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Abstract

We use high-resolution numerical simulations of disc galaxies to study

spiral arms and their dynamical influence on nearby stars. We find

that in the numerical simulations the spiral arms are winding, tran-

sient features whose pattern speeds decrease with radius in such a way

that the pattern speed is almost equal to the rotation curve of the

galaxy. We validate this for normal and barred-spirals, and demon-

strate that there is no significant offset of different star-forming tracers

across the spiral arm. We show from the dynamics of nearby star par-

ticles that star particles are drawn towards and join the spiral arm

from behind (in front of) the arm and migrate towards the outer (in-

ner) regions of the disc until the arm disappears. The resulting gain

(loss) of angular momentum of star particles behind (in front of) the

spiral arm is termed radial migration, and occurs over the entire ra-

dial range analyzed. A direct consequence of ubiquitous co-rotation

radii is that the guiding centre radii of particles are changed while

their degree of random motion is unchanged. We show that there

are several types of migrator particles, as well as particles that do

not migrate, that each have a different orbital evolution. We show

that the orbital type depends on position in configuration and phase

space, and show how the orbits can make up moving group features

in velocity space. We investigate the correlation between the galactic

shear rate and the pitch angle of both individual density waves and

the apparent co-rotating spiral arms. We find that, in both cases,

higher galactic shear rates produce more tightly wound spiral arms,

in agreement with observation. We find also that winding spiral arms

can naturally explain the scatter in the pitch angle-shear rate relation

seen from observations.
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Chapter 1

Introduction

1.1 Spiral galaxies

Spiral arms are beautiful structures that have fascinated generations since Lord

Rosse discovered the nearby spiral galaxy Messier 51, or “Whirlpool” galaxy in

1845. They are features of disc-shaped galaxies, which account for as many as ∼
70% of bright galaxies in the local volume (e.g. Sparke & Gallagher, 2007). Spirals

are global enhancements in surface brightness caused by high concentrations of

cold gas and young, bright stars (e.g. Fujimoto, 1968; Roberts, 1969). In addition

to young stars, multi-wavelength observations have revealed that older stellar

populations trace out the spiral arms (e.g. Rix & Zaritsky, 1995). These old, dim

stars make up a significant fraction of the disc mass, which means that spiral arm

features carry a significant underlying gravitational potential.

There are typically five structural components associated with spiral galaxies:

a disc, a bulge, a bar, a stellar halo and a dark matter halo. The most massive

component is the dark matter halo. A major piece of evidence for the existence of

the invisible matter known as “dark matter” came from circular speed measure-

ments from radio observations of neutral hydrogen, which extends to radii beyond

the stellar disc. Outside of the visible extent of the galaxy, the stellar mass distri-

bution may be approximated as a point mass located at the centre of the galaxy.

In such a system, the circular velocity decreases as vc(r) = (GM/r)1/2, where

M is the stellar mass within a radius r, and becomes constant at large radii.

However, the radial profiles of circular speed observed in disc galaxies are typi-

cally flat, which indicates that there should be a large amount of matter in and

1



1.1. Spiral galaxies 2

around galaxies that we cannot see (e.g. Carignan & Freeman, 1985; van Albada

et al., 1985). Typically the required mass amounts to about 90−95% of the total

galaxy mass, and interacts only through gravity (not electromagnetically). Cur-

rently, the most widely accepted theory for dark matter is the Λ cold dark matter

(ΛCDM) cosmology. N -body simulations based on a range of CDM cosmolo-

gies suggest that individual galaxy dark matter haloes follow a universal density

profile, the so-called “Navarro-Frenk-White” profile (Navarro et al., 1997).

Spiral structure is associated with the rotationally supported disc of stars and

gas whose radial profile of surface brightness is well described by an exponential

profile (e.g. Freeman, 1970; de Jong et al., 2004), the radial scale lengths of which

range from 1 - 10 kpc. The stellar thin disc of the Milky Way, for example, has

a radial scale length of about ∼ 2.5 - 3.0 kpc (e.g. McMillan, 2011). The vertical

density distribution of stellar thin discs is well described also by an exponential

profile (e.g. Gilmore & Reid, 1983). The gas disc is composed of multi-phased

media with complex structure (McKee & Ostriker, 1977); a hot ionised medium of

low density and high volume and temperature, warm ionised and neutral media

of lower temperature and higher density (Cox, 2005), and a very dense, thin

disc of cold neutral medium in which most star formation sites are situated (see

Kennicutt & Evans, 2012, and references therein).

The bulge, located in the centre of spiral galaxies, is a spheroidal stellar sys-

tem that is centrally concentrated and smooth in appearance. They fall into

two categories: classical bulges and pseudo-bulges. Classical bulges contain pre-

dominantly older stars than the disc, and are thought to have formed by rapid

star forming events at early times. Pseudo-bulges are thought to build up more

gradually from internal secular processes (e.g. Kormendy & Kennicutt, 2004)

such as angular momentum transport caused by the bar; angular momentum is

transported outwards and material falls into the central regions.

Both the disc and the bulge components are defining morphological features of

spiral galaxies, on which Hubble (1926) based his scheme for galaxy classification.

This scheme was laid out in his “Tuning Fork” diagram shown in Fig. 1.1,

which splits galaxies into ellipticals and spiral classes. Spiral galaxies are sub-

classified into “normal” and “barred” classes. Normal spiral galaxies are further

sub-divided into three types: Sa, Sb and Sc. Along the sequence Sa → Sc,

i) the bulge size (or luminosity) decreases ii) the gas mass fraction increases



1.1. Spiral galaxies 3

Figure 1.1: Illustration of the Hubble Sequence, i.e., the Tuning fork diagram. The left-
hand side groups together elliptical galaxies ranging from E0 to E7, where the higher
numbers represent a higher degree of ellipticity. The right-hand side shows the spiral
(upper) and barred-spiral (lower) galaxy types (see text for description of sub-types).
The central S0 type represents a smooth disc galaxy with no spiral or bar structure: a
morphology intermediate to spirals and ellipticals. Credit: Ville Koistinen.
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iii) the spirals become less tightly wound and iv) the spiral arms become more

clumpy. Barred spiral galaxies have at their centre an elongated, rotating stellar

system called a bar. The Hubble types of barred spiral galaxies are designated:

SBa, SBb and SBc, and are categorised according to the same criteria as the

normal spirals. There is some statistical evidence, gathered from observations

(Kormendy & Norman, 1979; Elmegreen et al., 1990), that two-armed grand-

design galaxies and bars are more often found with companion galaxies, compared

to more flocculent, open spiral galaxies that tend to be more isolated. Elmegreen

& Elmegreen (2014) show that under such a correlation, the ratio of barred/grand

design galaxies to normal, open spiral galaxies increases with redshift, because

mergers and galaxy encounters are thought to be more frequent at earlier epochs

of cosmic evolution.

The precise origin and evolution of spiral structure is still unknown despite

decades of study. In what follows, we describe the most widely reported theories of

spiral structure, their observational predictions, and their implications for spiral

arm evolution and impact on stellar dynamics. We describe some methods used

to test these predictions from observations and summarise the current findings.

We outline how the power and versatility of numerical simulations can bridge the

gap between theory and observation in the setting of galactic dynamics, which

we use throughout the studies presented in this thesis.

1.2 Theories of spiral structure

1.2.1 Spiral density wave theory

Lindblad (1960) first postulated that the prominent, quasi-symmetric spiral arms

of grand design galaxies are wave-like in nature. This concept was advanced

by Lin & Shu (1964); Lin et al. (1969); Bertin et al. (1989a,b), who developed

what is the most widely accepted theory of the spiral arm for 50 years: spiral

density wave theory. The theory considers stellar spiral arms to be the crests of

a stationary density wave. In this description, spiral arms rotate at a constant

angular velocity (pattern speed) over the entire radial range: spiral arms rotate

rigidly around the galaxy and preserve their shape, thus avoiding the winding

dilemma. Spiral arms are therefore described as long-lived features, which is a

major prediction of the theory.
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The considerations that lead to spiral density wave theory begin with the

overall dynamical interaction of stars through their gravitational forces. In the

idealised model of Lin & Shu (1964), the mass of the rotationally supported

disc is concentrated in the plane, which reduces the disc to a two dimensional

configuration. For a stable planar disc, the four fundamental equations of galactic

dynamics: the continuity equation, the radial and azimuthal Euler equations and

Poisson’s equation, may be linearly perturbed, and to first order are

∂Σ′

∂t
+

1

r

∂

∂r
(rΣ0u

′) +
Σ0

r

∂v′

∂θ
+
v0

r

∂Σ′

∂θ
= 0 (1.1a)

∂u′

∂t
+
v0

r

∂u′

∂θ
− 2

v0

r
v′ =

∂φ′

∂r
(1.1b)

∂v′

∂t
+ Ω

∂v′

∂θ
+
κ2

2Ω
u′ =

1

r

∂φ′

∂θ
(1.1c)

∂2φ′

∂r2
+

1

r

∂φ′

∂r
+

1

r2

∂2φ′

∂θ2
+
∂2φ′

∂z2
= −4πGΣ′δ(z), (1.1d)

in cylindrical coordinates, where r, θ and z are the radial, azimuthal and height

above the disc plane coordinates. The surface mass density, rotation velocity,

radial velocity and potential are given by Σ, v, u and φ respectively, and un-

perturbed and perturbed quantities are denoted by the subscript 0 and prime

respectively. Equations (1.1) model the dynamical response of stars to a first

order perturbation in surface mass density.

The next step that Lin & Shu (1964) took was to integrate equation (1.1d)

by an asymptotic method in order to find solutions of the form

Σ′ = Re{S(r) expi(ωt−mθ+f(r))} (1.2a)

φ′ = Re{A(r, z) expi(ωt−mθ+Φ(r,z))}, (1.2b)

where ω is rotational frequency, m ≥ 0 is a natural number that denotes an

m-fold symmetric pattern, and f(r) and Φ(r, z) are phase factors (or functions

that describe the spiral shape) of the perturbed surface density and potential

respectively. These quantities are required to vary quickly with respect to the

amplitude functions S(r) and A(r, z) in order for the perturbation to leave a spi-

ral impression. Moreover, the rapid variation of phase factors, f(r) and Φ(r, z)
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produces tightly wound spirals, for which the spiral density disturbance can be

approximated as a plane wave in the radial direction. In this approximation, the

contributions of distant peaks in surface density to the disturbance potential are

approximately cancelled out owing to the near-symmetry of the density peaks.

Therefore, the potential is well described by the local surface density distribution.

This is known as the tight winding approximation (WKB1), which is necessary

to make in order to equate f(r) and Φ(r, z) (i.e., the potential and density are in

phase) and extract analytic solutions for the density and potential of a density

wave mode. Analytic solutions for wave modes outside of the WKB approxima-

tion are difficult to derive; the only analytic solution known is for the Kalnajs

disc (see Kalnajs, 1972).

The solutions to the two-dimensional Poisson equation (1.1d) must satisfy the

boundary condition[
∂φ′

∂z

]
=
∂φ′(r, θ, 0+)

∂z
− ∂φ′(r, θ, 0−)

∂z
= −4πGΣ′, (1.3)

in the disc plane, i.e. z = 0, where the 0± coordinates represent infinitesimal

departures from the disc plane both above (+) and below (−), because all the

mass is contained within an infinitely thin disc.

Lin & Shu (1964) used an asymptotic method (see Appendix A) to solve

equations (1.1) with boundary condition (1.3), and showed that the wave solutions

obey the dispersion relation:

|k| = (κ2 − (ω −mΩ)2)/2πGΣ0, (1.4)

where κ is the epicycle frequency, Σ0 is the unperturbed surface density, |f ′(r +

iz)| = |k|, is the radial wavenumber, and ω = ωr + iωi is the complex rotational

frequency of the density wave. Because the left hand side of equation (1.4) is

always positive regardless of whether the wave is trailing or leading, a density

wave may only be supported if the real part of the right hand side of equation

(1.4) is positive, i.e., if

κ2 + ω2
i − (ωr −mΩ)2 > 0. (1.5)

The spiral shape of the density distribution given in equations (1.2) at t = 0

1Named after Wentzel-Kramers-Brillouin.
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follows mθ = Φ(r). For trailing spiral arms, Φ′(r) < 0, and because Φ′(r) = k,

the shape of the spiral arm is given by

m(θ1 − θ0) = −
∫ r1

r0

[κ2 + ω2
i − (ωr −mΩ)2]

2πGΣ0

dr. (1.6)

Lin & Shu (1964) assumed that if there is a comparatively large concentration

of mass in the centre, the surface density, Σ0, of the outer disc is lower. Under

this assumption, equation (1.6) predicts that galaxies with large bulges have more

tightly wound spirals than galaxies that have smaller bulges, which is qualitatively

consistent with Hubble classes Sa, Sb and Sc.

Resonances

Stars that orbit in the disc plane of a spiral galaxy are in resonance with a m-

symmetric density wave mode of pattern speed, Ωp = ω/m, when

Ωp = Ω + l
κ

m
, (1.7)

where l is a signed integer and denotes harmonic resonances of an m-armed

pattern, the most important of which occur for |l| = 0, 1. For l = 0, equation (1.7)

defines a resonance at which stars rotate at the same speed as the spiral wave,

which is termed a co-rotation resonance. For l = ±1, the frequency at which stars

encounter the density wave, m(Ω−Ωp), is equal to the radial oscillation (epicycle)

frequency, κ. These resonances are termed Lindblad resonances, and mark the

inner and outer boundaries of spiral structure, because a stationary density wave

is not supported by stars outside this radial range (Sellwood, 2014). Between the

outer Lindblad resonance (l = +1) and co-rotation, stars move slower than the

wave, and fall behind it during rotation. Conversely, between the inner Lindblad

resonance (l = −1) and co-rotation, stars rotate faster than the spiral wave and

overtake it.

Given the expression for the phase factor in equation (1.4) and its appearance

in the equation for the potential in equation (A.18), it is evident that the value

for the potential (and the velocities, v′ and u′) diverges for the case |k| = 0, i.e.,

κ = ±(ω − mΩ). Therefore, the linear analysis breaks down near resonances

for long-lived spiral density waves. The prediction of resonances has important

consequences for the orbital motion of stars, which will be described in §1.3.
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1.2.2 Swing Amplified Travelling Waves

The dispersion relation of equation (1.4) applies to a flat disc of stars with zero

velocity dispersion, and relates the rotational frequency, ω, of a density wave to

its radial wavenumber, k, or wavelength, λ = 2π/k, which is related to the pitch

angle of the disturbance. In the absence of random motion, it follows that for

axisymmetric disturbances (m = 0), the disc is stabilised for wavelengths

λ > λcrit ≡
2π

kcrit
=

4π2GΣ

κ2
. (1.8)

Large scale disturbances of wavelength λ > λcrit are stabilised by the rotation of

the disc1 (Toomre, 1964). On smaller scales, i.e., λ < λcrit, a non-zero velocity

dispersion is required for stabilisation; in the absence of random motion, there

is no pressure on any scale smaller than the critical wavelength, λ < λcrit, to

resist gravitational instability. However, Toomre (1964) showed that a disc may

be stable on scales smaller than the critical wavelength if the velocity dispersion,

σr, is greater than a critical velocity dispersion, σr,crit, yielding a criterion for

local axisymmetric stability

Q ≡ σr
σr,crit

=
σrκ

3.36GΣ
> 1. (1.9)

Although this expression was derived by Toomre (1964) from the local approxi-

mation, numerical experiments (e.g. Hohl, 1971) suggest that equation (1.9) is in

fact a good approximation to global axisymmetric stability. Equations (1.8) and

(1.9) refer strictly to local axisymmetric stability, and stellar discs that satisfy

these criteria for stability may still develop non-axisymmetric structure. How-

ever, they serve as important indicators of the dynamical responsiveness of the

disc, which is important for all perturbations.

Regarding non-axisymmetric disturbances, Toomre (1969) showed that waves

described by the dispersion relation of the kind in equation (1.4) ought to propa-

gate radially at the group velocity, cg = ∂ω(k, r,m)/∂k, between co-rotation and

1Here, the rotational support is characterised by the epicycle frequency squared, κ2 =(
2rΩdΩ

dr + 4Ω2
)
. Rotational support against a collapsing element of mass is provided by a

gravity opposing local centrifugal force; a star that is pulled radially towards the mass element
changes it’s rotational velocity in order to conserve angular momentum. The resulting change
in relative velocity between the star and the mass element induces a local centrifugal force that
depends on the angular rotation and its radial profile (i.e., κ2), and acts to stabilise gravitational
collapse about the mass element on scales exceeding that described in equation (1.8).
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Figure 1.2: The dispersion relation for density waves for different values of the Q pa-
rameter: dimensionless frequency ratio, ν = (ω−mΩ)/κ as a function of dimensionless
wavelength, ζ = k/kcrit. Credit: Toomre (1969).

the Lindblad resonances. Such travelling waves were shown by Toomre (1969) to

change wavelength, λ, and frequency, ω, as they propagate. Fig. 1.2 shows the

dispersion relation plotted with dimensionless frequency ratio ν = (ω −mΩ)/κ

as a function of dimensionless wavelength, ζ = k/kcrit, where k = 2π/λ is the

radial wavenumber (k < 0 corresponds to leading spiral arms, whereas k > 0 cor-

responds to trailing spiral arms). Because ν = 0 corresponds to co-rotation, and

ν = ±1 corresponds to the Inner and Outer Lindblad resonances, the ordinate

corresponds to the radial range between the Lindblad and co-rotation resonances.

The abscissa corresponds to the wavelength of the wave. The curves and their

slopes show the evolution of wavenumber and group velocity respectively for an

initially tightly wound wave propagating from the Lindblad resonances toward

co-rotation (from right to left in Fig. 1.2). As the wave propagates towards

co-rotation, it begins to unwind (ζ becomes lower). When it reaches co-rotation,

the group velocity changes sign and the wave packet is reflected back towards the

Lindblad resonances, still unwinding. The wave changes from a loosely wound

leading to a loosely wound trailing wave as it is reflected off the Lindblad res-

onances, and winds further as it travels towards co-rotation (from left to right

in Fig. 1.2). As the wave packet is reflected away from co-rotation a final time,
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Figure 1.3: Schematic drawing of a shearing disturbance (grey regions) in a small
region of the galactic disc. From top to bottom shows a time sequence, in which
the direction of rotation, x, is from right to left, and y points radially outward. The
initially tightly wound leading spiral (top panel) unwinds to a loose leading spiral
(second panel). Stars become trapped in the over-dense patch as it swings from leading
to trailing (third panel), until they begin to escape when the spiral is tightly wound
(bottom panel). Credit: Toomre (1981).
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the wave becomes ever more tightly wound as it asymptotically approaches the

Lindblad resonances once more. However, this time it is unable to reflect back,

and is instead damped away at the Lindblad resonances (Mark, 1974). In this

scenario, the wave is not a long-lived feature.

The local stability of non-axisymmetry was extensively studied by Goldreich

& Lynden-Bell (1965); Julian & Toomre (1966), who discovered the process of

swing amplification. Julian & Toomre (1966) calculated the response density of

a shearing sheet to a large mass perturber, and found that wakes formed in the

vicinity of the perturber and grew into wavelets that resembled spiral patterns.

They found that the wavelets grew to a maximum amplitude for a spiral pitch

angle that depends on the shear rate of the sheet i.e. larger shear rates lead to

more tightly wound spiral shapes. They found also that for a flat rotation curve,

the amplification is most significant for a length ratio

X =
λt
λcrit

=
2πr

m

κ2

4π2GΣ
∼ 1− 3, (1.10)

where λt is the circumferential wavelength at a radius, r. Equation (1.10) indi-

cates that amplification is strong for high m-values for relatively light discs, i.e.,

Σ is low, whereas m is comparatively low in heavier discs.

The results of Julian & Toomre (1966) were corroborated by Toomre (1981),

who described how shear rate, epicycle motion and self-gravity conspire together

to amplify an initially leading spiral that unwinds into a trailing spiral (see Fig.

1.3). A key property of the shearing spiral is that the rate of change of pitch

angle is slower for |k| � 0, i.e. tightly wound spirals, than it is for low values

of |k|, i.e. more open spirals. The shear rate of the over-dense patch of material

reaches a maximum at k = 0, i.e. when it “swings” from leading to trailing,

which is comparable to the epicycle motion of stars (see also Binney & Tremaine,

2008). The overall effect is that rotational support is compromised at large scales

(λ� 0); the epicycle motion that acts to pull stars away from over-dense patch

is negated by the shearing of the disturbance during the swing period, effectively

trapping the star inside the perturbation for a short period of time. During this

time, the self-gravity of the trapped stars draws more stars into the over-density,

which results in serious amplification of the non-axisymmetric disturbance. As

the enhanced spiral becomes a more tightly wound, trailing shape, the rate of

change of pitch angle slows such that the coupling between shear and epicycle
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Figure 1.4: Top panel : The evolution of the effective spring rate with self-gravity and
no shear. Bottom panel : The evolution with shear corresponding to a flat rotation
curve without (dotted) and with (solid) self-gravity. The ordinate shows the evolution
of the effective spring rate, κ̃2, expressed in equation (1.13). Credit: Toomre (1981)

motion vanishes, and the spiral begins to fade.

The strength of the amplification of the disturbance is parameterised in Toomre

(1981) as a measure of normal displacement, ξ, of an (epicyclic) oscillating star

with respect to the edge of the over-dense patch,

ξ = x sin γ + y cos γ, (1.11)

where γ is the pitch angle of the spiral shape1. The evolution of the displacement

parameter, ξ, follows that of a harmonic oscillator:

ξ̈ + κ̃2ξ = 0. (1.12)

The restoring force is provided by the effective spring rate, κ̃, which Toomre

1Here, γ = 0 corresponds to the boundary between leading and trailing spirals, and γ →
±90 degrees corresponds to the most tightly wound leading (−) and trailing (+) spiral shapes
respectively.
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(1981) showed to be

κ̃2 = κ2

epicycle frequency

− 4Ω2
0Γ cos2 γ + 3Ω2

0Γ cos4 γ
shear

− 2πGΣkF
self-gravity

, (1.13)

where κ is the epicycle frequency and Γ is the galactic shear rate. Exponential

growth of the displacement parameter occurs when the effective spring rate be-

comes negative. The top panel of Fig. 1.4 shows the evolution of the effective

spring rate as a function of pitch angle for the case of no shear term in equation

(1.13), whereas the bottom panel of Fig. 1.4 shows the evolution for the cases of

Γ = 1 with (solid line) and without (dashed line) the self-gravity term in equa-

tion (1.13). The combination of shear and self-gravity can effectively reduce the

spring rate to the required negative values that causes rapid growth over a short

period during the swing from leading to trailing at large wavelengths.

The parameter F in equation (1.13), which takes values between 0 and 1,

models the effective reduction of self-gravity caused by a non-zero velocity dis-

persion (it is equal to 1 for zero dispersion). Therefore stellar discs of lower Q

values lead to greater amplifications of the spiral over-density.

The swing amplification mechanism represents a significant departure from

the stationary density waves postulated by Lin & Shu (1964), namely because it

describes the growth and decay of transient, “swinging” perturbations, as opposed

to long-lived rigidly rotating spiral structure. Swing amplification is not captured

in density wave theory because the WKB approximation is unable to accurately

follow the evolution of spirals of large radial wavelengths. It does not, however,

exclude the stationary wave mode solutions of equations (1.1a-1.1d), and the

connection between the two theories is still under scrutiny. For example, Sellwood

& Carlberg (2014) argues that successive swing amplifications of many travelling

waves may seed global instabilities such as density wave modes, as long as they

are not damped out completely by the Inner Lindblad resonance.

1.2.3 Other theories

Over the years, since the Lin-Shu density wave theory and swing amplification

theory were proposed, researchers have put forward several theories of the origin

of the instability that leads to spiral structure.

Sellwood & Kahn (1991) presented a spiral instability mechanism known as
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the “groove” mode, which was reported to develop from under-dense narrow

ring features in the surface density1, around which global wave modes grow.

These modes were shown to be transient, owing to their instability leading to the

eventual erasure of the wave mode. This recurrent instability cycle was supported

by the earlier work of Sellwood & Lin (1989), who found that instabilities of

this nature can propagate in radius. However, Sellwood (2012) found that the

mechanism could not be replicated in heavy discs with flat rotation curves.

Bertin & Lin (1996) proposed a density wave model for global, long-lived

spiral modes that formed stationary structures closely associated to the original

density wave theory of Lin & Shu (1964). However, Sellwood (2011) showed that

the global modes presented by Bertin & Lin (1996) cannot be sustained owing to

heating effects in the outer disc.

Athanassoula et al. (2009) proposed that spiral arms can be created by the

migration of stars along unstable Lyapunov tube manifolds that originate from

the Lagrange points located at the end of a bar. The manifolds were shown to map

out spiral and ring-like shapes, which Athanassoula et al. (2009) argued naturally

accounts for spiral arms growing out from the ends of bars. The presence of these

manifolds seems to require the simultaneous existence of a bar, rings and spiral

arms, which all rotate at the same pattern speed.

While there is no widely accepted theory of spiral structure, there is a general

consensus that spirals are gravitationally driven instabilities that lead to varia-

tions in surface density and brightness (e.g. Rix & Zaritsky, 1995; Grosbøl et al.,

2004). It is possible that there exist different mechanisms responsible for spiral

arm formation that are a function of galaxy environment and morphology. In

discs that have satellites or nearby companion galaxies, the spiral structure may

be tidally driven (Kormendy & Norman, 1979; Dobbs et al., 2010; Purcell et al.,

2011; Kendall et al., 2011), while other galaxies may display bar-driven spirals

(Salo et al., 2010). It is clear that gas plays an important role in the develop-

ment of spiral arms; observations tell us that spiral galaxies are predominantly

late-type and gas rich (see §1.1). This is because spiral structure acts to dynam-

ically heat the disc by increasing the random motions of stars, which leads to

higher Q parameter values (see §1.2.2) and a less dynamically responsive disc.

Gas becomes an important component of the spiral disc because it has a cooling,

1A similar instability was found to occur for over-dense “ridges” in angular momentum
space (see Sellwood & Kahn, 1991).
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dissipative effect, which helps to keep the disc dynamically cool. This is vitally

important in the sustention of spiral structure for Gyr-long periods - supported

by simulations (e.g. Sellwood & Carlberg, 1984), which is discussed in more de-

tail in §1.5 - that provides an explanation for the presence of gas-rich spirals and

featureless S0 galaxies that have very little gas (Oort, 1962).

1.3 Radial Migration

A star orbiting in an axisymmetric potential maintains a constant angular mo-

mentum that corresponds to a “guiding centre” around which the star radially

oscillates at the epicycle frequency, κ. However, non-axismmetric potentials such

as spiral arms can cause changes in the angular momentum (and therefore guiding

centre radius) of individual stars. This process is termed “radial migration”.

Lynden-Bell & Kalnajs (1972) first discussed angular momentum transport

of stars by a steady, rigidly rotating spiral arm potential that grows very slowly

(in comparison to orbital periods), and found that the average change in angular

momentum for a group of stars is zero everywhere except at resonances (see also

Carlberg & Sellwood, 1985).

In a steady potential that rotates in the frame of reference equal to the pattern

speed, Ωp, of a density wave, there is a conserved quantity known as Jacobi’s

integral, defined as (Binney & Tremaine, 2008, equation 3-88)

EJ = Etot − ΩpLz, (1.14)

where Lz is the z-component of angular momentum, and the total energy is

Etot = φ(r) +
L2
z

2r2
+ κJr. (1.15)

Here, Jr is a constant of motion known as the radial action, which is associated

with the radial oscillation of a star (Lynden-Bell & Kalnajs, 1972). Therefore

changes in the total orbital energy and angular momentum must be related by:

∆Etot = Ωp∆Lz. (1.16)

Fig. 1.5 illustrates the changes described by equation (1.16) in angular momentum-

energy (E-L) space. The solid curve represents the circular orbit in E-L space,
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which is the orbit that has zero radial and vertical kinetic energies and a tangential

velocity that produces a centripetal force exactly equal to the radial gravitational

force acting on the star. This is the minimum energy orbit for a star of a given

angular momentum that is bound to the system. Therefore no star can possess a

lower energy than the circular orbit at a given angular momentum or, vice versa,

no star can possess an angular momentum higher than the circular orbit at a

given orbital energy if they are bound. This “inaccessible region” is marked in

Fig. 1.5 as the shaded area underneath the circular orbit curve. The dashed line

represents the slope along which stars are radially transported. At co-rotation,

the slope is tangential to the circular orbit curve, therefore stars that gain/lose

angular momentum at the co-rotation resonance experience no change in their

degree of random motion. Angular momentum changes at co-rotation can be

of either sign. At the Lindlbad resonances however, the slope given by Ωp is

not tangential to the circular orbit line, and angular momentum exchanges with

stars is accompanied by an increase in random motion. On average, stars at the

Inner Lindblad resonance lose angular momentum, because angular momentum

increase is restricted, particularly for near-circular orbits, by the inaccessible re-

gion enclosed by the circular orbit curve. A similar argument supports the net

gain of angular momentum of a group of stars at the Outer Lindblad resonance.

An increase in non-circular motion can be described by an increase in radial

action. (Sellwood & Binney, 2002) quantified the change in radial action of a star

orbit as a function of angular momentum change at resonances by re-expressing

the change in total energy as a function of radial action and angular momentum:

∆Etot =
∂Etot
∂Jr

∆Jr +
∂Etot
∂Lz

∆Lz. (1.17)

Eliminating ∆Etot from equations (1.16) and (1.17) gives the relation

∆Jr =
Ωp − Ω(r)

κ
∆Lz, (1.18)

which shows that ∆Jr = 0 at co-rotation, and ∆Jr = |∆Lz|/m at the Lindblad

resonances.

Sellwood & Binney (2002) showed that angular momentum changes at co-

rotation are generally much larger than those at the Lindblad resonances, and

those predicted by Lynden-Bell & Kalnajs (1972) at co-rotation. Stars that gain
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Figure 1.5: Classical Lindblad diagram. The solid curve represents the lowest energy
orbits for given angular momenta (circular orbits). Physical orbits exist on or above
the curve, where the further from the curve they lie, the more eccentric their orbit. The
dashed line is the slope along which radially migrated particles move, as indicated by
the movement near principal resonances shown by the solid arrows. Credit: Sellwood
& Binney (2002).
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angular momentum just inside of co-rotation on the trailing side of the spiral

increase their orbital radius, which in turn decreases their orbital frequency. The

star then rotates backward with respect to the spiral arm in the co-rotating frame,

and approaches the next spiral arm from its leading side. The star can then lose

the angular momentum that it gained from the previous spiral arm, subsequently

increasing its orbital frequency, which in turn leads to the star rotating faster

than the spiral upon crossing co-rotation. These orbits are called “Horseshoe Or-

bits”, named after the shape of orbit in the co-rotating frame. Sellwood & Binney

(2002) inserted by hand a spiral wave mode into two-dimensional simulations of a

Mestel disc density profile, and found that the growth of the spiral structure was

limited by growing radial migration of stars away from the co-rotation resonance,

which leads to “transient” spiral waves. This means that for a two-armed spiral

structure, the once-migrated particle mentioned above no longer encounters the

second spiral arm, therefore the angular momentum changes the first time around

are not cancelled out. Sellwood & Binney (2002); Roškar et al. (2012b) argued

further that the long lasting effect of this radial migration on the disc evolution

will be enhanced if successive transient spiral wave modes develop, each of differ-

ent co-rotation radii. The effect of radial migration has been argued to be even

further pronounced if resonances of different modes overlap, for example two spi-

ral modes (Minchev & Quillen, 2006; Minchev et al., 2011, 2012b) or a spiral and

bar mode (Minchev & Famaey, 2010; Quillen et al., 2011). Radial migration is

thought to play a significant role in galaxy evolution, not only from spirals but

from bars as well (e.g. Solway et al., 2012).

There have been many studies on the effect of radial migration on the distri-

bution of chemical abundances of disk stars (Sellwood & Binney, 2002; Lépine

et al., 2003; Roškar et al., 2008a,b; Haywood, 2008; Schönrich & Binney, 2009;

Sánchez-Blázquez et al., 2009a; Loebman et al., 2011; Minchev et al., 2011; Brook

et al., 2012; Minchev et al., 2013; Di Matteo et al., 2013; Haywood et al., 2013).

In the plane of the Milky Way, the Geneva Copenhagen Survey (Nordström et al.,

2004; Holmberg et al., 2009) revealed that the dispersion in stellar metallicity in

the solar neighbourhood is much broader than that of the gas in the solar neigh-

bourhood, and is therefore too broad to be explained by local star formation

(Haywood, 2008; Schönrich & Binney, 2009; Casagrande et al., 2011). Sellwood

& Binney (2002) reported the presence of such stars in the solar neighbourhood
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to be a consequence of radial migration caused by transient spirals. Metal-rich

stars that formed in enriched gas in the inner regions of the Milky Way can mi-

grate to the outer regions, and conversely, metal-poor stars from the outer regions

can migrate to the inner regions (Haywood, 2008). Therefore, radial migration

broadens the metallicity distribution (see also Schönrich & Binney, 2009).

Radial migration has been reported also to be the cause of breaks in the

exponential surface brightness profiles of disc galaxies (Pohlen & Trujillo, 2006;

Roškar et al., 2008b; Yoachim et al., 2010, 2012). However, the origin of surface

brightness breaks is a complicated issue that includes factors such as gas accretion

and star formation. For example, Sánchez-Blázquez et al. (2009a) argue that a

star formation rate threshold in the low density disc outskirts plays an important

role in forming the breaks.

Radial migration has been argued to also thicken galactic discs. In particular,

Roškar et al. (2012a) inferred from a numerical simulation that outward migrating

star particles can thicken the disc because they conserve their vertical energy,

and therefore the amplitude of their vertical oscillations about the disc plane

increases in the outer regions owing to the reduced vertical restoring force of

gravity. However, Minchev et al. (2012a) found from simulations that the vertical

action of the stars is the conserved quantity - and not the vertical energy - which

leads to minimal disc thickening (see also Solway et al., 2012).

The large number of recent studies on radial migration have highlighted its

importance in spiral galaxy evolution. Because this phenomenon occurs at the

co-rotation radius, the position and number of such resonances, which depend

on the pattern speed, play important roles in the secular evolution of galaxies.

Therefore the extent to which radial migration occurs depends heavily on the

radial profile of the pattern speed and the nature of the spiral arm itself. In the

next section, I describe some observational techniques that have been used to

determine spiral arm patterns speeds, and summarise the current findings.

1.4 Observational tests of rigidly rotating spiral

structure

The typical timescale for one galactic rotation of a disc galaxy similar in size to

the Milky Way is ∼ 108 years, and as such observations of disc galaxies are limited
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to effectively provide a snapshot of a single instance in time. Therefore we cannot

directly observe the dynamical evolution of large scale galaxy structures such as

spiral arms. However, it is possible to test spiral arm theories if the theory can be

used to develop observable predictions, such as the constant pattern speed pre-

dicted by density wave theory. In this section, I outline two well-used techniques

that test density wave theory, by inferring the form of the spiral arm pattern

speed: the tracer offset method and the Radial Tremaine-Weinberg method.

1.4.1 The tracer offset method

Multi-wavelength images of spiral galaxies reveal that the luminosity of star form-

ing tracers is enhanced in the spiral arms compared to the inter-arm regions,

implying that the highest star formation rate densities in galaxies are in spiral

arms. Fujimoto (1968) and Roberts (1969) proposed that enhanced star forma-

tion in spirals could be caused by shocks that form along the spiral arm, owing

to non-zero relative speeds between gas clouds and the spiral density wave that

become supersonic at radii far from co-rotation. The subsequent rapid cooling of

the gas coupled with the gravitational potential of the spiral triggers an increase

in molecular cloud formation1. Star formation then proceeds in the molecular

clouds, beginning with dust-enshrouded newborn stars, which evolve into unob-

scured young stars. The time difference between these stellar evolutionary stages

leads to a trail of star formation across the spiral arms, in which each stage is

spatially offset from one another. The size of the angular offset corresponds to

the relative speed between the star forming material and the spiral arm (pattern),

which becomes larger at radial distances farther from co-rotation.

The stages of star formation, including those of gas cloud evolution prior

to star formation, can be mapped observationally because each stage emits a

characteristic tracer. Atomic and molecular gas can be detected via HI and CO

emission lines respectively. Very early star formation can be traced by 24µm

1This model suggests that the star formation efficiency (star formation rate per unit gas
mass), is higher in spiral arms. It should be noted, however, that Foyle et al. (2010) find an
almost equal fraction of molecular gas in the spiral arms and inter-arm regions of three galaxies,
and a star formation efficiency that is constant over the disc. This suggests that the star forma-
tion rate density in spiral arms is high because the underlying spiral arm potential simply draws
molecular gas together into higher concentrations, and not because the star formation efficiency
increases (see also Dobbs et al., 2013). However, this is still debated. More observational and
theoretical studies are required to answer how the spiral arm affects star formation.
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and/or Hα emission, and young unobscured stars can be detected in the UV

regime. Therefore, multi-wavelength observations can provide an observational

test of the pattern speed of the spiral arms because spatial offsets of star forming

tracers can be measured directly.

Early observational efforts found evidence for offsets between dust lanes and

optical images of spiral arms of the nearby galaxies M51 (e.g. Mathewson et al.,

1972) and M81 (e.g. Rots, 1975). When molecular gas (CO) images began to

improve in resolution, more quantitative studies comparing the distribution of

CO and Hα emission reported non-zero angular offsets for M51 (e.g. Vogel et al.,

1988; Garcia-Burillo et al., 1993) and M100 (e.g. Rand, 1995). In recent years,

other nearby spiral galaxies in addition to M51, M81 and M100 have been studied

with ever increasing image tracer resolution (Tamburro et al., 2008; Egusa et al.,

2009; Foyle et al., 2011; Ferreras et al., 2012). Tamburro et al. (2008) was the

first to use the statistical cross correlation method to calculate angular offsets

between two star forming tracers, in contrast to the by-eye offset determinations

of previous studies (see Foyle et al., 2011). In this method, the disc is divided

into concentric radial annuli, and the azimuthal flux profiles of two different star

forming tracers, x and y, are measured. The azimuthal flux profile of one tracer,

fxk , is fixed, while that of another tracer, f yk−l, is iteratively rotated in azimuth by

an offset angle, denoted by l, where k represents the original measured azimuth

coordinate of the data. Then, the cross-correlation coefficient given by

ccxy(l) =
Σk[(f

x
k − f̄x)(f

y
k−l − f̄ y)]√

Σk(fxk − f̄x)2Σk(f
y
k − f̄ y)2

, (1.19)

where f̄ is the azimuthally averaged flux in a radial annulus, is calculated at each

radius for different offset angles. The best match between the azimuthal flux

profile of both tracers is found for a given l when the correlation coefficient is

maximised. The best match offset angle is related to the pattern speed by

∆θ(r) = (Ω(r)− Ωp)tx→y, (1.20)

where tx→y is the time between evolutionary stages that display tracers x and

y. Tamburro et al. (2008) found that the spiral galaxies in their sample show

evidence of offsets, which is supported by the later observational work of Egusa
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et al. (2009) who examined a sample of twelve nearby galaxies1. Hirota et al.

(2014) use high resolution wide field CO images of M83 and find a non-zero offset

between the molecular material and Hα emission regions.

Most of the studies mentioned above measure the angular offsets between the

molecular CO tracer and Hα or 24 µm as a tracer of early star formation. These

tracers probe a few Myr (Egusa et al., 2009) of stellar evolution, which in some

cases may lead very small offsets depending on the radial distance away from

co-rotation. From this point of view, the recent studies of Foyle et al. (2011)

and Ferreras et al. (2012) may provide tighter constraints because they use also

UV light as a tracer of unobscured star formation, which enables the first few

hundred Myr of star formation to be tracked.

Foyle et al. (2011) adopt the method of Tamburro et al. (2008) to analyse

high resolution images of CO, Hα and NUV of star forming regions. They find

no offset in any of the twelve nearby spiral galaxies that they analyse, and show

that the angular offsets calculated by Tamburro et al. (2008) all lie below the

resolution limit of the data, thus casting doubt upon the validity of their offset

detections. The result constitutes major evidence against classic density wave

theory, which is further supported by the study of Ferreras et al. (2012) who

found no evidence for angular offsets between different stellar populations from

Hα and high resolution ultra-violet images of M100.

The ongoing research into the detection of star forming tracer offsets continues

to provide a mixture of evidence both for and against density wave theory. This

highlights the complexity of the problem at hand, and the need for more studies

that cover a wide range of star forming tracers and large samples of galaxies in

various environments and morphologies. As telescope resolution and sensitivity

increases, this method will continue to provide great insight into the nature of

spiral arms.

1.4.2 The Tremaine-Weinberg equations

The Tremaine-Weinberg method is an observational method first developed by

Tremaine & Weinberg (1984) to determine the pattern speed of non-axisymmetric

structure, i.e. bars and spiral arms. It has been used with observations of external

1Although only three galaxies were found to display offsets, while most were found to have
a complicated structure.
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galaxies for which the disc plane can be seen at some inclination angle, i, such

that the surface density, or surface brightness, Σ, can be measured at every point

on the disc. The method carries a set of assumptions: 1) the spiral arms/bar

possess a rigidly rotating pattern speed, Ωp = Ωpêz; 2) the kinematic tracer is

conserved and orbits in a single plane; 3) the spiral arms/bar is a stationary

structure.

Subsequently, the method has been developed to take into account radial

variation of a pattern speed (Merrifield et al., 2006), which removes the first

assumption listed above. Like the Tremaine & Weinberg (1984) form, the method

stems from the 2-dimensional continuity equation

∂Σ

∂t
+
∂(Σvx)

∂x
+
∂(Σvy)

∂y
= 0, (1.21)

where Σ(x, y, t) is the surface brightness of the observed tracer in a cartesian

coordinate system. In the inertial frame, the change in surface brightness is

described by the rotation of the azimuthal density profile characterised by a

pattern speed

∂Σ

∂t
= −Ωp(r)

∂Σ

∂θ
, (1.22)

where θ is the azimuth angle. If this system is chosen such that the x-axis is

aligned with the line of nodes (describing the intersection of the orbital disc

plane of the galaxy and the plane on the sky), then the x-coordinate contains

no observable kinematic information. Therefore, the continuity equation can be

integrated over x and expressed as∫ ∞
−∞

Ωp(r)
∂Σ

∂θ
dx−

∫ ∞
−∞

∂

∂x
Σvxdx−

∫ ∞
−∞

∂

∂y
Σvydx = 0, (1.23)

where the second term disappears because the surface density is assumed to drop

to zero at infinite x coordinates. Further integrating over y gives∫ ∞
y′=y

∫ ∞
−∞

Ωp(r)
∂Σ

∂θ
dxdy′ +

∫ ∞
−∞

(Σvy)dx = 0. (1.24)

The double integral in Cartesian coordinates can be expressed in polar coordinates
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by a change of variables to give∫ ∞
r=y

∫ π−arcsin(y/r)

θ=arcsin(y/r)

Ωp(r)
∂Σ

∂θ
rdθdr +

∫ ∞
−∞

Σvydx = 0. (1.25)

The integration limits in the θ integral mean that for a given y value that inter-

sects a circle of radius, r, the coordinates of the surface brightness measurement

in the first term are located at (x′, y) and (−x′, y), where x′ =
√
r2 − y2. The

result is expressed as∫ ∞
r=y

[(Σ(x′, y)− Σ(−x′, y))r]Ωp(r)dr +

∫ ∞
−∞

Σvydx = 0. (1.26)

The quantity in square brackets and the second term are both observable because

the coordinates x, y and vy can be related to the observational coordinates:

x = xobs, and y = yobs/ cos i, and vy = vobs/ sin i, where i is the disc inclination

angle and vobs is the line of sight velocity. The first integration in equation (1.26) is

reduced to a discrete summation for different values of r = ri and y = yj, therefore

equation (1.26) can be turned into a matrix equation of the form (Merrifield et al.,

2006)

∑
ri>yj

K(ri, yj)Ωp(ri) = −
∫ ∞
−∞

Σ(x, yj)vy(x, yj)dx. (1.27)

The K term represents the square brackets term in equation (1.27), whose com-

ponents are found from the subtraction of the Σ values at the two points at which

each y-slice and radial annulus intersect. This yields a ri-yj grid of values that

make up the matrix coefficients of Kij = K(ri, yj). The summation can be carried

from ri to a maximum radius where the surface density drops off sufficiently such

that the surface density tends to zero. The known values of Kij and the right

hand side of equation (1.27) mean that equation (1.27) can be numerically solved

for the pattern speed, Ωp(ri).

The original Tremaine-Weinberg equations have been used to determine the

pattern speed of bars (e.g. Merrifield & Kuijken, 1995; Gerssen et al., 1999; De-

battista et al., 2002; Aguerri et al., 2003; Maciejewski, 2006; Treuthardt et al.,

2009; Gabbasov et al., 2009; Banerjee et al., 2013) and some spiral pattern speeds

(e.g. Zimmer et al., 2004; Rand & Wallin, 2004; Emsellem et al., 2006; Speights &

Westpfahl, 2011, 2012). A recent application of this method is given in Speights &
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Westpfahl (2011), who parameterised the pattern speed as two different forms of

power law: Ωp ∝ rα and Ωp ∝ r−α. With these forms, they solved the Tremaine-

Weinberg equations for different integer values of α (including 0) using a least

squares method to fit the data of a spiral galaxy. They found that the best fitting

model was α = −1, which is consistent with a pattern speed that decreases with

radius at a similar rate to that of the material speed.

The Radial Tremaine-Weinberg method, developed by Merrifield et al. (2006),

is an adaptation of the original method that does not assume the form of the radial

profile of the pattern speed. This is advantageous for the application to spiral

arms, and has been used in several studies in which the spiral pattern speed

has been found to decrease with radius (e.g. Merrifield et al., 2006; Meidt et al.,

2008a,b, 2009). Although the radial Tremaine-Weinberg method is a significant

improvement upon the original method proposed by Tremaine & Weinberg (1984),

there are still complications in that it is assumed that the surface brightness

(and density) of the spiral structure is constant with time i.e. spirals maintain

a constant density. However, we will show in this thesis that the results from

recent N -body simulations (e.g. Wada et al., 2011; Grand et al., 2012a,b; Baba

et al., 2013) contradict this assumption; spiral arms are shown to grow and decay

in density with time. Therefore, the suitability of the radial Tremaine-Weinberg

method for transient spiral arms is unclear (although see Nelson et al., 2012, for

a successful application of the radial Tremaine-Weinberg method to transient,

winding spiral arms in an N -body simulation).

1.5 Spiral galaxy simulations

Simulations have become an extremely powerful tool in the study of galactic

physics because they enable one to examine galaxy formation and evolution in

detail over cosmic times. They are probes beyond the limitations of analytically

derived theories, such as those described in §1.2, which carry several assumptions

and are restricted to linear approximations. Simulations therefore serve as useful

tests of theory, and can create new predictions that may be tested with observa-

tions. However, simulations should be interpreted with caution because many of

the physical processes associated with galaxy formation and evolution are simpli-

fied in order to make simulations computationally feasible. They are not perfect
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representations of real galaxies. Therefore, it is important to understand the

limitations of simulations, and interpret the results within these limitations.

The first N -body simulations date back to the first light bulb experiments

(Holmberg, 1941). The first collisionless N -body computer simulations were per-

formed using a total of N = 16 by von Hoerner (1960) and N = 100 by Aarseth

(1963), and since then the particle number has continued to rise year by year (see

Dehnen & Read, 2011, and references therein).

In the 1980s, simulators reached up to N ∼ 104 particles (e.g. Efstathiou

& Eastwood, 1981; Sellwood & Carlberg, 1984). Sellwood & Carlberg (1984)

presented the evolution of an isolated spiral galaxy simulation, and found that

the spiral morphology disappeared within a few galactic rotations. They showed

that the spiral structure could be maintained for cosmic timescales if cold gas

accretion and the formation of kinematically cold young stars are considered,

which they mimicked by continually adding new particles on circular orbits to

the disc (see also Donner & Thomasson, 1994). However, it was later pointed

out by Fujii et al. (2011) that the high shot noise that arises from using a low

number of particles (such as N = 2 × 104 used by Sellwood & Carlberg 1984)

can cause rapid growth of strong spiral arms, which go on to heat the disc very

quickly. This causes the Q parameter to rise quickly, which then results in the

fading of spiral structure. Fujii et al. (2011) found that stellar discs of increasing

numbers of particles show slower growth of spiral structure and a slower heating

rate, until rising above N > 3× 106 particles when simulations converge and the

heating rate is so low as to allow spiral structure to exist for 10 Gyr.

Nowadays, owing to recent advancements in numerical algorithms (see §B.1)

and computational power, simulations regularly employ N > 106 star particles

(e.g. Wada et al., 2011; Grand et al., 2012a; Baba et al., 2013; Sellwood & Carl-

berg, 2014), which comfortably avoid such rapid heating described above. In some

cases up to as many as N = 109 particles have been used to model galactic discs

(e.g. D’Onghia et al., 2013). Important baryonic processes such as hydrodynam-

ics, star formation and feedback are now modelled with N > 106 particles (e.g.

Roškar et al., 2008b; Grand et al., 2012b; Hopkins et al., 2012; Hopkins, 2013;

Bird et al., 2013) with methods such as smoothed particle hydrodynamics (see

§B.2) and adaptive mesh codes (e.g. Tasker & Tan, 2009; Renaud et al., 2013).

Despite the progress of numerical simulations, those of spiral galaxies have
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never been able to reproduce the long-lived stationary spiral structure predicted

by density waves (Thomasson et al., 1990; Sellwood & Kahn, 1991; Sellwood,

2011). While the spiral structure is found to last for as long as a Hubble time

(Fujii et al., 2011), individual spiral arms are always found to be recurrent and

transient features (e.g. Sellwood & Carlberg, 1984; Carlberg & Freedman, 1985;

Bottema, 2003; Baba et al., 2009; Quillen et al., 2011; Sellwood, 2010, 2011; Fujii

et al., 2011; Wada et al., 2011). The fact that simulations are presently no closer

to reproducing density wave spiral arms than they have ever been suggests that

the inconsistency does not have numerical origins. Coupled with observations

that report non-constant pattern speeds with radius, it seems that a new theory

is needed to explain the spiral structure seen in galaxies. The problem is well

posed to be investigated through scrutiny of high resolution simulations, which

may provide insight into the underlying nature of spiral arms.

1.6 Studies in this thesis

The studies presented in this thesis build upon previous numerical efforts to

simulate and understand spiral structure and its role in galaxy evolution. The

evolution of the spiral arm is coupled to that of the disc stars: the dynamical

evolution of spiral arms is strongly affected by the dynamics of nearby disc stars,

which in turn are influenced by the presence of the spiral arm. Therefore, the

study of the mutual evolution of spiral arms and disc stars can provide clues to

the nature of spiral arms. To this end, we present a series of studies of simulated

spiral galaxies in an isolated setting, in order to focus on the internal dynamical

evolution alone.

In §2, we present our study on a Milky Way-sized galaxy with a live stellar

disc and static dark matter halo. We trace the rotation of the spiral arms and

find that they rotate with an angular speed almost equal to the rotation of the

stellar disc (the spiral arms co-rotate with the stars). The evolution of nearby star

particles is traced, and reveals that stars behind the spiral arm are continuously

accelerated by the spiral arm and radially migrate outwards at all radii until

the spiral arm disrupts. The opposite occurs for stars on the leading side of the

spiral arm. We find that their orbital energy changes such that the orbits of the

migrating particles experience no change in the degree of random motion.
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In §3, we present an analysis of a barred-spiral galaxy simulation with both a

live stellar and gas disc component, and a static dark matter halo. We improve

our technique for tracing the spiral arms, and find again that the spiral arms

co-rotate with the stars, at two different epochs of bar strength: an early epoch

when the bar is strong and a later epoch when the bar is weaker. The conclusions

regarding star particle motion and energy evolution found in §2 are confirmed to

hold in the barred-spiral simulation. We also analyse the distribution of stars in

different age populations, and find that the result is consistent with co-rotating

spiral arms.

In §4, we present a suite of N -body simulations exploring the relation between

galactic shear rate and spiral arm pitch angle. The study explores the effect of

various parameters on spiral arm pitch angle, including the shear rate, disc-halo

mass ratio, bulge mass, particle number and softening length. We conclude that

the spiral arm pitch angle is driven by the shear rate, i.e., the larger the shear

rate, the lower the pitch angle. This trend, and the scatter in pitch angle for a

given shear rate is consistent with observations, and suggests that the spiral arms

of real galaxies may be winding structures.

In §5, we present a detailed orbital analysis of star particles that migrate

(migrators) and contrast them with star particles that do not migrate (non-

migrators), in order to elucidate the mechanism of radial migration. We find

that there are several types of migrator and non-migrator particles, the latter

being newly discovered orbits. We find that the epicycle phase and tangential

distance to the spiral arm are important parameters that separate migration and

non-migration. The migrator particles behind (in front of) the spiral arm tend

to be near their apocentre (pericentre) phase of orbit when they are close to the

spiral arm, and produce a systematic streaming motion along the spiral arm in

the outward (inward) radial direction. We show that although many individual

star particles undergo large changes of angular momentum, the cumulative an-

gular momentum distribution profile remains unchanged. The radial metallicity

distribution is shown to maintain its radial gradient, however the dispersion in

the metallicity distribution increases at all radii, thanks to the co-rotating spiral

arms.

Finally, we summarise our conclusions in §6, and suggest some ideas for future

work.



Chapter 2

The dynamics of stars around

Spiral arms in an N-body

simulation

This chapter is based on Grand et al. (2012a).

2.1 Introduction

As discussed in §1.2, classic spiral density wave theory (Lin & Shu, 1964) predicts

that spiral arms rotate around the galaxy with a constant pattern speed. The

constant pattern speed leads to the prediction of a co-rotation resonance at which

the stars and spiral arm rotate at the same speed. Early theoretical studies

such as Lynden-Bell & Kalnajs (1972), and later Sellwood & Binney (2002),

showed that stars close to the co-rotation resonance can be radially transported

through angular momentum exchanges between the spiral arm and the stars.

This phenomenon, termed radial migration (see §1.3), is limited to occur only at

co-rotation, which is found at a single radius in density wave theory.

However, results from both observations and numerical simulations do not cor-

roborate the classic density wave theory: observations find evidence of a radially

decreasing pattern speed (see §1.4) and simulations cannot reproduce long-lived

spiral arms (see §1.5). Recently, Wada et al. (2011) performed simulations of an

isolated spiral galaxy, and found a pattern speed that traces very well the rota-

29



2.2. Method and Model Setup 30

tion curve, which indicates that there is co-rotation of the spiral pattern with the

stars at all radii. The lack of consensus on the nature of spiral arms provides our

motivation to scrutinise numerical simulations further.

In this study, we analyse the pattern speed of the spiral arm feature and

the dynamics of particles around the arm using our N-body simulations of a

pure stellar disc. We determine the nature of the spiral arm pattern speed, and

monitor how stellar motion is affected by the arm. In agreement with Wada

et al. (2011), we find that the spiral arms in the simulations are transient and

that the pattern speed is always similar to the mean rotational velocity. We offer

a qualitative insight into how phenomena such as radial migration might occur

with the transient co-rotating spiral arms, and how the co-rotating spiral arm

may evolve.

In §2.2 we explain how we set up the model and the initial parameters that we

choose. In §2.3 we present the results of our analysis, compare them with previous

studies and discuss their implications. In §2.4 we summarise the significance of

the results and give concluding remarks.

2.2 Method and Model Setup

Our simulations are performed with a Tree N -body code, GCD+ (see Appendix

B). We set up a disc galaxy that consists of a dark matter halo and a pure stellar

disc with no bulge, and which is similar (slightly smaller) in size to the Milky

Way. We describe the stellar disc component as a collisionless N-body system of

particles, and adopt a static dark matter halo potential.

The dark matter halo density profile follows that of Navarro et al. (1997):

ρdm =
3H2

0

8πG

Ω0 − Ωb

Ω0

ρc

cx(1 + cx)2
, (2.1)

where ρc is the characteristic density described by Navarro et al. (1997), the

concentration parameter, c = r200
rs

, and x = r
r200

. The scale length is rs, and r200

is the radius inside which the mean density of the Dark Matter sphere is equal

to 200ρcrit:

r200 = 1.63× 10−2

(
M200

h−1M�

) 1
3

h−1kpc. (2.2)
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Figure 2.1: The initial circular velocity (dot-dashed red line) and the circular velocity
at t= 1.77 Gyr (solid black line).

We assume M200 = 1.7× 1012 M�, c = 15, Ω0 = 0.266, Ωb = 0.044 and H0 = 71

km s−1 Mpc−1. We do not apply adiabatic contraction for the dark matter halo,

for simplicity.

The stellar disc is assumed to follow an exponential surface density profile:

ρd =
Md

4πzdR2
d

sech2

(
z

zd

)
exp

(
− R

Rd

)
. (2.3)

We apply the mass of the disc, Md = 3 × 1010 M�, the scale length, Rd = 3.0

kpc and the scale height zd = 0.35 kpc, which is constant over the disc. These

parameters lead to a stellar surface density of Σ = 37 M� pc−2 at 8 kpc, which is

similar to Σ = 35.5 M� pc−2 obtained for disc stars in the solar neighbourhood

(Flynn et al., 2006).

The initial circular velocity curve is calculated from the gravitational poten-

tial of all particles and the dark matter halo, and is shown in Fig. 2.1. The

rotation speed at 8 kpc is 210 km s−1, which is slightly lower than the generally

accepted value of 220 km s−1 or even higher (e.g. McMillan, 2011) for the Milky

Way. Although we constructed a galaxy similar in size to the Milky Way, it is not

the intention of this study to reproduce the spiral arms of the Milky Way. This

set of parameter values also ensures that the disc does not develop an obvious bar

structure, which allows us to focus more on the pure effect of spiral arm develop-
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Figure 2.2: The radial profile of the ratio of velocity dispersions in the radial and
z direction, fR = σR/σz (left), and Toomre’s instability parameter (right), at t=0
(dot-dashed red line) and t = 1.77 Gyr (solid black line).

ment and avoid the added complexity of the bar potential. This is achieved by

choosing a concentration parameter high enough to ensure that there is sufficient

dark matter mass in the central region to stabilise the stars against bar forma-

tion (Ostriker & Peebles, 1973). We use 3× 106 particles for the disc component,

therefore the mass of each particle is 104 M�. We adopt a fixed softening length

of 340 pc, with the spline softening suggested by Price & Monaghan (2007).

The velocity dispersion for each three dimensional position of the disc is com-

puted following Springel et al. (2005) to construct the almost equilibrium con-

dition. The vertical velocity dispersion is determined from the 1D Jeans equa-

tion, and related to the radial velocity dispersion through the free parameter,

fR = σR/σz. The azimuthal mean velocity and velocity dispersion are set ac-

cording to the asymmetric drift calculated from σR. The velocity distribution

therefore follows a 3-component gaussian, centred on the mean velocities v̄θ and

v̄R = v̄z = 0. We choose fR =
√

2 in the simulation shown in order to set up

a disc that is initially kinematically cool enough to form clear spiral structure.

This is slightly lower than fR ∼ 2 that is the observed ratio for the Milky Way

(e.g. Holmberg et al., 2009; Binney, 2010). However, as mentioned above, we do

not aim to create a Milky Way-like galaxy. We denote this simulated galaxy S1,

to distinguish it from the other simulations presented in this thesis.
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2.3 Results and Discussion

The simulation set up in §2.2 is evolved for 2 Gyr. In agreement with the previous

studies described in §1.5, we find that the disc develops transient and recurrent

spiral arms. In this paper, we focus on one arm identified around t = 1.77

Gyr. The circular velocity at t = 1.77 Gyr is shown in Fig. 2.1, which is not

significantly different from the initial circular velocity. The left panel of Fig. 2.2

shows fR as a function of radius at t = 0 and t = 1.77 Gyr. The value drops

slightly with time as the disc heats up slightly during evolution. This is quantified

in the right panel of Fig. 2.2, which shows a slight growth of Toomre’s instability

parameter, Q, at the same time-step. However, this is a very small amount of

heating, which does not erase spiral structure (Fujii et al., 2011).

Although we mainly discuss the analysis around t = 1.77 Gyr in this paper,

we also applied similar analyses to other spiral arms that developed at different

times in this simulation as well as spiral arms in other simulations with different

initial configurations of the disc and dark matter halo. We find that all the spiral

arms we analysed show very similar results to those shown in this section. We

also find similar results in several (barred and non-barred) simulations that take

gas and star formation into account. These will be described in §3.

First, we present the analysis and results of the pattern speeds of the chosen

spiral arm. Then we examine the motion of selected particles around the arm, and

present and discuss an analysis of their angular momentum and energy evolution.

2.3.1 Pattern Speed and Radial Migration

The middle row of panels in Fig. 2.3 shows three consecutive snapshots of the

model galaxy, where the white lines depict the peak density of the chosen spiral

arm at each radius. This is calculated by first creating a smoothed normalised

density distribution in the R-θ plane, as in the left and middle columns of Fig.

2.7. At each radial bin, we locate the azimuth of maximum density. In this way,

we traced the arm in the radial range between 4.5 and 8.5 kpc, and so we focus

our analysis on this radial range. The pattern speed, Ωp, is then easily found

from the azimuthal offset of the peak densities between the time-steps.

The angular pattern speed measured from the snapshots in Fig. 2.3 (middle

row) is plotted in Fig. 2.4 along with the mean angular rotational velocity of
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Figure 2.3: Snapshots of the disc from face on view. The white line marks the position
of the peak density of the fully formed spiral arm at the time indicated (see text for
how this is determined). In the middle row, the white crosses at 5 kpc and 7 kpc radius
indicate position of the peak density line at those radii. In the top and bottom rows,
the crosses have been rotated from their positions in the middle panel (t= 1.77 Gyr)
by an angle derived from the angular rotation speed in Fig. 2.4 for those radii. The
purpose of the crosses is to guide the eye to the spiral arm from formation around
t= 1.73 Gyr, to its apparent destruction around t= 1.85 Gyr. This indicates that the
lifetime of the spiral arm is very short (∼ 120 Myr).
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Figure 2.4: The pattern speed calculated between t= 1.75 and 1.77 Gyr (dot-dashed
red) and between t= 1.77 and 1.79 Gyr (blue dashed). The mean angular rotation
velocity at t= 1.77 Gyr is also plotted (black solid). The pattern speeds agree well
with each other, and exhibit a decreasing trend that traces the mean angular rotation
velocity very closely over the radial range shown. Similar trends are found at other
time-steps with different arms.

the stars, which is calculated (throughout this thesis) by averaging the tangential

velocity of all stars in each concentric radial annulus (mean rotational velocity),

then dividing these values by radius. The pattern speed is seen to decrease with

radius, such that it almost equals the mean angular rotation velocity of stars in

the disc at all radii. This indicates that this spiral arm feature is co-rotating,

and is therefore unlikely to be long-lived. This is confirmed from the snapshots

of our simulation shown in the top and bottom rows of Fig. 2.3, which show

that the arm starts developing around t=1.73 Gyr and is winding and disrupted

around t=1.85 Gyr. Hence the lifetime of the arm is about 120 Myr and the arm

is indeed transient. Bifurcations and breaks in the spiral arm features are seen

regularly, which occur as the arms wind up. Wada et al. (2011) also find that the

spiral arm features in their simulations are co-rotating, winding and short-lived.

As an additional test, and to assist intercomparison with previous studies, we

compute spectrograms for m = 2, 3 and 4 modes, following Quillen et al. (2011).

At each time-step, which spans a time period of 1.28 Gyr centred on t ∼ 1.77

Gyr, and each radial bin, we calculate

Wc(r, t,m) =
∑
i

cos (mθi(r, t)), (2.4)
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Figure 2.5: Spectrograms of the m = 2, 3 and 4 Fourier components in a time window
spanning 1.28 Gyr centred on t ∼ 1.77 Gyr. The plots show the power in frequencies
ranging from 0 to the Nyquist frequency as a function of radius. Left : The spectrogram
of the m = 2 component. Also marked is the mean angular rotational velocity line
(solid red), the inner and outer Lindblad resonances (solid blue) and the 4:1 resonances
(dotted cyan). Middle: The same as left panel but for m = 3 Fourier component, and
3:1 resonances shown (dashed cyan). Right : The same as left panel but for m = 4
Fourier component.

Ws(r, t,m) =
∑
i

sin (mθi(r, t)), (2.5)

where θi is the angle at the position of the particles within the radial bin. We

calculate the amplitude of each mode as a function of radius and find that all

modes show similar strength at t = 1.77 Gyr, hence there is no one mode that

dominates over the others. We then compute the Fourier transform in the above

period,

W̃ (ω, r,m) =

∫ T2

T1

[Wc(r, t,m) + iWs(r, t,m)]eiωth(t)dt (2.6)

where h(t) is the Hanning function, which minimises spectral leakage. This is

because the Hanning function is narrowly peaked around the centre of the time

window and tapers off smoothly to zero as it approaches the time window edges.

Therefore its convolution with the Fourier transformed data concentrates the

power near the true frequency (Press et al., 1992, page 547). We compute the

power, defined as P = |W̃ |2, at each frequency ranging from zero to the Nyquist

frequency, which is shown in Fig. 2.5. The spectrogram analysis shows us the

significance of the pattern speeds of the wave modes (which we call mode pattern

speed), which can be different from what is shown in Fig. 2.4 (i.e. the pattern

speed of the spiral arm feature), if multiple wave modes interfere with each other.

All three modes, especially the m = 2 mode, show that there is some power in the
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Figure 2.6: Input pattern speeds of the m = 2 wave modes (dashed red line) and
the power recovered from the spectrogram analysis (solid black line). Top left : Single
Ωp = 31 km s−1 kpc−1 is input and correctly extracted. Top right : Two wave modes
of Ωp = 31 and 62 km s−1 kpc−1 are input. Bottom left : Same as top left, but the
amplitude of the wave mode is varied. Bottom right : Same as bottom left, but random
offsets of phase angle are implemented. See text for details.
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mode pattern speed that overlaps the rotation velocity at many radii. There are

also several horizontal features which could mean that there are a number of wave

modes with constant, but different pattern speeds (Sellwood, 2011, and references

therein), that span different radii, and may be constructively and destructively

interfering with each other. For example, the m = 2 mode could be interpreted

as having two pattern speeds (∼ 30 and 45 km s−1 kpc−1), with a faster inner

pattern and a slower outer pattern, as suggested by Quillen et al. (2011); Sellwood

& Lin (1989); Masset & Tagger (1997). This contrasts heavily with the single

global wave mode of constant pattern speed predicted by classic spiral density

wave theory (Lin & Shu, 1964). Fig. 2.5 also indicates the 1:2, 1:3 and 1:4

Lindblad resonances, i.e. Ωp = Ω± κ/m, for m = 2, 3 and 4 respectively.

We note however some caution with regard to the spectrogram analysis method

when applied to transient, variable amplitude wave modes. We construct a toy

model in which we set a base density of stars and distribute them randomly in

a ring. We then add a small fraction (2.5%) of those in the ring at θ = 0, π

to mimic the m = 2 modes. We impose a single, constant angular rotational

frequency on the particles, and perform the same spectrogram analysis as above.

Fig. 2.6 (top left panel) shows the case assuming 31 km s−1 kpc−1 rotation, for

which this frequency is correctly extracted. The top right panel shows the case

for two overlapping wave modes of 31 and 62 km s−1 kpc−1 rotation speeds, and

both are shown to be extracted.

However, the amplitude of the wave mode can evolve and/or disappear as

demonstrated in Sellwood (2011). To demonstrate the effect of variable ampli-

tude, we return to a single pattern speed of 31 km s−1 kpc−1, and repeatedly

increase and decrease the number of m = 2 mode particles using a sinusoidal

curve from 0 to π, that spans over 120 Myr, which is roughly consistent with the

lifetime of the arm feature in Fig. 2.4. The effect is shown (Fig. 2.6 bottom left

panel) to create three peaks, with one at the input frequency, and two others:

one either side of the real one.

The appearance of the new mode can shift the azimuthal position, which we

model as randomly shifting the azimuthal position of the mode particles within

0 to π, every 120 Myr. This effect plus the variable amplitude is shown in the

bottom right panel. This produces several peaks, none of which corresponds to

the real input frequency. Although this is a simple exercise, and our aim is not to
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explore many possible cases of transient wave modes, this demonstrates that, for

transient wave modes of similar lifetimes to that of the spiral arm feature, there

is a possible danger that the spectrogram may not show the real pattern speed

of the wave modes. Moreover, any systematic variability could be responsible for

the horizontal features seen in the spectrogram.

In any case, if there are indeed several wave modes present, it is evident that

they must conspire in a specific way in order to produce a spiral arm feature

that is “apparently co-rotating” as is clearly shown in Fig. 2.4. Associating the

multiple wave modes to the apparent spiral arm features is beyond the scope of

this paper. We rather focus on how this apparently co-rotating spiral arm feature

affects the stellar motion. Therefore, the remainder of this chapter is discussed

in terms of what is shown in Fig. 2.4. We term this “apparent pattern speed”

and “apparent co-rotation”.

A direct implication of a decreasing apparent pattern speed is that there are

co-rotation radii all over the disc, and therefore the radial migration (Sellwood

& Binney, 2002) described in §1.3 is expected to occur at a wide range of radii

around the spiral arm. In addition, stars that radially migrate at co-rotation are

predicted to maintain their degree of random motion (not to heat them kinemat-

ically).

In order to see how stellar motions are affected by this spiral arm whose

apparent pattern speed decreases with radius, we trace the motions of individual

particles in our simulation, as in Fig. 2.7. First, we select a sample of particles

around our chosen arm of interest at 5.5 kpc radius at t = 1.75 Gyr when the

arm is most prominent. The sample is selected to be near the plane of the disc

(|z| < 200pc), and has a radial thickness of 0.25 kpc and azimuthal width of ∼1

radian centred on highest density point of the arm (left-middle panel of Fig. 2.7).

We follow their motion with respect to the spiral arm around which they were

selected in Fig. 2.7. The middle row shows the snapshot and smoothed normalised

density plots at the time they were selected. The preceding and succeeding rows

show that of 60 Myr before and after respectively, and we move in a non-inertial

frame of 40 kms−1kpc−1 from the middle step, hence only the middle row shows

explicitly the actual co-ordinates in the smoothed plots.

It is seen that as the spiral arm grows stronger, particles from both sides of

the arm begin to join the arm, which indicates the apparent co-rotation with
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Figure 2.7: Left and Middle columns: the smoothed normalised density distribution
(colour map) in the azimuthal angle - radius plane. Right column: the corresponding
snapshots of the disc (the time referring to each row is indicated under each panel).
In the left column, the particles (white dots) selected at 5.5 kpc at t= 1.75 Gyr are
highlighted. In the middle and right columns the extreme migrators (see text) in the
sample are highlighted by cyan (particles that migrate toward the outer radii) and pink
(particles that move toward the inner radii) stars. Note that the coordinate of the angle
in the left and middle panels at the top and bottom rows are shifted by the amount
corresponding with Ω = 40 kms−1kpc−1, to keep the highlighted particles around the
central region of each panel.
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Figure 2.8: The same as Figure 2.7, but for a sample around 7.5 kpc radius. The
particles were selected at 1.77 Gyr; one time-step after the 5.5 kpc sample, in order we
see the strongest, most clear radial migration. This is because the arm at smaller radii
shows more prominence at earlier times than at larger radii.
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the star particles. We find that the spiral arm develops in a way akin to swing

amplification (Goldreich & Lynden-Bell, 1965; Julian & Toomre, 1966; Toomre,

1981). In swing amplification theory, a leading arm can grow in density as it

shears into a trailing arm. The star’s epicycle phase and shearing motion of the

arm conspire in a way that the stars in the spiral arm remain in the over-dense

region for longer. This means that as the leading arm turns into a trailing arm

owing to the shear motion, self-gravity becomes stronger and accumulates more

stars to the arm, and the amplitude of the arm begins to grow non-linearly.

The left column in Fig. 2.7 indicates that the chosen particles look like a

leading feature at t = 1.69 Gyr, which become part of a trailing arm at t = 1.75

Gyr as it wound up. The selected particles around the arm at 5.5 kpc (white

dots) join the arm from the outer (inner) radii at the leading (trailing) side of the

spiral arm while at the same time the spiral arm appears to grow in density. We

therefore witness swing amplification in action. Note however that this process

is different from the classic swing amplification mechanism in which the starting

point is a leading spiral arm feature and the co-rotation radius is assumed to

be one specific radius, because we do not see a leading spiral arm feature and

the spiral arm co-rotates at all radii. What we have found may be described as

amplification occurring over a wide range of radii. This is accompanied by strong

radial migration, which we describe below.

From the selected sample of particles, we compute the angular momentum

change, ∆L, over a period of 80 Myrs and choose those that exhibit the largest

values of ∆L. As a fraction of their initial angular momentum, L, these have

typical values ∆L/L ' 10 − 20%. We term these particles extreme migrators.

The middle column of Fig. 2.7 shows the evolution of the extreme positive (cyan)

and negative (pink) migrators. The “positive” migrators are the particles that

migrate towards the outer radii on the trailing side of the spiral arm. They are

trapped by the potential of the spiral arm, which accelerates them. The co-

rotating nature of the spiral arm feature ensures that during migration to outer

radii, instead of passing through the spiral arm they remain on the trailing side

(middle and right hand panels of Fig. 2.7). Therefore, they continue to accelerate

until the spiral arm is disrupted. The “negative” migrators are particles that

migrate towards the inner radii on the leading side of the spiral arm. They are

decelerated as they become caught in the potential of the spiral arm, and because
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Figure 2.9: The energy, E, and angular momentum, L, distribution of the extreme
migrators in Figs. 2.7 and 2.8 at 40 Myr before (yellow diamonds) and 40 Myr after
(red triangles) the time-step at which they were selected. The right (left) panel shows
the results of the migrators that moved toward the inner (outer) radii. The solid black
line indicates the circular orbit. Units are arbitrary.

of the apparent co-rotation, they continue to decelerate on the leading side of the

spiral arm until the spiral arm is disrupted. This illustrates the different motion

that occurs on each side of the spiral arm.

To demonstrate that these stellar motions and strong migration occur over a

wide range of radii, Fig. 2.8 shows the same dynamical evolution as Fig. 2.7 for

a sample selected at the radius of 7.5 kpc. This 7.5 kpc sample and the extreme

migrators were selected using the same criteria as the 5.5 kpc sample, however

at t = 1.77 Gyr, since we find that the spiral arm at the outer radii grows later.

It is clearly demonstrated here that exactly the same type of motion expected

at the co-rotation radius happens at 7.5 kpc. This motion is at least consistent

with the apparent co-rotation found in Fig. 2.4, because the particles continue

to join the arm from both sides at a large range of radii as they migrate, instead

of passing or being passed by the spiral arm, which is expected if the pattern

speed is constant as predicted by density waves. This strengthens our conclusion

of apparent co-rotation of the spiral arm feature made from Fig. 2.4.

2.3.2 Energy and Angular Momentum Evolution

When discussing the changes in angular momentum associated with radial mi-

gration, it is important to look at how the orbital energy of a star is affected.

The relevant question becomes: “Is the star scattered during the migration by
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Figure 2.10: Left : The angular momentum change over 80Myr for particles in a radial
range of 4.0 to 9.0 kpc around the spiral arm at t = 1.77 Gyr, as a function of their
initial angular momentum at t = 1.73 Gyr. We define the extreme migrators to have
|∆L| > 0.6. The radius expected from circular motion with corresponding angular
momentum is also shown. Right : ∆E/∆L for the extreme migrators selected in the
left panel (open and filled circles) as a function of their mean radius between t = 1.73
to t = 1.81 Gyr. The filled circles are those with positive migration, and the empty
are those with negative migration. The solid black line is the mean angular rotational
velocity. The units of y-axis or adjusted to match with that of Fig. 2.4.

gaining significant energy of random motion?”. To shed light on such a question,

we calculate the energy, E, and angular momentum, L, of the extreme migrators

in Figs. 2.7 and 2.8 at 40 Myr before and after the time-step at which they were

selected, and show this in Fig. 2.9. We call these two time-steps the “initial”

and “final” time-steps respectively. The solid black line indicates the L and E

expected for a pure circular orbit at each radius. This represents the minimum

energy which a star particle can have at a given angular momentum. In Fig. 2.9

we show the position of the extreme migrators at the initial (yellow diamonds)

and final (red triangles) time-steps. We can see that the negative migrators (right

panel) and positive migrators (left panel) move along the circular velocity curve

in opposite directions to each other. Because they keep close to the circular ve-

locity curve after migration, their orbits must retain a very similar eccentricity,

and so they gain little random energy and are not scattered into higher energy

orbits (Sellwood & Binney, 2002).

However there is some movement away from the circular velocity curve, and

this corresponds to heating effects. We therefore test the degree of orbital heating



2.4. Conclusions 45

of migrators with a larger sample of stars at different radii.

We select the most extreme migrators from a sample of particles around the

spiral arm in a radial range of 4-9 kpc at t = 1.77 Gyr. We plot in the left

panel of Fig. 2.10 their change in angular momentum between initial and final

time-steps spanning a period of 80 Myr as a function of their angular momentum

at the initial time-step of t = 1.73 Gyr. We selected the particles with |∆L| >
0.6, and calculate ∆E/∆L for each particle, which we show plotted against the

mean radius of each particle over the 80 Myr period in the right panel of Fig.

2.10. The filled (empty) circles represent the positive (negative) migrators. A

clear decreasing trend with radius is seen for both sets of migrators. This trend

qualitatively matches what is expected for dE/dL along the curve of circular

orbit, (dE/dL)c, in Fig. 2.9 (solid line in the right panel of Fig. 2.10), but

the overall position of the particles is slightly lower. For dE/dL = (dE/dL)c,

the migrator particles move tangent to the circular orbit curve in Fig. 2.9. For

example, a positive migrator, dL > 0, must undergo a change in orbital energy

equal to dL(dE/dL)c in order to maintain the degree of random motion. However,

the offset in the right panel of Fig. 2.10 means that dE is too low, and as a result

there is a slight heating of the negative migrators and slight cooling for the positive

migrators.

However, the overall decreasing trend in parallel with the mean angular rota-

tional velocity line indicates that similar and only small heating losses occur over

a range of radii. This demonstrates that radial migration can occur everywhere

in the disc, and stars can slide along the spiral arms to different radii all over the

disc with little contribution to disc heating.

2.4 Conclusions

In this chapter, we have performed N -body simulations of a pure stellar disc, and

then performed a dynamical analysis of the spiral arms and particles around the

spiral arms and traced their evolution. We come to the following conclusions:

(i) We find in our simulations that spiral arms are transient recurring features:

we observe the continuous disappearance of spiral arms and the reappear-

ance of new ones. This transient nature has always been found in numerical

simulations, and is not consistent with spiral density wave theory.
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(ii) We performed two analyses on the pattern speed of the spiral arms: the

stellar density trace method; and spectrogram analysis. The latter shows

a possible configuration of two or three wave modes that could mean that

wave modes interfere constructively and destructively with each other.

Regardless of whether this is the case, the stellar density trace method gave

us clear evidence of an apparent spiral arm pattern speed that co-rotates

with the stars at a large range of radii, which is reflected in points iii),

iv) and v) below. This is consistent with what is found in Wada et al.

(2011), and contrary to classic spiral density wave theory, which allows a

constant pattern speed as a function of radius, and hence there is only one

co-rotation radius. We cannot reject, however, the idea that the co-rotating

spiral arm is a manifestation of a superposition of wave modes (Sellwood,

2014).

(iii) Particles are shown to join the spiral arm from both sides at all radii. This is

further evidence for the co-rotating nature of the spiral arm feature, because

the arm must move at a similar speed to the particles in order for them to

join the arm from both sides at all radii.

(iv) Particles migrate radially along the spiral arm at all radii. Stars behind

the arm are accelerated by the arm and slide along the arm to larger radii.

Stars in front of the arm are dragged back by the potential, and slide down

the arm to smaller radii.

(v) Migrating particles do not actually cross the spiral arm. The co-rotating

nature means that the particles stay on their respective sides of the spiral

arm, so they are accelerated (decelerated) until the spiral arm is disrupted.

This means that radial migration is more efficient than that discussed by

Sellwood & Binney (2002), with little contribution to disc heating.

Conclusions (i) and (ii) are already known from previous studies, and we

include them to show the consistency of this study. Conclusions (iii), (iv) and

(v) are new results which to our knowledge have not been reported before.



Chapter 3

Stellar dynamics and star

forming tracers in an SPH

simulated galaxy

This chapter is based on Grand et al. (2012b).

3.1 Introduction

In §2 we demonstrated a new type of systematic motion of star particles close

to the spiral arm in their simulation, that leads to extended radial migration of

star particles all along the arm as opposed to the currently considered case of

a single co-rotation radius (Lynden-Bell & Kalnajs, 1972; Sellwood & Binney,

2002). The star particles were shown to join the arm from both sides. Star

particles behind (in front of) the arm were accelerated (decelerated) continually

because the similar rotation speeds of the star particles and spiral arm allowed

the migrating star particles to stay very close to the density enhancement of the

spiral arm. This mechanism is responsible for the steady gain/loss of angular

momentum of the migrating star particles, whereby the star particle is allowed to

find a new equilibrium in a higher/lower energy circular orbit, without scattering

kinematically. The star particles never crossed the arm as they migrated, and

stopped migrating when the high amplitude of the density enhancement disap-

peared owing to the transient nature of the arms. Because this simulation was

47
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an N -body simulation of a pure stellar disc with no bar or bulge, the only factor

that could be responsible for the observed motion was the spiral arm features.

In this study, our aim is to build upon our previous study presented in §2
that focused on N -body dynamics in a pure stellar disc, and extend this research

on the spiral arm pattern speed and star particle dynamics in high resolution N -

body/SPH simulations of a barred spiral galaxy. This will enable us to study the

spiral arm and its effects in a more realistic context, and to determine whether

or not the presence of gas, star formation and a bar produces any significant

effect on particle motion that may be distinguished from those seen in the pure

N -body simulation. In comparison to §2, we present a more robust method for

determining the apparent pattern speed of the spiral arm, and attention is given

to the energy evolution of particles that undergo radial migration at many radii.

Because the simulation includes star formation, it is possible to mimic the

tracer offset method applied to observational data (e.g. Foyle et al., 2011; Ferreras

et al., 2012). As discussed in §1.4, spiral density wave theory predicts the presence

of clear spatial offsets between different star forming tracers across spiral arms,

owing to the relative speed between star forming gas clouds and the spiral arm

at radii away from co-rotation. In this study, we mimic this test of density

wave theory by analysing the distribution of young star particles of different ages

around spiral arms. Although the analysis could be extended to the bar region,

this chapter focuses on the spiral arm. Hence we leave the analysis of the structure

and evolution of bars to future studies.

In §3.2 a description of the simulation set up and initial parameters is given.

In §3.3 we present the results of our analysis, compare them with previous studies

and discuss their implications. In §3.4 we summarise the significance of the results

and remark upon the value of the simulations.

3.2 Method and Model Setup

3.2.1 GCD+ code

In the simulation presented in this study, we use the galactic chemo-dynamical

evolution code, GCD+. The code is a three-dimensional tree N -body/SPH code

(Gingold & Monaghan, 1977; Lucy, 1977; Barnes & Hut, 1986; Hernquist & Katz,

1989; Katz et al., 1996; Kawata & Gibson, 2003; Kawata et al., 2013b) that incor-
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porates self-gravity, hydrodynamics, radiative cooling, star formation, supernova

type II and Ia feedback and metal enrichment and diffusion Greif et al. (2009).

It is fully described in Appendix B.

The main parameters that govern star formation and supernova feedback are

set as follows: the star formation density threshold, nth = 1.0 cm−3 ; star forma-

tion efficiency, C∗ = 0.1 ; supernova energy input, ESN = 1050 erg per supernova;

and stellar wind energy input, LSW = 1036 erg s−1. Each particle in the simu-

lation is assigned a unique ID number. This makes it easy to trace any particle

during the evolution of the simulation.

3.2.2 Simulation Setup

Our simulated galaxy consists of a spherical static dark matter halo and two live

discs: a stellar disc and a gas disc. The dark matter halo density profile follows

that of Navarro et al. (1997) with the addition of an exponential truncation term

(Rodionov & Athanassoula, 2011):

ρdm =
3H2

0

8πG

Ω0 − Ωb

Ω0

ρc

cx(1 + cx)2
exp(−x2), (3.1)

where ρc is the characteristic density described by Navarro et al. (1997), the

concentration parameter, c = r200/rs, and x = r/r200. The truncation term,

exp(−x2), is introduced in our initial condition generator for a live halo simu-

lation. Although we use a static dark matter halo in this paper, we retain the

profile of equation (3.1) because this term does not change the dark matter den-

sity profile in the inner region, which is the focus of this paper. The scale length is

rs, and r200 is the radius inside which the mean density of the dark matter sphere

is equal to 200ρcrit (where ρcrit = 3H2
0/8πG; the critical density for closure):

r200 = 1.63× 10−2

(
M200

h−1M�

) 1
3

h−1kpc. (3.2)

We assume M200 = 1.5× 1012 M�, c = 10, Ω0 = 0.266, Ωb = 0.044 and H0 = 71

km s−1 Mpc−1. We ran several simulations of different parameters and found that

a lower value of c than that of §2 was required to form a prominent bar.
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Figure 3.1: The circular velocity at t = 0 (solid black line), at t= 1.034 Gyr (dot-
dashed blue line) and t = 1.393 Gyr (dashed red line).

The stellar disc is assumed to follow an exponential surface density profile:

ρd,∗ =
Md,∗

4πzd,∗R2
d,∗

sech2

(
z

zd,∗

)
exp

(
− R

Rd,∗

)
, (3.3)

where the disc mass, Md,∗ = 5 × 1010 M�, the scale length, Rd,∗ = 2.5 kpc and

the scale height zd,∗ = 0.35 kpc, which is constant over the disc. The velocity

dispersion for each three dimensional position of the disc is computed following

Springel et al. (2005) to construct the almost equilibrium initial condition. One

free parameter in this method is the ratio of the radial velocity dispersion to the

vertical velocity dispersion, fR, which relates as fR = σR/σz. We choose fR = 2

in the simulation shown. The initial circular velocity curve is shown in Fig. 3.1

(solid line). It is calculated in the same way as in §2.2 with the additional step

of averaging the value at each radius over the entire azimuthal range. The initial

circular speed at 8 kpc is ∼ 220 km s−1.

The gas disc is set up following the method described in Springel et al. (2005).

The radial surface density profile is assumed to follow an exponential law like the

stellar disc. The initial vertical distribution of the gas is iteratively calculated

to be in hydrostatic equilibrium assuming the equation of state calculated from

our assumed cooling and heating function. For the gas disc, we set the disc
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Figure 3.2: Snapshots of the face-on view of the simulated galaxy at t = 1.034 Gyr
(top) and t = 1.393 Gyr (bottom). The left images show the stellar density map, and
the right images show the gas density map. The bar is strong at the earlier time, and
becomes smaller at the later time.



3.3. Results and Discussion 52

mass, Md,g = 1 × 1010 M�, the scale length, Rd,g = 4.0 kpc. All the parameters

described above are chosen to be similar to those of the Milky Way (McMillan,

2011).

We use Nd,∗ = 2× 106 and Nd,g = 4× 105 particles for stars and gas respec-

tively, and therefore the mass of each particle is 2.5× 104 M�. Fujii et al. (2011)

show that if more than one million particles are used to describe the disc compo-

nent, artificial heating that suppresses the spiral arm formation is not significant.

Our simulation uses a total of 2.4 × 106 particles and therefore is expected to

be less affected by artificial heating. We adopt a softening length equal to the

smoothing length but set the minimum softening length to 340 pc for gas parti-

cles and apply a fixed softening length of 340 pc for star particles, with the spline

softening suggested by Price & Monaghan (2007). These parameters of the stellar

component are similar to that of the non-barred spiral galaxy simulated in §2,

but with a higher disc to halo mass ratio. To induce spontaneous bar formation

(e.g. Ostriker & Peebles, 1973), we have applied a lower concentration parameter,

c = 10, in equation (3.1). We denote this simulated galaxy SBg, to distinguish it

from the other simulations presented in this thesis.

3.3 Results and Discussion

The simulation set up in §3.2 was evolved for about 2 Gyr. The stellar and gas

component is shown at two different times in Fig. 3.2, and we see a prominent

bar spiral structure in both components. As discussed in §1, gas can enhance the

strength of non-axisymmetric structures by helping to keep the disc kinematically

cool. We note that the gas, in combination with the structural parameters given

in §3.2, likely contributes to the formation of a strong bar and spirals seen in

Fig. 3.2. The extent to which the gas affects disc stability is a complicated issue

that requires a dedicated and detailed analysis, which is beyond the scope of this

study.

The strong bar develops around t = 1.034 Gyr, and settles to a smaller bar

before t = 1.393 Gyr. Similar to previous studies described in §2, we also find

that the disc develops transient and recurrent spiral arms. In this paper, we

focus our analysis on spiral arms at an early and late epoch in the evolution of

the simulated galaxy, highlighted in Fig. 3.2. These times are referred to as the
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Figure 3.3: The radial profile of the ratio of velocity dispersions in the radial and z
direction (top-left), Toomre’s stability parameter (top-right), logarithmic surface den-
sity (bottom-left) and radial velocity dispersion (bottom-right), at t = 0 (solid black
line), t= 1.034 Gyr (dot-dashed blue line) and t = 1.393 Gyr (dashed red line).
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centre of each epoch throughout the paper. Particular attention is paid to these

spiral arms because they are prominent arms, which facilitate our analysis and

we are able to extract and more clearly demonstrate the key features that we

want to identify, namely the pattern speed and the particle motion around the

spiral arm.

The circular velocity at t = 0 and t = 1.034 Gyr (early epoch) and t =

1.393 Gyr (late epoch) is shown in Fig. 3.1. The circular velocity in the inner

region after t = 0 is significantly different from the initial circular velocity, owing

to the strong gravitational field created by the developed bulge. The top-left

panel of Fig. 3.3 shows fR as a function of radius at the same time-steps. The

value drops with time in the inner radii (bar region). Outside R ∼ 5 kpc, fR

increases slightly as the disc is heated by strong spiral structure, which increases

the velocity dispersion, σR, shown explicitly in the bottom-left panel of Fig. 3.3.

The effect on spiral structure is quantified in the top-right panel of Fig. 3.3, which

shows an increase of Toomre’s instability parameter, Q = σRκ/3.36GΣ∗, in the

spiral region, where κ is the epicycle frequency and Σ∗ is the surface density of the

stellar component. This is contrary to the bar region where Q is lowered owing to

the large surface density excess in the central region shown in the bottom-right

panel of Fig. 3.3. A bulge that creates this excess of central density are likely

formed through secular evolution caused by the bar (e.g. Pfenniger & Norman,

1990; Kormendy & Kennicutt, 2004, and references therein). The developed bulge

is apparent in Fig. 3.2.

We present analysis and discussion of two spiral arms at an early (t ∼ 1.034

Gyr) and a later (t ∼ 1.393 Gyr) epoch of the galaxy’s evolution. This is because

the bar is strong at the early epoch, in contrast with the later epoch when the

bar is comparatively weak. To quantify the bar strength, we use a gravitational

force field method (e.g. Buta & Block, 2001; Buta et al., 2005). We first define a

circular grid that covers an azimuth range of 0 to 2π and a radial range of 1 kpc

to 5 kpc. At the centre of each grid point, the radial and tangential forces are

calculated, which are then used to calculate the ratio:

QT (R, θ) =
|FT (R, θ)|
F̄R(R, θ)

, (3.4)

where FT (R, θ) is the tangential force at a given grid point of coordinates (R, θ),

and F̄R(R, θ) is the mean radial force averaged over each azimuth at a given radius
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(Combes & Sanders, 1981). A maximum, Qb,i, is found in each quadrant, where

quadrants i = 1, 2, 3 and 4 are defined by setting the major and minor axes of the

bar to the x− and y−axes respectively. The bar strength is then defined as the

average of these four values: Qb =
∑4

i=1 Qb,i/4. At the early epoch, Qb = 0.27,

and at the late epoch, Qb = 0.11. According to the classification scheme outlined

in Buta & Block (2001), these values correspond to a class 3 and class 1 bar at

the early and late epochs respectively.

First we present the analysis and results of the pattern speeds of the chosen

spiral arms. Then we examine the motion of selected particles around the arm,

and present and discuss an analysis of their angular momentum and energy evo-

lution. We compute the angular momentum evolution around both spiral arms,

and make a comparison between each case. We also examine the position of star

particles of different ages in and around the spiral arm, which would be an ob-

servational test for pattern speeds of spiral arms (Tamburro et al., 2008; Egusa

et al., 2009; Foyle et al., 2011; Ferreras et al., 2012). If the spiral arms rotate with

a constant pattern speed, systematic offsets in azimuth between age populations

and the spiral arm as a function of radii are expected.

It should be noted however, that we also applied similar analyses to other

spiral arms that developed at different times in this simulation as well as spiral

arms in other barred spiral simulations with different initial configurations of the

disc and dark matter halo. We find that all the spiral arms we analysed show

very similar results to those shown in this chapter (see also Kawata et al., 2012).

3.3.1 Pattern Speed

Here we present a method for calculating the rate at which the stellar density

enhancement rotates as a function of radius i.e. the pattern speed. The pattern

speeds are often measured by spectrogram analysis (e.g. Quillen et al., 2011).

However, we focus on the angular pattern speed of the apparent spiral feature,

and in this thesis we refer to this as the pattern speed. The location of the stellar

density peak is found at a range of radii for a series of snapshots. This is done by

weighting the positional information of particles close to the arm by their density.

First, an azimuth coordinate is chosen close to the peak as an initial guess at a

given radius. Then, a suitable azimuthal range centred on the initial guess is

applied to select the particles covering the whole spiral arm or bar. From the
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Figure 3.4: The density distribution plotted in polar coordinates. Density contours
are overplotted in white to identify the highest density regions. The black line that
indicates the position of the spiral arm of interest is omitted in the bottom right panel
because the double peak at R ∼ 6.5 kpc presents ambiguity for the density weighting
method at this radius.

selected particles at a given radius, we calculate:

θsp(r) =

∑N
i ρiθi(r)∑N
i ρi(r)

. (3.5)

Here, θi and ρi are the azimuth angle and stellar density at the position of the

i-th star particle. We iteratively find θsp(r), and narrow the sampling range of θ

progressively. In order to check the reliability of this method and the suitability

of spiral arms, we show the density contours plotted over the density map in Fig.

3.4 and Fig. 3.6 at the early and late epoch respectively. The contours show that

at some time-steps such as t = 1.026 Gyr and t = 1.385 Gyr, the spiral arm of

interest (R(kpc), θ(deg)) ∼ (5, 50) in both Fig. 3.4 and 3.6) has a well-defined

single peak, which is more suitable for tracing unambiguously. However, at time

t = 1.050 Gyr (t = 1.409 Gyr) in Fig. 3.4 (Fig. 3.6), the arm develops two peaks

at a radius around 6.5 kpc as it begins to break. Therefore, to remain robust, the

peak tracing method is restricted to those snapshots where the azimuthal density

distribution around the spiral arm is made of a single peak at each radius. The

bar is unaffected by this caveat, and is traced at many snapshots.
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Figure 3.5: Snapshots of the stellar and gas disc from t = 0.978 to t = 1.170 Gyr.
The blue lines mark out the bar and extend from 1− 3 kpc. The white lines mark out
the position of highest density over the spiral arm found from the method described
in the text, and extend from 5− 10 kpc. The spiral arm lines are shown at the centre
and middle-left panels only, because the spiral arm in all other snapshots shown here
has either not fully formed or displays double peak structures, and could not be fitted
well by our method. Anchors are plotted over the spiral arm, and are rotated from the
centre snapshot with the rotational velocity.
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Figure 3.6: Same as Fig. 3.4, but for the late epoch (weak bar case). The black line
that highlights the locus of the spiral arm is omitted in the bottom right panel owing
to the double peak structure at R ∼ 6.5 kpc.

Figure 3.7: Same as Fig. 3.5, but for the late epoch (weak bar case).
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Figure 3.8: Top row : The bar and spiral arm pattern speed calculated for the snapshots
shown in Fig. 3.5 and Fig. 3.7 respectively. In each case, the spiral arm pattern
speed (solid black line) is averaged over several pattern speeds calculated at different
snapshots over the course of the spiral arm’s evolution. The mean angular rotational
velocity is also plotted (solid red line). The bar pattern speed (dashed black line)
is found to be ∼ 45 km s−1 kpc−1. The spiral pattern speed exhibits a decreasing
trend with radius that is similar to but slightly faster than the mean angular rotational
velocity. Bottom-left panel : The spiral arm pattern speed (black line) of the simulated
galaxy presented in §2 and the mean angular rotational velocity at the corresponding
time (red line). This galaxy has no bar.



3.3. Results and Discussion 60

The peak density of the spiral arm (5 < R < 10 kpc) and the bar (1 < R < 3

kpc) is shown in Fig. 3.5 and Fig. 3.7 for the early and late epoch respectively.

For clarity, anchors (marked by crosses) are placed at four radii spread over the

above radial range of the spiral arm. Their positions are initially selected at

t = 1.034 Gyr and t = 1.393 Gyr (early and late epoch respectively) according to

the spiral arm peak line traced at that time-step. Their positions at other time-

steps are calculated by rotating the anchors with mean rotational velocity at the

radius at which the anchors are located. The gas maps (right panels of Figs. 3.5

and 3.7) give some indication to how the spiral arm evolves during the formation

stage. For example, in Fig. 3.7, at t = 1.353 Gyr, there appear to be two gas arms

in the outer radii, one of which is marked by the anchor points. This arm seems to

originate from a previously wound up arm that merges with another arm to form

the spiral arm for which we trace the peak density at t = 1.393 Gyr. The anchors

plotted on the star and gas maps clearly show that the apparent spiral arm follows

a shearing pattern speed close to the mean rotation of star particles, and helps

to define the time of formation, tf ∼ 0.994 Gyr and destruction, td ∼ 1.170 Gyr

for the early epoch. This gives a lifetime of τ ∼ 180 Myr. For the late epoch,

the formation time, tf ∼ 1.353 Gyr and destruction time, td ∼ 1.481 Gyr, give a

lifetime of τ ∼ 130 Myr. Both of these spiral arm lifetimes are shorter than the

orbital period at the 7.5 kpc radius (t7.5 ∼ 250 Myr).

We calculate the pattern speed and mean rotational velocity at the early

epoch, when the bar is relatively strong. The error bars for the pattern speed

are calculated from a bootstrap technique: a random 50% of the total number of

particles are chosen for the spiral arm peak trace, which is done several times at

each time-step. Several pattern speed values are then calculated at each radial

point, and the error is taken to be the standard deviation of these values. The

top-left panel of Fig. 3.8 shows that the pattern speed decreases with radius, and

appears to be systematically faster than the mean angular rotational velocity.

For comparison with the relatively weak bar case, we calculate the pattern speed

and mean rotational velocity at the late epoch, which is shown in the top-right

panel of Fig. 3.8. The pattern speed appears to be similar to the mean angular

rotation of star particles in the inner regions (5 < R < 7 kpc), and is faster in

the outer regions (7 < R < 10 kpc). Aside from the kink at R ∼ 6.5 − 7 kpc,

the pattern speed again appears to decrease with the radius. The flattening at
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Figure 3.9: The angular momentum, L, at the beginning of the late epoch time period
(40 Myr before t = 1.393 Gyr) plotted against the change in angular momentum, ∆L,
80 Myr later. The smoothed colour map from low number density (dark blue) to high
number density (red) incorporates all disc star particles, and shows a broad angular
momentum range for migration. Selected positive (filled symbols) and negative (open
symbols) extreme migrators (see text) are highlighted by circle (chosen at a radius of
∼ 6 kpc), triangle (∼ 7 kpc), square (∼ 8 kpc) and star (∼ 9 kpc) symbols. Units are
arbitrary.

R ∼ 6.5−7 kpc is approximately the same radius at which a break is observed in

the density contours over plotted in Fig. 3.6. The pattern speed of this late epoch

is slower than the pattern speed of the earlier epoch when the bar is stronger.

This indicates that the bar may boost the pattern speed somewhat, and cause

it to become slightly faster than angular rotational velocity. Nevertheless, the

anchors in Fig. 3.5 show that the spiral arm rotates in a similar way to the star

particles at both epochs.

Further comparison is made with the galaxy presented in §2, which has no bar

or gas component. We apply the same peak tracing technique in equation (3.5),

and find the pattern speed of arms that have suitable single peaks. This is plotted

in the bottom-left panel of Fig. 3.8. The calculated pattern speed follows the

same trend as shown in §2, i.e. is the same as the angular rotational velocity at all

radii, and therefore the spiral arm co-rotates with the star particles. Therefore,

our simulation shows that the transient, winding spiral arms occur in barred

galaxy simulations (see also Baba et al., 2009), but the pattern speed appears to

be boosted slightly out of co-rotation by the bar feature. Furthermore, although
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there are only three cases studied here and the differences are relatively small,

comparison between this non-barred case and the two barred cases indicates that

the pattern speed becomes faster with increasing bar strength, which deserves

further investigation.

3.3.2 Radial Migration around the spiral arm

Radial migration at the co-rotation radius has been predicted to maintain the

degree of random motion of orbits i.e. not to heat them kinematically (e.g.

Lynden-Bell & Kalnajs, 1972; Sellwood & Binney, 2002; Roškar et al., 2008a;

Sánchez-Blázquez et al., 2009a; Roškar et al., 2012b; Minchev & Famaey, 2010;

Minchev et al., 2011; Brunetti et al., 2011). In §2, we showed that the spiral

arms co-rotate at all radii in a non-barred pure N -body disc. As a result, radial

migration occurs over a wide range of radii. The spiral arms focused on in this

chapter rotate slightly faster than the mean rotation velocity. We examine if

radial migration still occurs at all radii.

Because the results of the early epoch are the same as the late epoch, we

present the particle motion from the late epoch only. First, we select a sample of

particles around a given radius of our chosen arm at the t = 1.393 Gyr snapshot

in Fig. 3.2. In order to focus on star particles that are likely affected by the spiral

arm, the particle sample is selected to be within the vertical height of |z| < 200

pc and azimuthal width of 4 kpc centred on highest density point of the arm

i.e. a given radius of the peak line shown in Fig. 3.5. The radial thickness of

the sample is chosen to be 0.25 kpc to ensure that a large sample of stars of

approximately the same radius are chosen.

From the selected sample of particles, we compute the angular momentum

change, ∆L, over a period of 80 Myrs and choose those that exhibit the largest

values of |∆L|, some of which are highlighted by symbols in Fig. 3.9. As a fraction

of their initial angular momentum, L, this can be up to as much as |∆L/L| '
50%. Note that the angular momentum exchanges in this simulation are much

stronger than those shown in §2, probably because the spiral arm structure is

much more prominent in this barred spiral galaxy. The radii of the guiding

centres of these high |∆L| particles highlighted in Fig. 3.9 change significantly

i.e. they migrate radially. We call these strongly migrating particles “extreme

migrators”, and further divide them into two subcategories: positive extreme
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Figure 3.10: Stellar density distribution plotted in polar coordinates showing the time
evolution of four sets of extreme migrators selected from particle samples around radii
of 6, 7, 8 and 9 kpc at the t = 1.393 Gyr snapshot. The symbols correspond to those
of Fig. 3.9. Azimuth (θ) is expressed in degrees. The particles tend to migrate toward
outer radii on the trailing edge of the spiral arm (filled symbols) and inwards on the
leading edge (open symbols).
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migrators and negative extreme migrators for particles that gain and lose their

angular momentum in the sample respectively.

In Fig. 3.10 we show three successive snapshots during the migration period

of the four extreme migrator samples highlighted in Fig. 3.9, each selected around

radii of 6, 7, 8 and 9 kpc (positive and negative migrators are denoted by filled and

open symbols respectively, where each type of symbol corresponds to a specific

selection radius of a sample): 20 Myr before selection (top panel), at selection

(middle panel) and 20 Myr after selection (bottom panel). The density snapshots

for the stellar component are coordinate transformed from cartesian to polar in

order to make the radial motion of the selected star particles with respect to

the arm clearer. The positive migrators are always seen on the trailing side of

the spiral arm and migrate towards the outer radii. They are trapped by the

potential of the spiral arm, which accelerates them. During migration to outer

radii, instead of passing through the spiral arm they remain in the vicinity of

the arm on the trailing side. Therefore, they continue to be accelerated until the

spiral arm is disrupted. The negative migrators are particles that migrate towards

the inner radii on the leading side of the spiral arm. They are decelerated as they

become caught in the potential of the spiral arm, and they continue to decelerate

on the leading side, again until the spiral arm is disrupted. This illustrates the

different systematic motion that occurs on each side of the spiral arm, which is

reminiscent of the behaviour found in §2.

The same behaviour is observed at the early epoch as well. It is remarkable

that although the spiral arm at the early epoch is systematically faster than

the mean rotation velocity, we still observe these systematic migrations of star

particles. This is probably because the pattern speed is not too different from

the mean rotation velocity, and some star particles could be in a particular phase

of their epicycle motion such that they are ripe for migration. Further studies of

the orbits of these migrators are required, and will be studied in §5.

Fig. 3.6 shows that the spiral arm is not always a strong single peak structure,

owing to the winding and breaking of the spiral arm as it begins to disappear.

The evolving structure of the spiral arm may affect the degree of radial migration

that occurs over the stages of evolution that span from formation to destruction.

Therefore, we select a new sample of stars over the whole spiral arm (5− 10 kpc

radius) within 2 kpc in the azimuthal direction from the expected arm position
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Figure 3.11: Initial angular momentum, L, as a function of the change in angular
momentum, ∆L, within a 40 Myr window for samples of star particles located around
the spiral arm of the early epoch. Iso-contours indicate the 25%, 50% and 75% levels of
number density. Each panel represents a stage of the spiral arm lifetime. From a) to d):
formation (centred on t = 0.994 Gyr); fully formed single peak spiral arm (t = 1.034
Gyr); double peak spiral arm (t = 1.074 Gyr); breaking (t = 1.114 Gyr). The strongest
migrations occurs at the stage when the arm is fully formed and single peaked (second
panel). At later stages, the migration is less.
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Figure 3.12: The same as Fig. 3.11, but at the late epoch of the weak bar. Each panel
represents a stage of the spiral arm lifetime. From a) to d): formation (t = 1.353 Gyr);
fully formed single peak spiral arm (t = 1.393 Gyr); double peak spiral arm (t = 1.433
Gyr); breaking (t = 1.473 Gyr). The trend is similar to that seen in the early epoch,
but without the feature exhibiting large changes in angular momentum at lower initial
angular momentum (seen in Fig. 3.11), which are induced by the strong bar.

if the arm co-rotates with star particles around t = 1.034 Gyr and t = 1.393

Gyr i.e. the positions of the anchors shown in Figs. 3.5 and 3.7. All selected

particles are in the plane of the disc (|z| < 200 pc) as before. This is done at the

four stages of the spiral arm's evolution: formation, single peak, double peak and

finally destruction. In each case, the window of migration is 40 Myr, centred at

each of these stages, which in total spans the lifetime of the spiral arm (∼ 180

and 130 Myr for early and late epoch respectively).

The samples selected at the early epoch are plotted in the L − ∆L plane in

Fig. 3.11. The largest migration occurs around the single peak stage when the

arm is fully formed, and less migration occurs after this time when the double
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peak at R ∼ 6.5 kpc develops. However, there appears to be a lot of negative

migration at the stage of formation. This may be due to the tightly wound arm

seen in the t = 0.978 Gyr and t = 0.994 Gyr panels in Fig. 3.5. As seen from

the anchor points, we sample the leading side of this arm and hence negative

migrations are expected. There is also large migration present at low L, owing

to the stronger bar at this early epoch. This procedure is repeated for the late

epoch, and shown in Fig. 3.12. The same conclusions can be drawn for this

weak bar case. As expected, the most migration occurs at the single peak stage

when the arm is fully formed. At both epochs, significant migration occurs over

a large range of radii. Furthermore, many panels show an obvious “two-pronged”

structure in the L−direction, one at positive ∆L and the other at negative ∆L.

This is a clear indication that radial migration occurs at a wide range of radii.

The horizontal features are likely to be caused by a maximum |∆L| in this short

time period for migrating star particles along spiral arms.

3.3.3 Angular momentum and energy evolution

In this section, we focus on the angular momentum-energy evolution at the late

epoch only (that of the earlier epoch is the same). The orbital energy of a star

particle can be affected by the gain and loss of angular momentum associated

with radial migration. As in §2 and following Sellwood & Binney (2002), we

calculate the energy, E, and angular momentum, L, of the extreme migrators in

Fig. 3.10 at 20 Myr before and after the time-step at which they were selected

(the top and bottom panels in Fig. 3.10). We call these two time-steps the

“initial” and “final” time-steps respectively. In Fig. 3.13 we show the position

of the extreme migrators at the initial (filled symbols) and final (open symbols)

time-steps for all migrator samples in Fig. 3.9. The solid black line indicates the

L and E expected for a pure circular orbit at each radius. This represents the

minimum energy which a star particle can have at a given angular momentum.

We see that the positive migrators (top panel) and negative migrators (bottom

panel) move along the circular orbit curve in opposite directions to each other.

Because they keep close to the circular orbit curve after migration, their orbits

gain (or lose) little random energy and are not scattered into higher energy orbits

(Sellwood & Binney, 2002). In other words, their kinematically cool orbits are

largely preserved.
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Figure 3.13: The energy, E, and angular momentum, L, distribution of the ex-
treme migrators in Fig. 3.10 at 20 Myr before (filled symbols) and 20 Myr after
(open symbols) the time-step at which they were selected. Each symbol repre-
sents a specific radius of selection corresponding to Fig. 3.10. The top (bottom)
panel shows the results of the migrators that moved toward the outer (inner)
radii. The solid black line indicates the circular orbit. Units are arbitrary.
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Figure 3.14: The groups of migrators shown in Fig. 3.13 are plotted here in
the ∆L - Escatter/Eparticle,tini

plane, where Escatter is the change in the quantity
defined by Eparticle,t−Ecirc between the initial and final time. Eparticle,t is the total
particle energy at a given time and Ecirc is the energy of a test particle of circular
orbit for the given angular momentum (i.e. the minimum orbital energy allowed).
Escatter/Eparticle,tini

tells us how much the star particle has gained or lost random
energy as a fraction of the initial particle energy during the migration process.
We can see the positive (filled symbols) and negative (open symbols) migrators
lie in distinct groups, where the former are cooled and the latter heated, but only
by a small amount.
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Figure 3.15: Snapshots of the disc at t = 1.034 Gyr (top) and t = 1.393 Gyr
(bottom), showing only star particles of age: t < 50 Myr (blue); 50 < t < 100
Myr (cyan); 100 < t < 200 Myr (red). The yellow line indicates the stellar peak
density of the spiral arm.
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To quantify this, Fig. 3.14 shows the amount of non-circular kinetic energy

change (normalised to total initial energy) over the migration period plotted as a

function of the amount of angular momentum change that they have undergone.

Each migrator shows very little scatter during migration. It appears that each

type of migrator is grouped separately, such that the positive migrators become

slightly cooler, and negative migrators become slightly hotter1 (see also Roškar

et al., 2012b, and §2), although this is less than a few percent of the initial energy.

3.3.4 Stellar population distribution around spiral arms

Because we have a gas component forming stars, we can now make a further test

of whether the spiral arms are long-lived density waves as in spiral density wave

theory. The long-lived, stationary wave theory should predict clear azimuthal

offsets between young star particles of different ages, and molecular clouds (MCs)

that are the seeds of star formation. The single constant pattern speed predicted

by this theory would mean that inside the co-rotation radius, gas and stars would

be moving faster than the spiral arm feature. Then gas flows into the spiral arm

from behind the arm, and is compressed into MCs. This leads to star formation.

Newly born stars will then flow through and begin to overtake the arm feature

as they age, which naturally leads to a temporal gradient over the spiral arm.

Outside of co-rotation, where material moves slower than the spiral arm feature,

the opposite temporal gradient is expected. Therefore, if we group star particles

around the spiral arm into age bins, and examine their azimuthal distribution

there should be apparent azimuthal offsets among star particles of different ages,

which would become clearer further from co-rotation. Dobbs & Bonnell (2008)

and Dobbs & Pringle (2010) performed a similar test by embedding a rigidly

rotating spiral potential with a constant pattern speed.

We also analyse the azimuthal distribution of stellar ages found in our simu-

lated galaxy. Note that although Dobbs & Pringle (2010) show similar analysis,

they do not explicitly include radiative cooling or star formation, but assume an

isothermal gas. They track the orbit of gas particles which have experienced the

high density state, after which time the gas particles are tracked as very young

stars (2 − 100 Myr), assuming the gas and stellar dynamics are similar in this

1This is different from the global heating caused by scattering from spiral arms (see Fujii
et al., 2011).
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Figure 3.16: Histogram of star particles at both early (top row) and late (bottom
row) epochs. Particle samples are selected in the 6 to 7 kpc (left column) and 7.5
to 8.5 kpc (right column) radial range. Particles are binned according to their
azimuthal offset from the peak density line shown in Fig. 3.15. Negative offsets
refer to the trailing side of the arm, and positive offsets refer to the leading side.
No systematic offset of stellar ages is apparent.
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short period. Therefore, our study is different and complementary. Fig. 3.15

shows the distribution of a young population, tage < 50 Myr (blue); an interme-

diate population, 50 < tage < 100 Myr (cyan); and a relatively older population,

100 < tage < 200 Myr (red). The snapshots shown is at t = 1.034 Gyr (top) and

t = 1.393 (bottom) Gyr.

Inspection by eye indicates that there is no obvious offset between the tracers.

To quantify this, we select two samples of star particles: one between 6 and 7

kpc radius and the other between 7.5 and 8.5 kpc radius, each within ± 2 kpc

from the peak density of the spiral arm in the azimuthal direction. The angular

offset distribution from the peak density for selected star particles of different

ages are shown in Fig. 3.16, where the abscissa is azimuth offset angle and the

ordinate is the number fraction of star particles. A negative angular offset is taken

to mean a position behind the spiral arm, and a positive one means a position

in front of the spiral arm. In both cases, no significant offset is seen between

star particles of different ages. Neither case finds any systematic spatial offset

that would be present if the arm were a Lin-Shu type density wave. It is clear

that the distribution broadens for older star particles, although the peak position

remains about the same. Our results are qualitatively similar to the results of

the flocculent and interacting galaxy cases in Dobbs & Pringle (2010)1. As we

expect, it is completely different from their fixed pattern speed case.

3.4 Conclusions

In this chapter, we have presented three dimensional N -body/SPH simulations

of an isolated barred spiral galaxy, and performed a dynamical analysis of the

spiral arms and particles around the spiral arms, tracing their evolution and the

azimuthal distribution of star particles as a function of age. We come to the

following conclusions:

(i) We find in our simulation that spiral arms are transient recurring features:

we observe the continuous disappearance of spiral arms and the reappear-

ance of new ones. This transient nature has always been found in numerical

simulations.

1Their barred galaxy case focuses on the stellar distribution around the bar not the spiral
arm, and is therefore not relevant to our discussion in this section.
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(ii) Our result shows that the pattern speed is decreasing with radius overall,

and may be affected by the presence of a bar. The un-barred case shows

convincing co-rotation with the mean rotational velocity. The weak bar case

shows slight departure from mean rotational velocity at larger radii, and

the stronger bar case shows a systematically faster pattern speed overall.

Although we only studied three arms in this detail, this indicates that the

bar may boost the pattern speed, and this deserves further study.

(iii) It is demonstrated that despite the differences in pattern speed, each case

exhibits the same systematic motion found in §2, that leads to strong effi-

cient migration.

(iv) The spiral arms analysed are shown to develop a double peak substructure

as it winds and evolves. The break occurs at the same radius at which the

pattern speed kinks. The amount of radial migration is weaker at this stage

and subsequent stages of the spiral arm evolution, although it still occurs

until the spiral arm disappears. This is valid for both the weak and strong

bar cases. It is worth to note that the double peak structure occurring

around the break radius may be interpreted as two overlapping wave modes

moving away from one another. However, we cannot confirm nor reject this

idea from the results of this study. Further detailed studies are required to

test whether or not the spiral arm is a linear superposition of multiple wave

modes.

(v) We quantify the amount of heating or cooling of each migrator in terms of

random energy gained or lost over the process of migration. It is evident

that each positive migrator loses some random energy (cools), while the

negative migrators gain some random energy (heated). For each migrator,

it is seen that the amount of heating/cooling is less than a percent of the

total energy of a given particle. Hence this migration does not contribute

significantly to disc heating. However the cause of this heating and cooling

is not identified (see also Roškar et al., 2012b), and is worthy of further

study.

(vi) We find no offset between the distribution of young star particles (< 200

Myr) of different ages around the spiral arm at two different radii. This
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is consistent with recent observations of extra-galaxies (Foyle et al., 2011;

Ferreras et al., 2012).

This study is a follow-up study to our original work presented in §2, which

focused on pure N -body simulations of a galaxy with no bar. As in that study,

we have not addressed the mechanism of formation of the spiral arm features

thoroughly nor their destruction, although we gain an insight into how the arm

develops a double peak structure and then breaks. We note that the spiral arm

features here are slightly longer-lived than our N -body galaxy, which could be

because the bar is a powerful driver of spiral structure (e.g. Sparke & Sellwood,

1987; Salo et al., 2010), and may help to maintain the feature for longer (e.g.

Donner & Thomasson, 1994; Binney & Tremaine, 2008; Baba et al., 2009; Quillen

et al., 2011). We also note that bars can be even stronger than the strong bar

case presented here. It would be interesting to study the effects of spiral arm

pattern speed on radial migration when the bar is much more prominent.

Again, we find that the spiral arms in this N -body/SPH barred galaxy are

not consistent with the long-lived, rigidly rotating spiral arms of a classical spiral

density wave theory. On the contrary, the spiral arm pattern speed decreases

with radius and is similar to but slightly faster than the mean angular rotation

velocity of the star particles. However, significant radial migration over a wide

range of radii is repeatedly observed despite the differences in pattern speed.

This suggests the existence of further criteria for radial migration, which will be

studied in §5.



Chapter 4

Spiral arm pitch angle and

galactic shear rate in N-body

simulations of disc galaxies

This chapter is based on Grand et al. (2013).

4.1 Introduction

The morphology of spiral galaxies, as laid out in the Hubble classification (Hubble,

1926), can be broadly characterised by the tightness of spiral arm structure and

the size of the central region or bulge. In this classification scheme, more tightly

wound spiral arms are associated with large central mass concentrations (see

§1.1). The strong correlation between central mass concentration and pitch angle

predicted by modal density wave theory (e.g. Lin & Shu, 1964; Roberts et al.,

1975; Seiden & Gerola, 1979; Bertin et al., 1989a) is in accordance with this.

However, there are complications in the Hubble classification scheme insofar as

that this relation was derived from optical information of galaxies only. The

correlation is not observed in the near-infrared wavelengths (de Jong, 1996; Seigar

& James, 1998a,b), and some observational studies in the infrared waveband

highlight a difference in morphology from that seen in the optical (e.g. Block et al.,

1994; Thornley, 1996; Grosbol & Patsis, 1998). Moreover, the correlation between

Hubble type and pitch angle has been shown to be weak (Kennicutt, 1981) and the

76
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model predictions from density wave theory for spiral arm properties have been

shown to have systematic offsets to observations (Kennicutt & Hodge, 1982).

Despite these uncertainties in the Hubble type-pitch angle relation, more re-

cent observations have shown convincing evidence for a correlation between spiral

arm pitch angle and the shear rate of differentially rotating discs of spiral galax-

ies. Seigar et al. (2005) derived shear rates from the rotation curves of a sample

of several barred galaxies and used Fourier analysis to draw the spiral shape.

They found evidence for the shear rate dependency of the spiral arm pitch angle.

Because the rotation curve shape is determined by the mass distribution, this is

essentially a correlation between the central mass concentration and spiral arm

pitch angle. This survey was later extended and the conclusion strengthened by

Seigar et al. (2006).

The shear rate-pitch angle correlation is also supported by the analytical work

based on swing amplification theory (Goldreich & Lynden-Bell, 1965; Toomre,

1981) by Julian & Toomre (1966) (see also Fuchs, 2001), which calculated the

spatial distribution of the response of the density of the differentially rotating

stellar disc to a large perturbing mass. They showed that the density enhance-

ment in this context is predicted to show smaller pitch angles1 (hence a more

tightly wound structure) with increasing amount of shear present.

While theoretical and observational studies provide evidence for the shear

rate-pitch angle relation, it has yet to be explored in N -body simulations. In this

chapter, we aim to study this relation by running a suite of N -body simulations of

varying shear rates. For the first time we investigate the pitch angles of individual

spiral wave mode patterns in N -body simulations by isolating the spiral wave

mode patterns from the system using the conventional spectrogram analysis (e.g.

Quillen et al., 2011; Sellwood, 2012; Solway et al., 2012; Minchev et al., 2012b;

Roškar et al., 2012b) and calculating the spiral phase of the m-th mode. We

find that the discs of higher shear rate exhibit systematically smaller pitch angles

than their lower shear rate counterparts, as predicted from the theoretical studies

mentioned above. We also trace the overall spiral arm feature and measure its

pitch angle as a function of time. The motivation for exploring this pitch angle

1In this chapter, small pitch angle values correspond to tightly wound spiral arms, and large
pitch angle values correspond to open spiral arms. This is different from the definition used in
§1.2.2, and we use it in order to clearly compare with recent studies (e.g. Fuchs, 2001; Seigar
et al., 2006).
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behaviour is that we and other authors have found that the pattern speed of the

spiral arms in N -body simulations and observed galaxies decreases with radius in

a similar manner to the angular rotation velocity of the disc particles (Merrifield

et al., 2005, 2006; Speights & Westpfahl, 2011; Wada et al., 2011; Nelson et al.,

2012; Comparetta & Quillen, 2012; Baba et al., 2013, and §2, 3). Because the

pattern speed decreases in this way, the pitch angle decreases with time and leads

to transient and recurrent spiral arm features that are seen in many simulations

(e.g. Sellwood, 2010, 2011, and references therein). The evolving nature of the

pitch angle of winding spiral arm features can be compared to the observational

work of Seigar et al. (2006) which measures the pitch angle and shear rate of many

spiral galaxies and reveals several different observed pitch angles for a given shear

rate.

This chapter is organised as follows. The simulations are described in §4.2,

the analysis techniques laid out in §4.3 and the results are described in §4.4 and

§4.5 in which we also explore some of the other parameter space apart from shear

rate. The discussion is presented in §4.6, followed by the conclusions in §4.7.

4.2 Simulations

The simulations in this chapter are performed with a hierarchical Tree N-body

code GCD+ (Kawata & Gibson, 2003; Kawata et al., 2013b). We run a suite of

simulations, each of which consists of a spherical static dark matter halo (and a

spherical static stellar bulge component in some cases) and a live stellar disc. The

halo and bulge are static rather than live in order to facilitate greater control of

the experimental scenarios. A live halo/bulge component will complicate the evo-

lution of the stellar disc with effects such as scattering and heating, and may even

act as large perturbing masses that greatly disturb the disc if the mass resolution

for the dark matter is too small (D’Onghia et al., 2013). These are unwanted

effects, and because the focus of this study is on the stellar disc component only,

we have elected to model the external components with static potentials. The

dark matter halo is set up following the same density profile in §3.2 assuming the

same cosmological parameters.

The spherical static stellar bulge component is modelled by the Hernquist

profile (Hernquist, 1990), which is described by:
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Figure 4.1: The circular velocity at t = 0 for simulation R (very thick dashed red), R2
(thick dashed blue), R3 (medium dashed green), R4 (thin dashed cyan), F (thick dot-
dashed green), F2 (thin dot-dashed red), F3 (medium dot-dashed blue) and K (solid
blue).
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Figure 4.2: Galactic shear rate, Γ, for all simulations. Colours are the same as Fig.
4.1. Note the reduced radial range compared to Fig. 4.1.
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Figure 4.3: Toomre stability parameter, Q, at t = 0 for all simulations. Colours are
the same as Fig. 4.1.

ρb(r) =
Mb

2π

a

r

1

(r + a)3
, (4.1)

where Mb is the total bulge mass and a is the scale length. The scale length is

set to the effective radius, Re = 1.8153a, which is given by the empirical relation

(Shen et al., 2003):

Re = 4.16

(
Mb

1011M�

)
kpc. (4.2)

The variation of bulge density is controlled by a compacting parameter, b, which

modifies the scale-length through the relation a = bRe/1.8153.

The stellar disc is assumed to follow the same exponential surface density

profile outlined in §3.2. The fiducial number of disc particles used is N = 1×106.

Numbers of this order are reported to be sufficient to minimise numerical heating

(Fujii et al., 2011). Although larger particle numbers reduce numerical heating

further, we note that the effect is always present (i.e. it does not disappear at

a particular resolution), and that a compromise between parameter space and

resolution must be made for suites of simulations such as the one presented in
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this study.

We apply a fixed softening length, ε, for star particles with the spline softening

suggested by Price & Monaghan (2007). The softening length1 is dependent on

the particle mass, therefore the base value of ε = 340 pc for the particle mass,

mp = 5 × 104M� varies between simulations that have different particle masses.

The model parameters for the simulations are summarised in Table. 4.1, and the

rotation curves are shown in Fig. 4.1.

There are three groups of rotation curves. Simulation group R (R, R2, R3,

R4) has a rising rotation curve. Simulation R is an extreme case, where we set a

large halo mass with a low concentration parameter, c, in order to extend mass

to the outer regions of the disc. Because of such a low concentration of dark

matter mass in the central region, the disc mass must be lowered in order to

prevent a bar from forming (Ostriker & Peebles, 1973). In this way, we avoid

the added complication of the bar component and restrict the study to spiral

galaxies only. Simulations R2, R3 and R4 are less extreme cases, which explore

intermediate shear rates and different disc to halo mass ratios. To produce the

flat (simulations F, Fa, Fb, Fc, F2 and F3) and Keplerian-like (simulation K)

rotation curves, a bulge component is included. For simulation K, this is a very

compact and massive bulge. Although this case is unrealistic, we include it in

order to emphasise the effect of galactic shear on spiral morphology.

The radial profile of the galactic shear rate at t = 0, is given by:

Γ = 2A = 1− (R/Vc)(dVc/dR), (4.3)

where A is Oort’s constant. The shear rate for each simulation is shown in Fig.

4.2. This suite of simulations represents a range of shear rates, which is the prin-

cipal variable we want to investigate. However, there are other parameters that

may affect the pitch angle, such as the disc-halo mass ratio, ζ, softening length, ε,

and resolution. We also explore these parameters, mainly with simulation group

F.

We set the initial Toomre stability parameter, Q, for all our simulations to

1It should be noted that we define the softening length at which the softening kernel function
is truncated. Therefore, our softening length value is typically a factor ∼ 3 larger than the
traditional definition: to translate our softening lengths to the traditional values, our value
should be divided by 3.
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approximately 1 over the radial range 4 < R < 10 kpc, which allows the spiral

structure to grow1,2 (Toomre, 1981; Sellwood, 2014). The radial dependence in

shown in Fig. 4.3.

4.3 Method of Analysis

Here we present the analysis method of our two techniques for measuring pitch

angles: mode pattern analysis and direct spiral arm peak trace method. An

important difference between these techniques is that the mode pattern analysis

assumes that the spiral arms are constructed by one or multiple density waves of

mode, m, which describe patterns of m spiral arms with a constant pitch angle.

The direct spiral arm peak trace method does not assume any theory, but simply

analyses the pitch angle of the overall spiral arm feature. The distinction between

these two methods is that while both characterise the spiral arm as a logarithmic

spiral of fixed pitch angle at all radii of interest, in the direct method the pitch

angle and amplitude of the spiral arm changes with time. However, in the mode

analysis, changes in the spiral arm (in particular the winding) may only occur

through the changing superposition of the various mode patterns present.

Before we describe these two analysis techniques, we define the pitch angle

which we will use with both. Given the positional information (R, θ) of a density

enhancement, we can fit logarithmic spiral arms, described by:

θ = B lnR + C, (4.4)

where θ is the azimuth coordinate, R is the radial coordinate and B and C are

constants. Logarithmic spirals have pitch angles, φ, given by (Binney & Tremaine,

2008):

tanφ =
∆R

dθ
, (4.5)

1If Q < 1, then violent axisymmetric instabilities of the kind described in §1.2.2 develop.
2Each simulation shows a rise in the radial Q profile over time, owing to the heating by

spiral arm structure (Fujii et al., 2011).



4.3. Method of Analysis 84

where the distance, dθ, is the spatial distance of the density enhancement in the

azimuthal direction defined as dθ = R∆θ. The pitch angle of a logarithmic spiral

is constant with radius. The next step is to recover the positional information

(R, θ) required to apply the logarithmic chi-squared fitting using equation (4.4)

and calculate the pitch angle of the fit using equation (4.5).

4.3.1 Mode pattern analysis method

By construction, a m-symmetric wave mode pattern has a constant pattern speed,

Ωm
p . Therefore the shape of a wave mode pattern is time independent i.e. the

pitch angle is constant over time. In this analysis, we focus on strong patterns

because their behaviour is most evident. In order to find patterns of significant

amplitude, we first search for dominant modes i.e. wave modes of m spiral

arms that exhibit large amplitudes. The amplitude of a given wave mode, m, is

calculated from the quantities:

Wm
c (R, t) =

N∑
i

cos(mθi(R, t)),

Wm
s (R, t) =

N∑
i

sin(mθi(R, t)), (4.6)

where θi is the azimuthal angle between the radial vector of the particle and a

common reference vector. The amplitude is then calculated as:

Am(R, t) = (Wm
c (R, t)2 +Wm

s (R, t)2)1/2. (4.7)

The mean amplitude in a radial range 4−10 kpc is calculated using equation (4.7)

for modes m = 1 − 7 over the entire 2 Gyr of the evolution for each simulation.

This is shown in Fig. 4.4. In each simulation, prominent modes are identified

for analysis. We aim to extract the positional information of the patterns. The

adopted procedure is to compute their power spectra by taking the Fourier trans-

form of the time sequence of each component in equation (4.6) (Quillen et al.,

2011):
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W̃m
c (R,ω) =

∫ T2

T1

Wm
c (R, t)eiωth(t)dt,

W̃m
s (R,ω) =

∫ T2

T1

iWm
s (R, t)eiωth(t)dt, (4.8)

where h(t) denotes the Hanning function used to reduce the aliasing. T1 and

T2 denote the beginning and end of the time window of the Fourier transform.

This is chosen to be at around a relatively late epoch of the simulation (when

the system is more stable) and is centred around a peak of the most dominant

mode present in each case. It spans ∆t = 256 Myr, which is of similar order to a

typical life time of a m-fold spiral pattern as shown in the next section.

The amplitude in each frequency as a function of radius is then calculated

via:

Am(R,ω) = (W̃m
c (R,ω)2 + W̃m

s (R,ω)2)1/2. (4.9)

Because simulations generally possess several patterns for a given mode that can

overlap in radius (e.g. see Fig. 4 of Roškar et al., 2012b), care must be taken

when computing the spiral phase of a pattern. In this technique each wave mode

pattern is characterised by a pattern speed given by Ωm
p = ω/m, which is constant

over radius. Individual patterns should be selected by isolating a horizontal ridge

(a single pattern speed) over a radial range where the signal significantly stands

out from the noise. In each of the galaxies, we focus on the most dominant

patterns and look at the three quantities, W̃m
c (R,ω), W̃m

s (R,ω) and Am(R,ω)

on the real and imaginary axis for each radial pixel in a ridge. We then calculate

the real spiral arm phase position within the domain 0 to 2π as:

θp(R,ω) =
θmsp(R,ω)

m
=

1

m
arctan

(
W̃m
s (R,ω)

W̃m
c (R,ω)

)
, (4.10)

where θmsp(R,ω) is the spiral phase of the pattern at each radial bin, which is

retrieved by considering only the Fourier coefficients of a single ω. Because this

quantity spans a domain of 2πm, the spiral phase, θmsp(R,ω), is divided by m in
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Figure 4.4: The amplitudes calculated from equation (4.7) and averaged over a radial
range of 4 - 10 kpc of spiral modes m = 1 (thick red), 2 (thick green), 3(thick blue),
4(thick yellow), 5 (thin red) 6 (thin green), 7 (thin blue) and 8 (thin yellow) normalised
to the axisymmetric m = 0 mode, as a function of time for simulations R (left), F
(middle) and K (right). Vertical dashed lines represent the time window of a Fourier
transform.

order to yield the real phase position of the wave mode pattern as a function of

radius. This provides the azimuthal and radial values required for the calculation

of the pitch angle using equations (4.4) and (4.5).

4.3.2 Direct spiral arm peak trace method

The method we use to trace the spiral arm peak position directly is a particle

density weighting method, in which we select a point near the spiral arm of

interest at some start radius (∼ 5 kpc), define an azimuth range that encapsulates

the width of the spiral arm and weight by particle density to find the peak position

(see §3.3.1). This is iterated over a radial range until the spiral arm peak position

is drawn out. Several spiral arms are traced over a range of snapshots between

1 and 2 Gyr of the simulation evolution. Spiral arms are only traced when they

show a single density peak over azimuth for each radius in the radial range chosen

for fitting. The pitch angles are then calculated using equations (4.4) and (4.5).

We remind the reader that this pitch angle is derived from the spiral arm

line that traces out the overall density enhancement directly, which varies with

time. This is different from the time independent pitch angle calculated from the

positional information of the wave mode patterns derived from the power spectra

in §4.3.1. The latter bears the assumption of a density wave of constant pattern

speed and fixed pitch angle, whereas the former bears no assumptions at all.
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Figure 4.5: Top row : Power spectra calculated from equation (4.9) of simulation R
for the m = 8 mode (left), F for the m = 3 mode (middle) and K for the m = 2 mode
(right). Prominent ridges (dark pixels) span between 4 - 10 kpc in most cases. Second
row : In polar coordinates, the density map of the dominant density wave mode pattern
selected from rows of Ωm

p = 18, 30 and 24 km s−1 kpc−1 for simulations R, F and K
respectively. White regions indicate areas of low density and black regions indicate
areas of high density. Contours emphasize the highest density regions. Bottom panels:
Dominant mode pattern positions (black points) calculated from equation (4.10) in the
azimuth-radius plane for the corresponding patterns in the row above. The red lines
show the lines of best fit for each pattern. The right side of each panel shows the radial
amplitude profile, which is used to weight the fitting.
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Figure 4.6: The mode pitch angles for the fiducial set of simulations, R (red circles),
F (green crosses) and K (blue diamonds) as a function of shear rate.

4.4 Results of Fiducial Simulations

First, we show the results of three fiducial simulations, R, F and K in Table.

4.1, which represent rising, flat and decreasing rotation curves respectively. In

the next section, we will show results of the other simulations in Table 4.1 to

examine the robustness of the relation between pitch angle and the shear rate

shown in this section.

4.4.1 Pitch angle of the mode patterns

The amplitude for several wave modes is shown for each of the fiducial simulations

R, F and K as a function of time in Fig. 4.4. Am is normalised to the axisymmetric

amplitude, A0, and averaged over the radial range 4− 10 kpc, which defines the

region of spiral structure. The strong mode patterns are isolated by the vertical

dashed lines in Fig. 4.4, which define the time window for the Fourier transform.

The time window used is ∆T = 256 Myr. Because Fig. 4.4 shows that wave mode

patterns appear to grow and fade on this time scale, this time window length

enables the isolation of individual wave mode patterns. Although this results in

limited frequency resolution, the positional information will be more reliable than

that calculated from longer time windows, which may convolve multiple patterns
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Simulation Ωm
p (kms−1kpc−1) m φ (◦)

F 30 3 23.7
42 3 22.9
35 4 23.8
40 4 22.5

Fa 35 4 21.2
45 4 22.4
28 4 23.2

Fb 37 4 21.5
30 4 21.6
45 4 22.2

Fc 42 4 24.1
35 4 22.3
35 5 24.0

F2 40 7 24.6
F3 25 3 26.0

35 3 25.3
K 24 2 14.6

12 2 14.1
R 18 8 38.2

15 8 38.1
20 7 37.4
17 7 35.5

R2 30 5 27.8
25 5 28.7

R3 37 4 32.5
30 4 30.8
45 4 35.1

R4 35 3 36.2
25 3 32.6

Table 4.2: Table of mode pitch angles calculated for each simulation from the
modal analysis. Column (1) simulation name (2) pattern speed (3) wave harmonic
(4) mode pattern pitch angle.
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in the Fourier analysis. However, we have confirmed that the use of longer time

windows has a negligible effect on the pitch angle values.

For each of our fiducial simulations, the power spectrum of the dominant

mode highlighted in Fig. 4.4 is calculated from the square of the amplitude

given in equation (4.9), and shown as a function of radius and the pattern speed,

Ωm
p = ω/m, in the top row of Fig. 4.5. A wave mode pattern is eligible to

be analysed if its maximum power, Pm
max, is greater than 50% of the maximum

power of the strongest pattern, Pm
max,strongest (i.e. Pm

max > 0.5Pm
max,strongest): all

other patterns are considered subsidiary. There are typically several patterns in

each simulation that fulfil this criterion.

To demonstrate the fitting process, we focus on the most dominant patterns

in each of the simulations R, F and K. The density maps of these dominant

wave mode patterns in real space polar coordinates are shown in the second

row of Fig. 4.5. This is calculated from a sinusoidal wave of the form: ρ =

Am(R)[cos(m(θ − θp(R))) + sin(m(θ − θp(R)))]. The amplitudes and phases of

each radial bin are calculated from the power spectrum in the top row of Fig.

4.5 using equations (4.9) and (4.10) respectively. Grey scale images highlight

positive (black) and negative (white) normalised density, and contours emphasise

the high density regions.

The bottom row of Fig. 4.5 shows the chi-squared fitting of a logarithmic

function to the most dominant patterns in each simulation. The right side of

each panel shows the normalised pattern amplitude as a function of radius, which

reflects the relative strength of a pattern at a given radius. The logarithmic fitting

is weighted by the amplitude shown in the right panel, and is represented by the

red line (left panel). The fits are satisfactory for the radial ranges where the

patterns are strong, and produce reliable pitch angles. The fitting of all other

selected patterns for these simulations are very similar to those shown in the

bottom row of Fig. 4.5. The derived pitch angles are given in Table 4.2.

Fig. 4.6 shows the pitch angle dependence with shear rate (equation 4.3). We

take the shear rate value at the radius where the mode pattern in question attains

maximum power. All the pitch angle values clearly show a dependence on shear

rate. Simulations with higher shear rate show smaller pitch angles. This is in

accordance with the qualitative trend expected of the pitch angle-shear relation

from theoretical studies (e.g. Lin & Shu, 1964; Julian & Toomre, 1966). It is
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interesting to note that modes of different m and different pattern speeds in the

same simulation (e.g. m = 3 and 4 in simulation F) show similar pitch angles.

4.4.2 Direct pitch angles of overall spiral arm features

As mentioned in §4.3.2, we trace the evolution of the overall spiral arm feature

directly by use of the particle density weighting method described in §3.3.1. Fig.

4.7 demonstrates an example of the application of the arm tracing criteria to

one of the spiral arms in simulation K. Because it is possible to reliably trace

spiral arms which show only single peak structure for the radial range considered

for fitting, we reject those snapshots that show the spiral arm with indistinct

or double peak structure, which typically occurs during spiral arm formation

(t = 1.152 Gyr in Fig. 4.7) and after the arm shows bifurcation or breaking

(t = 1.2 Gyr in Fig. 4.7).

The results for several spiral arms in each fiducial simulation are shown in

Fig. 4.8. In these plots, we take the shear rate value at the mid-point of the

radial range of the traced spiral arm. It is clear that every spiral arm pitch

angle decreases with time, which is consistent with winding, co-rotating spiral

arms which have been reported in Wada et al. (2011); Baba et al. (2013, and

§2, 3). Note that this winding is also seen in the previous formalism with mode

analysis, but only through a superposition of the different mode patterns: the

individual mode patterns of course are defined as being formed of fixed pattern

speed, Ωm
p , at all radii of interest. The mean of the mode pattern pitch angles

calculated in the previous section is highlighted by the horizontal lines in Fig.

4.8. The direct pitch angle values follow the same trend with shear rate as the

mode pattern pitch angles presented in §4.4.1, but simulations of different shear

rate can overlap in direct pitch angle owing to the spread in pitch angle values

produced by the winding mechanism of the spiral arm features. A snapshot of a

time when direct and mode pattern pitch angles are approximately the same is

shown in Fig. 4.9 for simulation R, F and K. This shows the pitch angle - shear

trend clearly1.

The winding nature of the spiral arms means that each spiral arm can exhibit

several pitch angles over the spiral arm lifetime. Fig. 4.10 shows these pitch

1Spiral arms of small pitch angle are seen also in a disc model with a massive bulge in
Martig et al. (2012), who use an adaptive mesh refinement code, RAMSES (Teyssier, 2002).
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Figure 4.7: Snapshots of the disc density in polar coordinates. Density contours are
overlaid in white. The traced spiral arm position is highlighted with a black line. The
double peak structure at R ∼ 5.5 and ∼ 9 kpc at snapshots t = 1.152 and t = 1.2 Gyr
prevents an unambiguous fitting to a single peak, and this defines the time range in
which the spiral arm can be traced.
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Figure 4.8: Pitch angle evolution of the overall spiral arm feature for simulations R
(red circles), F (green triangles) and K (blue diamonds). In all cases the pitch angle
decreases with time, which indicates the winding nature of the overall density peak.
The horizontal lines represent the mean mode pattern pitch angle, determined from
the patterns in Fig. 4.5 and shown in Table 4.2 for simulations R (dot-dashed red), F
(dashed green) and K (solid blue). Note that the range of directly measured spiral arm
pitch angles clearly map out separate domains about the mode pattern pitch angles of
their respective galaxies.

Figure 4.9: Face on view of each simulation (from left to right: simulations R, F and
K) when the directly measured spiral arm pitch angle coincides with the calculated
mode pattern pitch angle. The spirals become increasingly tight going from left to
right.
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Figure 4.10: All directly calculated spiral arm feature pitch angles plotted as a func-
tion of galactic shear for simulations R (red circles), F (green triangles) and K (blue
diamonds).

angles plotted against galactic shear, which clearly shows that the pitch angle

decreases for increasing shear rate. The range of pitch angles becomes smaller

with increasing shear rate as well. This trend and scatter shown in Fig. 4.10 are

both consistent with the pitch angle-shear rate correlation and scatter seen in real

observations (e.g. Fig. 3 of Seigar et al., 2006). This may indicate that observers

are seeing spiral arms at varying stages of their evolution, and therefore detect a

range of pitch angles at a given rate of shear. To test the validity of these results,

we explore the effect of other parameters on pitch angle in the next section.

4.5 Parameter Survey

Up to this point, we have presented results only from the fiducial simulations R,

F and K, which clearly show the relationship between pitch angle and shear rate

owing to their very different rates of shear. We now explore the effects on the

pitch angle of the other parameters that vary between them.
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4.5.1 Resolution and Softening length

We investigate the numerical robustness of the simulations by examining the

effect of the number of particles and the choice of softening length. We start with

simulations Fa, Fb and Fc, which use N=5×106 particles with different softening

lengths (see Table 4.1) together with the fiducial F. They are identical in every

other parameter to the fiducial F simulation. The top panels of Fig. 4.11 shows

their wave mode amplitudes and dominant mode pattern phase positions. There

are some differences between the higher resolution simulations, Fa, Fb and Fc.

For example, the m = 5 mode shows significant amplitude in Fc.

Because the softening length relates to the particle mass as ε ∝ m
1/3
p , a direct

comparison to explore the effect of resolution is between simulation F and Fb.

The spiral structure grows slightly more slowly in simulation Fb (as well as the

other higher resolution simulations) than in simulation F, but modes of m = 3

and 4 remain strong in all of these simulations. The difference in level of spiral

structure growth for the different particle number is as expected (Fujii et al.,

2011).

The chi-squared fitting of the most dominant patterns in each simulation is

shown in the bottom row of Fig. 4.11. The mode pattern pitch angles for all

three higher resolution simulations are given in Table 4.2, and are all very similar

to the fiducial F mode pattern pitch angles.

Fig. 4.12 shows the pitch angles of several spiral arms that we analysed using

the direct trace of the spiral arm features. Again, the arms are winding with

time, and the range of pitch angles are consistent with simulation F in Fig. 4.8.

In Fig. 4.12, at around t = 1.6 Gyr, simulation Fa shows a spiral arm that forms

with an initial pitch angle of φ = 41 degrees, and is quickly wound. Although

this initial pitch angle is high compared to that of the other arms, the later pitch

angle measurements for this spiral arm overlap the range of pitch angles of all

the other arms in simulations F, Fa, Fb and Fc.

The general agreement between the mode pattern pitch angles and the range

of direct pitch angles over the simulations F, Fa, Fb and Fc indicates that the

fiducial resolution of N = 1 million particles is sufficient to capture robust pitch

angles. Moreover, the variation of the softening length in the assumed range

does not appear to be a significant factor either, owing to the very similar mode

pattern pitch angles given in Table 4.2 and directly measured pitch angles shown
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Figure 4.11: Top row: Amplitudes of the m = 1 − 7 wave mode numbers (colours as
in Fig. 4.4). Bottom row: Phase positions of the strong mode patterns identified in
top row. From left to right: simulations Fa (m = 4), Fb (m = 4) and Fc (m = 4)
respectively.

in Fig. 4.12.

4.5.2 Disc-Halo mass ratio

Another variable in our simulations is the disc mass to halo mass ratio. To

see whether or not this parameter affects the pitch angle, we perform the same

analysis on simulations F2 and F3, which display shear rates within ∼ 2% of the

fiducial simulation F, with lower and higher disc-halo mass ratios respectively (see

Table 4.1). The ratio, ζ, is calculated as the ratio of the disc mass to the external

mass within two radial scale lengths (as performed in D’Onghia et al., 2013). The

amplitudes and density mode pattern phase positions are shown in Fig. 4.13. The

mode pattern pitch angles calculated from the fitting in the bottom rows in Fig.

4.13 is presented in Table 4.2. The pitch angle values of F2 and F3 are similar to

that of F. The directly measured pitch angles from the spiral arm feature shown

in Fig. 4.14 also show little difference between the simulations, with perhaps the

exception of the F3 spiral arm beginning t = 1 Gyr at φ ∼ 40◦. Overall, these

results indicate that the disc to halo mass ratio does not affect the pitch angle
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Figure 4.12: As for Fig. 4.8 but for simulations Fa (blue squares), Fb (red circles) and
Fc (green triangles).
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Figure 4.13: As in Fig. 4.11, but for simulations F (m = 3), F2 (m = 7) and F3
(m = 3).
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of the spiral features, but instead the number of spiral arms, m. For example,

in Fig. 4.13 the higher disc-mass ratio simulation, F3, displays more power in

lower wave mode numbers (m = 2, 3) whereas the lowest disc-halo mass ratio

simulation, F2, shows the m = 7 mode to be most prominent. This is consistent

with previous studies (Julian & Toomre, 1966; Toomre, 1981; Efstathiou et al.,

1982; Carlberg & Freedman, 1985; D’Onghia et al., 2013).

We also performed simulations of intermediate shear rate values between simu-

lations R and F with a slight alteration of disc-halo mass ratio. These simulations,

labelled R2, R3 and R4 (in order from higher to lower shear), have no bulge. Fig.

4.15 shows the direct pitch angle of several spiral arms in these simulations. While

they are similar to each other, the range of pitch angles covers a slightly higher

range than that of simulation F but slightly lower than that of simulation R. This

agrees with the intermediate shear values shown in Fig. 4.2. Table 4.2 shows the

measured pitch angle of the wave modes, which also indicates the intermediate

mode pattern pitch angles between simulations R and F.

To examine the trends together, we plot the mode pattern pitch angles of

simulations F, F2, F3, K, R, R2, R3 and R4 as a function of shear rate in Fig.

4.16. This figure shows a clear correlation between pitch angle and shear rate,

which is the main finding of this study .

The lack of effect of disc-halo mass ratio on pitch angle in combination with

the difference in pitch angle between simulations F and R2, which both have the

same mass ratio, are convincing evidence that the shear rate is the dominant

driver of pitch angle in N -body simulations of spiral galaxies.

4.6 Discussion

We have shown that in N -body simulations, the measured pitch angles (mea-

sured both through the wave mode patterns and directly tracing the spiral arm

features) correlate with shear rate. The range of direct pitch angles produced is

in agreement with observation. We explored other simulation parameters, and

show that the pitch angle is not significantly affected by the disc-halo mass ratio,

resolution or softening length. One other parameter whose effect we could not

explore is the stability parameter, Q, owing to the fact that it cannot be directly

specified and it evolves over time (Fujii et al., 2011). Although we could not test
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Figure 4.14: As for Fig. 4.8 but for simulations F (green triangles), F2 (blue squares)
and F3 (red circles).
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Figure 4.15: As for Fig. 4.8 but for simulations R2 (blue squares), R3 (green triangles)
and R4 (red circles).
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Figure 4.16: The mode pitch angles as a function of shear for simulations, R (red cir-
cles), R2, R3, R4 (magenta squares), F, F2, F5 (green crosses) and K (blue diamonds).

this parameter directly, we note that the Q parameter is reported from analytical

studies (e.g. Julian & Toomre, 1966; Athanassoula, 1984; Fuchs, 2001) to have

negligible effect on the pitch angle of swing-amplified patches. Also, the density

wave theory of Lin & Shu (1964) does not show an explicit correlation between

the pitch angle and the Q parameter. Therefore, we expect the major driver of

the pitch angle value of spiral arms in N -body simulations to be the shear rate.

However, this aspect still needs further study.

The observed correlation between the pitch angle of the density wave mode

and galactic shear rate is qualitatively consistent with the prediction of the classic

theories of both density wave theory (Lin & Shu, 1964) and swing amplification

theory (Julian & Toomre, 1966; Toomre, 1981).

In the context of swing amplification theory, spiral structure grows from den-

sity perturbations as the stellar material swings from an open to a tightly wound

structure, so as to exhibit a range of inclination angles. Therefore the pitch angle

may correspond to the inclination angle when each density perturbation is most

amplified, around a specific inclination angle, which is correlated to shear rate

(Julian & Toomre, 1966).

In the context of the Lin-Shu density wave theory, each wave mode can be
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interpreted as a standing wave mode of constant pitch angle and fixed pattern

speed. Lin & Shu (1964) demonstrate that the pitch angle of such waves is lower

for higher central mass concentrations, i.e. a higher shear rate. However, there

must be more than one wave mode to manifest the winding of the spiral arm,

which must then be interpreted in terms of a superposition of multiple mode

patterns, which changes with time (e.g. Comparetta & Quillen, 2012). In this

interpretation, the wave mode patterns in the inner disc region must have a

faster pattern speed than that in the outer region, and must overlap at some

intermediate radii. Therefore, the pitch angle begins larger than that measured

for the wave mode, and then approaches the mode pitch angle while the density

grows (constructive interfering). The waves then pass and move away from one

another, which decreases the pitch angle further. This leads to a stretch in the

azimuthal direction of the overall spiral arm density.

If multiple wave modes are the driving mechanism of spiral arms, the N -body

simulations suggest that there are many patterns of various multiplicity, m, that

are short-lived (as seen from the transient nature of the mode amplitudes in Fig.

4.4 for example) and recurrent. However, it is worth noting that such waves are

some distance from the large scale, long timescale structures that classic spiral

density wave theory was developed to produce. The formation and evolution of

such wave modes should be non-linear and complicated (D’Onghia et al., 2013;

Baba et al., 2013), which deserves further study, and is beyond the scope of this

study.

4.7 Conclusions

For the first time, to our knowledge, we have analysed the pitch angle of the spiral

arm features directly and the pitch angle of the wave mode pattern in N -body

simulations of disc galaxies with different galactic shear rate. The former pitch

angle is derived from tracing the physical movement of the actual surface density

of the spiral arms, and the latter is calculated from Fourier analysis that aims to

isolate density wave mode patterns from the system that may contribute to the

overall movement of the spiral arms. We presented and compared the results of

both techniques, and come to the following conclusions.

(i) We find that the pitch angle measured both through the wave mode anal-



4.7. Conclusions 102

ysis and direct analysis is correlated with the rate of galactic shear: the

pitch angle is smaller for higher galactic shear rate and vice versa. This

is consistent qualitatively with the analytical predictions based on density

wave theory (Lin & Shu, 1964) and swing amplification theory in Julian &

Toomre (1966), which we demonstrate in N -body simulations for the first

time.

(ii) The direct pitch angles of the overall spiral arm density enhancement de-

crease with time, as the spiral arms grow from a relatively open arm mor-

phology, then wind over time to become more tightly wound until they

disrupt. This is consistent with previous simulations that reported winding

and co-rotating spiral arms (Wada et al., 2011; Baba et al., 2013, and §2,

3).

(iii) The range of the direct pitch angles resulting from the winding spiral arm

features is correlated with their shear rate: the direct pitch angle range

tends to be smaller for the system with higher galactic shear and vice versa.

The range of direct pitch angles at a given shear rate is similar to the scatter

seen from the observed relation between the pitch angle and the shear rate

in spiral galaxies reported in Seigar et al. (2006). This is consistent with

the view that real galaxies exhibit transient and winding spiral arms.

Our N -body simulations demonstrate the relation between the pitch angle

and the galactic shear rate. Although we explored several parameters, such as

disc-total mass ratio and simulation resolution, this area of study is far from

completion. We also used a fixed dark matter halo for simplicity, and left out

the gas component. In real galaxies, there are also constant minor mergers and

tidal interactions with satellite galaxies, which we have not explored. However, we

suggest that this study highlights the relation between pitch angle and the galactic

shear rate, and encourages further studies with more realistic and complicated

models. If this relation is a dominant mechanism to determine the pitch angle of

the spiral arms, because the late type spiral galaxies tend to have rising rotation

curves, this relation will become key to explain the correlation between the pitch

angle and the Hubble type (Hubble, 1926; Kennicutt, 1981).



Chapter 5

Orbits of radial migrators and

non-migrators around a spiral

arm in N -body simulations

This chapter is based on Grand et al. (2014).

5.1 Introduction

Radial migration produced from transient spiral arms has been highlighted in

many recent numerical studies (Roškar et al., 2008a; Minchev & Famaey, 2010;

Fujii et al., 2011; Minchev et al., 2011, 2012b; Fujii & Baba, 2012; Roškar et al.,

2012b; Solway et al., 2012, and §2, 3), although the precise mechanism of the

radial migration process is still debated, which stems mainly from uncertainties

in our understanding of the spiral arm nature. For example, Minchev & Quillen

(2006); Minchev & Famaey (2010); Comparetta & Quillen (2012); Chamandy

et al. (2014) explain the transient spiral arms as a superposition of multiple den-

sity wave mode patterns that span separate radial ranges that overlap. Because

inner patterns rotate faster than outer patterns, they are said to constructively

interfere periodically which causes the growth and decay of a spiral arm on the

timescale of an interference. On the other hand, other studies (e.g. §2, 3, Wada

et al., 2011; Fujii et al., 2011; Fujii & Baba, 2012) report the spiral arm to be

an amplified over-density whose rotation speed matches that of the disc material

103



5.1. Introduction 104

at all radii. Such spiral arms are naturally winding and transient as shown by

Wada et al. (2011) who reports transient spiral arms that exhibit a very smoothly

decreasing pattern speed as a function of radius. The co-rotating spiral arm is

supported by the studies presented in §2 and §4, who performed N -body simula-

tions of non-barred galaxies embedded in a static dark matter halo potential and

traced the spiral arm peak density directly from the density distribution. This is

further backed-up by Roca-Fàbrega et al. (2013), who performed high resolution

N -body simulations with a live dark matter halo.

The orbital evolution of particles that radially migrate has to date been dis-

cussed in few studies. Roškar et al. (2012b) explain that in a spiral disc of

multiple co-existing density wave patterns, radial migration occurs only at the

co-rotation radius of each pattern. From a sample of star particles chosen from

the top 10% of migrators, they interpret radial migration over a large radial range

as two successive discrete particle-pattern interactions, where a particle may be

transported from the co-rotation radius of one pattern close to the location of

the other pattern. In our previous work described in §2 and §3, we showed that

radial migration can occur continuously over a large radial range until the spiral

arm disappears. We examined individual N -body star particles and found that

the orbital eccentricity was largely conserved. Baba et al. (2013) study the orbit

evolution of star particles in their high resolution N -body simulation. However,

they focus on a random sample of star particles associated with the “non-steady”

spiral arms in order to link the formation and disruption of spiral arms to the

motions of its constituent stars, with less focus on radial migration.

In this chapter, we complement these studies and build upon our own work

by running a high resolution simulation of a galactic disc to explore in detail the

interaction of star particles with the spiral arm. In particular we focus on star

particles that show significant radial migration (migrators), and star particles

that show almost no migration (non-migrators) between the birth and death

of a spiral arm. We present detailed step-by-step evolution of each group of

particle, which reveals several types of migrators as well as non-migrators each

with different orbital characteristics, none of which (to our knowledge) have been

reported in literature (including our previous works described in §2 and §3).

Individual orbits are tracked extensively to cover the time before, during and

after a single spiral-particle interaction. Our spiral arm peak tracing method



5.2. Simulation 105

(§3) enables us to follow the evolution of the particle position with respect to

the spiral arm, which is a quantity currently unexplored in the literature. This

is an important diagnostic that allows us to identify and explain the properties

of the migrating/non-migrating star particles in our Milky Way sized simulation.

Therefore, these types of orbits may be observable for the Galaxy in Galactic

surveys such as RAVE (e.g. Steinmetz et al., 2006; Pasetto et al., 2012b,c; Siebert

et al., 2012; Williams et al., 2013), Gaia (e.g. Lindegren et al., 2008), Gaia-ESO

(Gilmore et al., 2012), APOGEE (e.g. Allende Prieto et al., 2008; Bovy et al.,

2012), SEGUE (e.g. Yanny et al., 2009; Lee et al., 2011), LAMOST (e.g. Chen

et al., 2012) and 4MOST (de Jong, 2012).

The main results of this study come from the detailed analysis of many indi-

vidual star particle orbits, hence for brevity we show the results from one high

resolution simulation. However we briefly discuss the applicability of these re-

sults to other simulations of different spiral structure, and discuss the effects of

radial migration on the global properties, such as the metallicity and angular

momentum distribution.

This chapter is organised as follows. In §5.2, the simulation is described.

In §5.3, the method of particle selection is described. In §5.4, we analyse the

group evolution of the samples in various phase space projections and describe

overall macroscopic behaviour. We then examine the orbits of individual particles

and categorise several types of migrators and non-migrators in §5.5. The orbital

characteristics of each type reveal determining factors, which when combined

together distinguish the migrators from the non-migrators. In §5.6, we discuss

the applicability of the results to other simulations, and briefly show the evolution

of the global mass and metallicity distributions as a consequence of the radial

migration. In §5.7, we summarise our conclusions.

5.2 Simulation

The simulation in this chapter is performed with a Tree N -body code (Kawata

& Gibson, 2003; Kawata et al., 2013b), and simulates a galaxy comprised of a

spherical static dark matter halo and a live stellar disc only.

A live dark matter halo can respond to the self-gravitating stellar disc by

exchanging angular momentum. This is prominent on long timescales for long-
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lived non-axisymmetric structures such as a bar (Debattista & Sellwood, 2000;

Athanassoula, 2002, 2012). However, the effect of the live dark matter halo is

expected to be small for transient spiral arms, which justifies the use of a static

dark matter halo for our investigation. Furthermore, for practical reasons a live

dark matter halo is often modelled with particles more massive than disc particles,

which may introduce some scattering and heating that depends on the scale of

the mass difference between the particle species. Therefore, in the interest of

computational speed and a more controlled experiment, we use a static dark

matter halo.

The density profile of the dark matter halo and stellar disc are set up following

the method outlined in §3.2 with the same cosmological parameters. The concen-

tration parameter and virial mass of the dark matter halo are c = r200/rs = 20

and M200 = 1.5 × 1012 M�. The disc scale length, scale height and mass are

Rd,∗ = 3.5 kpc, zd,∗ = 350 pc and Md,∗ = 5× 1010 M� respectively.

The simulation presented in this chapter hasN = 1×107 particles in the stellar

disc, so that each star particle is 5000 M�. This is sufficient to minimise numerical

heating from Poisson noise (Fujii et al., 2011; Sellwood, 2013). We apply a fixed

softening length of 160 pc (Plummer equivalent softening length of 53 pc) for

star particles with the spline softening suggested by Price & Monaghan (2007).

We denote this simulated galaxy S2, to distinguish it from the other simulations

presented in this thesis.

5.3 Particle selection of strong migrators and

non-migrators

In this study, we focus on single spiral arm-star particle interactions on the

timescale of the spiral arm lifetime, which we find to be ∼ 100 Myr. We scrutinize

the evolution of a sample of star particles in order to obtain detailed information

on these interactions.

The first step is to identify coherent spiral arms for which we can reliably trace

the spiral arm peak position. A reliable trace is defined as a radial range for which

each radial point shows a smooth single density peak in azimuth. A snapshot in

which the spiral arm exhibits a double peak structure anywhere within the defined

radial range for tracing is rejected (see §3.3.1 and §4.3.2). Double peak features
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Figure 5.1: The face-on density snapshots showing the sequence of the traceable spi-
ral arm. The white line indicates the traced spiral arm of interest. The spiral peak
position for R = 7, 8 and 9 kpc radii at the t = 2.0 Gyr snapshot are rotated with
the corresponding mean rotational velocity and marked as anchors (white crosses) on
the t = 1.952, 2.032 and 2.048 Gyr snapshots, to guide the eye to the forming and
disrupting stages of the spiral arm respectively.
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are usually associated with the formation and destruction stages of spiral arm

evolution, and are not suitable for an unambiguous trace. Fig. 5.1 shows the

face-on density snapshots of our selected spiral arm. There is a time window over

which the spiral arm can be reliably traced, and a wider time window which will

be used to examine the prior and subsequent star particle behaviour. We could

trace the spiral arm reliably at the radii between 6 and 10 kpc in the traceable

time window spanning t = 1.968 to 2.024 Gyr (highlighted with the white line in

Fig. 5.1). Outside of this time window, we extrapolate the spiral arm position by

rotating the R = 7, 8 and 9 kpc peak positions of the t = 2.0 Gyr snapshot with

the mean rotation velocity (anchors marked with white crosses) to guide the eye

to the spiral arm when it forms and disrupts. The pattern speed is calculated

by simple subtraction of the peak line between snapshots. Fig. 5.2 shows the

radial profile of the time-averaged pattern speed (dashed red line) and the mean

angular rotational velocity of the disc (solid black line). Fig. 5.2 confirms that

the spiral arm is co-rotating with the rotational velocity of the disc (as shown

in §2 and Roca-Fàbrega et al., 2013). For the rest of the analysis, we focus on

particle interactions with this spiral arm.

We choose a snapshot at a time when the spiral arm is fully formed and adopt

t = 2.0 Gyr (Fig. 5.1) as the time of particle selection. From the traced spiral

arm at this time, we define a region within a range of 4 kpc either side of the

density peak of the spiral arm in the azimuthal direction. The region is bounded

by a radial range of 6 - 10 kpc and a vertical height of |z| < 0.1 kpc. The sample

is constituted of particles found inside this spatially defined region at t = 2.0

Gyr. This probes a wide range in radius and azimuthal position with respect to

the spiral arm, and restricts the majority of particles to be in the plane of the

disc because more migration takes place in the plane of the disc. Note that over

time, the vertical oscillations cause some particles to move to heights that exceed

the selection cut of |z| < 0.1 kpc. We found that about 15% of the star particles

selected reach zmax > 0.35 kpc (one initial galactic scale height). However, we

find that there is no significant difference between the trends discussed in this

chapter for particles of different maximum heights.

The time at which the star particles are selected is defined as the central

time-step, Tc = 2 Gyr, and a time window is then defined as ∆T = Tfin − Tini,
where Tini = Tc − 48 Myr and Tfin = Tc + 48 Myr. This time window spans the
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Figure 5.2: The pattern speed (red dashed line) of the traced spiral arm highlighted
above. The mean angular rotation speed of the stellar disc is also plotted (solid black
line). The pattern speed matches the angular speed of the disc material well.

∼ 100 Myr lifetime of the spiral arm. Note that this time window is longer than

the time window for which we could trace the spiral arm. However, as seen in

Fig. 5.1, the spiral arm begins to form at around t = 1.952 Gyr and disrupts

at around t = 2.048 Gyr. The motion of nearby star particles can be affected

at these times. In fact, we will demonstrate in §5.4 that the motion of some

star particles can be affected as early as t ∼ 1.9 Gyr and last until t ∼ 2.2 Gyr.

Hence this time window is set by convenience and not a strict definition of the

formation and destruction time. The star particle sample is then plotted in the

Lz,ini−∆Lz plane, where Lz,ini is the z−component of angular momentum of the

star particles at the beginning of the time window, Tini, and ∆Lz is the change

in angular momentum from the initial time, Tini, to the final time, Tfin. This is

plotted in Fig. 5.3. From Fig. 5.3, we see that there is a wide range of initial

angular momentum values over which the angular momentum i.e. the guiding

centre, is changed, which is consistent with our previous studies described in §2
and §3.

From the star particle distribution in Fig. 5.3, we select a sample in the

range 1.86 × 103 < Lz,ini < 1.97 × 103 kpc km s−1 (particle samples at other

Lz,ini exhibit similar behaviour, so we focus on one sample), which corresponds
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Figure 5.3: The change in angular momentum of the sample of particles over the time
window Tfin − Tini, as a function of their initial angular momentum. Over-plotted are
the strong positive migrators (blue symbols), strong negative migrators (pink symbols)
and non-migrator particles (black symbols) selected. The units are kpc km s−1.

to a guiding centre radius of about 8 kpc. The sample is further cut into sub-

groups: strong migrators (both negative and positive) and non-migrators. The

strong positive (negative) migrators consist of those particles that have the largest

positive (negative) ∆Lz, and the non-migrators are those that have the lowest

changes in angular momentum. These star particles are selected such that there

are ∼ 200− 300 particles in each star particle group, and are highlighted in Fig.

5.3.

5.4 Evolution of sample in phase space

We plot each particle in the sample in various projections in phase space, and

highlight the positive migrator (blue points), negative migrator (red points) and

non-migrator (black points) groups in Fig. 5.4. Each column corresponds to a

different time: the left column shows the sample at the earliest time that the

spiral arm could be reliably traced (following criteria described in §3), the middle

column is the time of selection, Tc, and the right column is the latest time that

the spiral arm could be reliably traced.

The top row of Fig. 5.4 shows the sample plotted in the radial velocity,

vR - azimuthal velocity, vθ, plane. Positive radial velocity, vR > 0, is in the
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Figure 5.4: Top row: The negative migrators (red), positive migrators (blue) and non-
migrators (black) of the sample in vθ − vR space. Middle row: Shows the azimuthal
distance between the star particles and the spiral arm peak position, R∆θ, as a function
of azimuthal velocity, vθ. Bottom row: Plots the radius of the same star particles with
vθ. Each column shows these projections at three time epochs, increasing from left to
right. The circular velocity at the 8 kpc radius, vc = 243.5 km s−1, is marked in each
panel by the vertical dashed green line.
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Figure 5.5: Time sequence of a close up of the density map in the R − θfs plane.
The rotation is from right to left in a rotating frame that co-rotates with the circular
velocity at R = 8 kpc. Positive migrators are always to the right of the spiral arm,
and negative migrators are to the left. The radial velocity direction is indicated by the
blue and pink coloured symbols, which represent outward and inward moving radial
velocities respectively. The white line (present in some panels) highlights the peak
position of spiral arm at each radius.
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Figure 5.6: The same as Fig. 5.5 but showing non-migrator particles. The white line
indicates the spiral arm peak position.
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direction away from the galactic centre. The circular velocity at R = 8 kpc is

vc(R = 8) = 243.5 km s−1, which is marked by the dashed green lines in Fig. 5.4.

The positive and negative migrators appear to occupy separate regions of velocity

space, whereas the non-migrators (black diamonds) are more evenly distributed

and overlap the migrator groups. The positive migrators have outward facing

velocities (vR > 0) during their outward migration. It is interesting to see that

their azimuthal velocity tends to be slower than the circular velocity at R = 8 kpc.

The opposite is applied to the negative migrators, which move inward (vR < 0)

and rotate faster than the circular velocity at R = 8 kpc.

The azimuthal distance of a star particle with respect to the spiral arm, R∆θ,

is defined as the length of an arc that joins the star particle azimuth position to the

spiral arm peak azimuth position at that radius. The second row of Fig. 5.4 shows

this quantity as a function of azimuthal velocity for the sample. In this plane,

each group of particles (including non-migrators) is very clearly separated. The

positive migrators always stay behind the spiral arm (R∆θ < 0), and the negative

migrators always stay in front of the spiral arm (R∆θ > 0), throughout the

traceable spiral arm lifetime. The non-migrators are clustered around the spiral

arm. At the t = 1.968 Gyr (left panel), the arrangement of each particle group

is highly ordered. The non-migrator group in particular is spread over a large

range of azimuthal velocity, which appears tightly correlated with the azimuthal

distance between star particle and spiral arm. For example, at t = 1.968 Gyr,

at vθ = 220 km s−1 the positive migrators have a negative R∆θ, i.e. they are

behind the spiral arm, while the non-migrators have a positive R∆θ, i.e. they

are in the front of the spiral arm. Conversely, at vθ ∼ 265 km s−1, the negative

migrators have a positive R∆θ, i.e. they are in the front of the spiral arm, while

the non-migrators have a negative R∆θ, i.e. they are behind the spiral arm. In

§5.5.3, we demonstrate that non-migrators must pass or be passed by the spiral

arm at some point during the spiral arm lifetime. Roughly speaking, the star

particle will cross the spiral arm if: |R∆θ| < |
∫ t1
t0
vθ,subdt|, where t1 − t0 < ∆T ,

and vθ,sub = vθ − vc, where vθ is the azimuthal velocity of the star particle and

vc is the circular velocity at the particle radius. Although these star particles

were selected at t = 2.0 Gyr, their distribution in phase space is more ordered at

t = 1.968 Gyr. This indicates that the R∆θ − vθ phase space can be diagnostic

at the early stages of spiral arm formation (middle-left panel of Fig. 5.4) in pre-
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determining whether a star particle will be a migrator or a non-migrator. At later

times, the groups become less clearly separated, but still maintain the trend.

The bottom row of Fig. 5.4 shows the sample in the R−vθ plane. At t = 1.968

Gyr (left panel), migrator and non-migrator particle groups occupy the same

region of this space, and become more separated at the later times (middle and

right panels of Fig. 5.4) owing to the migration taking place. The distribution of

non-migrators in this plane highlights the epicyclic motion of the star particles.

Star particles that are at a radius greater than the guiding centre of the sample,

R > Rg ∼ 8 kpc, possess azimuthal velocities lower than the circular velocity at

the guiding centre, vθ < vc(Rg), whereas star particles at a radius smaller than

the guiding centre possess azimuthal velocities larger than the circular velocity

at the guiding centre. Positive migrators obviously move toward larger radii, and

are outside of their guiding centre owing to their relatively low rotation velocity

with respect to the circular velocity at that radius. In other words, the positive

migrators are always close to the apocentre phase during their migration, and the

negative migrators are always close to the pericentre phase.

Fig. 5.5 shows the evolution of both positive migrators and negative migrators

plotted on the face-on density maps of the disc in the R−θfs plane. The evolution

is shown in a rotating frame that co-rotates with the circular velocity at R = 8

kpc. The θ coordinate of all star particles has been subtracted by an amount

corresponding to the rotating frame such that the spiral arm and sample particles

remain within the 120-280 degree azimuth window i.e. θfs = θtrue−Ωfr∆t, where

∆t = Tini− t. Here Ωfr is the angular rotation speed of the frame. The direction

of motion is from right to left. Each migrator particle is coloured blue (pink) to

indicate the outward, vR > 0 (inward, vR < 0) direction of the radial velocity

vector, in order to indicate the epicycle phase i.e. vR > 0 means that the star

particle is moving from pericentre to apocentre, while vR < 0 indicates that

the star particle is moving from apocentre to pericentre. Both groups exhibit a

range of radial velocities at each snapshot, which indicates there is some spread

in the epicycle phase within the groups. For the positive migrators, particles

closer to the spiral arm at t = 1.992 - 2.024 Gyr have positive radial velocities

(approaching apocentre) and particles further from the spiral arm have negative

radial velocities (moving away from apocentre). The opposite trend is seen in the

negative migrator group. Despite the different epicycle phases of these migrator
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groups, all star particles in the positive and negative migrator groups radially

migrate eventually, as we show below.

Fig. 5.6 shows the evolution of the non-migrators in the R−θfs density plane

in the rotating frame described above for Fig. 5.5. The symbols are coloured

blue and pink corresponding to inward and outward radial velocity unit vectors

respectively. Most of the non-migrators are clustered close around the spiral arm

(peak position marked in white), and appear spatially separated according to

the direction of radial motion. For example, at t = 1.992 and 2.008 Gyr, most

star particles behind (in front of) the spiral arm are moving towards pericentre

(apocentre). This is a clear contrast from the migrators. At t = 1.976 Gyr,

the positive migrators behind the spiral arm are moving toward apocentre, i.e.

outward, while the negative migrators in the front of the spiral arm are moving

toward pericentre, i.e. inward.

5.5 Individual particle orbits

In this section, we analyse the orbits of the positive, negative and non-migrator

particles of the sample individually. We took ∼ 100 random samples of each

star particle group, and followed the evolution of each orbit individually. We

scrutinised the orbits over the course of the particle-spiral arm interaction, and

categorise several types of migrators and non-migrators. Below we show an exam-

ple of each type and outline their defining features. We refer to positive migrators

with a suffix ‘g’ because they gain angular momentum, negative migrators with

a suffix ‘l’ because they lose angular momentum and non-migrators with a suffix

‘n’. In Table. 5.1, we list the orbital properties of each orbital type mentioned

below.

5.5.1 Orbits of positive migrators

Fig. 5.7 shows an example of three different types of positive migrator. In the

left panels, we show a selection of snapshots from the time sequence evolution

of these particles in the same rotating frame adopted in Fig. 5.5. The symbol

in each snapshot indicates the position of the particle at the time given in the

bottom-right corner of the panel, and the lines show the history of the orbit in

the co-rotating frame. Because the spiral arm rotates with the mean rotational
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Figure 5.7: The evolution of three types of positive migrator. Left panels: The time
evolution of the particles in the close up R− θfs density map in a rotating frame equal
to the circular velocity at R = 8 kpc. Rotation is from right to left. The symbols
depict the current position of each star particle, and the lines show the history of each
star particle orbit relative to the spiral arm (see text for more details). Top-right panel:
The evolution of the angular momentum of the star particles. Second-right panel : The
evolution of the tangential force per unit mass, Fθ, acting upon the star particles.
Third-right panel : The radial evolution of the star particles. Bottom-right panel : The
azimuthal angle of the star particles in the rotating frame of the left panels, θfs, (lines)
and spiral arm azimuthal angle at the particle radius (symbols). The latter can only
be calculated in the traceable spiral arm time window defined in §5.3. In all right-hand
panels, the time at which each particle first feels the tangential force is indicated by a
vertical line of corresponding line style.
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velocity (Fig. 5.2), the spiral arm in the left panels of Fig. 5.7 moves relative

to the rotating frame in time: for R < 8 kpc, the spiral arm moves to lower

θfs, whereas for R > 8 kpc the spiral arm moves to higher θfs. We remove

the relative motion between the spiral arm and star particle orbit histories by

making a further adjustment to the orbit history. We calculate the difference

between the velocity of the rotating frame and the circular velocity at the radius

of the line point. At each subsequent time-step after the line point appears the

position of the line point is shifted by the amount corresponding to this velocity

difference. The purpose of this adjustment is to give an idea of where the past

particle positions were relative to the spiral arm at previous times, although it is

not exact because it is impossible to place the past orbit around the dynamically

changing spiral arm.

The 1st- and 2nd-right panels of Fig. 5.7 shows the evolution of particle

angular momentum, Lz, and the tangential force per unit mass, Fθ, where the

positive direction is opposite to the direction of rotation, i.e. from left to right in

the left panels of Fig. 5.7. Blue solid, black dashed and green dot-dashed lines

correspond to the blue, black and green lines in the left panels of Fig. 5.7.

We define radial migration to be a change in angular momentum over time,

such as the change seen in the top-right panel of Fig. 5.7, e.g. the black dashed

line from t ∼ 1.89 to 2.08 Gyr when Lz increases. Note that the tangential force

is always negative during the increase in Lz. The magnitude of the tangential

force indicates the rate of change of angular momentum, which allows us to see

more clearly when and where the star particles migrate in the left panels of Fig.

5.7. The third-right and bottom-right panels of Fig. 5.7 show the evolution of

the particle radius, R, and azimuth angle in the rotating frame, θfs, respectively.

In the bottom panel, the blue star, black triangle and green square indicate the

azimuth angle of the spiral arm that we identified in Fig. 5.1 at the star particle

radius at the corresponding time. Note that we could trace the spiral arm for only

part of the period when the spiral arm is clearly seen. However, this demonstrates

that the spiral arm affects the orbit of the star particles well before the arm is

clearly seen and even after it begins to disrupt. At least in this short period

when we can clearly trace the spiral arm, we can show the particle position with

respect to the spiral arm as seen in the bottom panel of Fig. 5.7. The evolution

of each quantity shown in the right panels of Fig. 5.7 will determine the type of
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each positive migrator.

5.5.1.1 Type 1g positive migrator

The first type (Type 1g) of positive migrator (blue star and solid blue line in the

left panels and blue solid line in the right panels of Fig. 5.7) is quite close to the

spiral arm when it begins to feel a negative tangential force at around t ∼ 1.9 Gyr

(2nd-right panel of Fig. 5.7). The top left panel of Fig. 5.7 shows that the spiral

arm begins to build up at t ∼ 1.9 Gyr. It appears that the density enhancements

around θfs = 180 and θfs = 220 at R ∼ 8 kpc at t = 1.912 Gyr merge and form

the single spiral arm around t ∼ 1.976 Gyr. At t = 1.912 Gyr the blue star is

located behind the density enhancement at θfs = 220, and therefore the direction

of tangential force is negative (Fθ < 0) and the star particle is accelerated.

At t ∼ 1.9 Gyr, the particle is approaching the apocentre phase of orbit

(3rd-right panel of Fig. 5.7). However, as a result of strong negative tangential

force at this phase (2nd-right panel of Fig. 5.7), the radius of the star particle

does not decrease again according to normal epicycle motion. This is because of

the competition between mainly the radial gravitational force and the increase

in centrifugal force caused by the gain in angular momentum. In this case, the

radial force is balanced by the increased centrifugal force. As a result, the star

particle pauses at a radius of R ∼ 7.9 kpc for ∼ 20− 30 Myr at around t ∼ 1.94

Gyr, then increases again once the angular momentum has increased such that

the centrifugal force is large enough to overcome the radial gravitational force.

Note that irrespective of the evolution of radius, the increase in angular mo-

mentum is sustained as the particle continues to be accelerated by the nega-

tive tangential force, because the particle is always behind the spiral arm. The

bottom-right panel of Fig. 5.7 shows that the azimuth angle of the particle is

always larger than that of the spiral arm (star particle is behind the spiral arm)

during the epoch at which the spiral arm is clearly traced. The strong migrators

are able to stay on one side of the spiral arm, because the spiral arm co-rotates

with the disc material (§2). As a result, positive migrators maintain their posi-

tion behind the spiral arm and continue to be accelerated and migrate along the

spiral arm. At around t ∼ 2.08 Gyr when the spiral arm is disrupted, the particle

stops gaining angular momentum and the star particle resumes epicycle motion.
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5.5.1.2 Type 2g positive migrator

The second type (Type 2g) of positive migrator (black triangle and solid black

line in the left panels and black dashed line in the right panels of Fig. 5.7) begins

to feel a negative tangential force at about the same time as the Type 1g positive

migrator mentioned above (t ∼ 1.89 Gyr), and is accelerated. Again, there is

a competition between the radial gravitational force and the increase in angular

momentum. However, at this time the particle has just passed the apocentre

phase of the epicycle motion (3rd-right panel of Fig. 5.7) when the angular

momentum begins to increase. Therefore, the star particle begins to move inward

for a while, until the angular momentum increases sufficiently to overcome the

gravitational force. As a result, the amplitude of the epicycle motion is shortened.

This shortening in amplitude is shown by the changed pericentre radii between

t ∼ 1.83 and 1.93 Gyr in the 3rd-right panel of Fig. 5.7. The pericentre radius is

larger at the later time owing to the increase in guiding centre. Note that although

the radial evolution of the orbit looks different to that of the Type 1g positive

migrator shown above, the angular momentum steadily increases irrespective of

their radial evolution because the star particle is always located behind the spiral

arm and accelerated (bottom-right panel of Fig. 5.7).

This is the most common type of positive migrator in this sample. The short-

ened epicycle motion present in the radial evolution of the Type 2g positive

migrator is also reported in Roškar et al. (2012b). The strongest migrators in

their simulation are shown to exhibit several shortened epicycle motions, which

they interpret as effects of co-rotation resonances of two spiral waves: one inner,

faster rotating spiral pattern and one outer, slower rotating spiral pattern. For

example, in the top panels of Fig. 11 of Roškar et al. (2012b), the orbit of the mi-

grator shows ∼ 6 epicycle motions from t ∼ 5.4 to 5.9 Gyr. In our study, we focus

on 1-2 epicycle periods which corresponds to the lifetime of the spiral arm in our

simulation. The Type 2g migrator demonstrates that during the shortened epicy-

cle motion the guiding centre of the star particle continuously increases owing to

the angular momentum increase at every radius. Therefore, we think that it is

difficult to attribute 6 shortened epicycle motions seen in Roškar et al. (2012b)

to only two co-rotation resonances. Instead, we think that the spiral arm feature

co-rotates with the disc material at every radius (§2), and induces a continuous

gain in angular momentum of migrators as long as the feature persists. We sus-
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Figure 5.8: The same as Fig. 5.7 but for types of negative migrator.

pect that their spiral arm is short-lived, and that the 6 epicycle motions seen over

∼ 0.5 Gyr are affected by several transient spiral arm features that co-rotate and

accelerate star particles behind the spiral arm at all radii.

5.5.1.3 Type 3g positive migrators

The third type (Type 3g) of positive migrator (green square and green solid line in

the left panels and green dot-dashed line in the right panels of Fig. 5.7) originates

much farther from the spiral arm as it begins to build up at around t ∼ 1.9 Gyr

(top-left panel of Fig. 5.7), and consequently begins to feel a negative tangential

force at the later time of t ∼ 1.93 Gyr with respect to Types 1g and 2g. At this

time, the star particle approaches the pericentre phase of the epicycle (3rd-right

panel of Fig. 5.7), and therefore it moves closer to the spiral arm at t ∼ 1.976
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Gyr in the left panels and bottom-right panel of Fig. 5.7. In this case, both

the outward epicycle motion and the angular momentum increase facilitate the

outward motion of the star particle. As a result, the particle radius increases very

rapidly (third-right panel of Fig. 5.7).

Note that the star particle reaches the apocentre at t ∼ 2.02 Gyr, well before

the angular momentum gain ends at t ∼ 2.06 Gyr. This means that around

t ∼ 2.02 Gyr, the radial gravitational force becomes greater than the enhanced

centrifugal force provided by the boost in angular momentum. The radial evo-

lution of the star particle then proceeds inwards while the particle continues to

gain angular momentum until epicycle motion resumes at t ∼ 2.06 Gyr.

5.5.2 Orbits of negative migrators

Fig. 5.8 shows the evolution of an example of each type of negative migrator

found in the particle sample. Each panel is the same as in Fig. 5.7.

5.5.2.1 Type 1l negative migrator

The first type (Type 1l) of negative migrator (blue star and solid blue line in the

left panels and blue solid line in the right panels of Fig. 5.8) is the counterpart of

the Type 1g positive migrator shown in Fig. 5.7. The 2nd-right panel of Fig. 5.8

shows that the star particle begins to feel a positive tangential force at a time of

around t ∼ 1.91 Gyr, when the particle is moving towards the pericentre phase

of orbit (3rd-right and 1st-left panel of Fig. 5.8). As the spiral arm grows in

density, e.g. t = 1.944 and 1.976 Gyr (2nd- and 3rd-left panels of Fig. 5.8), the

star particle continues to feel a strong positive tangential force accompanied by a

steep negative slope in the angular momentum evolution (1st-right panel of Fig.

5.8). At t ∼ 1.98 Gyr, the radial gravitational force and centrifugal force are

temporarily balanced and the star particle stays at R ∼ 7.2 kpc for ∼ 30 − 40

Myr - a similar radial pause to that of the Type 1g migrator described in the

previous section. At t ∼ 2.02 Gyr, the radial gravitational force plus the loss in

angular momentum overcome the centrifugal force, hence the star particle moves

radially inward again. As the spiral arm begins to fade at around t ∼ 2.06 Gyr,

the tangential force diminishes, and the star particle resumes normal epicycle

motion. Again, the star particle has remained in front of the spiral arm and

continually migrated along the spiral arm.
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5.5.2.2 Type 3l negative migrator

The other example star particle shown in Fig. 5.8 is the negative migrator coun-

terpart of the Type 3g positive migrator, and therefore we designate it as Type

3l (black triangle and black solid line in the left panels and black dashed line

in the right panels of Fig. 5.8). This star particle originates farther from the

spiral arm than Type 1l as the spiral arm begins to build up at t = 1.912 Gyr

(top-left panel of Fig. 5.8). Therefore, the star particle begins to feel the positive

tangential force (deceleration) at a time of t ∼ 1.93 Gyr, which is later than the

time at which the Type 1l negative migrator begins to lose angular momentum

(2nd-left and 2nd-right panels of Fig. 5.8). At this time, the star particle is close

to the apocentre phase of orbit (3rd-right panel of Fig. 5.8), and consequently

moves closer to the spiral arm at t ∼ 1.976 Gyr (3rd-left panel of Fig. 5.8).

Similar to the Type 3g positive migrator, the inward direction of the angular mo-

mentum change and epicycle motion means that the star particle moves rapidly

towards the centre of the galaxy (left panels of Fig. 5.8). Again, the star particle

reaches the pericentre at t ∼ 2.01 Gyr, before the angular momentum loss has

ceased. This means that the centrifugal force becomes greater than the radial

gravitational potential even though the star particle continues to lose angular

momentum. The tangential force diminishes at t ∼ 2.07 Gyr, when the particle

resumes epicycle motion.

5.5.2.3 No Type 2l negative migrator

We could not find a negative migrator counterpart to the Type 2g positive mi-

grator. This may be attributed to the presence of another spiral arm e.g. the one

seen on the front side of the main spiral arm at around (R kpc, θfs) = (8, 130)

at 1.976 Gyr (3rd-left panel of Fig. 5.8) relative to the main spiral arm on which

we focus (R, θfs)= (8, 185). This is closer than the spiral arm behind the main

spiral arm at (R, θfs) = (8, 265). The closer proximity to the main spiral of the

density enhancement on the front-side of the spiral arm in comparison to the

density enhancement on the back-side of the spiral may cause the motions of

star particles in front of the spiral to be more influenced by neighbouring density

enhancements than those behind the main spiral arm.

To mirror the Type 2g positive migrator, the Type 2l negative migrators would

have begun to lose angular momentum just after they passed pericentre. In this
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Figure 5.9: The same as Fig. 5.7 but for types of non-migrator.

epicycle phase, the Type 2l star particle would temporarily move away from the

spiral arm (because it has a higher rotation velocity in this phase than the spiral

arm), and it is possible that the over-density in front of the spiral arm “mopped

up” these star particles, which would either reduce or change sign of the positive

tangential force acting upon the star particle. This would mean that these star

particles gained some angular momentum from this over-density during the time

window examined. Therefore, these star particles would not be strong migrators,

because they would populate a region of lower |∆Lz| in Fig. 5.3. In this case,

they will not be selected in our strong migrator sample.
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5.5.3 Orbits of non-migrators

In this section, we analyse the orbital evolution of those star particles that expe-

rience very little or no net change in angular momentum over the time window

(non-migrators). Fig. 5.9 shows an example of each of the three types of non-

migrator in the sample.

5.5.3.1 Type 1n non-migrator

The first type of non-migrator (Type 1n, represented by the blue star and solid

blue line in the left panels and the solid blue line in the right panels of Fig. 5.9),

is very close to where the spiral arm begins to build up at t ∼ 1.912 Gyr (1st-

left panel of Fig. 5.9), and it begins to feel a negative tangential force early at

t ∼ 1.86 Gyr (2nd-right panel of Fig. 5.9). At t = 1.944 Gyr (2nd-left panel

Fig. 5.9), the star particle is located in between the main spiral arm at (R, θfs)

= (8, 185) and the weaker spiral arm behind it at (R, θfs) = (8, 205) - in contrast

to the positive migrators which were behind both density enhancements at this

time. The star particle moves towards pericentre (3rd-right panel of Fig. 5.9),

while it gains angular momentum (top-right panel of Fig. 5.9). Because the star

particle is around pericentre and located close behind the arm (3rd-left panel

of Fig. 5.9), the star particle moves towards the spiral arm until t ∼ 1.99 Gyr

when it passes the spiral arm, as seen in the bottom-right panel and the 3rd- and

4th-left panels of Fig. 5.9. The particle is now located on the front side of the

spiral and as a result the tangential force acting upon the star particle has become

positive, which causes the star particle to begin to lose angular momentum. The

star particle then resumes epicycle motion as the spiral arm fades at t ∼ 2.05

Gyr.

The general properties of these non-migrators is that they originate very close

to the spiral arm, and orbit the spiral arm until it disappears, continually gain-

ing and losing angular momentum such that the net angular momentum gain is

∆Lz ∼ 0, at the end of the time window. It is worth noting that when the star

particle is circling around the spiral arm, the amplitude of the epicycle motion

is smaller. This is because the tangential force from the spiral arm acts always

to change the guiding centre in the direction opposite to that of epicycle mo-

tion. Therefore, as the star particle moves towards pericentre, it is accelerated

(Fθ < 0), which increases the guiding centre and in turn increases the pericentre
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radius. For example, the pericentre radius is larger at t ∼ 1.96 Gyr than at

t = 1.84 Gyr, and at t ∼ 2.09 Gyr the pericentre is returned to that at t ∼ 1.84

Gyr. This indicates the amplitude of the epicycle motion is shortened, because

the tangential force from the spiral arm acts against the epicycle motion. The

Type 1n orbit is found to originate also in front of the spiral arm when it first

feels the tangential force.

5.5.3.2 Type 2n non-migrator

The second type (Type 2n) of non-migrator (black triangle and solid black line in

left panels and dashed black line in right panels of Fig. 5.9) is located in front of

the spiral arm as it forms at t ∼ 1.944 Gyr (1st- and 2nd-left panels of Fig. 5.9).

It begins to feel a positive tangential force and migrates inward at t ∼ 1.91 Gyr.

This occurs just before the star particle reaches the apocentre of the orbit, and

at t ∼ 1.95 − 1.97 Gyr the loss of angular momentum and the inward epicycle

motion (1st- and 3rd-right panels of Fig. 5.9) cause the radius of the star particle

to decrease rapidly in a manner similar to Type 3l negative migrator. This causes

a decrease in pericentre radius (see the radius at t ∼ 1.87 and t ∼ 2.0 Gyr in

3rd-right panel of Fig. 5.9). However, unlike the Type 3l negative migrator, this

non-migrator is too close to the spiral arm when it reaches apocentre at t = 1.94

Gyr and as a result is passed by the spiral arm at t ∼ 1.98 Gyr (bottom-right

panel of Fig. 5.9). This causes the change of tangential force from positive

to negative, and the star particle then gains back the angular momentum lost

previously (top-right panel of Fig. 5.9). This once again ensures that this non-

migrator has a net angular momentum change of ∆Lz ∼ 0 at the end of the time

window.

The difference in radial evolution between this Type 2n and the Type 1n

non-migrators is that the Type 2n non-migrator shows an increase in epicycle

amplitude because the pericentre at t ∼ 2.0 Gyr is lower with respect to the

earlier time, t ∼ 1.86 Gyr, i.e. the amplitude of epicycle motion is increased

instead of decreased as in the case of the Type 1n non-migrator.

It is interesting to note that this type of non-migrator is not found to originate

from behind the spiral arm. This may be related to the differences between

the front- and back-side of the spiral arm as discussed in §5.5.2.3. In addition,

as discussed in §5.5.1.1 and §5.5.3.1, there is a small density enhancement that
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Name tcapture
(Gyr)

Initial position Initial phase epicycle
amplitude

Remain
on same
side

1g 1.90 behind arm before apocentre none yes
2g 1.89 behind arm apocentre shortened yes
3g 1.93 behind arm pericentre lengthened yes
1l 1.91 in front of arm before pericentre none yes
3l 1.93 in front of arm apocentre lengthened yes
1n 1.86 close behind (in

front of) arm
pericentre
(apocentre)

shortened no

2n 1.91 in front of arm apocentre lengthened no
3n 1.88 very close be-

hind (in front of)
arm

apocentre (peri-
centre)

shortened no

Table 5.1: Summary of orbital characteristics for each orbital type. Columns show
1) orbital type name 2) the time at which the particle first feels the tangential force,
tcapture (measured by eye to provide an indication) 3) initial particle position with
respect to the spiral arm at tcapture 4) the epicycle phase of the particle at tcapture 5)
the effect on their epicycle amplitude 6) whether or not they remain on the same side
of the spiral throughout the spiral lifetime.

merges with the back-side of the spiral arm at t ∼ 1.976 Gyr. Therefore the back-

side of the spiral arm seems to build up later than the front-side, and this likely

causes the difference in the variety in the orbits of star particles that originate

from the front- and back-side of the spiral arm.

5.5.3.3 Type 3n non-migrator

The third type (Type 3n) of non-migrator particle found in this sample (the

green square and solid green line in left panels and green dot-dashed line in the

right panels of Fig. 5.9) begins to feel a negative tangential force at t ∼ 1.88

Gyr (2nd-right panel of Fig. 5.9) just as it reaches the apocentre of the orbit at

t ∼ 1.912 Gyr (top-left and third-right panels of Fig. 5.9). This is accompanied

by an increase in angular momentum (top-right panel of Fig. 5.9) from about

t ∼ 1.88− 1.99 Gyr. During this time, the radius of the star particle proceeds to

apocentre and exhibits a small dip in radius at t ∼ 1.96 Gyr (3rd-right panel of

Fig. 5.9). This is obviously the feature of an increased pericentre radius owing to

the imbalance between the radial gravitational force and centrifugal force boosted
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by a gain in angular momentum. The pericentre-like feature is also seen in the

bottom-right panel of Fig. 5.9, which shows a decreasing θfs of the star particle

(line) that brings the star particle closer to the spiral arm in azimuth angle (square

symbols) at t ∼ 1.96 Gyr.

At t ∼ 1.99 Gyr, the star particle passes the spiral arm and begins to lose

angular momentum (right panels in Fig. 5.9). Up to t ∼ 1.99 Gyr, this non-

migrator exhibited similar evolution to Type 1g positive migrators, but it differed

after this time by crossing the spiral arm instead of remaining behind it. This is

entirely because this non-migrator is too close to the spiral arm, such that even a

vθ that is slightly faster than the spiral arm rotation velocity will take the particle

past the spiral arm. Again this highlights the importance of azimuth angle of the

star particle with respect to the spiral arm. This type of non-migrator exhibits

shortened epicycle amplitude during the period before it crosses the spiral arm.

This is different from Type 2n, which shows extended epicycle amplitude, and it

is also different from Type 1n, which shows shortened epicycle amplitude as it

circles the spiral arm. This Type 3n non-migrator is found both in front of and

behind the spiral arm, unlike Type 2n.

5.5.4 The tangential force

We have shown above that time periods of sustained tangential force, which

cause strong radial migration, depend on the star particle position with respect

to the spiral arm. For example, the negative migrators that feel strong positive

tangential forces lose angular momentum while they feel that force, which is

possible because the particle always remains in front of the spiral arm. However,

there exist some non-migrators that spend time in similar regions around the

spiral as migrators, but upon which almost no tangential force acts.

To explore this, we compute a map of the tangential force. Fig. 5.10 shows

the density map of the spiral arm with contours of tangential force over-plotted

in white at t = 1.976 Gyr (solid for positive values and dashed for negative

values). As expected, the tangential force is zero at the density peak of the spiral

arm. The tangential force becomes stronger with increasing azimuthal distance

from the spiral arm, until it reaches a maximum, ∼ 10-20 degrees away from the

density peak on either side. At distances farther from the peak of the spiral arm,

the tangential force decreases and eventually changes the sign, owing to the force
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Figure 5.10: Close up of the density map in the R− θfs plane at t = 1.976 Gyr, with
contours of the tangential force over-plotted in white. Solid lines indicate positive tan-
gential force (acting in the direction of positive θfs) and dashed lines indicate negative
tangential force (acting in the direction of negative θfs). The position of the Type 1l
negative migrator and Type 2n non-migrator are represented by a blue star and black
square respectively, and their orbit histories shown by the solid lines of the same colour.
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contributions from neighbouring spiral arms. It is interesting to see the difference

between the front- and back-sides of the spiral arm. On the front-side of the arm

the point of the maximum tangential force is closer to the density peak of the

spiral arm than that on the back-side of the spiral arm. This is because the

neighbouring spiral arm on the front-side is closer than the one on the back-side.

On the back-side, the small density enhancement merges to the main spiral arm

around R = 8.5 kpc, which pushes the point of the maximum tangential force

farther from the density peak of the main spiral arm.

We show the orbit history of the Type 1l negative migrator (blue star and

solid blue line in Fig. 5.10) shown in §5.5.2.1 and the Type 2n non-migrator

(black square and solid black line in Fig. 5.10) shown in §5.5.3.2. The figure

shows that the negative migrator is captured in a region of strong tangential

force in front of the spiral arm, which continues over the spiral arm lifetime (see

2nd-right panel of Fig. 5.8). However, the non-migrator, despite being located in

front of the spiral arm and having a very similar orbit to the negative migrator,

feels almost no tangential force over this time period (see 2nd-right panel of Fig.

5.9) because the star particle is too close to the peak of the spiral arm. This

implies that it is not enough that the star particle is located on one side of the

spiral arm in order to become a migrator: the migrator must be far enough away

from the spiral arm peak line - yet not too far! - in order to be captured by

regions of strong tangential force such as those shown in Fig. 5.10. We therefore

refine the condition for a strong positive (negative) migrator to be a star particle

able to remain at a suitable distance behind (in front of) the spiral arm. This

re-emphasizes the importance of the R∆θ parameter in distinguishing strong

migrators from non-migrators.

5.6 Broader Implications of Radial migration

The main results of this study focus on the complicated interactions between

the spiral arm and a variety of orbital types, on timescales roughly equal to the

spiral arm lifetime. Each type of migrator particle experiences a change in angular

momentum on these timescales (Fig. 5.3). On longer timescales, i.e. 1 Gyr, a

star particle may interact with a spiral several times. The cumulative effect of

consecutive spiral arm-star particles interactions is reflected in the evolution of
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Figure 5.11: The change in angular momentum, ∆Lz, between t = 1.0 and 2.0 Gyr of
the disc particles as a function of their angular momentum at t = 1.0 Gyr. Red colours
indicate regions of high number density.

global properties of the disc, such as the mass and metal distribution. In this

section, we briefly discuss the effects of radial migration in this simulation on

longer timescales.

Co-rotating spiral arms have been shown to cause radial migration at many

radii, and this work confirms that migration will continue as long as the star par-

ticle remains on the same side of the spiral arm in a region of strong tangential

force. This means that radial migration in this simulation is efficient at trans-

porting star particles to different guiding radii. This is shown in Fig. 5.11, which

shows the change in angular momentum of disc particles between the times of 1.0

and 2.0 Gyr as a function of their angular momenum at t = 1.0 Gyr. This shows

much more radial migration than for the shorter timescale shown in Fig. 5.3

(∼ 5 times as much). Although this radial migration redistributes the individual

angular momenta of star particles (see also Figs. 5.7, 5.8 and 5.9), the overall an-

gular momentum distribution of the disc and the cumulative mass profile remain

almost unchanged (see Fig. 5.12).

The movement of star particles from one guiding radius to another affects
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Figure 5.12: The cumulative profiles of total disc mass fraction (upper curve) and
angular momentum (lower curve). The solid red and dashed black curves show the
profiles at t = 1.0 and t = 2.0 Gyr, respectively.

the distribution of metals in the disc. To give an indication of the effect on the

metal distribution of the radial migration in this simulation, we artificially assign

metallicity values to each star particle in the simulation at a time of t = 1.0

Gyr. We randomly assign each star particle a metal value by drawing from the

gaussian metallicity distribution function at each radius with a dispersion of 0.05

dex. The mean on which a gaussian is centred at a given radius is defined by

a metallicity gradient of −0.05 dex/kpc, and [Fe/H](R = 0) = 0.25 dex. The

top row of Fig. 5.13 shows the smoothed distribution of stars in metallicity as

a function of radius at t = 1.0 Gyr (left panel) and t = 2.0 Gyr (right panel).

The metallicity gradient does not change much at all between 1.0 and 2.0 Gyr.

This is because the radial migration is not strong enough to mix stars at such

a rate as to affect the slope. However, the metallicity distribution at any given

radius broadens with time. The bottom row of Fig. 5.13 shows the same as the

top row but for an initial radial metallicity gradient of −0.1 dex/kpc. At t = 2.0

Gyr, although the radial metallicity gradient remains unchanged, the metallicity

distribution shows a much larger broadening owing to the the steeper gradient,

as expected. Despite our crude metallicity analysis, a similar effect is seen in Fig.

16 of Casagrande et al. (2011), who show that in the solar neighbourhood, the

metallicity distribution of stars aged between 1 − 5 Gyr is comparatively broad
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in comparison with that of stars younger than 1 Gyr, and both populations have

the same peak metallicity value (see also Haywood, 2008). We stress that these

results are from this simulation only, and should not be taken as the general case

for simulated spiral galaxies. For example, parameters such as spiral arm strength

and pitch angle likely play a role in the amount of radial migration and therefore

the degree of mixing that occurs in a spiral disc. Moreover, this result is derived

from a N -body simulation in which metallicities have been assigned artificially

at an arbitrary time. For a robust analysis on the effect of spiral morphology on

metal distributions, many simulations that include the gas component and recipes

for star formation and chemical evolution need to be analysed and compared with

each other and observation. This topic deserves a thorough numerical study (see

§6).

All of the analysis presented in this chapter has been with regard to one

simulation, which has a flocculent spiral structure with no bulge or bar at the

centre. However, we have seen some evidence that the group characteristics of

the positive, negative and non- migrators are present also in simulated galaxies of

different spiral structure, and show similar separations in the phase space planes

shown in Fig. 5.4. These simulations include a 3-4 armed galaxy with a static

bulge in the centre (simulation F in §4), and the barred-spiral galaxy of two arms

presented in §3.

5.7 Conclusions

We have performed high resolution N-body simulations of a spiral disc embedded

in a static dark matter halo potential. We focus on a sample of star particles taken

from around the spiral arm and divide this sample into three groups according

to the amount of change in angular momentum, i.e. radial migration, of the star

particles over a given time period when the spiral arm is strong. These groups

are: star particles that gain the most angular momentum (positive migrators),

star particles that lose the most angular momentum (negative migrators) and star

particles that show almost no change in angular momentum (non-migrators).

We follow the evolution of these groups in vθ − vR, vθ − R∆θ and vθ − R

planes, and come to the following conclusions:

• Positive migrators tend to cluster around the region of velocity space that is
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Figure 5.13: Metallicity distribution of all disc stars as a function of radius at t = 1.0
Gyr (left panel) and t = 2.0 Gyr (right panel). Top: The initial assigned metallicity
gradient is −0.05 dex/kpc, and the dispersion of the gaussian metallicity distribution
function is 0.05 dex. Bottom: The initial assigned metallicity gradient is −0.1 dex/kpc,
and the dispersion of the gaussian metallicity distribution function is 0.05 dex. In all
panels the initial metallicity gradient is shown by the dashed black line. Contours and
red colours indicate regions of high number density.
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slower than the mean rotation velocity (apocentre), whereas negative migra-

tors tend to cluster around the region of velocity space that is faster than

the mean rotation velocity (pericentre). Non-migrators are more evenly

distributed in vθ − vR space.

• Positive migrators always stay behind the spiral arm (R∆θ < 0) and neg-

ative migrators always stay in front of the spiral arm (R∆θ > 0). Non-

migrators are found on both sides of the spiral arm; those with azimuthal

velocities faster than the circular velocity tend to be located behind the

spiral arm, whereas those with azimuthal velocities slower than the circular

velocity tend to be located in front of the spiral arm.

• The slope in the vθ − R∆θ space of the distribution of non-migrators in-

dicates that non-migrators located behind the arm have higher azimuthal

velocities the farther behind the arm they are. Similarly, the non-migrators

in front of the spiral arm have lower azimuthal velocities the farther in front

of the spiral arm they are when the spiral is forming.

We then examined the orbital evolution of individual star particles in each

particle group in detail. We categorised and contrasted several orbital types of

each group, each of which is a new type of orbit shown for the first time in this

study.

There are three types of positive migrators, each characterised by the time

they feel the tangential force, their phase of epicycle motion when this force is

introduced and their azimuthal distance from the spiral arm:

• Type 1g originates relatively close to the spiral arm and begins to migrate

just before apocentre. It exhibits a radial pause owing to the temporary

balance between radial gravitational force and centrifugal force, before con-

tinuing to move outward.

• Type 2g originates from a similar position to Type 1g, and begins to migrate

at a similar time but after it reaches apocentre. This causes the star par-

ticle to exhibit a shortened epicycle amplitude because angular momentum

increases the radius of the pericentre.
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• Type 3g originates farther from the arm than Types 1g and 2g, and begins

to migrate at later times than Types 1g and 2g, around the pericentre phase,

and as a result exhibits rapid changes in radius.

This variety of orbits shows that positive migrators can be in any epicycle

phase at the time the tangential force is introduced. However, migrators that

originate far from the spiral arm must be in the pericentre phase of orbit in order

to catch the spiral arm and undergo large angular momentum changes. Migra-

tors that are located closer to the spiral arm begin to migrate around apocentre

because if they are in pericentre, they will pass the spiral arm and any increase

in angular momentum will be arrested, as we show in §5.5.3. Hence, the key for

strong positive migrators is to stay behind the spiral arm, which is verified in

the bottom-right panel of Fig. 5.7 for each positive migrator example. In this

way, irrespective of the phase of epicycle motion, the star particles continue to

gain angular momentum from the spiral arm. We find similar types of orbits for

the negative migrators. However, we did not find any Type 2 negative migrator

analogue to Type 2g positive migrator. We think that this is because the spiral

arm on which we focus has different properties and formation processes on the

front- and back-side of the spiral arm.

We found three types of non-migrators:

• Type 1n originates very close to where the spiral arm forms, and always

moves in the radial direction opposite to that of the change of guiding

centre. They generally move toward pericentre when they are behind the

spiral arm, and toward apocentre when they are in front of the spiral arm.

This causes them to orbit the spiral arm for ∼ 1 epicycle period with a

shortened epicycle amplitude. This type is found on both sides of the spiral

arm.

• Type 2n originates farther from the spiral arm than Type 1n. It crosses the

spiral arm from the front side as it moves towards pericentre, and therefore

exhibits an elongated epicycle amplitude. This type is found on the front-

side of the spiral arm only.

• Type 3n originates close behind the spiral arm, and gains angular momen-

tum such that it exhibits shortened epicycle motion while remaining on the
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same side of (behind) the spiral arm. It is so close to the spiral arm that it

passes the spiral arm as it moves through pericentre. This type is found on

both sides of the spiral arm.

Each type of non-migrator shows that position relative to the spiral arm is

very important, and has consequences for the star particle evolution. It is again

important to note that although these particles were selected as showing ∆Lz ∼ 0

within the selected migration time window, they may go on to migrate around

other spiral arms at later times, and may have undergone migration around past

spiral arms at earlier times.

The importance of the proximity of the star particle to the spiral arm and the

epicycle phase of motion of the particle found in the orbital anaylsis is consistent

with the trend seen in the sample distribution in the R∆θ − vθ plane shown in

the middle row of Fig. 5.4. It shows that strong migrators are always located on

the same side of the spiral arm throughout the lifetime of the spiral arm, while

non-migrators tend to pass/be passed by the spiral arm owing to the faster/slower

rotation velocities of the non-migrators relative to that of the spiral arm, given

close enough proximity. This underscores the criterion for star particles to become

strong positive (negative) migrators as the ability of a star particle to remain

behind (in front of) and stay close to the spiral arm as long as it is present.

We have found that there are certain distances from the spiral arm at which

exist regions of strong tangential force. Migrators tend to be captured by these

regions, whereas non-migrators may miss the strong force regions by moving too

close to the spiral arm. In that case, the star particle does not feel much tangential

force and does not change angular momentum. This emphasizes the importance

of azimuthal distance from the spiral arm. Indeed we find that strong migrators

remain at a suitable distance from the spiral arm.

The detailed information of particle orbit histories of large star samples may

provide clues to how the spiral arm is formed and destroyed. This information

is likely to be found in not just strong migrators and non-migrators, but from

much larger star particle samples that exhibit many different degrees of radial

migration. From these kind of data, it may be possible to see how the spiral

arm is constructed as the influx of star particles from regions around the disc

into the forming spiral arm increases the density and eventually leads to the fully

formed spiral features. In the same spirit, the future trajectories of many star
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particles that make up the spiral features may give us an insight into how these

features are disrupted. The non-linear nature of the particle motion that we have

glimpsed makes this method of analysis a promising direction to pursue, and we

leave this complicated investigation to future studies.



Chapter 6

Conclusions and Future work

This thesis describes our studies of high resolution N -body/SPH simulations of

disc galaxies that develop spiral structure. We examine the evolution of spiral

structure and the influence of spiral structure on the dynamics of disc stars, and

compare our findings with predictions of spiral density wave theory and swing

amplification theory. The results obtained are highly relevant to disc galaxy

evolution, and probe the nature of the spiral arm. They are summarised below.

6.1 Co-rotating spiral arms

From pure N -body simulations, we show in §2 that the spiral arms are transient

features, and traced the position of the spiral arm density at several moments

in time. From this information, we show that spiral arms rotate with a pattern

speed that decreases with radius and closely matches the circular velocity profile

of the disc stars (see also Wada et al., 2011; Sellwood, 2011; Comparetta &

Quillen, 2012; Roca-Fàbrega et al., 2013), contrary to the constant pattern speed

of density wave theory. This naturally leads to the winding up of the spiral arms

because stars in the inner regions rotate faster than those in the outer regions.

As a result, spiral arms disrupt and new spiral arms appear, such that the galaxy

always displays spiral morphology, but individual arms have lifetimes of order

∼ 100 Myr.

In §3, we confirmed that the same conclusions hold in a barred disc with a gas

component. We further test the spiral arm nature by examining the distribution

of different age star particles across the spiral arm at different radii. For a rigidly

139
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rotating spiral arm that has a constant pattern speed, there is only one radius of

co-rotation where the spiral arm rotates at the same speed as the stars. Inside

this radius, stars rotate faster than the spiral arm, therefore one would expect

young stars born in the spiral arm to move in front of the spiral as they age. The

opposite would be the case outside the co-rotation radius. Observationally, this

predicts a spatial offset between different star forming tracers and young stars

near the spiral arm (Roberts, 1969). From our analysis we found no evidence for

an offset between ongoing and recent star formation sites at any radius (see also

Dobbs & Pringle, 2010), which indicates that the majority of stars born in the

spiral arms travel with the spiral arms owing to their co-rotating nature. This

result is at odds with density wave theory, but consistent with recent observational

studies (e.g. Foyle et al., 2011; Ferreras et al., 2012).

6.2 Extended radial migration

Radial migration is the process by which the orbital guiding centre of a star

changes owing to angular momentum changes caused by non-axisymmetric struc-

ture. The change in angular momentum of a star is accompanied by a near zero

change in non-circular kinetic energy, therefore the orbit of the migrated star

remains kinematically cool (see §1.3). In §2 and §3, we showed that because stars

rotate at the same speed as the spiral arm at all radii, radial migration occurs

at every radius where spiral structure exists. Star particles migrating radially

outward always stay behind the spiral arm. Similarly, stars that migrate radially

inward stay in front of the spiral arm (later confirmed by Roškar et al., 2012b;

Baba et al., 2013). This means that radial migration continues until the spiral

arm disrupts and that radial mixing is stronger than previously thought, which

is a direct consequence of the co-rotating spiral arm. In addition, we show that

the orbital eccentricity of migrated stars is almost conserved, as expected at co-

rotation (Lynden-Bell & Kalnajs, 1972), with a slight decrease in eccentricity for

outward moving migrators and increase for inward migrators (in agreement with

Minchev et al., 2012a).

In §5, we traced individual star particle motion in detail and showed that mi-

grating star particles have particular velocities and orbits that create systematic

streaming motions along the spiral arm. We uncovered several new previously
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unreported types of orbits. For example, one such orbit is a star particle that

does not migrate but instead stays within the spiral arm, continuously passing

through the spiral arm until it disappears. The orbital analysis reveals that the

position of the star particles in phase space at the early stages of spiral arm for-

mation is an important factor in the subsequent orbital evolution. In particular,

migrating particles close behind the spiral arm are typically at their apocentre

phase of their epicycle motion, while if a star particle behind the spiral arm is in

the pericentre phase of epicycle motion, it passes the spiral arm and is classified

as a non-migrator particle. The same trend holds on the leading side of the spiral

arm.

Our studies in §5 have shown that while the radial migration of individual

particles is an effect of the co-rotating spiral arm, the overall angular momentum

distribution is hardly affected. In addition, the radial metallicity gradient of stars

does not appear to change over 1 Gyr periods of galaxy evolution, although the

scatter in the metallicity distribution at all radii increases by an amount that

scales with the steepness of the assumed initial metallicity gradient (for a given

spiral structure).

6.3 A Hubble sequence of pitch angles

The extensive numerical study presented in §4 showed for the first time that

the pitch angle of spiral arms is strongly correlated with the galactic shear rate

in N -body simulations, with rising rotation curves associated with open spirals

(high pitch angle). We showed that the results are robust against particle mass

resolution, softening length and variations of disc-halo mass ratio. The correlation

found in §4 is consistent with the analytically derived relation of Fuchs et al.

(2005) based on swing amplification theory (Julian & Toomre, 1966; Toomre,

1981), and recent observations of a sample of spiral and barred-spiral galaxies

(Seigar et al., 2005, 2006). In addition, the result offers an explanation of the

scatter in the observed correlation because the winding spiral arm naturally leads

to a range of pitch angles over the lifetime of each spiral arm.
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6.4 Implications

As discussed above, our studies clearly highlight that the evolution of spiral struc-

ture and nearby stars is inconsistent with the classic density wave theory proposed

by Lin & Shu (1964), implicating that, at least in numerical simulations of iso-

lated spiral discs, the spiral density wave description does not hold. We speculate

that the orbital behaviour of stars (particles) found in our studies applies to any

co-rotating spiral arm, and as such, all isolated galaxies including those with a

bar. However, it is possible that galaxies with companion satellites are experi-

encing different evolution (Dobbs et al., 2010; Purcell et al., 2011). Therefore, for

the moment we restrict our findings to be important for isolated galaxies.

Our studies suggest that the formation of transient spiral arms in numerical

simulations is different from swing amplification theory (Julian & Toomre, 1966;

Toomre, 1981). In N -body simulations, the lifetime of a spiral arm, defined as

the time between the initial growth and disruption of an over-dense region, is of

order ∼ 100 Myr (∼ half a galactic rotation). However, the swing amplified, over-

dense patch described in Toomre (1981) rotates slower than the disc material,

and as a result takes ∼ few galactic rotations to wind up and fade away (see

their Fig. 8). Furthermore, the orbital analysis presented in §5 reveals that

although migrator particles undergo a motion similar to what is predicted by

swing amplification (star particles on the trailing (leading) side join the arm at

the apocentre (pericentre) phase of their epicycle motion while the spiral arm

grows), their orbits proceed to be strongly influenced by the spiral arm through

radial migration because the migrating stars continue to co-rotate with the spiral

arms. Therefore, particles continue to migrate along the spiral arm, instead

of retreat away as expected from swing amplification. This produces hitherto

unexpected systematic streaming motions caused by continuous radial migration

along the spiral arm.

The discrepancy between swing amplification theory and N -body simulations

probably arises because the former is a linear theory, whereas N -body simulations

are able to capture non-linear effects. Indeed, the simulations seem to show that

the growth and decay of spiral arms is a non-linear phenomenon; rapid growth

from small perturbations in the disc density and subsequent rapid decay cannot be

linear. Further evidence of the non-linearity of N -body simulations is presented in

D’Onghia et al. (2013), who showed that the growth of spiral arms is perpetuated
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by non-linear effects, in contrast with the predicted decay of such structures in

the swing amplification formalism.

In recent years, alternative mechanisms of spiral evolution have arisen in at-

tempt to explain winding, transient spiral arms. One such mechanism is the

multiple mode theory, in which there are present in the disc more than one spiral

density wave pattern. In these descriptions, two (or more) waves, a fast rotating

pattern in the inner region of the disc and a slow rotating pattern in the outer

region of the disc, may periodically interfere with each other at a range of radii

over which the wave patterns overlap (e.g. Roškar et al., 2012b; Comparetta &

Quillen, 2012; Sellwood & Carlberg, 2014). The winding of spiral arms is repro-

duced in these theories, but the spiral arm density is assumed to follow a linear

superposition of the densities of two or more individual wave modes, which may

be inconsistent with the non-linear behaviour of spiral arms implied by numerical

simulations. Furthermore, they obtain the conclusion of co-existing multiple wave

modes from wave mode analysis techniques such as computing power spectra of

Fourier transforms, the application of which we showed in §2 to be dubious for

the rapidly evolving spiral discs seen in simulations. Even in studies that support

the multiple mode theory, the wave modes are found to be short-lived (Roškar

et al., 2012b), which indicates that even in this picture there are no such thing

as stationary waves.

Based on current numerical results, we speculate that the formation, evolution

and disruption of spiral arms is related to the galactic shear rate and the radial

migration of stars and gas along the co-rotating spiral arm. The simulations have

highlighted the prominence of radial migration as a response to the formation

of spiral structure, and that the same particles that radially migrate also take

part in the growth of spiral arm strength. We believe that the governing process

holds a central mechanism akin to the concept of swing amplification - although

non-linear in nature, that may propagate radially and stimulate growth at all

radii. The growth attains a maximum amplitude at a pitch angle determined

by the shear rate, and proceeds to disrupt as it winds further. It is possible

that the disruption of the spiral arm may be caused by a combination of radial

migration and epicycle motion which may act to move stars away from the spiral

feature. Indeed, the lifetime of the spiral arm is comparable to an epicycle period.

The high degree of complexity of the formation and evolution of spiral arms
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shown in simulations highlights the need for increasingly detailed analyses of

ever improving numerical simulations, and many comparisons with observations.

Below, we outline some ideas for progressing our understanding of the nature of

spiral arm structure.

6.5 Future work

The conclusions of this thesis highlight the need for a re-examination of how spiral

arms form. To address this issue, we plan to develop a clear set of predictions

from high resolution simulations taking into account self-gravity, hydrodynamics,

radiative cooling, star formation and metal enrichment. The simulations will

be tuned to a sample of galaxies (including the Milky Way) distributed among

the Hubble types. This will allow us to scrutinise important mechanisms in

galaxy formation and evolution, and make detailed comparisons with astrometric

and spectroscopic data from current and next generation Galaxy surveys such

as Gaia (e.g. Lindegren et al., 2008), Gaia-ESO (Gilmore et al., 2012), SEGUE

(e.g. Yanny et al., 2009; Lee et al., 2011), APOGEE (e.g. Allende Prieto et al.,

2008; Bovy et al., 2012) and HERMES-GALAH (Zucker et al., 2012). For extra-

galaxies, we can compare the simulation results with multi-wavelength images

from Spitzer (Kennicutt et al., 2003), Swift/UVOT (Roming et al., 2005), high

resolution molecular gas images and kinematics from instruments such as ALMA

and spectroscopy from integral field unit spectroscopy (IFU) instruments such as

CALIFA (Sánchez et al., 2012) and SAMI (Croom et al., 2012).

6.5.1 Spiral galaxy catalogue

The aim of the main future project we plan to undertake is to build on our

current understanding of co-rotating spiral arms and develop a theory of spiral

arm formation and evolution consistent with observation. In order to change the

paradigm of our understanding of the spiral arm, many simulations of different

types of spiral galaxies are required. To this end, we will examine the nature

of the spiral structure by combining current and future observational data with

output predictions from simulations. This study will include a range of galaxy

types, because the spiral arm nature is linked to their morphology as shown in
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§4.

A suite of N -body/SPH simulations will be tailored to a sample of spiral and

barred-spiral galaxies that span a broad range of Hubble types. Each simulation

will match observable parameters such as the rotation curve, gas fraction, struc-

tural parameters, number of spiral arms, spiral arm pitch angle and amplitude.

Each simulation will be run twice: once with the transient, co-rotating spiral

arms that arise naturally in N -body simulations, and once with an imposed spi-

ral arm potential to mimic density waves. Density wave theory can then be tested

critically by comparing the distribution and kinematics of star forming tracers

in the simulations (dense gas and different age star particles), with those of the

observed star forming tracers such as HI, CO, Hα, and UV data. In the future,

ALMA will observe star forming tracers with up to 10 milliarcsecond resolution

and further refine this test observationally.

At the same time, this suite of realistic simulations will be used to scrutinise

the formation of spiral arms across the Hubble sequence (Hubble, 1926). Insight

into the growth and development of spiral arms will be obtained by examining

individual particle motions (as shown in §5) and how they contribute to the

macroscopic growth and decay of spiral arms.

6.5.2 Metallicity gradients and star formation

Radial migration has significant effects on the galactic radial stellar age pro-

file and metallicity distribution (Sellwood & Binney, 2002; Roškar et al., 2008b;

Sánchez-Blázquez et al., 2009b). Such effects may include a flattening of the

radial metallicity gradient of stars, broadening of the metallicity distribution at

many radii and the production of inhomogeneities in the metal distribution in the

azimuthal direction (Di Matteo et al., 2013). Because radial migration occurs at

all radii around the co-rotating spiral arm, the evolution of the metallicity dis-

tribution may be different from those expected in other spiral arm theories, for

example density wave theory in which radial migration occurs at a single radius

(Lépine et al., 2003). However, this has not been well studied to date. We aim

to make observable predictions of these effects from the spiral galaxy catalogue,

and use them to look for signatures of co-rotating spiral arms in IFU data of ex-

ternal galaxies. In addition, these data can be used to infer the impact of radial
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migration on galactic evolution as a function of morphology.

A further extension of this work will be to examine the distribution of star

formation sites in discs. In numerical simulations, high density gas is always found

to trace the stellar spiral arms (Wada et al., 2011). However, some observations,

for example M74, reveal dust lanes on the trailing side of the spiral arms. In

order to find the reason for this apparent discrepancy, the distribution of dust

lanes and stars can be compared to the gas and stars in simulations with varying

star formation and feedback strengths.

6.5.3 Application to the Milky Way

Gaia will observe parallaxes, radial velocities, proper motions, metallicities and

photometry of around 1 billion stars in 6-20 magnitude range in the disc, bulge

and halo. In addition, ground based spectroscopic surveys such as the Gaia-

ESO survey will supplement this information with radial velocity and metallicity

measurements.

The study presented in §5 shows that co-rotating spiral arms predict that

radially migrating stars make up moving groups around the spiral arm, which

may be detectable in the observed kinematics (see Kawata et al., 2014, for a

preliminary study). We may be able to use this prediction as a test of the nature

and origin of spiral arms in the Milky Way by developing a mock data set from

a Milky Way-like simulation including a bar and spiral arms via the use of tools

such as population synthesis and line of sight extinction (Pasetto et al., 2012a).

The position of spiral arms can be located from Gaia data, which would make it

possible to search suitable observed star samples for the predicted moving group

features as seen in the mock data. This will add to the variety of tests of co-

rotating spiral arms that we will make.



Appendix A: Density Wave

theory

In their linear analysis, Lin & Shu (1964) expand the perturbed time-independent

surface density and potential in equations (1.2) as a series of individual harmonic

components

Σm(r) cosmθ (A.1a)

Fm(r, z) cosmθ, (A.1b)

where

Σm(r) = Re{Σ(1)(r) expiλf(r)} (A.2a)

Fm(r, z) = Re{A(r, z, λ) expiλΦ(r)}, (A.2b)

and λ is a positive large quantity used in the asymptotic expansion of the ampli-

tude function, A(r, z, λ), in inverse powers of λ, i.e.,

A(r, z, λ) = A(0)(r, z) + λ−1A(1)(r, z) + λ−2A(2)(r, z). (A.3)
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Inserting equations (A.1) and (A.2) into equation (1.3) gives the pair of condi-

tions:

[
∂A

∂z

]
+ iλA(r, 0)

[
∂Φ

∂z

]
= −4πGΣ(1)(r), Φ(r, 0) = f(r). (A.4)

The second of equations (A.4) means that the phase factors of both the density

and potential are the same, i.e. they are in phase with each other, owing to

the WKB approximation. The form of the phase factor is found by substituting

equations (A.2) into the Poisson equation (1.1d) to give

∂2A

∂r2
+
∂2A

∂z2
+

1

r

∂A

∂r
− m2A

r2

+ iλ

[
A

(
∂2Φ

∂r2
+
∂2Φ

∂z2
+

1

r

∂Φ

∂r

)
+ 2

(
∂A

∂r

∂Φ

∂r
+
∂A

∂z

∂Φ

∂z

)]

− λ2A

[(
∂Φ

∂r

)2

+

(
∂Φ

∂z

)2
]

= 0.

(A.5)

To first order in this linear expansion, the term proportional to λ2 is required to

be equal to zero, which is satisfied by solutions

Φ(r, z) =

f(r + iεz) if z > 0,

f(r − iεz) if z < 0.
(A.6)

where ε = sgn(f ′(r)). It follows that the derivative of the phase factor with

respect to z is written as

∂Φ(r, z)

∂z
=
∂f(r ± iεz)

∂(r ± iεz)

∂(r ± iεz)

∂z
= ±iεf ′(r ± iεz), (A.7)

and because the [∂φ/∂z] is evaluated either side of z = 0 in the original boundary

condition in equation (1.3), the condition in equation (A.4) becomes[
∂A

∂z

]
+ iλA(r, 0)(2i)|f ′(r)| = −4πGΣ(1)(r). (A.8)
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Substituting equation (A.3) into equation (A.8) gives

[
∂A(0)

∂z

]
+ λ−1

[
∂A(1)

∂z

]
+ λ−2

[
∂A(2)

∂z

]
= −4πGΣ(1)(r)

+ 2λ|f ′(r)|(A(0) + λ−1A(1) + λ−2A(2)).

(A.9)

Equating coefficients of λ gives

2λ|f ′(r)|A(0) = 0, (A.10)

which yields A(0) = 0 because λ, |f ′(r)| 6= 0. Therefore the solution for A is

A(r, z, λ) = λ−1(A(1)(r, z) + λ−1A(2)(r, z) + O(λ−2)) (A.11)

Equating coefficients of λ0 gives the boundary condition at the disc plane,

−4πGΣ(1)(r) + 2|f ′(r)|A(1)(r, 0) =

[
∂A(0)

∂z

]
= 0. (A.12)

The form of Φ(r, z) in equation (A.6), together with the expressions for the har-

monic components of surface density and potential in equations (1.2), are com-

bined with Poisson’s equation to yield

(
∂2A

∂r2
+
∂2A

∂z2
+

1

r

∂A

∂r
− m2A

r2

)
+ iλf ′(r ± iz)

[
A

r
+ 2

(
∂A

∂r
± i∂A

∂z

)]
= 0.

(A.13)

If we substitute only the first order term in the expansion of A in equation (A.11),

the first term in equation (A.13) is proportional to λ−1, and is assumed negligible

compared to the second term. This leads to the requirement,

∂

∂r
[r1/2A(1)]± i ∂

∂z
[r1/2A(1)] = 0, (A.14)
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which has the solution

r1/2A(1) = g(r ± iz). (A.15)

In the disc plane, the solution of the amplitude function is found from the bound-

ary condition in equation (A.12) to be

A(1) = r−1/2g(r) =
2πGΣ(1)(r)

λ|f ′(r)|
. (A.16)

By inserting equation (A.16) and (A.6) into equations (A.2), it is found that the

first order perturbed surface density

Σ′ = Σ(1)ei(λf(r)+ωt−mθ), (A.17)

produces the potential

φ′(r, z) =
2πGΣ(1)(r)

λ|f ′(r + iz)|
ei(λf(r+iz)+ωt−mθ). (A.18)

Therefore, the force per unit mass in the disc plane is, in the WKB approximation,

given by

∂φ′(r, 0)

∂r
= 2πiGΣ′. (A.19)

The form of the variables v′ and u′ in equations (1.1) follow that of the perturbed

surface density given in equation (A.17), and therefore solving equations (1.1b-

1.1c) for the radial and azimuthal velocity components respectively gives (Binney

& Tremaine, 2008)

u′ = − i

∆

[
(mΩ− ω)

dφ′

dr
+

�
�
�
�2mΩ

r
φ′
]
, (A.20a)

v′ =
1

∆

[
−κ

2

Ω

dφ′

dr
+

��
���

��m(mΩ− ω)

r
φ′

]
, (A.20b)

where Ω is the angular rotation of stars and ∆ = κ2−(mΩ−ω)2. The second term

in equations (A.20) is assumed to be negligible compared to the term proportional
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to dφ′/dr because of the rapid variation of the perturbed potential in the WKB

approximation. By use of equation (A.19), equations (A.20) become

u′ =
1

∆
(mΩ− ω)2πGΣ′, (A.21a)

v′ = − i

∆

κ2

Ω
2πGΣ′. (A.21b)

Similarly, the continuity equation (1.1a) becomes

i(mΩ− ω)Σ′ + kΣ0u
′ +

�
�
�

��imΣ0

r
v′ = 0 , (A.22)

where the last term is dropped because it is smaller than the second term by O(kr)

(see Binney & Tremaine, 2008, p. 491). Finally, substituting the perturbed radial

velocity term from equation (A.21a) into equation (A.22) yields the dispersion

relation equation (1.4).



Appendix B: Numerical method

and GCD+

In this chapter we describe the method used to simulate galaxy evolution through-

out this thesis. The dynamics of stars are calculated by an N -body technique, and

the gas component is modelled with a smoothed particle hydrodynamics (SPH)

code, GCD+. This code is based on earlier Tree SPH methods (Hernquist &

Katz, 1989; Katz et al., 1996), and is a fully parallelised code that can be run on

large supercomputers. In this thesis, the latest version of the code presented in

Kawata et al. (2013b) is used, which improves upon the original code developed

by Kawata & Gibson (2003). Note that the studies presented in this thesis did

not involve any new development or improvement of GCD+. GCD+ was used

as an already developed tool. Although we mainly make use of the N -body code

in this thesis, a full description of the SPH code used for the simulation in §3 is

given in this Appendix for completeness.

B.1 The N-body method

The goal of N -body simulations is to model the dynamics of a gravitational system

of N particles of given masses under their mutual gravitational attraction. N -

body simulations fall into two broad categories: collisional and collisionless. In

either category, the gravitationally bound system can be treated as a Hamiltonian

152



B.1. The N-body method 153

system:

H =
N∑
i

p2
i

2mi

−G
N∑
i

N∑
j 6=i

mimj

|xi − xj|
, (B.1.1)

where pi, xi and mi are the momentum, position and mass of the i-th particle.

Therefore the equations of motion can be derived via Hamilton’s equations:

dpi
dt

= −∂H
∂xi

;
dxi
dt

=
∂H

∂pi
, (B.1.2)

which give the acceleration and velocity of the i-th particle respectively:

ai =
1

mi

dpi
dt

= −G
N∑
j 6=i

mj
xi − xj
|xi − xj|3

;
dxi
dt

=
pi
mi

. (B.1.3)

For collisional systems such as globular clusters, the acceleration is calculated

directly from equation (B.1.3). A system is described as collisional if close-range

two-body encounters occur frequently over a time period of evolution, or in other

words, if the relaxation timescale is short compared to the period of evolution.

For disc galaxies, the relaxation time is longer than a Hubble time, therefore

disc galaxies are well-approximated as collisionless systems (see Dehnen & Read,

2011, for a recent review).

In N -body simulations, however, two body interactions must be numerically

suppressed, owing to the denominator of equation (B.1.3) that can lead to large

forces between particles in close proximity to each other, i.e. |xi − xj| → 0. To

prevent such large forces, a softening length, ε, is used, which modifies the total

gravitational potential per unit mass acting on the i-th particle to be:

Φi = −G
N∑
j 6=i

mjφ(|xi − xj|, ε), (B.1.4)

where φ denotes the gravitational potential kernel of the j-th particle, a commonly

used form of which is the Plummer sphere, given by:

φ(rij, ε) =
1

ε

(
1 + ξ2

)−1/2
, (B.1.5)

where rij = |xi − xj| and ξ = rij/ε. In the case of a fixed softening length, the
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Figure B.1: A schematic illustration of the Barnes & Hut (1986) algorithm in 2-D
for simplicity. The root cell encompasses all the particles in the simulation, which is
further divided into smaller daughter cells. Cells that contain more than one particle
are called “node” cells, and are further subdivided until each cell contains only one
particle. These cells are called “leaf” cells. Empty cells are ignored in the tree.

acceleration due to the softened gravitational potential is expressed as:

ãi = −G
N∑
j=1

mj∇φ(rij, ε) = −G
N∑
j=1

mj
xi − xj

(|xi − xj|2 + ε2)
3
2

. (B.1.6)

The acceleration from this modified equation of motion does not diverge as par-

ticles become very close; any particle that comes within one softening length, ε,

the force on those particles stays constant. However, the softening length does

introduce bias into the force calculation, which underestimates the force on small

scales (Dehnen & Read, 2011).

B.1.1 The Tree Force

A direct particle-by-particle calculation of equation (B.1.6) requires N2 calcula-

tions, which is computationally very demanding. This number can be halved by

use of the symmetry in Newtons third law as derived from the Hamiltonian in

equation (B.1.1), which is still too large, especially for modern simulations that

typically employ logN ∼ 6− 8 particles.
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There are some modern techniques that reduce this high number of calcula-

tions in order to make high resolution simulations possible, one of which is the

Tree algorithm (Barnes & Hut, 1986). This algorithm defines cubic cells which

comprise groups of localised particles. Each cubic cell containing more than one

particle is a “node” cell and is further subdivided into eight daughter cells, for

which the process is repeated until a sub-cell contains one particle (see Fig. B.1

for two dimensional case). These cells are the last in the tree hierarchy and are

termed “leaf” cells. The advantage of grouping particles that are localised to each

other is that one can obtain a good approximation to the force contribution to a

particle far from the cell from all particles inside the cell. This approximation is

obtained by Taylor expansion of the force per unit mass from the cell around the

centre of mass of the particle group (e.g. Dehnen & Read, 2011):

ã(xi − xj) =
n∑
k

1

k!
(xj − zA)k∇kã(xi − zA). (B.1.7)

Here, n is the order of the expansion, xj is the position of a single particle

belonging to the group cell A, which has centre of mass zA, and xi is the position

of a particle at a large distance from both zA and xj. Equation (B.1.7) gives an

expression for the force per unit mass felt by particle i from particle j, therefore

to calculate the force per unit mass on particle i from all the particles in cell A

requires a summation of equation (B.1.7) over N particles in cell A:

ãA(xi) =
n∑
k

µkjA · ∇kã(xi − zA), (B.1.8)

where

µkjA =
N∑
j

mj
(−1)k

k!
(xj − zA)k (B.1.9)

denotes the multipoles of cell A with respect to its expansion centre, zA. In

practise, the multipole moments (equation B.1.9) of all the nodes are calculated

first. This leaves only the single calculation of equation (B.1.6) between the i-th

particle and the centre of mass of the cell to get the force contribution from the

cell. The cell can be re-used for other particles that satisfy equation (B.1.11).

To determine which of equations (B.1.6) or (B.1.8) is used to evaluate the
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Figure B.2: Schematic illustration of the tree force algorithm in 2D for simplicity.
a) The centre of mass of a group of particles (grey circles) in a cell of length, L, is
calculated and denoted as zA (red circle). The distance between the centre of mass
of the cell and particle i (blue circle) is denoted DiA, and the distance between the
centre of mass and the geometric centre of cell A is denoted δA. The condition of
equation (B.1.10) is satisfied and the force from all particles in cell A on the particle i
is calculated using the approximation given in equation (B.1.8). b) A different particle,
j, is closer to the cell, and equation (B.1.10) is not satisfied for DjA, the distance
between particle j and the centre of mass, zA (pink circle). The “node” cell A is then
subdivided into 4 (8 for 3D case) daughter cells each of length L/2. Equation (B.1.10)
is now satisfied for the distance, DjB, to the centre of mass of the upper-left daughter
cell, zB (and similarly for the lower-left daughter cell), therefore the force from cell B
is calculated using equation (B.1.8). The lower-right daughter cell contains only one
particle (leaf cell), and the force contribution on particle j is calculated directly from
equation (B.1.6).
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force between particles, we apply cell opening conditions. At the initial time-

step, the cell opening condition is controlled by a tolerance parameter, θ, defined

as the ratio between the size of the cell, L, and the distance, D, between the i-th

particle and the centre of mass of the cell plus the distance, δ, between the centre

of mass and geometric centre of the cell (Dubinski, 1996). The condition to be

satisfied is:

D >
L

θ
+ δ. (B.1.10)

If the inequality holds, then the force per unit mass is calculated from the ap-

proximation of equation (B.1.8), otherwise cell A is further split into 8 daughter

cells and the inequality is checked again (see Fig. B.2 for two dimensional case).

If the cells continue to split until there is only one particle left in a cell, then the

force is calculated via the direct method of equation (B.1.6).

From the second step onwards, in place of equation (B.1.10), the cell opening

criterion is given by (Springel, 2005):

GM

D2

(
L

D

)4

≤ α|ai|, (B.1.11)

where ai is the acceleration of the i-th particle in the previous time-step, and α

is the tolerance parameter. When equation (B.1.11) satisfied, a cell of mass M

is eligible for usage in the Tree force calculation. This ensures that the force per

unit mass contribution from a node cell is always a small fraction of the total

acceleration, which improves the accuracy of the total force calculation (Springel,

2005).

Both the criteria described in equations (B.1.10) and (B.1.11), and the order

of the Taylor expansion in equation (B.1.8) control the balance between com-

putational speed and accuracy of the calculation. For the initial opening angle

criterion, lower values of θ restrict the size of node cells, L, to be smaller com-

pared to the distance, D, than the size required for higher values of θ, thereby

restricting node cells to only the most distant particles. Therefore, lower val-

ues of θ lead to more accurate force calculations (because fewer node cells are

used) and longer computation times. A similar argument is valid for equation

(B.1.11). In the simulations presented in this thesis, the opening angle is θ = 0.8,

and α = 0.0025. The Taylor expansion in equation (B.1.8) is calculated to the
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quadrupole moment (n = 4).

B.1.2 Time integration

Once the gravitational force on a particle is calculated, the position and velocity

of the particle is updated by numerically integrating the equations of motion.

There are several integration schemes from which to choose (see Dehnen & Read,

2011, for a detailed description), which include the Euler, leapfrog and Hermite

integrators, in increasing order of accuracy.

The Euler Integrator

The Euler method is the most basic integrator. It updates first the particle

velocity, which is then used to update position. Both quantities are calculated at

each time-step:

xk+1 = xk + vk+1∆t; vk+1 = vk + ak∆t, (B.1.12)

which yields:

xk+1 = xk + vk∆t+ ak∆t
2. (B.1.13)

However, a quick comparison to the Taylor expansion:

xk+1 = xk +
ẋk
1!

∆t+
ẍk
2!

∆t2 ... (B.1.14)

shows that equations (B.1.12) are only first order accurate. The error introduced

from this method is much larger than the second order Leapfrog integrator de-

scribed below.

The Leapfrog Integrator

Unlike the Euler integration, the Leapfrog integrator evaluates the velocity halfway

between each time-step (k± 1/2) and the acceleration and position at each time-
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step (k):

vk+ 1
2

= vk− 1
2

+ ak∆t; xk+1 = xk + vk+ 1
2
∆t. (B.1.15)

Because vk = vk+ 1
2
− ak∆t/2, equations (B.1.15) can be combined to show:

xk+1 = xk + vk∆t+
ak∆t

2

2
, (B.1.16)

which is the same as the Taylor expansion up to second order (equation B.1.14).

This second order accuracy method of integration is used in GCD+.

The Hermite integrator

Hermite integration schemes are higher order schemes that make use of higher

time derivatives of the position. For example, the time derivative of the accel-

eration, termed the jounce, enters into the equation for the velocity, and the

acceleration enters into the equation for the position:

vk+1 = vk +
1

2
(ak + ak+1)∆t+

1

12
(jk − jk+1)(∆t)2,

xk+1 = xk +
1

2
(vk + vk+1)∆t+

1

12
(ak − ak+1)(∆t)2.

(B.1.17)

where j is the jounce. The Hermite integration scheme can be thought of as a

higher order generalisation of the leapfrog, because if the terms quadratic in ∆t

are neglected in equation (B.1.17), and the terms linear in ∆t are written in terms

of half-steps, equations (B.1.15) in the leapfrog integration scheme are recovered.

Individual Time-step scheme

The accuracy of the time integration of particle motion depends on the size of

the time-step employed in the integrator. Small time-steps yield a smoother

evolution of the orbital motion. However, such small time-steps are impractical

to use for every particle because the computational demand is much too high.

In addition, while short time-steps are important for particles in dense regions

of the galaxy where the force can change rapidly owing to the close proximity of

neighbouring particles, they are unnecessary in the outer regions of the galaxy

where the change is relatively slow. Therefore, particles in low dense regions can
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be integrated over larger time-steps than particles in high dense regions, with

negligible damage to the accuracy of their integrated motion. Therefore, it is in

the interest of the simulation speed and accuracy to use individual time-steps,

whereby ∆ti is calculated individually for each particle. The choice of ∆ti for

particles that follow collisionless dynamics is given by

∆ti = 0.2(0.5ε/|dvi/dt|)1/2, (B.1.18)

where ε is the gravitational softening. This ensures that the velocities and po-

sitions of particles with large accelerations are updated after short time-steps

in order to accurately integrate the orbit. For particles whose next time-step is

longer than that of the short time-step particles, the position and velocity are

evaluated by Euler integration, i.e.,

vk+1 = vl + (tk+1 − tl) · al,

vk+1/2 = vl + 0.5(tk+1 − tl) · al,

xk+1 = xl + (tk+1 − tl) · vk+1/2,

(B.1.19)

where k and l represent the short and long time-step respectively, tk+1 is the

next time-step and tl is the time when the acceleration, al, of the long time-step

particle was last calculated. The acceleration of long time-step particles (and

therefore their new time-step sizes) is updated only after their individual time-

steps. The Euler integration at smaller time-step sizes described here increases

the accuracy of the force contribution from long time-step particles to short time-

step particles. This integration scheme ensures the accurate global integration of

the entire system of particles forward in time.

B.2 Smoothed Particle Hydrodynamics

There are two principal methods that are used to model hydrodynamics: Eulerian

and Lagrangian. The Eulerian method evaluates the properties of a flow field,

e.g. velocity, at each fixed point in space and time. Conversely, the Lagrangian

scheme follows the hydrodynamics of individual fluid elements or particles as they

are advected by the flow. Smoothed particle hydrodynamics (first introduced by

Lucy, 1977; Gingold & Monaghan, 1977) is a method that adopts the Lagrangian
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Figure B.3: A group of neighbour particles found within a sphere (drawn as a 2-D
circle for simplicity) of radius equal to one smoothing length, hi.

concept of solving the hydrodynamical equations by following the motion of in-

dividual particles. The hydrodynamical quantities are “smoothed” by estimating

their values at each particle position from a summation of weighted contributions

from neighbouring particles.

For any physical value, f , a smoothed interpolated version can be defined by

its convolution with a smooth, differentiable kernel, W (x, h):

f(x) =

∫
V

f(x′)W (|x− x′|, h)dx′, (B.2.1)

given that
∫
V
W (x, h)dx′ = 1, where h is the smoothing length. Equation (B.2.1)

is equivalent to

f(x) =

∫
V

f(x′)

ρ(x′)
W (|x− x′|, h)ρ(x′)dx′, (B.2.2)

where ρ(x) is the density at position x. In a system of particles, the value of

the quantity is known at a sample of discrete points, xi. Provided the points

sufficiently sample the kernel volume, equation (B.2.2) can be discretised on to

a set of particles of m = ρ(x′)dx′, and becomes an expression for the smoothed
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field at the i-th particle position:

f(xi) ≈
∑
j

mj

ρj
f(xj)W (|xi − xj|, h), (B.2.3)

where mj, ρj and xj are the mass, density and position of the j-th particle

respectively. Equation (B.2.3) represents the backbone of SPH formalisms, in

which the quantity, f , is continuous and differentiable because operators act on

the kernel which is itself a smooth function. The density of the i-th particle is

expressed as

ρi =
∑
j

mjW (|xi − xj|, hi), (B.2.4)

where ρi = ρ(xi), and hi is the smoothing length of the i-th particle which is

schematically described in Fig. B.3. The velocity field can be smoothed and

its derivative taken to estimate the local velocity divergence (Monaghan, 1992;

Price, 2012):

〈∇ · v〉i = − 1

ρi

∑
j

mjvij · ∇iWij(hi), (B.2.5)

where vij = vi − vj and Wij(hi) = W (|xi − xj|, hi). The x-component of curl is

〈∇ × v〉i,x = − 1

ρi

∑
j

mj[vij,z∇i,yWij(hi)− vij,y∇i,zWij(hi)], (B.2.6)

where vij,z is the magnitude of the z-component velocity difference between the

i-th and j-th particle. The smoothing kernel follows a piece-wise polynomial

form:

Wij(hi) =
8

πh3
i


1− 6(rij/hi)

2 + 6(rij/hi)
3 if 0 ≤ rij/hi ≤ 1/2,

2[1− (rij/hi)]
3 if 1/2 ≤ rij/hi ≤ 1,

0 if rij/hi > 1,

(B.2.7)
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where rij = |xi − xj|. This is the spherically symmetric spline (as used by

Monaghan & Lattanzio, 1985; Steinmetz, 1996) kernel that vanishes outside of a

sphere of radius hi, designated as the smoothing length (see Fig. B.3). We adopt

the spline kernel of equation (B.2.7) because it has been shown to be more stable

with a low number of neighbour particles than more sophisticated kernels recently

suggested by several authors (e.g. Read et al., 2010; Dehnen & Aly, 2012). The

smoothing length of the i-th particle is defined to depend on the smoothed density

of the particle following

hi = η

(
mi

ρi

)1/3

. (B.2.8)

The final value of the smoothing length is found by solving equation (B.2.8) iter-

atively until the relative change between two values is less than 10−3 (see Price

& Monaghan, 2007; Kawata et al., 2013b). The relationship between smoothing

length and density in equation (B.2.8) means that particles in relatively dense

regions of the simulated galaxy have shorter smoothing lengths and higher spatial

resolution, whereas those in lower dense regions have longer smoothing lengths.

This ensures that each particle has the same number of neighbour particles (i.e.

particles within the smoothing length) if the particles are distributed homoge-

neously. The number of neighbour particles can be scaled by parameter η, which

we take to be η = 3.0, which corresponds to 113 neighbour particles.

B.2.1 SPH Equations of Motion

The equations that govern the fluid dynamics in SPH are derived using a La-

grangian formalism. The Lagrangian of a self-gravitating inviscid ideal gas can

be split into two parts: a hydrodynamical and a gravitational part

L = Lhyd + Lgrav =

∫
ρ

(
v2

2
− u
)
dV −

∫
ρΦdV, (B.2.9)

where ρ is the density and u is the internal energy per unit mass of the gas. Fol-

lowing Gingold & Monaghan (1982); Springel & Hernquist (2002), the Lagrangian
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is discretised into the case for a system of point mass particles:

L = Lhyd + Lgrav =
∑
j

mj

(
v2
j

2
− uj

)
−
∑
j

mjΦj. (B.2.10)

The Euler-Lagrange equations for a system of particles are

d

dt

∂L

∂vi
=
∂L

∂xi
, (B.2.11)

for i = 1, ....N . This formalism yields equations of motion containing hydro-

dynamical and gravitational terms that contribute to the acceleration of a gas

particle, and conserves mass, momentum and energy exactly (if integrated per-

fectly).

Hydrodynamical forces

For the hydrodynamical part of the Lagrangian, Lhyd, we have

mi
dvi
dt

=
∂Lhyd

∂xi
= −

∑
j

mj
∂uj
∂xi

= −
∑
j

mj
∂uj
∂ρj
· ∂ρj
∂xi

. (B.2.12)

The last term in equation (B.2.12) is found by considering the properties of an

inviscid gas. In the absence of shocks and thermal conduction, the entropy, A, of

the gas is constant i.e. ∂A/∂t = 0. In this case, the internal energy is expressed

as

du = TdA− PdV =
P

ρ2
dρ, (B.2.13)

where T , P and V are the temperature, pressure and volume of an element of

gas respectively. Therefore equation (B.2.12) can be written as:

mi
dvi
dt

= −
∑
j

mj
Pj
ρ2
j

∂ρj
∂xi

. (B.2.14)

The remaining partial differentiation in equation (B.2.14) represents the total

variation of the density with respect to the xi coordinate and the smoothing

length, h, which is allowed to adapt according to the local density (equation
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B.2.8). It is given as (see Appendix for derivation)

dρj
dxi

= Ω−1
j ∇iρj, (B.2.15)

where the ∇i denotes the differentiation with respect to xi with the smoothing

lengths held constant, and

Ωi =

(
1 +

hj
3ρj
·
∑
j

mj
∂Wij

∂hj

)
. (B.2.16)

The above is a correction term that takes into account the variable smoothing.

In the fixed smoothing length regime, Ωi = 1, and the correction vanishes. Note

that the inclusion of this term drastically reduces the force integration error in

the case of variable smoothing (Springel & Hernquist, 2002; Price & Monaghan,

2007).

The hydrodynamic component of the equation of motion is written as

dvi
dt

= −
∑
j

mj

(
Pi

Ωiρ2
i

∇iWij(hi) +
Pj

Ωjρ2
j

∇iWij(hj)

)
, (B.2.17)

where Wij(hi) = W (rij, hi), and the gradient of the scalar smoothing kernel is

∇iWij(hi) =
∂Wij(hi)

∂xi
=
∂Wij(hi)

∂rij
· xi − xj
|xi − xj|

. (B.2.18)

Gravitational forces

The gravitational part of the momentum equation is derived from the gravita-

tional part of the Lagrangian, Lgrav, in the same way:

Lgrav = −G
2

∑
j

∑
k

mjmkφjk(hj), (B.2.19)
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where φjk is the gravitational potential kernel between particle j and particle k
1. The spatial derivative of this is:

∂Lgrav

∂xi
= −G

2

∑
j

∑
k

mjmk

(
∂φjk(hj)

∂|xjk|
∂|xjk|
∂xi

+
∂φjk(hj)

∂hj

∂hj
∂ρj

∂ρj
∂xi

)
(B.2.20)

where

∂|xjk|
∂xi

=
xj − xk
|xj − xk|

(δji − δki). (B.2.21)

Substituting this and equation (B.2.15) into equation (B.2.20) yields the final

form of the momentum equation is given as

dvi
dt

= −G
∑
j

mj

2

(
∂φij(hi)

∂|xij|
+
∂φij(hj)

∂|xij|

)
xi − xj
|xi − xj|

−G
2

∑
j

mj

(
ζi
Ωi

∂Wij(hi)

∂xi
+
ζj
Ωj

∂Wij(hj)

∂xi

)
−
∑
j

mj

(
Pi

Ωiρ2
i

∇iWij(hi) +
Pj

Ωjρ2
j

∇iWij(hj)

)
,

(B.2.22)

where the last line is the hydrodynamical term added from equation (B.2.17),

and

ζi =
∂hi
∂ρi

∑
j

mj
φij(hi)

∂hi
. (B.2.23)

The only derivatives to be calculated from equation (B.2.22) are spatial deriva-

tives of the gravitational kernel functions. We use the cubic spline (Price &

1Note that for gas particles the softening length is always equal to the smoothing length,
and therefore the softening length is variable.



B.2. Smoothed Particle Hydrodynamics 167

Monaghan, 2007), of which the derivatives are:

φ′(rij, hi) =


4
h2i

(8
3
q − 48

5
q3 + 8q4) if 0 ≤ q < 1/2;

4
h2i

(16
3
q − 12q2 + 48

5
q3 − 8

3
q4 − 1

60q2
) if 1/2 ≤ q < 1;

1/r2
ij if q ≥ 1,

(B.2.24)

and

∂φ

∂hi
=


2
h2i

(−8q2 + 24q4 − 96
5
q5 + 7

5
) if 0 ≤ q < 1/2;

2
h2i

(−16q2 + 32q3 − 24q4 + 32
5
q5 + 8

5
) if 1/2 ≤ q < 1;

0 if q ≥ 1,

(B.2.25)

where q = rij/hi, and rij = |xi − xj|.

B.2.2 Entropy Equation

The equations of motion described in equation (B.2.22) follow the evolution of

an inviscid gas, for which the equation of state is

Pi = Aiρ
γ
i , (B.2.26)

where γ is the adiabatic index. The function, Ai, is an entropy term, whose

evolution follows (Springel & Hernquist, 2002)

dAi
dt

= 0, (B.2.27)

for an isentropic flow (the full entropy equation for the galaxy simulation is given

in equation (B.3.1)). The entropy may be related to the thermal energy by

substituting equation (B.2.26) into equation (B.2.13), which gives

ui =

∫
Aργ

ρ2
dρ = Ai

ργ−1
i

γ − 1
. (B.2.28)
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B.2.3 Artificial Viscosity

Euler’s equation of motion (B.2.22) is based on an inviscid, isentropic gas. To

treat shocks, the hydrodynamics are required to be modified by artificial viscos-

ity. Artificial viscosity provides an additional force term to the Euler equation

(B.2.22) analogous to a drag force, and has the form (Morris & Monaghan, 1997;

Kawata et al., 2013b): (
dv

dt

)
diss,i

=
∑
j

Qij (B.2.29)

where

Qij =

−mj
αAV
ij (t)vsigvij ·eij

ρij
· ∇iWij, if xij · vij < 0,

0, otherwise,
(B.2.30)

where eij = (xi − xj)/|xi − xj|, ρij = (ρi + ρj)/2 and

∇iWij =
1

2

{
1

Ωi

∇iWij(hi) +
1

Ωj

∇iWij(hj)

}
, (B.2.31)

is the symmetrised kernel gradient. The mean signal speed at which information

can propagate between two particles is given by

vsig =
cs,i + cs,j − βAV vij · eij

2
, (B.2.32)

where cs,i is the sound speed of the i-th particle and βAV = 3.

Equation (B.2.30) is non-zero for two particles that move towards one another.

This criterion is designed to model bulk viscosity caused by shocks. However, this

criterion can also be satisfied in pure shear flows. In the case of a differentially

rotating gas disc, particles at different radii may possess at least one velocity

component that satisfies xij · vij < 0, which would lead to an unwanted non-zero

artificial viscosity between them. In order to minimise this effect, the amount of

artificial viscosity introduced is controlled according to the parameter,

αAVij (t) =
1

4
(αAVi (t) + αAVj (t))(fi + fj), (B.2.33)
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where (Balsara, 1995):

fi =
|〈∇ · v〉i|

|〈∇ · v〉i|+ |〈∇ × v〉i|+ 0.0002cs,i/hi
, (B.2.34)

which acts to suppress artificial viscosity in pure shear flows. The viscosity coef-

ficient of the i-th particle, αAVi (t), evolves according to:

dαAVi (t)

dt
= −α

AV
i (t)− αAVmin

τi
+ Si, (B.2.35)

as suggested by Morris & Monaghan (1997). The minimum value for the artificial

viscosity coefficient of any particle is set as αAVmin = 0.5, and

τi =
hi

0.2cs,i
, (B.2.36)

is a decay timescale. The source term for the artificial viscosity coefficients is

Si = max(−∇i · vi, 0)(αAV
max − αAV

i (t)), (B.2.37)

where αAVmax = 2.0. For the case of no compression i.e. ∇ · v > 0, the source term

is equal to zero, and αAVi decays to αAVmin. For the case of strong compression, e.g.

strong shocks, the source term increases αAVi up to values of αAVmax. The scheme

ensures that the artificial viscosity in equation (B.2.33) is regulated as required1.

Entropy Equation

Hydrodynamical shocks cause dissipation of thermal energy as a consequence of

viscosity. In this case, the hydrodynamical flow ceases to be isentropic, and the

evolution the entropy parameter, Ai, is modelled by

dAi
dt

=
γ − 1

ργ−1
i

(
du

dt

)
diss

. (B.2.38)

Following Price (2008), the dissipation of thermal energy can be derived from the

viscosity term in equation (B.2.30) and the conservation of energy, e = 1
2
v2 + u,

1Note that there are other artificial viscosity switches available (e.g. Cullen & Dehnen,
2010).
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which are related by

du

dt
=
de

dt
− v · dv

dt
. (B.2.39)

The thermal dissipation becomes(
du

dt

)
diss

=
∑
j

Qu,ij +
∑
j

QAC,ij, (B.2.40)

where the artificial viscosity term is given as

Qu,ij =


mjvsig
ρij

αAV
ij

2
(vij · eij)2 · eij · ∇iWij, if xij · vij < 0,

0 otherwise.
(B.2.41)

B.2.4 Artificial thermal conductivity

Thermal energy dissipation in the form of heat flows from hot to cold particles is

modelled by artificial thermal conductivity (Rosswog & Price, 2007; Price, 2008),

which appears in equation (B.2.40) as

QAC,ij =
mjvsig
ρij

αCij(ui − uj) · eij · ∇iWij, (B.2.42)

where αCij(t) = (αCi (t) + αCj (t))/2.

The amount of thermal conductivity is controlled by the parameter, αCi (t),

that evolves as

dαCi (t)

dt
= −α

C
i (t)

τi
+ SCi , (B.2.43)

where the source term is

SCi = 0.05hi|∇2ui|/
√
ui, (B.2.44)

and

∇2ui = 2
∑
j

mj
ui − uj
ρj

eij · ∇iWij

rij
. (B.2.45)
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It is clear that in this scheme, thermal conductivity is applied whereever a tem-

perature difference is significant: the magnitude of the term in equation (B.2.42)

is proportional to the thermal energy difference between the i-th particle and

its neighbours, whose temperatures evolve according to the same principle. The

thermal conductivity scheme is able to resolve Kelvin-Helmholtz instabilities that

occur at contact discontinuities between shearing flows of different densities and

temperatures (Price, 2008; Kawata et al., 2013b). Thus, the scheme rectifies a

long-standing fundamental problem in the SPH method1 (Agertz et al., 2007).

B.2.5 Time integration scheme

To evolve the system, the equations of motion (B.2.22) and the entropy equation

(B.2.38) must be integrated forward over time. The leapfrog integration method

described in equation (B.1.15) is used to integrate equations (B.2.22). To in-

tegrate the entropy equation (B.2.38), the trapezoidal rule (Hernquist & Katz,

1989) is employed:

Ak+1
i = Aki + 0.5

[(
dAi
dt

)k
+

(
dAi
dt

)k+1
]

∆ti. (B.2.46)

The complete entropy equation (see equation (B.3.1) in §B.3 below) includes

terms for a heating rate from UV-background, H, and a radiative cooling rate, Λ,

that is very sensitive to temperature, which itself is related to entropy through

equation (B.2.28). Therefore, equation (B.2.46) must be solved iteratively. The

first step is to assume that the adiabatic part of the entropy equation (eq. B.2.38)

is equal at time-steps k and k+1: (dAi/dt)
k
ad = (dAi/dt)

k+1
ad . This approximation

modifies equation (B.2.46) to give an estimate for the entropy, Ãk+1
i , given by

(here we ignore the stellar energy feedback terms in §B.3)

Ãk+1
i = Aki +

(
dAi
dt

)k
ad

∆ti + 0.5

[
(γ − 1)

(ρki )
γ−1

−Λ(ρki , T
k
i ) +H(ρki , T

k
i )

ρki

+
(γ − 1)

(ρk+1
i )γ−1

−Λ(ρk+1
i , T̃ k+1

i ) +H(ρk+1
i , T̃ k+1

i )

ρk+1
i

]
∆ti.

(B.2.47)

1There are other solutions to this problem besides the artificial conductivity of Price (2008),
such as those described by Read et al. (2010); Saitoh & Makino (2013); Hopkins (2013).
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Equation (B.2.47) is iterated by re-calculating the entropy from the new cooling

and heating rate - holding the adiabatic term constant, until the cooling and

heating rates from equation (B.2.47) converge. Once the cooling and heating

rates are consistent, (dAi/dt)
k+1
ad is estimated from equation (B.2.38) using the

values for ρk+1
i , Ãk+1

i and the estimation of the velocity at the k + 1 time-step

from the leapfrog method:

ṽi
k+1 = v

k+1/2
i + 0.5 aki ∆ti. (B.2.48)

The value for (dAi/dt)
k+1
ad is then inserted into equation (B.2.46) to give the

equation for the corrected entropy,

Ak+1
i = Aki + 0.5

[(
dAi
dt

)k
ad

+

(
dAi
dt

)k+1

ad

]
∆ti

+ 0.5

[
(γ − 1)

(ρki )
γ−1

−Λ(ρki , T
k
i ) +H(ρki , T

k
i )

ρki

+
(γ − 1)

(ρk+1
i )γ−1

−Λ(ρk+1
i , T k+1

i ) +H(ρk+1
i , T k+1

i )

ρk+1
i

]
∆ti.

(B.2.49)

Equation (B.2.49) is then iterated until the values for Ak+1
i , Λ(ρk+1

i , T k+1
i ) and

H(ρk+1
i , T k+1

i ) converge. Thus two sets of iterations of equation (B.2.46) are

required to integrate the entropy and thermodynamic variables.

Individual time-steps

The time-step over which the i-th SPH particle is integrated is given by

∆thyd,i = min(∆tCFL,i ,∆tDYN ,i), (B.2.50)

where ∆tCFL,i is the Courant-Friedrich-Levy condition

∆tCFL,i = CCFL
0.5hi
vdt,ij

, (B.2.51)

where CCFL = 0.2, and vdt,ij = vsig,ij (equation B.2.32), if xij · vij < 0, otherwise

vdt,ij = 0.5(cs,i+cs,j−vij ·eij). The requirement that the force should not change
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Figure B.4: The schematic picture of the leapfrog and FAST methods for the integra-
tion of a self-gravitating fluid. “Kick” refers to momentum exchanges between particles,
and “Drift” refers to the free motions of the particles given their velocity vectors. The
“kick” from hydrodynamical forces is updated twice as frequently as the gravitational
forces. From Saitoh & Makino (2010)

significantly in one time-step is satisfied by

∆tDYN,i = CDYN

(
0.5hi
|dvi/dt|

)1/2

, (B.2.52)

where CDYN = 0.2. The values of CCFL and CDYN are determined from testing

in one-dimensional Riemann problems (Kawata et al., 2013b).

FAST scheme

The code implements the Fully Asynchronous Split Time-Integrator (FAST)

scheme (Saitoh & Makino, 2010), which splits the hydrodynamical contributions

from the pure gravitational contributions to the force (termed “kicks” ) on a SPH

particle, and integrates each at different rates (the scheme is outlined in Fig. B.4).

First, the time-step for the gravitational “kick” is assigned a preliminary value

through the calculation of

∆t̃grav,i = CDYN
0.5hi

|(dvi/dt)grav|
, (B.2.53)
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where (dvi/dt)grav is the acceleration from gravity only. Then, ∆t̃grav,i is passed

into the inequality

2l+1 ×∆thyd,i ≥ ∆t̃grav,i ≥ 2l ×∆thyd,i, (B.2.54)

where ∆thyd,i is calculated in equation (B.2.50) and l ≥ 0 and is a natural number.

The value of l that satisfies this inequality is used to set the time-step for the

gravitational part as

∆tgrav,i = 2l∆thyd,i. (B.2.55)

Because l is a positive integer, the “kicks” associated with gravity and hydrody-

namics are asynchronous as demonstrated in Fig. B.4. The benefit of this scheme

is to reduce the computational cost of the gravitational force calculations without

damaging the accuracy of the time integration.

Time-step limiter

The above scheme works well when the particles in low dense regions either remain

in low dense regions or move to a higher dense region on a timescale slower than

their time-step. However, this is not always the case. For example, a supernova

explosion generates a fast moving shock front, which propagates a dense shell of

gas often into relatively low dense ambient gas. The time-step of the low dense

gas can be larger than the arrival time of the supernova shell, in which case the

low dense gas particle would not feel the shell until after it passes the gas particle.

To remedy this caveat, a time-step limiter (suggested by Saitoh & Makino, 2009)

is implemented, which sets an upper limit on the time-step size:

∆tlim,i ≤ 4×min(∆thyd ,j ), (B.2.56)

where ∆tlim,i is the time-step limit of the i-th particle, and ∆thyd,j is the time-

step of the j-th neighbour particle. At every time-step, ∆thyd,i is compared with

the time-step of each of its neighbour particles, ∆thyd,j. If ∆thyd,i is greater than

four times the smallest of these, ∆thyd,i > 4×min(∆thyd,j), then the time-step of

the i-th particle is lowered to ∆thyd,i = 4×min(∆thyd,j). Durier & Dalla Vecchia

(2012) performed test simulations of a point-like explosion to mimic a super-
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Figure B.5: Left panel : The top indicates the cooling rate (solid lines) and heating
rate (dotted lines) for nH = 1 cm−3 density gas as a function of temperature. Colour
indicates [Fe/H] = −3, −2, −1, 0, +1 from blue to red. The bottom indicates the mean
molecular weight as a function of temperature. Right : The same as the left panel but
for a nH = 1000 cm−3 density gas.

nova explosion, and demonstrated that the expansion of the supernova bubble is

resolved only when the time-step limiter is implemented.

B.3 Radiative Cooling and Star formation

B.3.1 Gas Heating and Radiative Cooling

In the interstellar medium of galaxy systems, gas can be heated by stellar radia-

tion through the processes such as photoionisation, supernovae and stellar winds.

Gas is also subject to cooling through processes such as radiative cooling, which

provides an effective way to radiate thermal energy away by the de-excitation
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of ions from high to low energy states (see Katz et al., 1996, for example of

implementing these processes in galaxy formation simulations). In general, these

processes are not resolved in simulations, but are included with sub-grid mod-

elling. In this section, I outline how heating and cooling rates of gas particles are

calculated, and how they are implemented in the simulation code.

The heating and cooling of gas gives rise to additional terms in the entropy

equation (B.2.38), which now reads

dAi
dt

=
(γ − 1)

ργ−1
i

[(
du

dt

)
diss

+
−Λi +Hi

ρi
+ ∆ESN + LSW

]
, (B.3.1)

where Λi/ρi, Hi/ρi, ∆ESN and LSW are the cooling rate per unit mass, UV-

background heating rate per unit mass, energy feedback per unit mass from su-

pernova and stellar winds1 within each time-step of the i-th particle, respectively.

Radiative cooling can occur through the de-excitation of metal lines, and so Λi

and Hi depend on the metallicity of the gas as well as the temperature and den-

sity. The top and bottom panels of Fig. B.5 show how Λi/n
2
H , Hi/n

2
H and the

mean molecular weight, µ, depend on temperature and metallicity. The calcu-

lation is made by CLOUDY v08.00 (Ferland et al., 1998), (similar method to

Robertson & Kravtsov, 2008), for gas with a density of nH = 1 cm−3 (left) and

nH = 1000 cm−3 (right). Heating is modelled from the UV background pro-

duced by quasars, which is the dominant source at low redshifts (see for example

Fig. 8 of Haardt & Madau, 2012). We adopt the Haardt & Madau (1996) UV

background radiative transfer model, and CLOUDY provides the heating rate of

gaseous media according to the background UV flux and cross-sectional density

of a given species (see for example Katz et al., 1996, for a simplified version). In

order to avoid overcooling and catastrophic fragmentation, a thermal energy floor

following Robertson & Kravtsov (2008) is employed. This ensures that the Jeans

mass is kept above 2Nnbmp, where Nnb is the number of neighbour particles and

mp is the particle mass.

1The energy input from supernovae and stellar winds are non-zero only for “feedback parti-
cles”, which make up a fraction of particles that specifically model feedback from massive stars
during the transition from star to gas particle (see §B.3.4).
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B.3.2 Star formation

Star formation is modelled by changing gas particles into a star particles. A gas

particle is eligible for star formation if the following criteria are met:

• The gas density must be greater than a pre-determined number density

threshold, nH,th.

• The velocity field must be convergent: ∇ · vi < 0.

The star formation rate (SFR) is given by the Schmidt law (see Kawata & Gibson,

2003)

dρ∗
dt

= −dρg
dt

=
C∗ρg
tg

, (B.3.2)

where C∗ is a dimensionless parameter, ρ∗ and ρg are the mass density of stellar

and gas material respectively, and

tg =
√

3π/16Gρg, (B.3.3)

is the dynamical time, which is longer than the cooling time-scale in the region

eligible to form stars. In reality, the form of the star formation rate in equation

(B.3.2) means that the gas mass depletes exponentially over time as gas becomes

locked up into stars during star formation. Therefore the amount of gas converted

to stars after a time interval, ∆t, is

∆m∗ = mg,0 −mg,0e
−C∗∆t/tg , (B.3.4)

where mg,0 is the initial gas mass at the beginning of the time interval. However,

the discrete particle nature of SPH means that it is not practical to change

∆m worth of material into stars every ∆t (although see Springel & Hernquist,

2003). In GCD+, a particle is either completely star or completely gas, therefore

the fractional amount of gas turned into stars in equation (B.3.4) serves as a

probability that a gas particle changes into a star particle. This is expressed as

p∗ ≡
∆m∗
mg,0

= 1− e−C∗∆t/tg . (B.3.5)
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This probability increases with gas particle density, because equation (B.3.3)

shows that as ρg increases, the dynamical time, tg, decreases, which in turn

ensures a larger negative exponent in equation (B.3.5).

In this scheme, the global star formation rate follows the Schmidt law because

the probability corresponds to a fraction of newly formed star particles in a sample

of gas particles that ensures that the total amount of star formation is consistent

with the Schmidt law. In addition, the conversion of whole star particles into

whole gas particles is spread over time which avoids extreme numbers of new

stars being born at once (as long as ∆t is reasonably small), and guarantees mass

conservation because all gas and star particles in the simulation are kept at the

same mass. This suppresses numerical fluctuations in the gravitational potential.

Once a gas particle is converted into a star particle, the particle follows colli-

sionless dynamics, and ceases to be influenced by hydrodynamical forces.

B.3.3 Initial Mass Function

Owing to computational restrictions, galactic discs are simulated with approx-

imately N = 106−7 number of particles, which means that for a simulation of

Milky Way size, each star/gas particle holds masses of mp ∼ 104−5 M�. Masses

of this order represent a group of stars rather than a single star, and therefore

a star particle is regarded as a group of stars of individual masses distributed

among the initial mass function (IMF). In the studies presented in this thesis,

the IMF is assumed to be universal and of the Salpeter (1955) form. The Salpeter

IMF describes the relative fraction of stars in a population, Φ(m), born in a given

initial mass range:

Φ(m)dm = Am−(1+x)dm, (B.3.6)

where x = 1.35 is the Salpeter index. The coefficient A is determined by the

normalisation over the entire initial mass range, whose lower and upper limits

are set to Ml = 0.1 M� and Mu = 100 M� respectively.
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B.3.4 Feedback

GCD+ incorporates mass, energy and metal feedback from supernovae types Ia

(SNe Ia) and II (SNe II) and stellar winds based on the assumed IMF (as described

in Kawata et al., 2013a). In this section, I describe how each source of feedback

is modelled.

First, every star particle in the simulation is assigned a mass group ID number,

which ranges from 1 to 61 (61 is chosen as a compromise between sampling

the stellar mass range of the IMF and the resolution i.e. number of neighbour

particles). In this feedback scheme, 61 particles describe a whole mass range of

stars in a star cluster, although in practice, all particles are kept at the same

mass and maintain a constant mass resolution. A star cluster with a range of

stellar masses corresponding to the assumed Salpeter IMF will undergo a mass

loss, in the form of SNe Ia and SNe II, equal to about 30% of the original cluster

mass in a Hubble time. Therefore, star particles with an ID between 1 and 19 are

used to describe the mass loss, energy feedback and metal enrichment from SNe

Ia and SNe II. These are called feedback particles. Particles with smaller IDs are

responsible for feedback from higher mass stars.

Depending on their ID and age, a star particle becomes a feedback particle for

a period of time as described below during which the feedback effects take place.

Afterwards, the feedback particle becomes a normal gas particle. The transition

of a star to a gas particle models the mass loss from the cluster and ensures that

the particle mass of a gas and star particle is always equal.

The increased pressure of the feedback particle affects neighbouring gas par-

ticles through the Euler equation (B.2.22). For simplicity, feedback particles do

not feel any reaction from the neighbour particles and follow the collisionless N -

body equation (see Pelupessy et al., 2004). The thermal energy of the feedback

particles is calculated in the SPH scheme with radiative cooling and additional

heating from stellar winds and SNe Ia and SNe II.

The metals produced by SNe II, SNe Ia and intermediate-mass stars are dis-

tributed from the feedback particles to neighbouring gas particles through the

metal diffusion scheme of Greif et al. (2009), i.e. the metal diffusion applied to

the feedback particles and normal gas particles is the same. Once the feedback

particles are old enough, they become normal gas particles. The new gas parti-

cles inherit the gas density, temperature and metal abundance from the feedback
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particles.

SNe II particles

SNe II eject approximately 13% of the mass of a star cluster following the assumed

IMF and the remnant masses calculated in Woosley & Weaver (1995). Therefore,

each star particle whose ID is in the range 1-8 becomes a feedback particle, or

“SNeII particle”, which are responsible for the energy and metals produced by

stellar winds and SNe II. All SNe II particles are identical.

A star particle in the ID range 1-8 becomes a SNeII particle as soon as it

is born, which means that they are effective immediately. For example, SNe II

particles of solar metallicity are responsible for mass loss and feedback from 100

to 7 M� stars from the time they are born until they reach the age of a 7 M�

star, after which time they become a normal gas particle.

Each supernova produces thermal energy ESN ergs. Stellar winds from each

massive star (defined as M∗ > 15 M�) produces thermal energy of LSW ergs s−1,

which is added to the SNe II particles at a rate consistent with their metallicity

and age. To find the number of supernova, NSN , per cluster, the initial mass

function must be integrated over the mass range in which supernovae can occur.

Each stellar mass corresponds to a lifetime, therefore the number of supernovae

that occur in a time interval, ∆t = τ2−τ1, where τ1 and τ2 are time-steps since the

star particle was born (i.e. stellar lifetimes), is equal to the number of supernovae

that occur in the corresponding stellar mass range. The number is calculated as

NSN = mcl ×
∫ m2

m1
Φ(m)dm∫Mu

Ml
Φ(m)mdm

= mcl ×
∫ m2

m1
m−(1+x)dm∫Mu

Ml
m−xdm

= mcl ×
x− 1

x

(1− (m1/m2)−x)m−x2

(1− (Ml/Mu)−x+1)M−x+1
u

(B.3.7)

where m2 and m1 are the masses of stars that have lifetimes τ2 and τ1 respectively,

Ml = 8 M� and Mu = 100 M� are the lower and upper masses for SNe II, and

mcl is the mass of the cluster (61× the mass of a star particle). The total energy

released in the form of SNe II per cluster between time interval, ∆t, is NSN×ESN .

Because there are 8 SNeII particles per 61 star particle cluster, each SNeII particle
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receives 1/8th of the energy and metals1 produced by a star cluster of 61 star

particles, depending on the age and metallicity. This energy is received by only

the SNeII particle that produced it at a rate governed by the above equation,

which raises the pressure and temperature of the SNeII particle.

Radiative cooling is turned off until either the age of the SNeII particle ex-

ceeds the lifetime of a 8 M� star or the cooling time becomes longer than the

dynamical time. Feedback energy is not distributed to neighbouring particles,

which guarantees that the SNeII particles are hot enough to avoid rapid cooling

that is expected in dense regions associated with star formation (e.g. Kay et al.,

2002; Booth et al., 2007; Dalla Vecchia & Schaye, 2012). The sustained high

pressure of the SNe II particles means that the expansion of individual bubbles

driven by the pressure force in the Euler equation must be resolved. Kawata

et al. (2013b) demonstrates that the new version of GCD+ is able to resolve the

expansion of a feedback bubble thanks to the small time-steps employed by the

time-step limiter (Saitoh et al., 2008).

Other feedback particles

A similar algorithm is applied to star particles of IDs in the range 9-19. These

star particles turn into normal gas particles as a function of their age, which

models the rest of the 30% mass loss of the cluster and metal enrichment from

SN Ia feedback.

Unlike the SNe II particles, each ID number in this range corresponds to a

different stellar mass range. For example, the star particle for which ID = 9 with

solar metallicity represents stars with masses from 7 to 5.6 M�. When the age of

the particle exceeds the lifetime of a 7 M�, it becomes a feedback particle. The

particle inherits the original metal abundance of the star and receives additional

metals that the stars in this mass range produce (van den Hoek & Groenewegen,

1997), which are then diffused to neighbouring particles. The thermal energy is

calculated with the SPH scheme, and the additional pressure from these feedback

particles is applied to their neighbour particles. Radiative cooling is turned on

during the mass loss. Once the particle becomes older than the lifetime of a 5.6

1To calculate the metal yield per cluster as a function of time, the integrands on the top
and bottom of equation (B.3.7) are multiplied by the metal production for stars of given mass,
as calculated in Woosley & Weaver (1995).



B.3. Radiative Cooling and Star formation 182

M� star, the particle becomes a normal gas particle.

The same algorithm is applied to particles in the ID range 10-19, which are

each responsible for a different stellar mass range. The particle whose ID is

high enough to cover the mass range of SNe Ia progenitors receive the energy

and metals from SNe Ia as a function of their age. For these feedback particles,

radiative cooling is turned on.

The main free parameters in GCD+ include the energy per supernova, ESN

and the stellar wind energy per massive star, LSW , which together control the

strength of feedback and the effect of feedback on star formation.
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C. & Trowland, H. (2012). The Sydney-AAO Multi-object Integral field

spectrograph. MNRAS, 421, 872–893. 146

Cullen, L. & Dehnen, W. (2010). Inviscid smoothed particle hydrodynamics.

MNRAS, 408, 669–683. 171



References 187

Dalla Vecchia, C. & Schaye, J. (2012). Simulating galactic outflows with

thermal supernova feedback. MNRAS, 426, 140–158. 183

de Jong, R. (2012). 4MOST: 4-metre Multi-Object Spectroscopic Telescope. In

Science from the Next Generation Imaging and Spectroscopic Surveys . 107

de Jong, R.S. (1996). Near-infrared and optical broadband surface photometry

of 86 face-on disk dominated galaxies. III. The statistics of the disk and bulge

parameters. A&A, 313, 45–64. 78

de Jong, R.S., Simard, L., Davies, R.L., Saglia, R.P., Burstein, D.,

Colless, M., McMahan, R. & Wegner, G. (2004). Structural properties

of discs and bulges of early-type galaxies. MNRAS, 355, 1155–1170. 2

Debattista, V.P. & Sellwood, J.A. (2000). Constraints from Dynamical

Friction on the Dark Matter Content of Barred Galaxies. ApJ, 543, 704–721.

108

Debattista, V.P., Corsini, E.M. & Aguerri, J.A.L. (2002). A fast bar in

the post-interaction galaxy NGC 1023. MNRAS, 332, 65–77. 25

Dehnen, W. & Aly, H. (2012). Improving convergence in smoothed particle

hydrodynamics simulations without pairing instability. MNRAS, 425, 1068–

1082. 165

Dehnen, W. & Read, J.I. (2011). N-body simulations of gravitational dynam-

ics. European Physical Journal Plus , 126, 55–+. 26, 155, 156, 157, 160

Di Matteo, P., Haywood, M., Combes, F., Semelin, B. & Snaith, O.N.

(2013). Signatures of radial migration in barred galaxies: Azimuthal variations

in the metallicity distribution of old stars. A&A, 553, A102. 18, 147

Dobbs, C.L. & Bonnell, I.A. (2008). Simulations of spiral galaxies with an

active potential: molecular cloud formation and gas dynamics. MNRAS, 385,

1893–1902. 72

Dobbs, C.L. & Pringle, J.E. (2010). Age distributions of star clusters in

spiral and barred galaxies as a test for theories of spiral structure. MNRAS,

409, 396–404. 72, 75, 142



References 188

Dobbs, C.L., Theis, C., Pringle, J.E. & Bate, M.R. (2010). Simulations

of the grand design galaxy M51: a case study for analysing tidally induced

spiral structure. MNRAS, 403, 625–645. 15, 144

Dobbs, C.L., Krumholz, M.R., Ballesteros-Paredes, J., Bolatto,

A.D., Fukui, Y., Heyer, M., Mac Low, M.M., Ostriker, E.C. &

Vázquez-Semadeni, E. (2013). Formation of Molecular Clouds and Global

Conditions for Star Formation. ArXiv e-prints . 20

D’Onghia, E., Vogelsberger, M. & Hernquist, L. (2013). Self-

perpetuating Spiral Arms in Disk Galaxies. ApJ, 766, 34. 27, 80, 98, 100,

103, 144

Donner, K.J. & Thomasson, M. (1994). Structure and evolution of long-lived

spiral patterns in galaxies. A&A, 290, 785–795. 26, 77

Dubinski, J. (1996). A parallel tree code. New Astron., 1, 133–147. 159

Durier, F. & Dalla Vecchia, C. (2012). Implementation of feedback in

smoothed particle hydrodynamics: towards concordance of methods. MNRAS,

419, 465–478. 177

Efstathiou, G. & Eastwood, J.W. (1981). On the clustering of particles in

an expanding universe. MNRAS, 194, 503–525. 26

Efstathiou, G., Lake, G. & Negroponte, J. (1982). The stability and

masses of disc galaxies. MNRAS, 199, 1069–1088. 100

Egusa, F., Kohno, K., Sofue, Y., Nakanishi, H. & Komugi, S. (2009).

Determining Star Formation Timescale and Pattern Speed in Nearby Spiral

Galaxies. ApJ, 697, 1870–1891. 21, 22, 57

Elmegreen, D.M. & Elmegreen, B.G. (2014). The Onset of Spiral Structure

in the Universe. ApJ, 781, 11. 4

Elmegreen, D.M., Elmegreen, B.G. & Bellin, A.D. (1990). Statistical

evidence that galaxy companions trigger bars and change the spiral Hubble

type. ApJ, 364, 415–419. 4



References 189

Emsellem, E., Fathi, K., Wozniak, H., Ferruit, P., Mundell, C.G. &

Schinnerer, E. (2006). Gas and stellar dynamics in NGC 1068: probing the

galactic gravitational potential. MNRAS, 365, 367–384. 25

Ferland, G.J., Korista, K.T., Verner, D.A., Ferguson, J.W., King-

don, J.B. & Verner, E.M. (1998). CLOUDY 90: Numerical Simulation of

Plasmas and Their Spectra. PASP, 110, 761–778. 179

Ferreras, I., Cropper, M., Kawata, D., Page, M. & Hoversten, E.A.

(2012). The Swift/UVOT catalogue of NGC 4321 star-forming sources: a case

against density wave theory. MNRAS, 424, 1636–1646. 21, 22, 50, 57, 77, 142

Flynn, C., Holmberg, J., Portinari, L., Fuchs, B. & Jahreiß, H.

(2006). On the mass-to-light ratio of the local Galactic disc and the optical

luminosity of the Galaxy. MNRAS, 372, 1149–1160. 32

Foyle, K., Rix, H.W., Walter, F. & Leroy, A.K. (2010). Arm and Inter-

arm Star Formation in Spiral Galaxies. ApJ, 725, 534–541. 20

Foyle, K., Rix, H.W., Dobbs, C.L., Leroy, A.K. & Walter, F. (2011).

Observational Evidence Against Long-lived Spiral Arms in Galaxies. ApJ, 735,

101. 21, 22, 50, 57, 77, 142

Freeman, K.C. (1970). On the Disks of Spiral and so Galaxies. ApJ, 160, 811.

2

Fuchs, B. (2001). Density waves in the shearing sheet. I. Swing amplification.

A&A, 368, 107–121. 79, 102

Fuchs, B., Dettbarn, C. & Tsuchiya, T. (2005). Density waves in the

shearing sheet. V. Feedback cycle for swing amplification by non-linear effects.

A&A, 444, 1–13. 143

Fujii, M.S. & Baba, J. (2012). Destruction of star clusters due to the radial

migration in spiral galaxies. MNRAS, 427, L16–L20. 105

Fujii, M.S., Baba, J., Saitoh, T.R., Makino, J., Kokubo, E. & Wada,

K. (2011). The Dynamics of Spiral Arms in Pure Stellar Disks. ApJ, 730,

109–+. 26, 27, 34, 54, 72, 83, 85, 97, 100, 105, 108



References 190

Fujimoto, M. (1968). Modeling of gas flow through a spiral sleeve. In Non-stable

Phenomena in Galaxies , vol. 29 of IAU Symposium, 453. 1, 20

Gabbasov, R.F., Repetto, P. & Rosado, M. (2009). On the Bar Pattern

Speed Determination of NGC 3367. ApJ, 702, 392–402. 25

Garcia-Burillo, S., Guelin, M. & Cernicharo, J. (1993). CO in M51 -

Part One - Molecular Spiral Structure. A&A, 274, 123. 21

Gerssen, J., Kuijken, K. & Merrifield, M.R. (1999). The pattern speed

of the bar in NGC 4596. MNRAS, 306, 926–930. 25

Gilmore, G. & Reid, N. (1983). New light on faint stars. III - Galactic struc-

ture towards the South Pole and the Galactic thick disc. MNRAS, 202, 1025–

1047. 2

Gilmore, G. et al. (2012). The Gaia-ESO Public Spectroscopic Survey. The

Messenger , 147, 25–31. 107, 146

Gingold, R.A. & Monaghan, J.J. (1977). Smoothed particle hydrodynamics

- Theory and application to non-spherical stars. MNRAS, 181, 375–389. 50,

163

Gingold, R.A. & Monaghan, J.J. (1982). Kernel estimates as a basis for

general particle methods in hydrodynamics. Journal of Computational Physics ,

46, 429–453. 166

Goldreich, P. & Lynden-Bell, D. (1965). II. Spiral arms as sheared gravi-

tational instabilities. MNRAS, 130, 125–+. 11, 41, 79

Grand, R.J.J., Kawata, D. & Cropper, M. (2012a). The dynamics of stars

around spiral arms. MNRAS, 421, 1529–1538. 25, 27, 30

Grand, R.J.J., Kawata, D. & Cropper, M. (2012b). zDynamics of stars

around spiral arms in an N-body/SPH simulated barred spiral galaxy. MNRAS,

426, 167–180. 25, 27, 49

Grand, R.J.J., Kawata, D. & Cropper, M. (2013). aSpiral arm pitch angle

and galactic shear rate in N-body simulations of disc galaxies. A&A, 553, A77.

78



References 191

Grand, R.J.J., Kawata, D. & Cropper, M. (2014). Orbits of radial migra-

tors and non-migrators around a spiral arm in N-body simulations. MNRAS,

439, 623–638. 105

Greif, T.H., Glover, S.C.O., Bromm, V. & Klessen, R.S. (2009). Chem-

ical mixing in smoothed particle hydrodynamics simulations. MNRAS, 392,

1381–1387. 51, 182

Grosbøl, P., Patsis, P.A. & Pompei, E. (2004). Spiral galaxies observed in

the near-infrared K band. I. Data analysis and structural parameters. A&A,

423, 849–859. 15

Grosbol, P.J. & Patsis, P.A. (1998). Stellar disks of optically flocculent

and grand design spirals. Decoupling of stellar and gaseous disks. A&A, 336,

840–854. 78

Haardt, F. & Madau, P. (1996). Radiative Transfer in a Clumpy Universe.

II. The Ultraviolet Extragalactic Background. ApJ, 461, 20. 179

Haardt, F. & Madau, P. (2012). Radiative Transfer in a Clumpy Universe.

IV. New Synthesis Models of the Cosmic UV/X-Ray Background. ApJ, 746,

125. 179

Haywood, M. (2008). Radial mixing and the transition between the thick and

thin Galactic discs. MNRAS, 388, 1175–1184. 18, 19, 135

Haywood, M., Di Matteo, P., Lehnert, M.D., Katz, D. & Gómez, A.
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Roca-Fàbrega, S., Valenzuela, O., Figueras, F., Romero-Gómez, M.,
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