k

per day on a ship (need to make 27k).

C.2 Interview with a tanker shipbroker
Q: Who do you work on behalf of, the owner, charterer or both?

A: Both, it’s an independent brokerage firm. The business before was to have multiple bro-

kers representing both, but these days it’s just one intermediary i.e., Exxon - shipbroker - Greece

though sometimes have one broker providing info to owner, another to the charterer. Some oil

majors have their own transportation company like Saudi Aramco has Vela. On charterer side,

it’s oil companies (Exxon, Shell etc) and traders (Vittal, Glencore). They have brokers for all

types of oil - crude, clean, gas, palm oil.

Q: How do you keep track of all the vessels and what vessels do you consider for a fixture

in say, the AG?

A: The brokers are in constant contact with the shipowners. It’s very much a relationship

business, where you’re on the phone and email hence over-the-counter trading. Owners adver-

tise their vessel by sending out an email and may deal with multiple brokers. They’ve got a ship

that’s available to ship from AG to Rotterdam for example arriving between 5th Sept to 10th.

They’re responsible therefore for all of the logistics of estimating when they’ll be there (i.e.,

speed) - the shipbroker doesn’t estimate this though uses AIS to check.

Q: So the shipowner has to make alot of decisions about repositioning their vessels?

A: Yes, and the oil market has changed to their advantage due to new areas of oil opening

up and new demands from China/India and historical relationships changing - i.e., Chavez fell

out with USA so now it’s shipping to China. Traditionally it was AG to USA and back and

now new areas - shipowner has to make alot of decisions about which direction to go based on

the market. Since Worldscale is based on a roundtrip cost, they can profit from making smart

repositions. To have most options, it’ll sail to areas where it can make a split decision to go in

two different directions. Often times they’ll go around Cape Hope more slowly and avoid the
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expensive Suez. They also have to fix ships before they reach a port of discharge in order to

ensure they get another job. The ship has to be precise about the Laycan dates or else it has to

go on the ”spot prompt” - fix on the spot market and wait around.

Q: How do you choose the right ship for the charterer?

A: Since we know where all the ships are, we draw up a candidate list and then cross out

the ones that aren’t suitable, say if it’s too small, or if it’s too unreliable (going to India and port

is really inefficient). The specs of the ship are vetted by the oil companies who have internal

records.

Q: How do you know what price to bargain for?

A: We use the previous freight rate as a base, and then look at the demand/supply to tell

them what they should do. There isn’t always correlation between oil price and demand to

ship stuff, but they need to move it anyway. The owner offers in first, and if the buyer doesn’t

want it, then goes to next person. Sometimes can take 2-3 days. It’s a very sentimental market,

sometimes freight rate goes up for no particular reason!

Q: Are speeds always put in the contract?

A: Yes, it’s typically 13.5-14 with an option to speed up, though this option is getting less

popular due to high bunker prices. It’s in the ballast leg where you see a lot of differences

between owners, with Maersk running at 9 knots bc they have newer ships and others who are

forced to go faster, at 13 or so due to design speed/safety restrictions.

Q: And are there many options for loading cargo, this depends on the size?

A: VLCC is easiest to model because only certain ports let them in due to port constraints,

harder for other sizes. You can get the VLCC routes from Clarksons Research data.

Q: Do you work on the spot market and Time Charter? How important is energy efficiency

in Time Charter?

A: Energy efficiency is becoming important in Time Charter, getting latest economical

engines, though there aren’t many ships to buy which are energy efficient.

Q: How do charterers view age of vessel?

A: After 15 years, risk goes up by a lot.

Q: How is your trading desk organized?

A: We have a dirty oil team which is VLCC, Panamax, Afra, and Suez and a clean team

(LR2 (coated Afra), LR1, Handy, MR). The LR2 has to be cleaned out if it’s just been filled

with dirty.

Q: Are inventory costs important in determining quantity demanded per shipment?

A: Not really sure, trader doesn’t provide this info. Its most likely related to port restric-
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tions.
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Table D.1: Missing geographical data for all VLCC fixtures

Load Port Discharge Port Load Country Discharge Country Frequency Percent

0 0 0 0 712 14.61

0 1 0 1 42 0.86

1 0 1 0 3842 78.84

1 1 1 1 277 5.68

Source: Clarkson Research (2011)
Table D.2: Missing geographical data for all VLCC fixtures with prices

Load Port Discharge Port Load Country Discharge Country Frequency Percent

0 0 0 0 604 17.21

0 1 0 1 33 0.94

1 0 1 0 2689 76.61

1 1 1 1 184 5.24

Source: Clarkson Research (2011)
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Table D.3: Trade flows by Area, 2011

Load Area Discharge Area Volume Share (%)

AG SCH 95,499,000 28.69
AG KOR 38,294,500 11.50
AG WCI 22,573,000 6.78

CAR SPOR 22,550,000 6.77
AG SPOR 21,622,700 6.50
AG JAP 21,193,000 6.37
AG THAI 18,310,500 5.50
AG USG 15,910,000 4.78
AG TWN 8,755,000 2.63

CAR WCI 7,599,000 2.28
WAF SCH 5,980,000 1.80

AG UKC 5,555,000 1.67
WAF WCI 4,420,000 1.33

AG CALI 3,890,000 1.17
WAF USG 3,640,000 1.09
WAF ECI 3,385,000 1.02

AG NCH 2,948,000 0.89
BRZ SCH 2,890,000 0.87
WAF TWN 2,605,000 0.78

AG ECI 2,588,000 0.78
UKC SPOR 2,150,000 0.65

AG SAF 2,145,000 0.64
AG PHIL 1,612,500 0.48

WMED SCH 1,590,000 0.48
CAR SCH 1,360,000 0.41

REDS SCH 1,325,000 0.40
BRZ SPOR 1,319,000 0.40

AG ECC 1,120,000 0.34
AG REDS 1,105,000 0.33
AG BRZ 830,000 0.25

ECMX WCI 820,000 0.25
USG SPOR 815,000 0.24

WMED USG 780,000 0.23
KOR TWN 650,000 0.20

Source: Clarkson Research (2011)
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Table D.4: Trade flows by Area, 2011 (continued)

Load Area Discharge Area Volume Share (%)

BALT USG 535,000 0.16
CMED SCH 530,000 0.16
REDS WCI 530,000 0.16

WMED SPOR 520,000 0.16
AG CMED 280,000 0.08

EMED USG 280,000 0.08
BALT SPOR 270,000 0.08

ECMX SCH 270,000 0.08
REDS KOR 270,000 0.08
REDS PHIL 265,000 0.08

BRZ UKC 260,000 0.08
JAP SCH 260,000 0.08

WAF SAF 260,000 0.08
WAF SPOR 260,000 0.08
WAF UKC 260,000 0.08

Source: Clarkson Research (2011)
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Table D.5: Representative load, discharge and waiting areas

Area Country Representative Port Area Type

AG Saudi Arabia Juaymah Load
BALT Estonia Tallin Load

BRZ Brazil Angra dos Reis Load
BRZ Brazil Sao Sebastiao Discharge

CALI USA Los Angeles Discharge
CAR Bonaire Bonaire Load

CMED Libya Es Sider Load
CMED Italy Augusta Discharge

ECC Canada Canaport Discharge
ECI India Chennai Discharge

ECMX Mexico Cayo de Arcas Load
EMED Egypt Sidi Kerir Load

JAP Japan Sakai Load & Discharge
KOR Korea Ulsan Discharge
NCH China Qingdao Discharge
PHIL Phillippines Davao Discharge

REDS Saudi Arabia Yanbu Load
REDS Egypt Ain Sukhna Discharge

SAF South Africa Durban Discharge
SCH China Ningbo Discharge

SPOR Singapore Singapore Discharge
THAI Thailand Rayong Discharge
TWN Taiwan Kaohsiung Discharge
UKC United Kingdom Sullom Voe Load
UKC United Kingdom Rotterdam Discharge
USG USA LOOP Terminal Load
WAF Angola/Nigeria WAF Centroid Load
WCI India Mumbai Discharge

WMED India Arzew Load
AG UAE Fujairah Wait

WAF Angola/Nigeria WAF Centroid Wait
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D.1 Chapter 6 Regression Results

Table D.6: Benchmark regression results

Coefficients:

Estimate Std.Error t-value Pr(> |t|) significance
(Intercept) -3.8392 0.144665 -26.539 2.00E-16 ***

log(Dist short) 0.396768 0.008386 47.313 2.00E-16 ***
log(Pbunker) 0.534163 0.015414 34.655 2.00E-16 ***

AG-CALI 0.107869 0.086543 1.246 0.212881
AG-CMED -0.190146 0.083499 -2.277 0.022967 *

AG-ECC -0.005138 0.135573 -0.038 0.969774
AG-ECI -0.481874 0.081509 -5.912 4.52E-09 ***

AG-EMED -0.30417 0.096144 -3.164 0.001601 **
AG-KOR -0.244241 0.086618 -2.82 0.004894 **
AG-NCH -0.164823 0.135588 -1.216 0.224397
AG-PHIL -0.274183 0.13564 -2.021 0.043484 *

AG-REDS -0.491192 0.089117 -5.512 4.44E-08 ***
AG-SAF -0.250945 0.101198 -2.48 0.013299 *
AG-SCH -0.198636 0.08339 -2.382 0.017391 *

AG-SPATL -0.191341 0.084635 -2.261 0.023971 *
AG-SPOR -0.399888 0.083923 -4.765 2.15E-06 ***
AG-THAI -0.332474 0.101172 -3.286 0.001048 **
AG-TWN -0.250032 0.088815 -2.815 0.004963 **
AG-UKC -0.063676 0.08456 -0.753 0.451592
AG-USG 0.076435 0.084075 0.909 0.363483
AG-WCI -0.682618 0.080667 -8.462 2.00E-16 ***

AG-WMED -0.093503 0.092743 -1.008 0.313587
BALT-SPOR 0.129792 0.092606 1.402 0.161335
BALT-UKC -0.429717 0.08674 -4.954 8.43E-07 ***

BALT-USAC -0.246365 0.101228 -2.434 0.015104 *
BALT-USG -0.136223 0.090427 -1.506 0.132245

BALT-WMED -0.322078 0.135807 -2.372 0.017886 *
BRZ-BRZ -0.559367 0.13797 -4.054 5.39E-05 ***

BRZ-CALI -0.013858 0.085732 -0.162 0.871613
BRZ-ECC -0.239757 0.135657 -1.767 0.077447 .
BRZ-SCH 0.1817 0.101073 1.798 0.072501 .

BRZ-SPATL -0.277796 0.135685 -2.047 0.040863 *
BRZ-UKC -0.162265 0.092687 -1.751 0.080284 .
BRZ-USG -0.240176 0.092689 -2.591 0.009692 **
BRZ-WCI 0.001626 0.101049 0.016 0.987167
CAR-CAR -0.769481 0.098046 -7.848 1.01E-14 ***
CAR-ECC -0.635305 0.111462 -5.7 1.55E-08 ***
CAR-SCH 0.080191 0.110712 0.724 0.469023

CAR-SPATL -0.241727 0.135669 -1.782 0.075071 .
CAR-SPOR 0.186925 0.092673 2.017 0.043937 *
CAR-UKC -0.309886 0.135686 -2.284 0.022573 *

CAR-USAC -0.609709 0.093568 -6.516 1.10E-10 ***
CAR-USG -0.762275 0.087425 -8.719 2.00E-16 ***
CAR-WCI 0.154418 0.13559 1.139 0.255013

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Table D.7: Benchmark regression results (continued)

Coefficients:

Estimate Std.Error t-value Pr(> |t|) significance
CMED-BRZ -0.233512 0.110776 -2.108 0.035264 *
CMED-CAR -0.34626 0.135683 -2.552 0.010847 *

CMED-CMED -0.710944 0.084418 -8.422 2.00E-16 ***
CMED-ECI -0.222441 0.101172 -2.199 0.028114 *

CMED-EMED -0.838972 0.103624 -8.096 1.51E-15 ***
CMED-SCH -0.006461 0.092601 -0.07 0.944391

CMED-SPATL -0.702566 0.087829 -7.999 3.19E-15 ***
CMED-SPOR -0.183321 0.090423 -2.027 0.042869 *
CMED-THAI -0.13521 0.135588 -0.997 0.318884
CMED-UKC -0.465124 0.087034 -5.344 1.11E-07 ***

CMED-USAC -0.32886 0.09053 -3.633 0.000294 ***
CMED-USG -0.220327 0.090421 -2.437 0.014982 *
CMED-WCI -0.326446 0.087752 -3.72 0.000209 ***

CMED-WMED -0.611157 0.097464 -6.271 5.18E-10 ***
ECMX-CAR -0.705058 0.136246 -5.175 2.72E-07 ***

ECMX-CMED -0.194238 0.135618 -1.432 0.152361
ECMX-SPATL -0.247179 0.087611 -2.821 0.00487 **

ECMX-UKC -0.27924 0.13566 -2.058 0.039792 *
ECMX-USG -0.883341 0.093022 -9.496 2.00E-16 ***
ECMX-WCI 0.101322 0.092609 1.094 0.27416

EMED-CMED -0.708279 0.082579 -8.577 2.00E-16 ***
EMED-EMED -0.876659 0.08818 -9.942 2.00E-16 ***

EMED-SCH -0.043486 0.135578 -0.321 0.748464
EMED-SPATL -0.664236 0.085001 -7.814 1.30E-14 ***
EMED-SPOR -0.193784 0.090462 -2.142 0.032404 *
EMED-UKC -0.416348 0.086109 -4.835 1.52E-06 ***

EMED-USAC -0.264903 0.101132 -2.619 0.008932 **
EMED-USG -0.206513 0.09589 -2.154 0.031488 *

EMED-WMED -0.54135 0.088405 -6.124 1.28E-09 ***
JAP-CALI -0.253069 0.110808 -2.284 0.022573 *
JAP-KOR -0.868355 0.113505 -7.65 4.41E-14 ***

JAP-SPOR -0.500314 0.09085 -5.507 4.56E-08 ***
JAP-TWN -0.775115 0.103192 -7.511 1.22E-13 ***

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Table D.8: Benchmark regression results (continued)

Coefficients:

Estimate Std.Error t-value Pr(> |t|) significance
KOR-CALI -0.337177 0.110898 -3.04 0.002419 **
REDS-CAR -0.193346 0.135628 -1.426 0.154281
REDS-ECI -0.568812 0.135966 -4.183 3.10E-05 ***

REDS-NCH -0.108083 0.135588 -0.797 0.425544
REDS-SCH -0.086992 0.135581 -0.642 0.521254

REDS-SPATL -0.508665 0.136204 -3.735 0.000198 ***
REDS-UKC -0.316202 0.135777 -2.329 0.020051 *
REDS-WCI -0.552168 0.084251 -6.554 8.65E-11 ***

SPOR-CALI -0.234194 0.092686 -2.527 0.011653 *
SPOR-ECI -0.577126 0.08128 -7.101 2.24E-12 ***
SPOR-JAP -0.560514 0.081665 -6.864 1.13E-11 ***

SPOR-KOR -0.604362 0.08005 -7.55 9.22E-14 ***
SPOR-NCH -0.542382 0.082036 -6.612 5.96E-11 ***
SPOR-PHIL -0.792355 0.088388 -8.965 2.00E-16 ***
SPOR-SCH -0.604872 0.081392 -7.432 2.17E-13 ***

SPOR-SPOR -0.808916 0.081828 -9.886 2.00E-16 ***
SPOR-THAI -0.806268 0.083567 -9.648 2.00E-16 ***
SPOR-TWN -0.343062 0.091121 -3.765 0.000176 ***
SPOR-USG 0.217259 0.11078 1.961 0.050114 .
SPOR-WCI -0.444888 0.081525 -5.457 6.00E-08 ***
UKC-ECC -0.394949 0.096326 -4.1 4.44E-05 ***
UKC-UKC -0.330547 0.086672 -3.814 0.000145 ***

UKC-USAC -0.367337 0.089101 -4.123 4.03E-05 ***
UKC-USG -0.199717 0.135709 -1.472 0.141405
WAF-BRZ -0.391727 0.10135 -3.865 0.000118 ***

WAF-CALI 0.062838 0.095859 0.656 0.512265
WAF-CAR -0.272293 0.085903 -3.17 0.001568 **

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Table D.9: Benchmark regression results (continued)

Coefficients:

Estimate Std.Error t-value Pr(> |t|) significance
WAF-CMED -0.494448 0.08219 -6.016 2.44E-09 ***

WAF-ECI -0.150892 0.084594 -1.784 0.07475 .
WAF-EMED -0.757239 0.095396 -7.938 5.11E-15 ***

WAF-SAF -0.554872 0.088102 -6.298 4.37E-10 ***
WAF-SCH -0.007301 0.135597 -0.054 0.957069

WAF-SPATL -0.429913 0.081244 -5.292 1.47E-07 ***
WAF-SPOR -0.094136 0.095903 -0.982 0.326527
WAF-TWN 0.02846 0.09586 0.297 0.766602
WAF-UKC -0.273631 0.080947 -3.38 0.00075 ***

WAF-USAC -0.292384 0.085938 -3.402 0.000693 ***
WAF-USG -0.188464 0.081161 -2.322 0.020412 *
WAF-WCI -0.161732 0.084126 -1.922 0.054805 .

WAF-WMED -0.58204 0.09714 -5.992 2.82E-09 ***
WCSA-CALI -0.373684 0.110907 -3.369 0.00078 ***
WCSA-SPOR 0.093781 0.135588 0.692 0.489295
WMED-BRZ -0.216888 0.110807 -1.957 0.050562 .
WMED-CAR -0.257634 0.110859 -2.324 0.02031 *

WMED-CMED -0.4328 0.102989 -4.202 2.86E-05 ***
WMED-ECC -0.349354 0.08909 -3.921 9.36E-05 ***
WMED-ECI -0.080347 0.110785 -0.725 0.468451

WMED-KOR 0.092239 0.092611 0.996 0.319478
WMED-SCH 0.10199 0.101043 1.009 0.313023

WMED-SPATL -0.418574 0.090458 -4.627 4.15E-06 ***
WMED-SPOR -0.027702 0.092615 -0.299 0.764916
WMED-UKC -0.442446 0.086779 -5.099 4.04E-07 ***

WMED-USAC -0.301188 0.086071 -3.499 0.000485 ***
WMED-USG -0.237446 0.092715 -2.561 0.010571 *
WMED-WCI -0.166057 0.08468 -1.961 0.050135 .

WMED-WMED -0.389654 0.098681 -3.949 8.37E-05 ***

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Figure D.1: Benchmark Residuals vs. Fitted
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Table D.10: Multiplier regression results

Coefficients:

Estimate Std. Error t value Pr(> |t|) significance
(Intercept) -5.979 1.95E-01 -30.695 2.00E-16 ***
AG-CALI 0.204 4.82E-02 4.233 2.38E-05 ***
AG-ECC -0.172 6.22E-02 -2.756 0.005882 **
AG-ECI 0.341 5.84E-02 5.851 5.47E-09 ***
AG-JAP 0.170 4.60E-02 3.695 0.000224 ***

AG-KOR 0.147 4.49E-02 3.28 0.001051 **
AG-NCH 0.145 5.57E-02 2.597 0.009446 **
AG-PHIL 0.111 6.15E-02 1.797 0.072431 .

AG-REDS 0.225 5.10E-02 4.408 1.08E-05 ***
AG-SAF 0.176 5.93E-02 2.969 0.003012 **
AG-SCH 0.190 4.50E-02 4.216 2.57E-05 ***

AG-SPATL -0.256 1.16E-01 -2.202 0.027742 *
AG-SPOR 0.194 4.53E-02 4.288 1.86E-05 ***
AG-THAI 0.188 4.58E-02 4.11 4.07E-05 ***
AG-TWN 0.146 4.65E-02 3.132 0.001757 **
AG-UKC -0.031 4.98E-02 -0.613 0.539924

AG-USAC 0.232 1.92E-01 1.206 0.228008
AG-USG -0.134 4.54E-02 -2.951 0.003195 **
AG-WCI 0.196 4.60E-02 4.255 2.16E-05 ***

AG-WMED -0.037 9.44E-02 -0.389 0.69745
BALT-USG 0.045 1.39E-01 0.32 0.748637

BRZ-CMED 0.166 1.92E-01 0.864 0.387888
BRZ-SCH 0.185 5.95E-02 3.105 0.001924 **

BRZ-SPOR 0.111 9.45E-02 1.171 0.241517
BRZ-UKC 0.320 1.92E-01 1.668 0.095492 .
BRZ-USG 0.303 1.03E-01 2.938 0.003331 **
BRZ-WCI 0.046 1.17E-01 0.398 0.690929

CMED-SCH 0.210 1.92E-01 1.095 0.273754
ECMX-USG 0.320 1.17E-01 2.743 0.006123 **

EMED-EMED 0.286 1.92E-01 1.489 0.136664
EMED-UKC 0.226 8.83E-02 2.558 0.010577 *
EMED-USG 0.208 1.03E-01 2.01 0.044569 *

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
One-way clustered standard errors, clustered variable on shipowner
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Table D.11: Multiplier regression results (continued)

Coefficients:

Estimate Std. Error t value Pr(> |t|) significance
JAP-SCH 0.024 1.92E-01 0.126 0.89977

JAP-TWN 0.103 1.92E-01 0.536 0.591838
REDS-KOR 0.146 1.39E-01 1.046 0.295453
REDS-NCH 0.503 1.92E-01 2.624 0.00874 **
REDS-PHIL 0.096 1.92E-01 0.498 0.618585
REDS-SCH 0.247 1.04E-01 2.383 0.017227 *
REDS-USG -0.096 1.92E-01 -0.502 0.615482
REDS-WCI 0.285 1.39E-01 2.044 0.041004 *
SPOR-JAP 0.812 1.92E-01 4.235 2.36E-05 ***
UKC-ECC 0.331 1.17E-01 2.844 0.004492 **
UKC-USG 0.226 7.16E-02 3.152 0.001636 **
WAF-SAF 0.290 1.39E-01 2.083 0.037342 *
WAF-SCH 0.147 6.04E-02 2.431 0.015126 *

WAF-SPOR 0.150 1.92E-01 0.781 0.435155
WAF-TWN 0.074 7.64E-02 0.966 0.334273
WAF-UKC 0.032 1.39E-01 0.227 0.820589

WAF-USAC 0.170 1.92E-01 0.886 0.375789
WAF-USG 0.169 5.94E-02 2.84 0.004549 **

WMED-KOR 0.150 8.81E-02 1.699 0.089343 .
WMED-SCH -0.001 1.16E-01 -0.006 0.995013

WMED-SPOR 0.061 1.39E-01 0.437 0.662197
WMED-USG 0.202 5.11E-02 3.948 8.06E-05 ***

Age 0.009 2.77E-03 3.228 0.001259 **
I(Age2̂) -0.0004 1.24E-04 -3.053 0.002289 **

DWT 0.000 3.60E-07 3.471 0.000526 ***
log(p(hfo)) 0.244 1.77E-02 13.829 2.00E-16 ***
(Flag HT)1 0.066 2.19E-02 2.99 0.002812 **

log(lag BDTI) 1.171 2.16E-02 54.339 2.00E-16 ***
(YR)2008 0.034 1.39E-02 2.47 0.013558 *
(YR)2009 0.128 1.79E-02 7.144 1.15E-12 ***
(YR)2010 0.055 1.35E-02 4.074 4.74E-05 ***
(YR)2011 -0.098 1.81E-02 -5.4 7.20E-08 ***

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Age=ω; Age2̂=ω2; DWT=α
One-way clustered standard errors, clustered variable on shipowner
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