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Abstract 

Quantitative MRI offers the possibility to produce objective measurements of tissue 

physiology at different scales. Such measurements are highly valuable in applications such 

as drug development, treatment monitoring or early diagnosis of cancer. From 

microstructural information in diffusion weighted imaging (DWI) or local perfusion and 

permeability in dynamic contrast (DCE-) MRI to more macroscopic observations of the local 

intestinal contraction, a number of aspects of quantitative MRI are considered in this thesis. 

The main objective of the presented work is to provide pre-processing techniques and 

model modification in order to improve the reliability of image analysis in quantitative MRI. 

Firstly, the challenge of clinical DWI signal modelling is investigated to overcome the 

biasing effect due to noise in the data. Several methods with increasing level of complexity 

are applied to simulations and a series of clinical datasets. Secondly, a novel Robust Data 

Decomposition Registration technique is introduced to tackle the problem of image 

registration in DCE-MRI. The technique allows the separation of tissue enhancement from 

motion effects so that the latter can be corrected independently. It is successfully applied to 

DCE-MRI datasets of different organs. This application is extended to the correction of 

respiratory motion in small bowel motility quantification in dynamic MRI data acquired 

during free breathing. Finally, a new local model for the arterial input function (AIF) is 

proposed. The estimation of the arterial blood contrast agent concentration in DCE-MRI is 

augmented using prior knowledge on local tissue structure from DWI. 

This work explores several types of imaging using MRI. It contributes to clinical quantitative 

MRI analysis providing practical solutions aimed at improving the accuracy and consistency 

of the parameters derived from image data.  
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1 Introduction 

Magnetic resonance imaging (MRI) is a non-invasive and relatively new medical imaging 

technique. It is based on nuclear magnetic resonance and thus avoids the use of ionising 

radiation, contrary to other modalities based on X-rays or radioactive isotopes. In addition 

to this characteristic, MRI has the advantage of providing good soft-tissue contrast and 

making possible the acquisition in any direction of space.  

In traditional qualitative MRI, the scanner is used as a sophisticated camera providing 

images that can only be read by a trained radiologist. Alternatively, using specific 

acquisition methods, MRI scanners can serve as a measurement tool providing information 

directly related to one or more aspects of tissue physiology. That way, morphological 

evaluation of traditional MR sequences (e.g. T1 or T2 weighted) can be augmented by 

functional and micro-structural measures coming from quantitative MRI. In processes such 

as diagnosis, therapy monitoring, tumour staging or even cross-site comparison, 

quantitative information is the key. 

Quantitative MRI is an important area of research and includes different types of acquisition 

such as Diffusion Weighted MRI or Dynamic Contrast Enhanced MRI which have aroused 

considerable interest in recent years. These techniques are capable of characterising 

tissue and facilitating new opportunities in imaging. For example, early prediction of 

treatment response based on the assessment of cellularity and tissue perfusion prior to 

morphologic alterations appear among the main applications of multi-parametric 

quantitative MRI. 

However, extracting useful information from the acquired data often requires the use of a 

model describing the observed mechanisms (e.g. diffusion weighted signal decay, contrast 

enhancement in tissue) and involves pre-processing to account for perturbations occurring 

during the acquisition (e.g. noise, motion). The different projects presented in this thesis 

focus on the description of issues related to both the pre-processing and the modelling step 

and solutions proposed to address these challenges.  
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Following this introduction, the second chapter provides a theoretical description of the 

different MRI based quantitative imaging techniques used during this PhD. In each case, 

both data acquisition and analysis are presented. A summary of a number of challenges 

related to quantitative MRI is then described. 

In the third chapter, the nature and effects of noise in DW-MRI are discussed. Depending 

on the acquisition strategy (e.g. number of receiving coils, reconstruction technique, use of 

image averaging) the nature of noise in magnitude diffusion weighted images can vary. 

Such a noise induces a bias in the estimation of relevant parameters and should be 

investigated. The proposed solutions utilise noise modelling methods applied to simulations 

and to different types of patient data (18 prostate, 40 head and neck cancer) to assess the 

impact of the bias correction in a clinical context.  

Chapter four is about motion correction in DCE-MRI. The monitoring of contrast uptake and 

washout in tissue requires long scan times (several minutes) and image misalignments 

arise due to patient motion during the acquisition. Such misalignments can cause errors in 

the modelling of tissue enhancement and therefore should be corrected for. Although many 

registrations techniques are available these often rely on intensity changes to align features 

and can be misled by contrast enhancement, potentially resulting in unrealistic 

deformations. A novel registration technique based on data decomposition introduced and 

defined as: Robust Data Decomposition Registration (RDDR). The application of RDDR to 

a total of 57 DCE-MRI data sets for comparison with other existing methods is presented. 

The data processed cover a range of imaged organs (liver, small bowel and prostate) and 

breathing protocols (multiple breath-holds, free breathing). 

Some properties of RDDR are of interest in other types of data as discussed in the fifth 

chapter. For example, bowel motility can be quantified from abdominal dynamic MRI 

acquired during breath-hold. However, for data acquired during free breathing, respiratory 

motion can confound the analysis. The use of data decomposition in RDDR allows for the 

separation of peristalsis from respiratory motion, so that the latter can be corrected for 

while preserving the former. Experiments include the application of RDDR to dynamic MR 
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scans of 20 healthy subjects to assess the benefit of using it as a pre-processing step for 

peristaltic motility quantification in data acquired during free breathing. 

The last chapter describes a study combining the work undertaken on both DW-MRI and 

DCE-MRI, with a focus on DCE-MRI modelling. Pharmacokinetic models require an Arterial 

Input Function (AIF) to provide information on the arrival and transit of the contrast agent 

bolus in tissue. However this AIF is often based on a population model or derived from a 

single source (e.g. major artery in the imaged field of view). This project investigates the 

potential benefit of incorporating local information on tissue microstructure obtained from 

DWI-MRI to obtain a specific AIF for each region. The proposed model is applied to head 

and neck scans from 27 subjects (18 patients and 9 healthy volunteers) and includes the 

previous work involving registration of DCE-MRI data with RDDR and analysis of DW-MR 

images using noise modelling. The effect of using a local AIF was assessed based on 

parametric mapping (e.g. KTrans) in normal/cancer lymph nodes and residual fitting errors.  
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2 Quantitative MRI and Related Challenges 

 Introduction 

This chapter introduces the context and key challenges addressed in this thesis. 

Morphological evaluation of traditional MR sequences can be augmented by functional and 

micro-structural measures coming from quantitative MRI. Such methods are capable of 

characterising tissue and facilitating new opportunities in imaging, for example early 

prediction of treatment response based on the assessment of cellularity and tissue 

perfusion prior to morphologic alterations. This often requires repeat imaging of the same 

anatomical features to monitor changes related to a certain mechanism or tissue 

characteristic. However factors with no link to the property of interest may also vary and 

bias the measurement. These must be accounted for in the analysis process. Subsequently 

a set of parameters can be derived from the data through the use of a specific 

mathematical model providing physiological description of the tissue. 

In the following, a brief description of the concept of magnetic resonance imaging is given 

along with a more specific presentation of the different types of quantitative MRI techniques 

used in this thesis. These include: Dynamic Contrast Enhanced MRI, Diffusion Weighted 

Imaging and dynamic imaging of the small bowel. The different issues, related to both data 

acquisition and analysis, are also introduced.  

 Magnetic Resonance imaging (MRI) 

2.2.1 History 

MRI is based on nuclear magnetic resonance (NMR). In physics, resonance corresponds to 

the sensitivity of some systems to a certain frequency: excitation at this resonance 

frequency causes the system to enter an oscillating regime before returning to its initial 

state. More particularly, NMR describes the fact that protons immersed in a static magnetic 

field can be excited by a varying field at the resonance frequency (which is proportional to 



35 
 

the field strength). This phenomenon  was discovered in the late 1930’s by Rabi and 

experimented upon for the first time in the mid 1940’s by Bloch and Purcell independently 

[1]. In the early 1970’s Damadian highlighted that different types of tissue (e.g. normal 

tissue and cancer) excited at the same frequency have different resonance characteristics 

[1]. This opened the era of MRI for medical use. Following such a discovery many research 

groups started developing techniques and systems of acquisition (e.g. field gradient for 

local NMR localization, Lauterbur 1973 [2]; high field scanners, 1984) leading to modern 

MRI and its generalisation in clinical practice. Nowadays MRI has become a very common 

imaging tool used for multiple purposes (e.g. diagnosis, surgery planning, and follow up of 

treatment) and presents a range of acquisition techniques. 

2.2.2 Principle 

The principle of MRI derives from quantum physics. Hydrogen nuclei (from water 

representing 70% of human body mass) possess an intrinsic angular momentum or spin. 

These spins act like magnetic dipoles. In the absence of an external magnetic field, the 

different magnetic moments of neighbouring spins cancel out. However when immersed 

into a static magnetic field, B⃗⃗ 0 spins align in the same direction (that of B⃗⃗  ⃗0) and precess at 

the Larmor frequency. This precession is described by the Bloch equation: 

 dμ⃗ 

dt
= γμ⃗ × B⃗⃗ 0 = w⃗⃗⃗ × μ⃗  

with w =  γB0 

(2.1) 

where w is the Larmor angular frequency, γ is the gyromagnetic ratio (42.58 MHz.T-1 for 

protons i.e. hydrogen 1H) and μ⃗  is the spin vector. In such a situation spins can either have 

the same orientation as  B⃗⃗  ⃗0 (spin up) or point in the opposite way (spin down). At body 

temperature the relative proportion of these two states is approximately the same with a 

slightly higher number of spins up, which results in a net magnetization. 
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Magnetic resonance occurs when a radiofrequency (RF) pulse at the Larmor frequency is 

applied. Changes in  B⃗⃗   stimulate the spins which causes a tipping of the precession angle 

followed by a return to the initial state called relaxation (see Figure 2.1). For a group of 

nuclei, all the spins have the same phase when excited by the RF pulse which results in a 

coherent transverse magnetization. The dephasing due to spins interaction during 

relaxation causes a loss of coherence and a decrease of this magnetization. In the 

presence of a receiver coil, the variation of the transverse magnetization produces a 

current which can be measured. 

 

Figure 2.1: Effect of a radiofrequency pulse (here 90o) on a hydrogen nucleus spin. The presence of the pulse 

B⃗ 1 tips the spin which then relaxes back to its initial state. 

Such a relaxation can be decomposed into two mechanisms: longitudinal relaxation of the 

Mz component (along the Z axis in Figure 2.1), and transverse relaxation of the Mxy 

component (in the X-Y plane). Both depend on intrinsic characteristics of the magnetised 

body. Mz undergoes an exponential recovery characterised by the time constant T1. It 

corresponds to the spin lattice relaxation (i.e. how spins lose energy to the surroundings). 

Mxy undergoes an exponential decay characterised by the time constant T2. It corresponds 

to the spin-spin relaxation (i.e. exchange of energy between nearby molecules that act as 

coupled oscillators). However magnetic field inhomogeneities induce an additional 

dephasing of the spins which makes the decay of Mxy shorter (time constant T2*
 < T2). 

Specific imaging sequences offer the possibility of removing the effect of field 

inhomogeneities to produce signals reflecting tissue T2 (see section 2.2.3.3). 
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2.2.3 Acquisition 

2.2.3.1 Spatial encoding 

To be able to spatially locate different types of tissue it is necessary to get separate signal 

from elementary volumes of space (voxels). In two-dimensional imaging, only one physical 

slice is excited at a time. Slice selection is achieved using a field gradient in conjunction 

with the RF pulse along a given axis of space (depending on the chosen acquisition plane) 

so that a thin slab of tissue is excited. Each element of the two-dimensional slice is then 

encoded in phase and frequency defining its k-space representation which establishes a 

link between the received signal and its origin in space. A phase encoding magnetic field 

gradient is applied for a short period of time along the k-space columns so that each line is 

assigned a different phase. Spatial encoding along the line is then achieved using a 

frequency encoding magnetic field gradient. Nuclei experience different field strength and 

thus resonate at different frequencies determined by their position in the line. Importantly, 

there is no restriction on the choice of slice orientation and the phase and frequency 

encoding can be assigned to any orthogonal directions. Since each imaged slice is 

encoded in the frequency domain, an inverse Fourier transform is used to retrieve image 

data. Three-dimensional acquisition can also be achieved by exciting a slab of tissue and 

applying phase encoding in two directions. 

2.2.3.2 Hardware 

Elements constituting an MRI scanner include: the magnet which is commonly a coil made 

of superconducting material immersed in liquid helium and carrying a high current to 

produce the magnetic field B⃗⃗ 0; the shim coils used to increase  B⃗⃗ 0 homogeneity inside the 

scanner bore; the gradient coils producing the field gradients; and the radiofrequency coil 

which is used to produce the pulse and also to receive signals from tissue. Alternatively 

separate coils (e.g. surface coils, head coils) can be used instead of the latter to image 

specific body parts. However these are usually receive-only. 
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Note that the use of multiple receiver coils enable parallel imaging. Such a technique relies 

on limited acquisition in the phase encoding direction of k-space (i.e. under sampling) to 

increase acquisition speed. Provided that a sensitivity map is available for each coil, the 

information received by the different receiver coils can be combined to reconstruct the 

imaged data as if it had been fully sampled. Reconstruction can be carried out either in k-

space (e.g. generalized auto-calibrated partially parallel acquisition - GRAPPA [3]) or in the 

image domain after inverse Fourier transform (e.g.  sensitivity encoded MRI -  SENSE [4]) 

2.2.3.3 Pulse sequences 

In MRI, signals can be generated using either spin echo (SE) or gradient echo (GE) [1]. In 

the basic spin echo sequence (Figure 2.2) a 90o RF pulse is first used to excite the 

hydrogen nuclei. After a certain time period during which the spins dephase naturally, an 

additional 180o pulse is applied. Such a pulse inverts the dephasing causing a rephasing of 

the spins, or echo, after a period equal to the time lapse between the two pulses. The 180o 

RF pulse cancels the static magnetic field inhomogeneities so that the received signal 

depends on T2 rather than T2*. The expression for the corresponding signal is given in 

equation (2.2). 

  SSE ≈ S0 (1 − exp (−TR T1⁄ ))exp (−TE T2⁄ ) (2.2) 

where TR is the repetition time (i.e. the time between two successive 90o RF pulses), TE is 

the echo time (i.e. the time between the 90o RF pulse and the spin echo) and S0 is the 

proton density. Depending on the values chosen for TR and TE, the contribution of the 

spin-lattice relaxation (T1-weighting), the spin-spin relaxation (T2-weighting) and the proton 

density to the output signal can be adjusted. 
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Figure 2.2: Time diagram of the basic spin echo sequence 

In GE sequences (Figure 2.3) the RF pulse is set to produce a magnetisation rotation 

angle, α, lower than 90o and is combined with short TEs and TRs. A negative gradient is 

applied directly after the pulse and then reversed. When phase changes caused by the 

negative gradient are cancelled a gradient echo is produced (i.e. when the positive and 

negative gradient areas are equal). The signal obtained in this type of sequence depends 

on T2*. However the time needed to produce an echo is much shorter compared to spin 

echo sequences. The expression for the corresponding signal (at steady state) is given in 

equation (2.3). 

 
SGE ≈ S0  

(1 − exp (−TR T1⁄ ))sin (α)

1 −  exp (−TR T1⁄ )cos (α)
exp (−TE T2

∗⁄ ) (2.3) 
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Figure 2.3: Time diagram of the basic gradient echo sequence 

Many modifications of these two basic sequences have been proposed to further reduce 

the time required to obtain the desired signals [1]. In this thesis we focus on two particular 

examples: the spoiled gradient echo (SGE) and the echo planar imaging (EPI) sequences. 

In SGE, the basic GE sequence is complemented by gradient spoilers and RF phase 

cycling (Figure 2.4) to destroy any remaining transverse magnetization after the echo, thus 

enabling the use of short TRs (~5ms). Another type of pulse sequence referred to as 

balanced steady state free precession (bSSFP), uses balanced gradients (i.e. the area 

under each field gradient is zero over a TR period) which allows keeping part of the 

transverse magnetization from previous RF excitations. The kept magnetization contributes 

to the signal acquired in the subsequent repetitions of the sequence. This produces signals 

with both T1 and T2 weighting and high signal to noise ratio (SNR), which is especially 

useful for cine imaging. 
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Figure 2.4: Time diagram of the spoiled gradient echo sequence 

In EPI (see Figure 2.5), a single 90o RF pulse is applied, followed by multiple gradient 

reversals. A large negative phase encoding gradient is applied right after the RF pulse. 

Small positive phase encoding gradient are then applied after each gradient echo so that 

an entire slice can be acquired in a single shot. 

 

 

Figure 2.5: Time diagram of the (gradient) echo planar imaging sequence 
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The sequence shown Figure 2.5 uses gradient echo, and thus produces T2* weighted 

images. Alternatively, a single 180o RF refocusing pulse can be added before the first 

positive GX gradient to produce a spin echo and obtain a T2 weighted signal. This timing 

also allows for the insertion of diffusion weighting gradients (see section 2.3.1) 

 Quantitative MRI: Diffusion Weighted MRI (DWI) 

2.3.1 Principle  

In the absence of constraints, water molecules undergo self-diffusion (i.e. Brownian 

motion). For a large ensemble of molecules over a certain time period the mean squared 

displacement depends on a diffusion coefficient D. In tissue, motion is restricted by cellular 

structures and therefore D is decreased. The degree of reduction of the diffusion coefficient 

reflects tissue microstructure and can be quantified in MRI. 

In Diffusion Weighted Imaging (DWI) two high amplitude gradients are applied (along one 

direction of space) on either side of an 180o RF pulse (Figure 2.6). The presence of these 

gradients affects the spin echo obtained at the end of the sequence. Moving molecules 

acquire a dephasing which is proportional to their displacement along the gradient 

direction. The greater the displacement in the direction of the gradient, the larger the 

dephasing. As spins are moving randomly, rapid diffusion causes larger phase dispersion 

between the individual spins, which produces a drop in signal. On the contrary, in the case 

of slow or restricted diffusion the relative dephasing between spins is more limited which 

results in a higher signal. 
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Figure 2.6: Time diagram of the Diffusion Weighted MRI sequence. G is the gradient amplitude, δ the duration, 
and Δ the front edge separation. The signal readout, not detailed in this diagram, is often an EPI module. 

By manipulating the different characteristics of these gradients (direction, amplitude G, 

duration δ, and front edge separation Δ) the diffusion weighting or b-value, can be 

controlled. Such a parameter is varied to assess the degree of diffusion in tissue in a given 

direction. Repeat measurements at different b-values (see Figure 2.7) in different directions 

allow the extraction of the apparent diffusion coefficient (ADC) reflecting the local 

microstructure. The expression for the b-value is given in equation (2.4). 

 b =  γ2G2δ2(∆ − δ
3⁄ ) in s.mm−2 (2.4) 

 

Figure 2.7: Example of DWI data of the prostate at b-values: 0 (a), 150 (b), 500 (c) and 1000 s.m-2 (d). 

In DWI, images are generally acquired in three directions of space and combined into a 

“trace” image producing data at a given b-value. However in applications such as Diffusion 

Tensor Imaging measurement in multiple direction of space (at least 6) can be used to 

produce a tensor at each voxel, and a mapping of fibre tracts in the tissue of interest (e.g. 

white matter) following eigenvalue decomposition. Because a high number of 
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measurements is necessary to obtain a full DWI data set (multiple directions and b-values 

per slice), spin echo EPI acquisition is usually chosen due to its speed. 

2.3.2 Diffusion modelling  

Several models have been proposed to describe the decay of the DWI magnitude signal as 

a function of increasing b-values. These assume that diffusion weighted signals are related 

to one or several mechanisms with different degrees of complexity, taking place at a 

microstructural level. Each model applies to pixels in trace images which are insensitive to 

anisotropy. 

2.3.2.1 Mono-exponential 

The simplest way of describing the diffusion weighted magnitude signal decay is an 

exponential model: 

 S(b) = S0 exp (−bD) (2.5) 

where S is the signal at a given b-value b, S0 is the signal intensity when no diffusion 

weighting is applied (i.e. at 𝑏 = 0), and D is the ADC.  

2.3.2.2 Bi-exponential: Intra Voxel Incoherent Motion (IVIM) 

LeBihan et al. [5], [6] introduced a bi-exponential model that accounts for tissue perfusion 

and blood microcirculation at a pixel level. 

 S(b) = S0(f exp(−bD∗) + (1 − f) exp (−bD)) (2.6) 

where D is the ADC, D∗ is an additional pseudo diffusion parameter accounting for the 

perfusion effect (mainly present at lower b values) and 𝑓 is the perfusion fraction. 

2.3.2.3 Stretched Exponential 

The stretched exponential model was developed to account for intra-voxel heterogeneity in 

diffusion weighted signal decay [7] with no restriction on the number of compartments.  

 S(b) = S0  exp(−bD)𝛼 

0 ≤ α ≤  1 
(2.7) 
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where D is the distributed diffusion coefficient (which is related to the ADC),  and α is the 

stretching parameter that characterizes the deviation from a mono-exponential decay. 

2.3.3 Applications 

DWI is used in oncology for tumour grading and follow up of treatment. The microstructural 

properties of cancerous tissue such as changes in cellularity can be indirectly measured in 

DWI and provide useful contrast difference between normal and tumour region. Another 

important clinical application is the investigation, prognosis and management of ischaemic 

strokes [1]. In this context DWI provides useful information on the type of stroke (e.g. 

chronic, acute) earlier than other imaging techniques (CT, T2 weighted MRI). 

 Quantitative MRI: Dynamic Contrast Enhanced MRI 

2.4.1 Principle  

Contrast agents can be used to provide additional information on tissue metabolism and 

improve sensitivity and specificity. The most common paramagnetic contrast agent is G 

gadolinium (Gd) encapsulated in a chelating agent, for example diethylene-triamine 

pentaacetic acid (Gd-DTPA). Gd is not directly visible in MRI but its presence affects the 

relaxation characteristics of surrounding water molecules (decreased T1 and T2). 

In dynamic contrast enhanced (DCE-) MRI we are interested in the T1 decrease caused by 

Gd. A contrast agent dose is injected through a vein, and its arrival and distribution in tissue 

is monitored (see Figure 2.8). This is achieved using repeat imaging of the feature of 

interest – commonly with a T1 weighted SGE sequence. When passing through 

microvasculature Gd diffuses into the extracellular-extravascular space (EES) and after 

extraction through the venous system, is cleared out by renal excretion. The analysis of the 

resulting local intensity variations as a function of time provides information on the amount 

of Gd reaching specific regions, which reflects tissue perfusion. Examples of DCE-MRI time 
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intensity-curves are shown in Figure 2.9. In addition the timing of such changes (e.g. fast 

contrast agent arrival and slow washout) provides further knowledge on the local tissue 

vascular properties. 

 

Figure 2.8: Examples of DCE-MRI data of a patient with liver cancer, acquired in the coronal plane. (a) pre-
contrast frame, (b) (c) (d) bolus arrival and contrast agent uptake, (e) (f) post contrast washout phase. 

 

Figure 2.9: Examples of time intensity curves obtained in DCE-MRI. The shape of the enhancement profiles show 
differences in the contrast agent uptake and washout reflecting the local tissue properties. Additional fluctuations 
are related to noise and/or motion during acquisition (see section 2.6) 
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2.4.2 Data analysis 

2.4.2.1 Modelling 

Extracting the physiologic characteristics of relevant tissue from DCE-MRI can be done 

through pharmacokinetic modelling. Models developed in the early 90s have become a 

standard in many applications. The Tofts model [8] (mathematically equivalent to the Kety 

model [9]) describes the transfer of contrast agents between the capillaries and the EES. 

The flow of tracer from blood plasma into the EES is governed by equation (2.8), where 

KTrans is the transendothelial transfer coefficient related to tissue permeability (and perfusion 

depending on the tissue vascularisation [10]), and ve is the volume fraction of EES where 

the contrast agent has diffused. Ct is the contrast agent concentration in tissue. The arterial 

plasma concentration Cp  is also called the arterial input function (AIF). 

 dCt

dt
=  KTrans (Cp − 

Ct

ve
)  (2.8) 

The extended Tofts model [11] includes an additional compartment accounting for the 

contribution of Gd in the blood plasma to the total tissue concentration. This provides the 

expression of Ct given in equation (2.9): 

 
Ct(t) = vpCp(t) + KTrans ∫ Cp(t)e

 
− KTrans

ve
(t−τ)

dτ
t

0

   

Ct(t) = vpCp(t) + KTransCp(t) ⊗ e
 
− KTrans

ve
 t
   

(2.9) 

where vp is the fractional volume of plasma in tissue – often small compared to ve – which is 

related to perfusion. This two-compartment model is summarized in Figure 2.10. 
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Figure 2.10: Schematic representation of the extended Tofts model 

Other models developed by Larsson [12] or Brix [13] apply in a similar way to the 

description of MRI signal enhancement as a function of time. A review aiming at 

standardizing the quantities and parameters involved in these various models has been 

published [14]. More elaborate models have also been proposed [15]. However data 

analysis based on complex models is often difficult due to acquisition related limitations 

(see section 2.6). 

2.4.2.2 Deriving tissue concentration 

The complete analysis of the contrast enhancement profile from a single voxel or a region 

of interest requires several steps. First, intensity changes in image data must be converted 

to contrast agent concentration (this can be done before or with the model fitting). As fast 

gradient echo sequences are commonly used for DCE-MRI acquisition, equation (2.3) can 

be used to retrieve changes in T1 if the proton density S0 is known. Then tissue 

concentration can be derived from equation (2.10) provided that tissue baseline T1, T10 is 

available. A value fixed of the Gd relaxivity r1 (measured in vitro) is often used.  

 1

T1(t)
=

1

T10
+ r1Ct(t)  

r1 = 4.5 s−1mM−1  

(2.10) 
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S0 and T10 can be estimated, for example using multiple flip angle acquisition [16]. This 

technique uses repeat rapid T1-weighted GE imaging with varying RF pulse flip angles. 

The evolution of tissue signal with respect to the flip angle value describes a curve 

characterized by their T1 and proton density (see Figure 2.11). Fitting equation (2.3) to such 

curves allows the derivation of a T10 map. Tissue T1 measurement is also possible through 

other techniques (e.g. Look-Locker [17], modified Look-Locker inversion recovery [18]). 

 

Figure 2.11: Signal evolution with respect to flip angle value for T1 = 0.6s and T1 = 1s. In both cases S0 and TR 
were set to 1000 and 1.5ms respectively. 

2.4.2.3 Estimating the arterial input function 

Secondly, the AIF must be estimated. A number of methods have been developed to this 

end (see section 6.2); it may be estimated at a global level directly from a population 

specific function or via local fitting of an expected shape to a purely vascular region of 

interest. Alternatively the fitting of a given model to the tissue time concentration curves can 

be carried out, as shown in Figure 2.12. 
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Figure 2.12: Example AIF model (a) and Tofts model fitting for the time intensity curves from Figure 2.9 (b) (c). 
The estimated pharmacokinetic parameters for both curves are: (b) Ktrans = 0.37, Ve = 49%, Vp = 0.1%, and (c)     
Ktrans = 0.13, Ve = 47%, Vp = 0%. Here the concentrations have been converted back to signal intensities after the 
fitting. 

2.4.2.4 Pseudo-quantitative analysis 

At a more simple level, some semi-quantitative parameters can be extracted directly from 

tissue enhancement curves (Figure 2.13): bolus arrival time, Tb; time to peak, Tp; area 

under the curve over a period of 60 or 90 seconds after the uptake, AUC60/90; and the peak 

height, Hp. Although they provide a description of the tissue enhancement profile 

independent of AIF, such parameters lack the clear link to a physiological meaning that the 

Tofts model provides. 
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Figure 2.13: Pseudo-quantitative parameters in DCE-MRI analysis: bolus arrival time, Tb; time to peak, Tp; area 
under the curve, AUC90; and the peak height, Hp. Here AUC90 and Hp are given in terms of signal intensity but 
could similarly be calculated in terms of tissue concentration. 

2.4.3 Applications 

Quantifying tissue vasculature plays an important role in oncology. Thus the main 

application of DCE-MRI is the assessment of tumour growth and aggressiveness [10], [19]–

[21]. The development of tumours triggers (pathological) angiogenesis – creation of blood 

vessels – to provide nutrients to cancer tissue. However, the rapid growing of the new 

vessels differs from normal angiogenesis. This causes the tumour capillary network to be 

highly disorganized with varying blood flow and abnormally permeable tortuous vessels. As 

a result, in DCE-MRI cancer regions demonstrate rapid, intense enhancement followed by 

rapid washout compared to normal tissue [20]. A number of treatments are aimed at 

stopping a tumour’s blood supply (e.g. antivascular and antiangiogenic therapies). Due to 

its sensitivity to perfusion, DCE-MRI represents a useful, non-invasive tool to assess the 

effect of such therapies [21]. Other applications of DCE-MRI include the assessment of 

renal (except in case of renal insufficiency) and myocardial function [22], as well as liver 

[23] and intestinal diseases [24] diagnosis. 
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2.4.4 Other techniques  

This section focuses on DCE-MRI but there are other MRI based techniques allowing 

perfusion imaging. Dynamic susceptibility contrast (DSC-) MRI relies on the T2 (and T2*) 

decrease caused by the passage of Gd in tissue. The analysis of the DSC-MRI time series 

has similarities with that of DCE-MRI. However, DSC-MRI, often used in brain imaging, 

requires a single compartment model due to the blood brain barrier preventing the contrast 

agent from leaking into the EES. This also causes the shape of time-concentration curves 

to be different with very quick washout compared to DCE-MRI.  Quantitative parameters 

are typically extracted from such curves using gamma-variate function fitting [1]. DSC-MRI 

is commonly used to quantify cerebral perfusion [25]–[27] and is usually acquired using 

gradient-echo EPI [28]. 

Arterial spin labelling (ASL) is another technique based on magnetically labelling the 

protons in the arterial blood supply flowing into the imaged slice [1]. The labelling consists 

of applying an RF pulse prior to image acquisition. Spins in the flowing blood are in a 

different magnetic state compared to that of surrounding static tissue and thus alter the 

local net magnetization. This results in a perfusion weighting of the output signal. ASL has 

the advantage of being fully non-invasive since no contrast agent injection is required and 

is often acquired using EPI. However, this technique is limited by low signal-to-noise ratio 

and by the delay between spin labelling and image acquisition which is required to give 

time for the blood to reach the region of interest. This delay causes a reduction of the label 

magnitude resulting in a reduction of the perfusion weighting [29]. The main application of 

ASL is the measurement of cerebral blood flow [29]–[31], often for research purposes. 
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 Dynamic MRI for motion quantification 

2.5.1 Principle 

Similarly to DCE-MRI, dynamic MRI with high temporal resolution can be used to monitor 

mechanisms associated with rapid local motion or deformation of specific anatomical 

features. Moving organs (e.g. heart, gastrointestinal system) have a function associated 

with their motion (e.g. blood propagation, food processing and chyme propagation). Thus 

measuring such motion can provide useful information on these organs’ physiological state. 

An emerging type of dynamic MRI measurement applies to small bowel motility [32]. Motion 

in the bowel can be represented as the association of complex mechanisms including slow 

waves along the gastro intestinal tract, referred to as peristalsis, and radial contractions 

[33], [34]. After ingestion of Mannitol in oral solution, used for contrast, repeat imaging 

using a balanced Steady State Free Precession sequence (see section 2.2.3.3) may be 

carried out. 

 

Figure 2.14: Example of Dynamic MRI of the small bowel in a healthy subject. In each time point a zoom on a 
small bowel region is shown to highlight bowel displacements related to peristalsis over time. 
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The resulting image time-series makes possible the identification of peristaltic abnormalities 

[35]. 

2.5.2 Data Analysis 

Motility in a particular section of the bowel can be assessed by visual inspection [34]–[36]. 

Alternatively, a line region of interest (ROI) can be drawn in the bowel cross-section and 

manually propagated through all time points. The variation in the ROI length with time 

provides information on the amplitude and rate of the contractions. Alternatively automated 

methods based on image registration have been investigated [34], [36], [37].  

Registration is the process of aligning the anatomical features from two different images: 

the target and source image [38].  It consists of computing a displacement vector for all 

pixels in the source image to make it match the target. Such a displacement field can be 

constrained to produce rigid, affine, or non-rigid transformation. Registration is particularly 

useful for motion correction, estimation of structural changes or differences, and fusion of 

data from different imaging modalities [38]. More details are given in section 4.2.1 . 

In order to assess small bowel motility, non-rigid registration can be used to re-align the 

bowel wall in all the frames of the acquired time series. The computed bowel deformation 

through time can be measured (e.g. using the Jacobian determinant magnitude, see 

section 5.2.2) to quantify local and global motility [34]. Note that in this context, local motion 

is the mechanism of interest, which is modelled using the registration deformation field. 

2.5.3 Applications 

Several  diseases affect small bowel motility, these include: dyspepsia, irritable bowel 

syndrome, Crohn’s disease, intestinal pseudo obstruction and bacterial growth [34]–[36]. 

Dynamic MRI can be useful for the investigation of all these examples. 
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 Challenges in Quantitative MRI 

Extracting information from quantitative MRI comes with a number of challenges related to 

both data acquisition and analysis. Some of these concern MR imaging in general, while 

others are more specific to quantitative imaging. This section focuses on the second 

category. 

2.6.1 Temporal Resolution 

Quantitative measurements require the acquisition of a set of images, either to monitor a 

phenomenon or analyse the changes caused by a varying parameter. In DCE-MRI rapid 

contrast changes due to the uptake of contrast agent in tissue occur within seconds. 

Likewise, the period of the small bowel radial contractions can be as short as a few 

seconds. These effects necessitate a temporal resolution (i.e. time per frame acquisition) 

as high as possible to avoid sub-sampling of the mechanism of interest. Figure 2.15 

illustrates the effect in the example of DCE-MRI: if the temporal resolution is too low, 

essential features of the enhancement profile might be missed. This can be particularly 

critical for example for the estimation of the AIF [15].  

The main limitation of MRI in terms of temporal resolution, is the trade-off between 

temporal and spatial resolution. High dynamic temporal resolution can be achieved but this 

necessitates lower spatial resolution either in plane or in terms of slice thickness. In such 

case anatomical features might not be well defined which can hinder the identification and 

analysis of diseased tissue. Alternatively, more complex reconstruction techniques such as 

parallel imaging (see section 2.2.3.2) or compressed sensing [39] can speed up the 

acquisition of time frames. Compressed sensing techniques take advantage of sparsity 

from a limited number of random incoherent measurements to recover the signal using 

non-linear optimization. Undersampling results in an inherent loss of data and care must be 

taken to find a compromise between speed and image quality. 
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Figure 2.15: Effect of temporal resolution in the example of DCE-MRI. When sampled every 10 second the 
resulting signal still shows the peak in the uptake. However for a temporal resolution of 20 seconds the peak is 
missing from the signal which will bias the pharmacokinetic parameters estimate.  

2.6.2 Motion 

The problem is further complicated by subject motion (e.g. breathing) occurring during the 

acquisition. Importantly, respiratory motion can cause ghosting and blurring artefacts in 

each individual frame [40] and inter frame misalignments are likely to appear. These 

misalignments can have a dramatic impact on the data analysis because changes will then 

be related to both motion and the monitored effect, leading to a bias in the estimated 

quantitative parameters (see Figure 2.16, a). The use of breath-holds allows the reduction 

of intra-frame blurring, particularly likely to deteriorate the MR data when organs near the 

diaphragm are imaged using a free-breathing protocol [41]. Since patients cannot hold their 

breath for much longer than 20 seconds, repeat breath-holds may be performed to increase 

the imaging time period. In some cases irregular measurements can be taken by 

synchronizing acquisition with breath-holds period (see Figure 2.16, b). However, 

misalignments may occur due to the poor reproducibility between successive breath-holds.   
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Figure 2.16: Effect of Motion in the example of DCE-MRI in the case of free breathing (a) and multiple breath-hold 
(b) acquisition. In both cases misalignments due to respiratory motion can bias the pharmacokinetic parameters 
estimates. 

Such effect is not limited to dynamic imaging. Motion can affect DWI causing 

misalignments between measurements in different directions for the same b-values and 

between images at different b-values. It can also affect the estimation of tissue T1 when 

using the techniques mentioned in section 2.4.2.2. 

2.6.3 Noise 

Although noise is a well-known issue in qualitative imaging (not only MRI), it has a different 

impact in the case of quantitative imaging as it can bias the parameters estimated from the 

data. Similarly to motion, pixel intensity variation caused by noise can mislead a modelling 

processes. This is particularly important in the case of poor signal to noise ratio (SNR). As 

the name suggests the SNR is defined by the meaningful information divided by noise. In 

MRI this is often approximated by pixel intensities (within a ROI) divided by the standard 

deviation of the noise distribution. 

2.6.4 Modelling 

Extracting quantitative physiological information from MRI requires a wisely chosen model. 

If not adapted to the data the modelling process may result in an incorrect interpretation 
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that does not reflect the actual tissue properties. This could be the case, for example, in 

DWI: the bi-exponential model produces reliable estimates if the data have been acquired 

using at least 10 different b-values [42]. For a limited number of b-values (e.g. 3 or 4) the 

mono-exponential model should be preferred to the bi-exponential in order to obtain a 

meaningful estimate of the ADC. Another example applies to DCE-MRI of the liver where 

blood supply comes from two different sources: the hepatic artery and the portal vein. Thus, 

accurate pharmacokinetic modelling in the liver should use two independent AIFs to get 

reliable estimates of the hepatic tissue properties [43]. Also, the choice of the model in 

DCE-MRI should be based on the expected tissue vascularisation [10]. 

 Conclusion 

This first chapter has described the context of the studies carried out during this PhD and 

introduced key challenges related to quantitative MRI analysis. The following chapters will 

discuss some of these challenges in more detail and the proposed solutions. 

For all clinical data presented in this thesis, a local ethics committee approved the 

retrospective use of anonymised patient data. For prospective data, all patients and healthy 

volunteers provided written informed consent as part of a protocol agreed by the local 

ethics committee. 
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3 Noise Modelling and Correction in DW-MRI 

 Introduction 

In this chapter we present a number of approaches for noise modelling in the estimation of 

quantitative parameters from clinical diffusion weighted imaging (e.g. Apparent Diffusion 

Coefficient). The objective is to investigate the potential benefit of applying recent modelling 

techniques to routine clinical scans.  

DWI provides useful quantitative information on tissue microstructure but has inherently low 

SNR because of the diffusion weighting gradients (see section 2.3.1). Due to the non-

normal distribution of magnitude DWI data, commonly used techniques for model fitting 

(e.g. least squares) yield biased parameter estimates. The first part of this chapter consists 

of a description of the noise distributions that are expected to appear in DW images 

depending on the hardware and the choice of reconstruction scheme. In the following 

sections, we present the different estimation methods and, separately for each, the 

application to both simulated and clinical data. These techniques are presented in logical 

order (see Figure 3.1) starting with simple assumptions on the data acquisition, and 

gradually accounting for more complex imaging schemes. Comparison and analysis of the 

estimated parameters obtained with each method are used to assess the importance of 

taking into account and correcting for noise in routine clinical imaging. We applied some of 

the described methods to prostate cancer, which is the most common cancer in the male 

population [44]. DW-MRI is routinely used in combination with T2-weighted MRI and DCE-

MRI to localise prostate cancer [45], [46]. Moreover, ADC thresholds have been proposed 

for tumour detection [47]  and negatively correlated with Gleason grade in peripheral zone 

prostate cancer [48]. The application of DWI to head and neck cancer is also of interest and 

was addressed in the last part of the study [49], [50]. 

The work presented in this chapter focuses on the mono-exponential model (introduced in 

section 2.3.2.1). In chronological order, this work started with translational application of the 

pre-clinical work published in [51] leading to conference publications at MIUA 2011 [52], 
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RSNA 2011 [53] and ISMRM 2012 [54]. However, accounting for changes due to parallel 

acquisition and averaging in clinical data led to more sophisticated methods and a journal 

publication by Dikaios et al. [55] to which the author contributed. Contributions included 

investigation on the nature of noise in parallel imaging with multiple averaging and 

modelling of the noise distributions along with the generation of simulated data. 

 

 

Figure 3.1: Flow chart outlining the content of the chapter. Different assumptions on the acquisition scheme 
estimation methods are considered. Blue circles indicate the sub-section in which each approach is described. 

 Noise in Magnitude DW-MRI 

Noise due to thermal agitation follows a Gaussian distribution in the signal acquired in the 

K-space. However, depending on the choices of acquisition settings, hardware and data 

reconstruction strategy, the noise distribution in DW-MR images can vary. The following 

section details some of the situations that can be encountered. 

3.2.1 Rician distribution 

DW-MR images are created from signals obtained when applying diffusion gradients in the 

three or more directions of space. Magnitude data M are derived from the modulus of the 

real, Re and imaginary, Im parts of the complex MR signal:  

 M = √Re2 + Im2 (3.1) 
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Thermal agitation causes normally distributed noise in both of these components which 

leads to Rice distributed data in DW-MRI [56] modelled by the following probability density 

function (PDF):  

 
p(M|S, σR) =

M

σR
2  exp (−

M2 + S2

2σR
2 ) I0(

MS

σR
2 ) (3.2) 

where 𝑀 is the observed noisy magnitude MR signal, 𝑆 is the true magnitude, σR is the 

Rician noise parameter, corresponding to the standard deviation of the underlying 

Gaussian distribution, and I0 is the 0th order modified Bessel function of the first kind. In 

particular, the Rician PDF matches the Rayleigh distribution in the absence of signal (i.e. in 

the image background) and gets closer to a Gaussian at high SNR [57]. 

3.2.2 Multiple receiver coils 

The Rician model described in the previous paragraph is always valid in the case of 

magnitude data obtained from a single receiver coil, with a single source of complex signal. 

However, the nature of noise can be altered by the use of parallel imaging with multiple 

receiver coils. Depending on the imaging and/or reconstruction method chosen, noise may 

not be Rice distributed in the output data.  

Dietrich et al. described the type of noise distributions that should be expected in a number 

of cases [58]. This is summarized in Table 3.1. Data reconstruction from multiple channels 

can be computed using the root sum of squares (SOS) method or alternatively using the 

spatial matched filter (SMF) that maximizes the SNR. SMF consists of using the coils 

sensitivity at each pixel as a weighting factor for the linear combination of signals from the 

different channels [59]. Accelerated acquisition using parallel imaging is based on under-

sampled data coming from different receivers and the incorporation of coil sensitivity 

profiles in the reconstruction process. It can be based on the frequency domain as in the 

Generalized Auto-calibrated Partially Parallel Acquisition (GRAPPA) [3] or on the image 

domain as in Sensitivity Encoded MRI (SENSE) [4]. Depending on the choice of the 
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aforementioned techniques and the associated reconstruction strategy, magnitude data can 

be corrupted with noise following non-central χ or Rice distributions.  

 

Acquisition/ Reconstruction Noise Distribution 

Multi coil, SOS non-central χ 

Multi coil, SMF Rice 

Multi coil GRAPPA, SOS non-central χ 

Multi coil GRAPPA, SMF Rice 

Multi coil SENSE Rice 

Table 3.1: Summary of the expected noise distributions depending for different acquisition schemes [59] 

In addition, accelerated acquisition with GRAPPA or SENSE involves data reconstruction 

from under-sampled images weighted by the coils sensitivity maps which leads to non-

stationary noise [60].  

3.2.3 Signal to noise ratio and the effect of averaging 

As introduced in section 2.3.1, higher diffusion weighting gradients lead to a lower 

observed signal while thermal agitation remains the same. Thus, the SNR in DW-MRI is 

significantly lower at higher b-values.  

A common method to overcome the problem of low SNR in DW-MRI (other than reducing 

the image spatial resolution) is to run multiple measurements of the same physical slice 

and take the average. When complex data is averaged this increases the SNR by a factor 

equal to the square root of the number of measurements. The effect of averaging 

magnitude MR data on the noise distribution has been described by Kristoffersen et al. [61]. 

If the increase in SNR due to averaging is high enough, the Rice distribution approaches a 

Gaussian (as per the central limit theorem). However if the number of averages is too low 

to allow the Gaussian approximation the new PDF can be modelled by the convolution of 

the Rician PDFs of each measurement [55], [61]. 
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One should also notice that although multiple averages make Rician distribution closer to a 

Gaussian distribution, such a Gaussian remains centred on the non-zero mean of the Rice 

PDF (see Figure 3.2).  

 

Figure 3.2: Illustration of the effect of averaging on the noise distribution (initial SNR = 1). The SNR increases 
with the number of measurements (as indicated by the narrower PDFs) and the data distribution gets closer to a 
Gaussian. However the bias caused by Rician noise is not reduced 

3.2.4 Challenge in Noise modelling 

The derivation of ADC maps from diffusion weighted images can be done on a pixel-by-

pixel basis or for a defined region of interest. It is usually performed using the least squares 

(LS) fitting method due to its speed and ease of implementation. However such an 

algorithm makes an incorrect assumption on the type noise corrupting the data as it 

considers noise in the measured signal magnitude to be normally distributed. Therefore if 

the nature of the noise distribution is not carefully studied the LS fit of a given model to 

diffusion weighted data is likely to yield biased estimates (as illustrated in Figure 3.3).  
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Figure 3.3: Schematic view of pixel-by-pixel ADC extraction using fitting of DW-MR data. At high b-values where 
the SNR is poor, the presence of noise increases the signal intensity which can result in the underestimation of 
ADC when using a simple LS estimation scheme 

LS estimation consists of approximating the ADC by minimizing the sum of squared 

differences between the observed noisy magnitude MR signal M and one of the models S 

given in (2.5), (2.6) or (2.7) as presented in section 2.3.2.  

 

LLS(ADC, S0;M) = ∑(Mi − S(bi))
2

N

i= 1

 (3.3) 

Several studies aiming at providing accurate noise estimation [41], [60], [62]–[66] and 

reducing the estimation bias [51], [55], [60], [61], [67], [68] have been conducted. In the 

following section we describe in more details some of the methods that have been 

proposed to increase the robustness to noise and produce reliable ADC estimates.  

 Maximum Likelihood estimation 

3.3.1 Theory 

LS provides an accurate estimate only when the noise is Gaussian distributed. The first 

level of refinement to increase modelling robustness is to account for Rice distributed data, 

assuming uniform distribution. Sijbers et al. defined an approach using maximum likelihood 

(ML) to estimate MR signal intensity corrupted with Rician noise [66]. Following that work, 

Walker-Samuel et al. [51] applied the ML approach to mouse diffusion weighted MR data. 

Given the Rician PDF described in (3.2), the Likelihood function is defined as follows: 
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L(ADC, S0;M, σR) = ∏p(Mi|Si, σR)

N

i= 1

 (3.4) 

where N is number of B-values, and σR is the standard deviation of the Rayleigh distribution 

from a background region. Then by taking the negative logarithm of the Likelihood function: 

 Log(L(ADC, S0;M, σR)) = 

∑
S(bi|ADC, S0)

2

2σR
2

N

i=1

− ∑log(I0 (
S(bi|ADC, S0)Mi

2σR
2 ))

N

i=1

 

(3.5) 

This negative log-likelihood function can be minimized with respect to the ADC and S0, 

yielding the most likely value of ADC given the data, and Rician noise model. Note that 

some terms independent of S have been omitted in (3.5). 

3.3.1.1 Noise parameter estimation 

The likelihood function given in (3.5) requires a prior estimate of the noise parameter σR
 . It 

can be estimated using a background (i.e. air) region of interest using fitting to Rayleigh 

distribution [51]. 

3.3.2 Data and Experiments 

All the experiments described in this section were focused on the application of DWI to 

prostate cancer imaging. The increased cellularity in prostatic tumours causes a decrease 

of ADC compared to normal tissue due to the more restricted displacement of water 

molecules. Thus DWI imaging is of interest for prostate cancer characterization [45]. The 

following paragraphs present simulated and clinical datasets used to assess the 

performance of ML estimation. 

3.3.2.1 Monte Carlo simulation 

Monte Carlo simulation based on 1-D signals were first run to compare results obtained 

with ML and LS. A total of 104 fittings were run for each value of ADC in the range [0.1 −

3] × 10−3 (mm2.s-1) and for each SNR in the range [1 − 15]. Here the SNR is defined, 

similarly to [51], as the ratio of the magnitude signal divided by the noise standard 
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deviation. These values of SNR and ADC were chosen in order to cover the possible 

values encountered in prostate DW-MR at 1.5T [69]. The generated signals were sampled 

at the following b-values: [0 150 500 1000] (s.mm-2) for fitting. This is summarized in Figure 

3.4. 

 

 

Figure 3.4: Flow chart of Monte Carlo simulation. The decaying signal is created based on a given value of ADC 
(top-left), then Rician noise is introduced based on a given value of SNR (top-right) and the two fitting methods 
are applied (bottom) 

The objective of this experiment was to highlight statistical differences in accuracy between 

the LS and ML, as well as potential variation with respect to the ground truth values of ADC 

and SNR. These were evaluated by calculating the median absolute error and Inter-

Quartile Range (IQR) of estimates for each couple (ADC, SNR). 

3.3.2.2 Phantom based simulation 

Further assessment of the two methods was achieved using 2-D phantom simulations 

performed to assess whether region of interest (ROI) based estimates of ADC, as are 

commonly used for radiological studies, differ significantly between ML and LS generated 

ADC images and from the “ground truth” ADC. Fields of view containing a tumour region 



68 
 

surrounded by prostate normal tissue were created. Varying size was used for the tumour 

(radii between 2.7 and 8.5 mm) to cover the typical size range observable in clinical data. 

Ground truth ADC values were chosen for tumour (1.02 × 10−3 mm2.s-1 in the peripheral 

zone, 0.94 × 10−3 mm2.s-1 in the transition zone) and normal tissue (1.8 × 10−3 mm2.s-1 in 

the peripheral zone, 1.34 × 10−3 mm2.s-1 in the transition zone) based on previous studies 

[69], [70]. For the selection of a SNR range a set of 18 individual patient prostate multi-

parametric MRI studies was interrogated (see section 3.3.2.3). Signal intensities for pixels 

within each of simulated diffusion weighted image were then corrupted with Rician noise 

estimates derived from patients’ data (see example Figure 3.5). A ground truth ADC image 

(non-noisy) was generated for each tumour size with a central circular tumour region 

surrounded by normal prostatic tissue (see Figure 3.6), and used as a reference for 

assessing the accuracy of ML and LS estimated ADC values. Diffusion weighted images 

corresponding to individual “ground truth” ADC images were generated at the following b-

values: [0 150 500 1000] (s.mm-2). The initial signal intensity of simulated tumour and 

peripheral zone areas was set to a mean value estimated from the patient data. Finally, ML 

and LS algorithms were applied to generate separate ML and LS ADC images. Median 

ADC for the entire simulated tumour and a corresponding sized ROI placed within the 

simulated normal peripheral or transition zone was recorded from ML and LS generated 

ADC images.  This process was repeated 103 times using randomly generated noise 

distributions applied at each SNR for each tumour size. 
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Figure 3.5: Example of patient prostate MR data with delineated regions of interest in T2-MR data (left), and bo  
image (right); the tumour and normal peripheral zone ROIs are indicated by the arrow heads and dotted lines 
respectively 

 

Figure 3.6: Example of creation of phantom data for tumour ROI of 150 mm2 and Rician noise parameter σ𝑅  =
 0.05. DW signals are generated for each pixel from ground truth ADC and S0. Images are then derived at each 
selected B-value after addition of noise. 
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3.3.2.3 Clinical DWI 

DW-MR prostate scans of 18 patients were used to compute tumour and normal prostate 

tissue ADC. For both types of tissue, ADC estimates were assessed as well contrast 

differences in parametric mapping derived from each method (i.e. LS, ML). Patient studies 

were retrospectively selected from a database of multi parametric MRI performed for 

detection of prostate cancer using a standardised imaging protocol of T2, diffusion and 

dynamic contrast enhanced imaging. The inclusion criterion was based on histopathology 

confirmation of the presence of cancer from prostatic template mapping biopsy [71]. Of the 

18 patients included, nine had a tumour located in the peripheral zone and the other nine 

had tumour within the transition zone.  

All multi-parametric MRI studies were all performed at 1.5T (Magnetom Avanto, Siemens, 

Erlangen, Germany) scanner using a standard phase array coil. DW-MR images were 

acquired using a spin echo EPI sequence with 16 averages, an image matrix 172x172 

pixels, slice thickness of 5 mm over a field of view of 260x260 mm, with trace images 

generated at b-values of [0 150 500 1000] (s.mm-2). Further sequence details are presented 

in Table 3.2. 

Sequence type Echo Planar (STIR-EPI) 

Repetition Time (ms) 2100 

Echo Time (ms) 96 

Slice Thickness (mm) 5 

Image Matrix (pixel2) 172x172 

Field of View (mm2) 260x260 

Parallel Acquisition 
(iPAT) 

GRAPPA with Adaptive Combine 
Reconstruction (SMF) 

Number of averages 16 

b-values  (s/mm2) 0;150;500;1000 

Total Acquisition Time 
(min) 

6 

Table 3.2: Details of prostate DW-MRI acquisition sequence. 

For each patient, the study radiologist aware of both the radiological report and the 

template-mapping biopsy histopathology report, located and matched tumour on MR 
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images with the reported histopathology site. Histologically confirmed areas of normal 

tissue were localised in the same manner. The radiologist carefully contoured a region of 

interest around the tumour on b500 diffusion weighted images. A second ROI was similarly 

contoured within normal prostatic tissue.  

In the work presented in the current section, the imaged field of view was considered small 

enough to assume that noise non-stationary characteristic, due to parallel imaging, could 

be neglected.  

The noise variance was estimated by manually selecting background regions in b0 images 

from the same patients and fitting to a Rayleigh distribution to provide an estimate of Rician 

noise. The SNR range used for simulation ranged from the lowest SNR to the highest SNR 

recorded across patients. 

3.3.2.3.1 Quantitative analysis 

Diffusion weighted images of the slices containing the contoured tumour and normal ROIs 

were extracted for analysis. Median ADC estimates for pixels within cancer and for normal 

prostate tissue ROIs were computed using the LS and ML algorithms. Tumour to normal 

tissue contrast ratio was calculated for each patient for the different ADC estimates. 

Comparison with simulation data was achieved using tumour and normal tissue SNR 

estimated for each patient on the b0 image as described in the previous paragraph. 

3.3.2.3.2 Qualitative analysis 

Two radiologists blinded for review, independently performed a subjective assessment of 

tumour obviousness in the two ADC maps for each of the 18 patients in a specifically 

developed Matlab® (The Mathworks, Natick, MA) graphical user interface. The imaging 

slice containing the tumour (as used for quantitative analysis) was cropped tight to the 

prostate in order to mask any potential differences in noise generated within areas of the 

image outside the body that may bias the radiologists. Each radiologist had access to the 

T2 weighted image (with tumour ROI indicated) corresponding to the ML and LS estimated 

ADC images being evaluate. Radiologists were presented matching pairs of unlabelled ML 
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and LS ADC images in a random order and asked to select the ADC image on which the 

tumour could be most clearly seen, or indicate if no difference was observable. 

3.3.3 Results 

3.3.3.1 Monte Carlo Simulation 

Across the repeated simulations, the median percentage error of ML and LS ADC 

estimates (when compared against the “ground truth” ADC) was lower for pixels with higher 

SNR and for pixels with smaller ground truth ADC values (see Figure 3.7). ML estimates of 

ADC were closer to the ground truth ADC. In general, for a given “ground truth” ADC, 

median percentage error of ML ADC estimates was less than 10 % for SNRs greater than 

2. For LS estimates the same accuracy was obtained for SNRs greater than 5.  

 

 

Figure 3.7: Monte Carlo simulations for ADC values from 0.1 to 3.1 10-3 mm2/s and SNR values from 1 to 15. The 
graph shows 3D surfaces representing the median of absolute error of estimates compared to the ground truth 
ADC value, obtained with both LS (red) and ML (blue). Results are presented as a percentage of the ground truth 
ADC.  
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For SNR values typically observed in DW-MR of the prostate (4 ≤ SNR ≤ 15), median LS 

estimates consistently underestimated the ground truth ADC; with poorer estimation at 

lower SNR. Median ML estimates provided an accurate estimate of the ground truth ADC 

value and were less affected by SNR (see Figure 3.8). An increase of error can be 

observed with LS for higher value of ADC. This is due to the fact that for the same level of 

noise, a higher ADC causes lower signal at high b-values which can be interpreted as an 

indirect decrease of SNR. 

 

 

Figure 3.8: Representation of the LS (left) and the ML (right) estimates compared to ground truth ADC values for 
SNR = [4.5, 15]. ADC range covers values typically observed in tumour areas ([0.6, 1.2] 10-3 mm2/s). The LS 
underestimation of ADC appears clearly, along with sensitivity to SNR variations. The ML estimates all lie very 
close to the line of equality: the lines corresponding to different SNRs are practically overlaid. This shows the 
greater robustness to SNR changes and better accuracy of ML. 

However, for typical ground truth ADC for tumour (e.g. 0.9 x 10-3 mm2/s) and normal 

peripheral zone tissue (e.g. 1.5 x 10-3 mm2/s), the IQR of the repeated simulations was 

greatest for ML estimates. The IQR of ML estimates was also more greatly affected by 

reductions in SNR (see Figure 3.9).  



74 
 

 

Figure 3.9: Monte Carlo simulations at ADC values of 9x10-4 mm2/s (left) and 1.5x10-3 mm2/s (right). These 
graphs show the inter-quartile ranges as a measure of deviation for the LS (red circles) and the ML (blue 
squares) obtained for various SNR values. 

 

 

3.3.3.2 Phantom Simulations 

Mean SNR in b0 images across the 18 patients ranged from 5.11 ± 0.77 for transition zone 

tumour to 13.6 ± 5.42 for normal peripheral zone tissue (see Table 3.3). These results are 

based on noise measurements in the background region. The maximum and minimum 

SNR calculated was 10.45 and 3.78 for tumour, and 23.52 and 5.44 for normal tissue. 

 
Peripheral zone 

(PZ) 
Transition zone 

(TZ) 
PZ vs. TZ SNR (p-

value) 

Mean SNR Cancer ± SD 7.49 ± 2.27 5.11 ± 0.77 0.009 * 

Mean SNR Normal ± SD 13.6 ± 5.42 7.46 ± 1.59 0.005 * 

Cancer vs. Normal SNR (p-value) 0.002 * <0.001 *  

Table 3.3: SNR values obtained in 18 patients for cancerous and normal tissue in either peripheral or transition 
zone based on background noise measurement. A significant difference (indicated by ‘*’) could be observed 
between the two types of tissue in both areas. 

The median percentage error and IQR for repeated estimates for the 1000 calculations of 

ADC performed at each of the increasing tumour and normal tissue ROI sizes is illustrated 

for both transition zone and peripheral zone using LS and ML algorithms in Figure 3.10. 

The median percentage error was consistently higher for LS (up to 9%) compared with ML 

(range of median error 0% to 3%) estimated ADC values for tumour and normal tissue for 

all ROI sizes greater than 10 pixels (p < 0.001). In addition, there was no statistical 



75 
 

difference between the IQRs obtain for all ROI sizes with LS and ML (p = 0.403). Across all 

ROI sizes ML were on average 8% lower for tumour and 11.1% lower for normal peripheral 

zone than LS ADC estimates. 

 

Figure 3.10: Result estimates of phantom experiment. The graph show the median (over the 1000 simulations) of 
the median estimates for pixels in the normal tissue (left) and tumour ROIs (right) in peripheral zone (top) and 
transition zone (bottom) obtained with both LS (red) and ML (blue). In all tissue types the ML consistently reduces 
the estimation error. 

3.3.3.3 Clinical Data 

Median LS and ML estimates of ADC for normal peripheral and transition zone, and 

peripheral and transition zone tumour is given in Table 3.4. ML ADC estimates for normal 

transition zone, peripheral zone tumour and transition zone tumour were significantly 

greater than LS estimates (p < 0.001 to p = 0.003). There was no significant difference 

between ML and LS ADC estimates of normal peripheral zone (p = 0.674). Tumour ADC 

was significantly lower than the respective normal prostate zone whether estimated by ML 

or LS algorithms (p < 0.001 to p = 0.013). A slight increase in contrast between tumour and 

normal tissue was observed for ML estimates (+ 4.27% in peripheral zone and +7.47% in 

transition zone). 

 

 

 



76 
 

 

 

 
Peripheral 
zone (PZ) -

Normal 

Transition 
zone (TZ) - 

Normal 

Peripheral 
zone (PZ) - 

Cancer 

Transition 
zone (TZ) - 

Cancer 

TZ Normal 
vs. Cancer 
(p-value) 

PZ Normal 
vs. Cancer 
(p-value) 

LS median 
ADC (x10-

3mm2/s) ± 
SD 

1.61 ± 0.45 1.22 ± 0.33 0.93 ± 0.34 0.71 ± 0.14 <0.001 * 0.013 * 

ML median 
ADC (x10-

3mm2/s) ± 
SD 

1.71 ± 0.40 1.37 ± 0.40 0.99 ± 0.31 0.80 ± 0.16 <0.001 * <0.001 * 

ML vs. LS 
(p-value) 

0.674 0.003 * 0.002 * <0.001 *   

Table 3.4: Least Squares and Maximum Likelihood estimates of ADC for normal and cancerous tissue in patient 
peripheral zone and transition zone. No statistical difference could be observed between the two types of 
estimates in normal peripheral zone, where the SNR is the highest. However LS estimates where statistically 
lower in the other tissues (indicated by ‘*’). 

Visual assessment of the difference between ADC maps obtained with the ML and those 

obtained with the LS did not reveal significant changes. The two evaluations of the data 

resulted in the following: Radiologist 1 preferred the ML ADC map in 22% of the cases, the 

LS ADC map in 22% and did not have a preference in 56% of the cases. In only 1 case the 

ML map was considered as ‘much better’ compared to the LS map, in all the other cases 

where there was a preference it was quantified as ‘slightly better’. Radiologist 2 preferred 

the ML ADC map in 33% of the cases, the LS ADC map in 50% and did not have a 

preference in 17% of the cases. Here, all the preferences were quantified as ‘slightly 

better’. Figure 3.11 shows examples of the compared ADC maps along with the 

corresponding T2 images. 
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Figure 3.11: Examples of ADC maps generated using the two approaches for two different patients. Each row 
corresponds to a patient for which the T2 image (left), LS ADC (centre) and ML ADC (right) maps are displayed. 
All three image type cropped tight to the prostate area. For the first example, the ML map was considered as 
slightly better by the two radiologists, and for the second example, the ML map was considered as much better by 
radiologist 1 and slightly better by radiologist 2. 

3.3.4 Discussion 

A global increase of ADC values could be observed when applying ML estimation to clinical 

data. The difference in ADC between cancer and normal peripheral zone tissue appeared 

clearly with both methods and was relatively more important for ML estimates. These 

findings agreed with results presented in previous preclinical studies on mice [51]. 

However, this increase in difference did not seem to be sufficient to have a clinical impact 

given the way ADC maps are currently used. In particular, no significant change in 

conspicuity of lesions by radiologists could be highlighted between maps resulting from the 

two types of estimation. 
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 Rician Bias Correction 

3.4.1 Theory 

This section presents a method for DWI modelling, accounting for parallel imaging induced 

spatially varying noise, and data averaging. Cardenas-Blanco et al. [67] adapted an 

iterative method (based on statistical moments) proposed by Koay et al. [64], to derive an 

analytical expression for the Rician bias correction in the case of non-averaged data. The 

first and second moments of the distribution of magnitude data M, are given by the 

following expressions: 

 
〈M〉 =  √

π

2
 

(2N − 1)!!

2N−1(N − 1)!
 F11

 (−
1

2
, N,

S2

2σG
2)σG

  (3.6) 

and, 

 〈M2〉 = 2NσG
2 + S2 (3.7) 

where N is the number of receiver coils, the operator  (. )‼ is the odd factorial, σG
  is the 

standard deviation of the underlying Gaussian distribution, and F11
  is the confluent hyper-

geometric function. Then using (3.6) and (3.7) a proportional relationship between 𝜎G
2 and 

the variance of the magnitude signal 𝜎R
2 can be derived: 

 σR
2 = 〈M2〉 − 〈M〉2 =  ξ(θ, N) σG

2  (3.8) 

where θ =  𝑆 σG⁄  (i.e. the SNR) and ξ(θ) is a correction factor defined as:  
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(3.9) 

θ can be iteratively estimated using a fixed point formula derived from equations (3.8) and 

(3.9): 

 

θ = √ξ(θ, N) (1 +
〈M〉2

σM
2 ) − 2N (3.10) 
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Provided that a prior estimate of  σR
  is available, equation (3.10) provides an estimate for 

both the standard deviation σG
  and the correction factor ξ. Finally, using the latter in 

association with the binomial expansion of the square root, one can retrieve an unbiased 

estimate of S: 

 S2 = 〈𝑀〉2 − q2σG
2  (3.11) 

 q2 = (2 − ξ(θ)) (3.12) 

 
S = M − 〈M〉 [

1

2
(
qσG

〈M〉
)
2

+ 
1

8
(
qσG

〈M〉
)
4

+ ⋯]  (3.13) 

Olariu et al. extended the application of such a bias correction scheme to averaged DW-

MR data [68]. As illustrated in Figure 3.2 bias correction is necessary in averaged data in 

particular when the SNR is poor (i.e. when the Rician bias is particularly important). Once 

the bias correction has been carried out, there is no need to account for the noise 

distribution in the fitting process and the LS estimation should provide accurate estimates 

of the ADC. 

3.4.1.1 Noise parameter estimation 

As noise is considered as non-stationary, σR
  ideally should not be directly estimated from a 

background region. Instead we chose a method [55] based on the work published by 

Coupé et al. [65], adapting a median absolute deviation (MAD) technique to averaged Rice 

distributed data. The 2D magnitude DW images are decomposed (Haar wavelet 

decomposition) into four sub-bands (LL, HL, LH, HH, L = low, and H = high frequencies). 

The lowest sub-band (LL) mainly corresponds to the object, and thus can be used as a 

mask for the object region. Having segmented the object, the underlying Gaussian noise 

standard deviation σG is estimated from the wavelet coefficients (y𝑖) corresponding to its 

HH sub-band [55]. 

 
σG =

Median(|yi|)

0.6745
 (3.14) 
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3.4.2 Data and Experiments  

The same clinical data as described in 3.3.2.2 were used, as well as the methods used to 

assess the accuracy of ADC estimation. This paragraph only describes simulation based 

experiments. As robustness to non-stationary (i.e. spatially varying) noise was assessed, 

image based simulation were used in all cases. 

3.4.2.1 Monte Carlo Simulation 

Similar to paragraph 3.3.2.1, a Monte Carlo simulation was run to assess the effect of 

Rician bias correction (RBC) on LS estimates of ADC. For SNR values in the interval [1 −

15] sets of DW-MR images were generated using a simulator of noisy GRAPPA acquisition 

data developed by Aja-Fernandez et al. [60], [63] which had been modified to incorporate 

SMF reconstruction. Images were created at b-values of [0 150 500 1000] (s.mm-2) with the 

same S0 and ADC values as in paragraph 3.3.2.2, using 2 receiver coils, an acceleration 

factor of 2, and assuming no correlation between the coils. For each ADC and SNR, 

multiple data sets were created providing measurements for averaging using 1 and 16 

averages. Each attempt was based on 5 × 104 samples (i.e. averaged pixels). This is 

summarized in Figure 3.12. According to Dietrich et al. [58] images obtained with 

GRAPPA/SMF are expected to be Rician distributed. Therefore in each scenario (b-value, 

SNR, ADC, number of averages) RBC was applied. Data distribution before and after RBC 

were compared using the ground truth signal value as reference. 
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Figure 3.12: Flow chart of Parallel imaging simulation. Data are created based on a given set ADC values and a 
B0 image, then Rician noise is introduced using GRAPPA/SMF simulation with the specified SNR and the 
resulting images are averaged 

3.4.2.2 Phantom based simulations 

Similar to paragraph 3.3.2.2, phantom simulations were run to assess the effect of RBC on 

ROI based LS estimates of ADC. Data were generated the same way as shown in Figure 

3.6, but using GRAPPA/SMF reconstruction simulation and multiple averaging. The 

experiment was repeated for 1 and 16 averages. 

3.4.3 Results 

3.4.3.1 Monte Carlo Simulation 

Applying RBC to noisy averaged signals showed an important reduction of the Rician bias. 

The effect was variable depending on the initial SNR (in the b0 image before averaging) and 
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the number of averages used. However RBC always reduces the observed bias (see 

example Figure 3.13). In particular, it was observed as expected that the lower the SNR, 

the bigger the bias. Also the number of averages only affects the standard deviation and 

the shape of the distribution. Although there is an important reduction of the noise induced 

shifting, a residual bias remains after correction as expected. It should be noticed that the 

given SNR values is for the non-averaged b0 data. 

 

Figure 3.13: Effect of Bias Corrections on pixel intensities distribution for SNR0 = 4. Examples at b0 for no 
averaging (a) and 16 averages (b), and at b1000 for no averaging (c) and 16 averages (d). RBC always reduces 
the bias due to Rician distribution (for low SNR in b1000 images). In each case the image data is shown with the 
area analysed contoured in white.  

For both non-averaged and averaged data, estimates of ADC obtained after applying RBC 

were closer to the “ground truth” ADC (see Figure 3.14). The improvement in median 

percentage error with RBC was always higher than 5 % compared to LS alone, and up to 

70% for higher ADCs at low SNR. It was also observed that the effect of LS was very 

similar with either 1 or 16 averages. The SNR values presented here correspond to non-

averaged data. These values were kept for better clarity when comparing the different 

graphs. However in the presence of averaging the actual SNR is increased. 
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Figure 3.14: Monte Carlo simulations for ADC values from 0.1 to 3.1 10-3 mm2/s and SNR values from 2 to 7 for 
non-averaged data (a), and averaged data using 16 averages (b). The graphs show 3D surfaces representing the 
median of absolute error of estimates compared to the ground truth ADC value, obtained with LS alone (red) and 
with LS+RBC (blue). Results are presented as a percentage of the ground truth ADC.  

Similar to 3.3.3.1, the IQR obtained for typical ground truth ADC values for tumour (e.g. 0.9 

x 10-3 mm2/s) and normal peripheral zone tissue (e.g. 1.5 x 10-3 mm2/s) was higher for 

estimates from RBC data. However this IQR difference between the two methods was only 

observed at low SNR and in the absence of averaging (see Figure 3.15). This can be 

explained from observations from Figure 3.13, at low SNR without averaging, RBC 

increases the spread of the strongly skewed distribution to get back to a Gaussian. 

 

Figure 3.15: Monte Carlo simulations at ADC values of 9x10-4 mm2/s (left) and 1.5x10-3 mm2/s (right). These 
graphs show the inter-quartile ranges as a measure of deviation for the LS alone (red circles) and the LS+RBC 
(blue squares) obtained for various SNR values. 
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3.4.3.2 Phantom Simulations 

The median percentage error and IQR for repeated estimates of ADC performed at each of 

the increasing tumour and normal tissue ROI sizes is illustrated for both transition zone and 

peripheral zone using LS and LS with RBC in Figure 3.16 and Figure 3.17. Median 

percentage error was consistently higher for LS alone (up to 20%) compared with RBC for 

tumour and normal tissue for ROI sizes greater than 10 pixels for non-averaged data. 

However, there was no obvious difference between the two methods in the case of 

averaged data. 

 

 

Figure 3.16: Result estimates of phantom experiment with no averaging. The graph show the median estimates 
for pixels in the normal tissue (left) and tumour ROIs (right) in peripheral zone (top) and transition zone (bottom) 
obtained with LS alone (red) and with LS+RBC (blue).  
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Figure 3.17: Result estimates of phantom experiment with 16 averages. The graph show the median estimates 
for pixels in the normal tissue (left) and tumour ROIs (right) in peripheral zone (top) and transition zone (bottom) 
obtained with LS alone (red) and with LS+RBC (blue).  

3.4.3.3 Clinical Data 

Table 3.5 shows the SNR measurement in b0 images across the 18 patients using Koay’s 

method. It yielded different results compared to those based on background regions. The 

maximum and minimum SNR calculated was 15.52 and 5.1 for tumour in the transition and 

peripheral zone respectively, and 24.9 and 5.57 for normal tissue. These results are based 

on noise measurements in the object region in averaged data. Since data were acquired 

using 16 signal averages the values given in Table 3.5 must be rescaled to obtain an 

estimation of the SNR before averaging [55]. 

 
Peripheral zone 

(PZ) 
Transition 
zone (TZ) 

PZ vs. TZ SNR 
(p-value) 

Mean SNR Cancer ± SD 11.31 ± 3.37 10.29 ± 3.68 0.52 

Mean SNR Normal ± SD 16.19 ± 6.58 12.97 ± 5.48 0.27 

Cancer vs. Normal SNR (p-value) 0.08 0.33  

Table 3.5: SNR values obtained in 18 patients for cancerous and normal tissue in either peripheral or transition 
zone based noise measurement in the object region.  No significant difference could be observed between the 
two types of tissue in both areas 

Median ADC estimates for LS with and without RBC in normal peripheral and transition 

zone, and peripheral and transition zone tumour is given in Table 3.6. No significant 

difference could be observed in the different types of tissues. This is consistent with 

simulation based results given the computed SNR levels.  
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Due to the limited difference in ADC estimates obtained with the two methods, no visual 

assessment of ADC maps was performed in this part of the study. 

 
Peripheral 
zone (PZ) –

Normal 

Transition 
zone (TZ) - 

Normal 

Peripheral 
zone (PZ) - 

Cancer 

Transition 
zone (TZ) - 

Cancer 

TZ Normal 
vs. Cancer 
(p-value) 

PZ Normal 
vs. Cancer 
(p-value) 

LS median 
ADC (x10-3 

mm2/s) ± SD 
1.7 +/- .30 1.2 +/- .40 0.91 +/- .46 0.96 +/- .70 0.34 0.00021 

LS+RBC 
median ADC 
(x10-3mm2/s) 

± SD 

1.8 +/- .30 1.3 +/- .40 0.94 +/- .46 0.98 +/- .71 0.32 0.00018 

LS vs. LS 
+RBC (p-

value) 
0.75 0.85 0.91 0.95   

Table 3.6: Least Squares ADC estimates with and without RBC for normal and cancerous tissue in patient 
peripheral zone and transition zone. No statistical difference could be observed between the two types of 
estimates in the different type of tissue 

3.4.4 Discussion 

As observed with ML a global increase of ADC values was obtained when applying RBC to 

clinical data. Despite the specificity of RBC to account for a more realistic type of noise 

distribution, there was no significant difference with LS estimates. Here again, the changes 

obtained in ADC estimates did not seem to be sufficient to have a clinical impact given the 

way ADC maps are currently used. However, simulations showed a possible benefit of 

using RBC at low SNR.  

 Analytic Formulation of the Averaged PDF with Maximum Probability 

Estimation 

This last section describes the work published in Dikaios et al. [55] to which the author 

contributed. A summary of this work is presented here. The application is focused on head 

and neck tumours. Contrary to prostate cancer, head and neck tumours present a 

decreased cellularity compared to surrounding normal tissue, resulting in an increase of 

ADC [55]. 
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3.5.1 Theory 

This section introduces an analytic approach to account for the effect of averaging on the 

statistical distribution of DWI magnitude data. Assuming Rice distributed data in each of the 

Navg measurements used for averaging, the global PDF of the resulting averaged data is 

given by the convolution of each Rician PDF: 

 pavg = p1 ⊗ p2  ⊗ …⊗ pNavg
 (3.15) 

However the Rician distribution is expected to be the same in each measurement, hence 

(3.15) is equivalent to: 

 pavg = FT−1(FT(pRice)
Navg) 

pRice ≈ p1 ≈ p2 ≈⋯≈ pNavg
 

(3.16) 

where FT is the Fourier Transform operator. Given the expression in equation (3.2), the 

averaged PDF in noisy DW-MRI can finally be modelled using the following approximation: 

       p(M|S, σR) = 

 
c2M

σR
2  × (−

c2M

c1S
)
Navg

exp −(
c2M + c1S

σR
2 ) IN𝑎𝑣𝑔−1 (

c2M + c1S

σR
2 ) 

(3.17) 

where 𝑐1 and 𝑐2 are constant that can be optimized by fitting the model in (3.17) to the 

convolution of the Rician PDFs in equation (3.15) [61]. An estimate of the noise parameter 

σR
  was computed using the MAD technique described in 3.4.1.1, combined with equation 

(3.8). 

3.5.1.1 Curve Fitting 

The model fitting was achieved using a maximum probability (MP) approach proposed by 

Kristoffersen et al. [61] to provide unbiased ADC estimates. Instead of applying LS fitting 

based on the difference between the measured signal and the model directly, one can use 

the difference between measurements and MP of the expected distribution for each b-

value. 

The MP of the PDF can be numerically computed respectively from equations (3.18). 
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 ∂p(Mi|S(bi), σR)

∂Mi
|
Mi=MP

= 0 (3.18) 

These two approaches were used in [55], within non-linear regression based on the L1-

norm (i.e. the sum of absolute values) for increased robustness to outliers.  

 

LMP = ∑|Mi − MPi|

N

i=0

 (3.19) 

3.5.2 Data and Experiments 

This study was focused on the application of DWI imaging of head and neck cancer, which 

differs from the previous sections.  

3.5.2.1 Simulation 

Simulated datasets for both non-averaged and averaged DWI were firstly generated to 

evaluate the accuracy of noise estimation. Noise-free DWI containing both normal tissue 

and tumour ROIs were created using signal values from an example clinical dataset. In this 

case six b-values were utilized: [0 50 100 300 600 1000] (s.mm-2). Just like in paragraph 

3.4.2.2, noise-free data were corrupted with noise and averaged four times. The SNR in the 

averaged data was chosen so that values varied between 3 and 8 in the b1000 image, which 

differs from the previous sections. These data were used to assess the ability of the MAD 

technique combined with the mono-exponential MP fitting to correct for the Rician bias. In 

the following paragraphs, such a technique is referred to as MP for clarity. 

3.5.2.2 Clinical Data 

A set of 24 clinical DWI scans from patients with confirmed head and neck squamous cell 

carcinoma, was used for this study. 16 healthy subject DWI were used as controls. Trace 

DW images of the head and neck were acquired at 1.5T (Magnetom Avanto, Siemens, 

Erlangen, Germany) with two receiver coils using GRAPPA. Data reconstruction was 

carried out using SMF denoted as adaptive combine by the manufacturer. Again, as 

predicted by Dietrich et al. [58] data resulting from such an acquisition scheme are 

expected to be Rician distributed. Images were averaged four times for improved SNR. 
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Diffusion gradients were applied in 3 orthogonal directions at each of 6 b-values 

[0 50 100 300 600 1000] (s.mm-2). Further details on data acquisition are provided in Table 

3.7. In each dataset, cancerous or normal cervical nodes ROIs were contoured by a 

radiologist. 

Sequence type Echo Planar (STIR-EPI) 

Repetition Time (ms) 8700 

Echo Time (ms) 88 

Slice Thickness (mm) 4 

Image Matrix (pixel2) 128x128 

Field of View (mm2) 260x260 

Parallel Acquisition 
(iPAT) 

GRAPPA with Adaptive Combine 
Reconstruction (SMF) 

Number of averages 4 

b-values  (s/mm2) 0;50;100;300;600;1000 

Total Acquisition Time 
(min:s) 

6:10 

Table 3.7: Details of head & neck DW-MRI acquisition sequence. 

ADC maps were generated using the MP estimation scheme. Results were compared to a 

modified version of the LS algorithm, replacing the squared difference in equation (3.3) by 

the L1-norm of the difference. 

3.5.3 Results 

3.5.3.1 Simulation 

Table 3.8 illustrates the performance of MP fitting compared to LS applied to simulated 

data. Compensating for the Rician bias is advantageous in case of low SNR. However the 

difference between MP and LS estimates decreases for increasing SNR values. 

 SNR = 3 SNR = 5 SNR = 8 

Ground Truth ADC 
(mm2/s) 

1.31 1.31 1.31 

LS estimate (mm2/s) 0.91 1.18 1.26 

MP estimate (mm2/s) 1.24 1.3 1.3 

Table 3.8: ADC estimates in simulated data using MP fitting with the analytical formulation for the averaged noise 
distribution. Results are for the tumour ROI in the simulated field of view. 
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3.5.3.2 Clinical Data 

Across all b-values, the SNR in the contoured ROIs were always higher than 9.4 in cancer 

nodes and higher than 6.4 in normal nodes. Table 3.9 presents the median and IQR of 

ADC estimates across all patients for both normal tissue and tumour ROIs. No significant 

difference was observed between the two types of estimates (p = 0.06 in terms of the 

Mann-Whitney U-test). Although there was a significant difference between the estimated 

ADC from different types of tissue with both LS (p = 0.01) and MP (p < 0.01), no method 

was preferred. 

 

Normal tissue Tumour 

Median IQR Median IQR 

LS estimate (mm2/s) 1.14 0.26 1.02 0.17 

MP estimate (mm2/s) 1.21 0.29 1.02 0.18 

Table 3.9: ADC estimates (Median and IQR) in clinical head and neck DWI. Results are taken across all patients 
for both normal and tumour ROIs. 

3.5.4 Discussion 

Simulation based experiments demonstrated the benefit of using an analytical formulation 

of the averaged distribution at low SNR. However, in a clinical context, no advantage was 

found in using such a model within the MP scheme compared to LS due to the high SNR 

observed in both normal and cancer nodes. 

 Discussion and Conclusion 

Diffusion weighted imaging is increasingly used for assessing prostate cancer [72]–[74]. 

The recent European Society of Uro-Radiology guidelines on prostate MRI includes the 

routine use of an ADC image for evaluation of prostate tumours [75]. Beyond visual 

assessment alone, there is significant interest in using quantitative ADC values to aid 

detection [71], treatment monitoring [76], active surveillance and even Gleason grading [48] 

of tumours. Likewise, DWI is of interest in the characterization of several types of head and 

neck tumours [45], [50], [77], [78]. 
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 Establishing a standardised ADC assessment methodology remains a challenge given the 

variety of scanning options and differences between MR hardware manufacturers [63]. 

Whilst there has been a focus on homogenising the acquisition of diffusion weighted 

images to improve reproducibility, the extent and impact of errors resulting from 

assumptions made in calculating ADC values has not been investigated as much. 

3.6.1 Validity of noise model 

A good understanding and appropriate modelling of noise is essential for relevant analysis 

of DW-MR data, and more generally for the analysis of any type of quantitative MR data. In 

this study, clinical DW-MR data were acquired using parallel imaging with 2 receiver coils 

and multiple averages. Considering this, several hypotheses were made, all assuming Rice 

distributed data. In the first instance, the imaged field of view was considered small enough 

to assume that the non-stationary characteristics of noise could be neglected. Also if a 

Gaussian is considered as a particular case of Rician distribution, then the ML technique is 

still valid for ADC estimation at high SNR or in averaged data. In a second step, non-

stationary noise in the presence of averaging was taken into account in the model leading 

to data pre-processing using RBC. Finally the effect of averaging was included in the noise 

model to provide a fully analytical approach, MP, for bias correction. 

Each approach has limitations. The use of ML relies on possible over simplification of the 

nature of noise and both RBC and MP require a series of complex processing which may 

increase the risk of error propagation. 

3.6.2 Clinical Impact 

DW-MRI, more particularly ADC mapping, in association with other MR imaging schemes is 

of interest for cancer diagnosis and grading. Thus, obtaining accurate and reliable values of 

ADC in tumour areas is crucial. This study addresses the estimation of ADC from DW-MR 

data in the case of human prostate, and head and neck cancer. 
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Results obtained from simulations showed an increase in accuracy with all the investigated 

methods (i.e. maximum likelihood estimation, rician bias correction, maximum probability) 

when compared to LS estimation. Phantom based simulation allowed the assessment of 

estimates accuracy in ROIs with varying sizes for both prostate peripheral and transition 

zone. Such an approach was closer to real data analysis than using 1-dimensional signals. 

Realistic S0 values were also incorporated to the data in these experiments. 

Improving the reproducibility of ADC values is critical if they are to be adopted into routine 

clinical decision-making processes.  The first step is to understand the causes, magnitude 

and clinical effects of errors in ADC. Our results highlight the importance of the image-

processing step and indicate that alternative methods to estimate ADC could provide 

values more accurately reflecting tissue characteristics. The results also highlight the 

significance of maintaining an adequate SNR of DW-MR images. Whilst our work has been 

focused on specific application (i.e. prostate or head and neck cancer) it has equal 

implication for many other body site where ADC estimates are being clinically considered 

(e.g. brain, liver, breast) [45]. With regard to prostate cancer imaging, improving the 

reliability and reproducibility of ADC estimates will further improve threshold based tumour 

detection strategies; could provide a means of active surveillance [79] of patients where 

changes in ADC may precede changes in tumour size; or improve estimation of tumour 

Gleason grade from ADC values [48]. 

3.6.3 Data Acquisition  

Simulations results suggest that the robustness of the described methods at low SNR could 

alleviate the need for higher number of measurements (e.g. 16) leading to shorter 

acquisition times and avoiding errors due to patient motion between measurements. Higher 

spatial resolution might also be possible. 
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3.6.4 Conclusion 

It was found that accounting for noise in the analysis of DW-MRI improves the accuracy of 

ADC estimates of cancerous and normal tissue (e.g. by 4-20% in the cases of prostate 

transition zone tumours). An increase of the difference between tumour and healthy tissue 

ADCs can also be observed in some cases of prostate imaging. However, these changes 

were not significant enough to have an impact on current clinical use of DW-MRI.  

This work highlighted the necessity to use accurate noise modelling in clinical DWI and the 

important influence of acquisition strategies on the expected nature of the noise 

distribution. Results based on simulations indicate that the use of the described methods 

for image analysis in clinical routine might allow changes in data acquisition such as 

reducing the number of averages.  

Some of the work presented in this chapter (section 3.5) will be used for the derivation of 

ADC in the study described in chapter 6.  
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4 Robust Data Decomposition Registration – respiratory motion 
correction in DCE-MRI 

 Introduction 

In this chapter we address the challenge of respiratory motion correction in DCE-MRI. 

Following a description of what image registration is and a presentation of the existing 

methods to register DCE-MR data, we introduce our method named Robust Data 

Decomposition Registration (RDDR). The validation and discussion of such a technique are 

finally presented. The work presented in this chapter led to conference publications 

describing the concept of RDDR at ISMRM 2012 [80] and its application at ISMRM 2013 

[81]. The complete version of this work was published in Medical Image Analysis journal 

[82]. 

 Motion correction in DCE-MRI 

In order to monitor contrast agent uptake and washout in DCE-MRI, acquisition times of the 

order of minutes are required. Hence patient motion (e.g. breathing, heartbeat and bowel 

peristalsis) during the acquisition can cause inter-frame misalignments. In extreme cases, 

the magnitude of motion due to breathing can be as large as 80 mm [83] along the 

superior-inferior axis in organs close to the diaphragm. These misalignments have a strong 

impact on the analysis of DCE-MRI since apparent intensity changes will be related to a 

mixture of motion and contrast agent changes, potentially corrupting the derived 

enhancement parameters and yielding incorrect information on tissue properties; in 

particular, motion during the contrast agent arrival phase can bias the estimation of 

pharmacokinetic parameters used to assess local tissue perfusion. Thus, correcting for 

motion is essential to get relevant information from the data. Several techniques have been 

developed to account for it during data acquisition directly. For example, the generalized 

reconstruction by inversion of coupled systems [41],  which uses extra physiological 

measurements (e.g. pneumatic respiratory belts) as a model and compensates motion in 
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raw dynamic MR data. A modified version of this method using a contrast enhancement 

model has been applied to DCE-MRI [84]. Alternatively image registration [38] can be 

applied to achieve retrospective motion correction. In this work we chose to focus on this 

type of technique. 

4.2.1 Registration 

Image registration consists of aligning the same features in two different images (the 

source and the target) by establishing spatial correspondences. An example is shown 

Figure 4.1. There are two main class of registration algorithm: intensity based and feature 

based registration. 

 

Figure 4.1: Example of image registration. A grid is overlaid on the target image (a, d), the source image (b) and 
the registered source image (e) to highlight the geometrical differences. Difference image before (c) and after 
registration (f) show the effect of feature realignment. Remaining elements in (f) are essentially noise and 
intensity variations between the two images. 

Intensity based registration algorithms typically contain three elements: the similarity 

measure, the transformation model, and the optimization scheme. The similarity measure 
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compares the two images and measures how much different these are. It is embedded 

within an objective function which, when minimized (or maximized in some cases), stops 

the algorithm. Common similarity measures (summarized in Table 4.1) such as sum of 

squared difference (SSD) and correlation coefficients (CC) are based on intensity only. 

Others such as mutual information (MI) and normalized mutual information (NMI) are based 

on image entropy. Image entropy is a measure of information that uses the probability, 𝑝, of 

values occurring in image pixel [85]. Given that definition, MI can be seen as how well one 

image predicts the other, the better the features’ alignment the better the prediction. NMI is 

similar to MI in terms of meaning but presents an increased robustness with respect to 

limited overlap between images [85].  

Similarity 
measure  

Expression  
Possible 
values  

Optimal 
value 

SSD 
1

𝑁
∑ |𝐼(𝑥) − 𝐽(𝑥) |2

𝑥∈𝐼 ⋂ 𝐽

 ≥ 0 0 

CC 
 

∑ (𝐼(𝑥) − 𝐼)̅(𝐽(𝑥) − 𝐽)̅𝑥∈𝐼 ⋂𝐽

(∑ (𝐼(𝑥) − 𝐼)̅2
𝑥∈𝐼 ⋂ 𝐽 . ∑ (𝐽(𝑥) − 𝐽)2

𝑥∈𝐼 ⋂ 𝐽 )
1

2⁄
 

where 𝐼a̅nd  𝐽a̅re the mean value of the images 

[−1,1] 1 

MI 

𝐻(𝐼) + 𝐻(𝐽) − 𝐻(𝐼, 𝐽) 
where  𝐻(𝐼) =  −∑ 𝑝𝐼(𝑥) log(𝑝𝐼(𝑥))𝑥∈𝐼  

and 𝐻(𝐼, 𝐽) =  −∑ ∑ 𝑝𝐼𝐽(𝑥, 𝑦) log(𝑝𝐼𝐽(𝑥, 𝑦))𝑦∈𝐽𝑥∈𝐼  
≥ 0 

Depends on 
𝐻(𝐼) 

NMI 
𝐻(𝐼) + 𝐻(𝐽)

𝐻(𝐼, 𝐽)
 [1,2] 2 

Table 4.1: Common similarity measures for image comparison based on intensity or entropy. Expressions are 
given for two images I and J to register, containing N pixels, indexed by x, each [38]. 

The transformation model computes a displacement vector for each pixel in the source 

images, resulting in a displacement field. Such a displacement field can be set to produce a 

rigid (i.e. only involving translation and rotation), affine (i.e. rigid plus sheering and scaling), 

or non-rigid (i.e. any deformation possible) transformation. In the particular case of a non-

rigid transformation the deformation field can be computed for all pixels or for a limited set 

of control points and then extended to the entire image using interpolation. Limited control 

points can be useful to reduce the computational required time to complete registration. 

Note that specific constraints on the transformation can be incorporated through 
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regularisation terms in the objective function. Finally the optimization scheme makes the 

link between similarity and transformation. It aims at minimizing the similarity function by 

acting on the applied transformation. After each update of the transformation, the image 

similarity is computed (along with possible regularization parameters [86]). This process is 

iterated to find the best match between the two images. Common registration techniques 

use optimisation schemes such as: gradient descent, conjugate gradient, Gauss-Newton 

optimisation. 

In feature based registration, a number of pre-defined pairs of landmarks in the two images 

are used to guide the transformation model. In some case the spatial correspondences 

between the landmarks can be available which alleviates the need for an optimization 

process. This type of registration is very intuitive. However it does require additional pre-

processing to define the landmarks. All techniques mentioned in the following are intensity 

based. 

In cases such as DCE-MRI where not only two images but multiple frames from a time 

series must be registered, several choices can be made depending on the data. A single 

frame (e.g. the first one) can be chosen as a target and all the others can be registered to 

that one. If changes are expected in a relatively long time period but limited changes occur 

between two consecutive frames, the series can be registered sequentially: the second 

frame is registered to the first one, the third frame is then registered to the (previously 

registered) second and so on. Finally a groupwise approach [87] can be utilized: the mean 

of all the frames is taken to produce the target image. 

4.2.2 Existing methods 

Several image registration methods have been developed to overcome the effect of motion 

and provide well aligned features across the time series. Nevertheless developing an 

(intensity based) registration scheme specific to DCE-MRI data is challenging since 

changes due to motion and those corresponding to contrast enhancement must be 
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differentiated. Conventional registration algorithms are likely to fail with DCE-MRI data as 

important local intensity changes across the different time-points can be interpreted as 

motion and produce a non-realistic expansion or contraction of the volume [86], [88].  

The possibility of avoiding unphysical volume changes caused by local intensity variations 

due to contrast enhancement has been investigated in several studies. The multi-resolution 

fast free-form deformation (FFD) based on b-splines with NMI as a similarity measure by 

Rueckert et al. [89] has been used as a basis to address the problem of misalignments in 

DCE-MR time-series. In many cases a specific regularization term was introduced to limit 

non-realistic deformations [86], [88], [90]. Zheng et.al [91]  developed a new method based 

on FFD in order to register breast images. In this approach a Lorentzian estimator is used 

as a similarity measure, combined with a reformulation of the energy function minimization 

using linear programming.  Li et al. [92]  recently registered high temporal resolution free-

breathing contrast enhanced images of the bowel. In this method a retrospective 

respiratory gating is applied to the data and the remaining images are sequentially 

registered using a transformation model based on a combination of discrete cosine 

transformation basis functions [93]. 

Another class of methods dedicated to the problem of DCE-MRI registration are those that 

use a pharmacokinetic model to drive the registration processes. Hayton et al. developed a 

registration scheme that incorporates such a model and applied it to the analysis of breast 

images [94]. This relies on the assumption that the better the alignment between images in 

the time-series, the lower the residual difference between the model fit and the actual data. 

Therefore model fitting results can be used as a cost function for registration. Xiaohua et al. 

[95]  proposed simultaneous segmentation and registration using Markov random fields 

combined with a similar model. Buonaccorsi et al. [96] introduced a method based on the 

modified Tofts model [11], [22]. By iteratively fitting such a model to the unregistered data, 

a motion-free synthetic time-series based on the resulting pharmacokinetic parameters 

map can be created and used as a reference for rigid registration. More recently Bhushan 
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et al. proposed a joint estimation of the deformation and contrast enhancement based on a 

Bayesian framework [97]. 

A further approach is to separate motion from contrast enhancement before registration. 

Melbourne at al. introduced an algorithm named progressive principal component 

registration (PPCR) that gradually removes misalignments [98], [99]. The method is based 

on the iterative use of principal component analysis (PCA) combined with a standard 

registration algorithm such as multi-resolution FFD [100]. In PCA, contrast changes are 

assumed to appear in the more significant principal components and motion in the less 

significant. This is used to create a synthetic motion-free set of target images using a 

limited number of principal components that correspond to contrast enhancement. It has 

been utilized to register both liver and breast data acquired using repeat breath-hold 

protocols [98], [99]. However the ability of PCA to disentangle motion from contrast 

enhancement depends on the nature of motion: for instance, the periodic motion of free 

breathing can appear in the more significant principal components along with contrast 

changes.  More recently Wollny et al. investigated the use of independent component 

analysis to decompose data prior to registration in free breathing cardiac MRI [101]. In this 

case too, the objective is to remove motion elements to form a synthetic target time-series.  

4.2.3 Proposed method 

In this chapter we introduce a novel registration approach specifically designed to address 

the problem of misalignments in DCE-MR time-series. Similar to [98], [101] , our method is 

based on the assumption that motion can be separated from contrast enhancement, but 

here we chose robust principal component analysis (RPCA) for data decomposition [102]. 

RPCA reformulates decomposition as an optimization problem to recover the sparse and 

low rank components of the input data. Our hypothesis is that RPCA coupled with a 

registration algorithm based on residual complexity minimization [103] provides accurate 

registration of DCE time series in a broad range of organs and for various breathing 
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protocols. Given the explicit separation of a sparse term, RPCA should allow more flexibility 

and a greater degree of robustness than regular PCA, and can potentially benefit DCE-MRI 

registration. Importantly, it is expected to have a particular impact at critical times such as 

the arrival of contrast agent bolus. 

 Robust Data Decomposition Registration (RDDR) 

4.3.1 Robust Principal Component Analysis (RPCA) 

A common tool used in data processing and analysis is PCA. Given high dimensional input 

data, it uses singular value decomposition (SVD) to find a linear subspace with lower 

dimensionality that is the best adapted to the data. In that case the principal components 

correspond to the data projections on each axis of the estimated subspace. A limitation of 

PCA is its sensitivity to grossly corrupted inputs [102]. RPCA proposes a non-linear 

approach. Instead of a series of principal components that describe the data within a 

multidimensional space, only two components are computed: the low rank component 

representing the uncorrupted data and the sparse component corresponding to the 

perturbation, with no limitation in terms of magnitude (see Figure 4.2). Several studies 

investigating the feasibility and applications of RPCA have emerged recently [102], [104]–

[106]. Let M be a Casorati matrix with each column being formed from all the pixels of a 2D 

time-frame. RPCA splits such a matrix into a low rank matrix L and a sparse matrix S. This 

is achieved under the constraint that the sum of L and S must correspond exactly to the 

initial dataset M. It was shown that such a decomposition can be formulated as an 

optimization problem [102]: 

 

minimize ‖L‖∗ +  λ‖S‖1 

subject to  L + S = M 
(4.1) 

where ||. ||∗  and ||. ||𝟏  respectively represent the nuclear norm (i.e. the sum of the matrix 

singular values) and the l1-norm (i.e. the sum of the absolute values of the matrix 
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elements). The parameter λ appearing in equation (4.1) is a trade-off parameter controlling 

the weighting of the perturbation in the observed corrupted data. In practice it acts as a 

trade-off between the two components: for high values all the information will appear in L 

while S will be empty, and for low values L will contain the mean image through time while 

S will include all the variations with respect to the mean.  

 

Figure 4.2: Example of image decomposition using RPCA. The observed matrix M is decomposed into the low 
rank component L and the sparse component S. 

4.3.1.1 Augmented Lagrangian Multiplier 

We chose the (inexact) augmented lagrangian multiplier (IALM) algorithm to solve the 

problem in (4.1) due to its speed and improved accuracy compared to other techniques 

[106]. This paragraph describes the different steps of such minimization. In the first 

instance the following notation are defined: 

Let A and B be two matrices, 

- ‖A‖2 is the square root of the sum of the squared elements of A 

- ‖A‖∞ is the maximum element of A in absolute value 

- ‖A‖F = √tr(A∗A)  

- J(A) = max(‖A‖2,
1

λ⁄ ‖A‖∞) 

- ψε(A) is a threshold on the elements of A. For any a in A: 

ψε(a) =  { 
  a − ε          if a >    ε   
a + ε          if a < −ε

    0               otherwise
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For an input matrix M, trade off parameter λ, and a tolerance t for the convergence (set to 

10-7 in practice), the IALM is given by: 

[
 
 
 
 
 
 
 
 
 
 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧: Y0 = M J(M)⁄ , L0 = S0 = [0], μ0 > 0, ρ > 1, k = 0

𝐖𝐡𝐢𝐥𝐞 
‖M‖F

‖M − Lk − Sk‖F
⁄ > t                                                             

Update L:  (𝒰, 𝒮, 𝒱) = SVD(M − Sk + 1
μk

⁄ Yk)                                    

 Lk+1 =  𝒰 ψ1 μk⁄ (𝒮)𝒱T                                        

Update S:    Sk+1 = ψλ μk⁄ (M − Lk+1 + 1
μk

⁄ Yk)                                    

Update Y:   Yk+1 = Yk + μk(M − Lk+1 − Sk+1)           
𝐄𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 𝐥𝐨𝐨𝐩: k = k + 1                                             
𝐑𝐞𝐭𝐮𝐫𝐧: Lk+1and Sk+1                                                       

                           

 (4.2) 

The additional parameter Y in (4.2) is the Lagrange multiplier used to account for the 

equality constrain in (4.1) in the optimization of L and S. An important feature of the IALM is 

that because of the threshold applied to the singular value matrix when updating L and S, 

only a limited number of singular values (and the corresponding singular vectors) need to 

be computed [106]. This alleviates the computational load in the algorithm. Partial SVD can 

be used to compute only the largest singular values [107]. 

4.3.1.2 Choosing λ in RPCA 

The optimal setting of λ may depend on the application and the nature of the data. However 

Candès et al. suggested a value, independent of any prior knowledge on the data, that 

guarantees accurate recovery of the low rank component provided that it has been 

corrupted with randomly distributed perturbation [102]:  

λ0 = 1/√max (Np, Nt) (4.3) 

where Np and Nt respectively represent the number of pixels in each frame and the number 

of time-frames in M. For practical images, this means: 

λ0 = 1/√Np (4.4) 
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4.3.1.3 Applications 

RPCA is well suited to process video data where multiple time frames are strongly 

correlated. Applications include background modelling in video surveillance. In such a case 

RPCA treats smooth variations (e.g. related to illumination changes) as low rank while 

removing foreground moving objects that will occupy a fraction of the field of view in a 

limited number of frames and consequently appear in the sparse component (Figure 4.3). 

Peng et al. also proposed a modified version of RPCA incorporating an affine 

transformation model within IAML to remove image misalignments and further reduce the 

rank of the computed low rank component [108]. In terms of medical imaging, RPCA can 

be used to reconstruct under-sampled data sensing in order to accelerate dynamic MR 

data acquisition [109], [110].  

 

Figure 4.3: Application of RPCA to background modelling in video surveillance data (images taken from [102]). 

Our application of RPCA aims to decompose a cine series into a low rank component (e.g. 

smooth and slowly varying changes affecting most of the field of view) and a sparse 
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component (e.g. rapid and local intensity changes). For DCE-MRI, we attribute the sparse 

component to local contrast changes and motion to the low rank. It should be noticed that 

due to the non-random nature of contrast enhancement, a different tuning of λ (compared 

to section 4.3.1.2) was required. 

4.3.2 Principle of RDDR 

The information in DCE-MR time-series can be regarded as a combination of motion 

related changes, and local changes caused by contrast enhancement. We hypothesize that 

RPCA makes it possible to correct for low rank motion elements via registration without 

confounds from contrast agent induced changes of intensity as shown in Figure 4.4. 

 

Figure 4.4: Decomposition of a DCE-MR time-series (multiple breath-holds) with RPCA for various time points. 
From top to bottom: original time-series (M) with frame indices; low rank component (L); sparse component (S). 
Changes due to contrast enhancement largely appear in S. Comparing the diaphragm position to the yellow 
dashed line indicates the motion present in L. 

We consequently introduce a novel algorithm for DCE-MRI registration named Robust Data 

Decomposition Registration (RDDR) [82]. The process of RDDR can be described as 

follows: a given DCE time-series is reshaped as a (Np by Nt) Casorati matrix and 

decomposed using RPCA with a starting value λinit set to that given in (4.4) for the trade-off 

parameter. The time-frames from the resulting low-rank component are then registered, 

and the resulting deformation fields are applied to the original time-series so that a part of 
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the motion can be removed. The process is repeated for increasing values of the trade-off 

parameter over a fixed number of iterations, independent of the number of time-points in 

the dataset. This process is summarized in Figure 4.5. One should notice that deformation 

fields generated at each registration stage are not directly applied to images but added to a 

single global deformation field so that loss of information caused by multiple resampling is 

avoided. Since motion components and contrast changes cannot be perfectly separated 

with RPCA, an iterative approach is used. By using gradually increasing values of the 

trade-off parameter, it is possible to control the amount of motion included in the low-rank 

matrix.  

 

Figure 4.5: Diagram illustrating the process of RDDR (The parameter λ is gradually increased to let more 
information appear in the Low rank component over iterations). 

4.3.3 Registration algorithm 

In principle, any non-rigid registration technique could be used to register the low-rank 

frames and update the deformation field in Figure 4.5. However, the separation between 
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motion and contrast is not perfect in the decomposition and part of the changes due to 

contrast are likely to remain in the low rank matrix (e.g. slow washout process in healthy 

tissue) especially for higher values of λ. To account for such effects we chose a registration 

algorithm that is robust to intensity changes [103]. The similarity metric it utilizes, named 

residual complexity (RC), incorporates an intensity correction field that brings the source 

and the target images into agreement in the intensity space. RC favours the transformation 

that leads to the minimum complexity of the residual difference image. This is achieved by 

measuring the sparseness of the residual in terms of the discrete cosine transform (DCT) 

basis functions. The transformation model used is the b-spline based FFD [89] with a 

gradient descent optimization scheme.  

Considering two (low-rank) time-frames Ltarget and Lsource to be registered with the unknown 

transformation TFFD, given the intensity correction field Icorr and the noise component η (both 

unknown). The following relationship can be written:  

Itarget = Isource(TFFD) + Icorr + η (4.5) 

Registration can be achieved by minimizing the following objective function, E: 

E(Icorr, TFFD) = ‖Itarget − Isource(TFFD) − Icorr‖
2
+  β‖PIcorr‖

2 (4.6) 

The operator ||. || represents the Euclidean norm, and P and β respectively are the 

regularization operator and the regularization parameter. The form of P is chosen as the 

first order derivative regularizer. Icorr can be analytically solved by equating the derivative of 

the objective function to zero. If the identity matrix is denoted by Id and the residual image 

by r: 

Icorr = (Id +  βPTP)−1r 

r = Itarget − Isource(TFFD) 
(4.7) 

By substituting this new expression in (4.6) and applying eigen-decomposition to PTP, it 

yields: 

E(TFFD) =  rT(Id − (Id +  βPTP)−1)r (4.8) 
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E(TFFD) =  rTQ d (1 −
1

1 + βδi
)QTr =  rTQ ΔQTr (4.9) 

E(Δ, TFFD) =   (QTr)TΔ QTr (4.10) 

d() denotes a diagonal matrix and the δi’s and Q respectively are the eigenvalues  and the 

eigenvector matrix of PTP. The objective function minimization is made possible by 

choosing a particular form for the eigenvectors Q and solving for the (diagonal) matrix Δ 

within the regularization. 

An additional regularization term on Δ, R, is added to E to enforce the closeness of the 

source to the target image. A Kullback-Leibler based regularisation is chosen to favour a 

measure of information rather than a distance measure (associated with some function 

space) [35]. A trade-off parameter α is used to tune this additional regularization: 

E(Δ, TFFD) =   (QTr)TΔ QTr +  αR(Δ) (4.11) 

By equating the derivative of (4.9) to zero it is possible to analytically solve for the elements 

of Δ and obtain the final expression for E after substitution: 

E(TFFD) =  ∑ log( (qi
Tr)2 α⁄ +  1 )

i
 (4.12) 

Given (4.10) the discrete cosine transform (DCT) basis function is chosen for the element 

of the eigenvector basis (i.e. the qi’s). Low complexity expressed in the DCT basis 

corresponds to a small number of non-zero coefficients representing r. The lower the 

number of non-zero elements the lower the complexity. RC is minimized when the residual 

image can be represented using the smallest possible number of function basis, 

corresponding to alignment of the input images. 

4.3.4 Implementation details 

The RPCA trade-off parameter λ affects the amount of information in the L and S 

components; Figure 4.6 shows the variation of the rank of L with λ for a small bowel DCE-

MRI dataset with no registration applied. At each iteration of the RDDR algorithm, λ is 

increased from a starting value chosen to yield a rank of L equal to the number of frames 
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divided by four (with a tolerance of ± 10%). This starting value was chosen empirically as a 

value that provides some motion information in L, but keeps much of the contrast change in 

S. The maximum value of λ was selected based on 5 datasets, in such a way that the 

quantity of non-zero pixels in the RPCA sparse component remains above a threshold of 

5%. This was found to be 2.5 times the starting value. Due to the approximately 

exponential curve shape seen in Figure 4.6, we increment λ logarithmically. We choose a 

number of iterations limited to 10 for the entire process. The same scheme for setting λ was 

used for all datasets presented in this chapter. 

At each iteration, a groupwise multi-resolution registration is used. The target image is the 

mean of all the low-rank frames at the current resolution stage. This target is then updated 

using the current deformation when moving to a finer resolution.  The FFD control point 

spacing was set to 4 pixels, 2 resolution levels (1/2 and 1) were used and the bending used 

as a regularizer of the deformation field energy [86] . As shown in Figure 4.6 some features 

present fuzzy contours for lower λ values, we consequently chose to use a high weight on 

the regularization (similar to [101]). 

 

 

Figure 4.6: Rank of L as a function of the trade-off parameter for a small-bowel DCE-MRI data set (left). Temporal 
profiles (time cuts) of a single column of L through time   for selected values of the rank to indicate the amount of 
information contained in L (right). λ0 corresponds to the value in equation (4.4). 
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 Registration of DCE-MRI using RDDR 

4.4.1 Simulated data 

The performance of RDDR was assessed using two types of simulations. In each case a 

ground truth motion was derived from volunteer scans and contrast enhancement 

simulated using literature pharmacokinetic parameters.  In the first case, a gradient echo 

T1-weighted DCE protocol was used to acquire liver time series data during repeat breath-

holds but without the injection of contrast (3s temporal resolution, coronal plane, 155s 

acquisition, 1.9x1.9x5 mm3
 voxels). In the second case, a balanced gradient echo series of 

the small bowel was acquired during free breathing in the coronal plane through the 

abdomen (1s temporal resolution, coronal plane, 52s acquisition, 1x1x5 mm3 voxels). The 

frames were sequentially registered using FFD non-rigid registration with NMI as a 

similarity measure, a control point spacing of two pixels and three subdivision levels, to 

provide realistic deformations. In both cases, a single time-frame was extracted and 

manually segmented into: liver, bowel, right and left heart, aorta, portal vein. This 

segmentation was used as a map to simulate contrast enhancement using the modified 

Tofts model [22] and a population arterial input function [111]. T1 values were taken from 

[1]  and pharmacokinetic parameters for each organ were chosen in agreement with a 

previous study [112]. The inverse ground truth transformation (computed by taking the 

opposite of each displacement vector) was then applied to the motion-free contrast 

enhanced time-series. Gaussian noise (σ = 0.05) and a local motion blurring (e.g. 

respiratory induced blurring, through plane motion) were added using image filtering to 

improve the realism of the data. Motion blurring was introduced by creating local point 

spread function filters convolved with some time frames. The entire process is summarized 

in Figure 4.7. 

Registration of these simulations was performed using FFD registration (based on both 

NMI and RC similarity measures), PPCR and RDDR. The performance of each method 
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was assessed by computing the root mean squared error on the resulting displacement 

field.  

 

Figure 4.7: Different steps of the creation of a simulated DCE-MRI time series. 

4.4.2 Clinical Data 

Several kinds of DCE-MR datasets were acquired covering various temporal resolutions, 

breathing protocols and imaged organs. In total 7 liver time-series from both healthy 

volunteers and patients, 20 prostate time-series from patients diagnosed with cancer, 11 

high temporal resolution and 19 lower resolution small bowel time-series from patients with 

Crohn’s disease were registered. Details are summarised in Table 4.2. In all cases the 

acquisition started slightly before contrast agent injection. Subjects were imaged using T1-

weighted gradient echo pulse sequences.  

Breathing protocols were divided into three classes. First and most common is multiple 

breath-holds where subjects held their breath for a certain time then took a deep breath 
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and held again. Second is acquisition with a single breath-hold followed by shallow 

breathing where subjects initially held their breath for a comfortable period and could then 

breathe gently. Finally, free breathing acquisitions were also performed. 

Acquisition 
Parameters/Data 
characteristics 

Liver 
(breath-holds 

/shallow 
breathing) 

Prostate 
(peristalsis) 

Small Bowel 
(free breathing) 

Small Bowel 
(breath-
holds) 

No. of time-frames 80 to 100 35 200 24 

No. of slices 60 26 26 80 

Field strength (T) 3 1.5 3 1.5 

Repetition time 
(ms) 

2.319 5.61 2.857 2.73 

Echo time (ms) 1.058 2.5 1.8 0.9 

Matrix 200 x 200 192 x 192 132 x 134 256 x 88 

Slice thickness 
(mm) 

5 3 5 3.5 

Pixel spacing 
(mm) 

1.87\1.87 0.67\0.67 1.78\1.78 1.95\1.95 

Slice gap (mm) 2.5 0.4 2.5 0.4 

Flip angle (deg) 10 15 15 15 

Acquisition length 
(sec) 

244.5 984.5 319 297.8 

Imaging plane coronal axial coronal coronal 

No of Subjects \ 
ROIs 

7 \ 18 20 \ 26 11 \ 12 19 \ 25 

Table 4.2: Details of dynamic MR data acquisition parameters and other characteristics 

4.4.3 Evaluation of registration performance 

For each dataset, registration was carried out using RDDR. For comparison, we chose a b-

spline based FFD [89], and the PPCR algorithm as described in [99]. Sequential 

registration was chosen with FFD to minimize the effects of contrast changes. For improved 

clarity, only NMI was used as a similarity measure. This is because it is widely used in 

multi-modal registration and more generally accepted (compared to residual complexity). 

The assessment of registration accuracy was performed using three techniques: 

- Qualitative assessment by generating time-cut images representing the temporal 

evolution of a pixel-wide line across all time-frames.  

- Quantitative assessment based on manually adjusted ROIs corresponding to clinically 

relevant features (disease and normal tissue). These were contoured by radiologists or 

clinical experts on a single slice and then propagated across all the time frames using 
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the inverse deformation fields from registration. A pseudo ground truth (GT) was 

obtained by manually adjusting the position of the ROIs in every time frame to best 

follow the feature of interest. Time-intensity curves (TIC) were generated and the 

accuracy of registration was evaluated by computing the root-mean-squared error 

(RMSE) between TICs and corresponding GT TICs. 

- Additionally, area under the time-intensity curves (AUC60) for the first 60 seconds after 

the start of tissue enhancement were computed for each ROI. This commonly used 

semi-quantitative pharmacokinetic measurement [113] is used here to assess the early 

enhancement period when intensity changes are the most rapid. This has the advantage 

of avoiding any bias due to registration of washout frames which is less challenging. 

FFD registration was carried out using a highly optimised C++ implementation [100] which 

was also use for the underlying registration within PPCR. Registration with RDDR was run 

using Matlab® (The Mathworks, Natick, MA). FFD registration was used with the same 

tuning as described in 4.3.4 with the bending energy regularization weight set to 0.01. The 

implementation of PPCR was the same as in [99]. Student’s t-tests (using 10% significance 

level) were performed to compare the error distributions for unregistered and registered 

data. 

4.4.4 Registration results 

Overall registration showed an improved alignment with both PPCR and RDDR. For clinical 

data, results are presented separately for each type of imaged organ. For the different TIC 

examples, a heuristic model fit – based on a simple sigmoid function to mimic an uptake 

and a washout phase – [99] was used for visualization only. Error measurements were all 

computed using registered and GT normalized intensities. Normalization was carried out for 

the entire time-series so that all errors were scaled the same way. 
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4.4.4.1 Simulation 

The results obtained after registration of the simulated DCE time-series are illustrated in 

Figure 4.8. Registration with FFD (using either NMI or RC as similarity measure) tends to 

incorrectly deform enhancing features such as the heart and aorta. Both PPCR and RDDR 

show a greater robustness to contrast changes. Figure 4.9 presents the RMSE obtain after 

registration of the different simulations. In all cases, both PPCR and RDDR lead to a 

significant reduction of error (p < 0.01). In the first type of simulation (liver, breath holds), 

the error after applying RDDR was significantly lower than after PPCR (p < 0.001). 

However, there was no significant difference between the performance of both techniques 

in the second type of simulation (small bowel, free breathing) (p = 0.096).  

 

Figure 4.8: Simulation-based deformation analysis for a post-enhancement time-frame in the first simulated data 
set. The absolute difference image between the target and the current frame (a), and the ground truth 
deformation field overlaid on the target frame (b), show that changes are due to a mixture of motion and contrast 
enhancement. FFD registration based on NMI (c) and RC (d) present additional unphysical deformations 
(contoured in white) whereas PPCR (e) and RDDR (f) yield more realistic transformations. 
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Figure 4.9: Registration error in the two types of simulation: liver imaging during multiple breath-holds (Data 1) 
and bowel imaging during free breathing (Data 2). Each plot shows: the median error (red line), the 25 th and 75th 
percentile (blue box), and the full data extent (black dashed line). 

4.4.4.2 Clinical Data 

4.4.4.2.1 Liver 

Liver DCE time-series were acquired using a multiple breath-hold protocol except one 

dataset for which a single breath-hold plus shallow breathing strategy was chosen. 

Misalignments in the covered fields of view were mainly caused by breathing. In some 

cases the diaphragm displacement amplitude was up to 75 mm in deep breathing between 

consecutive breath-holds. 

 

Figure 4.10: Registration results in liver data: RMSE in TICs (Left) and Error on AUC60 (right). Each plot shows: 
the median error (red line), the 25th and 75th percentile (blue box), and the full data extent (black dashed line). 
Significant difference compared to the unregistered case is indicated by ‘*’. 

Three classes of ROIs were obtained for liver time-series: liver parenchyma, hepatic artery 

and portal vein. The performances of the different methods across all ROIs (21 in total) 
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regardless of the type of tissue are presented in Figure 4.10. Figure 4.11 shows an 

example of registration in a healthy volunteer. Misalignments were reduced by the three 

techniques. However residual displacements appear at early enhancement, and between 

breath-holds, after registration with FFD and PPCR. For the latter, such residual 

displacements appeared in two cases where magnitude of the motion between consecutive 

breath holds was particularly important. 

RMSE with respect to the ground truth for each type of tissue are presented in Table 4.3. 

Registration with FFD resulted in an increase of error in some cases where important 

displacement occurred during breathing between breath holds. PPCR reduced the error in 

most cases. However in smaller ROIs (e.g. vessels) the improvement was limited 

compared to RDDR. Figure 4.11 (b, c, d, e) shows the comparison of the effect of the three 

techniques for an example hepatic artery ROI. 

Despite the error decrease in TICs, the impact on the AUC60 error appeared to be limited in 

these data. However, RDDR lead to a decrease of the interquartile range compared to no 

registration. This effect was particularly strong for ROIs placed within hepatic arteries as 

these present a higher maximum enhancement. 
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Figure 4.11: Effects of registration in a liver DCE time-series of a healthy volunteer, (a) coronal view for 
anatomical reference with the hepatic artery contoured in green, a dashed line indicates the location of the time-
cuts for unregistered, FFD, PPCR and RDDR. Arrows indicate the location of the ROI. TICs for unregistered (b), 
FFD (c), PPCR (d) and RDDR (e) are also presented. The same sigmoid fit to the ground truth (GT) data is 
presented on all graphs for visualization purposes only. Here RMSE were (0.21/0.25/0.36/0.14) and AUC60 
errors were (2.5/6.1/12.1/2.4) for Unregistered/FFD/PPCR/RDDR respectively. 

4.4.4.2.2 Small bowel DCE (free breathing) 

Free breathing small bowel DCE time-series were acquired after injection of 

butylscopolamine (Buscopan, Boehringer, Germany) to slow down peristalsis. The 

remaining motion was mainly due to breathing and displacements of the bowel walls were 

found to be as large as 17.8 mm. The wall of the small bowel is thin and such displacement 

amplitudes are likely to yield large errors in the monitoring of contrast enhancement.  
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Figure 4.12: Registration results in free breathing bowel data: RMSE in TICs (Left) and Error on AUC60 (right). 
Each plot shows: the median error (red line), the 25th and 75th percentile (blue box), and the full data extent 
(black dashed line). Significant difference compared to the unregistered case is indicated by ‘*’. 

In some cases FFD introduced additional unlikely deformations (see Figure 4.12 and Figure 

4.13). Misalignments due to breathing were reduced by both PPCR and RDDR.  

The action of butylscopolamine was found to be limited in 4 of the 11 datasets. In these 

cases residual through plane motion caused the ROIs (especially normal tissue) not to 

appear in some time-points making the assessment of registration accuracy difficult. Thus 

these cases were excluded from validation. Analysis of the remaining 12 ROIs showed a 

reduction of error in registered time-series for both PPCR and RDDR (see Figure 4.12). 

ROIs were small and located within bowel walls thus slight misalignments could cause 

large changes in RMSE. Two types of ROI corresponding to normal tissue and disease 

were contoured in these time series. The interquartile range was lower with PPCR in the 

disease ROI (see Table 4.3), although median errors were similar for PPCR and RDDR 

Similarly, the AUC60 errors were generally lower after PPCR compared to RDDR results 

(see Figure 4.12). 
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Figure 4.13: Effect of registration in a free breathing small bowel DCE time-series of a patient with Crohn’s 
disease, (a) coronal view for anatomical reference along with time-cuts for unregistered, FFD, PPCR and RDDR. 
A disease ROI is contoured in green and a dashed line indicates the location of the time-cuts. Arrows indicate the 
location of the ROI. TICs for unregistered (b), FFD (c), PPCR (d) and RDDR (e) − The GT sigmoid fit is for 
visualization purposes only. Here RMSE were (0.46/0.40/0.20/0.28) and AUC60 errors were (2.4/2.8/0.22/1.5) for 
Unregistered/FFD/PPCR/RDDR respectively. 

4.4.4.2.3 Small Bowel DCE (Multiple Breath-holds) 

Butylscopolamine was also injected in these patients before acquisition of a repeat breath-

hold small bowel DCE time series. The misalignments of time frames were caused by 

breathing and the non-repeatability of breath-holds and were found to be as large as 23.4 

mm in the studied area. As previously, two of the 19 datasets were excluded from the ROI 

analysis due to anatomy moving out of slice.  
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Figure 4.14: Registration results in multiple breath holds bowel data: RMSE in TICs (Left) and Error on AUC60 

(right). Each plot shows: the median error (red line), the 25th and 75th percentile (blue box), and the full data 
extent (black dashed line). Significant difference compared to the unregistered case is indicated by ‘*’. 

Analysis of the 28 available ROIs showed a decrease of RMSE with respect to GT with the 

three techniques (see Figure 4.14). However FFD increased the error in one case. ROI 

types corresponded to normal tissue and disease: across all datasets RDDR presented the 

best improvement for both types of tissue (see Table 4.3). The effect on the error in AUC60 

was similar.  Figure 4.15 illustrates the effect of registration in these time-series. 

4.4.4.2.4 Prostate 

The nature of motion in prostate DCE time-series was very different compared to the other 

types of data used in this study. Across the 20 available datasets, 11 presented 

misalignments due to the presence of gas in the rectum or contraction of surrounding 

muscles. Although the amplitude of motion was limited, it was found to be as large 12.4 mm 

for the prostate apex in some cases. ROIs in prostate tumours are small and even limited 

motion can cause important changes in TICs (see Figure 4.16) hence the potential 

importance of registration in such data. 

TIC shapes after registration were in improved agreement with GT with the three 

techniques (see Figure 4.17). ROIs in the prostate were divided into two classes: tumour 

and normal tissue. Although both PPCR and RDDR performed equally in tumours, PPCR 

increased the error in some normal ROIs. Figure 4.17 shows an example of motion in the 

prostate and the effects of registration in a cancer ROI. Across all ROIs, the error in AUC60 

was increased by PPCR whilst FFD and RDDR generally decreased the error. 
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Figure 4.15: Effect of registration in a small bowel DCE time-series (multiple breath-holds) of a patient with 
Crohn’s disease, (a) coronal view for anatomical reference with a disease ROI contoured in green, a dashed line 
indicates the location of the time-cuts for unregistered, FFD, PPCR and RDDR. Arrows indicate the location of the 
ROI. TICs for unregistered (b), FFD (c), PPCR (d) and RDDR (e) − The GT sigmoid fit is for visualization 
purposes only. Here RMSE were (0.40/0.45/0.26/0.1) and AUC60 errors were (9.0/10.7/3.9/2.0) for 
Unregistered/FFD/PPCR/RDDR respectively. 
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Figure 4.16: Effect. Registration results in prostate data: RMSE in TICs (Left) and Error on AUC60 (right). Each 
plot shows: the median error (red line), the 25th and 75th percentile (blue box), and the full data extent (black 
dashed line). Significant difference compared to the unregistered case is indicated by ‘*’. 
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Figure 4.17: Effects of registration in a prostate DCE time-series of a patient with cancer, (a) axial view for 
anatomical reference with a cancer ROI contoured in green, a dashed line indicates the location of the time-cuts 
for unregistered, FFD, PPCR and RDDR. Arrows indicate the location of the ROI. TICs for unregistered (b), FFD 
(c), PPCR (d) and RDDR (e) − GT sigmoid fit is for visualization purposes only. Here RMSE were 
(0.25/0.13/0.06/0.04) and AUC60 errors were (0.21/0.52/0.56/0.16) for Unregistered/FFD/PPCR/RDDR 
respectively. 
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Imaged 

organ 
Registration Error with respect to GT (RMSE on intensities) 

Liver 

ROI type Hepatic Artery Portal Vein Liver Parenchyma 

Unregistered 0.18 (0.079) 0.05 (0.032) 0.28 (0.401) 

FFD 0.19 (0.180) 0.07 (0.058) 0.25 (0.221) 

PPCR 0.10 (0.109) 0.09 (0.122) 0.23 (0.276) 

RDDR 0.09 (0.079) 0.04 (0.034) 0.23 (0.085) 

Small Bowel 

(Free 

Breathing) 

 

ROI type Disease ROI Normal ROI 

Unregistered 0.11 (0.186) 0.28 (0.313) 

FFD 0.25 (0.186) 0.31 (0.276) 

PPCR 0.14 (0.075) 0.26 (0.198) 

RDDR 0.14 (0.146) 0.23 (0.085) 

Small Bowel 

(Breath 

holds) 

ROI type Disease ROI Normal ROI 

Unregistered 0.16 (0.283) 0.10 (0.124) 

FFD 0.09 (0.084) 0.05 (0.059) 

PPCR 0.10 (0.073) 0.06 (0.082) 

RDDR 0.06 (0.063) 0.04 (0.022) 

Prostate 

ROI type Cancer Normal ROI 

Unregistered 0.08 (0.056) 0.08 (0.106) 

FFD 0.08 (0.039) 0.05(0.091) 

PPCR 0.07 (0.039) 0.13 (0.123) 

RDDR 0.04 (0.031) 0.04 (0.035) 

Table 4.3: Registration performance assessment: RMSE with respect to the ground truth for all tissue types in 
various clinical data sets. Results are presented as median value (interquartile range). The best value is shown in 
bold for each type of ROI. Over all RDDR produces the lowest errors. 

 Discussion 

This chapter presents a new iterative registration approach and its use to address the 

challenge of DCE-MRI registration. The iterative data decomposition within RDDR gives 

better control on the computation of the deformation field compared to a more direct 

registration scheme (e.g. single target, sequential registration). RDDR performance was 

compared to that of a popular NMI based FFD registration and to PPCR [98]. An alternative 

Independent components analysis based registration [101] has been applied to myocardial 

perfusion data acquired during free breathing, further work would be necessary to compare 

it to RDDR in a wider selection of anatomical features. Both methods use data 

decomposition to limit the effect of contrast enhancement on the modelling of deformations. 

However, independent component analysis necessitates suitable component identification 

while RPCA provides a general model for data decomposition. 
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RDDR uses an iterative approach to gradually correct for motion elements. In that sense it 

has similarities with PPCR where the amount of information used to generate a set of 

synthetic target images is progressively increased at every iteration [98]. However 

important methodical differences between the two techniques lie in the fact that the 

decomposition output of RPCA is not used as a target but registered in a group wise 

manner in RDDR. Also PPCR is based on principal component analysis which is a general 

model for variance separable data without the explicit identification of a sparse component. 

This is different from RPCA and can produce very different decomposition depending on 

the nature of the data (e.g. type of breathing).  

In this work we kept the control point spacing and transformation model the same for all 

methods. However the techniques inherently use different approaches to choose the target 

image (e.g. groupwise, sequential, synthetic target generation). The relative benefits of 

each approach could be the subject of further investigation. 

Results from simulated DCE-MRI data registration show that RDDR can compensate for 

important misalignments due to multiple breath-holds, as well as pseudo periodic motion 

due to free breathing, without impacting enhancing regions.  

Registration with RDDR is more accurate in most cases where there was a preference (see 

Figures 4.10, 4.14 and 4.16). Moreover the reduced error with respect to the ground truth 

time intensity profiles suggests that RDDR could allow a better discrimination between 

different types of tissue (e.g. normal, disease, arteries and veins). In particular the 

assessment of registration accuracy for early tissue enhancement (AUC60) showed that 

RDDR provides a robust correction in the presence of rapid and intense contrast changes. 

Such a measurement is particularly useful as it provides information on the accuracy of 

registration at early enhancement when contrast changes are the most important. This can 

be of particular interest when modelling the rapid contrast arrival of the arterial arrival 

phase to extract pharmacokinetic parameters describing the rate of contrast agent 

exchange, linked to tissue permeability. This period is important for distinguishing 

malignancy [113]. Most registration techniques are likely to produce accurate correction 
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during the washout phase since contrast agent is now dispersed and the contrast change is 

slowly varying. However, unrealistic deformations can appear in time-points corresponding 

to maximum enhancement when intensity changes are rapid. This was observed in the 

simulated data with FFD based on residual complexity minimization. In this context, RDDR 

features a degree of robustness to various shape of enhancement: for peaky TICs, rapid 

changes will be treated as part of the sparse component and will not hinder registration. On 

the contrary, slow uptakes that might be put in the low rank component should not cause 

unrealistic distortion due to the use of registration based on RC minimization. 

Interestingly, PPCR performed well in small bowel data acquired during free breathing 

which differs from findings in simulation. This might be explained by the long acquisition 

time with a high temporal resolution that can catch irregularities in breathing and thus cyclic 

respiratory motion does not appear in the first PCA components. Also fairly slow and limited 

contrast changes in the field of view (e.g. no major arteries, heart etc.) might increase their 

appearance in the first principal components 

One should note that AUC60 is usually measured on contrast agent concentration curves in 

DCE-MRI analysis [113]. Here measurements were performed directly on the pixels’ TIC. 

The relationship between intensity and contrast agent concentration is not linear (see 

section 2.4.2.2), although it can be approximated as such over a narrow range of tissue T1 

values. However it seems reasonable to expect that a more accurate TIC after registration 

would result in an improved monitoring of the concentration for a given pixel. 

The work presented here focussed on the effects of registration upon the time intensity 

curves. More accurate curves produced by successful image registration should lead to 

more accurate contrast agent concentration estimation over time.  

Additionally no fitting error was used to assess the performance of the different algorithms. 

This is because such a measurement might be misleading outside of its context: a very low 

fitting error does not necessarily correspond to an improvement if the shape of the curve is 

significantly different from that of the ground truth (see Figure 4.11 c and d), since it 

incorporates measurement of the model fit bias [114]. 
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The work presented in this chapter deals only with 2D image series, but a 3D version of 

RDDR has also been developed. The extension is indeed relatively straightforward: in the 

data reshaping prior to RPCA, each 3D volume converted into a single column. Also, 3D 

FFD registration is available. 

In terms of computational time, 256x256x20 pixels time-points datasets could be registered 

in less than 10 minutes on an Intel Xeon CPU 3GHz Windows machine with 32 GB RAM. 

4.5.1 RPCA Parameterization  

Candès et al. [102] provided a model-free value for the trade-off parameter in RPCA. The 

scheme proposed in this study to adjust this trade-off parameter was set experimentally so 

that enough motion is incorporated into the low rank component when initiating the 

registration process, whilst little contrast change appears. Future work might include 

investigation of an optimal value for DCE-MR time-series decompositions, or the inclusion 

of prior knowledge of contrast changes (e.g. general curve shapes) as a constraint in 

RPCA in addition to that on the rank of L and the sparsity of S. Additionally model selection 

theory could be applied to investigate a better tuning for data decomposition. 

4.5.2 Breathing Protocols  

The choice of breathing strategy has a major influence on the efficiency of motion 

correction in DCE-MRI. Multiple breath-holds during continuous acquisition result in “gasp” 

images when the subject takes a breath [101]. Gasps contain blurring artefacts that may 

complicate registration. The robustness of RDDR in such cases stems from the gasps 

appearing in the sparse component.  

Free-breathing acquisition allows more continuous monitoring of tissue enhancement but is 

also subject to intra-frame blurring artefacts [1]. Moreover if high temporal resolution is 

favoured over spatial resolution, features can be less well defined. However, the periodic 

and continuous changes related to breathing tend to reinforce the low rank characteristics 
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of motion, leading to a robust separation from the contrast changes in the sparse 

component of RPCA. 

A single breath-hold followed by shallow free breathing is adopted in some protocols. Early 

time-frames present limited misalignments which reduces the risk of error in the important 

uptake phase.  

4.5.3 Motion separation 

RDDR uses a separation of data into low-rank and sparse components. In some DCE 

cases, bowel peristaltic motion not stopped by butylscopolamine was observed in the 

sparse component and was thus not removed by the registration steps. Whilst undesirable 

for DCE analysis, this limitation can be exploited in non-contrast enhanced studies of small 

bowel motility where a separation of bowel motility from respiration is desirable (see 

chapter 5).  

More generally, the hypothesis that all motion should appear in RPCA low rank component 

may be limiting, in particular when some motion elements occur locally over a short period 

of time such as in peristalsis. Importantly, this is violated if respiration is quick and erratic 

while contrast enhancement comes fast and is followed by very slow washout. This was 

observed when applying RDDR to cardiac perfusion imaging data. 

The way the information is processed in RDDR can be seen as a multi-scale registration in 

terms of motion: the higher the value of the trade-off parameter the bigger the amount of 

motion appearing in the low-rank component. In other words RDDR can correct different 

components of motion along an iterative process.  

 Conclusion 

The introduced method allows improved registration of multiple breath-hold and free 

breathing DCE-MR time-series. It relies on robust decomposition of input data that 

separates motion from contrast enhancement and is therefore termed robust data 
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decomposition registration (RDDR). It has been successfully applied to images of multiple 

organs (liver, small bowel and prostate) affected by different types of motion and compares 

favourably to existing state-of-the-art techniques. The novelty of RDDR resides in its 

robustness to contrast enhancement in tissue, particularly during initial tissue uptake.  

This technique is not limited to registration of DCE-MRI and could also be applied to other 

imaging technique based on MRI such as DSC-MRI and ASL, or to other modalities such 

as Positron Emission Tomography or contrast enhanced CT   
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5 Application of RDDR to Dynamic Imaging of the Small Bowel 

 Introduction 

This chapter describes an alternative application of RDDR to respiratory motion correction 

in the context of bowel motility quantification in data acquired during free breathing. The 

first section introduces the challenges related to MRI based bowel motility analysis and 

existing quantification techniques. This is followed by the description of RDDR 

developments in order to adapt it to the present case and its application to a cohort of 20 

healthy subjects.  

An early version of this work, introducing the principle of the new application has been 

published in Lecture Notes in Computer Science (proceedings of the MICCAI conference 

2013) [115]. The complete version of the study has been submitted to Physics in Medicine 

and Biology, this also includes the successful processing of colon images from 6 subjects 

with no further modifications of the algorithm or additional tuning. This method has also 

been accepted for presentations at ISMRM 2014, including description of its application to 

small bowel [116] and colon [117] imaging. 

 Dynamic imaging of the small bowel 

5.2.1 Small bowel motility 

As introduced in section 2.5. motion in the bowel can be represented as the association of 

complex mechanisms including slow waves along the gastro intestinal tract, referred to as 

peristalsis, and radial contractions [33], [34]. Repeat 2D imaging of the bowel region using 

high temporal resolution makes the analysis of peristalsis possible. 
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5.2.2 Motility quantification 

Motility measurements can be carried out using subjective qualitative assessment  based 

on visual inspection by reporting radiologists [35], [118]. Alternatively it can be quantified 

automatically using generalized optical flow registration (OF) [34]. This technique uses a 

joint non-rigid transformation (multi-resolution) and modelling of intensity changes within a 

time-series. An additional intensity correction map is included in the algorithm’s cost 

function to account for intensity changes related to through-plane motion and flow of intra 

luminal content. The cost function is formulated as follows: 

 
C(ux, uy, Imap) = ‖ Isrc ( Tux,uy

) + Imap − Itrg‖
2
+ R(ux, uy, Imap) (5.1) 

Isrc and Itrg respectively denote the reference and the source images for registration, Imap 

is the intensity correction field and Tux,uy
 is the displacement field in the two directions of 

the 2D image space represented by the vectors uxand uy. An additional regularization 

parameter R is added to enforce spatial smoothness on ux and uy based on their second 

order derivatives. Gauss-Newton optimisation is chosen to iteratively minimize the cost 

function. A dense representation of the 2D deformations (i.e. a displacement field at the 

pixel resolution) is computed to account for local motion. This model has a higher spatial 

resolution than control point grid based deformation and can capture local deformations 

caused by peristalsis although it is computationally more complex.  

Quantitative assessment of motility can be computed from the Jacobian determinants of the 

displacement fields obtained after registration with OF. This metric provides information on 

local expansion or compression of features. It is defined by: 

 

J(x, y, t) = |
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where, 

 φx(x, y, t) =  x + ux(x, y, t) 

φy(x, y, t) =  y + uy(x, y, t) 
(5.3) 

 

φx and φy define the spatial transformation and a given time t. For a time series containing 

N frames, the standard deviation of the Jacobian determinant through time provides a 

measure of variation of local bowel contraction and expansion at each pixel: 

 σJ(x, y) =  σ({J(x, y, t)}t=[0,N])  (5.4) 

Such a measure is insensitive to rigid transformations (e.g. translation) [34]. However the 

non-rigid deformations related to respiration, if not corrected for, have an effect on the 

measurements. Thus the principal limitation for this technique is the requirement to remove 

or reduce respiratory motion by using breath-hold acquisition protocols. This limits the utility 

for important groups of pathological conditions where aberrant small bowel motility patterns 

take place over time periods greater than a breath-hold duration. 

5.2.3 Extension to free breathing 

The purpose of this study is to apply RDDR to filter out respiratory motion from a free 

breathing dataset, allowing subsequent quantification of small bowel motility with OF. 

Similar to DCE-MRI registration, the idea is to use RDDR to gradually correct for respiratory 

motion without affecting useful information on motility. An ability to accurately quantify 

bowel motility continuously over several minutes without the interruption caused by 

repeated breath holds would be a significant advance and open the technique to a broader 

range of diseases of the small bowel and colon [119]–[122]. The novel post-processing 

pathway introduced in this chapter to correct respiratory motion and then quantify bowel 

motility in free-breathing cine MRI data sets is referred to as dual registration of abdominal 

motion (DRAM). 
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 Dual Registration of Abdominal Motion 

5.3.1 RDDR modifications 

The Application of RDDR to dynamic images of the bowel consists of separating respiratory 

motion effects from peristaltic motion. This is quite different from the initial application to 

DCE-MRI data. Thus, an adjustment is required. In particular, as the two elements are 

motion mechanisms, care must be taken not to remove any information on bowel motility. 

This can be done by preventing peristalsis from appearing in RPCA low rank component. 

To this end a new stopping criterion was set up based on an example subject for whom 

both free breathing and breath hold data were available. The same acquisition length was 

used to acquire both datasets. 

A threshold on the sparsity of the RPCA sparse component was used to end the iterations. 

Given the pseudo-periodical characteristic of respiratory motion and peristalsis, the 

optimum threshold for the trade-off parameter, λ (see section 4.3.4) was chosen using an 

analysis of test data in the frequency domain, similar to Sprengers et al. [123]. The 

frequency of peristalsis is expected to be the same in both breath hold and free breathing. 

Thus the difference between breath hold and free breathing in the Fourier domain should 

show only the contribution of respiratory motion. We use such a difference as an indicator 

of the effect of each iteration in RDDR.  

Spectral powers were computed by summing the Fourier transform of every pixel signal 

through time over the entire field of view (see example Figure 5.1). Figure 5.2 presents the 

evolution of the spectral power difference with respect to the sparsity of RPCA sparse 

component. A minimum difference appears clearly when the degree of sparsity is equal to 

20%. The degree of sparsity is defined by the ratio of non-zero elements divided by the 

total number of elements in the sparse component. The new stopping criterion for RDDR is 

thus chosen when the degree of sparsity of S falls below a threshold of 20%. 
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Figure 5.1: Example of spectrum obtained for a free breathing time-series. A peak corresponding to the main 
contribution of breathing motion appears at 0.3 Hz. Using comparison of such a spectrum with that of breath-hold 
data can highlight the contribution of breathing and other cyclic mechanisms such as peristalsis. 

 

Figure 5.2: Spectral analysis of a subject for tuning of RDDR stopping criterion. Spectral Differences between 
gradually corrected data and breath-hold is progressively reduced until a minimum is reached. The sparsity of S 
at that minimum value is chosen as lower threshold to stop the iterative registration. 
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5.3.2 Combination with Optical Flow registration 

Following registration using RDDR to produce respiratory motion free data, bowel motility 

can be quantified using OF. DRAM corresponds to the combination of the two techniques 

and is summarized in Figure 5.3. 

 

Figure 5.3: Flow chart illustrating the process of DRAM. The parameter λ is gradually increased in RDDR to let 

more information appear in the Low rank component over iterations. 
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 Material and methods 

5.4.1 Data 

20 small bowel subjects were scanned. Volunteers fasted for 4h prior to ingesting a 

contrast solution (1L of 2.5% Mannitol solution) over the 50 minutes prior to the MRI scan. 

Subjects lay in the prone position and were scanned using a Philips Achieva 3T Multi-

transmit MRI scanner (Philips Healthcare, Netherlands) using the manufacturer’s torso coil 

(XL-TORSO). Each subject underwent planning sequences followed by a balanced turbo 

field echo (BTFE) motility sequence (coronal, 2.5x2.5x5mm voxel size, FOV 

420x420x30mm, FA 20 degrees, TE=1.85ms, TR=3.7ms dual channel RF transmit with 

adaptive RF shimming). A total of 6 slices per volume were acquired using no slice gap and 

temporal resolution of 1 volume per second. A total of 20 time frames were first acquired in 

the coronal plane during inspiration breath-hold. Following a 10s recovery period, series of 

60 images were acquired in the same anatomical plane during gentle breathing. 

5.4.2 Assessment of motion correction accuracy 

Each free-breathing data set was registered using OF alone, and DRAM. The results were 

compared to that of OF applied to data acquired during breath-hold which was used as gold 

standard for this study. The ability of a pre-processing registration step RDDR to correct 

free breathing motion before OF was evaluated using quantitative and qualitative analysis.  

Time cut representations of the data were also used to provide qualitative information on 

respiratory motion correction directly after pre-processing with RDDR. One 

gastroenterology research fellow and one research scientist identified, in consensus, a 

small bowel loop in the upper left quadrant of each subject, which remained visible through 

the time series (i.e. did not move out of plane) and drew line ROIs along the bowel cross-

section. These ROIs were manually adjusted independently by the two experts in each time 

point to provide a pseudo ground truth. ROIs were also automatically propagated through 
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both OF alone and DRAM corrected time-series. Comparison with the ground truth was 

used to assess the ability of the two techniques to faithfully propagate a linear ROI through 

small bowel time series data using the average of two independent manually propagated 

ROIs as a reference. Note that OF deformation fields were used for the propagation of 

ROIs through the different time frames. Comparison was carried out by computing the 

changes in line length over time between the manually corrected and automatically 

propagated ROIs using Bland-Altman (BA) limits of agreement (LoA) and intra class 

correlation (ICC). Changes in ROIs position were also evaluated by computing the target 

registration error (TRE) i.e. the distance between each line end-point of the manually 

corrected and automatically propagated ROIs. A threshold for TREs was set to 1e-3 mm. 

Errors below this value were considered as zero. 

Parametric motility maps in free breathing small bowel data sets registered with OF and 

DRAM were computed, using breath hold OF corrected data as a gold standard. 

Parametric mapping was achieved using the standard deviation of the Jacobian 

determinant at each pixel σJ. A motility score was estimated for each subject, by taking the 

mean σJ over the bowel region. 

 Results 

Example images of time cuts obtained after registration are shown in Figure 5.4. The time 

cut representation shows correction of breathing motion after RDDR with little apparent 

effect on peristaltic motion.  
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Figure 5.4: Time cut representation of dynamic time-series of the small bowel in a healthy volunteer: the location 
of the time cuts is indicated by a white dashed line in (a), time cuts before (b) and after registration with RDDR (c) 
are presented. Breath-hold data is shown as reference (d). Important displacements due to respiratory motion 
(arrow 1) are accurately corrected by RDDR while preserving bowel motility information (arrow 2). 

Inter-reader variability was assessed through BA. For manually corrected OF data, mean 

difference between readers was 0.41mm LoA ±7.3mm. ICC was 0.85. For the manually 

corrected DRAM data the mean difference between readers was 0.54mm, LoA ±3.4mm. 

ICC was 0.96. The BA analysis of line length ROIs in data registered using OF and DRAM 

with the manual measurements (mean of two observers) is shown in Figure 5.5 a and b. 

For the data registered using OF alone, the mean difference between the manually 

corrected and automatically propagated ROIs was -2.0mm (95% LoA ±9mm). For the 

images processed with DRAM, the mean difference was -0.48mm (95% LoA ±4.15mm). 
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Figure 5.5: Bland Altman limits of agreement for line length ROI small bowel data registered using OF against 
manually corrected ground truth (a) and data registered using DRAM against manually corrected ground truth (b). 
Target registration error in DRAM and OF alone (c). 

Target registration errors were below the threshold in 49% of the cases with OF only and in 

70% of the cases after pre-processing with RDDR. Boxplots for nonzero TREs are shown 

Figure 5.5c, OF alone yielded a median error of 0.5 mm (IQR 2.27 mm) and DRAM yielded 

a median error of 0.05 mm (IQR 0.1 mm). 

Mean global motility score within the manually placed ROIs for the breath-hold data sets 

across the cohort was 0.340 (range 0.181 to 0.422). Mean global motility score for DRAM 

registered data was 0.335 (range 0.189 to 0.430) and OF alone free-breathing data sets 

was 0.365 (range 0.268 to 0.458). Subjective visualisation of motility colormaps is shown in 

Figure 5.6 and boxplots for motility scoring are presented in Figure 5.7. 
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Figure 5.6: Example data with small bowel ROIs and motility maps for breath-hold ground truth (a, d), DRAM (b, 
e) and OF alone registration alone (c, f) respectively. Respiratory motion compensation is visible in the transverse 
colon closest to the diaphragm and systemically over the small bowel. The effect of RDDR is less apparent in the 
lower bowel further from the diaphragm where the effects of free breathing are less pronounced. Motility map 
shows black as lower motility and white as higher. 
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Figure 5.7: Box plots for motility scores derived from OF registration in the 20 subjects with range (dotted line), 
interquartile range (box) and median (red horizontal line) for breath hold data registered with OF (BH OF), and 
free breathing data registered with DRAM (DRAM FB) and OF alone (OF FB). 

 Discussion 

This chapter presented an alternative application of RDDR to correct for respiratory motion 

before applying an existing OF method to register local deformation generated due to 

peristalsis. Such an approach could allow rapid and robust data analysis from longer 

datasets acquired in free breathing. Within DRAM, some of RDDR settings were empirically 

modified to adapt it to small bowel data. Imposing a stopping criterion on the algorithm 

allows avoiding loss of information of interest by preventing peristalsis from being seen by 

registration in RDDR. 

Comparable results were obtained for free breathing data corrected using DRAM and the 

pseudo-ground truth of the breath-hold. Specifically the registration of breath-hold series 

using OF gave comparable global scores to DRAM whereas a positive bias was observed 

in global motility scores in free breathing datasets registered with OF alone. This supports 

the fact that DRAM removes respiratory motion whilst leaving peristaltic motion largely 
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intact. The breath-hold data was not a perfect ground truth as the data was temporally 

separated from the subsequent free breathing data collection. However the 30s time 

difference from the commencement of the breath-hold to the commencement of the free-

breathing series is unlikely to impact significantly on bowel motion especially when 

assessed in a global manner. 

The accuracy of the registration technique was assessed by comparing algorithm 

propagated ROIs and comparing their size and position to a manually adjusted ground 

truth. The assessment of the data processed with DRAM demonstrated greater registration 

accuracy with a mean error comparable to previous values in breath-hold studies [34], 

[124]. Correction using DRAM did however show a slightly larger variance in the BA LoA 

when compared to the original breath-hold data in [34]. This is likely due to several factors, 

principally the choice of ROI position which in the current study was the upper left quadrant 

(i.e. proximal bowel close to the diaphragm) with the specific intention of challenging the 

capabilities of the respective algorithms with the effects of respiration. Displacement 

distance of the adjusted ROIs was also assessed. This is a relevant test for registration as 

it is based directly on displacements reflecting registration accuracy. On average less 

manual correction was necessary after using DRAM and where ROIs were adjusted, the 

median distance and variance was several times lower than that without RDDR pre-

processing. By collectively assessing these two components of registration fidelity in a 

challenging region of bowel, both DRAM and OF were subjected to a robust test and in 

both cases DRAM was found to perform better in comparison to the ground truth and 

yielded comparable values to existing published studies. 

 Conclusion 

This chapter is about the validation RDDR as a pre-processing technique prior to extracting 

quantitative metrics to assess small bowel motility in data acquired during free breathing.  

The work described demonstrates the improvement obtained both in segmental and global 
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analyses when using DRAM that will likely be of use in clinical studies investigating the 

bowel motility. 
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6 Local arterial input function based on DW-MRI – Application to 
pharmacokinetic modelling in DCE-MRI  

 Introduction 

This chapter describes recent work on possible extension to DCE-MRI modelling through 

the creation of a specific arterial input function (AIF) using information from DWI. The aim 

of this study was to investigate the possible benefit of using a region-specific model for 

tissue perfusion. Following a description of the state of the art and the proposed extension, 

we describe the application of the method to a set of clinical data from patients with head 

and neck tumour who underwent multi-parametric MRI.  

This last study represents a combination of the work undertaken on both DWI and DCE-

MRI presented in the previous chapters, with a focus on DCE-MRI modelling. An earlier 

version, based on a smaller number of subjects, has been published in the proceedings of 

SPIE 2014 [125]. 

 Arterial Input Function in Pharmacokinetic modelling 

In DCE-MRI, the parameters extracted from pharmacokinetic modelling of tissue response 

to the passage of contrast agents are used to provide a quantitative description of the 

response to therapy or changes to the tumour region [8], [22], [126]. Thus, accurate model 

fitting and precise reproducibility of parameter values are essential in clinical studies for 

diagnosis, prognosis and therapeutic assessment. In order to achieve accurate and 

reproducible modelling, information on tissue perfusion as well as prior knowledge of 

contrast agent concentration in blood are required. Models are often dependent on an 

accurate representation of the AIF, describing the arrival and transit of the bolus through 

the local arteries and arterioles network. A number of methods for accurate AIF estimation 

have been developed. It may be estimated at a global level directly from a population 

specific function [111] or via local fitting of an expected shape to a purely vascular region of 

interest [43], [127] provided that a suitable artery appears in the imaging field of view 
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(FOV). Several techniques for automatic detection of the AIF via image segmentation have 

also been proposed [25], [128]–[130].  

It should be noted that methods based on blind estimation of the AIF through the 

incorporation of a specific model within tissue pharmacokinetic modelling have also been 

investigated [131]. Although this type of approach alleviates the need for an artery within 

the FOV,  it is limited by high sensitivity to noise and an increased number of degrees of 

freedom [130], [132]. 

 Local Region Specific Arterial input Function 

Using an accurate AIF is critical for accurate estimation of tissue properties. As described 

by Calamante et al. [28] in the case of DSC imaging, the same tissue concentration over 

time can be obtained in different scenarii. This is illustrated in Figure 6.1 where a fast and 

narrow bolus delivered to tissue with lower perfusion and higher permeability results in the 

same enhancement profile as a slower and spread bolus delivered to highly perfused tissue 

with lower permeability. 

 

Figure 6.1: Illustration of the need for an accurate estimation of the Arterial input function. Depending on the input 
contrast agent concentration, tissue with very different characteristics can present similar time concentration 
curves (adapted from Calamante [28]).  
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Thus an inaccurate AIF may lead to erroneous tissue characterisation when fitting a 

pharmacokinetic model to a given enhancement curve. In spite of this most studies based 

on DCE-MRI analysis use a single AIF per subject [130], [133] or for a group of subjects 

[21], [134]. However, the fitting of a single upstream arterial input function does not allow 

for subsequent bolus dispersion through bifurcating and narrowing vasculature and thus the 

obtained parameters are sensitive to bolus dispersion over the path from the reference 

arterial region, rather than being specific to the local voxel. If these changes to the global 

reference AIF can be accounted for by calculation of a region-specific AIF, the subsequent 

pharmacokinetic model parameters will describe the local tissue more accurately [28], 

[132].  

Some studies have investigated the possibility of using a locally varying AIF. Calamante et 

al. described the dispersion of the bolus in DSC-MRI using a vascular transport function 

convolved with the AIF measured in a major artery [26], [27]. This vascular transport 

function can be modelled as an exponential decay, or using a more complex parametric 

model of microvasculature [135]. Fluckiger et al. used region specific AIFs based on blind 

estimation [131], [132]. 

Motivated by comparable work extending the Tofts model to account for passive diffusion of 

contrast agent in tissue [136], we show in this work that additional constraints on the fitting 

of the extended Tofts model to DCE-MRI data derived from independent fitting to diffusion 

weighted imaging DW-MRI can be used to constrain DCE parameter estimation. Our 

hypothesis is that since the DW-MRI provides information on the local tissue microstructure 

(i.e. perfusion at low b-values, cellularity, extracellular space tortuosity and cell membranes’ 

integrity), this in principle allows inference on the local volume available for bulk flow and 

the local tortuosity given the restrictiveness of the cellular and extra-cellular space. Here we 

use the ADC, which can be seen as a mixture between diffusion and perfusion in local 

tissue microstructure, to constrain the fitting of the DCE-MRI, specifically via local variations 

of arterial input function.  
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Although the two types of imaging have been associated in many studies [134], [137], 

[138], these two models for diffusion weighted and contrast enhanced imaging have never 

been combined in this way. In this work we show that there is some utility in multi-modal, 

multi-compartment model fitting on pharmacokinetic parameter estimation in head and neck 

cancer data. 

 Proposed approach 

The identification of an accurate AIF describing the arrival of contrast agent in the tissue of 

interest is the main focus of this work. We make use of an analytical AIF given by the Orton 

model [139] representing a symmetric bolus shape convolved with a transfer function 

modelling the interaction with body tissue on circulation: 

 Cp(t) =  ab
 (1 − cos(μb

 )) ⨂ ag
 exp (μg

 t) (6.1) 

This model provides an analytical form that may be closely fitted to a population model 

[111], but additionally is flexible enough to be fitted on a subject specific basis [43], [140], 

for instance to a major artery. In equation (6.1), ab
 

 and μb
   are experimental parameters of 

the local bolus shape whilst ag
 and μg

  describe the interaction of this bolus in transit to the 

tissue and thus these are region-dependent parameters. The effect of these parameters is 

described in Figure 6.2. 
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Figure 6.2: Illustration of the effect of the Orton model parameters on the shape of the AIF, Cp(t) 

Specifically μb
  describes how the shape of the bolus changes as it passes through the local 

vasculature, strong interaction with local tissue will thus cause the bolus to become more 

disperse and delayed, with the impact that μb
  is locally decreased.  

For a given dataset, a global AIF (parameterized by ab
 0, μb

0, ag
0, and μg

0) can be obtained by 

fitting the Orton model to the enhancing signal from an artery ROI. By using the changes in 

ADC value with respect to the reference ADC for free water diffusion (ADCRef set to 3x10-3 

mm2/s), we can derive a local AIF reflecting the microstructure for specific ROI, or each 

pixel p in the FOV. This is achieved using the following heuristic changes on the Orton 

model: 

 

 Cp(p, t) =  ab
 0(1 − cos(μb

∗ (p))) ⨂ ag
∗ (p)exp (μg

∗ (p)t) (6.2) 

where, 
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μb

∗ (p) =  μb
0  exp (

ADC(p)

ADCRef
− 1) 

ag
∗(p) =  ag

0 exp (
ADC(p)

ADCRef
− 1) 

μg
∗(p) =  μg

0  
ADC(p)

ADCRef
 

(6.3) 

The proposed modifications are based on the assumption that a lower ADC value broadly 

represents an environment with increased cellularity; thus vessels passing through this 

region may be more tortuous or narrower and blood flow is altered such that the bolus 

becomes more disperse. This increase in dispersion may be encoded by a locally 

decreased μg
 , ag

  and μb
 . The effect of such modifications is illustrated in Figure 6.3. 

Pixel wise fitting of the mono-exponential diffusion model provides the ADC parameter to 

modify the AIF locally and thus produces a map that provides local tissue specific 

information on the response to contrast agent bolus. 

 

Figure 6.3: Illustration of the effect of ADC based modifications of the Orton AIF model. The lower the ADC the 
wider the bolus 
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 Application to Clinical data 

6.5.1 Data 

Multi-parametric MR data of head and neck were acquired for twenty nine subjects (20 

patients and 9 healthy volunteers). Imaged patients satisfied inclusion criteria of 

histologically confirmed squamous cell carcinoma with unilateral cervical nodal metastatic 

disease at pre-therapy staging. All images were obtained from a 1.5T Siemens (Siemens, 

Erlangen, Germany) Avanto magnet with the manufacturer’s carotid coils. DCE time-series 

were acquired in the coronal plane using a spoiled gradient echo sequence with 

TR/TE=2.89ms/1.01ms and a flip angle of 25o. Images were acquired with a slice 

thickness of 2.5 mm and matrix size was 256×256. In total 50 time frames were acquired 

with a temporal resolution of 3s. Axial DW images of the neck were acquired using EPI. 

Trace DW images of the head and neck were acquired with two receiver coils using 

GRAPPA. Images were averaged four times for improved SNR. Diffusion gradients were 

applied in 3 orthogonal directions at each of 6 b-values (0, 50, 100, 300, 600 and 1000 

s/mm2). Images were acquired with TR/TE = 8.7s/88ms and a 128x128 matrix size. Total 

acquisition time for diffusion MR imaging was 6 minutes and 10 seconds. For each subject, 

four T1 weighted MR images were acquired in the coronal plane also using a spoiled 

gradient echo sequence with multiple flip angles (5o, 15o, 25o
 and 35o) with 

TR/TE=2.89s/1.01ms and 256×256 matrix size. The same type of sequence was chosen 

for both DCE and multiple flip angle data to minimize the influence of changes in T1 that 

might not be related to GD-DTPA. Cervical nodes regions of interest (ROIs) for subsequent 

model fitting were contoured in each subject by a radiologist: cancerous in patients (20 

ROIs) and normal in healthy subjects (12 ROIs). 

 

 



153 
 

 

6.5.2 Data pre-processing 

Before parametric mapping, the DCE-MRI and multiple flip angle pre-contrast T1-weighted 

volumes were registered using a 3D version of RDDR. These were then re-sliced in the 

axial plane to match the diffusion weighted data. DW-MR data were registered using a NMI 

based FFD technique. For each subject the physical slice(s) containing the contoured ROIs 

were extracted for subsequent analysis. 

6.5.3 Parametric mapping 

T1 and proton density (S0) mapping was computed using a pixel by pixel approach as the 

multi-flip angle data had been registered along with the DCE data. ADC maps were 

computed using a maximum probability scheme to a mono-exponential decay (as 

described in section 3.5.1.1). For each ROI two arterial input functions were computed: first 

we applied the Orton model, fitted to the time-intensity curve of the common carotid artery 

section to provide a subject specific global AIF and second we modify this baseline AIF 

using the mean ADC in the considered ROI to create a local AIF as described in 6.4. 

Subsequent fitting of the extended Tofts model to obtain estimates for Ve, Vp and KTrans was 

achieved using a non-linear least squares algorithm with conversion from signal intensity to 

contrast agent concentration C(t) achieved using the pre-computed AIFs. T1 and S0 values 

were included in the estimated parameters to give more flexibility to the fitting. The 

previously computed T1 and S0 were used as initial guesses. A pixel wise coarse-to-fine 

approach with two resolution levels was used to avoid convergence to local minima. Within 

the fitting Ve and Vp values were restricted to the range [0.01 1], and KTrans to the range [0 5] 

min-1 to avoid convergence to unphysical values. The pharmacokinetic models obtained 

with both models of AIF were compared to assess the proposed method. 
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An additional experiment was conducted based on the range of ADC values observed in 

both cancer and normal tissue. In order to assess the validity of the proposed heuristic, 

series of modified AIFs were generated for each subject using all the values in the ADC 

range. For each data set, residual errors obtained afters fitting the extended Tofts Model 

with the different AIFs were computed. The ADC value producing the lowest fitting error 

was then compared to the actual ADC obtained for the corresponding subject. 

 

Figure 6.4: Box and whisker plots of the estimated pharmacokinetic parameters across all ROIs for both 
cancerous and normal nodes, Overall the use of a local model increases Vp and decreases Ve and Ktrans. Each 
plot shows: the median error (red line), the 25th and 75th percentile (blue box), and the full data extent (black 
dashed line). 

 Results 

The estimated Tofts model parameters across all data are summarized in Figure 6.4. As 

predicted by the theory the effect of a local AIF with delayed and spread bolus tends to 

increase the estimated values of Vp and decrease Ve and Ktrans. However these changes 

were only significant in the case of Vp (p < 0.01). A decrease in the Ktrans parameter inter-

quartile range was observed in both patients (global 0.44 min-1; local 0.19 min-1) and 

subjects (global 0.32 min-1; local 0.26 min-1).  
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Figure 6.5: Example of parametric maps obtained for two patients with large cancerous nodes. Across both 
tumours the use of a local AIF model yields a significant increase in Vp and more homogeneous Ktrans values. 

Example parametric maps for two patients (P1 and P2) along with representative 

enhancement curves and model fit are presented Figure 6.5 and 6.6. In both P1 and P2 the 

lower ADC in the tumour region causes the local AIF peak to be delayed with a wider peak 

and a slower washout phase compared to the global model. Such effect results in a fitting 

with important reduction of the residual error: by 51% in P1 and by 53% in P2. In addition, 

an offset in the baseline signal can be observed in the model fit with the global AIF for the 

two patients. This effect is due to the changes in T1 and S0 allowed in the fitting, may be 

related to an attempt of compensating for a potentially inaccurate AIF by the modelling 

scheme. 

More detailed results are available in Table 6.1 and 6.2. Interestingly, in 9 out of the 12 

healthy subject’s ROIs, pharmacokinetic modelling with global AIFs resulted in median Vp 

values equal to the pre-set lower bound. This indicates possible convergence to local 

minima. However such a phenomenon was not observed with local AIFs. Also, in 2 out of 

the 12 subjects and 2 out of the 20 patients, the median Ve value reached the pre-set upper 

bound. This was observed for both the local and the global model. Again this suggests that 

the fitting scheme may have not converged to an optimal solution. 

(P1) (P2) 
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Figure 6.6: Representative time intensity curves and model fit for the two patients (P1 and P2) along with the two 
AIF models. In both cases the slightly delayed peak and slower washout in the AIF leads to a more sensible 
model fit. 

Result from the validation experiment are showed in Table 6.3 and 6.4. Local AIF models 

provided the lowest fitting error in 7 out of 20 patients and in 7 out of 12 subjects. ADC 

values were ranged between 0.5 and 1.65 10-3 s/mm2 in patients, and between 0.6 and 2.4 

10-3 s/mm2 in normal subjects. In patients, there was at least a 20% difference between the 

ADC yielding the minimal errors and the actual ADC value, except in 1 case were the 

difference was 2% of the real ADC. In normal subjects, that difference was higher than 40% 

in most cases except 1 where its value was 5% of the actual ADC. These difference 

(P1) 

(P2) 
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suggest that the proposed heuristic might not produce accurate modification of the shape of 

the AIF. 

 

Cancer 
Nodes 

Model Vp Ktrans (min-1) Ve 
ADC (10-3 

s/mm2) 

1 
Global 0.112 (0.075) 0.367 (0.360) 0.174 (0.149) 

0.86 
Local 0.106 (0.034)  0.141 (0.108)* )0.073 (0.111)* 

2 
Global 0.017 (0.079) 0.140 (0.020) 0.203 (0.145) 

0.53 
Local 0.045 (0.087) 0.064 (0.029) 0.197 (0.174) 

3 
Global 0.012 (0.009) 0.328 (0.303) 0.237 (0.174) 

0.96 
Local 0.051 (0.035)*  0.088 (0.063)* 0.105 (0.077)* 

4 
Global 0.054 (0.024) 0.317 (0.357) 0.266 (0.270) 

1.03 
Local 0.157 (0.090)* 0.347 (0.286) 0.140 (0.277)* 

5 
Global 0.019 (0.029) 0.032 (0.114) 0.081 (0.312) 

1.25 
Local 0.028 (0.045)* 0.045 (0.095) 0.049 (0.186) 

6 
Global 0.010 (0.023) 0.474 (0.607) 0.120 (0.177) 

0.81 
Local 0.032 (0.038)*  0.139 (0.223)* 0.019 (0.061)* 

7 
Global 0.017 (0.022) 0.596 (0.749) 0.208 (0.070) 

0.83 
Local 0.076 (0.052)*  0.096 (0.038)* 0.070 (0.040)* 

8 
Global 0.050 (0.034) 0.110 (0.079) 0.152 (0.079) 

1.08 
Local 0.087 (0.072)*  0.050 (0.523)* 0.058 (0.050)* 

9 
Global 0.030 (0.019) 0.185 (0.216) 0.195 (0.112) 

1.37 
Local 0.051 (0.026)*  0.151 (0.112)* 0.151 (0.072)* 

10 
Global 0.124 (0.049) 0.079 (0.052) 0.175 (0.109) 

1.11 
Local 0.115 (0.056*) 0.049 (1.807)* 0.042 (0.176)* 

11 
Global 0.179 (0.356) 0.094 (0.079) 0.421 (0.572) 

1.32 
Local 0.099 (0.215) 0.028 (0.031) 0.138 (0.757) 

12 
Global 0.010 (0.087) 0.093 (0.320) 0.191 (0.524) 

0.96 
Local 0.010 (0.098) 0.078 (0.338) 0.531 (0.094)* 

13 
Global 0.010 (0.012) 0.174 (0.156) 0.188 (0.079) 

1.25 
Local 0.038 (0.031)*  0.158 (0.104)* 0.164 (0.082) 

14 
Global 0.042 (0.024) 0.077 (0.861) 0.000 (0.015) 

1.23 
Local 0.010 (0.006)*  0.023 (0.025)* 0.037 (0.151) 

15 
Global 0.135 (0.087) 0.163 (0.051) 0.285 (0.298) 

1.15 
Local 0.143 (0.043)  0.089 (0.012)* 0.151 (0.295)* 

16 
Global 0.023 (0.022) 0.643 (0.795) 1.000 (0.545) 

1.03 
Local 0.172 (0.124)* 0.644 (0.544) 1.000 (0.626)* 

17 
Global 0.087 (0.539) 0.862 (0.731) 1.000 (0.465) 

0.96 
Local 0.367 (0.477)*  0.759 (0.719)* 1.000 (0.783)* 

18 
Global 0.021 (0.010) 0.064 (0.096) 0.108 (0.101) 

0.85 
Local 0.033 (0.010)* 0.069 (0.083) 0.068 (0.071)* 

19 
Global 0.010 (0.245) 5.000 (1.398) 0.723 (0.289) 

1.46 
Local 0.505 (0.475)*  2.381 (0.887)* 0.449 (0.287)* 

20 
Global 0.112 (0.202) 4.596 (2.094) 0.742 (0.219) 

1.66 
Local 0.286 (0.265)* 6.619 (2.115) 0.657 (0.227)* 

Table 6.1: Detailed Tofts model fit parameters and ADC values for cancerous cervical nodes using both global 
and local AIFs. Pharmacokinetic parameters values are given as median (IQR). Significant difference between 
the local and global model is indicated by ‘*’. 
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Normal 
Nodes 

Model Vp Ktrans (min-1) Ve 
ADC (10-3 

s/mm2) 

1 
  

Global 0.010 (0.017) 2.662 (1.630) 0.856 (0.457) 
0.87 

Local 0.445 (0.568)* 0.882 (0.435)* 0.316 (0.123)* 

2 
  

Global 0.010 (0.007) 0.023 (0.016) 1.000 (0.791) 
2.4 

Local 0.010 (0.007) 0.023 (0.016) 1.000 (0.797) 

3 
  

Global 0.010 (0.000) 0.501 (0.763) 0.372 (0.379) 
0.59 

Local 0.092 (0.066)* 0.268 (0.198)* 0.236 (0.121)* 

4 
  

Global 0.010 (0.023) 0.212 (0.144) 0.987 (0.669) 
1.17 

Local 0.022 (0.018) 0.204 (0.135)* 1.000 (0.547) 

5 
  

Global 0.010 (0.120) 0.119 (0.133) 0.472 (0.798) 
1.02 

Local 0.025 (0.025) 0.054 (0.043)* 0.496 (0.492) 

6 
  

Global 0.093 (0.019) 0.095 (0.050) 0.203 (0.022) 
0.89 

Local 0.026 (0.009)* 0.026 (0.001)* 0.128 (0.017) 

7 
  

Global 0.010 (0.047) 0.183 (0.148) 0.673 (0.434) 
1.37 

Local 0.062 (0.078) 0.071 (0.023)* 0.701 (0.691) 

8 
  

Global 0.010 (0.004) 0.140 (0.114) 0.144 (0.109) 
0.89 

Local 0.018 (0.011)* 0.031 (0.050)* 0.084 (0.055) 

9 
  

Global 0.010 (0.010) 0.010 (0.010) 0.000 (0.149) 
1.47 

Local 0.010 (0.010) 0.010 (0.010) 0.000 (0.115) 

10 
  

Global 0.010 (0.019) 0.325 (0.234) 0.376 (0.198) 
1.59 

Local 0.015 (0.009) 0.312 (0.216) 0.296 (0.143) 

11 
  

Global 0.010 (0.076) 1.464 (0.277) 1.000 (0.446) 
1.13 

Local 0.205 (0.342)* 1.021 (0.190)* 1.000 (0.472) 

12 
  

Global 0.027 (0.059) 0.089 (0.219) 0.161 (0.370) 
0.91 

Local 0.026 (0.072) 0.084 (0.231) 0.126 (0.297) 

Table 6.2: Detailed Tofts model fit parameters and ADC values for normal cervical nodes using both global and 
local AIFs. Pharmacokinetic parameters values are given as median (IQR). Significant difference between the 
local and global model is indicated by ‘*’. 

 

 

 

 

 

 

 

 

 

 

 



159 
 

Cancer 
Nodes 

Residual Global 
AIF model) 

Residual (Local AIF model) ADC min  (10-3 
s/mm2) 

ADC real  (10-3 
s/mm2) 

Median IQR Min 

1 0.142 0.147 0.003 0.144 1.55 0.86 

2 0.143 0.145 0.001 0.144 1.55 0.53 

3 0.149 0.136 0.020 0.126 1.65 0.96 

4 0.141 0.148 0.001 0.145 1.65 1.03 

5 0.144 0.144 0.001 0.144 1.60 1.25 

6 0.137 0.150 0.003 0.145 0.65 0.81 

7 0.134 0.153 0.013 0.143 1.65 0.83 

8 0.130 0.156 0.009 0.143 1.55 1.08 

9 0.121 0.164 0.017 0.149 1.65 1.37 

10 0.087 0.181 0.038 0.148 1.65 1.11 

11 0.140 0.148 0.012 0.140 1.35 1.32 

12 0.147 0.142 0.037 0.108 1.60 0.96 

13 0.130 0.157 0.018 0.141 1.65 1.25 

14 0.150 0.138 0.002 0.137 1.65 1.23 

15 0.133 0.153 0.008 0.148 1.65 1.15 

16 0.160 0.127 0.001 0.126 1.30 1.03 

17 0.176 0.104 0.006 0.099 0.50 0.96 

18 0.136 0.152 0.007 0.146 1.65 0.85 

19 0.137 0.152 0.008 0.143 0.50 1.46 

20 0.139 0.149 0.008 0.142 0.60 1.66 

Table 6.3: Comparison of fitting residual errors obtained with the global AIF model and local AIFs models for a 
range of ADC values observed in Patients data. The last two columns show the ADC producing the minimum 
residual error and the actual ADC for each patients. For each patient the minimal residual error between the 
different AIFs is highlighted. 

Normal 
Nodes 

Residual (Global 
AIF model) 

Residual (Local AIF model) ADC min  (10-3 
s/mm2) 

ADC real  (10-3 
s/mm2) Median IQR Min 

1 0.149 0.140 0.004 0.136 1.65 0.87 

2 0.129 0.103 0.009 0.095 0.60 2.40 

3 0.112 0.121 0.004 0.116 2.40 0.59 

4 0.108 0.125 0.010 0.110 2.35 1.17 

5 0.123 0.109 0.005 0.103 1.70 1.02 

6 0.106 0.123 0.014 0.110 2.40 0.89 

7 0.118 0.113 0.004 0.110 1.45 1.37 

8 0.118 0.111 0.007 0.108 1.60 0.89 

9 0.109 0.124 0.009 0.116 0.85 1.47 

10 0.107 0.126 0.011 0.113 2.40 1.59 

11 0.107 0.132 0.023 0.105 2.05 1.13 

12 0.115 0.117 0.002 0.115 2.40 0.91 

Table 6.4: Comparison of fitting residual errors obtained with the global AIF model and local AIFs models for a 
range of ADC values observed in normal subjects data. The last two columns show the ADC producing the 
minimum residual error and the actual ADC for each patients. For each subject the minimal residual error 
between the different AIFs is highlighted. 
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 Discussion 

In this chapter we attempted to address the challenge of obtaining an accurate Arterial 

input function for the modelling of tissue properties in DCE-MRI. Theoretically, a technique 

that allows more accurate modelling of the local arterial injection of contrast agent may be 

advantageous. For instance, this type of local model might be beneficial where important 

vascularization changes can be expected such as in the liver or during the early stage of a 

tumour growth. By absorbing the changes caused by subsequent bolus dispersion of the 

global reference AIF in transit to the tissue into the local AIF, the influence of these are 

removed from the subsequent Tofts model parameters, a modification that may be 

beneficial for accurate local assessment of the pharmacokinetic parameters. 

The results obtained here are modest but encouraging. Potential benefit of the local AIF 

model include more homogeneous Ktrans maps, although the last experiment did not 

highlight a particular benefit in terms of residual fitting errors. However, other types of 

modifications also based on information from DWI could be beneficial and provide a more 

robust estimation of the AIF than the global model. In any case further comparison with 

existing techniques using automated  local AIF modelling [132] would be of interest. 

6.7.1 Limitations 

There are a number of limitations to this work that should separately be investigated, some 

of which are not only applicable to this study but to DCE and DW imaging in general. Also, 

the proposed modification to the AIF shape parameters is very heuristic and the way it 

describes the complex bolus-tissue interaction may not be fully accurate, thus a more 

sophisticated modification to the arterial input function such as a model of bolus transit 

between artery and capillary bed might provide a more accurate representation of tissue 

pharmacokinetic properties. The value used as reference for ADC assumes free diffusion, a 

better approximation should be based on the properties of blood in bigger arteries.  
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The assumption that lower ADC values reflect an increased vessel tortuosity and more 

disperse input seems intuitively correct in the case of a tumour. However, in many situation 

changes in ADC are not related to vasculature. For instance, in acute stroke ADC can be 

decreased by 40% [1] whereas the local vasculature remains unchanged (although local 

tissue perfusion is altered).  

With regards to the DCE-MRI, part of the enhancement peak was missing in the measured 

AIF in some cases. While this can be corrected to a degree through the use of an AIF 

model, a more finely sampled bolus arrival period may be advantageous. Also, T1 fitting 

procedures are generally found to be noisy, especially in head and neck data because of 

complex anatomical features and pronounced susceptibilities [141], which can lead to 

important errors in the pharmacokinetic parameters estimates [142]. If the conversion of 

pixel intensities to changes in contrast agent concentration is embedded in the 

pharmacokinetic modelling, some flexibility might be given to tissue native T1 and proton 

density in order to improve the fitting. However this increases the number of degrees of 

freedom and makes the modelling more complex. Each of these last points also relies on 

an appropriate optimisation strategy for which non-linear least square routines may be 

insufficient. Lastly, the assessment of accuracy in DCE-MRI model fitting is notoriously 

difficult – in this work the application shows some changes that need to be compared to an 

accepted measurement of the local tissue perfusion [143]. 

6.7.2 DWI modelling 

The proposed heuristic uses DWI to locally modify the AIF which has the advantage of 

including microstructural information. In this work we generated ADC maps using a mono-

exponential decay model. Such a model was preferred to bi-exponential decay (section 

2.3.2.2) because a single parameter that summarizes the information from DWI (thought to 

be a mixture of perfusion and diffusion) was simpler to incorporate into the AIF model. More 

complex modifications based on bi-exponential decay parameters (pseudo-diffusion 
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component, ADC and perfusion fraction) would be of interest. However care should be 

taken to clearly identify the physiological link between these parameters and those involved 

in the Orton model. 

6.7.3 ROI or pixel based analysis 

An ROI based approach was chosen − instead of a pixel by pixel computation of the local 

AIFs − in order to avoid errors due to mismatching features between the DWI and DCE-

MRI data. An additional registration step might be used to compensate for distortions 

appearing in DWI data. However this was not applied here because of the relatively poor 

resolution in the re-sliced axial DCE-MRI data. Visual delineation of ROIs was thought to be 

more reliable for the pharmacokinetic modelling. Nevertheless local AIFs defined pixel wise 

or using clusters of pixels [132] might have enough flexibility to reflect possible 

heterogeneity within the tumour. In some cases the passage of the bolus can vary between 

the different parts of the same tumour region (e.g. tumour rim and necrotic tumour core). 

Even though a better understanding of the effect of perfusion on the ADC is needed, the 

incorporation of a spatially varying input function might increase the sensitivity of the 

modelling to tissue vascular properties at finer scales. 

 Conclusion 

This last chapter has discussed the potential benefit of using DWI to locally constrain the 

AIF and obtain more specific information on tissue perfusion in the quantitative analysis of 

DCE-MRI. Although other techniques based on a similar concept have been developed, the 

method introduced here investigates an alternative which does not require blind estimation. 

The concept may also be extended to include other imaging information that relates to 

micro-structure or perfusion, for example ASL data. Some changes were observed when 

using a local AIF model, although the conducted preliminary validation did not highlight any 
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significant improvements. However, such an approach can be investigated more in depth 

and modelling of the local AIF using multi-parametric MRI could be possible. 

Finally, this work combines all the different aspects of the work undertaken during this PhD 

(DWI modelling, registration) within a multi-parametric analysis of DCE-MRI data. The 

proposed method also introduces a way to gather different elements of multi-parametric 

quantitative MRI. A more evidence-based combination of the microstructural sensitivity of 

DWI with the perfusion specificity of DCE-MRI might provide useful information on tissue 

properties.  
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7 Conclusions and Future Directions 

 Advances made 

The overall aim of this thesis was to contribute to quantitative MRI through the 

improvement of data processing and analysis. In the work presented in the different 

chapters, a number of challenges were addressed: noise modelling and bias correction, 

motion correction, and extension of physiological models. Some of the main quantitative 

MRI techniques were considered (DWI, DCE-MRI) as well as some more specific 

measurement techniques (Dynamic MRI of the small bowel).  

The problem of bias due to noise in the modelling of low SNR diffusion weighted data was 

treated in chapter 3. Different methods, with varying degree of complexity were considered 

to correct for such bias when estimating the apparent diffusion coefficient. A relatively 

simple maximum likelihood approach was first considered assuming uniform, stationary 

noise distribution across the imaged field of view. More complex solutions were also 

considered to account for spatially varying noise due to parallel imaging as well as changes 

caused by data averaging. These included a theoretical approach to provide a model for 

the noise distribution, and a more practical approach using a direct bias correction, 

assuming certain noise characteristics, prior to tissue properties estimation. Although no 

ideal solution was found, this project highlighted the necessity to use accurate noise 

modelling in clinical DWI and the important influence of acquisition strategies on the 

expected nature of the noise distribution. 

Chapter 4 introduced a novel registration technique for correction of misalignments induced 

by inter-frame motion in DCE-MRI. The proposed method, named Robust Data 

Decomposition Registration (RDDR), utilizes iterative separation of motion and contrast 

enhancement effects to avoid unphysical changes likely to appear with more classic 

registration algorithms. RDDR has been published in [82]. It allowed significant 

improvement of tissue time intensity curves compared to existing techniques. The purely 

mathematical nature of data decomposition in RDDR can be a source of limitations. 
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However the successful registration of multiple types of data and imaged organs (liver, 

small bowel, prostate) using the same algorithm settings suggests the method is robust. 

An extension of RDDR was introduced in chapter 5 for an alternative application to small 

bowel motility quantification in the presence of free breathing. In that case the ability of 

RDDR to work as a non-linear filter in terms of motion compensation is demonstrated.  

RDDR can remove undesirable effects while preserving information on a mechanism of 

interest. Such a scheme could have an important impact in the future as it could alleviate 

the need for breath holding during dynamic MRI acquisitions and potentially allow longer 

dynamic acquisition leading to a better understanding of the different components of small 

bowel peristalsis. 

The last chapter dealt with the modelling of the arterial input function for DCE-MRI analysis, 

using prior knowledge from DWI to create a local model of blood perfusion in tissue. By 

taking advantage of the work presented in the previous chapters, a full pipeline for data 

processing and pharmacokinetic modelling was set up. Although the results obtained are 

modest, the use of a local AIF model showed a difference in the estimated tissue properties 

in the analysed data. If well validated, the idea of combining microstructural information 

from DWI with perfusion specific DCE-MRI may provide useful information. 

From a general point of view, this thesis explored different aspects of quantitative MRI with 

a focus on signal perturbation related to data acquisition and the modelling of such signal. 

The common goal of the presented studies is to extend and increase the feasibility of using 

the MRI scanner as an objective measurement tool in the context of clinical routine or to 

assess response to potential therapies. The work undertaken led to the observation that 

well suited data (pre-) processing is essential in quantitative MRI for consistent estimation 

of tissue physiology. It can also lead to significant improvement of the accuracy of the 

parameters derived from image data. This is highly valuable in various applications such as 

treatment monitoring, early diagnosis in oncology or to get a better understanding of the 

development of tumours. An additional benefit related to the presented techniques may be 

the increase in correlation between diseases characteristics and MR parameters. Such an 
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effect could lead to more accurate assessment and benefit clinical trials by reducing the 

number of subjects required.  

 Future directions 

A number of future directions might be considered. The use of RDDR is not limited to the 

applications presented in this thesis and can be extended to other imaging techniques that 

have common characteristics with DCE-MRI, such as DSC-MRI, Positron Emission 

Tomography or contrast enhanced CT. Investigating the ability of RDDR to register multiple 

measurements in DWI datasets (multiple directions of the diffusion gradient and multiple b-

values) could be of interest as well.  

A few refinements of the algorithm could also be of interest in future work: the use of robust 

data principal component analysis to decompose the imaged data requires a fine tuning of 

the trade-off parameter (as detailed in 4.3.4). Although satisfying results were obtained 

using the proposed heuristic, finding analytically suitable setting for the decomposition 

might further improve the performance of the algorithm.  

DRAM provides a pipeline for respiratory motion correction followed by quantification of the 

remaining physiological motion (e.g. contractions and expansions of features). One of the 

potential alternative applications of this method could be the analysis of free breathing 

cardiac MRI. This could allow the assessment of myocardial function from data acquired 

over longer imaging periods. It could also remove the possible changes in heart beat and 

blood flow, due to stress and pressure changes caused by breath holding. Alternatively, it 

may allow for a wider gating window in respiratory gated scans, resulting in a more efficient 

use of the scan time. 

The modelling of local AIF using diffusion requires more extensive investigation. Although 

promising results were obtained with the proposed heuristic, a complete validation is 

necessary to fully assess the potential benefit of such a model. The proposed method was 
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presented in the context of DCE-MRI only. However this, as well as RDDR, could be useful 

in other imaging techniques such as DSC-MRI.  

 Conclusions 

This thesis has described a number of ways of improving the extraction of information from 

quantitative MRI through compensation of the effect of noise and motion, and further 

development of a perfusion model. Such improvements can be beneficial in several areas 

including oncology and clinical trials. More widespread adoption of the proposed methods 

and ideas through integration into data processing pipelines could have a significant impact 

on the clinical use of multi parametric MRI and on the use of imaging biomarkers in the 

assessment of diseases and treatment response. 
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