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Abstract 
 
Background:  
After hypoxia-ischaemia and successful resuscitation, cerebral energy 

metabolism transiently recovers to the normal level (latent phase); after a 

variable period of time this phase is followed by secondary energy failure (SEF) 

in those subjects with an adverse outcome. A better understanding of the 

regional evolution of SEF may enhance the application of future neuroprotective 

strategies.  

 

Aims: 
The aim of this thesis was to determine associations between the insult severity, 

regional SEF evolution, and subsequent histo-pathological brain injury using 

magnetic resonance biomarkers. 

 

Methods: 
An established piglet model of neonatal encephalopathy was used. 

1. Twenty-nine piglets were studied either normothermic or hypothermic (35°C 

or 33°C during 2-26 hours after hypoxia-ischaemia). 31-phosphorus 

magnetic resonance spectroscopy (31P MRS) was serially acquired; the brain 

was assessed with histology after 48 hours.  

2. Global 31P MRS, and maps of apparent diffusion coefficient (ADC) and 

transverse relaxation time (T2) were serially obtained in 3 control and 18 

asphyxiated piglets. Histo-pathological brain injury and MR biomarkers were 

compared at time periods of 16-48 hours after hypoxia-ischaemia.  

 
Results: 
1. Severe acute insult, short latent phase, severe SEF, and profound 

histo-pathological brain injury were associated between each other.  

2. Transient recovery in phosphocreatine (PCr) higher than its baseline level 

was indicative of absent subsequent evolution of SEF, whereas sub-baseline 
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PCr recovery was suggestive of severe SEF. 

3. Global 31P MRS biomarkers and regional ADC obtained just prior to 

termination and up to 18-24 hours before termination predicted 

histo-pathological brain injury; the predictive value was optimal for global 

PCr/inorganic phosphate (Pi), followed by global PCr/exchangeable 

high-energy phosphate pool (EPP), Pi/EPP and regional ADC. PCr/Pi, 

PCr/EPP, Pi/EPP and ADC obtained after 6 hours of hypoxia-ischaemia 

predicted later neuronal death. Analysis with time-series data after 

resuscitation showed modest predictive values of 31P MRS and ADC for the 

end point brain injury as early as 3 to 6 hours after hypoxia-ischaemia.  

 
Conclusions:  
Although 31P MRS was more accurate, regional ADC predicted subsequent brain 

injury up to 18 hours in advance of termination. Regional ADC can be used as a 

sensitive early marker for subsequent tissue injury when 31P MRS is not 

available. 
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Chapter 1: Introduction 
 

1.1 Epidemiology of perinatal hypoxia-ischaemia and 
neurological impairments 

 

Perinatal hypoxia–ischaemia and subsequent neonatal encephalopathy remain major 

causes of neonatal death and permanent neurological impairments worldwide, which 

are responsible for ~23% of annual neonatal deaths (1). Even in the developed world, 

some form of resuscitation is required for ~10% of all newborn infants before 

spontaneous breathing and circulation are established (2). Although the majority of 

these infants are stabilised without further need for intensive medical care, moderate to 

severe neonatal encephalopathy develops, in approximately 1-3 per 1000 live births (3), 

resulting in up to 60% of mortality and at least 25% of survivors with long term 

neurodevelopmental sequelae (Fig. 1.1-1) (4). Perinatal hypoxia-ischaemia also affects 

the long term outcome of infants who were resuscitated at birth but were asymptomatic 

for encephalopathy and had no further neonatal care; these infants are at increased 

risks of having low intelligence quotients at school age compared to their peers who did 

not require resuscitative procedures (5). The incidence of probable intrapartum-related 

respiratory depression, neonatal encephalopathy and subsequent death is much higher 

in developing countries and low resource settings (6). 

 

Until recently there was no efficient treatment for the devastating consequences of 

perinatal asphyxia and neonatal encephalopathy. However, recent experimental and 

clinical evidence has led to the establishment of therapeutic hypothermia, which has 

now been recognised as the first clinically effective neuroprotective treatment for infants 

with neonatal encephalopathy (7-9). Currently, however therapeutic hypothermia is 

offered only to a limited number of infants with neonatal encephalopathy worldwide as 

clinical trials have only shown its safety and efficacy in the developed world setting 

under intensive care conditions (10). In addition some infants reach tertiary care centres 

too late - there is a relatively short therapeutic time window of hypothermia of up to ~6 

hours (11). Furthermore, the number of infants who respond to the treatment is still 

limited, with the number of patients needed to treat to improve outcome remaining 

around 9 for the reduction of death or severe neurodevelopmental impairments at 18 

months of age (12). Many gaps remain in our knowledge of the best treatment for 
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individual babies with neonatal encephalopathy. Despite a consistent presentation, 

neonatal encephalopathy may have diverse aetiologies. The infant’s maturity, 

inflammatory, nutrition, development of seizures, hormonal status and combination of 

these factors may influence the response to an acute hypoxic-ischaemic insult. Further 

work is needed to determine the optimal application of hypothermia for different infants.  

Establishment of early diagnostic biomarkers, such as magnetic resonance imaging 

(MRI) and magnetic resonance spectroscopy (MRS), may facilitate tailored 

neuroprotective treatments. 

 
Figure 1.1-1: Neonatal encephalopathy and related outcomes 

 
In a cohort study which enrolled 57,259 births, 150 cases of neonatal encephalopathy (NE) were 
identified, with the incidence of 2·62 per 1000 births (95% CI: 2·20–3·04). Sixteen infants with NE 
subsequently had definite or probable cerebral palsy, a rate of one in 3572 births. From “The 
relationships between neonatal encephalopathy and cerebral palsy: a cohort study.” by Evans K, 
Rigby AS, Hamilton P, Titchiner N, Hall DM. J Obstet Gynaecol. 2001 Mar;21(2):114-20. 
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1.2 Clinical features and diagnosis of neonatal encephalopathy 
 
1.2.1 Algorithm of diagnosis of neonatal encephalopathy 
Impaired cerebral functions characterised by clinical findings, such as abnormal motion, 

muscle tone, reflexes, and seizures are key features that constitute the diagnosis of 

neonatal encephalopathy (2). However, early recognition of neurological manifestations 

indicative of neonatal encephalopathy requires special expertise, because early clinical 

signs, especially of mild to moderate neonatal encephalopathy, are subjective, affected 

by sleep sates, and difficult to be distinguished from normal conditions. In addition, the 

primary screening of neonatal encephalopathy is generally performed by midwives and 

physicians with limited expertise in neonatal neurology, resulting in the requirement for 

reliable, objective markers for the global stress. Hence, recent large scale clinical trials 

which enrolled infants with neonatal encephalopathy employed a two- or three-step 

diagnostic algorithm (Table 1.2-1) (7-9).  

 

Table 1.2-1: Outline of diagnostic algorithm for neonatal encephalopathy 
used in clinical trials of therapeutic hypothermia 

 
Three major randomised controlled trials of selective head cooling (CoolCap Trial) and whole body 
cooling (NICHD Trial and TOBY Trial) used similar entry criteria to identify infants with moderate to 
severe neonatal encephalopathy. Terms and abbreviations: aEEG, amplitude-integrated 
electroencepharogram. Apgar score, a 10-point scale assigned to assesses the early transition of 
newborn infants. BD, base deficit. Sarnat score, a 3-level clinical grading system to assess the 
severity and development of neonatal encephalopathy from mild (I) to severe (III). 

 

The first stage of diagnosis involves objective clinical evidence of global 

hypoxia-ischaemia, as represented by abnormal cord blood gas analysis and Apgar 
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scores, which also assure that hypoxic-ischaemic stress occurred shortly before or 

around the timing of delivery. To confirm the influence of global hypoxia-ischaemia to 

the cerebral function, the next step of the diagnosis assesses the presence and lack of 

primitive reflexes and pathological neurological findings (13). Electrophysiological 

findings may further confirm the impaired cortical activity in a more objective method. 

Because neonatal encephalopathy is an evolving syndrome commencing at 

resuscitation, physiological and neurological assessments need to be repeated to 

monitor the process and to allow interventions appropriate to the severity of 

encephalopathy and the systemic condition. 

 

1.2.2 Evidence of systemic hypoxia-ischaemia 
Because the systemic condition of asphyxiated infants alters dynamically with time 

before and after the commencement of resuscitative interventions, physiological 

information obtained at or shortly after birth may suggest inconsistent views on the 

severity of global asphyxia between each other. Hence it is important to obtain 

comprehensive information about the patient including clinical findings using alternative 

diagnostic scales and detailed clinical histories. To improve the accuracy and reliability 

of the initial screening scale, diagnostic tools at this stage should be simple, objective 

and reproducible, while obtained scores or information are still associated with the 

natural outcome of the infant. 

Of several biomarkers of intrapartum hypoxia-ischaemia, evidence of severe acidosis 

on the cord blood sample is most frequently used as a handy and objective surrogate 

for the foetal condition (Table 1.2-2) (14). The presence of lactic acidosis with increased 

base deficits is indicative of prolonged anaerobic metabolism. Foetal acidosis defined 

by umbilical cord blood pH of <7.00 and a base deficit of ≥12 mmol/L is known to be 

associated with an increased risk of cerebral palsy (15). A preliminary meta-analysis 

based on nine clinical studies suggested the association between foetal acidosis, 

neonatal death and cerebral palsy (16). Previous observational studies, however, 

provided inconsistent views in the detailed association between cord blood pH and 

outcomes, in part because of various thresholds of abnormal blood gas and end points 

for the outcome of the infant (17, 18). A recent meta-analysis based on the data from 

more than fifty studies confirmed that low arterial cord pH was a strong and consistent 

predictor of the outcome for asphyxiated infants even after adjustments for the study 

design, sample size, cut off level and the clinical endpoint (19), justifying the use of cord 
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blood gas analysis to screen infants at increased risks of mortality and permanent 

neurological impairments.  

 

Table 1.2-2: Predictive value of arterial cord blood gas for cerebral palsy 

A meta-analysis confirmed that low arterial cord pH was associated with the incidence of cerebral 
palsy. From “Strength of association between umbilical cord pH and perinatal and long term 
outcomes: systematic review and meta-analysis.” by Malin GL, Morris RK, Khan KS. BMJ. 2010 May 
13;340:c1471. 

 

The Apgar score is another universal scale assigned for almost all newborn infants born 

in developed countries. The score can be assigned using readily available clinical 

observations without requiring for burdensome data collection (20). Although the Apgar 

score is assigned subjectively for components other than the heart rate, the inter-rater 

agreement of the scores is generally high. The Apgar score can be assessed by nurses, 

midwives and trainee doctors without requiring for special skills and intensive training 

sessions. Negative relationships have been confirmed between the 1 and 5 minutes 

Apgar scores and neonatal mortality in large cohorts of newborn infants (21, 22). While 

the predictive value of the 5 minute Apgar score has been accepted as a simple, reliable 

predictor of neonatal mortality for singleton premature and term newborn infants (15), 

the Apgar score at 10 minutes is likely to provide even more useful prognostic 

information following perinatal hypoxia-ischaemia (20).  

 

1.2.3 Clinical findings of encephalopathy 
The type and severity of neonatal encephalopathy need to be determined by 

comprehensive neurological assessments, which help predict likely neurological 

outcomes and appropriate therapeutic options. Since the clinical features of neonatal 

encephalopathy evolve over a period of days, neurological examinations have to be 



 24 

performed repeatedly. Of scales used for the classification of neonatal encephalopathy, 

the grading developed by Sarnat and Sarnat is most universally used in the neonatal 

intensive care (Table 1.2-3) (13); this grading system assigns one of three categories of 

grade I (mild), II (moderate) and III (severe) encephalopathy to the affected infant based 

on subjective clinical observations. The maximum benefit of this system is yielded when 

it is used serially to record the temporal alteration of neurological findings. Infants who 

were never diagnosed as severe encephalopathy and who were not assigned into 

moderate encephalopathy for more than four days were suggested to have normal 

medium-term outcomes, whereas persistent moderate encephalopathy for longer than 

seven days was suggestive of mortality or neurological impairments. However, in the 

clinical practice, this grading system is frequently used to assess the severity of and to 

estimate the outcome of encephalopathy shortly after birth, occasionally before making 

clinical decisions whether invasive treatments are required to improve the 

neurodevelopmental outcome of affected infants. While this grading system provides 

reliable estimation of the outcome for grade I and grade III encephalopathy, which are 

associated with favourable and poor outcomes respectively, the outcome associated 

with the grade II encephalopathy is various, ranging between intact survival to death or 

severe neurodevelopmental impairments. In addition, the assignment of this grading 

system is time consuming, and the final decision as to whether an infant falls into the 

moderate or severe category is at times difficult, requiring substantial expertise in 

neonatal neurology (23). 

Several other groups also proposed scoring systems for neonatal encephalopathy to 

improve the quality and utility of early diagnosis and outcome prediction (23-26). Of 

these, a scoring system developed by Thompson and colleagues has an outstanding 

advantage in its simplified numeric assignment system (Table 1.2-4). 
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Table 1.2-3: Encephalopathy grading system by Sarnat and Sarnat 

 
An encephalopathy grading system proposed by Sarnat and Sarnat in 1976. A 3-scale 
encephalopathy grade is assigned for the affected infant using a checklist, which comprises 
physiological and neurological signs. Although this grading is currently used to evaluate the 
severity of neonatal encephalopathy, the original concept was to monitor the temporal development 
of encephalopathy from grade I to II and III. From “Neonatal encephalopathy following fetal distress. 
A clinical and electroencephalographic study.” by Sarnat HB, Sarnat MS. Arch Neurol. 1976 
Oct;33(10):696-705. 
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Table 1.2-4: Encephalopathy scoring system by Thompson and colleagues 

A simple scoring system for neonatal encephalopathy developed by Thompson and colleagues. 
One may simply check the item which most precisely reflects the patient’s state, and add the scores 
to quantify the severity of encephalopathy. From “The value of a scoring system for hypoxic 
ischaemic encephalopathy in predicting neurodevelopmental outcome.” by Thompson CM, 
Puterman AS, Linley LL, Hann FM, van der Elst CW, Molteno CD, Malan AF. Acta Paediatr. 1997 
Jul;86(7):757-61. 
 

This system, based on that of Sarnat and Sarnat, employs only nine categories of 

clinical signs, where scores of 0 (normal) to 3 (highly abnormal) are given for each item 

to give total scores between 0 and 22. Total scores of 0 to 9, 10 to 14, and 15 to 22 

correspond to mild, moderate and severe neonatal encephalopathy diagnosed using 

Sarnat’s grading system (23). In addition to its agreement to the previous system, this 

scoring system showed excellent predictive values of neurodevelopmental outcomes for 

asphyxiated newborn infants at 1 year old. For example, the peak score of 15 or higher 

was highly suggestive of abnormal outcomes, with the positive predictive value of 92%, 

negative predictive value of 82%, sensitivity of 71%, and the specificity of 96%.  

 

1.2.4 Diagnostic tools: electroencephalogram 
Studies which used standard electroencephalogram and amplitude-integrated 

electroencephalogram (aEEG) demonstrated that perinatal hypoxia-ischaemia 

attenuates electrocortical activities as a dose dependent manner, reflecting the depth of 

the stress (13, 27). However, electrographic findings are generally normal or of 

minimum suppression for infants with mild encephalopathy. For infants with moderate 

encephalopathy, high frequency domains such as alpha and a part of theta activities 

disappear, and low frequency domains such as delta and a part of theta activities are 

attenuated in their voltage. Such a mildly suppressed electrographic pattern is often 

followed by a burst and suppression pattern, which is highly suppressed and 

occasionally deformed compared to the normal alternating trace of the newborn infant. 
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Electrocortical activities are further attenuated for severe encephalopathy. As well as 

the suppression in voltage, the interval between bursts is significantly prolonged, which 

evolves into a flat trace. The background activity of standard electroencephalogram in 

asphyxiated newborn infants is known to be associated with neurodevelopmental 

outcomes at 2 years old (28). Moderate to severe suppression with or without 

alternating burst suppression pattern is indicative of abnormal neurodevelopmental 

outcomes, whereas normal traces and immature patterns relative to the gestational age 

of the infant are suggestive of normal development. A more recent study which serially 

obtained standard electroencephalogram following perinatal hypoxia-ischaemia 

demonstrated that electroencephalogram obtained after six hours of birth was more 

indicative of the neurodevelopmental outcome compared to twelve, twenty-four and 

forty-eight hours after birth (29). 

Despite the substantial information derived from standard electroencephalogram in 

asphyxiated newborn infants, only a limited number of hospitals can currently provide 

the examination 24 hours a day. In addition, interpretation of electroencephalogram 

traces requires expertise in neonatal neurology. To improve the utility of electrographic 

assessment of the brain function, aEEG has been proposed by clinicians who care for 

high risk newborn infants as a simple and handy alternative for standard 

electroencephalogram (Fig. 1.2-1) (30). This device was developed and initially applied 

for adult patients who underwent cardiac surgeries to monitor the trend of electrocortical 

activity in the 1960s (31). Waveforms of electroencephalogram obtained using two or 

four recording electrodes are filtered and compressed to reconstruct aEEG output. 

Because of its time compressed trend view, one can evaluate a long term recording 

instantly by simple pattern recognition with the minimum instruction and training. 

Despite its simplicity, aEEG obtained within 6 hours of birth from asphyxiated term 

newborn infants has been recognised as a reliable predictor for the outcome of affected 

infants (32, 33). More recent studies suggested that the timing in recovery for the 

amplitude and the sleep wake cycle of the aEEG trace is useful to predict the outcome 

of infants (34).  
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Figure 1.2-1:  Classification of aEEG traces after perinatal      
  hypoxia-ischaemia by Hellstrom-Westas and colleagues 

 
Four types of background patterns recorded from full term asphyxiated new born infants during the 
first six hours of life are shown. (A) Continuous normal voltage with sleep-wake cycles. (B) 
Continuous normal voltage with absent sleep-wake cycles following phenobarbital administration. 
(C) Continuous extremely low voltage pattern with suspected seizure pattern. (D) 
Suppression-burst pattern. (E) Flat tracing, mainly isoelectric. From “Predictive value of early 
continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full 
term infants.” by Hellström-Westas L, Rosén I, Svenningsen NW. Arch Dis Child Fetal Neonatal Ed. 
1995 Jan;72(1):F34-8. 

 

Although aEEG obtained within 6 hours of life has been recognised as the best single 

outcome predictor in asphyxiated newborn infants who were cared for under 

normothermia (35), the predictive value is known to be altered or even lost by 

therapeutic interventions such as therapeutic hypothermia (36), suggesting that further 

improvement of the diagnostic algorithm is required potentially by combining with 

additional acute phase biomarkers.  
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1.2.5 Diagnostic tools: Conventional MRI 
Conventional MRI provides detailed information about types and depths of 

hypoxic-ischaemic injury with spatial resolution (Fig. 1.2-2) (37). Following severe 

perinatal hypoxia-ischaemia, abnormal MRI signal intensities in the deep grey matter 

and the posterior limb of the internal capsule are some of the most common findings, 

which predict abnormal neurodevelopmental outcomes in term infants with neonatal 

encephalopathy (38).  

 

Figure 1.2-2: Mild MRI lesions in the deep grey matter and internal capsule 

 
(a) T1-weighted imaging of an asphyxiated newborn infant showing abnormal high signal intensities 
(arrows) within the lentiform nuclei with intact posterior limb of the internal capsule. Follow up 
T1-weighted (b) and T2-weighted (c) imaging at 12 months shows normal appearances. From 
“Magnetic resonance imaging in neonatal encephalopathy.” by Rutherford M, Ward P, Allsop J, 
Malamatentiou C, Counsell S. Early Hum Dev. 2005 Jan;81(1):13-25. 

 

Deep grey matter lesions are often accompanied by injury in the cerebral cortex and 

subcortical white matter around the central sulcus, which become most obvious after 

the first week from injury (37, 38); extensive white matter abnormalities are observed in 

approximately 50% of infants with deep grey matter lesions. Although MRI is useful to 

predict the motor and cognitive outcomes during the early infancy, these abnormal signs 

are not obvious within the first week of life (37, 39), suggesting the requirement to 

incorporate either advanced, quantitative magnetic resonance techniques (e.g. maps of 

transverse relaxation time (T2) and apparent diffusion coefficient (ADC)), or alternative 

biomarkers such as electroencephalogram (40) for early and precise diagnosis of 

neonatal encephalopathy. 
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1.3 Mechanisms of cerebral injury in the newborn infant 
 
1.3.1 Primary energy failure and acute phase injury cascade 
Cerebral injury secondary to hypoxia-ischaemia is an evolving process, which takes 

place over days and weeks. Severe hypoxic–ischaemic events disable mitochondrial 

synthesis of adenosine triphosphate, resulting in the loss of energy-dependent functions 

to maintain cellular homeostasis (41). When severe shortage in energy substrates is 

prolonged, neuronal cells become unable to maintain the cellular membrane potential, 

resulting in neuronal depolarisation and subsequent release of excitatory 

neurotransmitters such as glutamates (Fig. 1.3-1). Persistent excitation of the cerebral 

tissue causes unregulated influx of calcium into the cytoplasmic space, further leading 

to the activation of nitric oxide synthase and the production of reactive oxygen species. 

 

Figure 1.3-1: Primary energy depletion and acute phase injury cascade 

 
Cartoon depicting the acute phase injury cascade following acute hypoxia-ischaemia and 
subsequent primary energy depletion. Prolonged energy depletion results in the accumulation of 
excitatory neurotransmitters, which triggers the influx and deposition of calcium to cytoplasmic 
organellae, generation of oxygen free radicals, mitochondrial dysfunction and prolonged cellular 
death induced by the activation of pro-apoptotic proteins. Such a complex and persistent 
evolutional process of cerebral injury causes acute cellular loss mainly via necrosis and subacute 
to chronic cellular loss via apoptosis and autophagy. 
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1.3.2 Latent phase and secondary energy failure 
Although severe hypoxia-ischaemia exhausts cerebral tissue energy substrates, 

efficient resuscitation may temporary reverse the tissue energy metabolism to normal 

levels (42). Indeed, in asphyxiated newborn infants, phosphorus (31P) magnetic 

resonance spectroscopy (MRS) revealed “at a glance normal” cerebral metabolism 

shortly after delivery (Fig. 1.3-2) (43, 44). This transient period with near-normal energy 

metabolism, or the “latent-phase”, is followed by a secondary phase of impaired 

cerebral energy generation ensued 8 to 24 hours after hypoxia-ischaemia despite 

adequate oxygenation and circulation (42). Secondary energy failure is characterised by 

progressive declines in phosphocreatine (PCr) and nucleotide triphosphates (NTP; 

mainly adenosine triphosphate (ATP)) and increased inorganic phosphate (Pi) (43).  

 
Figure 1.3-2:  Evolution of energy failure after the latent phase in a 

severely asphyxiated newborn infant 

 
Brain tissue energetic metabolites were observed using 31P MRS from a baby born at 37 weeks 
gestation who had sustained severe birth asphyxia. The peaks (1-7) are attributable to 
phosphomonoesters, inorganic phosphate, phosphodiesters, phosphocreatine, and three 
phosphorus nuclei of adenosine triphosphate, respectively. In contrast to the baseline spectrum at 
8 hours, where relative concentrations of phosphocreatine and adenosine triphosphate were still 
maintained at subnormal levels, high energy phosphate peaks fell with time while inorganic 
phosphate increased. The infant died at 60 hours after birth. From “Prognosis of newborn infants 
with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy.” 
Azzopardi D, Wyatt JS, Cady EB, Delpy DT, Baudin J, Stewart AL, Hope PL, Hamilton PA, Reynolds 
EO. Pediatr Res. 1989 May;25(5):445-51. 
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The severity of secondary energy failure and subsequent neurodevelopmental 

impairments are closely correlated been each other (43, 45, 46). The importance of the 

latent phase is increasingly recognised (47), as this period is likely to constitute a 

"therapeutic window" for neuroprotective treatments such as therapeutic hypothermia 

(7-9, 48, 49). Despite the “normal” high energy phosphate concentrations within the 

brain tissue during the latent phase, evidence of cellular injury at this time has been 

reported, which includes raised lactate dehydrogenase and propidium iodide 

fluorescence (50); abnormal white-matter nerve fibres and increased white-matter 

apoptosis (51); increased β-amyloid precursor protein (52); and calcium accumulation, 

mitochondrial swelling with nuclear chromatin condensation accompanying maximal 

mitochondrial enlargement, and apoptosis and necrosis features (Fig. 1.3-3) (53). It is 

hence important to understand the subtle change in cerebral high-energy phosphates 

during the latent phase in developing early diagnostic biomarkers. However, few studies 

have thus far scrutinised temporal changes in brain energy metabolites in detail.  

 
Figure 1.3-3: Evolution of secondary brain injury 

 
Energy depletion culminating in Bax-dependent mitochondrial permeabilisation represents an 
irreversible commitment to cell death in neonatal brain injury. Adenosine monophosphate-activated 
protein kinase (AMPK) is activated in response to stresses which change either intracellular 
calcium levels or deplete intracellular adenosine triphosphate concentrations. Although AMPK 
works to return energy levels to baseline, prolonged activation results in upregulation of the 
proapoptotic protein, Bim. From “Molecular mechanisms of neonatal brain injury. Thornton C, 
Rousset CI, Kichev A, Miyakuni Y, Vontell R, Baburamani AA, Fleiss B, Gressens P, Hagberg H. 
Neurol Res Int. 2012;2012:506320. 
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1.4 Piglet model of neonatal encephalopathy 
 
Over the past 20 years, our group has used a newborn piglet model of transient 

hypoxia-ischaemia induced by reversible occlusion of the common carotid arteries by 

remotely controlled balloon vascular occluders and simultaneous reduction in the 

inspired oxygen fraction to 0.12 (42). The use of large animal models benefits from 

intensive care settings, which mimics the clinical situation in detail, using mechanical 

ventilation, continuous fluid and drug infusion, and continuous physiological monitoring 

throughout the experiment. Piglets are cared for within the bore of the magnetic 

resonance spectrometer, before, during and after hypoxia-ischaemia, for up to 60 hours 

at a time to serially monitor cerebral energy metabolism. Thus, quantitative measures of 

acute hypoxic-ischaemic insult, latent phase and secondary energy failure are obtained 

non-invasively (Fig. 1.4-1). In addition to the similarity in the experimental setting to the 

clinical practice, there is another outstanding benefit in using this model, because 

piglets have much larger brain compared to rodents, which allows the assessment of 

the regional impact of hypoxia-ischaemia and therapeutic interventions (49). 

 

Figure 1.4-1: Evolution of secondary energy failure in the piglet model of 
neonatal encephalopathy 

 
Temporal changes in cerebral nucleotide triphosphate (mainly adenosine triphosphate) 
concentration relative to exchangeable high-energy phosphate pool is shown before, during and 
after hypoxia-ischaemia. Resuscitation transiently reversed cerebral high energy phosphate to the 
normal level (the latent phase), which is followed by secondary energy failure after 8-24 h of 
resuscitation. 
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1.5  Quantitative magnetic resonance biomarkers of cerebral 
injury 

 
1.5.1 31P MRS 
As described in the previous section, 31P MRS has been utilised as a unique biomarker, 

with which cerebral tissue energy metabolites are directly observed without invasive 

procedures (42-44). Using 31P MRS, temporal changes in high energy phosphates, 

including the transient decline during acute hypoxia-ischaemia, recovery following the 

commencement of resuscitation, latent phase, and the delayed decline due to the 

progress of secondary energy failure, can be monitored continuously (42, 47). 

Metabolites observed using 31P MRS include high energy phosphates such as 

nucleotide triphosphate (NTP), which is mainly adenosine triphosphate (ATP), and 

phosphocreatine (PCr), which serves as a stable high energy phosphate pool, whereas 

inorganic phosphate (Pi), which is virtually the ashes of high energy phosphates, can 

also be monitored simultaneously (Fig. 1.5-1) (54).  

 

Figure 1.5-1: High resolution 31P MRS spectra from the brain of the piglet 
model 

 
Representative spectra from a piglet which developed severe secondary energy failure. (a) before 
hypoxic-ischaemic insult; (b) 1.6 hours after hypoxia-ischaemia; and (c) during secondary energy 
failure 23.4 hours after the commencement of resuscitation. Although no apparent decline is 
observed for PCr and NTP, Pi is slightly increased 1.6 hours after hypoxia-ischaemia (b) versus 
baseline (a). In (c) Pi is further increased, with overt reduction in PCr and NTP, which is 
characteristic of secondary energy failure. From “Phosphorus magnetic resonance spectroscopy 2 
h after perinatal cerebral hypoxia-ischemia prognosticates outcome in the newborn piglet.” by Cady 
EB, Iwata O, Bainbridge A, Wyatt JS, Robertson NJ. J Neurochem. 2008 Nov;107(4):1027-35. 
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Although the MRS signal obtained along different frequencies corresponds to the 

concentration of each metabolite, it is technically difficult to give the absolute 

concentration of these molecules precisely. Hence, currently, ratios of concentrations 

between metabolites have widely been used. PCr/Pi is considered to give sensitive 

stress marker, because PCr serves to maintain the concentration of ATP, thus starting 

declining before the overt change in ATP; in addition, because Pi increases with the 

acceleration of ATP consumption, PCr/Pi is supposed to change dynamically even 

when the shortage in energy substrates is still tolerated by the cerebral tissue (Fig. 

1.5-2) (42). However, PCr/Pi is theoretically influenced by factors including the flux 

within the mitochondrial electron transport chain, re-phosphorylation of adenosine 

diphosphate via creatine kinase, and anaerobic glycolysis under unimpaired substrate 

delivery (11). In our more recent studies, we employed another approach to assess 

energy metabolites; each metabolite is quantified relative to the total mobile 

exchangeable phosphate pool (EPP), which is the sum of Pi, PCr and 3 NTPs (54). This 

method may be inferior in its sensitivity to detect subtle temporal changes in high energy 

phosphates, however, there is an advantage that the temporal change in each 

metabolite can be assessed differently by monitoring Pi/EPP, PCr/EPP and NTP/EPP.  

 

Figure 1.5-2: Temporal changes in PCr/Pi and NTP/EPP in the piglet model 
of asphyxial encephalopathy 

 
Secondary energy failure is identified much earlier in the trend of PCr/Pi compared to NTP/EPP 
because the decline in PCr and the increase in Pi occurs even while ATP levels are maintained 
within the cerebral tissue. From “Temporal and anatomical variations of brain water apparent 
diffusion coefficient in perinatal cerebral hypoxic-ischemic injury: relationships to cerebral energy 
metabolism.” by Thornton JS, Ordidge RJ, Penrice J, Cady EB, Amess PN, Punwani S, Clemence M, 
Wyatt JS. Magn Reson Med. 1998 Jun;39(6):920-7. 
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Early clinical studies which used 31P MRS in infants with severe neonatal 

encephalopathy revealed that the MRS spectrum shortly after birth demonstrates 

‘normal’ cerebral energy metabolism (44). Azzopardi and colleagues demonstrated that, 

after such a latent phase, PCr and NTP decrease and Pi increases despite adequate 

oxygenation and circulation (43). Low levels of high energy phosphates, decreased 

PCr/Pi and increased Pi in the first days of life have been associated with 

neurodevelopmental impairment and increased mortality (43, 45, 46). 

Despite the advantage of31P MRS in allowing direct monitoring of brain tissue energy 

metabolism, the use of 31P MRS is not popular in clinical practice, because of its 

requirement for expertise and special hardware. In addition, the signal of 31P MRS is 

usually obtained from the entire brain without specifying the region of interest, mainly 

because of the weak signal from 31P molecule compared to 1-H (Fig. 1.5-3) (1H). 

 

Figure 1.5-3: Cerebral tissue covered by the surface coil in the acquisition 
of 31P MRS spectra from the piglet brain 

 
Schematic drawing showing the coronal section of the piglet brain, together with the surface coil 
position and the approximate extent of the surface coil sensitive volume. From “Temporal and 
anatomical variations of brain water apparent diffusion coefficient in perinatal cerebral 
hypoxic-ischemic injury: relationships to cerebral energy metabolism.” by Thornton JS, Ordidge RJ, 
Penrice J, Cady EB, Amess PN, Punwani S, Clemence M, Wyatt JS. Magn Reson Med. 1998 
Jun;39(6):920-7. 
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1.5.2 1H MRS 
Compared to31P MRS, 1H MRS can be performed using most newly built MRI scanners, 

and has various advantages including the short acquisition time, spatial resolution, and 

the potential for absolute quantification of the molecules (55). In addition, because 1H is 

the most common structural element within the human body, a wide range of 

metabolites, such as lactate, N-acetyl aspartate (NAA), choline, creatine, and alanine, 

can be identified at their corresponding unique chemical shifts (Fig. 1.5-4). Although the 

current technique used for the clinical and experimental studies does not allow the 

isolation of peaks for energy metabolites, such as ATP, PCr and Pi, the level of 

anaerobic metabolism within the cerebral tissue can be extrapolated using the lactate 

peak. Following perinatal hypoxia-ischaemia, the concentration of cerebral tissue 

lactate increases according to the depth of acute insult (56, 57). This increase in lactate 

is attributable to impaired oxidative metabolism due to mitochondrial damage, however, 

other mechanisms, such as the alteration of the cellular component, may also be 

involved, because, following severe perinatal hypoxia-ischaemia, the elevation of 

lactate sometimes persists for weeks (58). N-acetyl aspartate is another useful marker 

for intact neurons and axons; a reduction in NAA following perinatal hypoxia-ischaemia 

is associated with reduced neuronal and axonal viability (59-61). A recent meta-analysis 

concluded that lactate/NAA peak-area ratio obtained from the deep grey matter during 

the neonatal period provides the best predictive value of the outcome in infants with 

neonatal encephalopathy with higher sensitivity (82%, 95% CI: 74%–89%) and 

specificity (95%, 95% CI: 88%–99%) compared to conventional MRI, diffusion weighted 

imaging (DWI), and other metabolite ratios of 1H MRS (58).  
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Figure 1.5-4: 1H MRS spectra, lactate/NAA and outcome of asphyxiated 
infants 

 
Left panel: 1H MRS spectra obtained from thalamic region of: (a) a control infant aged 84 hours; (b) 
an infant 19 hours after moderate hypoxia-ischaemia; (c) an infant 17 hours after severe 
hypoxia-ischaemia. Resonance identifications: (1) glutamate/glutamine; (2) myoinositol/glycine; (3) 
choline; (4) creatine; (5) glutamate/glutamine; (6) NAA; (7) lactate. Right panel: Maximum 
lactate/NAA measured at >12 hours (n=28) and neurodevelopmental outcome at 1 year of age (● 
Normal outcome; ▼ impairment with no disability; ■ impairment with disability; ▲dead). From 
“Early brain proton magnetic resonance spectroscopy and neonatal neurology related to 
neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain 
injury.” by Amess PN, Penrice J, Wylezinska M, Lorek A, Townsend J, Wyatt JS, Amiel-Tison C, 
Cady EB, Stewart A. Dev Med Child Neurol. 1999 Jul;41(7):436-45. 

 

1.5.3 Diffusion weighted imaging 
Diffusion weighted imaging (DWI) is a MRI technique, which is sensitive to acute phase 

brain injury induced by hypoxia-ischaemia (62). DWI reflects changes in water diffusion 

due to redistribution of water between cytoplasmic and extra-cellular spaces, cytotoxic 

oedema and other derangements in cellular homeostasis. After perinatal 

hypoxia-ischaemia, abnormal MRI findings on conventional sequences remain invisible 

within several days of the acute event, when important clinical decisions have to be 
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made to maximise the benefit from neuroprotective interventions (11). In contrast to the 

limited utility of conventional MRI during the acute period, DWI provides more sensitive 

marker in assessing tissue integrity and damage from shortly after hypoxia-ischaemia 

(Fig. 1.5-5). While the assessment of DWI is qualitative, maps of apparent diffusion 

coefficient (ADC) enable objective assessment and comparison of acute phase brain 

injury even when the injury pattern is global and little amount of cerebral tissue is spared 

(63). Following perinatal hypoxia-ischaemia, ADC values are significantly reduced in the 

first week of birth in the white matter and/or deep grey matter. However, ADC values are 

reversed to the normal level after approximately a week. After the second week of life, 

ADC levels of affected regions are either normal or increased (64).  

A study which prospectively assessed DWI from infants with neonatal encephalopathy 

found that infants with poor outcome had lower ADC values at early imaging in the 

Rolandic cortex, hippocampus, deep grey matter and PLIC. However the authors 

suggested that the regional ADC values are of limited predictive value for the outcome, 

while the combined assessment of conventional MRI and the spatial pattern of DWI 

changes were better predictors of neurological outcomes (65). In agreement with this 

finding, a meta-analysis which compared the predictive values of magnetic resonance 

biomarkers during the neonatal period revealed that predictive values of ADC for the 

neurodevelopmental outcome are generally poor, and are inferior to 1H MRS (58). 

Because the timing of MRI scans is inconsistent between subjects, it is difficult to define 

at which phase of the injury evolution (i.e. the latent period, sub-acute phase decline in 

ADC or pseudo-normalisation) the infant was scanned. However, ADC changes 

following transient hypoxia-ischaemia in a piglet model has been demonstrated to have 

tight linear correlations with cerebral high energy phosphate levels, such as PCr and 

ATP (Fig. 1.5-6) (62). This suggests that ADC can be used as the acute phase maps of 

tissue energy metabolism although the difference in background variables between 

clinical and experimental settings, such as the maturational status of the brain, the type, 

timing and depth of hypoxia-ischaemia and the fixed/unfixed timing for studies, need to 

be accounted for. With further experimental validations of ADC with histo-pathological 

assessments at different evolutional stage of neonatal encephalopathy, this technique 

can be used to evaluate the progress of injury and efficacy of treatments, as well as to 

predict the precise outcome of the infant. 
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Figure 1.5-5: Conventional MRI and DWI after perinatal hypoxia-ischaemia 

 
A-F: MRI obtained on the 3rd day of life from an infant with a poor motor outcome. A-C, T1-weighted 
images with absence of normal signal intensity in the internal capsule. D-F, DWI with hyperintense 
signal in the Rolandic cortex, basal ganglia, hippocampus, and cerebral peduncle. G-I: MRI at day 9 
in an infant with a good motor outcome. G, T1-weighted image with an abnormal high signal 
intensity in the globus pallidus and thalamus. H, T2-weighted image with an irregular, abnormal 
high signal intensity in the thalamus and globus pallidus. I, DWI without abnormalities. From 
“Diffusion-weighted and conventional MR imaging in neonatal hypoxic ischemia: two-year 
follow-up study.” by Vermeulen RJ, van Schie PE, Hendrikx L, Barkhof F, van Weissenbruch M, Knol 
DL, Pouwels PJ. Radiology. 2008 Nov;249(2):631-9. 
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Figure 1.5-6: Correlation between PCr/Pi and ADC  

 
Combined scatter plot of ADC against PCr/Piin a piglet model of perinatal asphyxial encephalopathy. 
From “Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal 
cerebral hypoxic-ischemic injury: relationships to cerebral energy metabolism.” by Thornton JS, 
Ordidge RJ, Penrice J, Cady EB, Amess PN, Punwani S, Clemence M, Wyatt JS. Magn Reson Med. 
1998 Jun;39(6):920-7. 

 

Recently, additional use of fractional anisotropy (FA), which is derived from diffusion 

tensor imaging (DTI), is expected to improve the detection of early microstructural 

changes after hypoxia-ischaemia. FA has been proposed to quantify the overall 

directionality of water diffusion. Cerebral regions with cylindrical microstructure 

(myelinated white matter) have high FA values close to 1 because of anisotropic 

diffusion, whereas regions with highly isotropic diffusion (e.g. cerebro-spinal fluid and 

cystic lesions) have low FA values close to 0 (38). In the cerebral tissue, diffusion is 

greatest parallel to the axonal tract, whereas diffusion is restricted in the perpendicular 

direction. It has been demonstrated that FA values in the white matter decrease 

following moderate to severe perinatal hypoxia-ischaemia, and, unlike ADC, abnormal 

low FA values can be observed persistently after the second week of life, suggesting the 

benefit of combining ADC and FA values (66).  
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1.5.4 Maps of longitudinal and transverse relaxation times 
Clinical diagnosis of cerebral injury using conventional MRI relies on altered tissue 

signal intensities, which are caused by the change in longitudinal (T1) or transverse (T2) 

relaxation times. Although mapping of the longitudinal relaxation time has not widely 

been used in the clinical diagnosis because of its requirement for expertise and 

relatively long acquisition time (67, 68), the opportunity to use T2 maps has 

exponentially increased (Fig. 1.5-7) (69). Most modern MRI scanners can now develop 

T2 maps with the minimum additional scanning time. T2 relaxation time is known to 

increase following perinatal hypoxia-ischaemia (70). 

 

Figure 1.5-7: Transverse relaxation time in the thalamus and basal ganglia 

 
T2-relaxation time of RoIs in the thalamus (left) and basal ganglia (right) by neurodevelopmental 
outcome at age 1 year. a: P <0.05, analysis of variance and Dunnett test versus normal-outcome 
group. Closed circle, normal; open square, moderate; open triangle, severe. From “Comparative 
prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and 
proton magnetic resonance spectroscopy in neonatal encephalopathy.” By Shanmugalingam S, 
Thornton JS, Iwata O, Bainbridge A, O'Brien FE, Priest AN, Ordidge RJ, Cady EB, Wyatt JS, 
Robertson NJ. Pediatrics. 2006 Oct;118(4):1467-77.  

 

Quantitative maps of relaxation times are expected to improve the diagnostic value on 

MRI by eliminating subjective biases, which were inevitable for the interpretation of 

conventional MRI (69). Compared to ADC, changes in T2 relaxation time are relatively 

less dynamic. However, extrapolated from the temporal change in the signal intensity on 

T2-weighted imaging, temporal changes in T2 relaxation time after perinatal hypoxia 
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ischaemia is unlikely to involve complex biphasic patterns, potentially providing a simple 

interpretation of the finding. Although there currently are only a limited number of 

studies which used T2 maps after perinatal hypoxia-ischaemia, this technique may also 

be used in future in combination with ADC and other imaging biomarkers. 

 

1.5.5 Monitoring of secondary energy failure and therapeutic time window 
Following moderate to severe hypoxia-ischaemia, cerebral metabolism recovers on 

resuscitation but only to develop secondary energy failure hours after the acute event 

(42, 43). Adverse biological reactions responsible for the evolution of secondary energy 

failure include accumulation of excitatory neurotransmitters, intracellular calcium 

accumulation, generation of oxygen free radicals, and mitochondrial dysfunction (71-75). 

A range of magnetic resonance biomarkers obtained using 31P MRS and DWI have 

demonstrated biphasic patterns of metabolic derangement following perinatal 

hypoxia-ischaemia (43, 45, 62). Severity of secondary energy failure represented by low 

cerebral PCr/Pi, NTP/EPP, increased brain lactate and an alkaline intracellular pH in the 

first few days after birth were associated with neurodevelopmental impairment and 

increased mortality (43, 45, 46, 76). Cerebral injury after perinatal hypoxia-ischaemia is 

an evolving process with necrosis and apoptosis, which are predominant mode of 

cellular death during acute phase and thereafter, respectively (73). Neuronal injury at 

the cellular level can be identified with closer inspection even during the latent phase; 

increase in lactate dehydrogenase and propidium iodide fluorescence, abnormal nerve 

fibres and increased apoptotic cells in white matter, increased β-amyloid precursor 

protein, calcium accumulation, mitochondrial swelling with nuclear chromatin 

condensation, and apoptotic and necrotic features, can be observed even during the 

period which corresponds to the latent phase (50-53). Understanding of secondary 

energy failure is especially important because, in experimental models, significant long 

term neuroprotection by therapeutic interventions occurs only when the gap between 

the acute event and the start of treatment remains within ~6 hours; no benefit has been 

observed when treatments are initiated after the evolution of secondary energy failure 

and epileptic activity (11, 77). Further investigations in the animal model targeting the 

mechanism of secondary energy failure, especially detailed energy metabolism during 

the latent period, when normal energy metabolism is maintained despite activated injury 

cascades, is required for the future improvement of acute phase diagnosis and 

treatment. 
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Figure 1.5-8: Evolution of secondary energy failure in a rodent model of 
transient hypoxia-ischaemia 

Concentrations of PCr and total creatine (PCr + creatine) (left panel), and ATP and total adenine 
nucleotides (TAN) (right panel) during and after hypoxia-ischaemia in a newborn rat model of 
transient hypoxia-ischaemia. C, control; H-I, hypoxia–ischemia. Concentrations of during and after 
hypoxia–ischaemia in the immature rat. C, control; H-I, hypoxia–ischemia. From “Secondary energy 
failure after cerebral hypoxia-ischemia in the immature rat.” by Vannucci RC, Towfighi J, Vannucci 
SJ. J Cereb Blood Flow Metab. 2004 Oct;24(10):1090-7. 
 

Quantitative measurements of total mobile phosphate and EPP by MRS, and of total 

adenine nucleotides and total creatine by biochemical methods have demonstrated falls 

at similar times to the declines in NTP/EPP and PCr/Pi (45, 78, 79). Using an 

established rodent model, Vannucci and colleagues demonstrated linear relationships 

between histo-pathological tissue injury and high energy phosphate concentrations at 6 

to 18 hours after hypoxia-ischaemia and with much greater significance at 24 to 48 

hours, and concluded that secondary energy failure was the consequence of evolving 

cellular destruction rather than causal of cellular death in surviving tissue (Fig. 1.5-8) 

(79). Although secondary energy failure observed using 31P MRS is likely to be a 

phenomenon directly associated with a delayed, irreversible metabolic crisis, it is 

unclear whether secondary energy failure directly parallels the temporal evolution of cell 

death itself. 

  

1.5.6 Regional variation of energy metabolism following 
hypoxia-ischaemia 

Although the global evolution of secondary energy failure following perinatal 

hypoxia-ischaemia is already complex in its timing and severity, these factors may be 

spatially different between different cerebral regions and even between cellular 
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components, because the response to hypoxia-ischaemia, resuscitation and treatment 

is likely to be dependent on the background characteristics in metabolism, anatomical 

structure, vascularity and neuronal circuitry (Fig. 1.5-9) (80). 

 

Figure 1.5-9: Diagram of normal basal ganglia motor control circuit and 
areas damaged by near-total asphyxia 

 
Arrows indicate synapses with excitatory glutamate neurotransmitter; blunted lines indicate 
inhibitory synapses. GPi, globus pallidus interna; GPe, globus pallidus externa; STN, subthalamic 
nucleus. If these regions are firing rapidly, the effect on globus pallidus interna and globus pallidus 
externa is expected to be inhibitory because of inhibitory input from putamen, resulting in 
increased heterogeneity in spatial injury pattern. From “Possible mechanisms in infants for 
selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies.” by 
Johnston MV and Hoon AH Jr. J Child Neurol. 2000 Sep;15(9):588-91. 

 

In a primate model of neonatal encephalopathy, different durations and severities of 

ischemia were associated with specific regional distribution of brain injury; partial 

asphyxia resulted in white matter injury whereas total asphyxia led to deep grey matter 

injury (81, 82). In the term newborn infant, cerebral injury following perinatal asphyxia 

has been identified as two major patterns of (i) the watershed predominant pattern 

involving the white matter, extending to cortical grey matter when severe, and (ii) the 

deep grey matter predominant pattern involving the deep grey nuclei and perirolandic 

cortex, extending to the total cortex when severe (Fig. 1.5-10) (83-86). Understanding of 

spatial and temporal evolution of cerebral injury would be important to estimate the 

associated outcome, and also to make important therapeutic decisions which bring the 

greatest opportunity of intact survival to the affected infant. 
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Figure 1.5-10: Pattern of brain injury after perinatal hypoxia-ischaemia and 
neurodevelopmental outcome at 30 months of age 

 
Box plot of the 30-month Mental Development Index (A) and neuromotor score (B) by the pattern of 
injury. MDI was lowest in the infants with the basal ganglia/thalamus predominant pattern, with 
intermediate scores in infants with the watershed pattern (p = 0.0007). Neuromotor impairments 
were most severe in the infant with the basal ganglia/thalamus pattern (p = .0001). From “Patterns of 
brain injury in term neonatal encephalopathy.” by Miller SP, Ramaswamy V, Michelson D, Barkovich 
AJ, Holshouser B, Wycliffe N, Glidden DV, Deming D, Partridge JC, Wu YW, Ashwal S, Ferriero DM. J 
Pediatr. 2005 Apr;146(4):453-60. 
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1.6 Treatment of neonatal encephalopathy 
 
1.6.1 Therapeutic hypothermia: mechanism 
A wide range of experimental evidence has been accumulated supporting the effect of 

mild to moderate cerebral hypothermia (32 to 34°C) applied immediately after transient 

hypoxia-ischaemia to reduce brain injury and to improves behavioural outcome (87, 88). 

Hypothermia applied following perinatal hypoxia-ischaemia suppresses numerous 

chemical reactions on the neurotoxic cascade, which includes the reduction in the 

metabolic rate by 4 to 7% per 1°C temperature reduction, attenuation of inflammatory 

reactions, decrease in the glutamate release, attenuation of the activity of 

N-methyl-D-aspartate receptors, reduction in the production of oxygen free radicals and 

nitric oxide, contribution to the reduction in intracranial pressure, and the prolongation of 

the therapeutic time window for other treatments (Fig. 1.6-1) (89-92).  

 

Figure 1.6-1: Systemic hypothermia and therapeutic time window in the 
piglet model of asphyxial encephalopathy 

 
Duration of latent phase measured by (A) NTP/EPP and (B) PCr/Pi in the normothermic (HI-n), 
hypothermic to 35oC (HI-35) and hypothermia to 33oC (HI-33) groups. Duration of the NTP/EPP latent 
phase was significantly longer in the cooled groups. There was no significant difference in the 
PCr/Pi latent-phase duration between the HI groups. a P<0.01; b P<0.05, compared with HI-n. From 
“Delayed whole-body cooling to 33 or 35 degrees C and the development of impaired energy 
generation consequential to transient cerebral hypoxia-ischemia in the newborn piglet.” by O'Brien 
FE, Iwata O, Thornton JS, De Vita E, Sellwood MW, Iwata S, Sakata YS, Charman S, Ordidge R, Cady 
EB, Wyatt JS, Robertson NJ. Pediatrics. 2006 May;117(5):1549-59. 
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Simultaneously with the beneficial effect of hypothermia for neuroprotection, several 

deleterious effects of hypothermia are known, including the cardiac suppression, 

reduction in cerebral blood flow, and increased blood viscosity (11). Thus the overall 

effect of therapeutic hypothermia is determined by the balance between protective and 

harmful effects, which may vary according to the type and depth of hypoxia-ischaemia. 

In addition to the direct neuroprotective effect of therapeutic hypothermia, both mild and 

moderate systemic hypothermia has been demonstrated to double the duration of the 

latent phase, or therapeutic time window, thus extending the period when additional 

neuroprotective interventions may be beneficial (47).  

 

1.6.2 Therapeutic hypothermia: current clinical evidence 
The results of the first large scale randomised controlled trials of selective head cooling 

and whole body cooling in neonatal encephalopathy was released in 2005, both of 

which showing the improved survival without severe neurodevelopmental impairments 

at 18 months of age (8, 9). Several more medium to large scale studies consistently 

demonstrated the beneficial effect of therapeutic hypothermia (7, 93-95).  

 

Table 1.6-1: Therapeutic hypothermia and outcomes at 18 months of age 

 
From “Neurological outcomes at 18 months of age after moderate hypothermia for perinatal 
hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data.” by Edwards AD, 
Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, Strohm B, Thoresen M, Whitelaw A, 
Azzopardi D. BMJ. 2010 Feb 9;340:c363. 
 

A recent meta-analysis based on the accumulated clinical evidence from medium to 

large scale clinical studies confirmed that therapeutic hypothermia of either using 

selective head cooling or whole body cooling ameliorated the outcome measures, such 

as mortality, death or severe neurodevelopmental impairment within overall participants 
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of the studies, and neurodevelopmental impairments in survivors at 18 months of age 

(Table 1.6-1) (12). Subsequently, in October 2010, the International Liaison Committee 

on Resuscitation released its revised recommendation for the newborn resuscitation, 

which strongly recommended the application of therapeutic hypothermia in near term 

and term infants with moderate to severe neonatal encephalopathy within 6 hours of 

birth (96). 

 

1.6.3 Key factors potentially associated with further improvement of the 
treatment 

Although clinical trials of therapeutic hypothermia demonstrated consistent 

neuroprotective effect of cooling, these studies raised important questions about the 

optimal modality, timing and duration of cooling, which maximise the neuroprotective 

effect of the treatment (20, 97). Experimental evidence suggested that inter- and 

intra-subject factors influence the neuroprotective potential of hypothermia; the 

protective effect of therapeutic hypothermia may be less prominent following very 

severe hypoxia-ischaemia (8, 98-100); the optimal temperature for neuroprotection may 

vary between different brain regions (Fig. 1.6-2) (49). If the spatial evolutional pattern of 

cerebral injury can be serially monitored using advanced imaging technique, it would be 

easier to identify a group of infants who respond to specific type of cooling before 

waiting for the assessment of long term outcomes.  

Thus far, no pharmacological treatments have been demonstrated to be clinically 

neuroprotective following perinatal hypoxia-ischaemia in large scale prospective studies 

(101). Nevertheless, a range of neuroprotective drugs are being assessed as add-on 

therapies to cooling (10, 102) expecting additive or synergistic effects. In a rodent model, 

the combination of xenon and hypothermia given 4 hours after hypoxia-ischaemia 

provided synergistic neuroprotection up to 30 days after birth (103). Because cooling 

itself can delay the evolution of secondary energy failure (Fig. 1.6-1) (47), the prolonged 

latent phase may provide sufficient therapeutic time window for additional 

neuroprotective treatments (104, 105). For example, a single dose of topiramate after 

hypoxia-ischaemia in the neonatal rat was not protective itself but extended the 

therapeutic window for brief transient hypothermia of as long as 3 hours (106). A robust 

biomarker, which reflects the severity and pattern of brain injury during the latent phase, 

is desirable to target neuroprotective therapies to patients who are most likely to benefit 

from invasive treatments. 



 50 

Figure 1.6-2: Cooling level and region-specific brain protection  

 
In a piglet model of neonatal asphyxial encephalopathy, whole body cooling to 35oC (HI-35) 
provided modest tissue protection in both the cerebral cortex and deep grey matter, whereas 
cooling to 33oC resulted in improved neuroprotection in the cerebral cortex although protection in 
the deep grey matter was lost. From “Depth of delayed cooling alters neuroprotection pattern after 
hypoxia-ischemia.” by Iwata O, Thornton JS, Sellwood MW, Iwata S, Sakata Y, Noone MA, O'Brien 
FE, Bainbridge A, De Vita E, Raivich G, Peebles D, Scaravilli F, Cady EB, Ordidge R, Wyatt JS, 
Robertson NJ. Ann Neurol. 2005 Jul;58(1):75-87. 

  



 51 

Chapter 2: Aim and Hypothesis 
 

Aim 
To assess temporal and spatial evolution of cerebral injury in the piglet model of 

asphyxial encephalopathy using serial magnetic resonance biomarkers and 

histo-pathological assessments 

 

Hypotheses  
Regional magnetic resonance biomarkers obtained during the acute phase of perinatal 

asphyxial encephalopathy predict histo-pathological cerebral injury when the brain is 

harvested either shortly after or up to 24 hours after the scan. 

 

Specific hypotheses 
1. A more severe hypoxic-ischaemic insult leads to a shorter latent phase and more 

severe secondary energy failure. 

2. Variation in energy metabolites is associated with the severity of secondary energy 

failure even before the overt evolution of secondary energy failure. 

3. Evolution of secondary energy failure is spatially heterogeneous when observed 

using ADC maps. 

4. Regional ADC values and global 31P MRS markers have different predictive values of 

later tissue damage between each other. 
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Chapter 3: General Materials and Methods 
 

3.1 Preparation of the Piglet model of asphyxial encephalopathy 

Experiments were performed under a UK Home Office Licence in accordance with UK 

guidelines. 

 

3.1.1 Surgical procedures 
An established piglet model of neonatal asphyxial encephalopathy was used with 

modifications in the protocol for each experiment (42, 49). Healthy Large-White piglets 

of either sex born at term were delivered from a licenced farm in the morning of the 

experiment within 24 hours of birth. The piglets were initially sedated with intramuscular 

midazolam (0.2mg/kg). Intensive life support and continuous physiological monitoring 

were provided throughout experiments, including core body temperature (Arbo N44-91, 

Kendall, Powell, TN, U.S.A), heart rate, arterial oxygen saturation (5500 Hudson RCI, 

Temecula, CA, U.S.A.) and the invasive arterial pressure.  

Five-percent isoflurane was given to the piglet as the initial concentration through a 

facial mask during the insertion of the tracheostomy tube. Anaesthesia was maintained 

by the combination of isoflurane (3% during the surgical procedures and <2% for the 

rest of the procedures), nitrous oxide, and a continuous infusion of morphine 

(0.05mg/kg/h). Piglets were mechanically ventilated; ventilator settings were adjusted to 

maintain normal PaO2 and PaCO2 levels at 8 - 13 kPa and 4.5 - 6.5 kPa, respectively, 

allowing for the temperature correction of the arterial blood sample (Fig. 3.1-1). 

 

Figure 3.1-1: Piglet model after surgical procedures 
 
The piglet underwent 
tracheotomy and was 
mechanically ventilated 
under general anaesthesia. 
Balloon vascular occluders 
and umbilical arterial/venous 
catheters were inserted. A 
pulseoxymeter was attached 
to the posterior limb of the 
piglet. 
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An umbilical venous catheter was inserted for the continuous infusion of maintenance 

fluids (10% dextrose, 60ml/kg/day), morphine, and intravenous injections of antibiotics 

(benzylpenicillin 50mg/kg and gentamicin 2.5mg/kg, every 12 hours). An umbilical 

arterial catheter was also inserted to enable continuous monitoring of the heart rate and 

arterial blood pressure, and intermittent blood sampling to measure PaO2, PaCO2, pH, 

electrolytes, glucose, and lactate. Bolus infusions of colloid (Gelofusin, Braun Medical. 

Emmenbrucke, Switzerland) and continuous dopamine infusions (5-15μg/kg/minute) 

were used as required to maintain the mean arterial blood pressure > 40mmHg.  

 

Figure 3.1-2: Piglet positioned within the plastic cylinder pod 
 
An animal is positioned and 
immobilised within a plastic 
pod before insertion into 
the magnet bore. The piglet 
is anaesthetised and 
mechanically ventilated 
through tubes connected to 
the right end of the pod. 

 

 

 

 

Both common carotid arteries were surgically isolated at the level of the fourth cervical 

vertebra and encircled by remotely controlled vascular occluders (OC2A, In Vivo Metric, 

Healdsburg, CA, U.S.A.). All the surgical procedures were undergone using the aseptic 

technique, and the incision was closed by sutures. To enable the continuous monitoring 

of brain metabolism and microstructural changes using the magnetic resonance 

spectrometer, subjects were sheltered within a specially designed plastic pod following 

the surgical procedures (Fig. 3.1-2). Within the pod, piglets were positioned prone with 

the scalp firmly immobilised below the surface coil; the pod was then inserted into the 

bore of the magnet. 
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3.1.2 Magnetic resonance biomarkers 
All or a part of following magnetic resonance biomarkers were serially obtained before, 

during and after transient hypoxia-ischaemia approximately every 3 to 5 hours 

according to the purpose of the study. However, during the insult, only 31P MRS was 

acquired continuously to closely follow the temporal change in energy metabolites. 

 

3.1.3 31P MRS 
A 7 Tesla Biospec spectrometer (Bruker Medizintechnik, Karlsruhe, Germany) was 

used for the acquisition of 31P MRS from the whole brain (31P frequency 121.6 MHz) 

using an elliptical surface coil (6.5 × 5.5 cm) positioned directly on the intact scalp (Fig. 

3.1-3). A single-pulse acquire sequence was used with the repetition time (TR): 10 s, 

quadrature data points: 2048, and the spectral width: 14286 Hz. Spectra were thus 

acquired effectively fully relaxed and, hence, peak-area ratios were directly related to 

metabolite concentration ratios (54). Generally 192 (baseline), 24 (during 

hypoxia-ischaemia and resuscitation), or 384 (thereafter) free induction decays were 

summed during each acquisition, NTP and EPP, where EPP = Pi + PCr + β- + 2γ- NTP. 

 

Figure 3.1-3: Representative 31P spectra from the piglet brain before 
hypoxia-ischaemia 

 
31P MRS spectra acquired from a piglet before hypoxic-ischaemic insult shows peaks of inorganic 
phosphate (Pi), phosphocreatine (PCr) and three peaks of NTP, which is mainly ATP. 

 

MRS data were analysed using AMARES (107) as implemented in the jMRUI software 

(108). Prior knowledge of the multiple structures of NTP peaks was used (fitting 

doublets to α-NTP and γ-NTP and a triplet to β-NTP) but no assumption was made as to 

their relative sizes. NTP is predominately ATP, comprising approximately 70% of the 

NTP signal in the rat pup (109). Thus the observed changes in NTP during this 

experiment predominately reflect changes in ATP. Inorganic phosphate was fitted using 
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4 separate components. The resonant frequency of the Pi signal is pH dependant (110, 

111) and comes from many physically separated brain compartments with different pH. 

Thus the Pi signal is complex and a single component is not sufficient for analysis.  

Phosphocreatine was fitted with a single component. 

 

3.1.4 Maps of ADC and FA 
The diffusion tensor was measured using single-shot spin-echo diffusion-weighted 

echo-planar imaging (11 coronal slices, echo time (TE) 76 msec; acquisition bandwidth 

200 kHz; slice thickness 2 mm; field of view 4 x 5 cm; image matrix 128 x 128; 10 

averages). Diffusion weighting was applied using a Stejskal Tanner gradient scheme. A 

single image with no diffusion weighting (b = 0 sec mm-2) was acquired along with 6 

images with diffusion weighting b = 1155 sec mm-2 and diffusion encoding directions 

uniformly distributed. The diffusion tensor was estimated using analytical expressions 

(112), and from this, ADC and FA maps were calculated for each pixel (Fig. 3.1-4). To 

compare regional ADC variations, regions of interest (RoIs) were placed in the cortical 

and deep grey matter, and peripheral and central white matter, corresponding to the 

RoIs for the histo-pathological assessment; the actual RoI placement was performed 

based on maps of ADC and FA using an image processing software (ImageJ, the 

National Institutes of Health, U.S.A.) (Fig. 3.1-4). ADC values were measured in a 

coronal plane which dissects the putamen, globus pallidus and thalamus; additional 

slices were used for the head of the caudate nucleus and hippocampus when 

necessary. 
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Figure 3.1-4: Regions of interest on a schema and maps of ADC and FA 

 
Regions of interest (RoIs) are shown in the cartoon (left) including a, sagittal-top; b, sagittal-bottom; 
c, parietal-top; d, parietal-bottom; e, temporal-top; f, CA1 region of the hippocampus; g, caudate 
nucleus, h, putamen; I, anterior thalamus; j, medial thalamus; k, lateral thalamus; l, sagittal white 
matter, m, parietal white matter; n, temporal white matter; o, superior periventricular white matter; p, 
periventricular white matter; q, inferior periventricular white matter; and r, posterior limb of the 
internal capsule. RoIs were placed guided by maps of ADC (middle) and fractional anisotropy 
(right). 

 

3.1.5 T2 maps 
T2 mapping was performed by acquiring two sets of spin-echo echo-planar images with 

different TEs (TR = 3 s; TE = 66 ms and 110 ms; Bandwidth, 200Hz; 11 coronal  

sections; 2 mm slice thickness; field of view, 4 x 5 cm; matrix, 128 x 128;10 averages). 

The T2 relaxation time was calculated using a program developed in a numerical 

computing software (Matlab, version 6.0, Mathworks, Cambridge, UK) by fitting a 

decreasing exponential to the signal intensity as a function of TE. 

 

3.1.6 Transient cerebral hypoxia-ischaemia, resuscitation and 
quantification of acute energy depletion 

After the completion of the baseline data acquisition, a transient hypoxic-ischaemic 

insult was given to the piglet while 31P MRS spectra were acquired every 4 minutes for 

the real time visual monitoring of the cerebral energy deficit using the β-NTP amplitude. 

The inspired oxygen fraction (FiO2) was reduced to 0.10-0.12 simultaneously with 

bilateral carotid-artery occluder inflation. When the β-NTP amplitude had decreased to 

30% of baseline, this amplitude was maintained for 20 minutes by titrating FiO2. After 

the insult, the animal was resuscitated by deflating the occluder and increasing FiO2 to 

achieve normal oxygen saturation. 



 57 

Although we aimed to yield similar insult severities between subjects by utilising the 

feedback from simultaneously obtained 31P MRS spectra, the insult severity and 

subsequent cerebral damage still differed between subjects, presumably due to 

technical variations in hypoxia-ischaemia and biological characteristics in the response 

to the insult. To assess the impact of variations in the insult severity, the cerebral "acute 

energy depletion" was retrospectively calculated from the difference between the ratio 

β-NTP/EPP and its baseline, pre-insult level integrated during hypoxia-ischaemia and 

the first 60 minutes of resuscitation (Fig. 3.1-5) (42). 

 

Figure 3.1-5: Schematic diagram summarising the quantification of the 
acute insult severity 

 
The time integral of the acute energy depletion was calculated during hypoxia-ischaemia and the 
first 60 minutes of the resuscitation. The energy depletion during the early resuscitation was 
included because the tissue energy derangement lasts until high-energy phosphates are fully 
restored by successful resuscitation. 

 

The degree of acute cerebral energy depletion was quantified as the time integral of the 

fall in β-NTP/EPP relative to mean baseline during transient hypoxia-ischaemia and the 

first 60 minutes of resuscitation. The early resuscitation period was included on the 

basis that the degree of cellular injury is related not only to the duration and amount of 

NTP depletion during transient hypoxia-ischaemia but also to that during resuscitation 

when energy generation has not yet fully recovered (42).  
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3.1.7 Temperature control and hypothermia 
The rectal temperature of the piglet was continuously monitored throughout the 

experiment using a thermistor probe (Arbo N44-91, Kendall, Powell, TN, U.S.A.), which 

was maintained within the normal range (38.5-39.0°C) for piglets using either a heated 

operating table and an overhead warmer during surgical procedures, or a thin mattress 

of plastic tubing through which water at a controlled temperature passed was used 

covering the ventral half of the trunk and the limbs during magnetic resonance studies. 

For groups of piglet which underwent delayed therapeutic hypothermia, the mattress 

temperature was lowered between 2 and 26 hours following the end of 

hypoxia-ischaemia to induce whole body cooling at the appropriate target rectal 

temperatures. Animals were then re-warmed slowly at less than 1°C per hour, and the 

normal core temperature was maintained until the end of the experiment. 

 

3.1.8 Monitoring and treatment of seizure 
Continuous monitoring of electroencephalogram was not available for the current study 

due to technical reasons. Possible seizure activities were suspected if there was a 

sudden change in the heart rate, arterial blood pressure, SaO2, breathing pattern and 

the motion artefact on the magnetic resonance signal. The isoflurane concentration was 

transiently increased to 2-3% and mechanical causes such as tube obstruction were 

excluded. If all other possible causes of physiological instability were excluded, the 

event was recorded as a seizure. An injection of phenobarbital (20mg/kg) was given 

intravenously, which was followed by additional doses (10mg/kg) up to twice when the 

initial dose was ineffective or when seizures were recurrent. 

 

3.1.9 Quantification of latent phase and secondary energy failure 
The latent-phase was defined as the period between NTP/EPP ascending to within its 

99% confidence interval of the baseline value during metabolic recovery after 

hypoxia-ischaemia and it later falling below again indicating the start of overt secondary 

energy failure (47). Secondary-energy-failure severity was quantified in each piglet as 

the minimum NTP/EPP during the period 6 to 48 hours post hypoxia-ischaemia 

determined by fitting a cubic polynomial to the time-series data in order to avoid 

systematic bias to lower NTP/EPP due to random error, confirming secondary energy 

failure when NTP/EPP had fallen to less than 60% of baseline. For the study series 

which used variable study durations, the severity of secondary energy failure was 
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defined based on the minimum NRP/EPP during 8 to 24 hours after hypoxia-ischaemia 

(see section 3.3.5.4 in page 67 for detail). 

 

3.1.10  Histopathology 
After the completion of the planned data acquisition and incubation time, animals were 

humanely sacrificed under terminal anaesthesia by an overdose of pentobarbital 

injection. Each brain was fixed by perfusion through the heart with 4% cold 

paraformaldehyde in phosphate saline buffer, dissected out, post-fixed for further 24 

hours within 2% paraformaldehyde, cut in 5mm thick coronal slices, and prepared for 

embedding in paraffin wax. Sections (6µm thick) were stained routinely with 

haematoxylin and eosin (H & E), Luxol-fast blue-cresyl violet (LFB/Nissl), and 

immuno-histochemistry using antibodies to glial fibrillary acidic protein (GFAP, 1: 500, 

Dako Cytomation, Glostrup, Denmark) for the activation of astrocytes, and CD68 (H-255, 

1: 200, Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.) for cells of 

microglial/macrophage lineage. The terminal deoxynucleotide transferase nick end 

labelling (TUNEL, Roche Applied Science, Indianapolis, IN) was also used to identify 

cell death with apoptotic features. Quantitative analyses of the neuronal damage were 

performed using H & E stained sections from the following regions:  

 

(i) the superior and inferior frontal, superior and inferior parietal, insular, temporal, 

and parahippocampal cortex and the corresponding white matter 

(ii) the CA1-4 regions and the dentate gyrus of the hippocampus 

(iii) the putamen, globus pallidus, and anterior, medial, lateral dorsal, and the ventral 

nuclei of the thalamus 

(iv) the periventricular white matter and the posterior limb of the internal capsule  

(v) the cerebellar hemisphere 

 

For the analysis, up to four brain sections (generally 1 to 3 sections for regions i, ii, iii 

and iv; and another section for cerebellum) were carefully chosen to represent 

afore-mentioned regions. In the neo-cortical regions, observations were taken from both 

top of the gyrus and the bottom of the sulcus, respectively. The brain stem and 

hypothalamic nuclei were qualitatively but not quantitatively examined as these regions 

of the brain appeared to be much less affected in our model (113). The detailed cerebral 

regions assessed within each study are presented in the sections 3.2 and 3.3.  
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Figure 3.1-6: Region of interest for histo-pathological assessment in the 
cortical grey matter 

 
In the neo-cortical grey matter, 
assessment was performed over 
multiple views to include all cortical 
layers except for the molecular layer. 
Circles are views on the microscope; 
rectangles are the area where counts for 
neuronal assessment were performed.  
 

 

 

 

 

 

 

 

 

The neuronal changes on H & E stained samples in each region were scored in 6 

grades (0-5) of severity according to the morphological changes in staining (nuclear 

hyperchromasia and cytoplasmic eosinophilia) and shape (cytoplasmic/nuclear 

shrinkage) as follows: 0 normal, 1 very mild changes in staining, 2 mild neuronal change 

in staining and shape, 3 moderate neuronal change in staining and shape, 4 acute 

neuronal death (karyolysis or karyorrhexis), 5 complete neuronal loss (Table 3.1-1). 

Two experienced investigators examined the brain samples blind to the experimental 

group. For quantification, at least 250 neurons per region in the neo-cortical grey matter, 

deep grey matter, and the cerebellar granule cell layers and 100 neurons in the 

remaining regions were assessed in each animal, using ×200 magnification and paying 

attention to include each neuronal layer or region equally (typically 2 views for the 

bottom of sulci and 3 to 5 views for the top of giri; see Fig. 3.1-6). In the cerebellum the 

neuronal appearance was separately evaluated in Purkinje and granule cells, due to the 

marked susceptibility of Purkinje cells. For further analysis, neuronal counts which 

scored 0 or 1, 2 or 3, and 4 or 5 were combined to give percentages of ‘viable’, 

‘intermediate’, and ‘dead’ neurons, respectively. 
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Table 3.1-1: Definition of pathological scoring for neuronal damages 
Score Neuronal Appearance Neuronal Status 

0 no significant changes 
Viable 

1 mild neuronal change in staining 

2 mild neuronal change in staining and shape 
Intermediate 

3 moderate neuronal change in staining and shape 

4 acute neuronal death 

Dead 
5 

neuronal death with complete neuronal loss or tissue 

destruction 
Neuronal changes in staining include nuclear hyper basophilia, condensation of chromatin, and 
cytoplasmic eosinophilia. Changes in shape include cytoplasmic and nuclear shrinkage and 
deformation. Percentages of neurons with each score were recorded in each region. For further 
analysis, scores 0 and 1, 2 and 3, and 4 and 5 were combined to give percentages of ‘viable’, 
intermediate, and ‘dead’ neurons, respectively. 

 

Brain samples stained using LFB/Nissl, immuno-histochemical and TUNEL stains were 

assessed qualitatively and descriptively for the first study, or “Associations between 

insult severity and therapeutic time window duration”, whereas quantitative or 

rank-ordinal assessments were performed for the third study, or “Temporal and spatial 

evolution of secondary energy failure and cerebral injury” (see sections 3.2.3. and 3.4.3. 

in page 63 and 70 for detail).   
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3.2 Associations between insult severity and therapeutic time 
window duration 

 
3.2.1 Subjects and study groups 
Forty-two healthy Large-White piglets of either sex born at term (115 (2) days, mean 

(standard deviation)) weighing 1495 (170) g were studied within 24hours of birth. 

Baseline data were acquired after stabilization of the animal in the spectrometer. Piglets 

were then randomised into 5 groups:  

(i) sham operation and normothermia (rectal temperature 38.5-39oC; n=10) 

(ii) sham operation and transient whole body cooling at rectal temperature 33°C 

(n=3) 

(iii) transient hypoxia-ischaemia and normothermia, (HI-n, n=12) 

(iv) transient hypoxia-ischaemia and delayed transient whole body cooling at rectal 

temperature 35°C (HI-35, n=7) 

(v) transient hypoxia-ischaemia and delayed transient whole body cooling at rectal 

temperature 33°C (HI-33, n=10). 

After randomisation, piglets in groups (iii)-(v) were exposed to a hypoxic-ischaemic 

insult. The groups (ii), (iv) and (v) were cooled to the target rectal temperature between 

2 and 26 hours after resuscitation, which was followed by gradual rewarming with the 

rate of approximately 0.5oC/hour. Experiments were terminated 48 hours after the 

baseline data acquisition for groups (i) and (ii), or 48 hours after the commencement of 

resuscitation for groups (iii), (iv) and (v). 

 

3.2.2 Acquisition of magnetic resonance data 
The 31P MRS spectra were obtained approximately every 4 hours after the 

commencement of resuscitation. The final spectra were acquired within 2 hours of 

termination (Fig. 3.2-1).  
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Figure 3.2-1: NTP/EPP changes of representative piglets over 48 hours 

 
Cerebral NTP/EPP of representative piglets from the HI-n (♦), HI-35 (*) and HI-33 (Δ) groups at 
baseline, during transient hypoxia-ischaemia, and for 48 h following resuscitation. The vertical line 
shows the commencement of resuscitation and the horizontal line shows the lower 99% confidence 
interval of the baseline NTP/EPP. 

 

3.2.3 Histopathology 
H & E stained sections were used for the assessment of the neuronal injury. For specific 

comparison with MRS measures, an observer blind to the experimental piglet group 

assessed neuronal morphological changes in 10 brain regions in the surface-coil 

sensitive volume (6 cortical grey matter regions from 3 gyri and 3 sulci in the inferior 

frontal, superior and inferior parietal cortex, and 4 deep grey matter regions from the 

putamen and anterior, medial, and lateral dorsal thalamic nuclei) and the average 

percentages of dead neurons were calculated (Fig. 3.2-2). 
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Figure 3.2-2: Schematic diagram depicting the histo-pathological regions 
of interest in a coronal slice of the piglet brain 

 

 
Cartoon depicting regions assessed 
histo-pathologically, including the inferior 
frontal (a, b), superior (c, d) and inferior (e, f) 
parietal cortex, and 4 deep grey-matter from 
the putamen (g) and anterior (h), medial (i), 
and lateral dorsal (j) thalamic nuclei. 
For this study, unlike our previous studies, 
temporal cortex, hippocampus and several 
other regions in the deep brain structure 
were not considered because of the 
corresponding brain regions covered by the 
MRS coil (see Fig. 1.5-3 for detail). 

 
 

3.2.4 Statistical analysis 

Neuroprotective effect of transient whole body cooling to 33°C and 35°C has been 

reported previously (47, 49). In this current study, we only considered the groups HI-n, 

HI-35, and HI-33. To examine the dependences of the latent-phase duration, severity of 

secondary energy failure, and neuronal mortality on acute energy depletion and rectal 

temperature separately, multivariate analysis (analysis of covariance) and the 

Bonferroni test were used. In order to avoid the use of independent variables which may 

co-correlate, relationships between measures after hypoxia-ischaemia (i.e. latent-phase 

duration, severity of secondary energy failure, and neuronal death) were assessed 

univariately (analysis of variance) using the combined temperature groups i.e. ignoring 

the target rectal temperature. Statistical probabilities (p) were presented with 

corrections for multiple cerebral regions and the target rectal temperatures. 
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3.3 Energy metabolism during the latent phase and early 
evolutional period or secondary energy failure 

 
3.3.1 Subjects and procedures 
Twenty-three Large-White piglets of either sex (body weight 1640 (220) g, mean 

(standard deviation)) were surgically prepared within 24 hours after birth under general 

anaesthesia and received continuous physiological monitoring and intensive life support 

throughout the experimental procedure as described previously. The animals were then 

inserted into the bore of the magnet scanner and were subjected to transient 

hypoxia-ischaemia after the baseline data acquisition. In this study, cooling was not 

applied and all subjects were kept normothermic throughout the experiment. Three 

sham-operated piglets were also studied for at least 24 hours without giving the 

hypoxic-ischaemic insult. 

 

3.3.2 Hypoxic-ischaemic insult 
Following baseline 31P MRS acquisition, transient global cerebral hypoxia-ischaemia 

was induced in 20 piglets by reducing the inspired oxygen fraction (FiO2) to 12% and 

simultaneously inflating bilateral carotid artery occluders. During hypoxia-ischaemia,31P 

spectra were acquired every four minutes. After the β-NTP peak amplitude had fallen to 

30% of baseline, FiO2 was adjusted to maintain this β-NTP level for 0 to 24 minutes to 

yield a range of insult severities. Resuscitation was then commenced by deflating the 

occluders and increasing FiO2. 

 

3.3.3 Acquisition of magnetic resonance biomarkers 
During hypoxia-ischaemia and resuscitation, 31P MRS spectra were acquired every 4 

minutes. An hour after the commencement of resuscitation, in addition to whole brain 
31P MRS spectra, maps of ADC and T2 relaxation time were acquired serially 

approximately every three to four hours. Because of technical reasons, T2 maps were 

not available for the first 8 piglets, and both ADC and T2 maps were not obtained in one 

sham operated animal. 
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3.3.4 Time course 
In order to correlate serially acquired magnetic resonance biomarkers, especially of the 

ones acquired shortly before termination, with histo-pathological cerebral injury, 

experiments were terminated at various time points when NTP/EPP had fallen to less 

than 60% of baseline thus confirming secondary energy failure (n = 11) with the 

maximum duration of 48 hours after hypoxia-ischaemia. Several subjects were 

terminated preliminarily because of technical problems or unpredictable clinical 

consequences (see the Result section for detail).  

 

3.3.5 Statistical analysis 
In this study, only 31P MRS data were used (see the next study in the chapter 3.4 for the 

analyses on ADC and T2 maps). 

 
3.3.5.1 Sham-operated control animals 
Because of the small number of control subjects, their MRS measures were presented 

without statistical analysis. 

 

3.3.5.2 Animals in the study group 
Because we applied hypoxia-ischaemia of different durations in this study to yield a 

range of insult severities, several subjects developed relatively more severe 

encephalopathy and cardiopulmonary impairments. One experiment was terminated 14 

hours after hypoxia-ischaemia because of an extremely short latent phase (in the 

“severe secondary energy failure” group). The following were excluded from analysis: 

one animal which experienced extremely severe hypoxia-ischaemia and NTP/EPP 

remained < 60% of baseline even after 4 hours of hypoxic-ischaemic insult, and 1 

animal which developed lethal arrhythmia and required cardiac massage 6 hours after 

hypoxia-ischaemia.  

 

3.3.5.3 Serial metabolite ratios and rates of metabolic change  
 (over all subjects) 
Mixed models with fixed (time and metabolite ratios) and random (subject and time) 

effects were used to determine the rates of change of NTP/EPP, PCr/EPP and Pi/EPP 

within the periods (i) first 10 minutes of hypoxia-ischaemia, (ii) rest of hypoxia-ischaemia 

(excluding first 10 minutes), (iii) 0-2 hours, (iv) 2-8 hours, (v) 8-16 hours and (vi) 16-24 
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hours after hypoxia-ischaemia. Although we aimed to acquire at least 2 spectra for each 

of the time intervals (iii) to (vi), in 3, 2, and 4 animals, only a single spectrum was 

acquired at respectively 2-8, 8-16 and 16-24 hours after the insult. For the mixed model, 

the missing measurements at 2-8 and 8-16 hours (regarded as “missing completely at 

random”), but not at 16-24 hours (when the paucity of data resulted from early 

termination), were estimated by linear interpolation from the existing measurement in 

that time interval and the next available measurement: the mixed model during 16-24 

hours used only the 14 remaining piglets. 31P-MRS measures at baseline and later time 

intervals were compared using repeated measure analysis of variance: for this analysis, 

only 17 piglets were included during the period 16-24 hours due to one early 

termination.  

 

3.3.5.4 Secondary energy failure severity groups 
A surrogate for eventual cerebral injury, the severity of secondary energy failure was 

quantified in each piglet as the minimum NTP/EPP 8-24 hours after hypoxia-ischaemia 

determined by fitting a cubic polynomial to the NTP/EPP time-series in order to avoid 

bias to lower NTP/EPP by random error. Using this severity index for secondary energy 

failure, piglets were classified into 3 groups: (a) “no secondary energy failure” (n = 5, 

minimum NTP/EPP ≥ 85% of individual baseline), (b) “moderate secondary energy 

failure” (n = 8, 60% ≤ minimum NTP/EPP < 85%) and (c) “severe secondary energy 

failure” (n = 5, minimum NTP/EPP < 60%). Metabolite ratios were compared with 

baseline values in each group and between groups using the analysis of variance.  

 

3.3.5.5 Baseline metabolism, insult severity and PCr recovery  
 (over all subjects) 
In our analysis, a positive relationship was observed between PCr/EPP 2 to 8 hours 

after hypoxia-ischaemia and secondary energy failure severity. To identify possible 

determinants of this relationship, both simple and multiple linear regression models 

were used with the index of acute energy depletion (insult severity) and/or baseline 
31P-MRS measures as independent variables. Due to the variation in the head size of 

the piglet, we anticipated inconsistent 31P MRS coverage of the brain; if cerebral 

metabolite ratios varied regionally, this might result in dependences of baseline 

metabolite ratios on body weight: this possibility was investigated using a simple linear 

regression model.  
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3.3.5.6 Statistical probability correction 
Statistical results from comparisons in high energy phosphates between groups defined 

by the severity of secondary energy failure were corrected for multiple comparisons 

between different time intervals and between different groups using Bonferroni test.   
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3.4 Temporal and spatial evolution of secondary energy failure 
and cerebral injury 

 
3.4.1 Subjects and procedures 
The same subjects and magnetic resonance data with the second study “Energy 

metabolism during the latent phase and early evolutional period or secondary energy 

failure” were used (see the chapter 3.3 for detail).  

 

3.4.2 Magnetic resonance data processing 
RoIs on the maps of ADC were placed guided by both maps of ADC and fractional 

anisotropy using the ImageJ software (see Figure 3.1-5 for the representative maps with 

RoIs). In the cortical grey matter, three gyri (sagittal, parietal and temporal) and two 

sulci (sagittal and parietal) were chosen as well as the hippocampus (CA1). The 

caudate nucleus, putamen, thalami (anterior, medial and lateral) were also assessed. 

For the white matter, three regions of the peripheral white matter (sagittal, parietal and 

temporal lobes) and four regions of central white matter (superior and medial 

periventricular white matter and posterior limb of the internal capsule) were investigated. 

These RoIs were transferred to T2 maps after inspections for motion artefacts and 

accuracy of positions for RoIs. 

 

Figure 3.4-1: Brain regions of interest for histo-pathological assessment  
 

Diagram depicting the regions placed on the ADC and T2 
maps, and histo-pathological samples. a sagittal-top, b 
sagittal-bottom, c parietal-top, d parietal-bottom, e 
temporal-top, f CA1 region of the hippocampus, g caudate 
nucleus, h putamen, i anterior thalamus, j medial thalamus, 
k lateral thalamus, l sagittal white matter, m parietal white 
matter, n temporal white matter, o superior periventricular 
white matter, p periventricular white matter, and q posterior 
limb of the internal capsule. See Figure 3.1-5 for the 
representative maps of ADC and fractional anisotropy with 
RoIs. 
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3.4.3 Histo-pathological assessment 
Paraffinised coronal brain samples were carefully assessed and the ones closest to the 

MRI slices used for quantitative analysis were chosen. Six µm thick coronal brain 

sections were prepared for stains such as H & E, LFB/Nissl, GFAP, CD68, TUNEL and 

β-APP. RoIs on ADC and T2 maps were then transferred to the brain sections on the 

slide glass by marking the corresponding region using a fibre tipped pen (Fig. 3.4-1). 

Neuronal damage was assessed for each RoI using H & E stained samples based on 

the scale indicated in the Table 3.1-1, page 61, which gave percentages of neuronal 

death. The damage in the white matter was assessed using H & E and LFB/Nissl stains, 

which were classified into four grades of 0 to 3 (Table 3.4-1). On GFAP stained samples, 

the activation of astrocytes within the cortical grey matter and white matter was 

assessed respectively, and scores of 0 to 3 were assigned for each region. CD68 

positive microglia and vessels were counted respectively, and the numbers per a view at 

the x400 magnification were recorded. Similarly, TUNEL positive cells with 

fragmentation of nuclei were counted to give the number of apoptotic cell death per a 

view at the x400 magnification. For the assessment of grey matter regions, each 

neuronal layer or region was equally examined by typically including 2 to 5 views for the 

cerebral cortex and 1 to 3 regions for the deep grey matter; Fig. 3.1-6, page 60), 

whereas 1 to 2 representative views were assessed for the white matter regions.   

 
Table 3.4-1: Injury scales for histo-pathological assessment in the white 

matter 
 

Stains 
Scores 

0 1 2 3 

H & E and 
LFB/Nissl* 

No damage Focal injury without 
destruction in 
axonal integration 

Up to moderate 
destruction with 
substantial 
disintegration in 
axon and myelin  

Severe destruction 
with total loss of 
structural 
integration   

GFAP Mild expression in 
the process and 
plasma membrane 
of astrocytes 

Moderate 
expression 

Strong expression Marked expression 

β-APP* No positive fibres Solitary/scattered 
positive fibres 
 

Grouped positive 
fibres with mild to 
moderate density 

Profound fibres 
with strong stains 

*Evaluation on LFB/Nissl andβ-APP stains focused on axonal injury. Evaluation of neuronal injury 
on H & E, CD68 expressions on microglia and vessels, and TUNEL positive cells with morphological 
features of apoptosis were performed numerically by counting affected cells.  
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3.4.4 Statistical analysis 
3.4.4.1 Sham-operated control animals 
Because of the small number of control subjects, findings in magnetic resonance 

biomarkers were presented without statistical analysis. 

 

3.4.4.2 Animals in the study group 
Magnetic resonance biomarkers were sorted along the time line either (i) prospectively 

starting from the pre-insult baseline, 60 minutes to <3 hours, 3 to < 6 hours, 6 to < 12 

hours, 12 to < 18 hours, 18 to < 24 hours, 24 to < 30 hours, 30 to < 36 hours, 36 to < 42 

hours and 42 to 48 hours after the commencement of resuscitation, or (ii) 

retrospectively starting from 0 to < 3 hours, 3 to < 6 hours, 6 to < 12 hours,12 to < 18 

hours,18 to < 24 hours, 24 to < 30 hours, 30 to < 36 hours,36 to < 42 hours, and 42 to 

48 hours before termination. When there were multiple data within the same time period, 

the average of these were used; missing values were estimated by linear interpolation 

from existing measurements only when there were valid data in both the previous 

(excluding the baseline) and the following time intervals. 

To investigate the variation in ADC and T2 maps within region groups of the cortical 

grey matter (excluding the hippocampus), deep grey matter, peripheral white matter, 

and the central white matter, and also between these region groups (mean values within 

groups were used), the baseline and serial data were assessed using the analysis of 

variance. Because experiments were terminated at different time intervals after 

hypoxia-ischaemia (and hence before termination), the number of subjects considered 

at each time interval differed; to minimise the influence of the sample size to the 

statistical result, analysis was performed on magnetic resonance biomarkers obtained 

(i) equal to or less than 24 hours after hypoxia-ischaemia and (ii) equal to or shorter 

than 24 hours before termination. Associations between global (31P MRS) and regional 

(ADC and T2 maps) magnetic resonance biomarkers obtained at each time interval 

after hypoxia-ischaemia and regional histo-pathological damages were assessed using 

general linear models for either numeric or rank ordinal data with adjustment for the 

insult severity (acute energy depletion) and the experimental duration. The predictive 

value of magnetic resonance biomarkers analysed according to (i) the time after 

resuscitation and (ii) the time before termination were assessed using either the 

Pearson product moment correlation coefficient or the Spearman rank correlation 

coefficient.  
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3.4.4.3 Statistical probability correction 
P-values from comparisons in magnetic resonance biomarkers between different time 

intervals (vs. baseline) were corrected for multiple comparisons using the Dunnett test. 

Results from comparisons in ADC and T2 relaxation time within and between region 

groups at each time interval after resuscitation were corrected using the Bonferroni test. 

For comparisons between magnetic resonance biomarkers and regional 

histo-pathological brain injury, which involved six magnetic resonance biomarkers and 

eight histo-pathological assessments in over seventeen cerebral regions, p-values were 

shown without correction to avoid type-II errors. 
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Chapter 4: Results 
Values are shown as mean (standard deviation) unless stated otherwise.  

 

4.1 Associations between insult severity and therapeutic time 
window duration 

 
Results from comparisons between temperature groups in the severity of secondary 

energy failure and histo-pathological outcome have been reported elsewhere (47, 49). 

Briefly, therapeutic hypothermia to 35oC and 33oC prolonged the latent phase duration 

(Fig. 1.6-1 in page 47), ameliorated the severity of secondary energy failure (Fig. 4.1-1), 

and reduced the neuronal death in both cortical grey and deep grey matter (47); the 

pattern of cerebral protection differed between 35oC and 33oC, with the former 

protecting the deep grey matter predominantly while the latter preserving the cortical 

grey matter better (Figure 1.6-2 in page 50) (49).  
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Figure 4.1-1: Cerebral high-energy phosphates before, during and after 
hypoxia-ischaemia 

 
Cerebral PCr/Pi (A, C, and E) and NTP/EPP (B, D, and F) for each piglet at baseline, during transient 
HI, and for 48 hours after resuscitation in the HI-n (A and B), HI-35 (C and D), and HI-33 
(E and F) groups. In 1 HI-33 piglet, no data were acquired beyond 36 hours because of spectrometer 
failure. Graphs demonstrate significant intrinsic biological variability despite similar 
HI insult severities. PCr/Pi tended to be preserved in cooled piglets. A significant decline in 
NTP/EPP was only seen in the HI-n group. Abbreviations: HI, hypoxia-ischaemia. HI-n, HI and 
normothermia. HI-35, HI and delayed whole body cooling to 33oC. HI-33, HI and delayed whole body 
cooling to 35oC. From “Delayed whole-body cooling to 33 or 35°C and the development of impaired 
energy generation consequential to transient cerebral hypoxia-ischemia in the newborn piglet” by 
O’Brien FE, Iwata O, Thornton JS, De Vita E, Sellwood MW, Iwata S, Sakata YS, Charman S, Ordidge 
R, Cady EB, Wyatt JS, Robertson NJ. Pediatrics. 2006 May;117(5)1549-59. 
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4.1.1 Summary 
In this chapter, results of the first part of the study, “Associations between insult severity 

and therapeutic time window duration” are presented. A more severe hypoxic-ischaemic 

insult was associated with a shorter latent-phase (p = 0.002), worse secondary energy 

failure (p = 0.023), and more neuronal death in the cortical grey matter (p = 0.016). The 

latent phase duration was inversely related to insult severity, suggesting the brevity of 

the therapeutic time window following severe cerebral hypoxia-ischaemia. 

 

4.1.2 Experimental courses and general findings 
In seven animals, experimentation terminated early: 2 due to NTP depletion persisting 

more than 2 hours after hypoxia-ischaemia (1 HI-n and 1 HI-33); 2 due to equipment 

problems (2 HI-n); and 3 piglets died as a direct consequence of hypoxia-ischaemia (2 

HI-n at 18 and 28 hours and 1 HI-33 at 20 hours after the insult). All other piglets 

survived to 48 hours after hypoxia-ischaemia. Two brains were damaged during 

removal or histological processing (1 HI-n and 1 HI-33). Results from all these animals 

were not included in the analysis. Consequently the numbers of piglets analysed were: 

6 HI-n; 7 HI-35; and 7 HI-33; in one HI-33 piglet MRS data were only available up to 36 

hours due to spectrometer failure. There were no significant differences in the body 

weight, age, heart rate, blood pressure, or other variables between study groups before 

hypoxia-ischaemia. 

 

4.1.3 Severity of hypoxia-ischaemia, duration of latent phase and 
subsequent injury indices in each temperature group 

We aimed for hypoxic-ischaemic insults of similar severity between subjects. However, 

amongst the piglets, acute energy depletion ranged widely due to variations in the 

biological responses to both transient hypoxia-ischaemia and resuscitation. The mean 

acute energy depletion was 0.048 (0.021) hours for HI-n; 0.070 (0.024) hours for HI-35; 

and 0.086 (0.032) hours for HI-33 but statistically invariant (p = 0.116). When the 

magnetic resonance biomarkers were compared between temperature groups with the 

acute energy depletion as a covariate, HI-35 had a longer latent-phase (p < 0.001), less 

severe secondary energy failure (p = 0.032), and less neuronal death (cortical grey 

matter p = 0.001, deep grey matter p = 0.020); and HI-33 had a longer latent phase (p = 

0.014), less severe secondary energy failure, and less neuronal death only in cortical 

grey matter (p < 0.001), compared to HI-n (Table 4.1-1). There was less neuronal death 
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in the cortical grey matter in HI-33 compared to HI-35 (p = 0.022), however, the duration 

of the latent phase, severity of secondary energy failure, and the neuronal death in the 

deep grey matter were similar in both cooled groups. 

 
Table 4.1-1: Magnetic resonance and histo-pathological injury indices in 

each temperature group  
  HI-n HI-35 HI-33 

Latent phase duration 

in hours 

17.5  

(10.0, 24.9) 

41.4  

(35.1, 47.7)*** 

34.3  

(27.5, 41.1)* 

Minimum NTP/EPP 

(6 – 48 hours) 
0.106  

(0.090, 0.122) 

0.136  

(0.122, 0.150)* 

0.135  

(0.120, 0.151) 

 

Neuronal 
death (%) 

Cortical grey matter 

 

85.7  

(69.6, 101.8) 

39.6  

(26.1, 53.1)** 

10.8  

(-3.8, 25.4)***† 

Deep grey matter  66.5  

(44.4, 89.6) 

22.1  

(2.8, 41.5)* 

37.4  

(16.4, 58.3) 

Values are mean (upper and lower 95% confidence interval) corrected for the mean acute energy 
depletion = 0.069 hours. 
*, ** and ***: HI-n vs. HI-35 or HI-33, p < 0.05, 0.005 and 0.001 respectively;  
†: HI-35 vs. HI-33, p < 0.05; p values were corrected for multiple comparisons using Bonferroni test. 

 

4.1.4 Association between the insult severity and the latent phase duration 
A more severe hypoxic-ischaemic insult (greater acute energy depletion) was 

associated with a shorter latent phase (Fig. 4.1-2) (r2 = 0.55, p = 0.002, corrected for 

temperature groups).  
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Figure 4.1-2: Correlation between the latent phase duration and the insult 
severity 

 
Acute insult severity represented 
by the acute energy depletion 
index was inversely correlated 
with the duration of the latent 
phase. Symbols: HI-n (♦), HI-35 (*), 
HI-33 (Δ). r2 = 0.55, p = 0.002, 
analysis of covariance. 
Regression line not indicated 
because the analysis was 
performed with correction for 
temperature groups. 

 

 
 
4.1.5 Association between the insult severity and the severity of 

secondary energy failure 
The severity of secondary energy failure represented by lower NTP/EPP was correlated 

with the insult severity (Fig. 4.1-3) (r2 = 0.44, p = 0.023, corrected for temperature 

groups). 
 

Figure 4.1-3: Association between the severity of acute insult and 
secondary energy failure 

 
 
Severity of secondary energy failure 
was dependent on the severity of 
acute insult represented by the acute 
energy depletion. Symbols: HI-n (♦), 
HI-35 (*), HI-33 (Δ). r2 = 0.44, p = 0.023, 
analysis of covariance. Regression 
line not indicated because the 
analysis was performed with 
correction for temperature groups. 
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4.1.6 Association between the insult severity and neuronal death 

Neuronal death in the cortical grey matter, but not in the deep grey matter, depended on 

the insult severity (Fig. 4.1-4) (r2 = 0.75, p = 0.016, corrected for temperature groups). 

 
Figure 4.1-4: Correlation between the insult severity and neuronal death in 

the cortical grey matter 

 
Histo-pathologically assessed neuronal 
death in the cortical grey matter was 
dependent on the acute insult severity. 
Symbols: HI-n (♦), HI-35 (*), HI-33 (Δ). r2 = 
0.75, p = 0.016, analysis of covariance. 
Regression line not indicated because the 
analysis was performed with correction for 
temperature groups. 

 

 
 

 
4.1.7 Association between the latent phase duration and the severity of 

secondary energy failure 
A longer latent phase duration was associated with a less severe secondary energy 

failure (Fig. 4.1-5) (r2 = 0.78, p < 0.001). 

 
Figure 4.1-5: Correlation between the latent phase duration and the 

severity of secondary energy failure 

 
The latent phase duration was linearly 
correlated with the severity of secondary 
energy failure.  
Symbols: HI-n (♦), HI-35 (*), HI-33 (Δ). r2 = 
0.78, p < 0.001.Regression line is from 
combined temperature groups. 
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4.1.8 Association between the latent phase duration and neuronal death 
A longer latent phase was associated with fewer neuronal death in the cortical grey 

matter (r2 = 0.26, p = 0.023) and deep grey matter (r2 = 0.43, p = 0.002) (Fig. 4.1-6).  

 
Figure 4.1-6: Dependences of neuronal death on the latent phase duration 
(A) Cortical grey matter 
 

 
The latent phase duration was linearly 
correlated with the neuronal death in 
the cortical grey matter. Symbols: HI-n 
(♦), HI-35 (*), HI-33 (Δ). r2 = 0.26, 
p=0.023. Regression line is from 
combined temperature groups. 

 

 

 

 

 

 

 

(B) Deep grey matter 
 
The latent phase duration was 
linearly correlated with the 
neuronal death in the deep grey 
matter. Symbols: HI-n (♦), HI-35 (*), 
HI-33 (Δ). r2 = 0.43, p = 0.002. 
Regression line is from combined 
temperature groups. 
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4.1.9 Association between the severity of secondary energy failure and 
neuronal death 

More severe secondary energy failure was associated with greater neuronal death in 

both cortical grey matter (r2 = 0.27, p = 0.020) and deep grey matter (r2 = 0.36, p = 

0.005) (Fig. 4.1-7).  

 

Figure 4.1-7: Dependence of neuronal death on the severity of secondary 
energy failure 

(A) Cortical grey matter 
 
The severity of secondary energy 
failure was linearly correlated with 
neuronal death in the cortical grey 
matter. Symbols: HI-n (♦), HI-35 (*), 
HI-33 (Δ). r2=0.27, p=0.020.Regression 
line is from combined temperature 
groups. 

 

 

 

 

 

 

(B) Deep grey matter 
 
The severity of secondary energy 
failure was linearly correlated with 
neuronal death in the deep grey 
matter. Symbols: HI-n (♦), HI-35 (*), 
HI-33 (Δ). r2 = 0.36, p = 0.005, 
corrected for temperature groups. 
Regressions are from combined 
temperature groups.  
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4.2 Energy metabolism during the latent phase and early 
evolutional period or secondary energy failure 

 
4.2.1 Summary 
In this chapter, results of the second part of this study are presented. Following 

resuscitation, in subjects with favourable outcome, PCr recovered to higher than its 

baseline level (overshoot). In subjects with unfavourable outcome, maximum PCr 

recovery was lower than baseline and lower than in subjects with favourable and 

intermediate outcomes. Recovery PCr correlated linearly and negatively with acute 

insult severity, suggesting that recovery metabolism 2 to 8 hours after 

hypoxia-ischaemia may provide an early biomarker of injury severity. 

 

4.2.2 Temporal changes in energy metabolites after hypoxia-ischaemia 
4.2.2.1 Sham-operated animals 
Sham operated animals showed no apparent temporal change in NTP/EPP, PCr/EPP 

and Pi/EPP (Table 4.2-1). 

 

Table 4.2-1: Temporal changes in 31P MRS biomarkers in sham operated 
animals  

  

 

Piglet 

Baseline Time from baseline (h) 

 0-2 2-8 8-16 16-24 

N
TP

/E
PP

 1 0.26 0.25 0.23 0.25 0.23 

2 0.21 0.21 0.21 0.20 0.20 

3 0.20 0.20 0.20 0.21 0.19 

PC
r/E

PP
 1 0.18 0.18 0.18 0.18 0.17 

2 0.22 0.21 0.21 0.22 0.22 

3 0.23 0.23 0.23 0.24 0.24 

Pi
/E

PP
 1 0.13 0.14 0.17 0.17 0.19 

2 0.18 0.20 0.22 0.20 0.19 

3 0.17 0.17 0.17 0.17 0.20 
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4.2.2.2 Acute insult, recovery and secondary energy failure 
Significant rates of change of NTP/EPP (falling) and Pi/EPP (increasing) were observed 

during both the first 10 minutes (p = 0.006 and p < 0.005 respectively) and the 

remainder of hypoxia-ischaemia (p < 0.005 and p = 0.006 respectively); falling PCr/EPP 

was observed only during the first 10 minutes of hypoxia-ischaemia (Table 3.2-2 and 

Fig. 4.2-1) (p < 0.005). Compared with baseline, mean PCr/EPP was lower during both 

the first 10 minutes and the remainder of hypoxia-ischaemia, whereas mean Pi/EPP 

was higher and mean NTP/EPP lower only during the later period of hypoxia-ischaemia 

(all p < 0.001). 

 
Table 4.2-2: Rates of change in metabolite ratios during and following 

hypoxia-ischaemia 

Abbreviations: SE, standard error. NS, not significant. 

 

  

   During hypoxia-ischaemia Time after hypoxia-ischaemia (h) 

   First 10 minutes Remainder 0-2 2-8 8-16 16-24 

N
TP

/E
PP

 Slope  (x 10-3/h) -174.8 -153.5 52.4 1.6 -2.7 -3.2 

SE (x 10-3/h) 47.6 31.5 7.7 1.17 1.01 1.11 

p  0.006 <0.005 <0.005 NS NS 0.042 

PC
r/E

PP
 Slope (x 10-3/h) -670.0 -15.3 136.9 -0.6 -4.2 -4.7 

SE (x 10-3/h) 115.3 40.2 17.0 0.9 1.2 0.9 

p  <0.005 NS <0.005 NS 0.006 <0.005 

Pi
/E

PP
 Slope (x 10-3/h) 1118.4 520.3 -323.2 -3.9 15.6 12.3 

SE (x 10-3/h) 255.1 116.9 36.5 2.3 2.8 3.1 

p  <0.005 0.006 <0.005 NS <0.005 0.006 
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Figure 4.2-1: Trajectories of NTP, PCr and Pi over time relative to EPP 
(A) PCr/EPP 

 
(B) NTP/EPP 

 
(C) Pi/EPP 

 
Data are shown for only representative time points during and shortly after hypoxia-ischaemia. 
Variation in the recovery phosphates is evident despite overall incomplete recovery in NTP and Pi 
and complete recovery in PCr. X-axes are the time interval in hours after hypoxia-ischaemia. 
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After commencing resuscitation, significant rates of change of PCr/EPP and NTP/EPP 

(both increasing) and Pi/EPP (falling) were observed during the period 0-2 hours after 

hypoxia-ischaemia (all p < 0.005). Metabolite ratios had recovered closest to their 

baseline values during the period 2-8 hours after hypoxia-ischaemia when mean 

PCr/EPP was similar to baseline but mean NTP/EPP was slightly smaller (p = 0.012) 

and mean Pi/EPP greater (Table 4.2-3 ) (p = 0.027). The earliest time interval displaying 

overt secondary energy failure was 8-16 hours after hypoxia-ischaemia when there 

were significant rates of change for PCr/EPP (falling, p = 0.006) and Pi/EPP (rising, p < 

0.005): a significant NTP/EPP rate of change during secondary energy failure (falling, p 

= 0.042) was first seen at 16-24 hours. During 8-16 hours and 16-24 hours after 

hypoxia-ischaemia, mean PCr/EPP and NTP/EPP were lower and mean Pi/EPP higher 

compared with the baseline (all p < 0.001). 

 
Table 4.2-3: Metabolite ratios before, during and after hypoxia-ischaemia 
  Baseline During hypoxia-ischaemia Time after hypoxia-ischaemia (h) 

   First 10minutes Remainder 0-2 2-8 8-16 16-24 

N
TP

/E
PP

 Mean 0.22 0.21 0.12 0.17 0.19 0.18 0.16 

Standard deviation 0.02 0.02 0.04 0.03 0.02 0.03 0.05 

p:vs. baseline 
 

NS <0.001 <0.001 0.012 <0.001 <0.001 

PC
r/E

PP
 Mean 0.23 0.18 0.064 0.18 0.22 0.19 0.16 

Standard deviation 0.02 0.04 0.029 0.04 0.03 0.04 0.06 

p:vs. baseline 
 

<0.001 <0.001 <0.001 NS <0.001 <0.001 

Pi
/E

PP
 Mean 0.19 0.26 0.65 0.40 0.27 0.33 0.43 

Standard deviation 0.03 0.07 0.13 0.12 0.09 0.13 0.21 

p:vs. baseline 
 

NS <0.001 <0.001 0.027 <0.001 <0.001 

NS, not significant. 

 

4.2.3 Energy metabolism at 2-8 hours after hypoxia-ischaemia and the 
severity of secondary energy failure  

Compared with baseline, recovery PCr/EPP 2-8 hours after hypoxia-ischaemia was 

higher (overshoot) for subjects with "no" secondary energy failure and was lower for 

subjects with "severe" secondary energy failure (Figs. 4.2-2 and 4.2-3) (p = 0.043 and 

0.008 respectively). In the same time interval, Pi/EPP was higher for subjects with both 

"moderate" and "severe" secondary energy failure compared to baseline (p = 0.006 and 

0.013 respectively), however, NTP/EPP was similar to baseline in each group.   
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Figure 4.2-2: Metabolite ratios 2-8 hours after hypoxia-ischaemia relative 
to individual baselines 

 
PCr/EPP in subjects which never developed secondary energy failure showed overshoot compared 
to the baseline level. Metabolite ratios differed between three outcome groups for PCr/EPP and 
Pi/EPP but the trend did not reach statistical significance for NTP/EPP. Symbols: box - first and 
third quartiles, bold line - median, perpendicular line - range without outliers, open circle - extreme 
outlier less than 1.5 times the interquartile range from the first quartile. 

 

Figure 4.2-3: Representative 31P MRS spectra from three outcome groups 

 
Subtle PCr recovery overshoot relative to NTP peaks is notable in subjects which did not develop 
secondary energy failure (SEF). 
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Subjects with "no" or “moderate" secondary energy failure had higher PCr/EPP (p < 

0.001 and p = 0.001 respectively) and lower Pi/EPP (p = 0.002 and 0.019 respectively) 

compared with subjects with “severe" secondary energy failure; NTP/EPP showed no 

intergroup differences (Fig. 4.2-4). 

 

Figure 4.2-4: PCr/EPP 2-8 hours after hypoxia-ischaemia 

 
PCr/EPP 2-8 hours after hypoxia-ischaemia for “no secondary energy failure (SEF)”, “moderate 
SEF”, and “severe SEF”. The groups with no or moderate SEF consistently showed higher PCr/EPP 
compared with the severe SEF group. Symbols: box - first and third quartiles, bold line - median, 
perpendicular line - range. 
 

4.2.4 Baseline metabolism, insult severity, and PCr at 2-8 hours after 
hypoxia-ischaemia 

PCr/EPP 2-8 hours after hypoxia-ischaemia correlated linearly with both the acute 

energy depletion index and baseline PCr/NTP with simple linear regression analysis (p 

= 0.024 and 0.049 respectively): correlation significance was higher with multivariate 

analysis which incorporated the interaction between the acute energy depletion index 

and baseline PCr/NTP (p = 0.008 and 0.015 respectively). Baseline PCr/NTP was not 

associated with the body weight (Figs. 4.2-5 and 4.2-6). 
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Figure 4.2-5: Baseline and early 31P MRS biomarkers and PCr recovery 

 
PCr/EPP 2 to 8 hours after hypoxia-ischaemia and (A) the acute energy depletion index (insult 
severity) and (B) baseline PCr/NTP, both demonstrating significant linear relationships. 

 
Figure 4.2-6: Baseline metabolism and recovery PCr/EPP 

 
Baseline PCr/EPP (A, p < 0.05) but not NTP/EPP (B) showed linear correlation with recovery 
PCr/EPP 2 to 8 hours after hypoxia-ischaemia. 
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4.3 Temporal and spatial evolution of secondary energy failure 
and cerebral injury 

 
4.3.1 Summary 
In this chapter, results of the third part of this study are presented. When regional maps 

of ADC were analysed, substantial reductions in ADC values were present in 

susceptible regions, such as parietal watershed cortex, peripheral white matter and 

deep grey matter, as early as 6 hours, correlating with subsequent histo-pathological 

brain injury. Although global PCr/Pi was the most accurate early biomarker for 

histo-pathological brain injury, ADC values also predicted l cerebral injury up to 18 hours 

in advance of termination, which would be useful to optimise neuroprotective treatments 

when 31P MRS biomarkers are not available.  

 
4.3.2 Sham-operated control subjects 
For sham-operated control subjects, no significant temporal changes were observed in 
31P MRS biomarkers and maps of ADC and T2 (see Chapter 4.2.2.1 and Table 4.2-1 for 

temporal changes in 31P MRS biomarkers). 

 

4.3.3 Temporal changes in magnetic resonance biomarkers up to 24 
hours after resuscitation 

 
4.3.3.1 31P MRS biomarkers 
31P MRS metabolites at the baseline were similar to those of sham control subjects. 

Compared to the baseline, lower NTP/EPP and PCr/Pi, and higher Pi/EPP were 

observed between 1 and 24 hours after the commencement of resuscitation, whereas 

the reduction in PCr/EPP was noted between 6 and 24 hours after resuscitation, 

reflecting the gradual decline in PCr/Pi and PCr/EPP and increase in Pi/EPP with time 

(Fig. 4.3-1 and Supplemental Table 1 in page 157). 
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Figure 4.3-1: Temporal changes in global 31P MRS biomarkers  

 

 
Upper panel: Trajectories of NTP/EPP, PCr/EPP, Pi/EPP and PCr/Pi at baseline and after 
resuscitation showing the rapid and dynamic change in PCr/Pi, followed by PCr/EPP and Pi/EPP, 
and then, by NTP/EPP. Lower panel: Temporal change in the mean (standard deviation) 31P MRS 
markers up to 24 hours after resuscitation. Data after 24 hours are not shown because of the 
smaller number of subjects thereafter. 
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4.3.3.2 Maps of ADC 
Reductions in regional ADC values were already apparent during the period of 1 to < 3 

hours after the commencement of resuscitation in all cortical grey matter regions, 

putamen, sagittal white matter, parietal white matter, and posterior limb of internal 

capsule, reflecting a rapid decline in regional ADC values following hypoxia-ischaemia 

(Fig. 4.3-2 and 4.3-3; Supplemental Table 2 in page 158). Significant reductions in ADC 

for the lateral thalamus, temporal white matter, superior periventricular white matter, 

and periventricular white matter were first noted during the period of 6 to12 hours of 

resuscitation. A decline in ADC was also observed in the anterior and medial thalami, 

which did not lead to statistical significance until 12 to 18 hours after resuscitation due to 

wide inter-subject variations.  

 

Figure 4.3-2: Two distinct patterns of ADC changes with time following 
hypoxia-ischaemia 

 
In subject A (upper panel), ADC reduction was initially observed in the striatum spreading to the 
parasagittal cortex/white matter. In subject B (lower panel), initial ADC reduction was prominent in 
the sagittal and parasagittal cortex/white matter. Despite the difference in the progress of brain 
injury, both subjects showed profound ADC changes to 30-50% of the baseline level throughout the 
brain by the time of termination. 
Abbreviation: HI, hypoxia-ischaemia. 
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At baseline, ADC values were similar between regions within the cortical grey matter; in 

the deep grey matter, the lateral thalamus had lower ADC values compared to other 

regions of the caudate nucleus, putamen and medial thalamus, whereas the medial 

thalamus showed lower ADC levels compared to the caudate nucleus and lateral 

thalamus; in the peripheral white matter, ADC was lower in the sagittal and temporal 

regions compared to the parietal region; in the central white matter, the posterior limb of 

the internal capsule had higher ADC values compared to the superior periventricular 

white matter and periventricular white matter. When mean baseline ADC values for the 

region groups of the cortical grey matter, hippocampus, deep grey matter, peripheral 

white matter and the central white matter were compared, the central white matter had 

higher ADC values compared to the cortical grey matter, hippocampus and the 

peripheral white matter, whereas the cortical grey matter and hippocampus had higher 

ADC values than the deep grey matter. During the period of 1 to 6 hours after 

hypoxia-ischaemia and the commencement of resuscitation, ADC levels in the sagittal 

cortex was lower than in the temporal cortex, however, no other difference in ADC 

values within the region groups was observed up to 24 hours after resuscitation. The 

mean ADC values for each region group observed at the baseline disappeared after 

hypoxia-ischaemia and resuscitation. 
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Figure 4.3-3: Temporal changes of ADC in representative regions 
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Left panel: Trajectories showing inter-regional variation in the timing of ADC decline from all 
subjects with valid ADC data. Rapid decrease in ADC was observed in the parietal cortex and white 
matter, putamen, and the posterior limb of the internal capsule whereas the change was slow in the 
temporal grey and white matters and the superior periventricular white matter. Right panel: 
Temporal change in the mean (standard deviation) ADC values up to 24 hours after resuscitation in 
representative regions. Data after 24 hours are not shown because of the smaller number of 
subjects thereafter. 
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4.3.3.3 T2 maps 
The T2 relaxation time showed overall trends to increase after resuscitation, however, 

statistically significant increase relative to the baseline value was noted in limited 

regions of the cortical grey matter (mainly in the bottom of the sulci), hippocampus, 

lateral thalamus and the parietal white matter (Fig. 4.3-4 and Supplemental Table 3 in 

page 162).  

 

Figure 4.3-4: Temporal changes of T2 maps  

 
Spatial and temporal change in T2 relaxation time following most severe HI, showing progressive 
increase in T2 involving the whole brain. Short T2 and prolonged T2 are shown in dark purple and 
lighter purple, respectively, whereas extremely long T2 from cerebrospinal fluid is shown in red and 
yellow.  
Abbreviation: HI, hypoxia-ischaemia. 

 

At baseline, the T2 relaxation time was similar within the region groups of the cortical 

grey matter and the deep grey matter; in the peripheral white matter, the T2 relaxation 

time was shorter in the temporal white matter compared to the sagittal and parietal white 

matter; in the central white matter, the periventricular white matter had the longest T2 

relaxation time, which was followed by the superior periventricular white matter and then, 

by the posterior limb of the internal capsule. When the mean baseline T2 relaxation time 

was compared between the region groups, the cortical grey matter and the 

hippocampus both had longer T2 relaxation times compared to the peripheral white 

matter and the central white matter; the T2 relaxation time was longer for the deep grey 

matter compared to the central white matter. After resuscitation, despite the overall 

temporal increase in the T2 relaxation time, the regional pattern of the T2 relaxation 

time remained unchanged in most regions.  
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Figure 4.3-5: Temporal changes of T2 relaxation time in representative 
regions 
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Left panel: Trajectories of regional T2 relaxation time from all subjects with valid T2 data, showing 
trends towards gradual increase in T2 with time although the dynamic range appears to be smaller 
compared to 31P MRS markers and ADC. Right panel: Temporal change in the mean (standard 
deviation) T2 relaxation time up to 24 hours after resuscitation. Data after 24 hours are not shown 
because of the smaller number of subjects thereafter. 

 
 
 
 
4.3.3.4 Histopathological brain injury 
For sham-operated control animals, no significant damage was noted for brain samples 

stained using H & E stains, LFB/Nissl stain and β-APP immuno-histochemical stain 

(Figs. 4.3-5 and 4.3-6); a small number of TUNEL-positive neurons were observed in 

the cerebral cortex and hippocampus with nuclear shrinkage, condensation, or 

fragmentation suggestive of apoptotic cell death; CD68-positive vessels and microglial 

cells were occasionally observed in the white matter and cortical/deep grey matter. 

A wide range of histo-pathological brain injury and immuno-histochemical reactions 

were observed for brain samples of subjects which experienced transient 

hypoxia-ischaemia. The most extensive damage on H & E-stained samples was 

observed in the watershed zones in the para-sagittal and parietal cortex, and the 

hippocampus; extension of the damage towards the deep grey matter was highly 

heterogeneous between subjects. Generally, severe grey matter injury observed on H & 

E-stained samples was accompanied by a greater number of TUNEL-positive neurons 
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and CD68-positive endothelial/microglial cells. Similarly, more severe white matter 

injury was associated with relatively more profound changes in β-APP espression. 

GFAP immuno-histochemical stain showed high level of expression in both 

sham-operated control and study groups unassociated with the insult severity and 

experimental duration, which were not considered further in the current analysis. 

 
Figure 4.3-6: Representative histo-pathological findings-1  

 
Representative brain samples stained using H & E stains (A-C), LFB/Nissl stain (D-E) and GFAP 
immuno-histochemical stain (F), showing normal white matter structure (A); severe destruction in 
microanatomical architecture in both the white matter and cortical grey matter (B); moderate 
pyramidal cell damage in the hippocampus (C); mild (D) and moderate (E) axonal injury; and 
increased GFAP expression in the white matter (F).  
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Figure 4.3-7: Representative histo-pathological findings-2  

 
Representative brain samples stained using β-APP (A-C), CD68 immuno-histochemical stain (D-E) 
and TUNEL stain (F) with mild (A), moderate (B) and strong (C) expression of β-APP in the white 
matter; CD68 positive microglia (D) and vessel (E) in the parietal cortex; and TUNEL positive 
neurons with nuclear fragmentation (F) in the sagittal cortex.  
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4.3.4 Serial magnetic resonance biomarkers obtained 1 to 24 hours after 
resuscitation and histo-pathological brain injury  

 (adjusted for the insult severity and experimental duration) 
 
4.3.4.1 Insult severity, experimental duration, magnetic resonance 

biomarkers, and histo-pathological brain injury 
Greater insult severity represented by the acute energy depletion index was associated 

with higher Pi/EPP at 3 to < 6 hours after resuscitation and with lower PCr/EPP at 18 to 

< 24 hours after resuscitation (Supplemental Table 4 A in page 166). Greater insults 

showed only modest influence on ADC values obtained 1 to < 12 hours after 

resuscitation in both the grey and white matters. Associations between the insult 

severity and T2 relaxation times were observed only for limited regions and time 

intervals. The severity of acute insult showed limited associations with 

histo-pathological brain injury even when adjusted for the time period between 

hypoxia-ischaemia and termination; greater insult severity led to greater number of 

CD68 positive microglia and vessels in the deep grey matter and the central white 

matter, and the white matter injury assessed on LFB/Nissl (Supplemental Table 4 B and 

C in pages 168-169). 
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4.3.4.2  31P MRS biomarkers (1 to 24 hours after resuscitation) and brain 
injury 

During the periods 1 to < 3 hours and 3 to < 6 hours after resuscitation, only inconsistent 

correlations between global 31P MRS biomarkers and regional histo-pathological injury 

were observed except that lower PCr/Pi in the white matter was associated with worse 

injury on H & E stains and more CD68 positive microglia and vessels in the 

corresponding regions (Fig. 4.3-7 and Supplemental Table 5 in page 170). During the 

periods 6 to < 12 hours, 12 to < 18 hours, and 18 to < 24 hours after resuscitation, 

consistent correlations were observed between global 31P MRS biomarkers and the 

percentage of neuronal death in the cortical and deep grey matters, and white matter 

injury assessed on H & E stains and β–APP stain. Only modest correlations were 

observed between global 31P MRS biomarkers and CD68 positive microglia and vessels. 

Of global 31P MRS biomarkers, there were trends that NTP/EPP showed less prominent 

associations with histo-pathological outcomes, whereas PCr/Pi showed most prominent 

associations. Between the periods of 6 to < 12 hours, 12 to < 18 hours, and 18 to < 24 

hours after resuscitation, there was no obvious trend towards specific timing for the 

optimal prediction of the histo-pathological outcome, however, modest relationships 

between abnormal 31P MRS biomarkers and percentages of TUNEL positive apoptotic 

cells were observed only for the period of 6 to < 12 hours after resuscitation. 
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Figure 4.3-8: Associations between 31P MRS biomarkers obtained 1-24 
hours after resuscitation and histo-pathological brain injury   
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Scatter graphs showing associations between 31P MRS markers obtained 1 to < 3 (x), 6 to < 12 (▲) 
and 6 to < 24 hours (●) after resuscitation and histo-pathological brain injury assessed using H & E 
stains in representative regions. There was a trend towards tighter linear relationships between 
histo-pathological outcomes and 31P MRS biomarkers obtained at later time intervals (see 
Supplemental Table 5 in page 170 for statistical findings and data at other time intervals).   
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4.3.4.3 Maps of ADC (1 to 24 hours after resuscitation) and brain injury 
During the periods 1 to < 3 hours and 3 to <6 hours after resuscitation, regional ADC 

values did not show consistent correlations with histo-pathological cerebral injury except 

that lower ADC levels during these periods were modestly correlated with numbers of 

CD68 positive microglia and vessels (Fig. 4.3-8 and Supplemental Table 6 in page 183). 

During the periods 6 to <12 hours, 12 to <18 hours, and 18 to <24 hours after 

resuscitation, regional ADC reductions showed modest associations with percentages 

of neuronal death in the cortical and deep grey matters, white matter damage assessed 

using H & E stains, and CD68 positive microglia and vessels. 
 
Figure 4.3-9: Associations between maps of ADC obtained 1-24 hours 

after resuscitation and histo-pathological brain injury   

 
Scatter graphs showing associations between ADC obtained 1 to < 3 (x), 6 to < 12 (▲) and 6 to < 24 

hours (●) after resuscitation and histo-pathological brain injury assessed using H & E stains in 

representative regions. Even subtle reductions in ADC shortly after resuscitation corresponded to a 
considerable fraction of neuronal death in the grey matter (see Supplemental Table 6 in page 183 for 
statistical findings and data at other time intervals).  
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4.3.4.4 T2 maps (1 to 24 hours after resuscitation) and brain injury 

Regional T2 relaxation times did not show consistent associations with 

histo-pathological brain damage regardless of the timing of data acquisition and the type 

of histo-pathological assessment (Fig. 4.3-9 and Supplemental Table 7 in page 189). 

However, the longer T2 relaxation time in the cortical grey matter regions showed 

modest relationship with increased TUNEL positive apoptotic cellular death in the 

corresponding regions. 
 
Figure 4.3-10: Associations between T2 maps obtained 1-24 hours after 

resuscitation and histo-pathological brain injury   

 
Scatter graphs showing associations between T2 relaxation times obtained 1 to < 3 (x), 6 to < 12 (▲) 

and 6 to < 24 hours (●) after resuscitation and histo-pathological brain injury assessed using H & E 

stains in representative regions. Regional T2 relaxation times showed relatively less prominent 
relationships with histo-pathological outcomes (see Supplemental Table 7 in page 189 for statistical 
findings and data at other time intervals). 
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4.3.5 Serial magnetic resonance biomarkers obtained shortly before to 24 
hours before termination and histo-pathological brain injury 

 
4.3.5.1  31P MRS biomarkers (1 to 24 hours before termination) and brain 

injury 
Consistent predictive values of 31P MRS biomarkers for percentages of neuronal death 

and white matter injury assessed on H & E stains were observed as early as 18 to 24 

hours before the termination of the study, which became more consistent and robust in 

intervals closer to the time of termination; PCr/Pi showed optimal prediction of regional 

histological damage, whereas the predictive value of NTP/EPP was suboptimal to other 
31P MRS biomarkers (Fig. 4.3-10 and Supplemental Table 8 in page 195). During the 

period 12 to < 18 hours before termination, predictive values of 31P MRS biomarkers 

were further observed for the TUNEL positive apoptotic cellular death in the cortical 

grey matter, CD68 positive microglia and vessels in the cortical grey matter and the 

peripheral white matter, and β-APP positive axonal changes in the white matter. There 

was a trend towards more precise prediction of histo-pathological outcomes with time 

intervals closer to termination, except for the TUNEL positive apoptotic cellular death in 

the cortical grey matter, the optimal prediction of which was observed during the period 

of 12 to < 18 hours before termination. 
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Figure 4.3-11: Associations between 31P MRS biomarkers obtained 1-24 
hours before termination and histo-pathological brain injury   
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Scatter graphs showing associations between 31P MRS markers obtained 1 to < 3 (●), 6 to < 12 (▲) 

and 6 to < 24 hours (x) before termination and histo-pathological brain injury assessed using H & E 
stains in representative regions. Tighter linear relationships with histo-pathological outcomes were 
observed for biomarkers obtained shortly before termination (see Supplemental Table 8 in page 195 
for statistical findings and data at other time intervals).  
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4.3.5.2 Maps of ADC (1 to 24 hours before termination) and brain injury  
Regional ADC values started showing consistent predictive values for the percentage of 

neuronal death in the cortical and deep grey matters, white matter injury assessed on H 

& E stains and LFB, and CD68 positive microglia and vessels in the cortical grey matter 

and the peripheral white matter during the period of 12 to < 18 hours before termination 

and the time intervals closer to termination (Fig. 4.3-11 and Supplemental Table 9 in 

page 208). Regional ADC in the white matter also predicted β-APP positive axonal 

changes after time intervals of 6 to < 12 hours before termination. 

 
Figure 4.3-12: Associations between maps of ADC obtained 1-24 hours 

before termination and histo-pathological brain injury   

 
Scatter graphs showing associations between ADC obtained 1 to < 3 (●), 6 to < 12 (▲) and 6 to < 24 

hours (x) before termination and histo-pathological brain injury assessed using H & E stains in 
representative regions. Subtle reduction in ADC just prior to termination corresponded to a 
considerable fraction of neuronal death in the parietal cortex. Tighter linear relationships were 
observed between histo-pathological outcomes and ADC obtained closer to termination (see 
Supplemental Table 9 in page 208 for statistical findings and data at other time intervals). 
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4.3.5.3 T2 maps (1 to 24 hours before termination) and brain injury 
Predictive values of regional T2 relaxation times were limited and inconsistent. However, 

longer T2 relaxation times in the white matter showed modest predictive value for worse 

white matter injury assessed on H & E stains during the time intervals of 18 to < 24 

hours before and closer to the time of termination (Fig. 4.3-12 and Supplemental Table 

10 in page 214). Longer T2 relaxation times were also associated with greater 

percentages of TUNEL positive apoptotic cellular death in the cortical grey matter during 

the period 18 to < 24 hours before termination and time intervals closer to termination. 

 
Figure 4.3-13: Associations between T2 maps obtained 1-24 hours before 

termination and histo-pathological brain injury   

 
Scatter graphs showing associations between T2 relaxation times obtained 1 to < 3 (●), 6 to < 12 

(▲) and 6 to < 24 hours (x) before termination and histo-pathological brain injury assessed using H 

& E stains in representative regions. Regional T2 relaxation times showed relatively less prominent 
relationships with histo-pathological outcomes (see Supplemental Table 10 in page 214 for 
statistical findings and data at other time intervals). 
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Chapter 5: Discussion 
 
5.1 Associations between insult severity and therapeutic time 

window duration 
 
5.1.1 Summary 
We have proved the hypotheses that a more severe hypoxic-ischaemic insult leads to a 

shorter latent phase, more severe secondary energy failure and greater neuronal death. 

The findings of this study are discussed in this chapter. 

 

5.1.2 Key findings from the study 
In a newborn piglet model of asphyxial encephalopathy, we have demonstrated that the 

more severe the cerebral energy depletion during transient hypoxia-ischaemia was, the 

shorter the subsequent latent-phase was, the worse the severity of secondary energy 

failure was, and the more extensive neuronal death in the cortical grey matter was. The 

duration of the latent phase itself showed significant relationships with the severity of 

secondary energy failure and the eventual extent of neuronal injury in both the cortical 

grey matter and the deep grey matter. Further, we confirmed that a higher neuronal 

mortality was associated with more severe secondary energy failure. Previously the 

association between the duration of therapeutic time window and the severity of acute 

hypoxia-ischaemia had been deduced indirectly on the basis of faster development in 

the histo-pathological injury with more severe hypoxia-ischaemia (114, 115). However, 

using quantitative measures and multivariate analysis, we have demonstrated here that 

the duration of the latent phase was shorter following more severe insults, and that this 

period, which is likely to include the therapeutic time window, can be lengthened by 

therapeutic hypothermia.   

 

5.1.3 Acute energy depletion and evolution of secondary energy failure 
Secondary energy failure has been observed in several different species at various 

maturational stages as reduced high energy phosphates (e.g. PCr and NTP). Our group 

has mainly used NTP/EPP and PCr/Pi as indices of high-energy phosphate reserves. In 

this current analysis, we used NTP/EPP as a robust index of the severity for secondary 

energy failure, because PCr/Pi would be affected by factors including the flux within the 
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mitochondrial electron transport chain and re-phosphorylation of adenosine 

diphosphate via creatine kinase; furthermore, PCr/Pi can fall before ATP because, with 

unimpaired substrate delivery, anaerobic glycolysis can maintain ATP (47).  

Using MRS and biochemical methods, previous studies quantified the absolute 

concentrations of high energy phosphates (45, 78) and of total adenine nucleotides and 

total creatine (79) respectively. These studies have demonstrated falls in total mobile 

phosphates, EPP, total adenine nucleotides and total creatine at the similar timing to the 

reduction in NTP/EPP and PCr/Pi. Although energy metabolism apparently recovers 

within approximately an hour after the primary insult, injury cascades have already been 

activated at the cellular level even at this stage (50-54). Vannucci and colleagues 

observed linear relationships between histological tissue injury and high energy 

phosphate concentrations at 6 to 18 hours after resuscitation, with greater significance 

at 24 to 48 hours, suggesting that secondary energy failure was consequential to 

evolving cellular destruction rather than causal of cellular death in so far surviving tissue 

(79). Although it is agreeable that secondary energy failure as observed by 31P MRS is 

likely to be a phenomenon directly associated with a delayed, irreversible metabolic 

crisis, it may not closely match the temporal evolution of cell death itself. Our present 

study in a piglet model suggests that considerable histological cell death may already 

be present during the latent phase (i.e. before overt secondary energy failure). This 

suggests that, during the early phase of secondary energy failure, co-existing earlier 

and progressing histological damage may not relate directly to the surviving 

exchangeable phosphate pool, and that the latent phase may simply represent 

damaged but surviving tissue maintaining normal high energy phosphate levels via 

salvage systems, because 31P MRS is likely to be "blind" to dead cells, from where all 

mobile phosphate has leaked out. Hence we believe that the latent phase represents 

normal high energy phosphate levels in surviving tissue; it is during the latent phase that 

therapeutic interventions are most likely to preserve tissue vitality - but only that of 

tissue which has survived to this stage. 

 

5.1.4 Level of acute energy depletion and the effect of hypothermic 
neuroprotection 

There is some evidence suggesting that hypothermia is less neuroprotective in the most 

severely asphyxiated subjects. In a study of adult traumatic brain injury, moderate 

systemic hypothermia improved the outcome of patients with an initial Glasgow Coma 



 112 

Scale of 5-7 but not for those with 3-4 (116). A study of selective head cooling for infants 

with neonatal encephalopathy showed improved survival with lessened severe disability 

only in infants whose aEEG demonstrated moderate (but not most severe) background 

abnormalities before cooling (8). In our current study, a more severe acute insult 

(greater acute energy depletion) led to a shorter latent phase. If therapy is only effective 

during the latent phase, then the brevity of that stage in the most severely injured 

patients may explain the reduced hypothermic neuroprotection. 

 

5.1.5 Evolution of secondary energy failure and neuroprotective 
treatments 

The therapeutic time window for potentially neuroprotective interventions may vary 

depending on the treatment, as particular neuroprotective agents ameliorate different 

cytotoxic stages (11, 101, 117). Hence the latent phase duration may not directly 

correspond with the window of opportunity for neuroprotection following 

hypoxia-ischaemia. However, once secondary energy failure is established, therapeutic 

interventions may provide no or minimal benefit, because deleterious reactions expands 

rapidly to the downstream cascades of cerebral injury by the end of the latent phase, 

suggesting that the earlier the intervention is, the greater the benefit of neuroprotective 

treatments are.  

Diffusion-weighted imaging of hypoxic-ischaemic cerebral injury has demonstrated 

temporal and anatomical variations in brain water ADC which correlated with NTP/EPP 

(62). Albeit slightly biased towards cortical grey matter, we used effectively whole brain 
31P MRS to monitor the latent phase and the evolution of secondary energy failure: 

hence, we could not discern regional differences in the latent phase. However, the 

regional ADC differences suggest that the therapeutic time window may also vary 

between regions. Our study was not designed to elucidate the optimal therapeutic time 

window for hypothermic neuroprotection. Further studies, utilising a wide range of 

hypothermic delays and durations, are needed to achieve this. Our study was also not 

designed to address the direct relationship between the insult severity and hypothermic 

neuroprotection. However, only in both cooled groups was there a suggestion in cortical 

grey matter that the most severe insults were associated with greater neuronal death 

and more moderate insults with less: further studies are required to investigate the 

relationship between the severity of hypoxia-ischaemia and the efficacy of cooling. 
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5.1.6 Clinical implications 
In infants with neonatal encephalopathy consequential to perinatal hypoxia-ischaemia, 

the exact timing, duration, and magnitude of the intrapartum events are unknown. Using 

our translational model of perinatal asphyxial encephalopathy, the insult severity of 

which can be quantified, we have shown that the latent phase shortens as insult severity 

increases. Thus the time between birth and the onset of secondary energy failure may 

constitute a retrospective index of the severity in intrapartum hypoxa-ischaemia.  

Recently, large scale clinical trials of therapeutic hypothermia following perinatal 

hypoxia-ischaemia have confirmed that intervention within the first 6 hours after birth 

reduces death and severe disability at 18 months after birth (12). The possibility of only 

a brief latent phase in the most severely injured patients, who had very abnormal 

background activity on the pre-randomisation aEEG, may explain the reduced 

hypothermic neuroprotection in such infants (8). These trials, whilst results are 

encouraging, highlight the need to select candidates for intervention, excluding those 

who are unlikely to benefit, and also to tailor specific treatments to individual infants in 

order to fully optimise neuroprotection.  

Very early 31P MRS may help define the severities of a preceding hypoxic-ischaemic 

insult and the consequential secondary energy failure (54), however, given the clinical 

problems associated with very early application of this modality to encephalopathic 

infants, it is important that experimental research focuses on relationships between 

quantitative 31P MRS and other magnetic resonance biomarkers, such as 1H MRS and 

ADC, and cotside tools such as aEEG. 

 

5.1.7 Strengths and limitations of the study 
We used acute energy depletion as an index of the insult severity, because our group 

has reported that this index correlates with the severity of secondary energy failure (42) 

and neuronal death (118) in this model. Throughout the present study, we aimed for 

insults of similar severity by using a standardised protocol employing continuous31P 

MRS to monitor β-NTP in real time during the acute hypoxic-ischaemic insult: however, 

there were variations in the biological response to both transient hypoxia-ischaemia and 

resuscitation. Such variability, often encountered in the clinical practice as well, may 

explain a wide range of outcome severities in infants with neonatal encephalopathy 

consequential to perinatal hypoxia-ischaemia. It may be important to understand the 

infant specific biological response to the stress as well as the insult morbidity itself to 
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improve the diagnostic accuracy and neuroprotective effect of therapies. In the currents 

study, we were unable to maintain our model for more than 60 hours in total for ethical 

and practical reasons. Consequentially it is possible that the severity of both secondary 

energy failure and histological injury may have been worse than that measured. It is 

also important to note that, unlike in our model, the precise timing of perinatal 

hypoxia-ischaemia is generally unclear in clinical practice. Further studies in our model 

may help establish biomarkers, which indicate the timing, type and depth of insults.        

Multivariate analysis adjusting for the temperature groups demonstrated correlation 

between neuronal death and acute energy depletion only in cortical grey matter. On-axis 

reception sensitivity of a circular MRS surface coil (radius r) decreases with coil distance 

(d) as r2/(r2 + d2)3/2 with comparable behaviour off-axis (119): elliptical surface-coil 

sensitivity also decreases similarly. Hence, the observed acute energy depletion may 

have been more representative of the insult experienced by the cortical grey matter 

rather than the deep grey matter. Characteristic intrinsic factors of the deep grey matter 

in the developing brain, such as the high metabolic rate and overexpression of 

glutamate receptors and nitric oxide synthase, may render this region highly susceptible 

to perinatal hypoxia-ischaemia, potentially yielding different consequences from the 

cortical grey matter (120-122). In addition, our previous histological analysis on the 

same experimental subjects demonstrated that the optimal protection for the cortical 

grey matter was observed at 33ºC, whereas the deep grey matter was most protected at 

35ºC (49), suggesting potentially different optimal temperature values for 

neuroprotection in different cerebral regions; the relationship between the insult severity 

and the outcome measure might also be affected by cooling. 

 

5.1.8 Conclusions 
We have shown that increasing insult severity is associated with shortening of the 

subsequent latent phase, and more severe secondary energy failure and neuronal 

damage in the cortical grey matter. The severity of secondary energy failure correlated 

linearly with neuronal mortality. The brevity of the latent phase in subjects with severe 

perinatal hypoxia-ischaemia may explain the apparently reduced hypothermic 

neuroprotection in the most severely asphyxiated newborn infants. Further work is 

needed to investigate the relationship between the severity of the insult and the efficacy 

of cooling. It is also important to develop cotside tools providing early measures which 

correlate with the impairment of brain energy generation. 
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5.2 Energy metabolism during the latent phase and early 
evolutional period or secondary energy failure 

 
5.2.1 Summary 
We have proved the hypothesis that subtle variation in global energy metabolites during 

the latent phase is associated with the severity of secondary energy failure even before 

the overt evolution of secondary energy failure. The findings of this study are discussed 

in this chapter. 

 

5.2.2 Key findings from the study 
Following resuscitation, in subjects with favourable outcome, PCr/EPP recovered to 

higher than its baseline level (overshoot); in subjects with unfavourable outcome, 

maximum recovery in PCr/EPP was lower than baseline and lower than in subjects with 

favourable and intermediate outcomes. Recovery PCr/EPP correlated linearly and 

negatively with both acute insult severity and baseline PCr/NTP. These results suggest 

that recovery in energy metabolites shortly after resuscitation may provide an early 

biomarker for the tissue viability. PCr recovery overshoot may indicate a protective 

response to hypoxia-ischaemia leading to cell recovery, survival and protection against 

subsequent stress. In addition, baseline cerebral metabolism (PCr/NTP) may identify 

vulnerable subjects and cerebral regions prior to invasive surgery. 

 

5.2.3 Changes in high energy phosphates during transient 
hypoxia-ischaemia, latent phase and secondary energy failure 

A range of compensatory systems exist to maintain the tissue metabolism under the 

shortage or lack in energy substrates. For example, the creatine kinase reaction can 

generate ATP from PCr and adenosine diphosphate at sites of high energy demand 

(123) constituting a temporal and spatial buffering system for cellular energy stores (124, 

125). In our study, a rapid reduction in PCr/EPP was observed only during the first 10 

minutes of hypoxia-ischaemia, whereas NTP/EPP declined slowly throughout the insult, 

suggesting that NTP was initially maintained at the expense of PCr via the creatine 

kinase reaction. We observed a similar sequence in the reduction of PCr/EPP and 

NTP/EPP during secondary energy failure, suggesting that creatine kinase was 

employed to initially but temporarily maintain the NTP level even during this secondary 
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phase of metabolic derangement. Studies by our group and others have suggested that 

secondary energy failure occurs concomitantly with irreversible, terminal stage tissue 

injury (45, 53, 78, 79). Although this phase may not directly reflect the consequence of 

on-going cellular death, our current results also suggest that secondary energy failure is 

a consequence of a substantial tissue fraction, which survived acute hypoxia-ischaemia 

only to later undergo further metabolic derangement, eventually leading to more cell 

death and tissue loss. Further studies need to address mitochondrial functions during 

evolutional phases of secondary energy failure. 

 

5.2.4 Cerebral stress response after the commencement of resuscitation 
and PCr recovery overshoot 

When all experimental subjects were analysed together, resuscitation led to the 

recovery in PCr/EPP to the baseline level 2-8 hours following transient 

hypoxia-ischaemia, whereas neither NTP/EPP nor Pi/EPP fully recovered. Group 

analysis revealed that the “full recovery” of PCr/EPP was due to the combined effects of 

incomplete recovery in the “severe" secondary energy failure group and recovery 

beyond baseline levels for “no" secondary energy failure: in the latter piglet group, 

PCr/EPP 2-8 hours after resuscitation was higher than at the baseline and higher than 

for subjects with “severe" secondary energy failure. Even during the latent phase, the 

neurotoxic cascade (the death programme) and the recovery process induced by 

reperfusion (the rescue programme) compete to determine the extent of the eventual 

cerebral injury (51-53, 72, 126-128).  

 

Brief PCr recovery overshoot, quantified either as the absolute PCr concentration or 

measured relative to NTP, is considered to be one of such stress responses widely 

recognised in skeletal muscle (129, 130) and myocardium (131-136). However, it 

remains unclear if this phenomenon is beneficial, detrimental, or inconsequential. In 

skeletal muscle, endurance training up-regulates PCr recovery and improves exercise 

performance (129), whereas in cardiac muscle, PCr recovery overshoot following 

ischaemia and reperfusion has been related both to adversities including depressed 

contractile function (“myocardial stunning”), poor ATP restoration, and worse 

histological injury (132, 137), and to favourable remote effects such as more efficient 

energy consumption and tolerance to forthcoming potentially lethal hypoxia-ischaemia 

(“ischaemic preconditioning”) (133-135). Although cerebral PCr recovery overshoot 
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following hypoxia-ischaemia has not been described previously, several stimuli such as 

hypothermia and creatine supplementation, both of which are potent neuroprotective 

treatments, induce an elevation in cerebral PCr (138-140). In our current study, the 

recovery in PCr/EPP above the baseline level occurred only in the subject with "no" 

secondary energy failure, and the PCr/EPP level correlated linearly and negatively with 

the insult severity, suggesting that PCr recovery overshoot in brain is a welcome 

response to hypoxia-ischaemia potentially heralding cell recovery and survival. Given 

that induced high cerebral PCr (e.g. incurred by hypothermia or creatine 

supplementation) is associated with increased resistance to hypoxia-ischaemia, 

cerebral PCr recovery overshoot following mild hypoxia-ischaemia might also protect 

against subsequent potentially lethal stressors.  

 

Our study was not designed to investigate the mechanism of PCr recovery above 

baseline in the developing brain. However in the skeletal muscle, this stress response is 

attributed to delayed downgrading of oxidative phosphorylation from the activated high 

demand status (130). In myocardium, a potential explanation is mitochondrial PCr 

synthesis proceeds unperturbed but deficiency in creatine kinase specific within 

cytoplasm due to oxygen radical toxicity reduces PCr utilisation (131, 137). Another 

possibility is that cardiac function is down regulated either passively due to severe 

damage or actively as a “hibernation period” for the stressed tissue (141). A transient 

reduction of intracellular adenine nucleotides by loss into the interstitial and vascular 

space observed in myocardium following hypoxia-ischaemia could also explain why 

neither NTP/EPP nor Pi/EPP regained baseline levels after the insult (142, 143). Indeed, 

in the developing brain, a transient, reversible reduction in total cerebral adenine 

nucleotides has been observed following hypoxia-ischaemia although the relationship 

with PCr recovery level was not investigated (79, 128). However given the prolonged 

PCr recovery above baseline observed in the current study, it is possible that the 

underlying mechanism may be different from that in the skeletal and cardiac muscle.  

 

We also observed that lower baseline PCr/NTP was associated with higher recovery 

PCr/EPP. Although we used term born piglets of similar size and maturation, high brain 

PCr/NTP under normal physiological conditions may imply differences in maturity, 

metabolic activity and subsequent vulnerability to hypoxia-ischaemia. Interestingly, 

pre-existing low PCr (relative to NTP or creatine) leads to a greater increase in PCr 
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following exercise (skeletal muscle) and creatine supplementation (skeletal muscle and 

brain) (130, 144, 145). Further studies are required to elucidate the relationship 

between cerebral PCr recovery overshoot and background metabolism. 

 
5.2.5 Clinical implications 
Early prediction of the extent of cerebral injury following transient hypoxia-ischaemia is 

desirable for the refining and appropriate targeting of neuroprotective therapies in the 

newborn. Our current results suggest that subtle changes in the global brain PCr/EPP 

and Pi/EPP during the latent phase (2-8 hours after resuscitation) can discriminate 

subjects which will later develop minimal, moderate and severe secondary energy 

failure. 

 

5.2.6 Limitations and advantages of the study 
The number of subjects (particularly controls) and the interval of serial MRS acquisitions 

were limited for ethical and practical reasons. Our group has reported previously that 

PCr remains unchanged relative to the total mobile phosphate over 48 hours in sham 

operated subjects (42). This mirrors human studies in which PCr, Pi, NTP, and total 

mobile phosphate concentrations changed only gradually up to the age of 20 months 

old (146). The duration of our present study was shorter compared to those in our 

previous reports, which kept the piglet within the bore over 48 hours after resuscitation 

(42, 47): it is possible that subjects with no or moderate secondary energy failure may 

have eventually developed severe secondary energy failure with longer observations.  

 

5.2.7 Future studies 
We have demonstrated, for the first time, the presence of cerebral PCr recovery 

overshoot after hypoxia-ischaemia. Although this phenomenon appeared to be a 

favourable event leading to the optimal metabolic function during the sub-acute phase, 

detailed associations between injury reactions and energy metabolism need to be 

delineated (i) to improve understanding of injury cascade, (ii) to develop more precise 

diagnostic tools, and (iii) to increase the beneficial effect of neuroprotective treatments. 
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5.2.8 Conclusions 
PCr recovery overshoot has been reported elsewhere in skeletal muscle after exercise 

and in myocardium after reperfusion. The presence of cerebral PCr recovery above 

baseline in a newborn porcine model of asphyxial encephalopathy was demonstrated 

using serial 31P MRS: piglets in which secondary energy failure did not develop 

displayed supra-baseline recovery in PCr/EPP. Our findings give novel insight into the 

cerebral stress response to hypoxia-ischaemia and suggest that, as well as Pi/EPP, 

cerebral PCr/EPP might be an early favourable biomarker before the evolution of 

secondary energy failure following perinatal hypoxia-ischaemia. 
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5.3 Temporal and spatial evolution of secondary energy failure 
and cerebral injury 

 

5.3.1 Summary 
We have proved the hypothesis that evolution of secondary energy failure observed 

using ADC maps was spatially heterogeneous, and that early regional ADC values 

predicted tissue damage up to 18 hours in advance of termination. Although the 

predictive value of magnetic resonance biomarkers for histo-pathological brain injury 

appeared to be optimal with global PCr/Pi, regional ADC provided equivalent predictive 

values to global PCr/EPP and Pi/EPP, and may be clinically useful as an alternative to 
31P MRS biomarkers. The findings of this study are discussed in this chapter. 

 

5.3.2 Key findings from the study 
Global cerebral energy metabolite levels observed using 31P MRS were confirmed to be 

a robust biomarker for histo-pathological brain damage, with PCr/Pi providing the 

optimal estimation of existing and forthcoming brain damage. Although regional ADC 

values failed to demonstrate superior predictive value to global PCr/Pi, ADC showed 

significant regional heterogeneity during the evolutional phase of secondary energy 

failure. Given that global 31P MRS biomarkers predominantly reflected tissue changes in 

the superficial architecture corresponding to regions covered by the surface coil, maps 

of ADC may additionally provide spatial information especially in deep brain structures. 

Maps of T2 relaxation time showed only limited predictive value of brain damage, 

however, its temporal increase was predominantly associated with apoptotic cellular 

death. Given that T2 relaxation time is mainly determined by changes in the 

water-macromolecule ratio within the tissue (69), T2 prolongation may well be observed 

for tissue injury where other types of cellular death is predominant. Further investigation 

is required to confirm whether our current finding was caused by chance or by 

characteristic changes in tissue integrity associated with apoptotic cellular death.  

 
5.3.3 Diagnostic value of global and regional magnetic resonance 

biomarkers for histo-pathological brain injury 
We have confirmed that ADC values can provide precise estimation of 

histo-pathological brain injury up to 18 hours in advance of termination, the predictive 
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value of which appeared to be relatively more robust compared to the global NTP/EPP. 

However, unlike our initial hypothesis, the maps of ADC failed to demonstrate superior 

predictive values for histo-pathological brain damage to global PCr/Pi despite the 

advantage in the spatial information. Our group has utilised the31P MRS variables by 

quantifying the concentration of energetic metabolites relative to EPP. The reduction in 

PCr/EPP and the increase in Pi/EPP precede the decline in NTP/EPP, as the ATP 

concentration is maintained by utilising the PCr pool via the creatine kinase reaction 

(124, 125). Although the reduction in NTP/EPP is more likely to be linked with the 

terminal energy derangement of the cerebral tissue (147), this may not provide highly 

sensitive early marker of delayed tissue injury. Given that PCr/EPP and Pi/EPP have 

been demonstrated to be more sensitive early markers compared to NTP/EPP (54), the 

metabolite ratio between PCr and Pi may reasonably provide an even more sensitive 

biomarker to on-going tissue injury during the acute phase. Further studies are required 

to compare the predictive value of PCr/Pi, ADC and lactate relative to N-acetylaspartate 

(Lac/NAA) obtained using 1H MRS, the last of which is currently recognised to be the 

most sensitive and specific magnetic resonance biomarker for the neurodevelopmental 

outcome after perinatal hypoxia-ischaemia in the clinical practice (58). 

 

Despite the excellent predictive value of global PCr/Pi for the endpoint brain injury, 

currently few research and clinical institutions can obtain 31P MRS from the newborn 

brain because of its high demand for the hardware, expertise and skilled personnel as 

well as the lack in the spatial information and the relatively long acquisition time. In 

contrast, ADC maps can be acquired in most clinical MRI scanners, rendering this 

modality one of most useful early biomarker to support tailored neuroprotective 

treatments after perinatal hypoxia-ischaemia. Although there remained uncertainty 

around the optimal timing of the scan and the interpretation into clinical outcome 

especially because of the pseudo-normalisation of ADC several days after 

hypoxia-ischaemia, our current study demonstrated that, during the evolutional phase of 

secondary energy failure, regional ADC values can be used to estimate the 

histo-pathological brain injury in the corresponding region both at the time of and up to 

18 hours after the MRI study. To clinically apply early prediction of cerebral injury 

following hypoxia-ischaemia using the maps of ADC, further translational studies are 

required to give ranges in ADC values corresponding to normal and abnormal outcomes 

for each region, infant’s maturational stage, and time after birth. Experimental studies 
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with longer observational intervals are required to delineate the optimal time window for 

ADC to predict the associated brain injury.  

Our current study was initially designed to assess correlations between 

histo-pathological brain injury and serially obtained magnetic resonance biomarkers at 

specific time intervals before termination of each study, so that clinicians may be able to 

monitor and predict the type and depth of tissue damage both at the moment of and 

after hours of the magnetic resonance data acquisition. However, we also analysed the 

time-series data according to the elapsed time after resuscitation, which may provide 

useful information for clinical assessment of injury severity. When the analysis was 

performed with adjustment for the insult severity and the survival time after resuscitation, 

both global 31P MRS biomarkers and regional ADC values showed modest correlation 

with the end point brain injury, however, the level and pattern of positive findings were 

less robust compared to the former approach, which was based on the data classified 

according to specific time intervals before termination. The difference in the findings 

might be explained by previous studies which have found that brain injury on 

histopathology increases with longer survival times within the first few days after the 

acute event (148, 149); other bias might also influence the predictive value of magnetic 

resonance biomarkers, as, in our study, the dependence of histo-pathological outcomes 

on the insult severity and the time interval after resuscitation was relatively weak. One 

limitation of the current study is that, although we intended to correlate serial magnetic 

resonance biomarkers with histo-pathological samples harvested at different time points 

with different levels of energy failure, we did not have sufficient numbers at each time 

point for robust analysis. Future studies need to assign multiple subjects to several 

predetermined termination points to remove the probable bias in our current study.   

 
5.3.4 Spatial changes of ADC during the evolutional process of secondary 

energy failure 
A previous study from our group demonstrated that, in a similar piglet model of perinatal 

asphyxial encephalopathy, ADC changes in the superficial cerebral cortex and white 

matter precisely surrogate the decline in high energy phosphates quantified using 31P 

MRS (62). Based on this observation, in this current study, we used the maps of ADC to 

monitor regional evolution of secondary energy failure in the piglet model. Consistent to 

this assumption, both global NTP/EPP and ADC values in the cortical grey matter and 

peripheral white matter were lower than baseline from 1 to < 3 hours after resuscitation. 
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Serial observations in regional ADC values suggested that the evolutional timing of 

secondary energy failure was spatially heterogeneous, presumably reflecting the 

inter-subject and inter-regional variations in the reaction to both hypoxia-ischaemia and 

resuscitation. Rapid reduction in ADC values in the cerebral cortex and peripheral white 

matter was observed predominantly in the sagittal and parietal watershed regions 

between anterior and middle cerebral arteries; these changes were followed by gradual 

ADC declines in the temporal lobe, deep grey matter and central white matter after 6 to 

<12 hours of resuscitation. ADC values at baseline were highest in the central white 

matter and lowest in the deep grey matter, the contrast of which was lost shortly after 

hypoxia-ischaemia, supporting the rapid change in the water diffusion within the 

susceptible cerebral regions of the watershed cortex, white matter and the posterior 

limb of the internal capsule. Future studies need to address the relationship between 

types and depth of insult, and spatial pattern of ADC decline with time. 

 

5.3.5 T2 maps during acute phase after perinatal hypoxia-ischaemia 
In contrast to the information obtained from global 31P MRS and ADC, T2 maps showed 

only weak predictive values of histo-pathological brain injury. At baseline, there was a 

considerable inter-regional variation in the T2 relaxation time as estimated from the 

contrast on T2 weighted imaging from the newborn brain. However, such an 

inter-regional variability was lost shortly after hypoxia-ischaemia and resuscitation. 

Although we rarely observe marked reductions in T2 contrast within a few days of 

perinatal hypoxia-ischaemia in clinical cases, quantitative approach may enable to 

identify subtle reductions in T2 contrast objectively. Relatively small temporal changes 

of this variable following hypoxia-ischaemia may render this measure suboptimal 

surrogate biomarker for the tissue injury, however, it was interesting that the T2 

relaxation time was predominantly associated with apoptotic cell death. Although further 

studies are needed to elucidate the exact micro-structural change of apoptotic cell death 

associated with T2 prolongation, in future, T2 maps may additionally provide specific 

information about delayed and prolonged tissue damage via apoptosis when it is used 

in combination with other magnetic resonance biomarkers. 

 
5.3.6 Clinical implications 
Monitoring of the regional evolution of secondary energy failure using the maps of ADC 

may help predict histo-pathological brain injury corresponding to both the same timing of 
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and up to 18 hours after the imaging acquisition. For example, if regional ADC suggests 

the survival of considerable fraction of neurons at the time of scan, and the likelihood of 

profound cerebral injury after 18 hours without efficient treatment, one may be able to 

introduce invasive but efficient neuroprotective treatments even out of generally 

accepted window of opportunity for the treatment. Clinically reliable threshold levels of 

ADC drops need to be established, with which one can predict later brain injury before 

overt, global drops in ADC are observed reflecting the development of secondary 

energy failure. 

 

5.3.7 Limitations of the study 
The current study used variable experimental durations after resuscitation to investigate 

the relationship between histo-pathological brain injury and magnetic resonance 

biomarkers obtained a certain time interval before termination, and hence, we were 

unable to identify specific biomarkers and timings for acquisition, which provide optimal 

predictive value for the endpoint histo-pathological brain injury. Because most animals 

were sacrificed between 24 and 48 hours after the commencement of resuscitation, we 

were unable to assess the predictive value of magnetic resonance biomarkers both later 

than 24 hours after resuscitation and earlier than 24 hours before termination. T2 maps 

were obtained within a limited number of subjects, which may in part be responsible for 

their lack in predictive values for histo-pathological brain injury using this modality. In 

addition, we were unable to include temporal and spatial changes in FA for the current 

analysis, which might provide optimal diagnostic utility in the white matter.  

Acquisition intervals for magnetic resonance biomarkers were limited for technical 

reasons, resulting in uncertainty around the optimal timing in acquiring magnetic 

resonance biomarkers to predict the outcome. Our assumption that regional variations 

of ADC following hypoxia-ischaemia reflect local energy metabolism might be wrong 

given the superior predictive value of global PCr/Pi compared to regional ADC for 

regional histo-pathological injury. It was of note that the correlation between ADC and 

histo-pathological injury was relatively weak in small deep structures such as the 

caudate nucleus and the posterior limb of the internal capsule, which could be attributed 

to the inaccuracy in calculating ADC values in small RoIs. Further studies are needed 

using 31P MRS imaging to identify associations between regional energy metabolism, 

ADC values, long term MRS and histological outcome (150).   
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5.3.8 Future studies 
Clinical studies have to establish the relationship between ADC changes at different 

time point after resuscitation and eventual patters and depths of injury using both 

conventional and volumetric MRI as endpoint markers. Although T2 maps provided 

much less information in predicting the tissue damage, difference in the temporal 

changes with a range of apoptotic cell death may be worth investigation to see whether 

these maps are useful to discriminate specific types of cellular death and their early 

signs especially in conjunction with other magnetic resonance biomarkers. 

 
5.3.9 Conclusions 
Findings in the maps of ADC following transient hypoxia-ischaemia, although highly 

sensitive during the acute phase, have thus far considered as a difficult variable to 

interpret into clinical information because of their dynamic temporal changes after 

hypoxia-ischaemia (64). However, our current study highlighted that absolute ADC 

values obtained during the evolutional phase of secondary energy failure can precisely 

predict the tissue damage at and up to 18 hours after the data acquisition; analysis with 

the time-series data after resuscitation showed modest predictive values of 31P MRS 

and ADC for the end point brain injury as early as 3 to 6 hours after resuscitation. Future 

studies have to validate the level of ADC change corresponding to mild, moderate and 

severe tissue damage for each time point after hypoxia-ischaemia, so that the natural 

course can be predicted with early, subtle changes in regional ADC values. 
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Chapter 6: Overall conclusion and implication of the findings 
from this thesis 

 
6.1 Conclusions 
 
A more severe acute insult led to a shorter latent phase duration, more severe 

secondary energy failure and more deleterious brain damage. Although energy 

metabolism recovers to the normal level at a glance, subtle increase in PCr and Pi 

relative to EPP may identify subjects with favourable and unfavourable outcomes in 

energy metabolism. During the evolutional phase of secondary energy failure, global 

PCr/Pi was the most sensitive early marker which provided robust prediction of endpoint 

histo-pathological brain injury up to 24 hours in advance of termination. Regional ADC, 

although inferior to global PCr/Pi, also demonstrated sufficient predictive values for the 

endpoint brain injury with spatial resolution. Evolution of secondary energy failure was 

heterogeneous between subjects and cerebral regions, according to the variations in 

the severity of hypoxia-ischaemia, susceptibility of specific subjects and regions, and 

the response to resuscitation.  

 

Maps of ADC have been utilised as a reliable surrogate biomarker for high energy 

phosphates; in our study, regional ADC obtained up to 18 hours before termination 

predicted later neuronal, glial and axonal injury. Regional ADC also predicted the 

endpoint neuronal injury and microglial reaction as early as 12 hours after resuscitation, 

the period of which is within the latent phase for most subjects when assessed by global 

NTP/EPP. Thus far, ADC values following hypoxia-ischaemia have been considered to 

be of limited utility because of their dynamic and multiphasic changes after the acute 

event (64). However, our current findings suggested that, when obtained during the 

evolutional phase of secondary energy failure i.e. within up to 48 hours after 

resuscitation, ADC values may provide highly useful information to predict the pattern 

and severity of tissue damages. Further evidence is required to establish ADC ranges 

corresponding to specific outcomes at different stages after hypoxia-ischaemia. 
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6.2 Latent phase, secondary energy failure and tissue 
homeostasis 

 
The discovery of secondary energy failure following hypoxia-ischaemia in late 1980s to 

1990s (42-44) gave an illusion to clinicians and investigators as if cerebral energy 

metabolism recovers to the normal function after successful resuscitation. However, 

despite sufficient supply in oxygen and energy substrates to the brain, the latent phase 

is followed by an overt loss of high energy phosphate after 8 to 24 hours of resuscitation. 

Recent experimental and clinical studies which addressed the evolutional period of 

secondary energy failure suggested the presence of substantial metabolic derangement 

and tissue destruction has been confirmed even before or during the early evolutional 

stage of secondary energy failure (45, 53, 78, 79), highlighting the importance of 

understanding injury reactions which are processed during the latent phase. Given the 

wide range of deleterious chemical reactions which are activated shortly after 

reoxygenation and reperfusion (41, 151), it is more likely that, following severe 

hypoxia-ischaemia but before the evolution of overt secondary energy failure, cerebral 

tissue is maintaining a normal balance between energetic metabolites only by 

maximising salvage systems to compensate for damaged cytoplasmic organelle such 

as mitochondria and endoplasmic reticulum (41, 101). Subtle increase in PCr and Pi, 

and subnormal ADC levels observed during the latent phase may be the signs 

suggestive of on-going competitions between deleterious injury program and protection 

program. 
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6.3 Magnetic resonance biomarkers and histo-pathological 
findings 

 
Global 31P MRS biomarkers and regional ADC showed good predictive values for later 

histo-pathological brain injury over most cerebral regions. However, the association 

between these biomarkers and CD68 expression was mainly observed within superficial 

part of the brain, presumably because of the higher incidence of CD68 positive 

microglia and vessels in the cortical grey matter compared to the deep grey matter.  

Although the spatial information provided by ADC maps may improve the quality of 

diagnosis to identify regionally heterogeneous evolution of secondary energy failure, 

agreements between regional ADC values and histo-pathological injury appeared to be 

relatively worse in small deep regions such as the caudate nucleus and the posterior 

limb of the internal capsule, suggesting that the placement of small RoIs for ADC maps 

(and potentially for T2 maps) is technically unreliable. Our current findings need to be 

confirmed in future experimental studies using consistent study durations. Although the 

regional T2 relaxation time was insensitive to most cerebral injury observed during the 

acute phase, it showed specific sensitivity to apoptotic cell death in the cortical grey 

matter; these maps may be used to predict prolonged tissue damage via apoptosis 

when they are combined with other magnetic resonance biomarkers. 
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6.4 Monitoring of secondary energy failure 
 
Because of spatially highly heterogeneous evolution of secondary energy failure, the 

maps of ADC appear to be more suitable to monitor the energy metabolism after 

hypoxia-ischaemia. Thus far, it remains unclear why temporal changes in ADC mimics 

those in high energy phosphates; it is presumed that the maintenance of the normal 

spatial distribution for intracellular and extracellular water is of high energy demand, and 

that, with energy deficit of even short period, significant reductions in water diffusion can 

be observed (152). In our current study, early absolute ADC values obtained within 48 

hours of birth predicted the natural histo-pathological outcome even without referring to 

the baseline data. Early reductions in regional ADC to subnormal levels are suggestive 

of later development of substantial cerebral injury.  

Although the predictive value of global 31P MRS biomarkers, especially PCr/Pi, was 

optimal, these markers have significant clinical limitations, because currently, only few 

institutions have access to a spectrometer which can obtain 31P MRS from the newborn 

brain. In contrast, ADC maps are available using most existing MRI scanners within a 

short period. Further experimental studies may help promote ADC maps during the 

evolutional phase of secondary energy failure into a handy, standard biomarker after 

perinatal hypoxia-ischaemia. Studies in 31P MRS also need to establish absolute 

quantification of phosphates from the whole brain to discriminate the tissue loss from 

reductions in phosphates, and also to give temporal changes in regional 31P MRS 

measures using MRS imaging.  
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6.5 Secondary energy failure and cerebral protection 
 
Our current findings suggested that the severity of acute insult is positively correlated 

with the brevity of the latent phase duration, which is likely to include the therapeutic 

time window for hypothermia and most other neuroprotective treatments. 

Neuroprotective interventions should be commenced as early as possible given the 

evidence to support the process of deleterious chemical reactions even during the latent 

phase (11). For subjects who experienced the most severe hypoxia-ischaemia, very 

early interventions such as pre-hospital cooling may increase the opportunity to respond 

the treatment (153). Maps of ADC, by providing the spatial pattern of metabolic 

derangement, may help improve the choice of treatments, as we have previously 

reported that different body temperatures are likely to lead to spatially different 

protection patterns of the cerebral tissue (49). Similarly, if early evolution of apoptotic 

cell death is noticed using T2 maps, additional pharmacological treatments targeting 

pro-apoptotic proteins can be applied as a tailored treatment (41, 154). 
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6.6 Strength and limitation 
 
We were able to obtain a range of magnetic resonance biomarkers including 31P MRS 

and maps of ADC and T2 relaxation time. However, because of the limited acquisition 

cycle, we were unable to include 1H MRS, which has been demonstrated to be the 

optimal clinical biomarker to predict the neurodevelopmental outcome after perinatal 

hypoxia-ischaemia (58). For the current study, we were able to use an established piglet 

model of perinatal asphyxial encephalopathy (42, 47, 49, 155, 156). This model was 

established as a clinically relevant translational model where intensive life support can 

be provided mimicking the clinical intensive cares for sick newborn infants. Bridging 

biomarkers such as near infrared spectroscopy, aEEG, MRS and MRI can be obtained 

and validated for the potential use in the human newborn infants. In addition, the use of 

a large animal enabled us to compare magnetic resonance biomarkers and 

histo-pathological outcomes in different cerebral regions. In contrast, because our 

model induces terminal anaesthesia, we were unable to assess the neurological 

functioning associated with spatial injury patterns observed on magnetic resonance 

biomarkers and histo-pathologically assessed brain injury. In addition, our model still 

varies from human newborn infants who experienced perinatal hypoxia-ischaemia, 

where the onset, pattern, repetition and depth of hypoxia-ischaemia are various and 

difficult to extrapolate. Another limitation is that, for the ethical and practical reason, we 

were unable to maintain the model longer than 48 hours after the commencement of 

resuscitation, resulting in the lack of observations on magnetic resonance biomarkers 

during the period when ADC values are likely to start to pseudo-normalise.  
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6.7 Future studies 
 
Although our current findings suggested the benefit of using regional ADC as a 

surrogate biomarker for cerebral tissue energy metabolism and subsequent tissue 

damage, further validation studies in both preclinical and clinical settings are required (i) 

to confirm the relationship between regional ADC and phosphate levels assessed using 

MRS imaging; (ii) to elucidate typical fractional ADC reductions from the institutional 

standard corresponding to normal, mild, moderate and severe later tissue destructions; 

and (iii) to confirm the optimal placement of RoIs which provides reproducible measures 

of ADC in each region. In addition to the standardisation of normal and abnormal ranges 

of ADC for each maturational stage, it is also of great interest to investigate whether 1H 

MRS or 1H MRS imaging can provide better surrogate biomarker for tissue energy 

derangement and ultimate tissue injury. Given that temporal changes in 1H MRS 

metabolites such as lactate/NAA show monotonic increase after severe 

hypoxia-ischaemia, this measure can be useful biomarker especially during the period 

when ADC shows pseudo-normalisation (58).   
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6.8 Implication of the findings from this thesis 
 
Infants with most severe neonatal encephalopathy may benefit from induction of 

therapeutic interventions as early as possible because of the extremely short 

therapeutic time window. Normal energetic metabolites obtained later than 24 hours of 

hypoxia-ischaemia may be indicative of relatively longer latent phase and optimal 

metabolic and histo-pathological outcomes. By identifying subtle abnormalities in global 

cerebral PCr/Pi as well as regional ADC, the severity of secondary energy failure and 

histo-pathological cerebral injury can be predicted. Future studies need to address the 

threshold of magnetic resonance biomarkers suggestive of later severe cerebral injury 

and the timing when the predictive value of ADC is lost due to pseudo-normalisation.  
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Supplemental Table 4.3-1: Temporal changes in 31P MRS biomarkers after hypoxia-ischaemia 

  Time after resuscitation (h) 

  Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

 (n) (18)  (18)  (18)  (18)  (17)  (14)  (9)  (7)  (5)  (4)  

NTP/EPP Mean 0.21  0.19  0.19  0.18  0.18  0.15  0.15  0.14  0.18  0.15  

 SD 0.03  0.03  0.02  0.03  0.04  0.07  0.04  0.05  0.03  0.06  

 p   0.003  0.003  <0.001  <0.001  0.004  0.002  0.005  0.043  0.111  

PCr/EPP Mean 0.23  0.21  0.21  0.18  0.17  0.14  0.13  0.13  0.13  0.12  

 SD 0.02  0.04  0.03  0.05  0.05  0.06  0.06  0.04  0.03  0.05  

 p   0.188  0.061  0.001  0.001  0.001  0.004  0.010  0.020  0.044  

Pi/EPP Mean 0.19  0.30  0.27  0.34  0.37  0.49  0.48  0.51  0.43  0.51  

 SD 0.03  0.11  0.08  0.14  0.15  0.24  0.20  0.19  0.09  0.23  

 p   <0.001  0.001  <0.001  <0.001  0.001  0.003  0.007  0.010  0.065  

PCr/Pi Mean 1.22  0.84  0.87  0.66  0.60  0.43  0.40  0.31  0.34  0.30  

 SD 0.29  0.40  0.32  0.38  0.38  0.37  0.39  0.20  0.14  0.19  

 p   <0.001  0.001  <0.001  <0.001  <0.001  0.001  0.002  0.007  0.006  

Statistical significance was assumed with p-values < 0.01 (Dunnett test). 
P-values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
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Supplemental Table 4.3-2: Temporal changes in regional ADC after hypoxia-ischaemia 
   Time after resuscitation (h) 

   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

C
or

tic
al

 g
re

y 
m

at
te

r 

Sagittal top 

n 18  18  18  17  16  11  9  5 b 5 b 4  
Mean 1.114  0.950  0.832  0.778  0.742  0.685  0.653  0.595  0.562  0.650  
SD 0.099  0.241  0.285  0.323  0.352  0.262  0.229  0.130  0.130  0.101  
p   0.009  0.001  <0.001  0.001  0.001  <0.001  0.001  <0.001  0.001  

Sagittal bottom 

n 18  18 a 18 a 17  16  11  9  5 c 5 c 4 a 
Mean 1.087  0.858  0.771  0.713  0.680  0.570  0.552  0.546  0.499  0.480  
SD 0.072  0.247  0.249  0.259  0.284  0.252  0.225  0.148  0.072  0.096  
p   0.001  <0.001  <0.001  <0.001  <0.001  <0.001  0.002  <0.001  <0.001  

Parietal top 

n 18  18  18  17  16  11  9  5 a 5 a 4  
Mean 1.124  0.950  0.832  0.789  0.766  0.738  0.625  0.625  0.621  0.564  
SD 0.087  0.187  0.273  0.306  0.299  0.264  0.254  0.127  0.096  0.062  
p   0.001  <0.001  <0.001  <0.001  0.001  <0.001  0.001  <0.001  0.001  

Parietal bottom 

n 18  18  18  17  16  11  9  5 d 5 d 4  
Mean 1.121  0.915  0.819  0.746  0.706  0.616  0.554  0.567  0.543  0.538  
SD 0.090  0.213  0.274  0.324  0.319  0.287  0.225  0.125  0.090  0.122  
p   0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  0.001  

Temporal 

n 16  16 a 16 a 15  13  9  8  5 a 5 a 3 a 
Mean 1.162  1.082  1.040  0.967  0.915  0.827  0.849  0.936 b 0.900 b 0.697  
SD 0.085  0.091  0.178  0.213  0.233  0.219  0.229  0.210 c 0.246 c 0.179  
p   <0.001  0.010  0.004  0.003  0.001  0.005  0.069 d 0.071 d 0.044  

Group mean 
Mean 1.120 A 0.950  0.859  0.802  0.769  0.693  0.652  0.654  0.625  0.583  
SD 0.70 D 0.170  0.222  0.254  0.257  0.226  0.195  0.096  0.097  0.074  
p   0.001  <0.001  <0.001  <0.001  <0.001  <0.001  0.001  0.001  <0.001  
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   Time after resuscitation (h) 

   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

Hippocampus 

n 8 B 8  8  7  5  3  2  2  2  2  
mean 1.139  1.063  0.952  0.997  0.889  0.809  0.848  0.832  0.688  0.705  
SD 0.059  0.153  0.192  0.234  0.240  0.166  0.031  0.010  0.261  0.197  
p   0.162  0.034  0.104  0.055  0.052  0.045  0.009  0.230  0.183  

D
ee

p 
gr

ey
 m

at
te

r 

Caudate 

nucleus 

n 15 a 15  15  14  12  9  8  5  5  3  
Mean 1.100 e 0.990  0.864  0.829  0.802  0.702  0.741  0.788  0.730  0.559  
SD 0.072  0.156  0.257  0.253  0.264  0.246  0.160  0.187  0.204  0.217  
p   0.017  0.002  0.001  0.003  0.001  0.001  0.042  0.033  0.096  

Putamen 

n 15 f 15  15  14  12  9  8  5  5  3  
Mean 1.074  0.927  0.769  0.715  0.690  0.675  0.653  0.636  0.620  0.510  
SD 0.076  0.213  0.248  0.283  0.263  0.275  0.183  0.208  0.201  0.179  
p   0.006  <0.001  <0.001  <0.001  0.004  <0.001  0.010  0.009  0.037  

Anterior 

thalamus 

n 15 g 15  15  14  12  9  8  5  5  3  
Mean 1.076  0.985  0.905  0.899  0.864  0.812  0.798  0.741  0.684  0.679  
SD 0.065  0.149  0.255  0.306  0.230  0.262  0.208  0.197  0.218  0.193  
p   0.012  0.014  0.038  0.006  0.006  0.005  0.016  0.013  0.087  

Lateral 

thalamus 

n 15 b 15  15  14  12  9  8  5  5  3  
Mean 0.952 e 0.855  0.745  0.738  0.714  0.707  0.612  0.592  0.591  0.473  
SD 0.057 f 0.172  0.276  0.265  0.237  0.243  0.209  0.259  0.252  0.083  
p  g 0.029  0.008  0.005  0.003  0.009  0.001  0.030  0.028  0.007  

Medial 

thalamus 

n 15 a 15  15  14  12  9  8  5  5  3  
Mean 1.030 b 1.006  0.966  0.950  0.875  0.774  0.740  0.654  0.608  0.554  
SD 0.057  0.091  0.190  0.188  0.203  0.225  0.188  0.236  0.246  0.132  
p   0.370  0.237  0.150  0.015  0.008  0.001  0.022  0.017  0.013  

Group mean Mean 1.046 A 0.952  0.850  0.826  0.789  0.734  0.709  0.682  0.647  0.555  
SD 0.046 B 0.126  0.213  0.218  0.215  0.225  0.168  0.201  0.210  0.155  
p   0.006  0.002  0.002  0.001  0.002  <0.001  0.015  0.013  0.036  
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   Time after resuscitation (h) 

   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

Pe
rip

he
ra

l w
hi

te
 m

at
te

r 

Sagittal  

n 16 a 16  16  15  14  11  9  5  5  4  
Mean 1.076  0.874  0.758  0.720  0.698  0.565  0.546  0.502  0.484  0.550  
SD 0.065  0.243  0.285  0.301  0.291  0.265  0.233  0.050  0.050  0.076  
p   0.006  0.001  0.001  0.001  <0.001  <0.001  <0.001  <0.001  0.001  

Parietal  

n 15 a 15  15  14  13  11  9  5  5  4  
Mean 1.159 e 0.950  0.861  0.800  0.753  0.702  0.664  0.683  0.627  0.601  
SD 0.0.67  0.242  0.289  0.336  0.311  0.280  0.242  0.185  0.097  0.146  
p   0.003  0.001  0.002  0.001  <0.001  <0.001  0.006  0.001  0.009  

Temporal  

n 16 e 16  16  15  14  11  9  5  5  4  
Mean 1.008  0.894  0.786  0.749  0.700  0.677  0.641  0.632  0.570  0.601  
SD 0.124  0.226  0.280  0.310  0.273  0.289  0.307  0.264  2.18  1.75  
p   0.022  0.003  0.005  0.003  0.009  0.009  0.030  0.004  0.003  

Group mean 
Mean 1.079 C 0.909  0.806  0.762  0.724  0.648  0.617  0.606  5.60  5.84  
SD 0.063 E 0.218  0.254  0.288  0.280  0.260  0.238  0.132  0.83  0.88  
p   0.005  0.001  0.001  0.001  0.001  0.001  0.003  <0.001  0.002  
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   Time after resuscitation (h) 
   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

C
en

tra
l w

hi
te

r m
at

te
r 

Superior 

periventricular 

n 15 e 15  15  14  11  9  8  5  5  4  
Mean 0.912  0.850  0.728  0.638  0.590  0.502  0.504  0.530  5.53  5.72  
SD 0.095  0.137  0.214  0.192  0.209  0.153  0.164  0.180  1.90  1.28  
p   0.036  0.003  <0.001  0.002  <0.001  0.001  0.017  0.022  0.026  

Periventricular 

n 14 b 14  14  13  11  9  8  5  5  4  
Mean 0.976  0.897  0.778  0.690  0.640  0.649  0.600  0.628  0.687  0.701  
SD 0.126  0.113  0.231  0.220  0.230  0.227  0.230  0.250  0.219  0.166  
p   0.010  0.002  <0.001  0.002  0.003  0.002  0.041  0.052  0.068  

Posterior limb 

of internal 

capsule 

n 12 b 12  12  11  10  8  6  4  4  3  
Mean 1.152 e 0.882  0.736  0.665  0.671  0.558  0.499  0.570  0.448  0.526  
SD 0.141  0.297  0.297  0.365  0.329  0.197  0.205  0.189  0.066  0.090  
p   0.004  0.001  0.003  0.003  0.001  0.003  0.025  0.001  0.002  

Group mean Mean 0.994 C 0.875  0.755  0.674  0.651  0.569  0.526  0.564  0.563  0.607  
 SD 0.081 D 0.155  0.221  0.232  0.251  0.170  0.171  0.187  0.135  0.120  
 p  E 0.004  0.001  0.001  0.001  <0.001  <0.001  0.007  0.002  0.012  

 
ADC values shown as 10-3

･mm2
･sec-1. 

a-g: statistical significance from within group comparisons with p < 0.05 (a), p < 0.01 (b –d) and p < 0.01 (e-g) 
A-E: statistical significance from between group mean comparisons with p < 0.01 (A-C) and p < 0.001 (D-E) 
Statistical significance was assumed with p-values < 0.01 (Dunnett test). 
P-values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
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Supplemental Table 4.3-3: Temporal changes in regional T2 relaxation time after hypoxia-ischaemia 

   Time after resuscitation (h) 
   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

C
or

tic
al

 g
re

y 
m

at
te

r 

Sagittal top 

n 11  11  11  10  9  8  6  3  3  2  
Mean 66.62  71.62  75.30  78.52  78.26  85.54  98.96  91.91  92.88  100.83  
SD 8.45  11.10  14.68  14.16  16.58  20.02  22.03  25.03  19.20  14.24  
p   0.026  0.021  0.006  0.032  0.026  0.031  0.243  0.083  0.034  

Sagittal bottom 

n 11  11  11  10  9  8  6  3  3  2 a 
Mean 66.04  70.07  72.87  75.77  75.28  83.24  91.00  83.35  82.11  90.36  
SD 9.71  9.98  10.81  12.82  16.19  18.22  16.29  16.78  15.77  6.29  
p   0.002  <0.001  0.001  0.030  0.003  0.005  0.169  0.106  0.098  

Parietal top 

n 11  11  11  10  9  8  6  3  3  2  
Mean 67.54  68.20  69.82  75.53  75.20  80.12  94.06  91.90  90.83  96.73  
SD 11.55  11.72  9.96  14.86  17.02  16.93  18.84  22.39  23.19  7.77  
p   0.650  0.421  0.025  0.096  0.041  0.004  0.049  0.059  0.004  

Parietal bottom 

n 11  11  11  10  9  8  6  3  3  2  
Mean 68.77  69.65  72.16  73.68  74.73  77.88  90.77  83.23  82.48  90.74  
SD 9.81  9.70  9.40  9.76  10.63  14.33  15.81  18.31  17.78  17.44  
p   0.383  0.017  0.001  0.001  0.011  0.002  0.063  0.042  0.148  

Temporal 

n 11  11  11  10  7  6  4  2  2  0 a 
Mean 73.10  77.53  77.75  78.01  79.45  85.84  96.90  79.52  88.12    
SD 11.41  12.16  14.33  11.59  16.82  17.06  24.23  20.16  27.09    
p   0.020  0.009  0.016  0.583  0.308  0.240  0.913  0.436    

Group mean 
Mean 68.41 E 71.41 E 73.58 E 76.30 C 76.13 A 81.85 A 94.21 A 86.99 A 87.26  94.66  
SD 9.69 F 10.43 F 10.93 F 11.98 E 14.42 C 16.48 C 17.86 C 19.42  18.59  11.43  
p   0.005  0.002  0.001  0.017  0.012  0.010  0.145  0.074  0.026  
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   Time after resuscitation (h) 
   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

Hippocampus 

n 11 C 11 G 11 A 10 A 8 B 7 B 5  3  3  1  
mean 65.19 G 69.74 H 68.77 G 71.76 D 76.37 D 81.43 D 83.59  73.48  74.82  78.80  
SD 8.36  8.90  7.47  8.33  13.49  15.62  16.21  11.60  10.94    
p   0.043  0.048  0.003  0.001  0.006  0.020  0.105  0.052    

D
ee

p 
gr

ey
 m

at
te

r 

Caudate 

nucleus 

n 11  11  11  10  8  7  5  3  3  1  
Mean 63.93  67.11  69.69  69.88  72.77  76.30  79.51  68.84  72.10  65.70  
SD 10.88  12.72  11.77  10.74  11.23  15.62  11.93  5.57  5.60    
p   0.201  0.055  0.022  0.043  0.088  0.045  0.422  0.169    

Putamen 

N 11  11 a 11  10  8  7  5  3  3  1  
Mean 62.93  65.65  68.14  68.94  71.45  80.49  80.04  70.70  75.23  67.74  
SD 8.80  7.77  8.21  8.19  8.72  13.76  16.10  8.29  6.88    
p   0.064  0.030  0.051  0.034  0.010  0.163  0.542  0.241    

Anterior 

thalamus 

n 11  11 a 11  10  8  7  5  3  3  1  
Mean 54.73  57.86  61.72  63.22  65.24  64.52  73.73  65.64  66.20  59.37  
SD 8.83  7.15  11.39  12.36  12.39  8.74  11.69  4.83  4.25    
p   0.003  0.017  0.035  0.073  0.050  0.040  0.115  0.061    

Lateral thalamus 

n 11  11  11  10  8  7  5  3  3  1  
Mean 59.16  62.93  63.58  66.35  69.10  74.61  75.28  70.20  70.22  71.68  
SD 9.72  9.15  9.66  10.53  10.08  11.34  5.64  3.62  1.53    
p   0.004  0.003  0.002  0.022  0.007  0.034  0.188  0.188    

Medial thalamus 

n 11  11  11  10  9  8  5  3  3  2  
Mean 62.47  64.57  67.70  66.29  66.35  68.64  71.24  77.99  75.09  81.57  
SD 5.68  3.62  6.80  6.70  7.54  8.15  9.68  19.33  15.37  21.74  
p   0.210  0.096  0.266  0.254  0.118  0.117  0.304  0.304  0.572  

Group mean Mean 60.64 A 63.63 C 66.17 C 66.93  68.51  71.50  75.35  70.68  71.77  69.24  
SD 7.26  6.92  7.81  8.64  8.56  10.56  8.63  7.53  4.56  4.31  
p   0.001  0.001  0.011  0.008  0.004  0.050  0.279  0.167  0.776  
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   Time after resuscitation (h) 

   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

Pe
rip

he
ra

l w
hi

te
 m

at
te

r 

Sagittal  

n 9 c 9 e 9 a 8 e 7  7  4  3  3 c 2  
Mean 58.73  57.16  58.72 e 62.94  56.90  59.72  66.55  69.20  69.25  75.87  
SD 9.51  6.90  6.76 f 7.88  9.76  10.89  18.25  21.68  14.76  19.36  
p   0.588  0.999  0.444  0.549  0.952  0.921  0.517  0.334  0.603  

Parietal  

n 11 e 11 f 11 a 10 f 9 c 8 c 5 a 3 a 3 d 2 a 
Mean 56.19  60.75  64.28  64.72  64.22  67.66  71.81  78.64  77.90  87.33  
SD 3.24  5.28  5.36  6.04  7.70  7.65  12.08  19.17  12.48  16.29  
p   0.005  <0.001  0.001  0.006  0.002  0.019  0.127  0.052  0.229  

Temporal  

n 11 c 11 e 11 e 10 e 8 c 7 c 5 a 3 a 3 c 2 a 
Mean 46.41 e 46.75 f 50.17 f 50.84 f 54.43  55.07  55.22  49.85  48.29 d 48.51  
SD 3.50  3.11  5.69  6.45  6.35  9.20  11.62  7.35  6.18  8.70  
p   0.566  0.120  0.139  0.032  0.042  0.187  0.626  0.776  0.781  

Group mean 
Mean 53.54 C 54.92 E 57.64 A 59.14 A 58.81 A 61.21 A 64.79 A 65.90  65.15  70.57  
SD 3.33 E 3.74 G 5.39 E 6.12 C 6.65 B 7.42 B 11.93  15.78  10.83  14.79  
p   0.258  0.082  0.033  0.069  0.014  0.131  0.302  0.192  0.425  
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   Time after resuscitation (h) 

   Baseline 1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

C
en

tra
l w

hi
te

r m
at

te
r 

Superior 

periventricular 

n 11 e 11 e 11 e 10 e 8 e 7 c 4  3  3  2 a 
Mean 49.86  49.22  50.51  52.39  52.92  54.71  54.27  50.21  49.91  48.01 b 
SD 7.56  6.27  5.37  6.07  5.64  6.93  8.35  6.45  4.93  7.42  
p   0.495  0.765  0.234  0.044  0.046  0.266  0.773  0.758  0.738  

Periventricular  

n 3 e 3 e 3 e 3 e 3 e 3 c 2  1  1  1 a 
Mean 67.91 f 70.63 f 70.44 f 71.30 f 76.84 f 78.91 d 80.64  81.90  79.03  83.82  
SD 3.18  1.05  2.77  7.41  2.99  5.72  1.28        
p   0.310  0.357  0.537  0.074  0.114  0.120        

Posterior limb of 

internal capsule 

n 11 f 11 f 11 f 10 f 9 f 8 d 5  3  3  2 b 
Mean 48.56  50.23  53.31  56.00  55.20  57.26  63.23  62.14  61.81  64.26  
SD 3.67  4.95  7.06  7.77  9.43  10.49  14.87  23.09  10.25  6.44  
p   0.044  0.049  0.019  0.058  0.016  0.054  0.334  0.065  0.042  

Group mean 
Mean 51.08 A 51.86 C 53.53 C 55.66 D 55.55 C 57.97 C 61.74 C 57.30 A 57.73  59.93  
SD 4.43 F 4.07 F 6.06 F 7.05 E 8.63 D 9.21 D 10.96  15.46  8.79  12.30  
p  G 0.170 H 0.223 G 0.069  0.142  0.036  0.036  0.399  0.117  0.222  

T2 relaxation times are shown as milliseconds. 
a-f: statistical significance from within group comparisons with p < 0.05 (a-b), p < 0.01 (c–d) and p < 0.001 (e-f) 
A-H: statistical significance from between group comparisons with p < 0.05 (A-B), p < 0.01 (C-D) and p < 0.001 (E-H) 
Statistical significance was assumed with p-values < 0.01 (Dunnett test). 
P-values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
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Supplemental Table 4.3-4: Influence of insult severity and survival time to magnetic resonance biomarkers and 
histo-pathological brain injury 

A. Influence of insult severity (acute energy depletion) to temporal changes in MR biomarkers 

        Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

NTP/EPP -0.40  0.103  -0.34  0.163  -0.34  0.172  -0.19  0.462  -0.41  0.142  -0.73  0.027  -0.73  0.061  -0.86  0.065  -0.50  0.498  

PCr/EPP -0.34  0.172  -0.44  0.070  -0.29  0.236  -0.31  0.219  -0.53  0.049  -0.69  0.038  -0.83  0.021  -0.96  0.011  -0.91  0.092  

Pi/EPP 0.33  0.178  0.50  0.035  0.33  0.185  0.23  0.376  0.45  0.106  0.67  0.046  0.79  0.033  0.84  0.076  0.60  0.397  

PCr/Pi -0.35  0.151  0.00  0.060  -0.42  0.081  -0.37  0.148  -0.46  0.099  -0.56  0.119  -0.77  0.042  -0.87  0.056  -0.83  0.167  

AD
C

 

Sagittal CTX-top -0.62  0.006  -0.46  0.056  -0.27  0.304  -0.11  0.692  -0.33  0.328  -0.59  0.092  -0.73  0.159  -0.26  0.672  -0.80  0.205  

Sagittal CTX-bottom -0.75  0.000 -0.65  0.004  -0.50  0.041  -0.37  0.164  -0.32  0.335  -0.51  0.159  -0.77  0.130  -0.70  0.189  -0.78  0.219  

Parietal CTX-top -0.27  0.288  -0.42  0.080  -0.26  0.306  -0.14  0.619  0.13  0.704  0.04  0.924  0.66  0.225  0.28  0.644  0.45  0.548  

Parietal CTX-bottom -0.56  0.015  -0.59  0.010  -0.52  0.033  -0.38  0.142  -0.20  0.549  -0.50  0.171  -0.96  0.010  -0.95  0.013  -0.99  0.008  

Temporal CTX 0.01  0.973  -0.29  0.275  -0.15  0.598  -0.10  0.747  -0.38  0.312  -0.70  0.052  -0.79  0.052  -0.89  0.044  -1.00  0.055  

Hippocampus -0.70  0.054  -0.57  0.139  -0.20  0.674  -0.14  0.829  0.69  0.512          

Caudate nucleus -0.40  0.139  -0.32  0.239  0.02  0.953  0.08  0.805  -0.62  0.074  -0.82  0.013  -0.94  0.018  -0.80  0.105  -0.76  0.450  

Putamen -0.50  0.059  -0.54  0.036  -0.48  0.083  -0.54  0.069  -0.56  0.121  -0.39  0.345  -0.45  0.444  -0.45  0.443  -1.00  0.051  

Anterior thalamus -0.33  0.230  -0.43  0.115  -0.33  0.243  -0.39  0.209  -0.60  0.086  -0.89  0.003  -0.40  0.509  -0.60  0.289  -0.90  0.283  

Lateral thalamus -0.59  0.021  -0.54  0.040  -0.53  0.052  -0.54  0.072  -0.85  0.004  -0.59  0.126  -0.66  0.229  -0.62  0.270  -0.98  0.129  

Medial thalamus -0.62  0.013  -0.51  0.051  -0.39  0.167  -0.39  0.207  -0.74  0.023  -0.73  0.039  -0.40  0.501  -0.37  0.540  -0.68  0.521  

Sagittal WM -0.53  0.035  -0.61  0.013  -0.49  0.063  -0.36  0.205  -0.44  0.181  -0.35  0.359  -0.23  0.711  -0.10  0.878  -0.75  0.246  

Parietal WM -0.43  0.042  -0.47  0.075  -0.32  0.264  -0.19  0.527  -0.29  0.384  -0.38  0.312  -0.58  0.302  -0.82  0.087  -0.54  0.462  

Temporal WM -0.34  0.200  -0.34  0.200  -0.22  0.432  -0.23  0.432  -0.07  0.828  -0.09  0.826  0.17  0.787  0.36  0.555  0.34  0.657  
Superior periventricular WM -0.57  0.025  -0.59  0.021  -0.50  0.071  -0.51  0.106  -0.23  0.548  -0.18  0.663  -0.30  0.623  -0.34  0.574  -0.58  0.419  

Periventricular WM -0.25  0.391  -0.31  0.285  -0.08  0.786  -0.31  0.353  -0.29  0.447  -0.19  0.655  -0.52  0.368  -0.56  0.330  -0.37  0.629  

PLIC -0.55  0.062  -0.48  0.114  -0.34  0.306  -0.35  0.323  -31.0

  

0.455  -0.21  0.687  -0.66  0.344  0.51  0.491  -0.87  0.327  
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        Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

T2
 

Sagittal CTX-top -0.13  0.694  0.21  0.564  0.21  0.564  0.23  0.551  0.01  0.984  0.16  0.763  0.41  0.728  -0.11  0.931    

Sagittal CTX-bottom -0.03  0.942  -0.02  0.946  0.19  0.595  0.30  0.428  0.01  0.989  0.17  0.741  0.75  0.459  0.49  0.673    

Parietal CTX-top -0.10  0.776  0.29  0.394  0.13  0.720  0.25  0.519  -0.12  0.780  0.14  0.796  0.41  0.733  0.33  0.783    

Parietal CTX-bottom -0.08  0.806  -0.05  0.874  -0.08  0.837  0.07  0.865  -0.02  0.687  -0.01  0.981  0.24  0.846  0.04  0.976    

Temporal CTX -0.26  0.443  -0.44  0.181  -0.17  0.633  0.09  0.850  0.29  0.580  0.46  0.541        

Hippocampus 0.11  0.752  -0.16  0.630  0.11  0.773  0.29  0.488  0.21  0.654  0.24  0.697  0.88  0.316  0.69  0.520    

Caudate nucleus -0.27  0.429  -0.37  0.261  0.02  0.957  0.25  0.549  0.16  0.737  0.40  0.506  0.61  0.582  0.01  0.991    

Putamen -0.36  0.282  -0.13  0.706  0.24  0.500  0.56  0.147  0.69  0.087  0.07  0.908  1.00  0.015  0.97  0.163    

Anterior thalamus -0.23  0.500  0.14  0.684  0.32  0.374  0.75  0.032  0.59  0.166  -0.03  0.962  0.60  0.592  -0.60  0.588    

Lateral thalamus -0.30  0.377  -0.31  0.349  -0.01  0.987  0.51  0.195  0.40  0.380  0.33  0.587  0.59  0.596  0.02  0.990    

Medial thalamus 0.59  0.058  0.81  0.003  0.79  0.007  0.63  0.068  0.38  0.349  0.93  0.020  1.00  0.018  1.00  0.022    

Sagittal WM 0.20  0.607  0.67  0.046  0.65  0.083  0.57  0.178  0.08  0.873  0.93  0.066  0.96  0.192  0.95  0.207    

Parietal WM 0.52  0.102  0.75  0.009  0.60  0.066  0.44  0.239  0.67  0.067  0.96  0.009  0.98  0.138  0.98  0.135    

Temporal WM -0.24  0.472  0.50  0.119  0.33  0.349  0.43  0.283  0.15  0.750  0.45  0.448  0.97  0.163  0.95  0.204    
Superior periventricular WM 0.05  0.880  0.40  0.227  0.31  0.388  0.06  0.892  -0.10  0.835  -0.17  0.827  0.60  0.593  0.42  0.724    

Periventricular WM 0.60  0.588  0.27  0.827  0.45  0.703  0.53  0.646  0.64  0.559          

PLIC 0.37  0.263  0.51  0.112  0.49  0.146  0.35  0.360  0.23  0.577  0.94  0.020  1.00  0.058  0.89  0.304    

Statistical significance was assumed with p-values < 0.01 (Dunnett test). 
P-values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
Abbreviations: CTX, cerebral cortex; WM, white matter; PCIC, posterior limb of the internal capsule. 
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B. Influence of insult severity (acute energy depletion) to histo-pathological brain injury 

 Brain damage in the grey matter 
 Neuronal death (H&E) TUNEL (+) apoptosis CD68 (+) microglia CD68(+) vessel  
 r p r p r p r p   

Sagittal top 0.39 0.110 -0.13 0.600 0.05 0.859 0.03 0.909   

Sagittal bottom 0.39 0.110 -0.16 0.536 0.41 0.095 0.29 0.242   

Parietal top 0.30 0.227 -0.09 0.721 0.11 0.663 -0.04 0.874   

Parietal bottom 0.44 0.068 -0.14 0.588 -0.16 0.520 -0.19 0.462   

Temporal  0.44 0.068 -0.14 0.588 -0.16 0.520 -0.19 0.462   

Hippocampus -0.01 0.986 -0.30 0.432 0.48 0.195 0.68 0.046   

Caudate nucleus 0.29 0.316 -0.33 0.247 0.73 0.002 0.74 0.002   

Putamen 0.20 0.502 -0.13 0.651 0.63 0.011 0.40 0.136   

Anterior thalamus 0.44 0.113 -0.36 0.210 0.67 0.006 0.74 0.002   

Lateral thalamus 0.01 0.982 -0.26 0.341 0.82 <0.001 0.82 <0.001   

Medial thalamus 0.07 0.792 -0.13 0.659 0.59 0.025 0.84 <0.001   

 Brain damage in the white matter 
 H & E  LFB CD68 (+) microglia CD68 (+) vessel β-APP 
 r p r p r p r p r p 

Sagittal  0.54 0.024 -0.73 0.001 -0.01 0.965 0.39 0.125 0.06 0.830 

Parietal  0.40 0.125 -0.75 0.001 0.21 0.430 0.36 0.169 0.18 0.494 

Temporal  0.33 0.206 -0.63 0.009 0.11 0.698 0.46 0.076 0.02 0.950 
Superior Periventricular 0.37 0.146 -0.05 0.846 0.66 0.004 0.64 0.006 0.30 0.246 

Periventricular 0.45 0.079 -0.03 0.918 0.58 0.018 0.43 0.097 0.28 0.302 

PLIC 0.36 0.251 0.03 0.931 0.00 0.994 0.22 0.549 0.18 0.623 

Sagittal  0.54 0.024 -0.73 0.001 -0.01 0.965 0.39 0.125 0.06 0.830 

Abbreviation: PCIC, posterior limb of the internal capsule. 
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C. Influence of survival time after resuscitation to histo-pathological brain injury 
 Brain damage in the grey matter 
 Neuronal death (H&E) TUNEL (+) apoptosis CD68 (+) microglia CD68(+) vessel  
 r p r p r p r p   

Sagittal top 0.08 0.740 0.20 0.423 -0.16 0.535 -0.24 0.335   

Sagittal bottom 0.23 0.352 0.45 0.063 -0.54 0.021 -0.41 0.089   

Parietal top 0.23 0.365 0.26 0.294 -0.42 0.083 -0.42 0.087   

Parietal bottom 0.20 0.420 0.30 0.227 -0.19 0.449 -0.21 0.400   

Temporal  0.04 0.876 0.40 0.126 -0.33 0.207 -0.33 0.214   

Hippocampus 0.24 0.533 0.17 0.672 -0.47 0.208 -0.48 0.196   

Caudate nucleus -0.19 0.519 0.47 0.092 -0.32 0.246 -0.30 0.278   

Putamen -0.32 0.259 0.36 0.207 -0.44 0.098 -0.11 0.703   

Anterior thalamus 0.04 0.900 0.48 0.086 -0.25 0.370 -0.28 0.307   

Lateral thalamus 0.06 0.829 -0.07 0.792 -0.44 0.099 -0.46 0.085   

Medial thalamus 0.17 0.553 0.14 0.626 -0.53 0.054 -0.38 0.177   

 Brain damage in the white matter 
 H & E  LFB CD68 (+) microglia CD68 (+) vessel β-APP 
 r p r p r p r p r p 

Sagittal  0.06 0.830 0.34 0.179 -0.18 0.486 -0.29 0.255 0.20 0.437 

Parietal  0.18 0.510 0.22 0.404 -0.23 0.386 -0.58 0.018 -0.07 0.792 

Temporal  0.16 0.566 0.37 0.159 -0.34 0.192 -0.32 0.233 -0.22 0.414 
Superior Periventricular 0.16 0.545 0.08 0.768 -0.35 0.165 -0.22 0.399 0.07 0.783 

Periventricular 0.19 0.492 0.11 0.676 -0.47 0.067 -0.22 0.420 0.13 0.629 

PLIC 0.10 0.757 0.03 0.931 -0.03 0.940 -0.09 0.803 0.63 0.049 

Sagittal 0.06 0.830 0.34 0.179 -0.18 0.486 -0.29 0.255 0.20 0.437 

P values are presented without correction for multiple comparisons. 
Abbreviation: PCIC, posterior limb of the internal capsule. 
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Supplemental Table 4.3-5: 31P MRS biomarkers and histo-pathological injury  
 (adjusted for AED and survival time after resuscitation) 
A. 31P MRS biomarkers 1-48 h after resuscitation and neuronal death assessed using H & E stains 

        Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal top 0.03  0.874  1.18  0.296  5.86  0.030  6.93  0.021  8.37  0.016  3.06  0.141  0.22  0.672  0.89  0.519  0.21  0.726  

Sagittal bottom 0.03  0.867  0.47  0.503  0.83  0.379  1.14  0.305  1.65  0.228  3.73  0.111  0.24  0.657  0.47  0.618  0.08  0.824  

Parietal top 0.08  0.783  1.65  0.219  1.40  0.257  1.79  0.204  2.07  0.181  2.00  0.216  0.10  0.773  0.12  0.787  0.00  0.994  

Parietal bottom 0.07  0.799  1.42  0.254  0.69  0.421  1.46  0.249  1.89  0.200  1.08  0.346  0.06  0.821  4.55  0.279  76.27  0.073  

Temporal  0.41  0.536  0.12  0.732  4.38  0.058  5.28  0.042  6.05  0.036  2.04  0.226  1.14  0.363  1.16  0.476  0.30  0.683  

Hippocampus 0.07  0.806  0.56  0.488  8.20  0.035  14.29  0.019  4.53  0.123  
        

Caudate nucleus 0.27  0.615  0.73  0.413  5.54  0.040  7.21  0.025  5.53  0.047  1.13  0.366  3.68  0.195  1.29  0.459  0.34  0.666  

Putamen 0.05  0.821  0.57  0.466  2.80  0.125  2.72  0.130  1.46  0.258  1.54  0.283  0.99  0.393  1.25  0.465  0.32  0.672  

Anterior thalamus 2.51  0.144  4.95  0.050  5.67  0.039  6.30  0.031 7.60  0.022  4.76  0.095  0.84  0.427  2.88  0.339  0.75  0.546  

Lateral thalamus 0.33  0.580  0.54  0.479  3.21  0.101  0.94  0.354  1.23  0.296  0.29  0.618  0.10  0.773  1.56  0.429  0.41  0.636  

Medial thalamus 0.04  0.852  0.01  0.915  12.57  0.005  7.21  0.023  8.26  0.018  1.76  0.256  0.22  0.668  1.33  0.455  0.35  0.661  

PC
r/E

PP
 

Sagittal top 1.11  0.311  1.25  0.283  11.78  0.004  21.56  <0.00

 

23.81  0.001  4.31  0.093  15.25  0.030  0.89  0.518  0.01  0.925  

Sagittal bottom 1.02  0.329  1.36  0.263  5.23  0.038  5.00  0.044  6.22  0.032  29.56  0.003  1.22  0.349  0.47  0.617  0.00  0.976  

Parietal top 0.91  0.357  0.68  0.424  5.09  0.041  7.44  0.017  7.00  0.025  6.18  0.055  7.47  0.072  0.12  0.786  0.10  0.807  

Parietal bottom 1.89  0.191  1.62  0.223  5.03  0.042  6.29  0.026  6.50  0.029  4.31  0.093  5.71  0.097  4.50  0.280  24.53  0.127  

Temporal  0.09  0.773  0.01  0.936  3.15  0.101  3.78  0.078  5.51  0.043  0.53  0.506  0.33  0.608  1.17  0.475  0.03  0.882  

Hippocampus 2.56  0.171  4.09  0.099  16.79  0.009  11.67  0.027  9.86  0.052  
        

Caudate nucleus 0.88  0.372  0.30  0.593  8.06  0.018  16.22  0.003  7.46  0.026  0.32  0.611  35.87  0.027  1.30  0.458  0.05  0.865  

Putamen 0.33  0.580  0.16  0.699  1.50  0.249  3.41  0.095  1.14  0.313  0.36  0.583  1.21  0.352  1.26  0.464  0.04  0.871  

Anterior thalamus 8.57  0.015  4.03  0.072  9.18  0.013  13.59  0.004  11.21  0.009  11.49  0.028  0.49  0.533  2.90  0.338  0.18  0.745  

Lateral thalamus 0.00  0.982  0.07  0.794  1.68  0.221  2.88  0.120  2.62  0.140  0.32  0.603  9.81  0.052  1.58  0.428  0.07  0.835  

Medial thalamus 0.13  0.729  0.15  0.705  3.71  0.080  5.20  0.046  9.32  0.014  1.12  0.349  1.49  0.310  1.34  0.454  0.05  0.861  
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  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

Pi
/E

P
P

 

Sagittal top 2.01  0.178  2.08  0.171  10.87  0.005  14.21  0.002  17.16  0.002  5.26  0.070  0.46  0.544  3.55  0.311  0.14  0.772  

Sagittal bottom 0.74  0.403  1.88  0.192  4.68  0.048  3.59  0.081  4.56  0.058  8.65  0.032  0.10  0.775  1.78  0.410  0.04  0.871  

Parietal top 1.67  0.217  1.72  0.211  4.69  0.048  5.48  0.036  5.66  0.039  5.88  0.060  0.42  0.562  0.61  0.579  0.00  0.960  

Parietal bottom 2.72  0.121  2.96  0.107  3.80  0.072  4.37  0.057  5.20  0.046  3.81  0.108  0.35  0.597  1.08  0.487  587.6

  

0.026  

Temporal  0.13  0.729  0.49  0.496  3.50  0.086  5.31  0.042  6.66  0.030  0.90  0.397  0.49  0.535  4.98  0.268  0.20  0.729  

Hippocampus 2.31  0.189  1.79  0.239  7.81  0.038  6.63  0.062  6.16  0.089  
        

Caudate nucleus 2.12  0.176  0.77  0.401  5.15  0.047  10.86  0.009  7.08  0.029  2.12  0.242  8.20  0.103  5.77  0.251  0.24  0.712  

Putamen 1.68  0.224  0.29  0.605  1.42  0.262  3.26  0.101  1.40  0.267  0.83  0.415  0.55  0.513  5.49  0.257  0.23  0.718  

Anterior thalamus 7.03  0.024  6.01  0.034  7.00  0.025  13.35  0.004  9.44  0.013  2.70  0.176  0.35  0.597  23.02  0.131  0.56  0.592  

Lateral thalamus 0.26  0.620  0.00  0.949  2.80  0.122  2.59  0.139  2.39  0.157  0.73  0.440  0.35  0.597  7.62  0.221  0.30  0.682  

Medial thalamus 0.28  0.605  0.06  0.815  6.30  0.029  6.11  0.033  9.42  0.013  0.81  0.418  0.12  0.748  6.01  0.247  0.24  0.708  

PC
r/P

i 

Sagittal top 2.13  0.166  2.56  0.132  21.56  0.000 31.99  0.000 51.20  0.000

 

6.50  0.051  13.59  0.035  7.49  0.223  0.76  0.543  

Sagittal bottom 1.81  0.199  3.84  0.070  10.23  0.006  6.90  0.021  19.77  0.001  56.40  0.001  1.50  0.308  3.26  0.322  0.40  0.642  

Parietal top 2.33  0.149  2.88  0.112  11.23  0.005  10.88  0.006  22.33  0.001  9.40  0.028  3.29  0.168  1.06  0.491  0.09  0.811  

Parietal bottom 3.97  0.066  4.62  0.050  11.30  0.005  10.00  0.007  18.50  0.002  7.37  0.042  2.44  0.216  0.62  0.575  5.57  0.255  

Temporal  0.15  0.706  0.45  0.515  7.12  0.020  8.25  0.015  9.59  0.013  4.72  0.096  1.16  0.361  11.78  0.181  1.00  0.501  

Hippocampus 4.77  0.081  3.00  0.144  22.28  0.005  26.82  0.007  3.98  0.140  
        

Caudate nucleus 2.68  0.133  0.51  0.493  13.50  0.004  35.49  0.000  10.78  0.011  4.70  0.119  237.9

  

0.004  14.52  0.163  1.11  0.483  

Putamen 1.69  0.223  0.03  0.859  3.22  0.103  6.80  0.026  2.40  0.155  6.35  0.065  3.55  0.156  13.51  0.169  1.07  0.489  

Anterior thalamus 7.67  0.020  5.41  0.042  9.80  0.011  9.09  0.013  9.68  0.012  1.08  0.357  0.36  0.591  217.2

  

0.043  2.43  0.363  

Lateral thalamus 0.00  0.987  0.06  0.806  3.10  0.106  3.33  0.098  7.11  0.026  1.26  0.325  5.96  0.092  22.07  0.134  1.34  0.454  

Medial thalamus 0.36  0.562  0.04  0.849  6.52  0.027  7.84  0.019  12.26  0.007  12.74  0.023  4.47  0.125  15.39  0.159  1.14  0.479  
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B. 31P MRS biomarkers 1-48 h after resuscitation and TUNEL positive apoptotic cell death 

        Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal top 0.05  0.820  0.20  0.664  2.56  0.132  0.94  0.350  1.12  0.316  1.93  0.224  0.00  0.990  0.00  0.975  0.14  0.769  

Sagittal bottom 0.06  0.817  0.15  0.700  9.28  0.009  3.60  0.080  1.47  0.253  4.96  0.076  0.47  0.541  1.32  0.456  0.34  0.663  

Parietal top 0.05  0.822  0.08  0.781  5.89  0.029  1.67  0.219  0.62  0.450  3.22  0.133  0.00  0.968  0.00  0.993  0.12  0.786  

Parietal bottom 0.01  0.919  0.40  0.538  6.07  0.027  3.19  0.097  1.07  0.326  5.49  0.066  0.09  0.780  10.84  0.188  1142.

  

0.019  

Temporal  0.28  0.607  0.29  0.600  1.78  0.206  0.53  0.483  0.53  0.484  0.05  0.833  0.27  0.638  0.88  0.520  0.21  0.726  

Hippocampus 4.54  0.086  0.07  0.796  0.53  0.500  3.97  0.117  7.39  0.073          

Caudate nucleus 0.03  0.871  0.00  0.959  1.21  0.297  0.40  0.543  0.82  0.393  0.01  0.921  0.17  0.717  0.03  0.885  0.02  0.908  

Putamen 0.00  0.965  0.07  0.798  13.43  0.004  2.47  0.147  1.69  0.226  2.55  0.186  0.06  0.828  0.49  0.612  1.83  0.406  

Anterior thalamus 0.15  0.710  0.95  0.353  0.04  0.844  0.11  0.752  0.05  0.830  0.83  0.414  0.40  0.570  0.00  0.984  0.13  0.778  

Lateral thalamus 0.06  0.815  0.03  0.862  2.56  0.138  1.51  0.247  4.26  0.069  0.11  0.755  0.00  0.999  0.37  0.651  1.42  0.445  

Medial thalamus 0.01  0.941  0.09  0.764  4.47  0.061  2.52  0.147  4.22  0.074  0.01  0.915  1.56  0.339      

PC
r/E

PP
 

Sagittal top 0.36  0.558  1.10  0.311  2.60  0.129  1.34  0.267  2.03  0.184  4.48  0.088  0.12  0.751  0.00  0.977  0.64  0.569  

Sagittal bottom 0.98  0.339  2.34  0.148  8.15  0.013  5.09  0.042  3.44  0.093  6.04  0.057  1.84  0.268  1.33  0.455  0.05  0.862  

Parietal top 0.21  0.655  0.82  0.380  4.51  0.052  3.00  0.107  2.17  0.172  5.22  0.071  0.24  0.659  0.00  0.994  0.57  0.587  

Parietal bottom 0.27  0.611  0.85  0.372  6.28  0.025  4.56  0.052  2.98  0.115  8.21  0.035  1.38  0.324  10.69  0.189  7.85  0.218  

Temporal  0.03  0.860  1.45  0.251  2.47  0.142  1.09  0.319  1.29  0.286  0.73  0.442  0.04  0.860  0.89  0.518  0.01  0.926  

Hippocampus 0.14  0.724  0.68  0.446  1.18  0.327  1.78  0.253  2.87  0.189          

Caudate nucleus 0.11  0.749  0.88  0.371  0.70  0.421  0.30  0.595  0.97  0.353  0.19  0.690  0.01  0.940  0.03  0.884  0.24  0.709  

Putamen 0.00  0.977  0.20  0.663  5.53  0.041  4.55  0.059  2.48  0.150  7.35  0.053  0.03  0.875  0.48  0.613  8.88  0.206  

Anterior thalamus 0.86  0.376  0.14  0.712  0.11  0.747  0.04  0.838  0.14  0.717  0.58  0.487  0.10  0.777  0.00  0.985  0.61  0.578  

Lateral thalamus 0.48  0.501  0.56  0.469  1.06  0.325  1.31  0.279  4.91  0.054  0.34  0.594  0.01  0.921  0.37  0.652  6.09  0.245  

Medial thalamus 0.00  0.995  0.37  0.558  2.58  0.139  3.48  0.095  5.74  0.043  0.16  0.718  0.03  0.873      
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  Time after resuscitation (h) 
  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

Pi
/E

P
P

 

Sagittal top 0.00  0.974  0.13  0.720  4.09  0.063  1.34  0.267  1.92  0.196  3.62  0.115  0.07  0.815  0.09  0.816  0.22  0.723  

Sagittal bottom 0.18  0.682  0.75  0.400  15.05  0.002  4.77  0.048  2.71  0.131  7.39  0.042  1.32  0.334  5.93  0.248  0.24  0.709  

Parietal top 0.05  0.826  0.08  0.786  6.98  0.019  2.13  0.168  1.45  0.257  4.47  0.088  0.11  0.758  0.11  0.799  0.19  0.740  

Parietal bottom 0.00  0.970  0.07  0.800  8.71  0.011  4.03  0.066  2.14  0.174  7.02  0.045  0.44  0.556  1.95  0.396  94.80  0.065  

Temporal  0.42  0.529  0.00  0.991  3.60  0.082  0.82  0.386  0.84  0.384  0.22  0.665  0.02  0.886  3.53  0.311  0.14  0.772  

Hippocampus 0.26  0.632  0.09  0.774  0.68  0.448  4.60  0.098  4.21  0.132          

Caudate nucleus 0.00  0.952  0.16  0.694  1.29  0.282  0.44  0.523  1.04  0.337  0.13  0.740  0.01  0.917  0.31  0.677  0.05  0.862  

Putamen 0.00  0.950  0.00  0.999  10.22  0.010  3.28  0.100  1.93  0.198  1.67  0.266  0.08  0.791  0.08  0.820  2.50  0.359  

Anterior thalamus 0.14  0.720  0.35  0.566  0.01  0.942  0.11  0.748  0.10  0.765  0.75  0.435  0.22  0.672  0.10  0.807  0.20  0.731  

Lateral thalamus 1.06  0.325  0.81  0.387  1.84  0.202  1.58  0.237  5.15  0.049  0.18  0.696  0.00  0.992  0.05  0.859  1.92  0.398  

Medial thalamus 0.01  0.940  0.03  0.877  3.02  0.113  2.42  0.154  4.39  0.070  0.00  0.980  0.59  0.522      

PC
r/P

i 

Sagittal top 0.55  0.470  0.96  0.343  3.07  0.101  1.42  0.254  2.36  0.156  3.03  0.142  0.01  0.930  0.21  0.729  0.01  0.951  

Sagittal bottom 0.75  0.401  1.87  0.193  5.84  0.030  3.87  0.071  3.21  0.104  3.42  0.124  0.49  0.536  15.11  0.160  1.13  0.480  

Parietal top 0.35  0.562  0.63  0.442  3.63  0.078  2.37  0.147  2.17  0.171  2.91  0.149  0.04  0.856  0.24  0.711  0.00  0.969  

Parietal bottom 0.30  0.591  0.83  0.379  4.83  0.045  3.60  0.080  3.44  0.093  4.37  0.091  0.33  0.605  1.11  0.484  14.46  0.164  

Temporal  0.06  0.808  0.21  0.652  0.99  0.339  0.31  0.589  0.81  0.393  0.00  0.968  0.05  0.840  7.45  0.224  0.76  0.544  

Hippocampus 0.01  0.931  0.45  0.534  0.87  0.394  1.22  0.331  1.27  0.342          

Caudate nucleus 0.03  0.874  0.52  0.485  0.63  0.447  0.12  0.736  0.31  0.591  0.08  0.798  0.02  0.911  0.57  0.589  0.02  0.909  

Putamen 0.01  0.927  0.15  0.709  4.32  0.064  2.84  0.123  2.15  0.176  1.23  0.330  0.06  0.818  0.02  0.908  0.57  0.588  

Anterior thalamus 0.30  0.598  0.35  0.568  0.02  0.881  0.06  0.810  0.09  0.772  0.99  0.376  0.14  0.737  0.22  0.720  0.00  0.960  

Lateral thalamus 1.16  0.305  0.58  0.462  2.54  0.139  1.96  0.191  5.19  0.049  0.14  0.729  0.00  0.986  0.01  0.947  0.44  0.627  

Medial thalamus 0.02  0.890  0.00  0.978  2.92  0.118  2.56  0.144  3.91  0.083  0.00  0.974  0.00  0.985      
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C-1. 31P MRS biomarkers 1-48 h after resuscitation and CD68 positive microglia in the grey matter 

        Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal top 0.84  0.375  0.39  0.544  1.48  0.244  2.06  0.175  1.34  0.274  4.09  0.099  0.41  0.567  0.24  0.708  0.99  0.501  

Sagittal bottom 0.18  0.674  0.87  0.367  5.84  0.030  4.48  0.054  8.35  0.016  4.87  0.078  0.66  0.475  0.27  0.696  0.02  0.903  

Parietal top 2.89  0.111  2.09  0.170  2.88  0.112  2.64  0.128  3.82  0.079  4.10  0.099  0.68  0.471  0.57  0.587  2.16  0.381  

Parietal bottom 0.31  0.584  0.59  0.455  0.49  0.496  1.26  0.283  0.53  0.483  4.02  0.101  1.17  0.359  0.03  0.900  0.27  0.693  

Temporal  1.66  0.222  1.27  0.281  0.18  0.680  0.21  0.656  0.00  0.961  0.71  0.448  0.08  0.801  1.70  0.416  8.55  0.210  

Hippocampus 0.67  0.452  2.42  0.180  1.90  0.226  0.06  0.822  0.17  0.705          

Caudate nucleus 2.20  0.166  0.39  0.545  2.78  0.124  0.29  0.603  0.39  0.547  0.03  0.861  1.30  0.337  0.41  0.639  1.54  0.432  

Putamen 0.01  0.905  3.54  0.087  0.07  0.793  0.03  0.856  0.00  0.968  0.42  0.550  0.60  0.494  4.67  0.276  1.12  0.482  

Anterior thalamus 1.54  0.240  0.36  0.562  1.88  0.197  0.02  0.882  0.30  0.595  0.10  0.769  1.01  0.389  0.57  0.587  2.16  0.381  

Lateral thalamus 2.91  0.116  0.21  0.656  1.46  0.252  0.03  0.873  0.00  0.954  0.10  0.769  1.01  0.389  0.57  0.587  2.16  0.381  

Medial thalamus 0.05  0.820  2.50  0.145  0.18  0.677  0.00  0.971  0.01  0.928  0.62  0.488  0.18  0.713      

PC
r/E

PP
 

Sagittal top 0.80  0.386  0.59  0.454  1.55  0.234  2.63  0.129  4.46  0.061  40.03  0.001  0.07  0.813  0.24  0.709  3.79  0.302  

Sagittal bottom 1.84  0.197  2.69  0.123  8.41  0.012  5.95  0.030  15.41  0.003  15.95  0.010  0.11  0.761  0.27  0.695  0.03  0.898  

Parietal top 5.57  0.033  3.09  0.100  3.43  0.085  3.49  0.084  13.79  0.004  30.25  0.003  0.03  0.867  0.57  0.588  11.68  0.181  

Parietal bottom 1.23  0.286  0.99  0.337  2.53  0.134  3.18  0.098  2.41  0.151  35.93  0.002  0.05  0.832  0.02  0.901  1.04  0.494  

Temporal  1.90  0.194  0.47  0.507  0.19  0.672  0.14  0.717  0.01  0.915  0.52  0.511  0.01  0.930  1.69  0.418  3780.

  

0.010  

Hippocampus 2.49  0.175  2.37  0.184  0.54  0.495  0.02  0.897  0.00  0.998          

Caudate nucleus 0.02  0.884  0.23  0.639  0.12  0.736  0.16  0.695  0.72  0.417  0.06  0.822  0.47  0.542  0.40  0.640  6.82  0.233  

Putamen 1.11  0.316  1.46  0.252  0.09  0.772  0.04  0.845  0.29  0.605  1.37  0.307  0.03  0.864  4.72  0.275  0.30  0.682  

Anterior thalamus 0.03  0.856  0.05  0.821  0.06  0.805  0.02  0.883  0.57  0.470  0.01  0.922  0.04  0.852  0.57  0.588  11.68  0.181  

Lateral thalamus 0.26  0.621  1.14  0.309  0.03  0.870  0.01  0.928  0.00  0.951  0.01  0.922  0.04  0.852  0.57  0.588  11.68  0.181  

Medial thalamus 1.89  0.199  2.49  0.145  0.14  0.713  0.00  0.970  0.32  0.587  1.18  0.357  0.01  0.929      
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  Time after resuscitation (h) 
  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

Pi
/E

P
P

 

Sagittal top 2.58  0.130  2.05  0.174  3.04  0.103  2.34  0.150  3.35  0.097  9.57  0.027  0.43  0.557  0.02  0.916  1.33  0.455  

Sagittal bottom 0.93  0.351  1.58  0.230  8.07  0.013  6.36  0.026  14.21  0.004  12.24  0.017  0.73  0.455  1.08  0.488  0.01  0.949  

Parietal top 5.76  0.031  4.72  0.048  5.22  0.038  4.18  0.062  10.51  0.009  10.64  0.022  0.79  0.439  0.11  0.795  2.98  0.334  

Parietal bottom 2.01  0.178  2.19  0.161  2.59  0.130  2.31  0.152  1.80  0.209  10.34  0.024  1.19  0.355  0.03  0.892  0.38  0.647  

Temporal  0.99  0.339  0.35  0.567  0.19  0.671  0.31  0.587  0.05  0.834  0.24  0.651  0.04  0.860  0.45  0.625  14.51  0.163  

Hippocampus 1.62  0.259  1.39  0.291  1.96  0.221  0.01  0.910  0.01  0.923          

Caudate nucleus 0.14  0.719  0.00  0.970  1.28  0.283  0.63  0.446  0.98  0.347  0.43  0.547  2.22  0.233  0.06  0.847  2.08  0.386  

Putamen 0.52  0.486  0.27  0.613  0.08  0.777  0.02  0.884  0.30  0.595  0.00  0.963  1.03  0.385  87.84  0.068  0.83  0.529  

Anterior thalamus 0.34  0.570  0.54  0.478  1.39  0.263  0.42  0.532  0.95  0.356  0.29  0.616  1.20  0.353  0.11  0.795  2.98  0.334  

Lateral thalamus 0.01  0.905  0.24  0.632  0.24  0.631  0.16  0.696  0.04  0.853  0.29  0.616  1.20  0.353  0.11  0.795  2.98  0.334  

Medial thalamus 0.93  0.359  1.12  0.314  0.46  0.513  0.14  0.716  0.34  0.577  0.07  0.810  0.38  0.599      

PC
r/P

i 

Sagittal top 6.13  0.027 3.32  0.090  3.84  0.070  3.75  0.075  10.87  0.008  59.63  0.001  0.00  0.981  0.00  0.996  0.29  0.684  

Sagittal bottom 0.93  0.352  2.46  0.139  12.44  0.003  7.80  0.015  13.28  0.005  9.69  0.026  0.45  0.551  1.89  0.401  0.22  0.721  

Parietal top 10.27  0.006  4.49  0.052  3.84  0.070  3.20  0.097  46.23  0.000  44.17  0.001  0.02  0.893  0.03  0.883  0.67  0.563  

Parietal bottom 6.03  0.028  5.49  0.034  6.01  0.028  4.99  0.044  6.41  0.030  54.05  0.001  0.26  0.647  0.10  0.804  0.04  0.876  

Temporal  2.91  0.114  0.30  0.594  0.01  0.922  0.02  0.903  0.16  0.701  0.66  0.461  0.14  0.736  0.24  0.712  1.99  0.392  

Hippocampus 2.27  0.192  1.08  0.345  0.44  0.538  0.00  0.996  0.28  0.633          

Caudate nucleus 0.07  0.802  0.07  0.790  0.69  0.424  0.32  0.582  1.93  0.198  0.08  0.796  0.18  0.700  0.01  0.935  0.48  0.615  

Putamen 1.65  0.226  0.27  0.615  0.02  0.887  0.00  0.992  1.29  0.285  1.75  0.257  0.06  0.828  1009.

  

0.020  3.85  0.300  

Anterior thalamus 0.00  0.996  0.16  0.698  0.54  0.478  0.08  0.779  1.61  0.236  0.05  0.834  0.01  0.911  0.03  0.883  0.67  0.563  

Lateral thalamus 0.33  0.580  0.74  0.408  0.02  0.881  0.01  0.919  0.15  0.703  0.05  0.834  0.01  0.911  0.03  0.883  0.67  0.563  

Medial thalamus 1.73  0.217  0.86  0.375  0.12  0.740  0.03  0.875  1.34  0.280  1.36  0.329  0.06  0.829      
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C-2. 31P MRS biomarkers 1-48 h after resuscitation and CD68 positive microglia in the white matter 
   Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal 0.63  0.442  0.64  0.439  1.26  0.282  2.92  0.113  1.46  0.254  3.11  0.138  0.00  0.995  2.13  0.383  12.43  0.176  
Parietal 0.89  0.365  0.62  0.445  1.65  0.223  2.33  0.155  1.89  0.203  3.71  0.112  1.36  0.328  0.18  0.745  0.79  0.538  
Temporal 0.03  0.867  0.33  0.577  0.47  0.508  1.73  0.215  2.05  0.186  0.43  0.550  0.20  0.683  6.78  0.233  559.6

  

0.027  
Superior Periventricular 0.34  0.572  0.24  0.632  3.23  0.096  3.86  0.073  2.35  0.156  0.08  0.789  1.28  0.340  0.08  0.824  0.47  0.617  
Periventricular 0.24  0.636  1.82  0.202  0.81  0.386  1.28  0.282  4.25  0.066  0.22  0.655  0.08  0.793  1.42  0.445  6.48  0.238  
PLIC 0.31  0.597  0.94  0.370  1.46  0.272  2.84  0.153  2.95  0.161          

PC
r/E

PP
 

Sagittal 2.83  0.117  2.48  0.140  3.60  0.080  4.25  0.062  4.52  0.059  23.82  0.005  0.00  0.987  2.11  0.384  737.9

  

0.023  
Parietal 0.65  0.435  0.42  0.527  1.45  0.251  2.45  0.146  7.12  0.026  28.07  0.003  0.06  0.827  0.18  0.746  2.88  0.339  
Temporal 14.26  0.003  21.84  0.001  7.57  0.018  4.33  0.062  3.57  0.091  0.86  0.405  0.56  0.508  6.70  0.235  12.96  0.173  
Superior Periventricular 6.46  0.025  8.61  0.012  4.43  0.055  2.37  0.150  2.18  0.171  0.18  0.689  0.06  0.829  0.08  0.825  1.69  0.418  
Periventricular 2.17  0.166  2.51  0.139  0.89  0.363  1.20  0.296  1.26  0.288  0.00  0.985  0.00  0.963  1.41  0.446  268.4

  

0.039  
PLIC 2.74  0.149  6.30  0.046  4.26  0.085  1.51  0.273  7.87  0.049          

Pi
/E

P
P

 

Sagittal 3.86  0.071  3.64  0.079  4.03  0.066  3.53  0.085  3.46  0.092  8.49  0.033  0.01  0.921  0.56  0.591  23.45  0.130  
Parietal 2.20  0.164  1.72  0.214  2.96  0.111  2.60  0.135  5.49  0.044  10.05  0.025  2.00  0.252  0.01  0.953  1.05  0.492  
Temporal 4.05  0.067  10.38  0.007  3.95  0.070  3.23  0.100  2.87  0.125  0.00  0.972  0.58  0.503  1.45  0.442  1072.

  

0.019  
Superior Periventricular 4.10  0.064  3.99  0.067  3.54  0.083  2.40  0.147  2.25  0.165  0.63  0.464  1.97  0.255  0.00  0.968  0.64  0.571  
Periventricular 0.77  0.396  1.63  0.225  0.99  0.339  1.41  0.261  1.81  0.208  0.00  0.949  0.04  0.847  0.37  0.653  10.35  0.192  
PLIC 1.07  0.341  2.77  0.147  3.91  0.095  2.08  0.209  6.67  0.061          

PC
r/P

i 

Sagittal 13.32  0.003  7.48  0.017  7.55  0.017  6.49  0.026  8.82  0.014  35.60  0.002  0.10  0.767  0.31  0.678  2.51  0.358  
Parietal 5.81  0.033  3.03  0.107  4.12  0.065  3.94  0.073  24.03  0.001  42.01  0.001  0.00  0.966  0.00  0.959  0.22  0.721  
Temporal 10.77  0.007  15.53  0.002  5.79  0.033  4.20  0.065  1.89  0.203  0.71  0.447  0.06  0.823  0.83  0.529  8.58  0.209  
Superior Periventricular 5.06  0.042  4.42  0.056  4.03  0.066  3.04  0.107  0.50  0.495  0.21  0.664  0.01  0.934  0.04  0.880  0.11  0.800  
Periventricular 2.01  0.182  1.65  0.224  0.84  0.376  0.78  0.395  0.37  0.558  0.01  0.925  0.09  0.782  0.19  0.741  1.65  0.421  
PLIC 1.66  0.246  4.53  0.077  3.95  0.094  2.03  0.214  8.31  0.045          
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D-1. 31P MRS biomarkers 1-48 h after resuscitation and CD68 positive vessels in the grey matter 

        Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal top 0.47  0.506  0.61  0.450  1.80  0.201  4.37  0.057  3.51  0.090  3.97  0.103  1.23  0.348  0.57  0.587  2.16  0.381  

Sagittal bottom 0.05  0.830  0.89  0.361  3.65  0.077  3.64  0.079  7.21  0.023  3.19  0.134  1.01  0.388  1.42  0.445  6.48  0.238  

Parietal top 1.14  0.304  1.81  0.200  3.26  0.093  3.67  0.078  5.14  0.047  4.10  0.099  0.43  0.558  0.57  0.587  2.16  0.381  

Parietal bottom 0.34  0.567  0.87  0.366  1.01  0.332  2.14  0.167  1.36  0.271  4.09  0.099  0.24  0.656  1.42  0.445  6.48  0.238  

Temporal  2.14  0.169  0.88  0.366  0.33  0.578  0.21  0.657  0.01  0.943  0.85  0.408  0.08  0.793  1.42  0.445  6.48  0.238  

Hippocampus 1.32  0.303  0.74  0.429  1.95  0.221  0.24  0.651  0.61  0.492          

Caudate nucleus 2.73  0.127  0.00  0.972  2.58  0.137  0.39  0.547  0.09  0.767          

Putamen 0.26  0.621  1.10  0.316  1.30  0.278  1.34  0.274  0.79  0.396  0.12  0.749  1.19  0.354  0.03  0.900  0.27  0.693  

Anterior thalamus 3.06  0.108  0.02  0.892  2.31  0.157  0.03  0.871  0.07  0.798  0.10  0.769  1.01  0.389  0.57  0.587  2.16  0.381  

Lateral thalamus 3.28  0.097  0.16  0.700  1.69  0.220  0.01  0.940  0.03  0.861  0.10  0.769  1.01  0.389  0.57  0.587  2.16  0.381  

Medial thalamus 1.00  0.340  0.92  0.360  0.24  0.632  0.00  0.994  0.01  0.913  0.62  0.488  0.18  0.713      

PC
r/E

PP
 

Sagittal top 2.26  0.155  2.18  0.162  2.64  0.127  3.95  0.068  8.65  0.015  39.08  0.002  0.03  0.880  0.57  0.588  11.68  0.181  

Sagittal bottom 0.14  0.710  0.56  0.467  2.56  0.132  3.27  0.094  17.86  0.002  27.86  0.003  0.20  0.686  1.41  0.446  268.4

  

0.039  

Parietal top 9.05  0.009  7.31  0.017  6.97  0.019  5.78  0.032  16.07  0.002  18.51  0.008  0.03  0.884  0.57  0.588  11.68  0.181  

Parietal bottom 1.43  0.252  1.35  0.264  3.44  0.085  4.47  0.054  4.97  0.050  37.76  0.002  0.17  0.706  1.41  0.446  268.4

  

0.039  

Temporal  1.85  0.198  0.43  0.524  0.15  0.707  0.10  0.762  0.03  0.862  0.72  0.445  0.00  0.963  1.41  0.446  268.4

  

0.039  

Hippocampus 6.19  0.055  5.37  0.068  1.45  0.282  1.17  0.339  0.84  0.426          

Caudate nucleus 0.04  0.851  0.22  0.646  0.01  0.911  0.05  0.834  0.06  0.806          

Putamen 0.96  0.348  1.03  0.332  0.81  0.387  2.45  0.149  0.53  0.485  0.77  0.429  0.05  0.832  0.02  0.901  1.04  0.494  

Anterior thalamus 0.02  0.904  0.10  0.761  0.01  0.923  0.01  0.941  0.11  0.743  0.01  0.922  0.04  0.852  0.57  0.588  11.68  0.181  

Lateral thalamus 0.00  0.970  0.30  0.593  0.00  0.966  0.05  0.827  0.05  0.823  0.01  0.922  0.04  0.852  0.57  0.588  11.68  0.181  

Medial thalamus 2.05  0.183  3.91  0.076  0.61  0.454  0.26  0.621  0.03  0.871  1.18  0.357  0.01  0.929      
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  Time after resuscitation (h) 
  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

Pi
/E

P
P

 

Sagittal top 4.18  0.060  3.01  0.105  3.09  0.101  3.20  0.097  5.85  0.036  8.26  0.035  1.46  0.313  0.11  0.795  2.98  0.334  

Sagittal bottom 0.55  0.472  1.13  0.305  4.05  0.064  3.65  0.078  13.19  0.005  7.08  0.045  1.06  0.379  0.37  0.653  10.35  0.192  

Parietal top 7.00  0.019  8.57  0.011  7.96  0.014  5.85  0.031  11.63  0.007  9.67  0.027  0.50  0.529  0.11  0.795  2.98  0.334  

Parietal bottom 2.46  0.139  3.23  0.094  4.06  0.063  3.60  0.080  3.73  0.082  10.51  0.023  0.21  0.678  0.37  0.653  10.35  0.192  

Temporal  1.06  0.323  0.29  0.599  0.25  0.629  0.28  0.609  0.00  0.978  0.32  0.600  0.04  0.847  0.37  0.653  10.35  0.192  

Hippocampus 3.82  0.108  3.48  0.121  3.52  0.119  0.53  0.509  0.58  0.503          

Caudate nucleus 0.14  0.711  0.15  0.702  0.56  0.469  0.22  0.652  0.13  0.726          

Putamen 0.76  0.401  0.24  0.633  1.18  0.302  1.26  0.289  0.33  0.580  0.03  0.864  1.87  0.265  0.03  0.892  0.38  0.647  

Anterior thalamus 0.35  0.569  0.08  0.781  1.07  0.323  0.26  0.619  0.28  0.612  0.29  0.616  1.20  0.353  0.11  0.795  2.98  0.334  

Lateral thalamus 0.26  0.620  0.03  0.866  0.70  0.420  0.35  0.569  0.15  0.711  0.29  0.616  1.20  0.353  0.11  0.795  2.98  0.334  

Medial thalamus 0.44  0.521  1.45  0.256  0.07  0.795  0.00  0.991  0.00  0.959  0.07  0.810  0.38  0.599      

PC
r/P

i 

Sagittal top 10.49  0.006  3.95  0.067  3.61  0.078  4.39  0.056  10.95  0.008  61.58  0.001  0.02  0.887  0.03  0.883  0.67  0.563  

Sagittal bottom 0.17  0.690  0.80  0.386  4.03  0.064  3.92  0.069  17.23  0.002  29.78  0.003  0.27  0.642  0.19  0.741  1.65  0.421  

Parietal top 11.98  0.004  8.26  0.012  6.91  0.020  5.39  0.037  22.53  0.001  22.13  0.005  0.03  0.878  0.03  0.883  0.67  0.563  

Parietal bottom 6.26  0.025  6.70  0.021  8.04  0.013  6.74  0.022  12.65  0.005  53.68  0.001  0.49  0.535  0.19  0.741  1.65  0.421  

Temporal  2.85  0.117  0.21  0.654  0.01  0.931  0.01  0.938  0.00  0.995  0.64  0.467  0.09  0.782  0.19  0.741  1.65  0.421  

Hippocampus 4.65  0.084  2.63  0.165  1.12  0.339  0.65  0.464  0.27  0.639          

Caudate nucleus 0.01  0.941  0.44  0.521  0.24  0.632  0.14  0.715  0.18  0.679          

Putamen 1.05  0.328  0.12  0.736  0.90  0.362  1.71  0.220  0.50  0.496  1.08  0.356  0.01  0.913  0.10  0.804  0.04  0.876  

Anterior thalamus 0.00  0.979  0.01  0.918  0.26  0.619  0.03  0.873  0.59  0.463  0.05  0.834  0.01  0.911  0.03  0.883  0.67  0.563  

Lateral thalamus 0.03  0.865  0.06  0.810  0.11  0.751  0.02  0.884  0.39  0.549  0.05  0.834  0.01  0.911  0.03  0.883  0.67  0.563  

Medial thalamus 1.95  0.193  1.96  0.192  0.16  0.697  0.10  0.764  0.01  0.938  1.36  0.329  0.06  0.829      
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D-2. 31P MRS biomarkers 1-48 h after resuscitation and CD68 positive vessels in the white matter 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal 0.47  0.504  0.95  0.347  1.42  0.255  5.06  0.044  2.21  0.168  1.40  0.290  0.08  0.793  1.42  0.445  6.48  0.238  
Parietal 1.81  0.204  0.46  0.511  5.94  0.031  4.99  0.047  3.39  0.099  3.85  0.107        
Temporal 0.26  0.617  0.20  0.666  0.81  0.385  0.75  0.406  4.48  0.063  0.42  0.550  0.60  0.494  4.67  0.276  1.12  0.482  
Superior Periventricular 0.27  0.610  0.73  0.410  0.55  0.471  0.18  0.679  0.81  0.389  0.03  0.875  0.03  0.871  3.15  0.327  27.38  0.120  
Periventricular 0.03  0.865  2.59  0.133  0.22  0.644  0.34  0.570  0.27  0.616  0.05  0.828  0.08  0.793  1.42  0.445  6.48  0.238  
PLIC 0.30  0.602  0.09  0.777  5.06  0.066  9.55  0.027  6.92  0.058          

PC
r/E

PP
 

Sagittal 3.06  0.104  3.40  0.088  4.35  0.057  4.75  0.050  5.12  0.047  8.30  0.035  0.00  0.963  1.41  0.446  268.4

  

0.039  
Parietal 9.78  0.009  8.27  0.014  12.58  0.004  10.68  0.007  13.07  0.006  34.09  0.002        
Temporal 8.57  0.013  9.13  0.011  1.89  0.195  1.60  0.233  4.07  0.075  1.37  0.307  0.03  0.864  4.72  0.275  0.30  0.682  
Superior Periventricular 1.68  0.217  1.79  0.203  0.18  0.681  0.01  0.927  0.11  0.749  0.63  0.463  0.00  0.955  3.12  0.328  63.96  0.079  
Periventricular 0.03  0.859  0.00  0.983  0.10  0.755  0.26  0.620  1.31  0.280  0.95  0.375  0.00  0.963  1.41  0.446  268.4

  

0.039  
PLIC 3.42  0.114  7.16  0.037  5.26  0.062  2.53  0.172  7.48  0.052          

Pi
/E

P
P

 

Sagittal 2.85  0.115  2.36  0.149  3.40  0.088  4.11  0.065  3.96  0.075  4.11  0.099  0.04  0.847  0.37  0.653  10.35  0.192  
Parietal 7.04  0.021  4.57  0.054  12.01  0.005  7.74  0.018  8.25  0.018  9.73  0.026        
Temporal 4.83  0.048  8.91  0.011  2.44  0.144  1.60  0.232  4.06  0.075  0.00  0.963  1.03  0.385  87.84  0.068  0.83  0.529  
Superior Periventricular 0.28  0.606  1.10  0.313  0.06  0.818  0.01  0.942  0.15  0.707  0.64  0.459  0.10  0.772  0.80  0.535  73.58  0.074  
Periventricular 0.19  0.672  0.00  0.954  0.01  0.941  0.48  0.501  1.02  0.337  0.55  0.490  0.04  0.847  0.37  0.653  10.35  0.192  
PLIC 2.15  0.193  2.10  0.197  4.72  0.073  2.80  0.155  8.56  0.043          

PC
r/P

i 

Sagittal 10.08  0.007  5.66  0.033  7.43  0.017  7.30  0.019  6.16  0.032  10.65  0.022  0.09  0.782  0.19  0.741  1.65  0.421  
Parietal 12.51  0.004  6.98  0.022  19.05  0.001  14.67  0.003  19.55  0.002  55.29  0.001        
Temporal 6.61  0.025  6.27  0.028  1.22  0.290  0.90  0.364  1.18  0.306  1.75  0.257  0.06  0.828  1009.

  

0.020  3.85  0.300  
Superior Periventricular 0.61  0.447  1.72  0.213  0.11  0.748  0.00  0.972  0.01  0.915  0.82  0.408  0.10  0.768  0.45  0.623  3.77  0.303  
Periventricular 0.01  0.917  0.16  0.695  0.21  0.656  0.46  0.513  2.25  0.164  1.19  0.324  0.09  0.782  0.19  0.741  1.65  0.421  
PLIC 5.25  0.062  3.69  0.103  4.67  0.074  4.17  0.097  3.13  0.152          
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E. 31P MRS biomarkers 1-48 h after resuscitation and white matter injury assessed using H & E stains 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal 0.25  0.628  0.94  0.349  5.36  0.038  7.02  0.021  6.02  0.034  1.39  0.291  0.23  0.664  0.88  0.521  0.21  0.728  
Parietal 0.08  0.785  1.21  0.292  3.28  0.095  5.69  0.036  4.55  0.062  1.39  0.291  0.23  0.664  0.88  0.521  0.21  0.728  
Temporal 0.19  0.674  0.47  0.504  4.83  0.048  3.40  0.092  3.34  0.101  0.01  0.926  0.00  0.986  0.00  0.993  0.11  0.800  
Superior Periventricular 0.00  0.984  0.02  0.891  3.27  0.094  3.64  0.080  4.67  0.056  0.66  0.454  0.00  0.983  0.00  1.000    
Periventricular 0.07  0.799  0.15  0.701  14.52  0.002  8.97  0.012  9.87  0.010  2.02  0.214  0.00  0.999  0.88  0.521  0.21  0.728  
PLIC 0.06  0.816  0.24  0.638  15.19  0.005  10.59  0.014  19.60  0.004  0.30  0.637  1.61  0.425      

PC
r/E

PP
 

Sagittal 3.12  0.101  4.05  0.065  12.06  0.004  19.83  0.001  20.30  0.001  6.60  0.050  0.86  0.421  0.88  0.520  0.01  0.927  
Parietal 3.18  0.100  3.65  0.080  12.73  0.004  20.71  0.001  17.78  0.002  6.60  0.050  0.86  0.421  0.88  0.520  0.01  0.927  
Temporal 6.05  0.030  8.40  0.013  12.76  0.004  11.75  0.006  9.71  0.012  0.00  0.977  0.83  0.430  0.00  0.992  0.52  0.601  
Superior Periventricular 4.54  0.053  5.25  0.039  8.90  0.011  15.01  0.002  11.16  0.007  2.08  0.209  4.01  0.139  0.00  1.000    
Periventricular 1.84  0.200  4.02  0.068  8.05  0.015  9.75  0.010  12.55  0.005  6.12  0.056  1.15  0.362  0.88  0.520  0.01  0.927  
PLIC 0.62  0.454  1.35  0.279  6.44  0.035  4.98  0.061  16.69  0.006  0.17  0.719  1.28  0.461      

Pi
/E

P
P

 

Sagittal 4.51  0.054  3.26  0.094  11.12  0.005  11.27  0.006  12.05  0.006  3.75  0.111  0.02  0.906  3.49  0.313  0.14  0.774  
Parietal 3.23  0.098  2.25  0.160  7.94  0.016  10.66  0.008  9.74  0.012  3.75  0.111  0.02  0.906  3.49  0.313  0.14  0.774  
Temporal 5.65  0.035  5.50  0.037  11.73  0.005  6.71  0.025  6.22  0.034  0.07  0.801  0.09  0.781  0.12  0.785  0.17  0.754  
Superior Periventricular 4.76  0.048  4.56  0.052  9.00  0.010  8.62  0.012  8.19  0.017  1.90  0.227  0.07  0.814      
Periventricular 0.84  0.377  1.42  0.256  15.71  0.002  11.42  0.006  12.15  0.006  5.23  0.071  0.14  0.735  3.49  0.313  0.14  0.774  
PLIC 0.27  0.620  0.83  0.389  8.12  0.021  7.94  0.026  25.27  0.002  2.37  0.264  60.52  0.081      

PC
r/P

i 

Sagittal 7.98  0.014  4.95  0.044  17.70  0.001  20.44  0.001  24.71  0.001  7.09  0.045  0.37  0.586  7.34  0.225  0.75  0.545  
Parietal 7.97  0.015  4.73  0.050  17.65  0.001  21.60  0.001  23.81  0.001  7.09  0.045  0.37  0.586  7.34  0.225  0.75  0.545  
Temporal 6.86  0.022  5.86  0.032  13.45  0.003  11.14  0.007  9.70  0.012  0.01  0.938  0.34  0.598  0.27  0.697  0.00  0.983  
Superior Periventricular 6.37  0.025  4.22  0.061  10.81  0.006  15.32  0.002  14.29  0.004  3.32  0.128  2.60  0.205  0.00  1.000    
Periventricular 1.67  0.221  2.00  0.182  7.58  0.018  7.60  0.019  7.28  0.022  4.98  0.076  0.31  0.617  7.34  0.225  0.75  0.545  
PLIC 0.90  0.370  1.98  0.197  8.84  0.018  5.98  0.044  8.78  0.025  0.03  0.880  12.83  0.173      
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F. 31P MRS biomarkers 1-48 h after resuscitation and white matter injury assessed using LFB/Nissl stains 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal 0.66  0.431  0.23  0.638  1.36  0.264  3.50  0.086  5.71  0.038  0.02  0.899  1.87  0.265      

Parietal 0.18  0.678  0.36  0.560  3.51  0.085  3.30  0.097  8.13  0.019  0.34  0.585  2.01  0.251  1.42  0.445  6.48  0.238  
Temporal 0.69  0.423  0.19  0.667  1.71  0.215  2.43  0.147  4.37  0.066  0.85  0.408  0.08  0.793  1.42  0.445  6.48  0.238  
Superior Periventricular 1.08  0.318  0.02  0.886  0.92  0.356  4.73  0.050  12.23  0.006          
Periventricular 0.98  0.341  0.01  0.915  0.78  0.395  4.13  0.067  12.23  0.006          
PLIC 0.52  0.491  0.42  0.534  4.43  0.069  2.71  0.144  4.38  0.081  0.02  0.895  4.70  0.275      

PC
r/E

PP
 

Sagittal 0.01  0.914  0.22  0.644  0.07  0.800  0.04  0.849  1.25  0.289  0.01  0.920  0.04  0.854      
Parietal 0.02  0.896  0.00  0.951  0.06  0.813  0.13  0.721  1.87  0.204  0.00  0.947  0.04  0.852  1.41  0.446  268.4

  

0.039  
Temporal 0.04  0.836  0.07  0.795  0.89  0.363  1.31  0.277  1.86  0.205  0.72  0.445  0.00  0.963  1.41  0.446  268.4

  

0.039  
Superior Periventricular 0.58  0.460  0.75  0.404  1.64  0.223  3.02  0.108  4.45  0.061          
Periventricular 0.23  0.640  0.36  0.559  1.11  0.312  2.33  0.155  4.45  0.061          
PLIC 2.76  0.135  3.65  0.093  3.08  0.117  1.50  0.261  6.42  0.044  0.06  0.829  0.49  0.610      

Pi
/E

P
P

 

Sagittal 0.36  0.558  0.02  0.901  0.31  0.586  1.08  0.319  2.83  0.124  0.30  0.605  2.29  0.228      
Parietal 0.07  0.792  0.00  0.996  0.53  0.482  1.27  0.284  4.21  0.070  0.29  0.614  1.89  0.263  0.37  0.653  10.35  0.192  
Temporal 0.03  0.858  0.03  0.872  0.69  0.422  1.56  0.238  2.42  0.154  0.32  0.600  0.04  0.847  0.37  0.653  10.35  0.192  
Superior Periventricular 0.00  0.987  0.47  0.504  0.92  0.354  5.48  0.037  6.47  0.029          
Periventricular 0.01  0.911  0.27  0.613  0.60  0.452  4.51  0.057  6.47  0.029          
PLIC 2.00  0.195  4.11  0.077  4.74  0.061  2.53  0.156  8.23  0.028  0.31  0.633  86.29  0.068      

PC
r/P

i 

Sagittal 0.00  0.986  0.15  0.702  0.17  0.688  0.16  0.695  0.12  0.740  0.02  0.888  0.01  0.916      
Parietal 0.01  0.910  0.02  0.890  0.26  0.618  0.30  0.596  0.38  0.555  0.00  0.977  0.04  0.857  0.19  0.741  1.65  0.421  
Temporal 0.54  0.478  0.19  0.671  1.59  0.232  1.62  0.230  1.02  0.339  0.64  0.467  0.09  0.782  0.19  0.741  1.65  0.421  
Superior Periventricular 0.56  0.469  1.07  0.320  1.84  0.198  2.44  0.144  2.15  0.174          
Periventricular 0.28  0.609  0.65  0.435  1.29  0.278  1.82  0.204  2.15  0.174          
PLIC 2.95  0.124  6.16  0.038  4.81  0.060  2.33  0.171  6.87  0.040  0.11  0.769  722.6

  

0.024      
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G. 31P MRS biomarkers 1-48 h after resuscitation and axonal injury assessed using β-APP immune-histochemical stain 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

N
TP

/E
P

P
 

Sagittal 0.00  0.997  0.09  0.772  2.31  0.153  1.08  0.319  0.95  0.353  6.72  0.049  0.71  0.462  0.57  0.587  2.16  0.381  
Parietal 0.06  0.813  0.19  0.671  4.05  0.067  3.56  0.086  3.44  0.096  4.22  0.095  0.04  0.846  0.00  0.993  0.11  0.800  
Temporal 0.00  0.950  0.28  0.605  3.88  0.072  1.41  0.260  0.62  0.451  2.44  0.193  0.71  0.462  0.57  0.587  2.16  0.381  
Superior Periventricular 0.49  0.497  2.25  0.158  6.51  0.024  4.88  0.047  2.84  0.123  8.52  0.033  1.88  0.264  0.57  0.587  2.16  0.381  
Periventricular 0.01  0.940  0.22  0.649  5.19  0.042  4.02  0.070  4.40  0.062  3.47  0.122  0.05  0.833  0.07  0.838  0.43  0.631  
PLIC 1.32  0.294  3.05  0.131  3.07  0.130  3.37  0.126  0.88  0.401          

PC
r/E

PP
 

Sagittal 0.03  0.871  0.04  0.850  0.80  0.387  0.95  0.349  3.38  0.096  16.37  0.010  2.36  0.222  0.57  0.588  11.68  0.181  
Parietal 0.02  0.882  0.11  0.749  1.19  0.296  1.48  0.249  8.72  0.016  8.55  0.033  0.01  0.913  0.00  0.992  0.52  0.601  
Temporal 2.03  0.179  3.44  0.089  8.33  0.014  4.94  0.048  2.67  0.137  4.68  0.097  2.36  0.222  0.57  0.588  11.68  0.181  
Superior Periventricular 6.54  0.024  8.01  0.014  18.32  0.001  12.05  0.005  9.93  0.010  17.34  0.009  1.53  0.304  0.57  0.588  11.68  0.181  
Periventricular 1.34  0.270  2.90  0.114  7.24  0.020  5.41  0.040  10.87  0.008  12.07  0.018  0.04  0.860  0.07  0.839  1.54  0.432  
PLIC 0.21  0.665  0.02  0.905  0.88  0.384  1.08  0.347  1.08  0.357          

Pi
/E

P
P

 

Sagittal 0.18  0.681  0.21  0.654  2.35  0.149  0.74  0.408  2.40  0.152  17.50  0.009  1.56  0.300  0.11  0.795  2.98  0.334  
Parietal 0.04  0.847  0.01  0.925  2.33  0.153  1.41  0.259  5.96  0.037  6.57  0.050  0.17  0.705  0.12  0.785  0.17  0.754  
Temporal 1.22  0.291  2.12  0.171  9.90  0.008  2.79  0.123  1.61  0.237  3.65  0.129  1.56  0.300  0.11  0.795  2.98  0.334  
Superior Periventricular 5.49  0.036  7.89  0.015  19.86  0.001  8.38  0.013  6.78  0.026  25.98  0.004  3.99  0.140  0.11  0.795  2.98  0.334  
Periventricular 1.25  0.285  2.15  0.169  8.72  0.012  4.53  0.057  8.24  0.017  7.72  0.039  0.18  0.698  0.01  0.954  0.58  0.585  
PLIC 0.95  0.367  0.18  0.684  0.74  0.423  1.09  0.345  1.14  0.345          

PC
r/P

i 

Sagittal 0.19  0.670  0.24  0.631  1.09  0.316  1.26  0.284  4.00  0.073  13.14  0.015  1.25  0.346  0.03  0.883  0.67  0.563  
Parietal 0.35  0.566  0.30  0.593  1.44  0.253  1.63  0.227  5.18  0.049  4.20  0.096  0.18  0.698  0.27  0.697  0.00  0.983  
Temporal 1.68  0.219  3.03  0.107  6.41  0.026  4.36  0.061  3.26  0.104  1.28  0.322  1.25  0.346  0.03  0.883  0.67  0.563  
Superior Periventricular 7.51  0.017  10.60  0.006  18.40  0.001  12.66  0.004  10.40  0.009  11.18  0.020  0.59  0.500  0.03  0.883  0.67  0.563  
Periventricular 2.83  0.118  3.95  0.070  8.95  0.011  6.09  0.031  9.38  0.012  9.31  0.028  0.00  0.987  0.05  0.866  0.09  0.814  
PLIC 0.99  0.359  0.24  0.641  1.51  0.265  2.23  0.196  0.66  0.462          

P-values presented without correction for multiple comparisons. P-values for the periods after 24 hours are presented only for reference because of the 
limited number of surviving subjects. Abbreviation: PCIC, posterior limb of the internal capsule. 
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Supplemental Table 4.3-6: Regional ADC 1-48 h after resuscitation and histo-pathological injury in corresponding 
regions (adjusted for AED and survival time after resuscitation) 

A. ADC 1 to 48 hours after resuscitation and neuronal death assessed using H & E stains 

  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal top 3.32  0.090  9.93  0.007 54.45  0.000

 

43.40  0.000

 

58.25  0.000

 

6.70  0.049  0.37  0.653  0.70  0.556  0.98  0.503  

Sagittal bottom 1.04  0.325  2.98  0.106  4.52  0.053  3.39  0.091  4.81  0.064  18.90  0.007  30.96  0.113  52.20  0.088  4.89  0.270  

Parietal top 0.84  0.375  4.29  0.057  6.01  0.029  7.83  0.016  10.18  0.015  3.39  0.125  0.16  0.759  0.49  0.611  0.17  0.754  

Parietal bottom 3.90  0.068  4.17  0.060  4.11  0.064  3.56  0.084  5.84  0.046  20.36  0.006  1.38  0.449  0.74  0.549  1.43  0.443  

Temporal  0.75  0.403  3.78  0.076  4.59  0.055  6.26  0.034  0.05  0.830  0.71  0.446  5.34  0.260  1.74  0.413  
  

Hippocampus 0.03  0.862  0.06  0.826  0.15  0.725  3.67  0.306  . . 
        

Caudate nucleus 0.90  0.366  2.49  0.146  4.60  0.061  5.80  0.053  1.18  0.357  3.12  0.175  0.38  0.649  0.17  0.750  . . 

Putamen 0.01  0.931  1.09  0.321  2.20  0.169  2.38  0.161  4.95  0.077  1.21  0.332  19.06  0.143  71.11  0.075  . . 

Anterior thalamus 4.60  0.058  5.41  0.042  4.82  0.053  6.76  0.035  0.51  0.517  10.59  0.031  5.35  0.260  11.76  0.181  . . 

Lateral thalamus 4.46  0.058  4.77  0.051  4.71  0.055  10.12  0.013  0.79  0.414  0.00  0.997  27.61  0.120  26.41  0.122  . . 

Medial thalamus 4.96  0.048  1.56  0.238  1.89  0.200  10.70  0.011  1.61  0.261  0.86  0.407  28.41  0.118  13.32  0.170      
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B. ADC 1-48 h after resuscitation and TUNEL positive apoptotic cell death 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal top 0.31  0.587  0.79  0.388  1.98  0.183  4.89  0.047  3.94  0.088  4.00  0.102  0.07  0.841  0.01  0.938  0.00  0.992  

Sagittal bottom 0.04  0.839  0.23  0.639  4.22  0.061  4.16  0.064  2.33  0.170  4.86  0.079  4.72  0.275  73.42  0.074  1.54  0.432  

Parietal top 0.15  0.701  4.28  0.058  6.32  0.026  5.97  0.031  4.41  0.074  1.99  0.217  0.78  0.539  2.01  0.391  0.00  0.974  

Parietal bottom 0.04  0.853  0.06  0.813  2.60  0.131  2.33  0.153  1.86  0.215  6.75  0.048  2.53  0.357  0.40  0.640  2.64  0.351  

Temporal  2.21  0.163  0.03  0.858  0.01  0.931  0.01  0.928  0.30  0.607  0.37  0.575  3.76  0.303  1.32  0.456  
  

Hippocampus 0.36  0.582  0.01  0.914  1.16  0.360  0.74  0.547  
          

Caudate nucleus 3.20  0.104  3.61  0.087  1.11  0.319  0.16  0.708  0.66  0.477  1.00  0.391  0.01  0.925  0.08  0.824  . . 

Putamen 0.76  0.405  1.44  0.257  3.01  0.113  1.11  0.324  0.12  0.745  0.58  0.487  0.01  0.934  0.00  0.998  . . 

Anterior thalamus 1.21  0.296  0.60  0.456  0.11  0.745  0.21  0.658  0.08  0.792  0.52  0.510  0.01  0.936  0.05  0.857  . . 

Lateral thalamus 10.42  0.008  5.37  0.041  4.30  0.065  1.58  0.245  0.00  0.950  0.29  0.618  0.00  0.961  0.00  0.958  . . 

Medial thalamus 0.49  0.500  0.06  0.808  0.05  0.836  2.16  0.185  0.00  0.979  2.60  0.205              
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C-1. ADC 1-48 h after resuscitation and CD68 positive microglia in the grey matter 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal top 1.46  0.246  3.27  0.092  6.24  0.027  2.92  0.113  4.82  0.064  15.48  0.011  0.63  0.574  0.32  0.671  0.21  0.724  

Sagittal bottom 3.60  0.079  7.49  0.016  9.10  0.010  4.11  0.065  3.71  0.095  2.23  0.196  340.2

  

0.034  14.00  0.166  10.36  0.192  

Parietal top 4.32  0.057  5.46  0.035  3.60  0.080  4.86  0.048  7.85  0.026  27.60  0.003  22.21  0.133  1888.

  

0.015  0.46  0.620  

Parietal bottom 0.41  0.531  0.83  0.379  1.59  0.230  1.20  0.295  2.10  0.191  15.96  0.010  0.01  0.931  77.74  0.072  0.01  0.936  

Temporal  4.35  0.059  1.40  0.260  0.23  0.645  0.01  0.932  0.11  0.759  0.69  0.452  0.42  0.633  1.14  0.480    

Hippocampus 7.78  0.049  155.3

  

0.000  0.25  0.651  0.08  0.829            

Caudate nucleus 5.68  0.036  5.47  0.039  5.93  0.035  9.87  0.016  0.38  0.569  0.86  0.407  1.38  0.449  2.70  0.348  . . 

Putamen 0.13  0.727  0.02  0.902  0.00  0.953  0.61  0.458  0.12  0.748  0.64  0.470  192.7

  

0.046  30.54  0.114  . . 

Anterior thalamus 3.67  0.082  3.95  0.072  3.45  0.093  2.73  0.142  1.67  0.266  0.16  0.707  0.33  0.666  0.18  0.746  . . 

Lateral thalamus 4.43  0.059  6.24  0.030  3.52  0.090  11.74  0.009  0.11  0.759  0.05  0.840  0.03  0.897  0.03  0.894  . . 

Medial thalamus 10.38  0.009  12.00  0.006  1.37  0.273  3.29  0.113  0.19  0.682  0.33  0.608        

 

C-2. ADC 1-48 h after resuscitation and CD68 positive microglia in the white matter 

  Time after resuscitation (h) 

  1 - < 3 3- < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal 2.74  0.124  3.51  0.085  4.35  0.061  5.48  0.041  9.46  0.018  24.63  0.004  15.09  0.160  6.34  0.241  1.76  0.412  
Parietal 1.11  0.315  1.95  0.190  2.28  0.162  1.58  0.240  3.56  0.101  5.70  0.063  0.83  0.529  0.03  0.892  0.01  0.928  
Temporal 1.43  0.256  0.29  0.598  1.37  0.269  2.76  0.131  1.05  0.345  0.03  0.864  16.25  0.155  4.65  0.276  3.02  0.333  
Superior Periventricular 0.58  0.463  0.75  0.406  2.05  0.182  0.37  0.561  0.00  0.991  0.38  0.573  0.00  0.966  0.00  0.972  0.01  0.930  
Periventricular 0.40  0.541  1.49  0.250  0.56  0.473  0.07  0.799  0.00  0.994  1.76  0.255  0.36  0.656  0.41  0.637  1.90  0.400  
PLIC 5.14  0.064  3.36  0.117  2.42  0.181  3.35  0.141  0.17  0.723          
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D-1. ADC 1-48 h after resuscitation and CD68 positive vessels in the grey matter 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal top 5.35  0.036  6.50  0.023  7.38  0.018  5.34  0.039  13.05  0.009  24.28  0.004  1.34  0.453  0.73  0.550  0.52  0.603  

Sagittal bottom 6.47  0.023  8.32  0.012  9.32  0.009  5.71  0.034  7.24  0.031  8.09  0.036  0.08  0.824  0.00  0.975  0.33  0.667  

Parietal top 11.15  0.005  14.19  0.002  10.46  0.007  17.06  0.001  9.26  0.019  32.33  0.002  22.21  0.133  1888.

  

0.015  0.46  0.620  

Parietal bottom 1.42  0.254  2.02  0.177  3.18  0.098  2.49  0.141  2.67  0.146  16.01  0.010  0.48  0.614  2.12  0.383  0.50  0.609  

Temporal  3.95  0.070  1.42  0.256  0.21  0.653  0.02  0.902  0.04  0.856  0.88  0.401  0.35  0.661  0.95  0.508    

Hippocampus 8.36  0.045  90.38  0.001  0.31  0.615  0.29  0.684            

Caudate nucleus 6.45  0.028  6.34  0.029  6.00  0.034  4.18  0.080            

Putamen 0.00  0.968  0.27  0.615  1.31  0.279  0.30  0.597  0.07  0.802  0.44  0.542  0.13  0.778  0.24  0.710  . . 

Anterior thalamus 4.91  0.049  7.53  0.019  5.17  0.046  23.96  0.002  1.67  0.266  0.16  0.707  0.33  0.666  0.18  0.746    

Lateral thalamus 4.66  0.054  2.30  0.160  2.30  0.160  13.99  0.006  0.11  0.759  0.05  0.840  0.03  0.897  0.03  0.894  . . 

Medial thalamus 0.02  0.895  0.10  0.758  1.80  0.213  11.79  0.011  0.17  0.699  0.33  0.608        

 

D-2. ADC 1-48 h after resuscitation and CD68 positive vessels in the white matter 

  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal 2.43  0.145  4.19  0.063  4.58  0.056  6.25  0.031  6.42  0.039  7.88  0.038  7.52  0.223  12.07  0.178  2.68  0.349  
Parietal 7.11  0.022  6.67  0.025  12.74  0.005  10.26  0.011  6.59  0.037  6.27  0.054        
Temporal 0.05  0.835  0.03  0.873  0.07  0.790  1.84  0.208  1.46  0.273  0.00  0.950  0.34  0.664  0.12  0.786  0.06  0.842  
Superior Periventricular 1.48  0.250  7.31  0.021  0.97  0.348  0.04  0.850  0.04  0.854  1.21  0.333  0.79  0.537  1.17  0.475  1.53  0.432  
Periventricular 0.28  0.609  0.05  0.820  0.10  0.755  0.28  0.613  0.64  0.461  1.76  0.255  0.36  0.656  0.41  0.637  1.90  0.400  
PLIC 5.13  0.064  3.79  0.099  4.91  0.078  7.92  0.048  0.58  0.525          
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E. ADC 1-48 h after resuscitation and white matter injury assessed using H & E stains 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal 5.38  0.039  15.13  0.002  25.07  0.000 51.68  0.000

 

21.80  0.002  18.24  0.008  0.18  0.743  0.05  0.856  0.29  0.685  
Parietal 2.89  0.117  9.92  0.009  13.82  0.004  11.45  0.008  17.47  0.004  22.97  0.005  9.01  0.205  15.61  0.158  10.17  0.193  
Temporal 3.29  0.097  1.68  0.221  5.49  0.041  7.42  0.023  3.86  0.097  1.36  0.309  0.47  0.619  1.02  0.497  1.45  0.441  
Superior Periventricular 0.01  0.906  0.73  0.411  4.89  0.051  10.18  0.015  4.66  0.083  3.06  0.155        
Periventricular 0.96  0.351  0.30  0.593  2.67  0.137  1.20  0.309  1.68  0.251  0.72  0.443  3.56  0.310  3.10  0.329  0.66  0.566  
PLIC 0.92  0.365  6.65  0.033  6.16  0.042  5.34  0.060  4.32  0.106  1.09  0.406        

  

F. ADC 1-48 h after resuscitation and white matter injury assessed using LFB/Nissl stains 

  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

 

Sagittal 0.29  0.603  0.28  0.604  0.32  0.581  0.12  0.737  0.54  0.486  0.02  0.882        
Parietal 0.09  0.767  0.10  0.758  0.02  0.903  0.00  0.962  0.43  0.535  0.29  0.614  0.08  0.829  0.10  0.808  0.14  0.772  
Temporal 2.34  0.154  12.24  0.005  5.86  0.036  1.09  0.325  1.07  0.342  3.40  0.139  126.2

  

0.057  95.31  0.065  26.92  0.121  
Superior Periventricular 0.75  0.405  8.73  0.013  3.93  0.075  0.14  0.719  0.30  0.609          
Periventricular 0.06  0.815  1.14  0.311  1.43  0.263  0.01  0.941  0.34  0.583          
PLIC 5.24  0.051  6.82  0.031  2.54  0.155  3.00  0.134  0.43  0.549  0.00  0.989        
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G. ADC 1-48 h after resuscitation and axonal injury assessed using β-APP immune-histochemical stain 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

AD
C

 

Sagittal 2.06  0.177  1.06  0.324  3.77  0.078  3.70  0.083  7.14  0.032  27.79  0.003  2.40  0.365  311.8

  

0.036  8.81  0.207  
Parietal 0.11  0.751  0.75  0.406  1.59  0.236  0.70  0.424  2.56  0.153  2.39  0.183  5.02  0.267  0.43  0.630  0.34  0.665  
Temporal 1.07  0.324  0.17  0.686  2.98  0.115  4.65  0.060  2.59  0.158  1.24  0.329  9.58  0.199  66.89  0.077  899.3

  

0.021  
Superior Periventricular 0.03  0.862  0.10  0.763  6.18  0.032  3.60  0.100  0.47  0.524  0.23  0.659  0.11  0.797  0.19  0.736  0.27  0.693  
Periventricular 4.72  0.055  1.90  0.198  5.74  0.040  1.31  0.290  0.92  0.381  0.54  0.505  0.01  0.951  0.00  0.970  0.11  0.792  
PLIC 2.33  0.178  1.52  0.264  2.61  0.167  2.92  0.163  0.01  0.945          

P-values presented without correction for multiple comparisons. 
P-values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
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Supplemental Table 4.3-7: Regional T2 relaxation time 1-48 h after resuscitation and histo-pathological injury in 
corresponding regions (adjusted for AED and survival time after resuscitation) 

A. T2 1-48 h after resuscitation and neuronal death assessed using H & E stains 

  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal top 1.74  0.229  3.27  0.114  2.66  0.154  2.40  0.182  1.95  0.235  4.80  0.160  

 
     

Sagittal bottom 0.22  0.653  0.91  0.373  0.15  0.710  0.06  0.820  0.01  0.947  3.42  0.205  
      

Parietal top 2.95  0.129  3.09  0.122  2.82  0.144  3.70  0.112  4.47  0.102  7.64  0.110  
      

Parietal bottom 2.02  0.198  3.01  0.127  3.02  0.133  1.67  0.253  0.30  0.613  2.67  0.244  
      

Temporal  0.08  0.783  0.16  0.699  0.14  0.724  0.12  0.750  0.15  0.732  
        

Hippocampus 0.83  0.458  0.54  0.540  0.03  0.889  
            

Caudate nucleus 0.58  0.475  1.30  0.298  9.30  0.028  5.68  0.097  98.22  0.010  
        

Putamen 0.04  0.852  0.47  0.518  1.33  0.292  0.23  0.659  0.26  0.645  0.23  0.718  
      

Anterior thalamus 0.00  0.988  0.78  0.412  1.62  0.250  0.14  0.729  1.36  0.327  1.02  0.497  
      

Lateral thalamus 2.19  0.183  4.94  0.062  2.14  0.194  1.40  0.303  0.97  0.398  547.2

  

0.027  
      

Medial thalamus 2.40  0.165  26.18  0.001  6.04  0.049  15.58  0.011  25.36  0.007  19.72  0.141              
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B. T2 1-48 h after resuscitation and TUNEL positive apoptotic cell death 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal top 0.92  0.369  0.95  0.362  0.48  0.513  1.05  0.353  2.81  0.169  104.4

  

0.009  
      

Sagittal bottom 5.93  0.045  9.79  0.017  6.12  0.048  9.19  0.029  9.03  0.040  2.56  0.251  
      

Parietal top 2.75  0.141  1.05  0.340  2.82  0.144  3.65  0.114  10.43  0.032  3.69  0.195  
      

Parietal bottom 1.56  0.252  4.77  0.065  3.68  0.103  7.19  0.044  6.66  0.061  1.02  0.419  
      

Temporal  1.60  0.247  11.69  0.011  8.58  0.026  27.63  0.013  4.74  0.161  
        

Hippocampus 0.06  0.828  10.17  0.086  1.65  0.422  
            

Caudate nucleus 0.21  0.661  2.23  0.186  0.49  0.515  0.18  0.698  0.01  0.927  
        

Putamen 1.11  0.333  0.09  0.774  1.01  0.354  2.21  0.211  0.41  0.570  42.16  0.097  
      

Anterior thalamus 0.22  0.657  0.02  0.888  0.00  0.986  0.11  0.757  0.00  0.959  1.81  0.407  
      

Lateral thalamus 0.00  0.964  0.72  0.426  0.09  0.776  0.07  0.799  2.43  0.217  0.01  0.947  
      

Medial thalamus 2.44  0.162  1.26  0.299  0.17  0.693  7.00  0.046  2.30  0.204  7.79  0.219              
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C-1. T2 1-48 h after resuscitation and CD68 positive microglia in the grey matter 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal top 0.11  0.748  0.13  0.730  0.23  0.647  0.40  0.557  0.17  0.699  1.01  0.420        

Sagittal bottom 0.73  0.420  2.37  0.168  1.38  0.284  0.83  0.403  0.75  0.435  0.00  0.997        

Parietal top 0.67  0.441  1.47  0.265  0.83  0.397  0.98  0.368  0.31  0.607  0.11  0.770        

Parietal bottom 0.04  0.849  0.95  0.362  1.22  0.312  2.89  0.150  1.44  0.297  0.04  0.860        

Temporal  0.52  0.496  0.37  0.561  1.53  0.262  0.18  0.699  0.04  0.854          

Hippocampus 1.58  0.336  0.61  0.518  5.81  0.250              

Caudate nucleus 0.19  0.680  0.92  0.369  1.18  0.318  1.25  0.327  0.91  0.410  14.96  0.161        

Putamen 1.30  0.292  1.12  0.326  0.18  0.689  2.53  0.187  3.59  0.154  4.76  0.274        

Anterior thalamus 0.25  0.633  0.07  0.792  0.08  0.783  0.37  0.575            

Lateral thalamus 0.00  0.983  0.00  0.956  0.01  0.923  0.45  0.541            

Medial thalamus 0.00  0.970  0.01  0.937  0.00  0.992  0.16  0.703  1.12  0.349  0.27  0.693        

 

C-2. T2 1-48 h after resuscitation and CD68 positive microglia in the white matter 

  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal 0.08  0.787  0.96  0.373  3.71  0.127  0.04  0.863  0.14  0.733          
Parietal 0.39  0.554  10.68  0.017  10.96  0.021  1.91  0.239  3.02  0.157  1.04  0.493        
Temporal 2.38  0.167  0.25  0.634  1.52  0.264  0.23  0.657  0.00  0.994  0.18  0.744        
Superior Periventricular 4.89  0.063  0.38  0.557  0.11  0.751  0.13  0.736  0.04  0.859          
Periventricular                   
PLIC 4.18  0.096  0.00  0.998  0.32  0.602  0.17  0.709  0.32  0.631          
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D-1. T2 1-48 h after resuscitation and CD68 positive vessels in the grey matter 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal top 0.22  0.653  0.28  0.612  0.62  0.460  1.02  0.359  0.47  0.533  0.59  0.522        

Sagittal bottom 0.84  0.391  2.26  0.176  1.25  0.307  0.71  0.439  0.85  0.410  0.18  0.711        

Parietal top 0.78  0.407  1.81  0.221  0.96  0.365  1.39  0.292  0.38  0.570  0.11  0.770        

Parietal bottom 0.35  0.575  1.16  0.317  1.11  0.332  0.91  0.384  0.11  0.761  0.04  0.860        

Temporal  0.76  0.413  0.42  0.536  1.36  0.288              

Hippocampus 1.53  0.342  0.90  0.444                

Caudate nucleus 0.63  0.452  0.52  0.495  2.37  0.175              

Putamen 0.68  0.437  0.47  0.513  0.01  0.919  0.28  0.628  3.11  0.176  4.76  0.274        

Anterior thalamus 0.28  0.611  0.08  0.779  0.16  0.701  0.37  0.575            

Lateral thalamus 0.02  0.891  0.03  0.861  0.01  0.909  0.45  0.541            

Medial thalamus 0.08  0.785  0.00  0.969  0.01  0.944  1.11  0.341  1.06  0.361  0.27  0.693        

 
D-2. T2 1-48 h after resuscitation and CD68 positive vessels in the white matter 

  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal 0.03  0.871  0.32  0.598  1.93  0.237  0.03  0.883  0.00  0.954          
Parietal 1.46  0.273  10.26  0.019  5.61  0.064  1.43  0.297  3.19  0.149          
Temporal 0.05  0.838  0.11  0.751  3.13  0.127  1.81  0.249  0.44  0.553  0.58  0.585        
Superior Periventricular 0.22  0.657  0.03  0.869  2.06  0.201  0.14  0.727  0.11  0.758          
Periventricular                   
PLIC 0.05  0.825  0.70  0.442  3.22  0.147  0.71  0.460  0.01  0.921          
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E. T2 1-48 h after resuscitation and white matter injury assessed using H & E stains 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal 1.90  0.227  0.69  0.445  8.58  0.043  1.72  0.281  3.77  0.147          
Parietal 3.46  0.112  4.23  0.085  7.19  0.044  3.33  0.142  10.46  0.032  8.47  0.211        
Temporal 2.42  0.164  0.08  0.782  1.39  0.284  0.36  0.583  2.30  0.226  0.04  0.868        
Superior Periventricular 2.47  0.160  0.73  0.421  0.12  0.737  1.41  0.300  0.07  0.809          
Periventricular                   
PLIC 0.13  0.734  4.83  0.070  11.22  0.020  3.66  0.128  1.48  0.311          

 

F. T2 1-48 h after resuscitation and white matter injury assessed using LFB/Nissl stains 

  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal 0.22  0.659  1.01  0.362  1.03  0.368  0.00  0.968  0.00  0.969          
Parietal 0.39  0.557  9.90  0.020  16.86  0.009  7.97  0.048  3.62  0.130  1.04  0.493        
Temporal 0.04  0.845  1.49  0.261  1.92  0.215  0.22  0.665  0.03  0.883  0.58  0.585        
Superior Periventricular 0.06  0.809  0.30  0.602  1.96  0.211  1.06  0.361  1.06  0.378          
Periventricular                   
PLIC 0.85  0.393  0.42  0.539  4.51  0.087  0.84  0.412  0.40  0.573          
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G. T2 1-48 h after resuscitation and axonal injury assessed using β-APP immune-histochemical stain 
  Time after resuscitation (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  F p F p F p F p F p F p F p F p F p 

T2
 

Sagittal 2.15  0.202  0.00  0.995  2.18  0.214  0.31  0.617  1.24  0.347          
Parietal 0.10  0.765  1.55  0.260  2.99  0.145  1.32  0.315  2.04  0.226  1.06  0.491        
Temporal 2.45  0.162  0.64  0.448  0.20  0.672  0.45  0.541  1.01  0.389  0.78  0.540        
Superior Periventricular 15.07  0.006  3.54  0.102  1.17  0.321  0.13  0.736  3.08  0.178          
Periventricular                   
PLIC 0.01  0.925  1.69  0.250  1.58  0.277  0.33  0.606  0.02  0.893          

P-values presented without correction for multiple comparisons. 
P-values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
Abbreviation: PLIC, posterior limb of the internal capsule. 
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Supplemental Table 4.3-8: Serial 31P MRS biomarkers 1-48 h before termination and histo-pathological injury 
 

A. 31P MRS biomarkers 1-48 h before termination and neuronal death in the grey matter assessed using H & E stains 

        Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal top -0.59  0.011  -0.55  0.019  -0.57  0.013  -0.48  0.054  -0.35  0.219  -0.49  0.184  -0.38  0.403  0.11  0.856  -0.23  0.768  

Sagittal bottom -0.37  0.134  -0.24  0.330  -0.38  0.123  -0.25  0.335  -0.21  0.475  -0.26  0.495  0.38  0.408  0.42  0.484  -0.50  0.501  

Parietal top -0.38  0.121  -0.33  0.175  -0.45  0.062  -0.33  0.192  -0.38  0.175  -0.42  0.256  -0.27  0.560  0.45  0.444  -0.07  0.929  

Parietal bottom -0.40  0.097  -0.29  0.251  -0.42  0.081  -0.26  0.323  -0.38  0.180  -0.42  0.257  -0.23  0.622  0.50  0.388  0.43  0.568  

Temporal  -0.57  0.021  -0.46  0.071  -0.56  0.024  -0.41  0.129  -0.28  0.350  -0.57  0.144  -0.44  0.319  -0.85  0.072  0.01  0.987  

Hippocampus -0.59  0.093  -0.84  0.005  -0.74  0.024  -0.56  0.146  -0.24  0.607          
Caudate nucleus -0.62  0.019  -0.55  0.041  -0.66  0.011  -0.55  0.052  -0.34  0.277  -0.50  0.259  -0.42  0.411  -0.20  0.743  -0.02  0.978  

Putamen -0.43  0.122  -0.39  0.172  -0.49  0.076  -0.45  0.109  -0.55  0.053  -0.56  0.146  -0.47  0.290  -0.68  0.209  -0.08  0.924  

Anterior thalamus -0.66  0.011  -0.54  0.045  -0.61  0.021  -0.68  0.008  -0.56  0.045  -0.81  0.016  -0.85  0.015  0.01  0.983  -0.80  0.202  

Lateral thalamus -0.20  0.475  -0.24  0.398  -0.44  0.102  -0.50  0.068  -0.32  0.294  -0.43  0.293  -0.35  0.436  0.31  0.607  -0.50  0.505  

Medial thalamus -0.47  0.079  -0.58  0.023  -0.71  0.003  -0.55  0.044  -0.19  0.530  -0.52  0.189  -0.57  0.187  -0.34  0.580  -0.45  0.552  

PC
r/E

PP
 

Sagittal top -0.71  0.001  -0.78  <0.00

 

-0.63  0.005  -0.50  0.041  -0.74  0.002  -0.57  0.106  -0.31  0.493  0.76  0.140  -0.29  0.708  

Sagittal bottom -0.65  0.003  -0.62  0.006  -0.55  0.017  -0.44  0.075  -0.44  0.115  -0.54  0.133  0.15  0.752  0.62  0.265  0.04  0.965  

Parietal top -0.62  0.006  -0.68  0.002  -0.58  0.012  -0.44  0.078  -0.60  0.024  -0.58  0.103  -0.27  0.557  0.59  0.298  -0.36  0.643  

Parietal bottom -0.66  0.003  -0.67  0.002  -0.59  0.010  -0.44  0.075  -0.62  0.018  -0.56  0.115  -0.23  0.620  0.52  0.367  -0.02  0.984  

Temporal  -0.48  0.059  -0.49  0.057  -0.41  0.115  -0.28  0.320  -0.40  0.175  -0.41  0.318  -0.38  0.398  0.55  0.338  -0.54  0.463  

Hippocampus -0.58  0.100  -0.86  0.003  -0.73  0.026  -0.60  0.120  -0.90  0.006          
Caudate nucleus -0.56  0.036  -0.71  0.005  -0.53  0.049  -0.43  0.139  -0.69  0.012  -0.43  0.330  -0.31  0.554  0.85  0.072  -0.51  0.491  

Putamen -0.32  0.269  -0.35  0.223  -0.26  0.373  -0.16  0.598  -0.36  0.233  -0.41  0.314  -0.35  0.445  0.70  0.191  -0.46  0.541  

Anterior thalamus -0.80  0.001  -0.68  0.008  -0.67  0.009  -0.56  0.036  -0.72  0.005  -0.79  0.019  -0.82  0.024  0.46  0.435  0.43  0.566  

Lateral thalamus -0.19  0.489  -0.46  0.082  -0.33  0.237  -0.27  0.344  -0.47  0.109  -0.45  0.268  -0.34  0.452  0.69  0.194  -0.01  0.987  

Medial thalamus -0.36  0.187  -0.66  0.008  -0.56  0.031  -0.52  0.056  -0.54  0.057  -0.45  0.269  -0.39  0.393  0.69  0.196  -0.07  0.935  
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  Time before termination (h) 
  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

Pi
/E

P
P

 

Sagittal top 0.68  0.002  0.72  0.001  0.63  0.005  0.58  0.015  0.63  0.015  0.64  0.062  0.43  0.330  -0.49  0.404  0.68  0.319  

Sagittal bottom 0.53  0.022  0.51  0.031  0.45  0.060  0.43  0.084  0.38  0.187  0.52  0.156  -0.43  0.330  -0.65  0.240  0.58  0.421  

Parietal top 0.55  0.019  0.60  0.009  0.53  0.024  0.48  0.052  0.56  0.036  0.63  0.068  0.29  0.536  -0.64  0.247  0.41  0.592  

Parietal bottom 0.57  0.014  0.56  0.016  0.51  0.033  0.44  0.081  0.60  0.024  0.63  0.070  0.25  0.593  -0.67  0.218  -0.95  0.047  

Temporal  0.53  0.035  0.52  0.037  0.49  0.056  0.42  0.119  0.37  0.211  0.56  0.150  0.56  0.192  0.43  0.469  0.70  0.297  

Hippocampus 0.57  0.110  0.80  0.010  0.68  0.044  0.58  0.130  0.79  0.035          
Caudate nucleus 0.62  0.017  0.69  0.006  0.62  0.019  0.53  0.060  0.65  0.022  0.56  0.188  0.63  0.182  -0.20  0.746  0.72  0.277  

Putamen 0.41  0.149  0.42  0.131  0.37  0.196  0.33  0.249  0.51  0.078  0.58  0.134  0.59  0.165  0.21  0.733  0.72  0.276  

Anterior thalamus 0.77  0.001  0.65  0.013  0.67  0.009  0.61  0.021  0.69  0.009  0.74  0.035  0.74  0.055  -0.50  0.391  0.50  0.500  

Lateral thalamus 0.26  0.343  0.43  0.114  0.42  0.117  0.40  0.162  0.37  0.218  0.50  0.203  0.36  0.427  -0.60  0.283  0.70  0.299  

Medial thalamus 0.42  0.119  0.63  0.012  0.61  0.015  0.57  0.032  0.35  0.239  0.52  0.191  0.62  0.137  -0.19  0.758  0.70  0.301  

PC
r/P

i 

Sagittal top -0.81  0.000 -0.84  0.000

 

-0.70  0.001  -0.58  0.015  -0.73  0.003  -0.67  0.050  -0.42  0.346  0.77  0.132  -0.77  0.231  

Sagittal bottom -0.87  0.000

 

-0.77  0.000 -0.67  0.002  -0.56  0.020  -0.49  0.075  -0.70  0.035  0.23  0.618  0.85  0.069  -0.59  0.415  

Parietal top -0.82  0.000

 

-0.78  0.000

 

-0.66  0.003  -0.57  0.018  -0.65  0.012  -0.73  0.026  -0.26  0.568  0.83  0.085  -0.55  0.446  

Parietal bottom -0.85  0.000

 

-0.81  0.000

 

-0.69  0.002  -0.58  0.014  -0.70  0.005  -0.72  0.029  -0.21  0.655  0.83  0.084  0.84  0.161  

Temporal  -0.64  0.007  -0.59  0.017  -0.47  0.069  -0.29  0.288  -0.39  0.188  -0.51  0.197  -0.63  0.127  -0.17  0.789  -0.85  0.149  

Hippocampus -0.64  0.065  -0.92  0.000  -0.73  0.025  -0.69  0.056  -0.93  0.002          
Caudate nucleus -0.61  0.020  -0.76  0.002  -0.56  0.038  -0.56  0.045  -0.74  0.006  -0.47  0.291  -0.53  0.284  0.53  0.358  -0.86  0.139  

Putamen -0.11  0.717  -0.26  0.376  -0.23  0.428  -0.28  0.361  -0.19  0.553  0.08  0.871  0.18  0.740  0.23  0.707  0.44  0.557  

Anterior thalamus -0.71  0.004  -0.61  0.021  -0.64  0.015  -0.64  0.015  -0.67  0.013  -0.76  0.027  -0.82  0.025  0.69  0.197  -0.38  0.618  

Lateral thalamus -0.44  0.104  -0.46  0.086  -0.35  0.199  -0.32  0.267  -0.33  0.279  -0.43  0.291  -0.38  0.406  0.84  0.073  -0.70  0.298  

Medial thalamus -0.55  0.036  -0.69  0.005  -0.56  0.031  -0.52  0.056  -0.44  0.137  -0.45  0.263  -0.60  0.152  0.48  0.409  -0.72  0.283  
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B. 31P MRS biomarkers 1-48 h before termination and TUNEL positive apoptotic cell death in the grey matter 

        Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal top -0.19  0.460  -0.20  0.430  -0.26  0.291  -0.10  0.705  0.40  0.152  0.47  0.200  0.41  0.367  0.71  0.176  0.15  0.850  

Sagittal bottom -0.22  0.389  -0.44  0.071  -0.54  0.022  -0.53  0.028  0.05  0.861  -0.01  0.982  -0.23  0.615  0.64  0.241  0.62  0.376  

Parietal top -0.21  0.393  -0.42  0.083  -0.40  0.104  -0.46  0.061  0.10  0.740  0.24  0.540  -0.10  0.825  0.89  0.044  -0.26  0.742  

Parietal bottom -0.17  0.496  -0.45  0.065  -0.44  0.067  -0.53  0.030  0.05  0.861  0.02  0.961  -0.22  0.640  0.55  0.337  0.58  0.424  

Temporal  -0.03  0.917  -0.25  0.356  -0.16  0.568  -0.17  0.544  0.49  0.086  0.55  0.157  0.44  0.321  0.86  0.065  0.20  0.796  

Hippocampus -0.56  0.119  -0.71  0.031  -0.27  0.475  0.14  0.749  0.57  0.184          
Caudate nucleus -0.10  0.723  -0.14  0.644  -0.14  0.624  -0.10  0.753  0.32  0.319  0.22  0.629  -0.04  0.942  0.89  0.043  -0.02  0.982  

Putamen -0.34  0.238  -0.42  0.131  -0.56  0.036  -0.63  0.016  0.01  0.982  0.02  0.965  -0.45  0.316  0.46  0.439  -0.75  0.252  

Anterior thalamus -0.05  0.860  -0.07  0.807  0.02  0.942  0.17  0.568  0.35  0.244  0.66  0.078  0.38  0.399  0.75  0.148  -0.34  0.658  

Lateral thalamus -0.37  0.170  -0.29  0.303  -0.22  0.432  0.05  0.866  0.18  0.551  0.58  0.128  0.22  0.640  0.29  0.642  -0.26  0.742  

Medial thalamus -0.34  0.241  -0.42  0.133  -0.32  0.265  -0.28  0.348  0.22  0.502  0.18  0.700  -0.02  0.970  0.92  0.078  -0.82  0.392  

PC
r/E

PP
 

Sagittal top -0.21  0.404  -0.37  0.135  -0.29  0.250  -0.31  0.231  0.03  0.927  0.19  0.617  0.51  0.246  0.01  0.993  0.17  0.828  

Sagittal bottom -0.33  0.181  -0.58  0.011  -0.57  0.013  -0.66  0.004  -0.32  0.268  -0.16  0.684  -0.36  0.427  0.25  0.689  -0.16  0.836  

Parietal top -0.31  0.219  -0.50  0.033  -0.41  0.090  -0.53  0.031  -0.24  0.402  0.03  0.946  0.13  0.777  0.27  0.662  0.50  0.496  

Parietal bottom -0.30  0.222  -0.50  0.033  -0.45  0.063  -0.56  0.020  -0.22  0.447  -0.15  0.711  -0.41  0.358  0.10  0.873  -0.08  0.919  

Temporal  -0.12  0.647  -0.35  0.182  -0.31  0.238  -0.44  0.098  -0.02  0.943  0.38  0.350  0.35  0.439  -0.28  0.649  0.32  0.680  

Hippocampus -0.47  0.205  -0.44  0.239  -0.36  0.346  -0.16  0.697  -0.10  0.835          
Caudate nucleus -0.06  0.831  -0.27  0.360  -0.24  0.415  -0.29  0.340  -0.25  0.438  0.07  0.876  -0.06  0.916  0.04  0.947  0.39  0.611  

Putamen -0.37  0.189  -0.57  0.032  -0.52  0.060  -0.73  0.003  -0.38  0.197  -0.22  0.596  -0.32  0.487  0.71  0.183  0.49  0.511  

Anterior thalamus -0.04  0.901  -0.17  0.554  -0.11  0.700  -0.15  0.615  -0.05  0.870  0.47  0.237  0.65  0.118  -0.02  0.970  0.56  0.442  

Lateral thalamus -0.21  0.464  -0.31  0.257  -0.21  0.447  -0.01  0.963  -0.14  0.648  0.54  0.172  0.62  0.135  0.21  0.740  0.23  0.766  

Medial thalamus -0.28  0.341  -0.52  0.059  -0.32  0.261  -0.38  0.197  -0.50  0.098  -0.15  0.755  0.05  0.930  0.27  0.728  1.00  0.027  
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  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

Pi
/E

P
P

 

Sagittal top 0.21  0.415  0.32  0.200  0.23  0.368  0.26  0.319  -0.21  0.482  -0.24  0.537  -0.42  0.344  0.03  0.962  -0.18  0.817  

Sagittal bottom 0.29  0.236  0.56  0.016  0.58  0.013  0.70  0.002  0.13  0.671  0.11  0.769  0.21  0.644  -0.48  0.413  -0.63  0.374  

Parietal top 0.27  0.280  0.46  0.055  0.41  0.089  0.57  0.018  0.07  0.816  -0.09  0.811  0.06  0.906  -0.34  0.578  -0.02  0.984  

Parietal bottom 0.24  0.331  0.51  0.033  0.45  0.063  0.62  0.008  0.05  0.872  0.07  0.866  0.20  0.676  -0.71  0.180  -.976

 

0.024  

Temporal  0.06  0.816  0.29  0.273  0.24  0.367  0.36  0.188  -0.28  0.361  -0.52  0.183  -0.51  0.242  -0.43  0.472  -0.68  0.319  

Hippocampus 0.48  0.189  0.67  0.048  0.31  0.415  0.04  0.932  -0.17  0.718          
Caudate nucleus 0.11  0.705  0.20  0.496  0.21  0.470  0.22  0.467  0.02  0.951  -0.13  0.779  -0.16  0.757  -0.29  0.642  -0.27  0.728  

Putamen 0.39  0.169  0.50  0.070  0.54  0.049  0.73  0.003  0.15  0.623  0.07  0.876  0.30  0.514  -0.17  0.783  0.75  0.253  

Anterior thalamus 0.03  0.930  0.05  0.863  0.05  0.860  -0.01  0.970  -0.13  0.666  -0.52  0.184  -0.44  0.327  0.00  0.995  0.04  0.963  

Lateral thalamus 0.31  0.262  0.30  0.271  0.18  0.516  -0.02  0.945  0.08  0.804  -0.45  0.262  -0.17  0.709  0.49  0.400  0.46  0.538  

Medial thalamus 0.31  0.276  0.42  0.140  0.30  0.304  0.30  0.315  0.14  0.659  -0.07  0.890  -0.12  0.822  -0.93  0.069  -0.15  0.902  

PC
r/P

i 

Sagittal top -0.37  0.130  -0.42  0.085  -0.33  0.179  -0.34  0.188  0.01  0.963  0.04  0.917  0.57  0.184  -0.09  0.887  0.30  0.697  

Sagittal bottom -0.39  0.109  -0.50  0.036  -0.52  0.026  -0.62  0.008  -0.28  0.330  -0.28  0.464  -0.20  0.669  0.52  0.371  0.58  0.418  

Parietal top -0.36  0.140  -0.45  0.063  -0.38  0.121  -0.50  0.042  -0.21  0.478  -0.07  0.850  0.16  0.735  0.37  0.535  0.24  0.757  

Parietal bottom -0.38  0.122  -0.44  0.070  -0.40  0.100  -0.54  0.025  -0.19  0.506  -0.25  0.523  -0.22  0.636  0.70  0.185  0.87  0.132  

Temporal  -0.17  0.523  -0.29  0.272  -0.31  0.244  -0.39  0.154  0.07  0.813  0.43  0.286  0.58  0.177  0.26  0.675  0.78  0.223  

Hippocampus -0.35  0.363  -0.40  0.286  -0.35  0.350  -0.19  0.645  -0.06  0.894          
Caudate nucleus -0.11  0.717  -0.26  0.376  -0.23  0.428  -0.28  0.361  -0.19  0.553  0.08  0.871  0.18  0.740  0.23  0.707  0.44  0.557  

Putamen -0.38  0.179  -0.49  0.078  -0.48  0.084  -0.62  0.018  -0.27  0.368  -0.15  0.720  -0.34  0.457  0.41  0.493  -0.50  0.498  

Anterior thalamus -0.15  0.609  -0.25  0.392  -0.20  0.495  -0.10  0.742  0.03  0.924  0.57  0.139  0.63  0.130  -0.06  0.927  0.21  0.792  

Lateral thalamus -0.38  0.167  -0.45  0.093  -0.32  0.245  -0.08  0.798  -0.13  0.669  0.53  0.175  0.43  0.340  -0.44  0.458  -0.28  0.723  

Medial thalamus -0.37  0.198  -0.55  0.041  -0.36  0.212  -0.34  0.259  -0.34  0.276  0.05  0.913  0.16  0.756  0.98  0.018  0.46  0.699  
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C-1. 31P MRS biomarkers 1-48 h before termination and CD68 positive microglia in the grey matter 

        Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal top 0.23  0.367  0.30  0.222  0.43  0.076  0.25  0.342  0.21  0.462  0.19  0.616  -0.67  0.097  -0.36  0.548  0.01  0.986  

Sagittal bottom 0.20  0.430  0.37  0.127  0.34  0.168  0.21  0.418  0.00  0.993  -0.11  0.780  -0.36  0.433  -0.05  0.938  -0.73  0.272  

Parietal top 0.36  0.141  0.33  0.179  0.55  0.017  0.43  0.089  0.20  0.497  0.18  0.637  -0.17  0.717  -0.21  0.741  -0.19  0.813  

Parietal bottom 0.24  0.340  0.28  0.260  0.39  0.115  0.19  0.466  0.30  0.301  0.27  0.487  0.20  0.667  -0.08  0.893  -0.65  0.348  

Temporal  0.09  0.736  0.12  0.672  0.26  0.337  0.26  0.343  -0.07  0.817  -0.44  0.276  -0.55  0.202  0.14  0.822  -0.77  0.234  

Hippocampus -0.12  0.754  0.19  0.618  -0.31  0.410  0.34  0.406  0.51  0.242          
Caudate nucleus -0.13  0.647  0.12  0.671  0.18  0.533  0.07  0.801  0.03  0.927  -0.52  0.185  -0.08  0.870  -0.31  0.611  -0.38  0.618  

Putamen -0.14  0.629  0.16  0.580  -0.13  0.645  -0.07  0.813  -0.09  0.767  -0.61  0.108  -0.35  0.445  -0.03  0.968  -0.77  0.234  

Anterior thalamus 0.00  0.997  0.08  0.788  0.15  0.589  0.00  0.997  -0.05  0.865  -0.50  0.206  -0.03  0.951  -0.21  0.741  -0.19  0.813  

Lateral thalamus -0.24  0.397  0.07  0.807  0.10  0.724  0.05  0.863  0.07  0.823  -0.50  0.206  -0.03  0.951  -0.21  0.741  -0.19  0.813  

Medial thalamus -0.09  0.770  0.19  0.521  -0.15  0.599  0.02  0.949  0.00  0.989  -0.43  0.333  -0.43  0.394  0.13  0.871  -0.82  0.388  

PC
r/E

PP
 

Sagittal top 0.39  0.113  0.40  0.098  0.44  0.068  0.29  0.262  0.42  0.138  0.46  0.214  -0.62  0.141  -0.08  0.893  -0.12  0.876  

Sagittal bottom 0.26  0.304  0.51  0.032  0.48  0.046  0.42  0.095  0.31  0.288  0.08  0.835  -0.18  0.706  0.48  0.418  0.35  0.653  

Parietal top 0.49  0.038  0.56  0.016  0.65  0.003  0.59  0.013  0.46  0.096  0.41  0.273  -0.46  0.304  -0.10  0.873  0.10  0.904  

Parietal bottom 0.53  0.025  0.51  0.030  0.51  0.031  0.37  0.141  0.38  0.180  0.49  0.180  0.32  0.479  0.38  0.528  0.31  0.688  

Temporal  0.16  0.559  0.21  0.431  0.34  0.192  0.41  0.134  -0.16  0.603  -0.60  0.114  -0.36  0.425  0.76  0.140  0.36  0.642  

Hippocampus 0.01  0.973  -0.06  0.880  -0.16  0.679  -0.07  0.864  0.16  0.725          
Caudate nucleus -0.24  0.398  0.11  0.688  0.13  0.645  0.02  0.953  -0.02  0.954  -0.68  0.065  -0.38  0.405  -0.06  0.925  0.19  0.813  

Putamen -0.08  0.772  0.02  0.958  -0.01  0.974  -0.14  0.632  -0.22  0.466  -0.85  0.007  -0.48  0.281  0.53  0.357  0.36  0.636  

Anterior thalamus -0.12  0.660  0.10  0.731  0.12  0.660  -0.04  0.886  -0.16  0.609  -0.60  0.116  -0.36  0.431  -0.10  0.873  0.10  0.904  

Lateral thalamus -0.29  0.300  0.04  0.894  0.10  0.712  0.07  0.811  -0.04  0.902  -0.60  0.116  -0.36  0.431  -0.10  0.873  0.10  0.904  

Medial thalamus -0.01  0.967  0.01  0.977  -0.03  0.925  0.00  0.995  -0.11  0.744  -0.76  0.048  -0.34  0.505  0.75  0.247  0.38  0.752  
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  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

Pi
/E

P
P

 

Sagittal top -0.35  0.159  -0.42  0.084  -0.39  0.113  -0.39  0.123  -0.41  0.146  -0.44  0.234  0.73  0.063  -0.48  0.417  -0.23  0.773  

Sagittal bottom -0.22  0.380  -0.46  0.056  -0.42  0.080  -0.34  0.187  -0.17  0.562  -0.07  0.850  0.35  0.445  -0.49  0.397  0.49  0.511  

Parietal top -0.45  0.058  -0.53  0.025  -0.57  0.013  -0.55  0.021  -0.40  0.153  -0.43  0.252  0.10  0.832  -0.62  0.269  -0.23  0.772  

Parietal bottom -0.41  0.088  -0.47  0.050  -0.41  0.092  -0.41  0.100  -0.43  0.124  -0.49  0.179  -0.17  0.715  -0.55  0.341  0.36  0.640  

Temporal  -0.12  0.659  -0.20  0.452  -0.25  0.344  -0.30  0.286  0.17  0.570  0.56  0.146  0.44  0.323  -0.05  0.931  0.88  0.121  

Hippocampus 0.10  0.796  0.00  0.992  0.16  0.676  -0.04  0.920  -0.22  0.643          
Caudate nucleus 0.14  0.615  -0.19  0.509  -0.19  0.510  -0.06  0.829  0.02  0.942  0.46  0.249  -0.04  0.929  -0.48  0.414  -0.01  0.992  

Putamen 0.13  0.641  -0.10  0.727  -0.01  0.968  0.05  0.857  0.17  0.581  0.67  0.070  0.20  0.676  -0.45  0.442  0.57  0.434  

Anterior thalamus 0.00  0.995  -0.20  0.486  -0.19  0.495  -0.03  0.921  0.10  0.739  0.42  0.297  -0.05  0.911  -0.62  0.269  -0.23  0.772  

Lateral thalamus 0.24  0.400  -0.11  0.705  -0.14  0.614  -0.07  0.818  0.04  0.903  0.42  0.297  -0.05  0.911  -0.62  0.269  -0.23  0.772  

Medial thalamus 0.09  0.770  -0.08  0.781  0.02  0.956  -0.04  0.899  0.10  0.769  0.57  0.179  0.30  0.564  -0.12  0.876  0.88  0.319  

PC
r/P

i 

Sagittal top 0.57  0.013  0.51  0.032  0.50  0.034  0.46  0.065  0.60  0.024  0.66  0.054  -0.65  0.117  0.48  0.412  0.09  0.914  

Sagittal bottom 0.39  0.112  0.52  0.027  0.49  0.040  0.39  0.123  0.18  0.534  0.33  0.388  -0.33  0.475  0.69  0.194  -0.40  0.596  

Parietal top 0.57  0.013  0.54  0.020  0.67  0.003  0.71  0.001  0.51  0.062  0.64  0.063  -0.33  0.474  0.61  0.278  0.15  0.847  

Parietal bottom 0.72  0.001  0.66  0.003  0.57  0.013  0.54  0.027  0.61  0.022  0.70  0.036  0.18  0.700  0.71  0.177  -0.31  0.695  

Temporal  0.13  0.636  0.11  0.682  0.30  0.261  0.53  0.043  -0.23  0.442  -0.52  0.184  -0.48  0.275  0.34  0.580  -0.69  0.310  

Hippocampus -0.07  0.850  -0.12  0.761  -0.22  0.570  -0.07  0.863  -0.01  0.983          
Caudate nucleus -0.05  0.855  0.08  0.791  0.09  0.742  -0.01  0.979  -0.10  0.747  -0.50  0.210  -0.26  0.576  0.50  0.395  -0.02  0.980  

Putamen -0.02  0.956  -0.03  0.930  -0.05  0.852  -0.08  0.774  -0.27  0.377  -0.67  0.070  -0.45  0.317  0.67  0.214  -0.46  0.538  

Anterior thalamus 0.06  0.840  0.07  0.809  0.12  0.669  -0.03  0.917  -0.20  0.507  -0.45  0.269  -0.22  0.643  0.61  0.278  0.15  0.847  

Lateral thalamus -0.21  0.444  -0.06  0.847  0.03  0.923  -0.01  0.979  -0.12  0.692  -0.45  0.269  -0.22  0.643  0.61  0.278  0.15  0.847  

Medial thalamus -0.07  0.818  -0.06  0.848  -0.10  0.747  0.00  1.000  -0.19  0.550  -0.56  0.194  -0.41  0.419  0.48  0.522  -0.68  0.522  
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C-2. 31P MRS biomarkers 1-48 h before termination and CD68 positive microglia in the white matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal  0.27  0.296  0.39  0.123  0.46  0.064  0.18  0.501  0.21  0.479  0.20  0.599  -0.43  0.337  0.11  0.862  -0.81  0.194  

Parietal  0.19  0.475  0.38  0.153  0.43  0.100  0.20  0.484  0.20  0.507  0.20  0.613  -0.23  0.621  -0.12  0.850  -0.56  0.440  

Temporal  0.35  0.188  0.40  0.127  0.29  0.284  -0.01  0.985  -0.24  0.439  -0.50  0.208  -0.34  0.463  -0.13  0.832  -0.82  0.178  
Superior Periventricular  0.08  0.765  0.35  0.170  0.15  0.555  -0.07  0.799  -0.19  0.508  -0.64  0.064  -0.26  0.572  -0.10  0.876  -0.62  0.382  

Periventricular -0.48  0.061  -0.04  0.883  -0.24  0.379  -0.03  0.922  0.08  0.782  -0.32  0.403  -0.42  0.349  0.17  0.780  -0.70  0.303  

PLIC 0.37  0.298  0.51  0.136  0.29  0.413  0.07  0.856  -0.11  0.794  -0.46  0.543  -0.34  0.658  -0.02  0.987    

PC
r/E

PP
 

Sagittal  0.49  0.047  0.55  0.024  0.57  0.016  0.40  0.125  0.41  0.141  0.40  0.282  -0.38  0.406  0.74  0.154  0.38  0.622  

Parietal  0.33  0.213  0.41  0.115  0.44  0.088  0.26  0.355  0.38  0.197  0.41  0.278  -0.47  0.291  0.28  0.654  0.27  0.730  

Temporal  0.54  0.029  0.64  0.008  0.69  0.003  0.58  0.024  0.26  0.388  -0.76  0.030  -0.39  0.387  0.51  0.381  0.39  0.611  
Superior Periventricular  -0.02  0.927  0.26  0.319  0.28  0.269  0.24  0.365  0.12  0.688  -0.80  0.009  -0.48  0.281  0.34  0.575  0.30  0.703  

Periventricular -0.37  0.158  -0.17  0.533  -0.15  0.572  -0.12  0.670  -0.17  0.552  -0.51  0.164  -0.26  0.579  0.75  0.144  0.33  0.675  

PLIC 0.42  0.232  0.52  0.122  0.48  0.158  0.19  0.632  0.38  0.356  -0.92  0.082  -0.34  0.663  1.00  0.048    

Pi
/E

P
P

 

Sagittal  -0.40  0.110  -0.53  0.030  -0.46  0.063  -0.42  0.102  -0.43  0.128  -0.42  0.263  0.29  0.533  -0.15  0.809  0.85  0.146  

Parietal  -0.30  0.265  -0.46  0.074  -0.41  0.119  -0.37  0.180  -0.38  0.196  -0.43  0.252  0.10  0.839  -0.59  0.299  0.22  0.778  

Temporal  -0.43  0.101  -0.55  0.028  -0.51  0.046  -0.38  0.157  -0.18  0.563  0.57  0.141  0.17  0.713  -0.14  0.821  0.73  0.271  
Superior Periventricular  0.00  0.991  -0.26  0.316  -0.23  0.374  -0.12  0.654  -0.06  0.829  0.64  0.066  0.12  0.797  -0.56  0.323  0.31  0.693  

Periventricular 0.46  0.072  0.15  0.582  0.13  0.641  0.08  0.779  0.13  0.667  0.45  0.221  0.30  0.507  0.06  0.925  0.88  0.119  

PLIC -0.35  0.328  -0.46  0.177  -0.34  0.331  -0.13  0.734  -0.25  0.546  0.69  0.309  0.23  0.768  0.00  0.998    

PC
r/P

i 

Sagittal  0.68  0.003  0.67  0.003  0.62  0.007  0.60  0.014  0.63  0.015  0.64  0.066  -0.43  0.334  0.43  0.469  -0.68  0.325  

Parietal  0.55  0.029  0.51  0.046  0.48  0.060  0.44  0.104  0.56  0.048  0.64  0.063  -0.38  0.402  0.72  0.175  -0.20  0.801  

Temporal  0.56  0.026  0.69  0.003  0.72  0.002  0.66  0.007  0.39  0.193  -0.58  0.129  -0.40  0.373  0.36  0.554  -0.59  0.415  
Superior Periventricular  -0.05  0.859  0.23  0.379  0.23  0.365  0.20  0.464  0.13  0.664  -0.58  0.101  -0.40  0.374  0.72  0.174  -0.26  0.736  

Periventricular -0.30  0.268  -0.23  0.385  -0.23  0.383  -0.17  0.539  -0.24  0.402  -0.39  0.296  -0.36  0.429  0.22  0.727  -0.69  0.313  

PLIC 0.62  0.058  0.67  0.033  0.57  0.086  0.36  0.339  0.37  0.366  -0.71  0.290  -0.40  0.600  0.45  0.702    
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D-1. 31P MRS biomarkers 1-48 h before termination and CD68 positive vessels in the grey matter 

        Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal top 0.38  0.120  0.42  0.082  0.46  0.054  0.31  0.222  0.12  0.696  0.16  0.690  -0.78  0.041  -0.21  0.741  -0.19  0.813  

Sagittal bottom 0.25  0.315  0.42  0.079  0.32  0.197  0.27  0.294  0.05  0.869  0.14  0.728  -0.76  0.050  0.17  0.780  -0.70  0.303  

Parietal top 0.51  0.032  0.39  0.107  0.56  0.017  0.40  0.108  0.08  0.782  -0.02  0.970  -0.28  0.540  -0.21  0.741  -0.19  0.813  

Parietal bottom 0.32  0.199  0.35  0.158  0.45  0.063  0.25  0.336  0.29  0.311  0.28  0.462  0.24  0.608  0.17  0.780  -0.70  0.303  

Temporal  0.05  0.841  0.10  0.708  0.28  0.291  0.26  0.357  -0.03  0.935  -0.30  0.472  -0.42  0.349  0.17  0.780  -0.70  0.303  

Hippocampus -0.16  0.684  0.18  0.639  -0.25  0.510  0.13  0.766  0.27  0.564          
Caudate nucleus -0.24  0.396  0.09  0.764  0.17  0.550  0.06  0.835  0.07  0.827          
Putamen -0.12  0.676  0.03  0.908  -0.36  0.184  -0.48  0.081  -0.35  0.240  -0.63  0.097  -0.28  0.544  -0.08  0.893  -0.65  0.348  

Anterior thalamus -0.17  0.552  0.03  0.922  0.17  0.552  0.03  0.927  0.02  0.942  -0.50  0.206  -0.03  0.951  -0.21  0.741  -0.19  0.813  

Lateral thalamus -0.19  0.505  0.06  0.826  0.13  0.649  0.04  0.882  0.05  0.872  -0.50  0.206  -0.03  0.951  -0.21  0.741  -0.19  0.813  

Medial thalamus -0.28  0.338  0.09  0.754  -0.05  0.871  -0.06  0.839  -0.02  0.964  -0.43  0.333  -0.43  0.394  0.13  0.871  -0.82  0.388  

PC
r/E

PP
 

Sagittal top 0.49  0.038  0.49  0.039  0.54  0.020  0.46  0.061  0.59  0.027  0.45  0.221  -0.58  0.170  -0.10  0.873  0.10  0.904  

Sagittal bottom 0.27  0.279  0.41  0.091  0.39  0.110  0.27  0.292  0.47  0.089  0.41  0.279  -0.30  0.512  0.75  0.144  0.33  0.675  

Parietal top 0.64  0.004  0.68  0.002  0.73  0.001  0.67  0.003  0.51  0.063  0.23  0.560  -0.53  0.226  -0.10  0.873  0.10  0.904  

Parietal bottom 0.59  0.010  0.57  0.014  0.57  0.014  0.40  0.112  0.46  0.097  0.50  0.166  0.61  0.147  0.75  0.144  0.33  0.675  

Temporal  0.09  0.736  0.20  0.462  0.34  0.201  0.39  0.151  -0.13  0.673  -0.52  0.192  -0.26  0.579  0.75  0.144  0.33  0.675  

Hippocampus -0.11  0.772  -0.11  0.786  -0.18  0.642  -0.08  0.847  0.01  0.981          
Caudate nucleus -0.37  0.177  0.04  0.876  0.09  0.758  0.04  0.888  0.03  0.922          
Putamen -0.13  0.640  -0.23  0.415  -0.28  0.317  -0.56  0.037  -0.63  0.021  -0.84  0.009  -0.48  0.278  0.38  0.528  0.31  0.688  

Anterior thalamus -0.29  0.304  0.05  0.856  0.12  0.678  0.01  0.965  -0.09  0.761  -0.60  0.116  -0.36  0.431  -0.10  0.873  0.10  0.904  

Lateral thalamus -0.22  0.441  0.08  0.770  0.18  0.528  0.12  0.684  -0.06  0.850  -0.60  0.116  -0.36  0.431  -0.10  0.873  0.10  0.904  

Medial thalamus -0.36  0.205  -0.08  0.788  -0.07  0.808  -0.13  0.662  -0.17  0.591  -0.76  0.048  -0.34  0.505  0.75  0.247  0.38  0.752  
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  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

Pi
/E

P
P

 

Sagittal top -0.44  0.067  -0.46  0.054  -0.43  0.072  -0.47  0.056  -0.50  0.071  -0.41  0.268  0.83  0.021  -0.62  0.269  -0.23  0.772  

Sagittal bottom -0.26  0.293  -0.42  0.085  -0.40  0.104  -0.32  0.208  -0.31  0.283  -0.35  0.355  0.78  0.039  0.06  0.925  0.88  0.119  

Parietal top -0.59  0.010  -0.59  0.009  -0.62  0.006  -0.59  0.013  -0.41  0.144  -0.26  0.500  0.22  0.630  -0.62  0.269  -0.23  0.772  

Parietal bottom -0.49  0.039  -0.54  0.022  -0.48  0.044  -0.46  0.062  -0.47  0.087  -0.50  0.169  -0.15  0.755  0.06  0.925  0.88  0.119  

Temporal  -0.07  0.784  -0.20  0.469  -0.26  0.331  -0.29  0.304  0.14  0.640  0.45  0.260  0.30  0.507  0.06  0.925  0.88  0.119  

Hippocampus 0.17  0.663  0.02  0.964  0.16  0.678  0.05  0.914  -0.04  0.930          
Caudate nucleus 0.28  0.321  -0.10  0.734  -0.13  0.655  -0.04  0.880  -0.01  0.972          
Putamen 0.16  0.578  0.10  0.715  0.25  0.371  0.45  0.109  0.43  0.146  0.65  0.083  0.14  0.772  -0.55  0.341  0.36  0.640  

Anterior thalamus 0.17  0.544  -0.13  0.648  -0.17  0.537  -0.04  0.886  0.07  0.822  0.42  0.297  -0.05  0.911  -0.62  0.269  -0.23  0.772  

Lateral thalamus 0.16  0.563  -0.15  0.594  -0.21  0.463  -0.11  0.720  0.05  0.874  0.42  0.297  -0.05  0.911  -0.62  0.269  -0.23  0.772  

Medial thalamus 0.32  0.271  -0.03  0.911  0.02  0.946  0.10  0.758  0.14  0.672  0.57  0.179  0.30  0.564  -0.12  0.876  0.88  0.319  

PC
r/P

i 

Sagittal top 0.55  0.019  0.55  0.017  0.59  0.010  0.61  0.009  0.74  0.002  0.63  0.068  -0.64  0.120  0.61  0.278  0.15  0.847  

Sagittal bottom 0.37  0.126  0.42  0.085  0.43  0.076  0.28  0.277  0.36  0.203  0.59  0.094  -0.54  0.212  0.22  0.727  -0.69  0.313  

Parietal top 0.70  0.001  0.69  0.001  0.78  0.000 0.78  0.000

 

0.54  0.048  0.48  0.194  -0.41  0.358  0.61  0.278  0.15  0.847  

Parietal bottom 0.79  0.000 0.71  0.001  0.65  0.004  0.57  0.017  0.65  0.012  0.71  0.032  0.35  0.442  0.22  0.727  -0.69  0.313  

Temporal  0.08  0.779  0.09  0.735  0.28  0.287  0.49  0.062  -0.20  0.504  -0.43  0.287  -0.36  0.429  0.22  0.727  -0.69  0.313  

Hippocampus -0.23  0.551  -0.19  0.627  -0.27  0.486  -0.19  0.661  -0.10  0.837          
Caudate nucleus -0.25  0.377  -0.01  0.986  0.02  0.952  -0.04  0.905  -0.04  0.895          
Putamen -0.23  0.419  -0.26  0.350  -0.33  0.232  -0.47  0.089  -0.48  0.099  -0.65  0.079  -0.41  0.359  0.71  0.177  -0.31  0.695  

Anterior thalamus -0.13  0.646  -0.01  0.977  0.08  0.787  -0.04  0.903  -0.16  0.592  -0.45  0.269  -0.22  0.643  0.61  0.278  0.15  0.847  

Lateral thalamus -0.14  0.613  -0.02  0.955  0.12  0.683  0.05  0.858  -0.14  0.652  -0.45  0.269  -0.22  0.643  0.61  0.278  0.15  0.847  

Medial thalamus -0.31  0.274  -0.16  0.595  -0.16  0.575  -0.20  0.519  -0.22  0.488  -0.56  0.194  -0.41  0.419  0.48  0.522  -0.68  0.522  
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D-2. 31P MRS biomarkers 1-48 h before termination and CD68 positive vessels in the white matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal 0.10  0.705  0.45  0.072  0.31  0.220  0.05  0.844  0.05  0.864  0.10  0.793  -0.42  0.349  0.17  0.780  -0.70  0.303  
Parietal 0.13  0.619  0.35  0.185  0.48  0.062  0.25  0.361  0.18  0.567  0.27  0.486        
Temporal 0.12  0.658  0.19  0.478  0.25  0.344  -0.05  0.854  -0.20  0.520  -0.61  0.108  -0.35  0.445  -0.03  0.968  -0.77  0.234  
Superior Periventricular -0.37  0.140  -0.02  0.938  -0.20  0.450  -0.35  0.189  -0.23  0.438  -0.49  0.185  -0.42  0.352  0.07  0.909  -0.83  0.174  
Periventricular -0.14  0.602  0.22  0.407  -0.13  0.631  -0.18  0.522  -0.16  0.580  -0.17  0.653  -0.42  0.349  0.17  0.780  -0.70  0.303  
PLIC 0.38  0.278  0.60  0.070  0.36  0.309  0.07  0.855  -0.09  0.833  -0.46  0.543  -0.34  0.658  -0.02  0.987    

PC
r/E

PP
 

Sagittal  0.24  0.358  0.43  0.083  0.45  0.068  0.32  0.227  0.32  0.259  0.23  0.558  -0.26  0.579  0.75  0.144  0.33  0.675  

Parietal  0.32  0.233  0.64  0.008  0.68  0.004  0.64  0.010  0.44  0.137  0.49  0.177        
Temporal  0.17  0.530  0.31  0.237  0.48  0.057  0.38  0.160  0.19  0.544  -0.85  0.007  -0.48  0.281  0.53  0.357  0.36  0.636  
Superior Periventricular  -0.26  0.321  -0.06  0.827  0.02  0.955  -0.07  0.797  -0.39  0.164  -0.64  0.062  -0.42  0.350  0.70  0.187  0.39  0.611  

Periventricular 0.00  0.995  0.06  0.818  0.04  0.875  -0.16  0.576  -0.13  0.660  -0.25  0.526  -0.26  0.579  0.75  0.144  0.33  0.675  

PLIC 0.32  0.365  0.54  0.110  0.52  0.128  0.39  0.294  0.55  0.154  -0.92  0.082  -0.34  0.663  1.00  0.048    

Pi
/E

P
P

 

Sagittal  -0.15  0.565  -0.44  0.076  -0.34  0.184  -0.28  0.291  -0.29  0.312  -0.25  0.514  0.30  0.507  0.06  0.925  0.88  0.119  

Parietal  -0.23  0.400  -0.52  0.040  -0.56  0.023  -0.50  0.059  -0.35  0.237  -0.49  0.177        
Temporal  -0.17  0.535  -0.32  0.229  -0.41  0.115  -0.26  0.350  -0.12  0.705  0.67  0.070  0.20  0.676  -0.45  0.442  0.57  0.434  
Superior Periventricular  0.34  0.184  0.02  0.951  0.05  0.865  0.15  0.585  0.29  0.323  0.52  0.152  0.27  0.563  -0.25  0.687  0.80  0.199  

Periventricular 0.12  0.672  -0.15  0.578  0.01  0.965  0.10  0.715  0.13  0.661  0.19  0.616  0.30  0.507  0.06  0.925  0.88  0.119  

PLIC -0.30  0.408  -0.44  0.203  -0.34  0.330  -0.23  0.554  -0.40  0.324  0.69  0.309  0.23  0.768  0.00  0.998    

PC
r/P

i 

Sagittal  0.38  0.135  0.51  0.035  0.45  0.070  0.45  0.081  0.48  0.079  0.47  0.197  -0.36  0.429  0.22  0.727  -0.69  0.313  

Parietal  0.48  0.062  0.67  0.005  0.68  0.004  0.64  0.010  0.42  0.154  0.70  0.036        
Temporal  0.10  0.717  0.25  0.343  0.47  0.068  0.35  0.198  0.28  0.360  -0.67  0.070  -0.45  0.317  0.67  0.214  -0.46  0.538  
Superior Periventricular  -0.17  0.519  -0.07  0.804  -0.03  0.914  -0.04  0.899  -0.27  0.345  -0.40  0.285  -0.45  0.313  0.52  0.369  -0.64  0.362  

Periventricular 0.12  0.655  0.10  0.712  0.04  0.878  0.02  0.953  -0.04  0.882  -0.04  0.918  -0.36  0.429  0.22  0.727  -0.69  0.313  

PLIC 0.32  0.376  0.67  0.035  0.54  0.110  0.46  0.208  0.64  0.091  -0.71  0.290  -0.40  0.600  0.45  0.702    
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E. 31P MRS biomarkers 1-48 h before termination and white matter injury assessed using H & E stains 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal  -0.67  0.003  -0.71  0.002  -0.66  0.004  -0.43  0.101  -0.12  0.693  -0.15  0.703  -0.18  0.702  0.89  0.041  -0.78  0.225  

Parietal  -0.57  0.021  -0.73  0.001  -0.53  0.035  -0.38  0.166  -0.14  0.653  -0.15  0.703  -0.18  0.702  0.89  0.041  -0.78  0.225  

Temporal  -0.61  0.012  -0.44  0.090  -0.52  0.040  -0.34  0.210  -0.01  0.969  0.32  0.446  -0.06  0.899  0.95  0.014  -0.45  0.553  
Superior Periventricular  -0.62  0.008  -0.43  0.082  -0.59  0.013  -0.24  0.362  -0.01  0.972  0.12  0.759  0.27  0.562  0.71  0.182    
Periventricular -0.65  0.007  -0.65  0.007  -0.72  0.002  -0.40  0.143  0.08  0.784  -0.20  0.602  -0.43  0.331  0.89  0.041  -0.78  0.225  

PLIC -0.87  0.000

 

-0.76  0.004  -0.68  0.015  -0.51  0.111  0.11  0.753  0.12  0.816  -0.63  0.252  0.74  0.262  -0.50  0.667  

PC
r/E

PP
 

Sagittal  -0.77  0.000

 

-0.80  0.000

 

-0.70  0.002  -0.66  0.005  -0.71  0.004  -0.39  0.305  -0.18  0.702  0.45  0.450  0.78  0.225  

Parietal  -0.75  0.001  -0.78  0.000

 

-0.65  0.006  -0.64  0.010  -0.64  0.019  -0.39  0.305  -0.18  0.702  0.45  0.450  0.78  0.225  

Temporal  -0.67  0.004  -0.72  0.002  -0.65  0.007  -0.74  0.002  -0.54  0.056  0.28  0.510  0.06  0.899  0.53  0.361  0.89  0.106  
Superior Periventricular  -0.65  0.005  -0.72  0.001  -0.66  0.004  -0.73  0.001  -0.61  0.020  -0.19  0.626  0.27  0.562  0.71  0.182    
Periventricular -0.57  0.020  -0.74  0.001  -0.68  0.004  -0.72  0.002  -0.50  0.068  -0.32  0.407  -0.43  0.331  0.45  0.450  0.78  0.225  

PLIC -0.68  0.015  -0.74  0.006  -0.53  0.078  -0.50  0.116  -0.44  0.205  -0.09  0.862  -0.32  0.604  0.63  0.368  0.50  0.667  

Pi
/E

P
P

 

Sagittal  0.76  0.000

 

0.81  0.000

 

0.72  0.001  0.72  0.002  0.62  0.019  0.39  0.305  0.05  0.924  -0.89  0.041  -0.26  0.742  

Parietal  0.67  0.004  0.77  0.001  0.61  0.012  0.67  0.007  0.65  0.016  0.39  0.305  0.05  0.924  -0.89  0.041  -0.26  0.742  

Temporal  0.66  0.006  0.68  0.004  0.66  0.005  0.72  0.003  0.42  0.155  -0.18  0.672  0.06  0.899  -0.53  0.361  0.00  1.000  
Superior Periventricular  0.69  0.002  0.72  0.001  0.72  0.001  0.75  0.001  0.48  0.080  0.19  0.626  -0.13  0.775  -0.71  0.182    
Periventricular 0.65  0.007  0.76  0.001  0.78  0.000

 

0.72  0.002  0.32  0.260  0.32  0.407  0.34  0.463  -0.89  0.041  -0.26  0.742  

PLIC 0.75  0.005  0.77  0.004  0.63  0.029  0.63  0.037  0.38  0.277  0.31  0.552  0.63  0.252  0.11  0.895  0.50  0.667  

PC
r/P

i 

Sagittal  -0.76  0.000

 

-0.81  0.000

 

-0.72  0.001  -0.71  0.002  -0.69  0.007  -0.39  0.305  -0.18  0.702  0.89  0.041  0.26  0.742  

Parietal  -0.73  0.001  -0.79  0.000

 

-0.65  0.006  -0.67  0.007  -0.65  0.016  -0.39  0.305  -0.18  0.702  0.89  0.041  0.26  0.742  

Temporal  -0.66  0.005  -0.68  0.004  -0.64  0.007  -0.70  0.004  -0.46  0.113  0.28  0.510  -0.06  0.899  0.53  0.361  0.00  1.000  
Superior Periventricular  -0.67  0.003  -0.70  0.002  -0.69  0.002  -0.73  0.001  -0.55  0.041  -0.19  0.626  0.27  0.562  0.71  0.182    
Periventricular -0.55  0.028  -0.73  0.001  -0.73  0.001  -0.72  0.002  -0.45  0.105  -0.32  0.407  -0.43  0.331  0.89  0.041  0.26  0.742  

PLIC -0.70  0.011  -0.77  0.004  -0.63  0.027  -0.58  0.059  -0.53  0.117  -0.09  0.862  -0.63  0.252  -0.11  0.895  -0.50  0.667  
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F. 31P MRS biomarkers 1-48 h before termination and white matter injury assessed using LFB/Nissl stains 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal  0.58  0.015  0.33  0.201  0.33  0.192  0.09  0.749  -0.22  0.458  0.41  0.272  0.61  0.144      
Parietal  0.70  0.002  0.34  0.205  0.47  0.067  0.26  0.358  -0.02  0.951  0.52  0.154  0.79  0.034  -0.35  0.559  0.78  0.225  

Temporal  0.60  0.014  0.16  0.552  0.34  0.203  0.21  0.454  -0.10  0.751  0.25  0.555  0.41  0.363  -0.35  0.559  0.78  0.225  
Superior Periventricular  0.41  0.104  0.31  0.232  0.15  0.557  -0.14  0.605  -0.38  0.182          
Periventricular 0.42  0.105  0.31  0.246  0.14  0.605  -0.12  0.660  -0.38  0.182          
PLIC 0.70  0.012  0.42  0.176  0.42  0.176  0.19  0.568  -0.11  0.754  -0.66  0.158  0.00  1.000  -0.26  0.742  0.00  1.000  

PC
r/E

PP
 

Sagittal  0.34  0.184  0.20  0.432  0.12  0.656  0.02  0.952  -0.01  0.970  0.14  0.725  0.61  0.144      
Parietal  0.45  0.079  0.31  0.243  0.24  0.365  0.17  0.537  0.15  0.618  0.41  0.268  0.63  0.127  -0.71  0.182  -0.26  0.742  

Temporal  0.42  0.102  0.19  0.481  0.10  0.706  0.07  0.805  0.20  0.523  0.41  0.310  0.20  0.661  -0.71  0.182  -0.26  0.742  
Superior Periventricular  0.36  0.159  0.26  0.323  0.15  0.557  -0.08  0.757  -0.10  0.726          
Periventricular 0.36  0.166  0.25  0.346  0.14  0.605  -0.12  0.660  -0.10  0.726          
PLIC 0.47  0.120  0.47  0.120  0.36  0.247  0.32  0.333  0.19  0.599  -0.66  0.158  -0.35  0.559  0.26  0.742  -0.87  0.333  

Pi
/E

P
P

 

Sagittal  -0.46  0.066  -0.25  0.331  -0.20  0.445  -0.05  0.842  -0.04  0.903  -0.14  0.725  -0.61  0.144      

Parietal  -0.58  0.019  -0.34  0.205  -0.30  0.257  -0.19  0.498  -0.21  0.490  -0.52  0.154  -0.79  0.034  0.00  1.000  -0.78  0.225  

Temporal  -0.51  0.043  -0.22  0.414  -0.16  0.552  -0.11  0.710  -0.29  0.332  -0.58  0.134  -0.41  0.363  0.00  1.000  -0.78  0.225  
Superior Periventricular  -0.41  0.104  -0.31  0.232  -0.15  0.557  -0.03  0.918  -0.03  0.907          
Periventricular -0.42  0.105  -0.31  0.246  -0.14  0.605  0.00  1.000  -0.03  0.907          
PLIC -0.53  0.077  -0.47  0.120  -0.42  0.176  -0.45  0.163  -0.27  0.458  0.39  0.441  0.00  1.000  -0.78  0.225  0.00  1.000  

PC
r/P

i 

Sagittal  0.34  0.176  0.25  0.331  0.16  0.546  0.08  0.780  0.06  0.836  0.14  0.725  0.61  0.144      
Parietal  0.46  0.073  0.34  0.205  0.26  0.332  0.21  0.452  0.27  0.376  0.41  0.268  0.79  0.034  0.00  1.000  0.78  0.225  

Temporal  0.45  0.078  0.22  0.414  0.13  0.627  0.14  0.620  0.34  0.253  0.41  0.310  0.41  0.363  0.00  1.000  0.78  0.225  
Superior Periventricular  0.41  0.104  0.31  0.232  0.20  0.432  0.03  0.918  0.03  0.907          
Periventricular 0.42  0.105  0.31  0.246  0.20  0.467  0.00  1.000  0.03  0.907          
PLIC 0.53  0.077  0.47  0.120  0.42  0.176  0.39  0.239  0.27  0.458  -0.66  0.158  0.00  1.000  0.78  0.225  0.00  1.000  
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G. 31P MRS biomarkers 1-48 h before termination and white matter injury assessed using β-APP immune-histochemical stain 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

N
TP

/E
P

P
 

Sagittal -0.38  0.129  -0.44  0.078  -0.39  0.121  -0.40  0.121  -0.04  0.887  0.13  0.742  0.00  1.000  0.58  0.308  0.26  0.742  
Parietal -0.37  0.156  -0.54  0.033  -0.39  0.133  -0.47  0.080  -0.05  0.879  -0.12  0.768  -0.43  0.332  0.87  0.058  -0.45  0.553  
Temporal -0.42  0.104  -0.35  0.187  -0.43  0.099  -0.41  0.129  -0.03  0.930  0.41  0.310  0.00  1.000  0.58  0.308  0.26  0.742  
Superior Periventricular -0.64  0.005  -0.52  0.032  -0.62  0.008  -0.51  0.042  -0.22  0.453  -0.02  0.964  -0.30  0.515  0.58  0.308  0.26  0.742  
Periventricular -0.63  0.008  -0.63  0.009  -0.46  0.076  -0.32  0.240  0.11  0.721  0.22  0.572  0.06  0.899  0.63  0.252  -0.21  0.789  
PLIC -0.33  0.353  -0.54  0.107  -0.40  0.259  -0.44  0.240  -0.13  0.762  -0.89  0.106  -0.89  0.106  0.00  1.000    

PC
r/E

PP
 

Sagittal  -0.27  0.289  -0.38  0.136  -0.31  0.229  -0.50  0.047  -0.51  0.066  -0.17  0.654  0.16  0.735  0.58  0.308  0.26  0.742  

Parietal  -0.28  0.294  -0.32  0.222  -0.26  0.338  -0.36  0.183  -0.49  0.086  -0.30  0.430  -0.29  0.530  0.29  0.638  0.89  0.106  

Temporal  -0.50  0.050  -0.61  0.012  -0.59  0.016  -0.78  0.001  -0.48  0.098  0.23  0.578  0.16  0.735  0.58  0.308  0.26  0.742  
Superior Periventricular  -0.66  0.004  -0.72  0.001  -0.69  0.002  -0.72  0.002  -0.61  0.021  -0.20  0.604  -0.18  0.701  0.58  0.308  0.26  0.742  

Periventricular -0.56  0.024  -0.60  0.014  -0.46  0.075  -0.58  0.025  -0.42  0.139  -0.02  0.964  0.24  0.606  0.21  0.734  0.74  0.262  

PLIC -0.28  0.440  -0.45  0.195  -0.40  0.259  -0.62  0.073  -0.49  0.219  -0.89  0.106  -0.89  0.106  0.87  0.333    

Pi
/E

P
P

 

Sagittal  0.28  0.280  0.36  0.155  0.34  0.189  0.52  0.041  0.31  0.285  0.24  0.537  0.16  0.735  0.00  1.000  0.26  0.742  

Parietal  0.28  0.288  0.33  0.212  0.24  0.376  0.37  0.180  0.45  0.123  0.36  0.336  0.29  0.530  -0.29  0.638  0.00  1.000  

Temporal  0.44  0.089  0.55  0.028  0.57  0.022  0.75  0.001  0.30  0.317  -0.14  0.745  0.16  0.735  0.00  1.000  0.26  0.742  
Superior Periventricular  0.68  0.003  0.70  0.002  0.68  0.003  0.77  0.001  0.53  0.049  0.25  0.510  0.42  0.350  0.00  1.000  0.26  0.742  

Periventricular 0.54  0.031  0.57  0.022  0.49  0.054  0.58  0.023  0.28  0.335  0.10  0.806  0.00  1.000  0.11  0.866  0.11  0.895  

PLIC 0.22  0.534  0.36  0.304  0.45  0.195  0.56  0.116  0.21  0.625  0.89  0.106  0.89  0.106  0.00  1.000    

PC
r/P

i 

Sagittal  -0.30  0.235  -0.35  0.168  -0.32  0.204  -0.49  0.056  -0.40  0.159  -0.17  0.654  0.00  1.000  0.00  1.000  -0.26  0.742  

Parietal  -0.29  0.283  -0.32  0.234  -0.24  0.376  -0.35  0.200  -0.45  0.123  -0.30  0.430  -0.43  0.332  0.29  0.638  0.00  1.000  

Temporal  -0.50  0.047  -0.57  0.023  -0.57  0.020  -0.73  0.002  -0.36  0.234  0.23  0.578  0.00  1.000  0.00  1.000  -0.26  0.742  
Superior Periventricular  -0.68  0.002  -0.71  0.001  -0.68  0.003  -0.74  0.001  -0.54  0.047  -0.20  0.604  -0.30  0.515  0.00  1.000  -0.26  0.742  

Periventricular -0.56  0.024  -0.58  0.018  -0.49  0.054  -0.57  0.026  -0.35  0.217  -0.02  0.964  0.06  0.899  -0.11  0.866  -0.11  0.895  

PLIC -0.28  0.440  -0.36  0.304  -0.45  0.195  -0.56  0.116  -0.41  0.311  -0.89  0.106  -0.89  0.106  0.00  1.000    
P-values presented without correction for multiple comparisons. R and p values for the periods after 24 hours are presented only for reference because of 
the limited number of surviving subjects. Abbreviation: PLIC, posterior limb of the internal capsule.  
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Supplemental Table 4.3-9: Serial ADC 1-48 h before termination and histo-pathological injury in corresponding 
regions 

 
A. ADC 1 to 48 hours before termination and neuronal death in the grey matter assessed using H & E stains 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top -0.75  0.000

 

-0.80  0.000

 

-0.82  0.000

 

-0.85  0.000

 

-0.57  0.052  -0.35  0.362  -0.20  0.669  -0.74  0.156  -0.58  0.423  

Sagittal bottom -0.82  0.000

 

-0.73  0.001  -0.70  0.002  -0.62  0.011  -0.38  0.224  -0.46  0.210  -0.64  0.125  -0.64  0.245  -0.85  0.146  

Parietal top -0.72  0.001  -0.60  0.008  -0.50  0.043  -0.60  0.015  -0.38  0.221  -0.32  0.399  0.05  0.908  0.25  0.681  0.43  0.575  

Parietal bottom -0.74  0.000

 

-0.74  0.000

 

-0.63  0.007  -0.63  0.008  -0.46  0.135  -0.43  0.248  -0.12  0.792  -0.35  0.564  -0.15  0.848  

Temporal  -0.64  0.007  -0.51  0.042  -0.58  0.024  -0.51  0.078  -0.82  0.004  -0.50  0.209  -0.66  0.104  0.53  0.363  -0.34  0.781  

Hippocampus -0.46  0.252  -0.53  0.175  -0.48  0.276  -0.66  0.222            

Caudate nucleus -0.49  0.074  -0.54  0.048  -0.56  0.047  -0.46  0.151  -0.29  0.449  -0.49  0.266  -0.48  0.333  -0.78  0.121  0.50  0.668  

Putamen -0.33  0.249  -0.40  0.161  -0.29  0.322  -0.47  0.121  -0.34  0.334  -0.25  0.554  -0.15  0.746  -0.75  0.145  -0.84  0.371  

Anterior thalamus -0.63  0.017  -0.53  0.050  -0.58  0.031  -0.69  0.013  -0.67  0.035  -0.77  0.025  -0.65  0.112  -0.80  0.102  -0.36  0.763  

Lateral thalamus -0.37  0.169  -0.35  0.197  -0.39  0.165  -0.53  0.077  -0.45  0.198  -0.54  0.165  -0.44  0.328  -0.65  0.237  -0.94  0.222  

Medial thalamus -0.61  0.015  -0.60  0.019  -0.56  0.038  -0.54  0.071  -0.47  0.176  -0.47  0.236  -0.46  0.294  -0.60  0.281  -0.97  0.148  
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B. ADC 1-48 h before termination and TUNEL positive apoptotic cell death in the grey matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top -0.50  0.035  -0.47  0.052  -0.45  0.069  -0.35  0.184  -0.10  0.761  -0.06  0.884  0.27  0.556  0.23  0.714  0.10  0.901  

Sagittal bottom -0.45  0.060  -0.47  0.048  -0.48  0.050  -0.49  0.056  -0.34  0.275  -0.03  0.946  -0.14  0.771  -0.09  0.889  0.93  0.075  

Parietal top -0.55  0.019  -0.45  0.064  -0.41  0.099  -0.62  0.011  -0.57  0.051  -0.29  0.446  -0.20  0.669  -0.29  0.638  -0.40  0.603  

Parietal bottom -0.35  0.153  -0.33  0.183  -0.42  0.095  -0.48  0.061  -0.15  0.641  -0.02  0.958  -0.03  0.944  -0.02  0.969  0.11  0.892  

Temporal  -0.04  0.871  -0.03  0.917  -0.02  0.956  -0.06  0.855  0.24  0.512  -0.18  0.670  0.55  0.198  -0.50  0.397  0.85  0.348  

Hippocampus -0.25  0.543  -0.45  0.267  -0.73  0.064  0.30  0.627  0.91  0.277          

Caudate nucleus -0.29  0.309  -0.37  0.192  -0.39  0.194  -0.35  0.289  -0.21  0.588  -0.10  0.838  -0.19  0.725  -0.21  0.740  -0.87  0.334  

Putamen -0.33  0.256  -0.29  0.317  -0.34  0.232  -0.37  0.241  -0.32  0.362  -0.17  0.689  -0.50  0.257  -0.61  0.271  -0.90  0.289  

Anterior thalamus -0.15  0.602  -0.13  0.655  -0.20  0.496  0.06  0.859  0.02  0.962  0.16  0.707  -0.17  0.713  -0.20  0.750  -0.97  0.170  

Lateral thalamus -0.24  0.386  -0.28  0.308  -0.23  0.427  -0.10  0.765  0.23  0.517  0.30  0.467  0.31  0.503  0.19  0.758  -0.29  0.811  

Medial thalamus -0.15  0.607  -0.15  0.599  -0.10  0.751  -0.10  0.776  -0.02  0.951  -0.22  0.640  -0.01  0.987  0.92  0.083    
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C-1. ADC 1-48 h before termination and CD68 positive microglia in the grey matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top 0.55  0.018  0.53  0.024  0.53  0.028  0.56  0.024  0.38  0.226  0.42  0.259  0.30  0.520  -0.08  0.905  0.30  0.701  

Sagittal bottom 0.46  0.053  0.46  0.055  0.45  0.068  0.28  0.294  0.33  0.292  0.05  0.897  -0.23  0.615  -0.79  0.112  -0.95  0.047  

Parietal top 0.64  0.005  0.50  0.034  0.59  0.013  0.59  0.017  0.52  0.085  0.32  0.397  0.48  0.282  0.92  0.029  0.86  0.140  

Parietal bottom 0.55  0.018  0.51  0.031  0.46  0.066  0.45  0.084  0.30  0.348  0.25  0.518  -0.32  0.483  -0.91  0.034  -0.78  0.218  

Temporal  -0.07  0.797  -0.09  0.751  -0.15  0.606  0.02  0.957  -0.47  0.176  -0.54  0.167  -0.54  0.209  0.47  0.429  -0.82  0.390  

Hippocampus -0.52  0.188  -0.17  0.693  -0.27  0.559  0.19  0.760  -0.31  0.802          

Caudate nucleus 0.43  0.106  0.45  0.094  0.34  0.241  0.37  0.241  -0.45  0.193  -0.53  0.179  -0.59  0.160  -0.01  0.994  1.00  0.043  

Putamen -0.18  0.522  0.08  0.782  -0.15  0.613  -0.16  0.616  -0.63  0.052  -0.67  0.072  -0.78  0.041  -0.89  0.045  -0.84  0.371  

Anterior thalamus 0.10  0.715  0.17  0.543  0.28  0.337  0.13  0.683  0.01  0.977  -0.55  0.154  -0.22  0.644  -0.07  0.916  0.59  0.598  

Lateral thalamus -0.15  0.600  -0.16  0.566  0.13  0.652  0.11  0.730  -0.35  0.324  -0.51  0.192  -0.59  0.160  -0.54  0.347  -0.18  0.888  

Medial thalamus -0.32  0.270  0.02  0.947  0.15  0.616  -0.01  0.981  -0.65  0.058  -0.92  0.003  -0.82  0.044  0.15  0.855    

 

C-2. ADC 1-48 h before termination and CD68 positive microglia in the white matter 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal  0.69  0.003  0.75  0.001  0.73  0.002  0.64  0.013  0.45  0.141  0.35  0.357  -0.76  0.046  -0.84  0.079  -0.72  0.276  

Parietal  0.67  0.007  0.58  0.022  0.53  0.053  0.51  0.075  0.34  0.274  0.27  0.483  -0.86  0.012  -0.98  0.003  -0.95  0.055  

Temporal  0.53  0.042  0.48  0.068  0.45  0.105  0.34  0.262  -0.07  0.831  -0.54  0.168  -0.44  0.327  -0.48  0.416  0.02  0.979  
Superior Periventricular  0.14  0.627  0.32  0.239  0.32  0.261  -0.20  0.543  -0.50  0.137  -0.59  0.166  -0.71  0.073  -0.41  0.491  0.49  0.506  

Periventricular -0.27  0.349  0.01  0.963  -0.39  0.193  -0.38  0.247  -0.19  0.607  -0.40  0.328  -0.50  0.256  -0.22  0.728  -0.25  0.752  

PLIC 0.74  0.014  0.72  0.019  0.72  0.028  0.61  0.106  -0.10  0.836  -0.94  0.059  -0.98  0.025  -1.00  0.006    
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D-1. ADC 1-48 h before termination and CD68 positive vessels in the grey matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top 0.56  0.016  0.65  0.004  0.69  0.002  0.70  0.003  0.44  0.157  0.40  0.289  0.46  0.304  -0.05  0.943  0.24  0.756  

Sagittal bottom 0.51  0.032  0.54  0.020  0.54  0.026  0.41  0.112  0.39  0.210  0.33  0.392  0.12  0.797  -0.87  0.056  -0.71  0.294  

Parietal top 0.81  0.000

 

0.72  0.001  0.80  0.000

 

0.64  0.007  0.53  0.076  0.41  0.269  0.52  0.237  0.92  0.029  0.86  0.140  

Parietal bottom 0.67  0.002  0.62  0.006  0.57  0.017  0.55  0.028  0.33  0.292  0.26  0.493  0.15  0.753  -0.63  0.257  -0.15  0.848  

Temporal  -0.05  0.851  -0.08  0.758  -0.14  0.613  0.06  0.848  -0.22  0.541  -0.55  0.157  -0.55  0.200  0.30  0.624  -0.71  0.499  

Hippocampus -0.51  0.198  -0.17  0.680  -0.17  0.718  -0.31  0.606            

Caudate nucleus 0.43  0.114  0.42  0.119  0.32  0.262  0.28  0.377            

Putamen -0.32  0.239  -0.03  0.927  -0.37  0.192  -0.46  0.136  -0.59  0.072  -0.64  0.085  -0.75  0.052  -0.83  0.079  -0.61  0.583  

Anterior thalamus 0.15  0.597  0.18  0.511  0.27  0.358  0.16  0.614  0.01  0.977  -0.55  0.154  -0.22  0.644  -0.07  0.916  0.59  0.598  

Lateral thalamus -0.16  0.564  -0.19  0.493  0.13  0.657  0.10  0.754  -0.35  0.324  -0.51  0.192  -0.59  0.160  -0.54  0.347  -0.18  0.888  

Medial thalamus -0.14  0.625  0.05  0.856  0.07  0.829  -0.02  0.958  -0.73  0.025  -0.92  0.003  -0.82  0.044  0.15  0.855    

 

D-2. ADC 1-48 h before termination and CD68 positive vessels in the white matter 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal  0.45  0.079  0.63  0.009  0.66  0.007  0.55  0.044  0.36  0.254  0.20  0.613  -0.59  0.162  -0.65  0.234  -0.88  0.121  

Parietal  0.76  0.001  0.74  0.002  0.71  0.004  0.58  0.038  0.41  0.186  0.34  0.375        

Temporal  0.10  0.735  0.10  0.718  0.15  0.622  0.27  0.376  0.04  0.919  -0.55  0.160  -0.15  0.753  -0.14  0.823  0.24  0.757  
Superior Periventricular  -0.34  0.216  -0.19  0.505  -0.21  0.470  -0.43  0.168  -0.52  0.128  -0.59  0.166  -0.80  0.032  -0.91  0.033  -0.21  0.792  

Periventricular -0.23  0.436  0.02  0.939  -0.17  0.589  -0.23  0.494  -0.56  0.092  -0.40  0.328  -0.50  0.256  -0.22  0.728  -0.25  0.752  

PLIC 0.35  0.329  0.62  0.055  0.62  0.076  0.50  0.209  0.23  0.623  -0.94  0.059  -0.98  0.025  -1.00  0.006    
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E. ADC 1-48 h before termination and white matter injury assessed using H & E stains 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal -0.65  0.006  -0.84  0.000

 

-0.77  0.001  -0.76  0.002  -0.48  0.118  -0.55  0.130  -0.22  0.631  -0.67  0.215  0.26  0.742  
Parietal -0.76  0.001  -0.72  0.002  -0.73  0.003  -0.72  0.005  -0.40  0.197  -0.48  0.196  0.27  0.562  -0.45  0.450  -0.78  0.225  
Temporal -0.80  0.000

 

-0.76  0.001  -0.61  0.020  -0.40  0.171  -0.14  0.681  0.28  0.510  0.24  0.606  -0.05  0.933  -0.89  0.106  
Superior Periventricular -0.81  0.000

 

-0.68  0.005  -0.76  0.002  -0.26  0.413  0.08  0.831  0.13  0.775  0.13  0.775  0.00  1.000    
Periventricular -0.58  0.029  -0.36  0.204  -0.68  0.010  -0.47  0.146  -0.05  0.886  0.32  0.441  0.02  0.967  0.11  0.858  0.78  0.225  
PLIC -0.56  0.060  -0.71  0.009  -0.94  0.000

 

-0.86  0.001  -0.50  0.174  0.15  0.770  0.32  0.604  -0.32  0.684  -0.50  0.667  

 

F. ADC 1-48 h before termination and white matter injury assessed using LFB/Nissl stains 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal 0.33  0.219  0.52  0.041  0.61  0.016  0.34  0.239  0.31  0.329  0.14  0.725  -0.20  0.661      
Parietal 0.06  0.838  0.17  0.537  0.09  0.750  0.21  0.492  0.51  0.091  0.31  0.416  0.00  1.000  0.35  0.559  0.26  0.742  
Temporal 0.31  0.254  0.42  0.120  0.54  0.046  0.57  0.042  0.52  0.100  0.41  0.310  0.61  0.144  0.71  0.182  0.26  0.742  
Superior Periventricular 0.12  0.660  0.00  1.000  0.24  0.407  0.31  0.334  -0.06  0.873          
Periventricular -0.10  0.726  0.03  0.907  0.31  0.305  0.30  0.370  -0.06  0.873          
PLIC 0.64  0.025  0.70  0.012  0.71  0.014  0.65  0.044  0.00  1.000  -0.66  0.158  -0.71  0.182  -0.26  0.742  0.00  1.000  
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G. ADC 1-48 h before termination and white matter injury assessed using β-APP immune-histochemical stain 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal -0.52  0.041  -0.69  0.003  -0.54  0.040  -0.63  0.016  -0.53  0.076  -0.22  0.569  0.00  1.000  -0.29  0.638  -0.78  0.225  
Parietal -0.44  0.104  -0.38  0.166  -0.19  0.515  -0.45  0.126  -0.41  0.184  -0.20  0.615  0.29  0.530  0.00  1.000  0.00  1.000  
Temporal -0.69  0.004  

 

-0.73  0.002  -0.53  0.050  -0.41  0.169  -0.19  0.567  0.04  0.923  0.00  1.000  -0.29  0.638  -0.78  0.225  
Superior Periventricular -0.56  0.031  -0.65  0.009  0.60  0.024  -0.17  0.607  0.34  0.341  0.43  0.335  0.10  0.832  0.29  0.638  -0.78  0.225  
Periventricular -0.65  0.012  -0.62  0.018  -0.46  0.114  -0.27  0.419  0.19  0.604  0.66  0.073  0.30  0.515  -0.53  0.361  -0.32  0.684  
PLIC -0.24  0.510  -0.36  0.314  -0.60  0.090  -0.41  0.311  -0.78  0.041  -0.89  0.106  -0.45  0.553  -0.87  0.333    

P-values presented without correction for multiple comparisons.. 
R and p values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
Abbreviation: PLIC, posterior limb of the internal capsule. 
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Supplemental Table 4.3-10: Serial T2 maps 1-48 h before termination and histo-pathological injury in 
corresponding regions 

 

A. T2 1-48 h before termination and neuronal death in the grey matter assessed using H & E stains 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top 0.43  0.187  0.43  0.191  0.41  0.210  0.68  0.044  0.58  0.102  0.66  0.110  0.42  0.404  0.13  0.918  -0.14  0.912  

Sagittal bottom 0.36  0.283  0.28  0.400  0.27  0.420  0.39  0.294  0.42  0.259  0.06  0.899  0.63  0.184  0.68  0.521  0.66  0.546  

Parietal top 0.54  0.087  0.43  0.183  0.51  0.113  0.69  0.042  0.66  0.054  0.78  0.041  0.80  0.054  0.99  0.102  0.84  0.371  

Parietal bottom 0.30  0.376  0.36  0.278  0.37  0.262  0.67  0.049  0.60  0.090  0.67  0.101  0.59  0.222  0.90  0.292  0.77  0.444  

Temporal  0.01  0.972  -0.04  0.903  -0.01  0.988  0.23  0.589  0.00  0.995  -0.38  0.533  -0.69  0.309      

Hippocampus 0.25  0.633  0.46  0.363  0.58  0.229  0.77  0.227  0.85  0.356          

Caudate nucleus 0.25  0.481  0.33  0.348  0.38  0.274  0.77  0.025  0.38  0.406  0.70  0.186  -0.10  0.899  -0.10  0.937    

Putamen -0.02  0.965  0.34  0.337  0.30  0.406  0.10  0.795  0.32  0.441  0.45  0.369  -0.04  0.946  -0.51  0.658    

Anterior thalamus 0.00  0.993  0.24  0.505  0.53  0.116  0.52  0.156  0.38  0.354  0.45  0.374  0.62  0.260  0.64  0.559    

Lateral thalamus 0.09  0.803  0.10  0.769  0.13  0.710  0.41  0.278  0.65  0.080  0.95  0.004  0.92  0.028  0.78  0.427    

Medial thalamus 0.74  0.009  0.68  0.021  0.38  0.256  0.56  0.118  0.59  0.094  0.50  0.257  0.62  0.264  0.99  0.084  0.93  0.234  
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B. T2 1-48 h before termination and TUNEL positive apoptotic cell death in the grey matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top 0.57  0.067  0.52  0.103  0.33  0.321  0.42  0.265  0.59  0.097  0.43  0.335  0.36  0.484  0.97  0.162  0.87  0.332  

Sagittal bottom 0.87  0.000

 

0.84  0.001  0.72  0.013  0.68  0.042  0.74  0.024  0.60  0.154  0.55  0.259  0.98  0.130  0.97  0.155  

Parietal top 0.79  0.004  0.76  0.007  0.54  0.085  0.65  0.058  0.56  0.117  0.55  0.201  0.52  0.293  1.00  0.059  0.95  0.209  

Parietal bottom 0.67  0.024  0.68  0.023  0.50  0.115  0.55  0.128  0.65  0.058  0.37  0.414  0.52  0.291  1.00  0.059  0.99  0.092  

Temporal  0.81  0.002  0.85  0.001  0.80  0.003  0.66  0.073  0.83  0.020  0.08  0.894  0.70  0.296      

Hippocampus 0.16  0.761  0.32  0.531  0.10  0.851  0.20  0.805  -0.04  0.977          

Caudate nucleus 0.24  0.509  0.31  0.379  0.36  0.301  0.18  0.669  0.25  0.589  0.45  0.445  0.99  0.012  0.97  0.150    

Putamen 0.68  0.030  0.55  0.096  0.70  0.025  0.58  0.102  0.50  0.212  0.61  0.202  0.54  0.344  0.41  0.732    

Anterior thalamus 0.29  0.411  0.43  0.219  0.26  0.465  0.32  0.409  0.12  0.783  0.04  0.934  0.26  0.674  0.87  0.329    

Lateral thalamus 0.16  0.643  0.05  0.891  0.13  0.715  0.44  0.234  0.19  0.647  -0.05  0.924  -0.13  0.836  -0.03  0.984    

Medial thalamus 0.56  0.072  0.56  0.075  0.39  0.236  0.50  0.176  0.62  0.076  0.37  0.417  0.04  0.953  0.29  0.811  0.51  0.661  
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C-1. T2 1-48 h before termination and CD68 positive microglia in the grey matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top -0.43  0.189  -0.33  0.315  -0.29  0.383  -0.36  0.336  -0.35  0.362  -0.31  0.495  0.23  0.656  -0.58  0.606  -0.35  0.775  

Sagittal bottom -0.56  0.072  -0.53  0.091  -0.55  0.079  -0.54  0.138  -0.50  0.171  -0.65  0.117  0.12  0.819  -0.17  0.889  -0.21  0.864  

Parietal top -0.62  0.044  -0.57  0.068  -0.50  0.117  -0.53  0.140  -0.43  0.246  -0.38  0.404  0.04  0.947      

Parietal bottom -0.48  0.132  -0.49  0.126  -0.52  0.101  -0.60  0.088  -0.58  0.103  -0.36  0.425  0.24  0.647  0.01  0.996  -0.23  0.852  

Temporal  -0.37  0.267  -0.35  0.289  -0.44  0.174  -0.10  0.809  -0.48  0.276  0.59  0.297  0.03  0.966      

Hippocampus -0.08  0.874  -0.07  0.903  -0.58  0.225  -0.19  0.806  -0.85  0.356          

Caudate nucleus -0.50  0.117  -0.53  0.092  -0.33  0.328  -0.26  0.493  -0.46  0.249  -0.64  0.169  -0.70  0.184  -0.97  0.167    

Putamen -0.43  0.185  -0.43  0.185  -0.50  0.114  -0.08  0.844  -0.30  0.474  0.35  0.494  0.32  0.594  0.07  0.955    

Anterior thalamus -0.37  0.265  -0.42  0.203  -0.56  0.072  -0.32  0.407  -0.41  0.317          

Lateral thalamus -0.51  0.111  -0.45  0.170  -0.51  0.106  -0.32  0.408  -0.52  0.182          

Medial thalamus 0.24  0.480  -0.12  0.737  -0.34  0.306  0.22  0.573  0.20  0.599  0.90  0.005  0.91  0.031  1.00  0.066  0.99  0.084  

 

C-2. T2 1-48 h before termination and CD68 positive microglia in the white matter 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal  -0.17  0.668  0.00  0.999  0.14  0.720  0.13  0.781  0.17  0.723  -0.11  0.831  0.31  0.694  1.00  0.023  0.98  0.116  

Parietal  -0.10  0.789  -0.21  0.570  -0.23  0.524  -0.08  0.855  -0.03  0.936  -0.09  0.854  0.94  0.017  0.81  0.396  0.56  0.620  

Temporal  -0.28  0.397  -0.32  0.337  -0.36  0.273  0.09  0.815  0.92  0.001  0.90  0.015  0.76  0.134  1.00  0.020  0.20  0.874  
Superior Periventricular 0.01  0.988  0.05  0.887  0.24  0.484  0.84  0.005  0.66  0.074  0.89  0.019  0.98  0.023  -0.02  0.989  -0.28  0.819  

Periventricular 0.94  0.219  0.94  0.221  0.88  0.321  0.99  0.088  1.00  0.043  0.95  0.212        

PLIC -0.09  0.816  -0.13  0.732  0.18  0.649  0.16  0.726  0.45  0.312  0.41  0.490  0.96  0.180  0.94  0.220  0.99  0.109  
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D-1. T2 1-48 h before termination and CD68 positive vessels in the grey matter 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal top -0.43  0.189  -0.33  0.315  -0.29  0.383  -0.36  0.336  -0.35  0.362  -0.31  0.495  0.23  0.656  -0.58  0.606  -0.35  0.775  

Sagittal bottom -0.56  0.072  -0.53  0.091  -0.55  0.079  -0.54  0.138  -0.50  0.171  -0.65  0.117  0.12  0.819  -0.17  0.889  -0.21  0.864  

Parietal top -0.62  0.044  -0.57  0.068  -0.50  0.117  -0.53  0.140  -0.43  0.246  -0.38  0.404  0.04  0.947      

Parietal bottom -0.48  0.132  -0.49  0.126  -0.52  0.101  -0.60  0.088  -0.58  0.103  -0.36  0.425  0.24  0.647  0.01  0.996  -0.23  0.852  

Temporal  -0.37  0.267  -0.35  0.289  -0.44  0.174  -0.10  0.809  -0.48  0.276  0.59  0.297  0.03  0.966      

Hippocampus -0.08  0.874  -0.07  0.903  -0.58  0.225  -0.19  0.806  -0.85  0.356          

Caudate nucleus -0.50  0.117  -0.53  0.092  -0.33  0.328  -0.26  0.493  -0.46  0.249  -0.64  0.169  -0.70  0.184  -0.97  0.167    

Putamen -0.43  0.185  -0.43  0.185  -0.50  0.114  -0.08  0.844  -0.30  0.474  0.35  0.494  0.32  0.594  0.07  0.955    

Anterior thalamus -0.37  0.265  -0.42  0.203  -0.56  0.072  -0.32  0.407  -0.41  0.317          

Lateral thalamus -0.51  0.111  -0.45  0.170  -0.51  0.106  -0.32  0.408  -0.52  0.182          

Medial thalamus 0.24  0.480  -0.12  0.737  -0.34  0.306  0.22  0.573  0.20  0.599  0.90  0.005  0.91  0.031  1.00  0.066  0.99  0.084  

 

D-2. T2 1-48 h before termination and CD68 positive vessels in the white matter 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal  0.03  0.934  0.15  0.709  0.21  0.595  0.32  0.485  0.35  0.446  0.07  0.901  0.31  0.694  1.00  0.023  0.98  0.116  

Parietal  -0.41  0.237  -0.45  0.192  -0.35  0.319  -0.29  0.494  -0.26  0.542  -0.27  0.555        

Temporal  -0.13  0.694  -0.10  0.782  -0.32  0.344  -0.09  0.820  0.72  0.043  0.97  0.001  0.83  0.081  0.93  0.232  -0.14  0.914  
Superior Periventricular -0.03  0.933  -0.10  0.773  0.12  0.728  0.22  0.574  0.53  0.179  0.89  0.019  0.98  0.023  -0.02  0.989  -0.28  0.819  

Periventricular  0.94  0.219  0.94  0.221  0.88  0.321  0.99  0.088  1.00  0.043  0.95  0.212        

PLIC -0.21  0.592  -0.31  0.421  -0.08  0.834  -0.14  0.760  0.11  0.813  -0.08  0.902  0.96  0.180  0.94  0.220  0.99  0.109  
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E. T2 1-48 h before termination and white matter injury assessed using H & E stains 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal  0.73  0.027  0.73  0.027  0.52  0.154  0.79  0.034  0.79  0.034  0.62  0.188  0.78  0.225  0.00  1.000  0.00  1.000  

Parietal 0.49  0.153  0.51  0.133  0.76  0.010  0.76  0.030  0.76  0.030  0.32  0.490  0.00  1.000  0.87  0.333  0.87  0.333  

Temporal 0.40  0.218  0.29  0.380  0.33  0.316  0.28  0.458  -0.38  0.351  0.13  0.805  0.00  1.000  0.00  1.000  -0.87  0.333  
Superior Periventricular -0.03  0.921  -0.22  0.512  -0.24  0.475  -0.56  0.118  -0.43  0.292  -0.17  0.749  0.26  0.742  -0.87  0.333  -0.87  0.333  

Periventricular -0.87  0.333  -0.87  0.333  -0.87  0.333  -0.87  0.333  -0.87  0.333  -0.87  0.333        

PLIC 0.59  0.075  0.76  0.012  0.72  0.018  0.79  0.019  0.03  0.952  0.09  0.864  0.95  0.051      

 

F. T2 1-48 h before termination and white matter injury assessed using LFB/Nissl stains 

  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal  -0.09  0.825  0.17  0.656  0.00  1.000  0.00  1.000  0.00  1.000  -0.13  0.805        

Parietal  -0.38  0.275  -0.59  0.071  -0.31  0.378  -0.62  0.101  -0.39  0.334  0.00  1.000  -0.71  0.182  -0.87  0.333  -0.87  0.333  

Temporal  -0.30  0.372  -0.12  0.726  -0.12  0.726  -0.62  0.074  -0.25  0.547  -0.66  0.158  -0.71  0.182  -0.87  0.333  0.00  1.000  
Superior Periventricular 0.10  0.770  0.10  0.770  -0.50  0.117  -0.27  0.476  -0.08  0.846          

Periventricular                    

PLIC -0.35  0.324  -0.52  0.122  -0.35  0.324  -0.38  0.356  0.25  0.547  -0.39  0.441        
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G. T2 1-48 h before termination and white matter injury assessed using β-APP immune-histochemical stain 
  Time before termination (h) 

  1 - < 3 3 - < 6 6 - < 12 12 - < 18 18 - < 24 24 - < 30 30 - < 36 36 - < 42 42 - < 48 

  r p r p r p r p r p r p r p r p r p 

 

Sagittal  0.63  0.068  0.74  0.023  0.28  0.464  0.36  0.434  0.36  0.434  0.70  0.123  0.95  0.051  0.00  1.000  0.00  1.000  

Parietal 0.61  0.061  0.45  0.198  0.55  0.102  0.50  0.206  0.35  0.395  0.04  0.937  0.26  0.668  0.87  0.333  0.87  0.333  

Temporal  0.40  0.219  0.41  0.213  0.29  0.380  0.10  0.803  -0.36  0.385  0.17  0.749  -0.22  0.718  0.00  1.000  -0.87  0.333  
Superior Periventricular 0.00  1.000  -0.05  0.889  -0.43  0.191  -0.70  0.035  -0.72  0.042  -0.58  0.231  0.32  0.684  -0.87  0.333  -0.87  0.333  

Periventricular 0.00  1.000  -0.87  0.333  0.00  1.000  -0.87  0.333  -0.87  0.333  0.00  1.000        

PLIC 0.17  0.663  0.60  0.090  0.39  0.297  0.30  0.510  0.15  0.746  0.53  0.361  0.87  0.333  0.87  0.333  0.87  0.333  

P-values are presented without correction for multiple comparisons. 
R and p values for the periods after 24 hours are presented only for reference because of the limited number of surviving subjects.  
Abbreviation: PLIC, posterior limb of the internal capsule. 
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Appendix 2. 
 
"Therapeutic time window" duration decreases with increasing severity of cerebral 
hypoxia-ischaemia under normothermia and delayed hypothermia in newborn piglets. 
 
Iwata O, Iwata S, Thornton JS, De Vita E, Bainbridge A, Herbert L, Scaravilli F, Peebles D, Wyatt 
JS, Cady EB, Robertson NJ. 
 
Brain Res. 2007 Jun 18;1154:173-80. 
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