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Abstract 

 
The capacity to correctly assess the existence of 

interaction is a high-value modeling capability 
among researchers of information systems (IS), 
especially those focusing on behavioural paradigm 
studies. Interaction is a notable aspect for the 

major theoretical frameworks of the IS field, 
particularly the adoption theories. Allowing for 

crossover effects in the Theory of Planned 
Behaviour resulted in improvements in model 
prediction (Taylor & Todd, 1995b). This study 
presents the trimmed model, which does not permit 

crossover effect relations among variables. In 
complex models, as mentioned by Pedhazur (1997), 

one variable may affect another variable indirectly 
through multiple paths. According to him, it stands 
to reason that indirect effects, through certain 
paths, may be more meaningful and/or stronger 

than others. The findings of this quantitative study 
lead one to conclude that crossover effect models 

are more capable of showing the interaction among 
models’ variables, as well as explaining the highest 
percentage of variation for a single dependent 
variable, in comparison to the full and trimmed 

models.   
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1. Introduction 

Studies that attempt to examine the interaction 
and compare several models of single theory are 
rare. In this study, the theory of planned behaviour 
is employed as the foundation base as well as for 
the comparison of the three derived models. The 
researchers observe adoption by combining the 
three models that examine Internet banking 
adoption. 

A summary of findings and conclusions, 
derived from each model, is provided in a 
comparative assessment of the capabilities of three 
regression models to predict the acceptance of 
Internet banking (IB).  
.  

2. Literature Review 

2.1 Theory of Planned Behaviour (TPB)  
In the TPB there are three constructs that 

determine the user’s intention. These are attitude, 
subjective norms (SN) and Perceived Behavioural 
control (PBC). The TPB has been used to study the 
adoption of different information systems such as 

spreadsheets (Mathieson, 1991), computer resource 
centres (Taylor and Todd, 1995a), electronic 
brokerages by Battacherjee (2000), and negotiation 
support systems by Lim et al., (2002). Figure (1) 
presents the Theory of Planned Behaviour as 
follows; 
 
 
 
 
 
 
 
 
 
 

Figure (1) Theory of Planned Behaviour 
 (Source: Ajzen, 1991) 

 
Although studies of adopting IB among individuals 
using the TPB are rare, three studies use the theory 
of planned behaviour (TPB) to study intention 
toward adopting IB. Liao et al. (1999) provide an 
example from the context of Hong Kong and Shih 
and Fang (2004) in the Taiwanese context. Based 
on these two studies, the findings demonstrate that 
the TPB is only partially applicable in predicting 
the adoption intention of virtual banking (Liao et 
al., 1999 and Shih & Fang, 2004). They prove that 
behavioural intention is a significant function of 
attitude and PBC (PBC) while the SN is not a 
significant determiner in either study. In addition, 
Brown et al. (2004), in a comparative study of IB 
adoption in Singapore and South Africa, 
demonstrate that SN shows no influence on the 
adoption of IB in either Singapore or South Africa 
as hypothesised in their model. Shih and Fang 
(2004) compare the TRA to two versions of the 
TPB model. They demonstrate that intention to 
adopt IB can be explained by attitude in both 
models and only relative advantage and complexity 
are related to attitude. 

In the study of consumer adoption intentions, 
Taylor and Todd (1995b) suggest a new format for 
the TPB theory, which is considered as helpful for 
a better understanding of the relationships between 
the belief structures and the antecedents of 
intention. Several researchers have examined 
approaches to decomposing beliefs into 
multidimensional constructs. The decomposed TPB 
model is inspired by Taylor and Todd (1995a; 
1995b). This model provides three sets of belief 
structures in a multi-dimensional belief construct. 
These beliefs, according to Taylor and Todd 
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(1995b), can be referred to as attitudinal beliefs, 
normative beliefs, and control beliefs, which are 
related to attitude, SN and PBC respectively. The 
decomposed TPB model has many valuable 
advantages as it represents the TRA’s core 
constructs. Also, it provides more attitudinal belief 
dimensions, derived from Rogers (1995)’s five 
attributes of innovation, rather than the two factors 
of ease of use and usefulness, which are proposed 
in the technology acceptance model (TAM) model. 

 
3. Methodology  

The aim of this study is to assess the existence 
of interaction effects in modelling behaviour of 
innovation adopters. The study utilizes the 
comparison techniques of variables resulted from 
three different models of OLS to help researchers 
identify the determinants of IB services adoption. 
Research Methodology, This study is considered as 
a quantitative research in which the researcher 
employs the deductive method and the survey 
instrument is the tool for collecting the primary 
data. To achieve the study’s aims the researcher 
employs the authoritative method, with the creation 
of the theoretical research framework together with 
a survey instrument designed to collect the study’s 
data. Items with a 7-point Likert scale have been 
adopted from previous IS studies to ensure 
constructs face validity (see Appendix A) 

All the variables of interest are subjected to 
several possible safeguards such as pre-testing, a 
pilot study, scales validation and statistical and 
methodological assumption assessment as 
recommended by Hair et al., (2006) and Malhotra 
(2004). These included tests for normality, 
independence of residual, representativeness of the 
sample and outliers. of the 1,000 self-administrated 
questionnaires distributed to bank account holders, 
of the 17 banks operating in Yemen, the overall 
response rate was roughly 62 %. Eventually, the 
achievable sample size of 623 responses was 
obtained with 254 incomplete forms, resulting in a 
gross response rate of 59 %. The reliability and 
validity of the constructs are ascertained by 
measuring the internal reliability and convergent 
and discriminant validity (Hair et al., 2006; 
Malhotra, 2004). Collectively, the results suggest 
that the constructs demonstrate adequate 
measurement properties 
 
4. Analysis and Results   

The aim of using path analysis is to provide 
quantitative estimates of the causal connections 
between sets of variables. According to Bryman & 
Cramer (2001), a direct effect occurs when a 
variable has an effect on another variable without a 
third variable intervening between them; an 
indirect effect occurs when there is a third 
intervening variable through which two variables 
are connected. Along these lines, Pedhazur (1997, 
p.765) points out that multiple regression analysis 
can be viewed as a special case of path analysis. 

Following Pedhazur’s (1997) guidelines, this 
study’s construct can be interpreted as loadings in 
factor analysis while the paths can be interpreted as 
standardized beta weights in regression analysis. In 
order to illustrate further the study utilizes path 
diagrams and path coefficients. The path diagram, 
according to Pedhazur (1997, p.770), is very useful 
for displaying graphically the hypothesised pattern 
of causal relations among a set of variables. In line 
with Bryman & Cramer (2000), the arrows indicate 
expected causal connections between variables. 
Thus, in the diagram presented in Figure (2), the 
study uses upper case letters and numerical figures 
to represent variables in the model. The letter – “I” 
refers to the variable Intention, “R” User 
Informational Based Readiness, “A” Attitude, “N” 
Subjective Norm, and “C” Perceived Behavioural 
Control. The number – “1” refers to the variable 
Relative Advantage/Compatibility, “2” Ease of use 
, “3” Observability, “4” Trialability , “5” Personal 
Norm, “6” Mass Media Norm, “7” Technology 
Facilitating Condition , “8” Resource Facilitating 
Condition, “9” Government Support , and “10” 
Self-Efficacy. 

In studying causal connections, the researcher 
must distinguish between exogenous and 
endogenous variables (Kerlinger & Pedhazur, 
1973). Therefore, all the variables represented by 
numerical figures are examples of exogenous 
variables while those represented by letters with the 
exception of “R” are endogenous variables. In 
Pedhazur’s (1997) words: 

“An exogenous variable is one 

whose variation is assumed to be 
determined by causes outside the 
hypothesized model. Therefore, no 
attempt is made to explain the 

variability of an exogenous 
variable or its relations with other 

exogenous variables. An 
endogenous variable… ...is one 
whose variation is explained by 
exogenous or other endogenous 

variables in the model.” (Page 
770) 

 
Based on this distinction of variables in path 
analysis, it is implied that variables could be 
dependent and independent in the same model. 
Kerlinger & Pedhazur, (1973, p.309) highlighted 
some assumptions underlying the application of 
path analysis as follows; 

1. The relations among the variables in the 

model are linear, additive, and causal.    

2. Residuals are not correlated with variables 

preceding them in the model. 

3. There is a one-way causal flow in the 

system. 
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4. Variables are measured on an interval 

scale. 

The diagram in Figure (2) below represents the a 

priori model’ as follows; 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) A priori Model 

This study checks for the aforementioned 
assumption required for using the application of 
path analysis and there is no violation. In addition, 
both the simple and multiple linear regressions 
employed in previous sections are helpful in 
explaining the predictive power of independent 
variables in direct relation. The arrows in the above 
diagram are drawn from the independent variable 
(exogenous) to the dependent variable 
(endogenous). For instance, variable A is perceived 
to be dependent on variables 1, 2, 3, 4 and variable 
R. Similarly, variable N is perceived to be 
dependent on variables 5 and 6, and variable C is 
perceived to be dependent on variables 7, 8, 9 and 
variable 10. Consequently, variable I is perceived 
to be dependent on A, N, C, and variable R. As 
shown in the a priori model, variables with a 
numerical symbol from 1 to 10, including the 

variable R, are exogenous variables, while the 
variables in uppercase letters (I, A, N, and C) are 
said to be endogenous variables. Furthermore, an 
endogenous variable treated as a dependent 
variable in one set of variables may also be 
conceived as an independent variable in relation to 
other variables (Kerlinger & Pedhazur 1973). 
Along these lines, the path coefficient indicates the 
direct effect of variable taken as a cause of a 
variable taken as an effect. Variable 1 is exogenous 
and is therefore, represented by a residual (e1).  
 
4.1 Findings of the Full Effects Model    

According to Kerlinger and Pedhazur (1973, 
p.310), a set of equations, referred to as a recursive 
model, are required to assess the full effects model 
and for identifying significance paths. In Cohen 
and Cohen’s (1983) words; 
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“Recursive models are those in which there is 

no reciprocal causation, feedback loops, or 
unmeasured common causes…involving one or 

more endogenous are present...Non-recursive 

models are more complex models”, page 376. 

 
Recursive models, according to Cohen and 

Cohen (1983, p. 355), can be estimated by ordinary 
regression equations. In the testing hypotheses part, 
this study performs a series of multiple regressions 
to derive the various path coefficients for the full 
effects model and to identify significance paths. A 

path analytic approach using the Ordinary Least 
Squares (OLS) technique is utilized to test the 
proposed model as recommended by Cohen and 
Cohen (1983), shown in Figure (3). The 
relationships among the variables in the recursive 
model, depicted in series equations, are as follows;  

X1  = e1 
X2  = e2 
X3  = e3 
X4  = e4 
X5  = e5 
X6  = e6 
X7  = e7 
X8  = e8 
X9  = e9 

X10 = e10 

XR = eR 

XA  = PA1X1 + PA2X2 + PA3X3 + PA4X4+ PARXR + eA 
XN  = PN5X5 + PN6X6 + eN 
XC  =  PC7X7 + PC8X8 + PC9X9 + PC10X10+ eC 
XI     =      PI1X1 + PIRXR + PIAXA + PA2X2 + PI3X3 + PN5X5 + PINXN +   PI6X6 + PI7X7 + PI8X8 

+ PI9X9 + PICXC + PCI10X10 + eI 
 
The notion PA1X1, PN5X5, PC7X7, PIAXA, etc 
denotes a specific path coefficient. Thus, PA1X1 
would indicate the path coefficient relating the 
exogenous variable X1 to the endogenous variable 

A1. The full effects model is displayed in Figure 
(3) below and the results of the series of 
regressions are shown in Table (1).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Numbers in Parenthesis indicate zero-order correlation, other numbers are path coefficients.
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Figure (3) Full Effect Model  

In Pedhazur’s (1997) words;  

“In path analysis, more than one regression analysis 
may be called for. At each stage, an endogenous 
variable is regressed on the variables that are 
hypothesized to affect it. The β’s thus calculated are 

the path coefficients for the path leading from the 
particular set of independent variables to the 

dependent variable under consideration.” Page 776   

 

The model in Figure (4) requires five regression 
analyses for the calculation of all the path 
coefficients. The path coefficient from R to I (PIR) 
is calculated by regression I on R, from A to I (PIA) 
is calculated by regression I on A, from N to I (PIN) 
is calculated by regression I on N and from C to I 
(PIC) is calculated by regression I on C. For the 
purpose of this research, a path is deemed 
significant if it passes the 90 % confidence level. 
 
 
 

Table (1) Results of Path Analysis on the Full Effects Model 

DV Regression  R
2
  �R

2
 Beta value  t-value  Sig 

Intention 
 

PI1X1  
PIRXR 
PIAXA 
PI2X2 
PI3X3 
PI4X4 
PI5X5 
PINXN  
PI6X6 
PI7X7 
PI8X8 
PI9X9 
PICXC 

PI10X10 

.756 .747 

.110 

.153 

.533 

.072 
-.064 
.004 
.024 
.015 
.021 
.069 
-.007 
.032 
.121 
-.094 

2.353 
4.043 

12.839 
1.550 
-2.064 
.135 
.581 
.355 
.555 

2.170 
-.238 
1.041 
2.408 
-1.950 

.021 

.000 

.000 

.124 

.057 

.893 

.564 

.729 

.578 

.031 

.812 

.299 

.017 

.052 

Attitude  PA1X1 
PA2X2 
PA3X3 
PA4X4 
PARXR 

.593 .587 

.392 

.238 
-.011 
.090 
.223 

7.309 
4.444 
-.285 
2.238 
4.961 

.000 

.000 

.776 

.026 

.000 

Subjective 
Norms 

PN5X5 
PN6X6 

.535 .532 
.596 
.196 

13.334 
4.396 

.000 

.000 

Perceived 
Behavioural 

Control 

PC7X7 
PC8X8 
PC9X9 

PC10X10 

.638 .634 

.020 

.023 
-.028 
.791 

.554 

.685 
-.788 

21.181 

.580 

.494 

.431 

.000 

 
 
4.2 Findings of the Trimmed Model 

In the model revision analysis, all 
insignificant paths (identified through the multiple 
regression carried out in the first part of the analysis) 
were eliminated from the full effects model. This 
step is necessary to derive a more parsimonious 
model via benefits from the approach of theory 
trimming. Many researchers like Pedhazur (1997) 

prefer to use a criterion of meaningfulness for the 
deletion of the paths, even when their coefficients are 
statistically significant. The study performed another 
round of regression analysis to drive new regression 
statistics. The regressions were carried out based on 
the following equations, which represent the 
significant relationship identified in the full effect 
model.

  
 

XA = PA1X1 + PA2X2 + PA4X4 + PARXR + eA 
XN= PN5X5 + PN6X6 + eN 
XC=  PC10X10 + ec 
XI  =  PI1X1 + PIRXR + PIAXA + PI3X3 + PI7X7+ PICXC + PI10X10 + ei 
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Consequently, Table (2) presents the results of path 
analysis of the trimmed model of this study, which is 
enhanced by the diagram in Figure (4). The trimmed 
model result shows a lack of support for the 
Subjective Norms (SN) affect on BI. This is not 

consistent with Ajzen’s (1991) theory that potential 
adopters intend to act based on others’ perceptions or 
with the results reported by Taylor & Todd (1995a), 
who found subjective norms to be important in 
affecting adoption. In contrast, this study’s results 
are consistent with findings of previous IB studies 
conducted by Liao et al. (1999), Tan & Teo (2000) 
and Shih & Fang (2004). The findings support the 
importance of observability in directly affecting a 
person’s intention to use IB in a negative way.

 
Table (2) Result of Path Analysis on the Trimmed Model 

DV Regression  R
2
 �R

2
 Beta 

value 
t-value Sig VIF Durbin-

Watson 

Intention PI1X1 
PIRXR 
PIAXA 
PI2X2 
PI3X3 
PI7X7 
PICXC 
PI10X10 

.753 .746 

.132 

.151 

.541 

.078 
-.052 
.082 
.124 
-.088 

2.926 
4.012 
13.207 
1.705 
-1.857 
2.732 
2.570 
-1.870 

.004 

.000 

.000 

.089 

.064 

.007 

.011 

.062 

2.570 
2.022 
2.343 
3.024 
1.118 
1.298 
3.229 
3.222 

1.972 

Attitude PA1X1 
PA2X2 
PA4X4 
PARXR 

.593 .588 

.389 

.240 

.085 

.224 

7.389 
4.583 
2.387 
5.002 

.000 

.000 

.017 

.000 

2.481 
2.459 
1.127 
1.790 

2.042 

SN PN5X5 
PN6X6 

.535 .532 
.596 
.196 

13.334 
4.396 

.000 

.000 
1.570 
1.570 

1.794 

PBC PC10X10 .637 .636 .791 21.181 .000 - 1.863 
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Figure (4) The Trimmed Model 
 
 

4.3 Findings of the Crossover Effects Model  
According to Taylor and Todd (1995b) 

allowing for crossover interaction effects in the 
Theory of Planned Behaviour results in an 
improvement in model prediction. Figure (5) 
presents the trimmed model, which permits crossover 

effect relations among variables. In complex models, 
as mentioned by Pedhazur (1997), one variable may 
affect another variable indirectly through multiple 
paths. According to him, it stands to reason that 
indirect effects through certain paths may be more 
meaningful and/or stronger than others. 

    

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5) Crossover Effects Model 
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Table (3) Results of Path Analysis on the Crossover Effects Model 

DV Regression  R
2
  �R

2
 Beta value t-value Sig 

Intention  READINESS 
ATT 
SN 
PBC 
PR 
MM 
RAC 
OBS 
EOU 
TR 
SE 
TFC 
RFC 
GOVSP 

.756 .746 

.153 

.533 

.015 

.121 

.024 

.021 

.110 
-.064 
.072 
.004 
-.094 
.069 
-.007 
.032 

4.035 
12.724 
.346 
2.406 
.577 
.544 
2.317 
-1.910 
1.540 
.135 

-1.950 
2.169 
-.239 
1.041 

.000 

.000 

.729 

.017 

.564 

.587 

.021 

.057 

.124 

.893 

.052 

.031 

.811 

.299 

Attitude READINESS 
SN 
PBC 
PR 
MM 
RAC 
OBS 
EOU 
TR 
SE 
TFC 
RFC 
GOVSP 

.607 .593 

.186 

.143 
-.017 
-.074 
.046 
.336 
-.022 
.203 
.088 
.100 
-.027 
-.019 
-.007 

3.939 
2.645 
-.266 
-1.406 
.934 
5.839 
-.511 
3.470 
2.147 
1.634 
-.677 
-.488 
-.186 

.000 

.009 

.791 

.161 

.351 

.000 

.610 

.001 

.032 

.103 

.499 

.626 

.852 

SN READINESS 
ATT 
PBC 
PR 
MM 
RAC 
OBS 
EOU 
TR 
SE 
TFC 
RFC 
GOVSP 

.627 .613 

.067 

.136 
-.008 
.542 
.038 
.041 
-.077 
.089 
.043 
-.014 
.062 
.018 
.076 

1.435 
2.645 
-.125 

12.658 
.792 
.695 

-1.866 
1.540 
1.063 
-.232 
1.575 
.489 

2.035 

.152 

.009 

.901 

.000 

.429 

.488 

.063 

.124 

.289 

.817 

.116 

.625 

.043 

PBC READINESS 
ATT 
PR 
MM 
RAC 
OBS 
EOU 
TR 
SE 
TFC 
RFC 
GOVSP 
SN 

.729 .719 

.113 
-.012 
-.033 
.171 
.032 
-.047 
.244 
-.065 
.566 
-.055 
-.043 
-.062 
-.006 

2.849 
-.266 
-.749 
4.259 
.629 

-1.337 
5.099 
-1.898 
13.740 
-1.635 
-1.347 
-1.937 
-.125 

.005 

.791 

.455 

.000 

.530 

.182 

.000 

.058 

.000 

.103 

.179 

.053 

.901 

 
5. Determining the Indirect Effects  

Following Pedhazur’s (1997, p.795) 
suggestion, the indirect effect of the exogenous 
variables on the research main endogenous variable 

“I”, Behavioural Intention, could be calculated based 
on path multiplication. Table (4) shows the indirect 
effects of behavioural belief, normative belief, and 
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control belief on the behavioural intention to adopt IB as well as their relevant path coefficients. 
Table (4) Path Analysis Indirect Effects 

* Insignificant path 

6. Determining the Total Effects 

The calculation of the total interaction effect in this 
study can be obtained mathematically through the 
submission of both direct and indirect effect as 
shown by the following equation;  

                                               n 

Σ TE = IE + DE 

                             
= i 

The results presented in Table (5) are obtained 
by calculations reported in Figure (4). In both the full 
and the trimmed Model, the total indirect effect of a 
customer’s behavioural beliefs on their Intention is 
equal to the sum of four components (0.50), which 
are the composed products of standardized regression 

coefficients. Obviously, the result differs for the 
crossover effects model where the total indirect 
effect of a customer’s behavioural beliefs is 
increased to the sum of eight components (0.63). It is 
clear that normative belief is virtually zero – a 
potentially important finding that is obscured when 
only the total indirect effect is reported. The total 
indirect effect of a customer’s behavioural beliefs on 
their Intention is almost 0.00, while the total indirect 
effect of a customer’s normative beliefs on their 
subjective norm is equal to the sum of two 
components (almost 0.03). The total indirect effect of 
a customer’s control beliefs on their perceived 
behavioural control is equal to the sum of one 
component of Self-efficacy (0.10).

Model  Cause /effects Indirect Paths Path Coefficient Total  
F

u
ll

 e
ff

ec
ts

 

 
Behavioural 

belief→ 
Intention 

X1→XA →XI 
X2→XA →XI 
X4→XA →XI 
XR→XA →XI 

0.392 × 0.534= 0.209 
0.238 × 0.534= 0.127 
0.090 × 0.534= 0.048 
0.223 × 0.534= 0.119 

0.503  

Normative belief 
→ Intention 

X5→XN* →XI 
X6→XN* →XI 

0.596 × 0.015= 0.009 
0.196 × 0.015= 0.024 

0.033  

Control Belief 
→ Intention 

X10→XC →XI 0.791 × 0.121= 0.096 0.096  

T
ri

m
m

ed
 

Behavioural 
belief→ 
Intention 

X1→XA →XI 
X2→XA →XI 
X4→XA →XI 
XR→XA →XI 

(.389×.541) = 0.211 
(.240 ×.541) = 0.130 
(.085 ×.541) = 0.046 
(.223 ×.541) = 0.121 

0.508  

Normative belief 
→ Intention 

X5→XN* →XI 
X6→XN* →XI 

(.596 ×.083) = 0.049 
(.196 ×.083) = 0.016 

0.065  

Control belief 
→ Intention 

X10→XC →XI (.791 x .124) = 0.098 0.098  

C
ro

ss
o

v
er

 E
ff

ec
ts

 

Behavioural 
belief→ 
Intention 

X1→XA →XI 
X2→XA →XI 
X4→XA →XI 
XN→XA →XI 
XR→XA →XI 
X2→XC→XI 
X4→XC→XI 
X6→XC→XI 
X9→XC→XI 
X10→XC→XI 
XR→XC→XI 

(0.336×0.533) = 0.179 
(0.203× 0.533) = 0.108 
(0.088×0.533) = 0.047 
(0.143×0.533) = 0.076 
(0.186×0.533) = 0.099 
(0.244 ×0.121) = 0.030 
(0-.065×0.121) = -0.008 
(0.171×0.121) = 0.021 
(-0.062×0.121) =-0.008 
(0.566×0.121) = 0.069 
(0.113×0.121) = 0.014 

0.627  

Normative belief 
→ Intention 

X5→XN*→XI 
X9→XN*→XI 
XA→XN*→XI 
X2→XN*→XI 
X7→XN*→XI 

(0.542×0.015) = 0.008 
(0.076×0.015) = 0.001 
(0.136×0.015)= 0.002 
(0.089×0.015) = 0.001 
(0.062×0.015)= 0.001 

0.013  

Control belief 
→ Intention 

X2→XC→XI 
X4→XC→XI 
X6→XC→XI 
X9→XC→XI 
X10→XC→XI 
XR→XC→XI 

(0.244×0.121) = 0.030 
(-0.065×0.121) =-0.008 
(0.171×0.121) =0.021 
(-0.062×0.121) =-0.008 
(0.566×0.121) = 0.069 
(0.113×0.121) = 0.014 

0.118  



Ali Hussein Saleh Zolait,Ainin Sulaiman and Sharifah Faridah Syed Alwi 
 
 

 

99 

 

 
Table (5) Total Effects Model: Behavioural Intention 

 Cause /effects Indirect 
Effect (IE) 

Direct Effect 
 (DE) 

Total 
Effect 
(TE) 

Sig 
Factors 

F
u

ll
 E

ff
ec

ts
 

 

Behavioural 

belief→ 
Intention 

0.503 .110+.153 +.533 +.072 + (-
.064)+ .069+.121+ 

(-.094) = 
.900 

 
1.403 

RAC,R,ATT, 
EOU,OBS, 

TFC,C and SE 

Normative belief 
→ SN 

0.033  
 

00 

0.033  

Control belief → 

PBC  

0.096  
.791 

.887 SE 

T
ri

m
m

ed
 

Behavioural 

belief→ 
Intention 

0.508 .132+.151+.541+.078+ (-
.052)+.082+.124+ 

(-.088) = 
 

0.968 

1.476 RAC, R,ATT, 
EOU,OBS, 
TFC,C, and 

SE 

Normative belief 

→ SN 
0.065  

 
00 

0.065 

Control belief → 
PBC 

0.098 .791 .0889 SE 

C
ro

ss
o

v
er

 E
ff

ec
ts

 

Behavioural 
belief→ 
Intention 

0.627 .153+.533+ .121+.110+ 
(-.064)+ .072 
(-.094)+.069 

=0.9 

1.527 R, ATT, 
PBC,RAC, 

OBS,EOU, SE, 
and 
TFC 

Normative belief 
→ SN 

0.013  
 

00 

0.013 ATT , PR and 
GOVSP 

Control belief → 
PBC 

0.118 .113+.171+.244+ 
(-.065)+ 566+ 

(-.062) 
= 0.967 

1.085 R, MM, 
EOU,TR, SE 
and GOVSP 
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7. Discussion  
Empirically, this study compares the results of 
three OLS regression models utilized to test for 
interaction. The findings of the study show that 
there are some notable differences between these 
models. The first is that the crossover model is 
able to capture additional interaction between 
three new normative belief components (ATT, 
PR and GOVSP) and Subjective Norm, as well 
as interaction between six new control belief 
components (R, MM, EOU, TR, SE and GOVSP) 
and PBC, whereas the Trimmed regression 
model does not. Also the level of significance of 
the interaction as captured by the crossover 
model is slightly more significant than for the 
Trimmed model. This indicates that the OLS 
may be somewhat more conservative, with the 
crossover interaction model, than the trimmed 
model. 

The second major notable difference is 
that the correlation coefficient (R

2
) of the 

dependent variable, customer service process 
(CSP), indicates that in both full (R

2 
BI = .76, R

2 

ATT =.59, R
2 

SN =.54, R
2 

PBC = .64) and trimmed 
(R

2 
BI = 75, R

2 
ATT =.59, R

2 
SN =.54, R

2 
PBC = .64) 

instances the overall explanatory power of the 
model is slightly higher when the crossover 
interaction terms are included in the analysis (R

2 

BI = 76, R
2 

ATT =.61, R
2 

SN = .63, R
2 

PBC = .73). As 
expected the F-statistic showed this outcome to 
be highly significant in both instances (Cohen, 
1988; Chin et al, 2003).  
Implications of this paper’s findings that deserve 
to be mentioned include that it clearly shows that 
past research, which sought to measure the 
contributions of the different salient beliefs 
effect to ‘intend’ and ‘expected behaviour’, 
related to the adoption of innovation, may have 
severely understated the true impact by 
neglecting to consider the crossover interaction 
effect. Another interesting point is the fact that 
the analysis reveals the existence of both positive 
and negative interactions. Basically, the results 
show that the three models share same salient 
behavioural beliefs such as RAC, R, ATT, EOU, 
OBS, TFC, C and SE, which statistically could 
be considered as prominent determinants of the 
intention for this research in modelling 
behaviour. However, the complexity and 
diversity in understanding the nature of the 
interaction effects, in modelling the behaviour 
for the Internet banking adopters from different 
contexts, needs to give consideration to the 
sources of possible interaction effects. However, 
overall, our results indicate that with the right 
level of austerity and statistical diagnosis, the 

crossover interaction regression analysis model 
can yield statistical results comparable to 
trimmed and full effect models based on OLS. 
With respect to Nomological Validity, Lee & 
Baskerville (2003) pointed out that 
generalizability of an IS theory to different 
settings is important not only for the purpose of 
basic research, but also for the purpose of 
managing and solving problems that 
corporations and other organizations experience 
in society. In order for a Multiple Linear 
Regression equation to have utility for prediction 
it must be generalized beyond the sample that 
was used to derive it. Generalizability in 
Information Systems, according to Lee & 
Baskerville (2003), refers to the validity of a 
theory in a different setting from the one where it 
was empirically tested and confirmed. A theory 
that lacks such generalizability also lacks 
usefulness. Statistical sampling-based 
generalizability is a valid concept within its 
bounds, but its uncritical application as the norm 
for all generalizability can lead to an improper 
assessment of the generalizability of many 
research studies (Lee & Baskerville, 2003). 

A variety of methods are available for 
assessing such generalizability. Since this study 
does not have the resources available to replicate 
and validate the results, it employs statistical 
procedures to ensure that the solution that fits 
our data sample can be generalized. In this 
connection, Hair et al. (2006, p. 259) suggest one 
of two approaches by which the researcher can 
assess the validity of the results. The first 
method includes an assessment of adjusted R

2
 

and the second is spilt sample. This study’s first 
indicator of generalizability is the adjusted R

2 

value, which is adjusted for the number of 
variables included in the regression equation. 
The adjusted R

2 
is used to estimate the expected 

shrinkage that would not generalize to the 
population because our solution is over-fitted to 
the data set by including too many independent 
variables. Hair et al. (2006, p.234) reported that 
the adjusted R

2
 is useful in comparing models 

between different data sets because it will 
compensate for the different sample. If the 
adjusted R

2 
value is much lower than the R

2 

value, it is an indication that the regression 
equations may be over-fitted to the sample, and 
of limited generalizability. R

2
=.751 and the 

Adjusted R Square =.746 are very close values, 
anticipating minimal shrinkage based on this 
indicator (Tabachnick & Fidell, 2007). 
Nomological validity according to Hair et al. 
(2006) refers to the degree to which the 
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summated scale makes accurate predictions of 
other concepts in a theoretical based model. This 
type of validity here assesses the relationship 
between theoretical constructs and seeks to 
confirm significant correlations between the 
constructs as predicted by theory (Malhotra 
2004, p.269). Moore & Benbasat (1996) found 
support for the predictive validity of innovation 
characteristics (see also Agarwal & Prasad 1997, 
1998; Karahanna et al., 1999; Plouffe et al., 
2001). 

 
8. Conclusion 
Unfortunately, the test of generalizability could 
lead one to conclude that Subjective Norm (SN) 
is the weakest psychological determinant of 
intention in this study with respect to Internet 
banking adoption. The findings on observability 
could lead one to conclude that this innovation’s 
attribute is an undesired attribute for Internet 
banking, which negatively affects the customers’ 
intention to adopt Internet banking. It was noted 
that customers’ intention to adopt IB will be 
influenced by both personal and media norms. 
This study has fulfilled both objectives of the 
research and supported the theory of planned 
behaviour. This study could be a valuable 
contribution to the body of knowledge where the 
crossover effect has not been carried out before 
and results show new and different findings to 
the existing body of knowledge. 
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