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Abstract—There is growing interest in discerning behaviors of
electricity users in both the residential and commercial sectors.
With the advent of high-resolution time-series power demand data
through advanced metering, mining this data could be costly from
the computational viewpoint. One of the popular techniques is clus-
tering, but depending on the algorithm the resolution of the data
can have an important influence on the resulting clusters. This
paper shows how temporal resolution of power demand profiles af-
fects the quality of the clustering process, the consistency of cluster
membership (profiles exhibiting similar behavior), and the effi-
ciency of the clustering process. This work uses both raw data from
household consumption data and synthetic profiles. The motiva-
tion for this work is to improve the clustering of electricity load pro-
files to help distinguish user types for tariff design and switching,
fault and fraud detection, demand-side management, and energy
efficiency measures. The key criterion for mining very large data
sets is how little information needs to be used to get a reliable re-
sult, while maintaining privacy and security.

Index Terms—Classification algorithms, clustering algorithms,
data mining, energy consumption, machine learning, power de-
mand, smart grids.

1. INTRODUCTION

HE proliferation of smart meters in many countries will

enable the creation of time series of power demand in
both residential and commercial premises. Most meters will be
capable of generating data with high temporal resolution, but
customers and network operators have different requirements,
expectations, and priorities for using this data. This paper ad-
dresses the question of how much information is sufficient. Data
mining and pattern recognition techniques have been applied to
power demand time series [1]. The application of these tech-
niques can be useful for many purposes such as detecting fail-
ures and fraudulent usage or grouping users that present similar
consumption patterns [2], [3]. Grouping directly the time series
is not a practical task since there may be very long and contain
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too many unnecessary details. Usually, the information of the
time series during a specific period (e.g., season, weekdays of
a year) is aggregated in a representative profile that has a fixed
temporal duration such as a day [4]-[6].

In this work, the impact of temporal resolution on clustering
electricity profiles is investigated. Temporal resolution or gran-
ularity refers to the data sampling rate, which may be equal to
or less than the acquisition rate by the meter. The maximum ac-
quisition rate is determined by technical parameters of the meter
such as its capacity to store the averaged information [7]. In
practical terms, high resolution is data measurement at a rate
of every few seconds to 30 min. Low-resolution profiles present
data over longer time segments, e.g., few hours. The key is to
select a resolution that is a trade-off between the level of detail
that represents the essential consumption behavior of the user,
and the necessity to store and process data.

Little attention has been paid to the effects of data granu-
larity on the performance and efficacy of statistical methods
for analyzing power demand profiles. For example, in [5] only
the typical temporal resolutions and the existence of techniques
to reduce it are mentioned. Clustering experiments have been
performed over data with their original granularity, where 15
min is the most typical resolution [5], [6], [8]-[17]. Studies by
[18]-[20] were performed using 30-min data, and on 60-min
data by [2], [21]. The present authors have used a data set of
1-min resolution to perform clustering using a Dirichlet process
mixture model [22]. Other studies investigated dimensional re-
duction using symbolic aggregate approximation [23], principal
component analysis, the curvilinear component analysis and the
Sammon map [4].

To understand the advantages and disadvantages of temporal
resolution on the clustering of representative load profiles, this
paper uses a data set with an 8-s sampling rate and emulates
lower resolution data sets. In this way, it is certain that the time-
series being used in each experiment has been gathered under
the exact same conditions and thus is directly comparable. Three
different types of clustering algorithm were employed to per-
form the experiments: the k-means algorithm, hierarchical algo-
rithms, and the Dirichlet process mixture model algorithm. Sev-
eral validity measures were employed to evaluate the quality and
similarity of the clusters obtained over profiles with distinct res-
olutions. The efficiency of these algorithms was analyzed with
respect to the data resolution.

The paper is organized in the following way. In Section II the
process to obtain profiles with different resolution is explained.
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In Section III the clustering algorithms and validity indicators
employed for the experiments are introduced. The experiments
and their results are analyzed in Section I'V. Lastly, in Section V,
conclusions are drawn.

II. CREATING PROFILES WITH DISTINCT
TEMPORAL RESOLUTION

In general, the resolution of the profiles may be different
from the meter acquisition frequency. From the acquisition fre-
quency, it is possible to recompute profiles employing different
resolutions. Previous studies have used techniques to reduce the
dimensionality of the input data set [4], [23]. However, applying
these dimensional reduction techniques may produce different
profiles than the ones obtained directly from the readings. This
may be due to two factors: the nature of the reduction technique
[1], or intrinsic data properties such as differing number of read-
ings in each time interval. Although for a single day, this error
will be small, the cumulative effect over the large number of
days needed to compute the representative profile becomes sig-
nificant. Therefore the present authors did not employ any tech-
nique to reduce the dimension from an established profile, but
obtained the values of the profiles for each one of the different
resolution are directly obtained from the set of readings.

The daily representative profiles employed in this study
were created from the Dehems data set [24]. It comprises
electrical power consumption data, with an acquisition rate
of 7-8 s, during 2010 from Bulgarian and English dwellings.
Each customer record had a different number of readings.
After performing a pre-process [22] where records that did
not contain enough readings were removed, data for 197 cus-
tomers was used in this study. The daily profile for each of
the customers with temporal resolution 7" minutes (implying a
dimension of D = (60 * 24)/T of the vector of power values
{vo,...,vp_1}) was directly created from its set of readings
in the following way: .

* For each weekday 3, each value ’U,EJ >, 0<i<D—1was
computed by averaging the readings that were in the tem-
poral interval ¢ + T  to (i + 1) * T minutes of the day (there
may be not the same number of readings at each interval).
This dimensional reduction technique—piecewise aggre-
gate approximation [1]—is analyzed for load profiles in
[25].

e Value v;,0 < i < D — 1 of the representative profile is
obtained by averaging the values UZ.U ) , for all weekdays (7),
that are not equal to zero.

* A linear normalization process, using the respective min-
imum and maximum of the profile is carried out, obtaining
values between zero and one [11].

The temporal resolutions of the daily profiles employed in
this work were (in minutes): 0.5, 1, 2, 4, 8, 15, 30, 60, 120, and
240. An example of the same profile of our data set represented
with six different resolutions is shown in Fig. 1. The upper pro-
file has the lowest resolution (a value every 2 h, 12 values in
total) and the lower profile the highest resolution (one minute
i.e., 1440 values). Some details of the profile shape are lost with
decreasing resolution, however, these details may or may not be
important for comparing and clustering profiles.
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Fig. 1. Example profile with six different resolutions.

III. CLUSTERING ALGORITHMS AND EVALUATORS

The results of clustering depend on both the algorithm and
the resolution of the data. The main aim of this paper is not to
compare the performance of the algorithms, but to compare the
clustering results when the data resolution is varied. Thus, three
popular types of algorithm were selected:

* A partitioning algorithm, k-means is one of the most
common methods [3]-[5], [8], [11], [12], [17], [18], [21],
[22]. From an initial partitioning, a converging process in
which data elements are moved from one group to another
is carried out until stable partitions are achieved. The
convergence of the algorithm depends on the initial par-
titioning. Therefore such algorithms must be run several
times with different initializations.

* Agglomerative hierarchical algorithms [4], [5], [11]-[13],
[18], [21]. These bottom-up algorithms create a new cluster
for each one of the data elements then successively merge
the closest subgroups until the specified number of clusters
is achieved. There are different variations depending on the
criterion used to compute the distance to merge cluster. If
two clusters C; and C; are merged to form a new cluster
O, then the distance of this new cluster C,; from any other
existing cluster Cy,1 # i Al # j, d(C,, C}), can be com-
puted in several ways:

— Single link algorithm:

d(Cq,CZ) = IIliIl{d(Cl,Ci),d(cl,cj)} (1)

— Complete link algorithm:

d(Cy, Cp) = max{d(Cy, C;),d(Cy, C;j)} )
— Unweighted pair group method average algorithm
(UPGMA):
|Cs] * d(Cy, C;) + |C] % d(Cy, Of)
d(C,.C)) = ; : 3
(1 Cil + 1G] )

where |C,| is the number of elements of cluster C,.
— Weighted pair group method average algorithm
(WPGMA):

d(cq,Cl) = (d(ClCl) +d(C,C’J)) * 0.5 (@]
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— Unweighted pair group method centroid algorithm

(UPGMCO):
|Cil * dler, ei) + O]+ d(e, ¢5)
a(C,,Cy) = "
(G ) G+ 03]
d(ei,ej)
|Gl * |G s (9)
(G + 1650

where d(e,, ¢;) is the Euclidean distance between the
centroids of the clusters C, and C}

— Weighted pair group method centroid algorithm
(WPGMCO):

4(C,, 0y = Ao : dec) d(cz G ()

— Ward or minimum variance algorithm (WARD):

d(Cy, C1) = (1G] + |Ci]) = d(C, C3)
+ (1G] +1C51) = d'(C1, Cy)
— |G| *d'(C;,Cp)) = (|G| + |Gl + 1G5y (D)

where d'(c,,cp) = |Cu| * |Cy| * d(ca, ) * (|Cul +
Gyt
* Bayesian non-parametric statistics: the Dirichlet Process
Mixture Model (DPMM) [22], [26]. The DPMM algorithm
creates a separation that best adapts to the nature of the data
with a hierarchical model of Dirichlet and Multinomial dis-
tributions. Profiles are represented as draws from a multi-
nomial distribution whose parameters are obtained from a
Dirichlet distribution of dimension DD (number of readings
per 24-h demand profile). Clusters are computed with the
Chinese restaurant process [26]. Contrary to what happens
with the two previous types of algorithms, the number of
clusters is not an input parameter for the DPMM. A Gibbs
sampling process is used to estimate the concentration pa-
rameter [ of the Dirichlet distribution.

A. Validity Indicators

It is necessary to separately evaluate the different algorithms
performance in terms of the quality of the clustering, and the
robustness of the cluster composition (cluster membership). As-
sessing the quality of the clusters is an internal process, while
assessing the consistency of the cluster membership requires an
external reference with which to compare.

1) Internal Evaluators: The present authors selected six
internal evaluators [27]: the clustering dispersion indicator
(CDI), Davies-Bouldin index (DBI), modified Dunn Index
(MDI), mean index adequacy (MIA), scatter index (SI), and
variance ratio criterion (VRC). As these evaluators use the
intra-point distance, each set of clustering results was evaluated
using the average of the evaluator computed over the profiles
with all possible resolutions.

2) External Evaluators: This set of evaluators has not been
used in previous work on clustering electricity data, but they
were employed in other clustering studies [27], [28]. Being a set
of n data elements S = {o1, ..., 0, } and two clustering results

over this set, ¢ = {C1,..
where

Gy} and CF = {CF,...,CL Y,

Ua=U o=s (8)

1<i<k 1<i<k*
VO, Ch€Ciatb— ConNCy=0 9)
VO CreCatb— CrnCE =0. (10)

C(0;) and C*(0;) indicate the cluster that contains data element
0; in C and C*, respectively. The external evaluators that will
determine the similitude of C' employing as a reference C* de-
fine the following:

e True positives (TP) as the number of pairs of elements that
are in the same cluster for both C' and C*. Let §(cond) a
function that is one if the condition cond is fulfilled, zero
otherwise

TP =3 3 6(Clor) = Clog) A O(03) = (o).

i=1 j=i+1

(1)

* True negatives (TN) as the number of pairs of elements that
are not in the same cluster for both C' and C*:

TN = z—: Z §(C(0:) # Cloj) A C*(0;) # C*(05)).
i=1 j=i+1

12)

» False positives (FP) as the number of pairs of elements that
are not in the same cluster in C*, but are in C:

PP = i: Z 8(C(oi) = Cloj) ANC*(0;) # C*{04)).
i=1 j=it1

(13)

» False negatives (FN) as the number of pairs of elements
that are in the same cluster in C*, but are not in C':

n—1 n
FN=3" 3 6(Clos) # Clog) A C*(05) = O (o))
i=1 j=i+1

(14)

The external evaluators used in this study were:
* Rand Index represents the pairs that are correctly clustered
over the total of pairs:

TP + TN

and Tndex =
Rand Index = 57 77N *

100.

(15)

» Pair-counting precision accounts for the pairs that are to-
gether in C:

Pair—counting precision (P) *100.  (16)

TP

- TP +FP

e Pair-counting recall accounts the pairs that are together in
the reference C*:

* 100. (17)

T
Pair—counting recall (R) = BTN
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* Pair-counting F-score combines the precision and recall:
2-P-R

PR (18)

Pair—counting F—score =

These external evaluators operate as a percentage, 100%

being the best outcome. In the present experiments, the results

obtained with all other analyzed resolutions for the same

number of clusters (k = £*) are individually selected as

the reference C™*. The mean is computed to obtain the final
evaluator score.

IV. EXPERIMENTS AND RESULTS

Experiments were performed combining the proposed algo-
rithms with the ten different resolution versions of the data set.
The algorithms were implemented in C++. Experiments were
performed on an Intel Core2 Quad CPU Q9650 at 3.00 GHz
with 4 Gb of memory.

For the k-means experiments, results are averaged across one
hundred repetitions with the same configuration (k and resolu-
tion) employing random initialisation for the centroids of the
clusters. Euclidean distance was the distance used to compute
the distance between profiles and centroids. The hierarchical al-
gorithms used an extension of the Euclidean distance applied
between data point and set of data points, and then between two
sets of points [2], [11]. The number of clusters (an input param-
eter) used for both algorithms ranged from two to twenty.

For the DPMM algorithm, the number of clusters is not fixed
by the user. The unique user parameters is the concentration
parameter, J, that has an influence in the number of clusters
and their composition. Therefore the consequences of changing
the resolution of the input data in the resulting number of clus-
ters for same values of 3 was investigated. The different values
scanned for the concentration parameter ranged from 10! to
102, The effect of the resolution on the number of clusters ob-
tained when using the same values for the concentration param-
eter is shown in Fig. 2. Larger numbers of clusters require a
very much greater value of the concentration parameter (N.B.
log scale, Fig. 2). Furthermore, as the resolution decreases, gen-
erally the value of the concentration parameter also increases.
This is due to the nature of the statistical algorithm that employs
a combination of multinomial and Dirichlet distributions, and
the Chinese Restaurant Process (see Section IIT). Any value of
the concentration parameter leads to a different number of clus-
ters for any chosen resolution (data dimension D). This demon-
strates a clear dependence on resolution which is not discernible
from the algorithm structure. This means that the DPMM is not
robust with data resolution.

A. Clustering Quality

As this work is focused on the evolution of the results when
the resolution is modified, values of each of the internal eval-
uators are averaged for the clustering results obtained with all
the possible number of clusters for a particular resolution. In the
case of the DPMM, results are averaged only over results with
the number of clusters obtained for each resolution.

The values for three of the internal evaluators for the dif-
ferent algorithms are shown in Fig. 3 The k-means algorithm
performed best over the 4- to 60-min resolutions, but worst for
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Fig. 2. Number of clusters obtained with the DPMM depending on resolution
and concentration parameter.

the extreme resolutions. This tendency can be clearly seen for
the VRC and MDI evaluators. The hierarchical algorithms do
not show such a clear behavior.

The WARD distance presents the best scores for 8-min reso-
lution. Best results for the UPGMA distance are in 4, 8, 15, and
30 min, depending on the evaluator. The other distances pre-
sented heterogeneous behavior from a flat pattern such as the
UPGMC and WPGMC using the VRC evaluator, to a saw-tooth
shape by the WPGMA using the MDI evaluator. A general ten-
dency common for all these hierarchical algorithms is that they
seem to start declining from 60- to 120-min resolution data re-
sults, obtaining usually the worst scores for 240 min. Scores
with 0.5- and 1-min resolution are usually slightly worse than
the ones obtained with 15- or 30-min resolution, but not for all
the evaluators and distances. The DPMM also displayed hetero-
geneous behavior; sometimes a linear behavior such as for MIA,
but was irregular for the MDI evaluator. The best results for the
VRC evaluator are with data with 1- or 2-min resolution.

The other three internal evaluators (CDI, DBI, and SI) show
similar behavior for all the algorithms, but not in such a marked
way. Generally, the hierarchical algorithms presented a flat
shape until 60-min data, then showing declining performance.
The k-means showed again a U-shape behavior for the MIA and
MDI evaluators. The DPMM did not present a clear pattern.

B. Cluster Membership Consistency

The evolution of the cluster membership with respect to other
resolutions is the important part of this analysis. The values for
the external validity measures are shown in Fig. 4 (averaged for
all numbers of clusters). There are three algorithms that show
high scores for all the evaluators and resolutions: the single link,
UPGMC and WPGMC. This is due to two reasons. First, these
hierarchical algorithms tend to create disproportional clusters
with respect to the number of elements. There is always a very
large cluster with the other clusters formed from very few data
elements, which ensures these scores since most of the points are
always together in the same cluster. Secondly, the algorithms
criteria to merge two clusters is robust to changes in the data
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Fig. 3. Values for the internal evaluators for all the algorithms. For all except
the VRC, lower values suggest better clustering result.

rate. For example, results for the UPGMC algorithm for a reso-
lution of half a minute with & = 4 is composed of a large cluster
with 187 load profiles, another one formed with 8 profiles and
the last two with just an element each one. Clustering with the
same algorithm and number of clusters for a resolution of 15
min produce a cluster of 185 load profiles, another with 8 data
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Fig. 4. Values for the external evaluators for all the algorithms.

points, and the smaller ones with three and one elements. In this
case, the clusters of eight profiles is the same for both results
being dissimilar only in the smaller ones and in one or two el-
ements of the largest cluster. Therefore, the number of FN and
FP is very small; similarly for other resolutions. For the other
algorithms, DPMM and UPGMA present middling values and
the k-means, complete link, UPGMA, WPGMA and WARD the
lowest values. For all these algorithms the better scores are ob-
tained for higher resolutions, with the worst results for resolu-
tions greater than 1 h. The behavior of the evaluators is in line
with previous work [4], [5], [11].

Values of the F-score (by number of clusters) for four of the
algorithms are shown in Fig. 5. The profiles with resolutions
closer to the reference resolution obtain more similar clusters
(i.e., better F-score) than profiles with lower or higher resolu-
tions. For the hierarchical algorithm UPGMA, there are two
clear states of operation, switching at eight to eleven clusters
depending on the resolution. The reason is that these agglom-
erative algorithms tend to form one large cluster that contains
most of the data points. For the references, this large cluster is
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Fig. 5. Pair-counting F-score depending on the number of clusters for four clustering algorithms. (a) K-means. (b) Complete link. (c) UPGMA. (d) DPMM.

also formed. Therefore, for fewer than eight clusters, both the
reference and the compared resolution clusterings present this
large cluster and a higher score. Similarly for the WPGMA al-
gorithm, but the transition is at four clusters.

What it means for these algorithms is that decreasingly the
number of clusters, results may be different until a particular
point that all the results present the large cluster. A similar ef-
fect but not with one unique large cluster but with two clusters,
happens for the Complete link algorithm at seven number of
clusters. The k-means algorithm presents continuous decreasing
scores with the number of clusters. A large number of clusters
implies more combinations and fewer elements together (true
positives) than for the reference case. The DPMM shows irreg-
ular behavior (with gaps in the results) because not all numbers
of clusters are obtained for both the reference and compared res-
olutions.

Table I shows the average pair-counting F-scores over all of
the algorithms used and all possible combinations of resolu-

TABLE 1
SYMMETRIC MATRIX WITH AVERAGED F-SCORE FOR ALL THE ALGORITHMS
AND ALL POSSIBLE COMBINATIONS OF RESOLUTIONS

Res | 0.5 1 2 4 8 15 30 60 120 240
0.5 -

1 76 -

2 74 75 -

4 68 69 70 -

60 62 62 63 65 67 67 69 -
120 | 60 60 61 61 63 63 64 69 -
240 | 53 53 53 54 55 55 56 58 60 -

tions. Although there is some variability, this symmetric matrix
shows that similar resolutions obtain more similar results. It also
shows that the results obtained with highest resolutions (0.5, 1,
and 2 min) are more similar than with the lower resolutions.
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Fig. 6. Averaged time for the algorithms to cluster the real data set with dif-
ferent resolutions. Some points are shifted on the x-axis for improved visualiza-
tion.

The high-resolution clustering results have a F-score of about
70% (or better), while results for over 60-min resolution show
less than 70%. Results obtained for the 240-min resolution are
always less than 60%, indicating that they present very dif-
ferent cluster memberships. In general, the F-score values are
quite high since the single link, UPGMC and WPGMC algo-
rithms always achieve more than 90%. For other algorithms e.g.,
k-means there is just one value over 50%, but the same trends
that appear in Table I were observed.

C. Efficiency Analysis

The efficiency of each algorithm depends on its nature and
implementation. Theoretically, the order of time complexity of
the k-means is O(n - k- D - T), where n is the number of data
points, % is the number of clusters, D is the resolution of the
data, and I is the number of iterations to converge the algorithm.
For the single link, complete link, WPGMC, WPGMA hierar-
chical algorithms the complexity is Q(n? - D). The rest of hier-
archical algorithms (UPGMC, WPGMC, and WARD) present
an order of complexity of O(n?® - D). The complexity of the
DPMM algorithm is O(I* - n - k* - D% . ¢*), where I* is the
number of iterations to converge the algorithm, £* is the max-
imum number of clusters during all the iterations, and ¢* is the
maximum of the counters of the multinomial distribution (see
Section III).

The execution time experiments for each of the algorithms are
averaged for the same value of time resolution (Fig. 6). For all
of the algorithms except the DPMM, execution time decreases
with decreasing resolution, i.e., decreasing of D). The decreases
in execution time and resolution are approximately linear over
two orders of magnitude. The DPMM algorithm is the slowest
method for all resolutions. This is because the most important
factor for this method is the number of iterations (I*) that it
takes to converge the algorithm, which rises as the resolution de-
creases. The stop criterion of the algorithm is that the elements
of the cluster stay the same for 25 consecutive iterations, or that
500 iterations have occurred. Thus for low resolutions (more
clusters) this criterion takes more time to be achieved than for
high-resolution data.

The averaged time for iteration of the DPMM algorithm
(points labelled with “DPMM iter” in Fig. 6) behaves similar to

7
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Fig. 7. Averaged time for the algorithms to cluster the synthetic data with dif-
ferent resolutions. Some points are shifted on the x-axis for improved visualiza-
tion.

the other algorithms. The group of algorithms that are faster is
formed by the single link, complete link, WPGMC, WPGMA,
and k-means algorithms. The other hierarchical algorithms are
slower because the representative centroids of the clusters need
to be computed.

1) Performance Tests: To analyse the performance over
larger data sets, synthetic data were generated. Each profile
was obtained by simulating the electricity consumption of a
dwelling during one year based on probabilistic occupancy,
lighting and appliances models [29]. Each one of the dwellings
has a particular occupancy (from one to six people) and a
number of appliances with different power demands. The
probabilities of the models are based on real data [29]. Data
are generated with one minute resolution and lower resolutions
were obtained by averaging the values of each interval.

The data sets generated ranged between 30 and 5000 profiles,
and the clustering algorithms were applied to obtain clusters
with & from two to twenty. The results were averaged for all
the instances that employ the same resolution. For the k-means
algorithm, results were also averaged over ten experiments with
different initialization.

Fig. 7 displays the running times for all the algorithms, except
the DPMM algorithm owing to its high complexity. The range
of times for all the algorithms is consistent with those using real
data (Fig. 6). The difference in complexity of the algorithms
can be seen in Fig. 7, and for all hierarchical algorithms the im-
provement in performance levels out for data set with 30-min
resolution and greater, where convergence is observed. How-
ever, for k-means the improvement was continuous across the
whole range of resolutions used. In addition, the k-means was
1-2 orders of magnitude faster than the hierarchical algorithms.

V. CONCLUSION

This work analyses the impact of the temporal resolution
when clustering electricity load profiles. Several algorithms
have been systematically tested by changing the resolution of
the input data (of real household consumption). The results are
evaluated with internal and external validity measures, and the
efficiency was computed using a large-scale synthetic data set.
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The quality of the clustering was measured using a variety
of internal evaluators. Some hierarchical algorithms, notably
single link, WPGMC, and UPGMC derived unbalanced clus-
ters. This shows that these algorithms might only be suitable for
clustering profiles when the question posed about the data set is
about which behavior types do not belong to a defined majority
group. The reliability of the cluster membership was measured
using the Rand Index and Pair-counting F-score external evalua-
tors. A band of temporal resolutions between 4—60 min showed
better performance than either of the extreme resolutions. The
k-means algorithm was shown to be robust to data resolution ef-
fects in this this temporal band. The efficiency was tested using
synthetic data with up to 5000 profiles which showed that for
high resolution data there was a difference in execution time
of as much as two orders of magnitude. The k-means algo-
rithm was faster. The DPMM displayed interesting properties
that were strongly dependent on the resolution of the data. It was
the slowest, but usefully it did not need to specify the number
of clusters a priori. We conclude that it is used best as a way
to establish the number of clusters, but switch to using k-means
for the remainder of the analysis.

The implication of the work presented is that to be useful to
electricity retailers in discerning differences between consumers
time series power use data needs to be at a frequency of least
30 min and ideally 8 or 15 min. Distribution network operators
may have recourse to higher resolution data for various applica-
tions, however, 8-min data would provide a useful basis. Data
collected at frequencies slower than 30 min, and certainly 60
min, is not sufficiently reliable for most purposes.
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