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1. INTRODUCTION

In his pioneering work (§1]) in 1952, Turing explained the onset of pattern formation
in reaction-diffusion systems by a spatial instability of anpatterned state leading to
a pattern. This approach is now commonly calleding diffusion-driven instability
Since then many reaction-diffusion models have been dudiexplore pattern forma-
tion. One of the most widely used class of such models arestbbactivator-inhibitor
type. Among them the Gierer-Meinhardt system is one of thetmpopular models.
After a suitable re-scaling it can be stated as follows:

QA= AA—A+ 45 inO,
(1.1) TOH = dyAH — H + 4% inO,

HB
0A __ 0H __
5 =%, =0 on o0,

whereA(t,z) : R* x O — RT andH (t,z) : Rt x O — R*\ {0}. Further© c Réisa
smooth and bounded domain and;, «, 8 are all positive constants with the condition
%1 < ﬁ. We assume that the diffusivities > 0, d, > 0 and time-relaxation
parameter > 0 are all constants.

Gierer and Meinhardt originally suggested this system if2lt® model (re)generation
phenomena imydra[10]. In the Gierer-Meinhardt modeM is the activator and{ is
the inhibitor. The parameterg, d, andr can be tuned to study some interesting phe-
nomena such as Turing instability and peak steady statds.aisumed that the two
componentsd and H, representing the concentrations of certain biochemieadsfirst
produced by an external source. Then they interact as ezt by the coupled non-
linear terms in the system. Further, they both decay, ang difuse with different
diffusion constants. It can be shown that Turing instabd#én only occur if the ratio of
the activator and inhibitor diffusivities satisfies

— < (C for acertain constant' < 1.
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The Gierer-Meinhardt system has been studied extensiwelypdny authors, both in
the biological and physical communities, and more recealdp in mathematics, to
elucidate its role in pattern formation. We refer @] for more background on the
model and its investigation.

Since this paper is concerned with the dynamical behavitihetolutions of 1.1),
we first review what is known about their properties.

The dynamics of].1) remains far from being completely understood. Let us noenti
a few results in this direction. Global existence has beewslby Rothe for the three-
dimensional case with the powears=2, ¢ =1, o« = 2, § = 0 ([29]), and by Jiang for
’%1 < 1([17). Blow-up in (1.1) can occurforp;1 > 1 since this even happens for the
corresponding kinetic systen?(f]).

If the inhibitor diffuses over the whole domain very quickilyis possible to assume
that it is constant throughout the domain. Formally taking limit d, — oo results
in the shadow system, for which the inhibitor componéhis replaced by its spatial
averaget = H = ﬁ Jo H dx, where|O] is the measure a®. Note that¢ is constant
in space, but it can still change in time. The behavior of th&tesm (L.1) stands in
marked contrast to its shadow system. Taking the limit> oo in (1.1), we get

QA=dAA—A+4 inoO,

94 =0 ondo,

whereAe = ﬁ fo A®dz. It was suggested by Keenefi{]) to study the systeml(2)
and the name “shadow system” was proposed by Nishitfd)([

The dynamics forX.2) has been less well studied than firl). Global existence and
finite-time blow-up have been explored by Li and Ni{]). In particular, they show that

for =1 < di there is a unique global solution, whereas#e¥ > 2 blow-up can occur.
« +2 a d

p—1 2 i
The rangefi > == 713 femains open.

Since the systemsl (1) and (L.2) are both deterministic, their evolutions are com-
pletely determined by the initial data. This is obviously nonsistent with phenomena
in nature, where random influences from the environmenngitay an important role.
These random effects are conceived as stochastic fluatsatictochastic modeling.

Motivated by these issues, Kelkel and Surulescd]f[proposed a stochastic Gierer-
Meinhardt type system with saturation effects and souncedé¢o study stochastic in-

[e3

fluences. They replaced the highly singular nonlinear 'retad:terms% and% in (1.1
by certain Lipschitz nonlinearities. For the systeiril) we can model external random
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effects as follows:
A =dAA— A+ 25 + AOW, in O,

(1.3) T0,H = d,AH — H+ 45 + HOW,  inO,
0A __ O0H __
5w =5 =0 on o0,

whereW; and W, are independent space-time white noise€$) ([The particular form
of Ag,W, andH 0;W, is chosen to keep the stochastic solutions positive (sed af}.

It is very challenging to prove the existence and uniquefersstochastic partial dif-
ferential equations with linear type multiplicative na@gssee e.g., 21] for more de-
tails. To the best of our knowledge, the only other papertiacizastic Gierer-Meinhardt
type systems isl}4], which includes two coupled stochastic PDEs with bounded a
Lipschitz nonlinearity. In [4] the authors proved thical existence of theositive
stochastic solution by Da Prato-Zabczyk’s approach.([

As a first attempt, we remove the random influences on theadotiv to simplify
(1.3). Lettingd, — oo, the model {.3) is further simplified as

QA=dAA—A+L inoO,

(1.4) =6+ % 1¢B,

92 =0 on o0,
Note that the noise term models some large-scale fluctusatidrich spread instantly
over the whole domain. This could represent a random progbgsh happens on a
length-scale larger than the domain, e.g. the influencetwihie change of the concen-
tration of a biochemical on a whole organ has on a single cell.

We adopt the notation inlf] and write the stochastic shadow Gierer-Meinhardt sys-
tem rigorously as follows:
( 8tu:Au—u+z—:,
df = —€dt + % dt + /26dB;,

(1.5) Qu —,
u(0) = v,
£(0) = ¢,

whereu(t,z,w) : RT x O x Q@ — RT, £(t,w) : RT x Q — R* \ {0}. Heree > 0 is
some constant anfl; is one-dimensional standard Brownian motion. Note thatiB)(
we have set the diffusion constant of the activator 1 which can always be achieved
by a rescaling of the domain.

The system in our papers differs from that i in several respects: the nonlinearity
in Eq. (1.5 is not bounded and far from being Lipschitz; we do not inelymbsitive
production terms for activator and inhibitor; we consides shadow system; we shall
prove theglobal existence of the strong positive solution.
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Eq. (1.5 is a stochastic system which includes one deterministié BBd one SDE
with long-range interactions. To our knowledge, this setee the first paper to study
a stochastic shadow system.
On the other hand, Eq1(5) can be taken as a highly degenerate stochastic PDE (see
[19) for more details). Its ergodicity is a very challenging plem which will be studied
in future papers (se€ P, 17] for some work in this direction).

Our first main result on global existence can be stated as/sl!

Theorem 1.1.Letp, ¢, a, 5 satisfy the following condition
p—1 q p—1 2
Q < g+1 a < d+2
Eg. (1.5 has a unique global solutiofu, &) € C([0,T];C(O,R) x R) forall T > 0
such that for allt > 0

U(t,l’) Z 0 Vx e O, S(t) Z e_%t_5|Bt‘C.

Our next main result is the small noise large deviation ppleayiven in Theoremd.4
below. Our result implies that as— 0 in Eq. (L.5), the stochastic system converges to
its deterministic part with exponential spe@de/¢). It suggests that as the external
random noise is small, the random influences can be ignoréd i3 also consistent
with our intuition.

As for the references of large deviation results on stoahagstems, we give the
following list of articles which is far from complete1]-[&], [20], [24-[30], [34]-[36].
We shall follow the approach inLf] to prove Theorem 1, some ideas along the same
lines have also appeared inZ 23]. The random force in Eq. 1(5) produces some
additional stochastic terms, which can be very large or &ezome infinite. To control
these terms, we shall use a martingale inequality and madéyenergy estimate in
[1€] by adding suitable stochastic terms and figuring out aniexphequality. For the
large deviation result, we shall follow the variational emgch in [[] by checking the
two assumptions of Theorem 4.4 therein (see Propositidgiend4.6below). To prove
these two propositions, we also need to use a martingal@atiegand some special
energy estimates.

The structure of this paper is as follows. In Section 2 we slomal existence and
uniqueness of solutions. In Section 3 we prove global exegggeand uniqueness. In
Section 4 we prove the large deviation result. Finally, ict®® 5 we discuss our
results and give an outlook to open problems and furtheareke

2. LOCAL EXISTENCE AND UNIQUENESS OF THE SHADOW STOCHASTIC
GIERER-MEINHARDT SYSTEM

Without loss of generality, we assume that 1 in this and the next section. Write
B = sup |Bs| Vt>0.

0<s<t
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Let N > 0 be a constant and define the following stopping time
Tn(w) = inf{t > 0: |B;(w)| > N}.
It is clear that
(2.1) {weQ:myw) <t} ={we: B(w) >N}

It is well known thatsup, ., B, satisfies

xZ
P < sup B, € (x,x+dx)) = e 2zdr, x> 0.

0<s<t

2
V27t

Since

N8

)

2]P>< B, > x) 4 / T e %a
= sup B, > — | = e x,
ogsgt 2 V2rt _—

the distribution ofB; has a density functioffi, satisfying

P (B} > z) §P<sup B, > f) +IP’<sup (—Bs) >
0<s<t 2 0<s<t

_z2
e st

(2.2) fi(x) <

\ 27t

For notational simplicity, we shall drop the variablén the random variables or random
sets below if no confusion arises. Further define

(2.3) S(t) = eV R(t, By) = e 2P,

whereA is the Laplace operator with Neumann boundary condition@n@, R¢) is
the space of all bounded continuous functigns® — R? with the uniform norm. It is
easy to check that (O, R?) is closed under the uniform norm. For notational simplicity
we shall write

Ifle = fllcorsy ¥ feC(OR?).
It is clear that the following relations hold:
-, IS@flle < IIfle vt>0 ¥f € CO.RY),
17l < NIflle Yp>1VYfeCORY)

For any(u, £), recall

| (w, )l cqomioxry = Julleqorey + lleqomr VT > 0.

Let X, Y both be some quantities, we shall simply dengteS X if there exists some
(not important) constar’ such that” < CX.
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Lemma 2.1. For everyN > 0, there exists som& depending onV, ||v||¢ and¢ such
that for all w € Q up to a negligible set, Eq(1.5 has a unique solutioffu, ) €
C([0,T A 7n]; C(O,R) x R) such that for allt € [0,T A 7x]

u(t) = S(tw + /0 "S- ) (Z:((j))) ds,

= t — 8, By — Bs) | 57— | ds,
&(t) R(t>B)C+/O R(t—s,B B)(g ) §
with the property

(2.5)

u(t,z) >0 Vtel0,TANTy]VaeO;

) >e2Ne Wi e[0,T ATyl

Moreover,(u(t), £(t)) satisfies the first two equations in E@..5) for eacht € (0,7 A
7n]. In particular,

f(t):C—/O f(s)ds—k/() g((j;ds—k/o £(s)dBs Vt € [0,T A 7n].

Proof. For allw € € up to a negligible set, define the following space

(2.6)

ArNw = {(u(w),f(w)) e C([0,T Ay (w)]; C(O,R) x RY) :
u(w7t> >0, f(wat) > eigtiNC, VO<t< T/\TN<w);

U(O) =, 5(0) = Ca H(u75)((*‘))||C([0,T/\TN(w)];C><R) < M}7

whereT € (0, 1] is some number depending ét, N, v, ¢ to be determined later and
M > 2+ ||v|lc +eN¢.

We shall drop all thev in the definition ofA4 5, v ., In the argument below for notational
simplicity.
For all (u1,&1), (u2,&2) € Aru,n, define

dr ((U17€1)7 (U27€2)) = ”(uhfl) - (U27fQ)HO([o,TATN];CxR)-

It is easy to check that under the distadgethe setd; », y is a closed metric space.
For each(u, ) € Az .y, define

Fu(w.©) (1) = Sty + /0 S(t—s) (ng) ds,

72 0) 1) = R0 BOC+ [ R — 5B -5 (G )

whereS and R are defined in4.3). For further use, we simply denote

Flu, &) = (Fi(u, §), Fa(u, €)) -

2.7)
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We shall prove below that
(i) There exists somé& depending oV, M, ||v|| and¢ such that

(2.8) F(u,§) € Arpn

for any (u, &) € Aran with T = T.
(i) There exists som& depending oV, M, ||v|| and( such that

29) r(Flun, &), Fluz, ) < (1,61, (1, )

for any (u1, &), (us, &) € Agary With T =T

By the definition of A 5/ v, takingT = min{T, T}, itis clear that 2.8) holds for any
(u, &) € Appn and that 2.9) holds for any(uy, &1), (us, &) € Ar . Thus, we apply
the Banach fixed point theorem to obtain a local unique smiuti the sense of2(5).
Differentiating both sides of(5) ([11]), we immediately get thatu, ) satisfies the first
two equations of Eq.1(.5) and that the desired stochastic integral equation holds.

Now we only need to show the statements (i) and (ii) from abdwet C' be some
positive constant depending only ang, p, ¢, whose exact values may vary from case
to case.

Let us first show (i). For anyu,§) € Az, v With T to be determined below, it is
clear F(u,£)(0) = (v, (). SinceS(t) maps a positive function to a positive one, it is
easy to see

[Fi(u, )] (t) >0 Vtel|0,TAry].
By (2.4), forallt € [0,T A 7y] we have

t
IF1(w, ] Dl < llvlle +e%q+NqC_q/O [u(s)l[cds
< |vlle + esatNac—aprpy
and
P )0] < et [ )
<eMN(+ e%BJFNB“NMa(;

TakingT' = min{T}, T} with T, = e~39"N4¢a)N[~? and Ty = e~ 28~N8=2N )/~ from
the above two inequalities we get

17, Olleotnriexr < 2+ vle +e¥¢C < M.

Hence, F(u,§) € Aj v
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Next we show (ii). For anyus, &), (ug, &) € Ag yn With T to be determined
below, observe that for alle [0, 7 A 7y]

|1 (s )] (2) — [Fi (a2, &) (D] < /

ui(s) _ u(s)

&ils)  &(s)

ds S Il(t) + Ig(t),

C
where
) / ||u§’<s>§g— Bl g,

/”2 ”C& ® @()d

Writing uy 2.2 (s) = Auy(s) — Mug(s) for A € [0, 1], by (2.4) we have
b (s) — (sl < p /0 (t12.7())" ™ (un(s) — us(s))] , dA
(2.10) <p / s o (8) 27 1 (5) — wafs) o A
< pMPH g (s) — ua(s)||o -

Thus

Writing &, ”( = Afl( +(1-— )52( ) for A e [O 1] we have

[€1(5) — &(5)|
) < q/ / q+1 BSRAZ S22 dds
512)\

< qe(2+N (1) = (q+1)Mpt||§1 —&lleqogry YVt E 0,7 A Tn],
which, together with the estimate &f, implies that for all € [0, T A TN|
[F1 (u, &1) = Fi(uz, &)l eqom0)
< Celz+Nagapr-t (1 + e%+NMC71> ¢l (urs &) = (w2, &)l oqo.g.0xx) -
A similar argument as above gives that forzad [0, T A ]|
[ F2(ur, &1) — Fa(us, &)l cqoaw)
< CANTEENACA MO (1 4 3TN MCTE | (un, &) — (s, &)l cqo.g:oxw) -

From the above two inequalities, there exists sdfepending on\/, N, ¢ such that

1
[ F (1, §1) — F(uz, &)l (o arn).oxr) < B (w1, &) = (w2, &)l oo, Fnrn]ioxR)

(2.11)

(2.12)

ie.,
A (F 1, €0), Flun ) < ~dp((ur, &), (un, 62)).

(\V]
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3. GLOBAL EXISTENCE AND UNIQUENESS OF THE SHADOW STOCHASTIC
GIERER-MEINHARDT SYSTEM

3.1. Some a’priori estimates. To prove the global existence and uniqueness theorem,
we assume thdtu(t), £(t))o<i<1 IS a solution of Eq. 1.5) such that

ue C([0,1;C(O,R)), £€C([0,1,R) as.,
and prove the following a’priori estimates @f, ¢).

Lemma 3.1. We have

(3.1) E(t) > e 2B >0,
(3.2) Jinf £(s) = e 2 ¢ >0,
1
* * —_— 1+
(3.3) sup £(t) < ePi¢ + e ( sup ua(t)) .
0<t<1 0<t<1

Proof. Applying Ito formula to¢'*#(¢) we have
(3.4)
A8 (1) = 51+ B)(B — DE (Bt + (14 BB, + (1 -+ H(r)dr,
which implies
() = e~ s (LA (+A) Br (145

(3.5) by _
+ (1 + B)/ e—§(1+5)(t—5)+(1+5)(3t—Bs)ua(s)ds’
0

which clearly implies the desired three inequalities. O

Letd > 0 be some fixed number and define

Mi(t) = /0 E()dB,, M= sup My(t).

0<t<1
Lemma 3.2. For all M > 0 we have
(3.6) EM; < C,
whereC depends only oh, (. Moreover, we have

M < oo as.
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Proof. It follows from the martingale inequality ancblisometry that

t 2
/ £7°(s)dB,
0

EM; < |E sup

0<t<1

<V2|E

This and 8.1) further give

1
EM; S \/ég—é/ Ee36t_263td8,
0

which immediately implies the desired inequality. O

Lemma 3.3. Letd > 0. We have

1 —a
(3.7) /0 éﬂuﬁi&;)@dsgA(é, ¢, B, M),

where

3+0 55, 5p
A(6,¢, B, M) =671¢" + %ea‘”wlg‘s + Mj.

Proof. Applying Ito formula to£—°(t), we get

e - ¢ = 220 /s 5)ds —5/ flw ) 455 /5

which gives
bou(s) 346 6
/§1+5+5( )d5<5 O /§ s)ds 4+ sup /55(5)d38
/ £79(5)dB,

0<t<1
where the last inequality is by (1). This immediately yields the desired inequality.]

?

346
<5+ —; / 2979805 + sup
0

0<t<1

Next we shall follow the spirit in]€¢] to prove the following energy estimates, which
is the key point for establishing the global solution.

Lemma 3.4. Letp > 0 be some number such that

q p—1 2
3.8 _
(3.8) T N

Let? > 0 and let
dip+6—1)

0= 20

(p—1—-ap+¥0), v=

~|
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Letd e (0, =2£2). As/ s sufficiently large so that € (0,1),v € (0,1) and £ €
(0,1), we have

(1—6v)¢ —6y o
(3.9) sup [|u(t)||7. < C (||vHL2‘9 +O7T Al-@(&C,B,Mﬁ)) V1
0<t<1

whereC' depends om, q, o, 5. Further,A(6, ¢, B, Mj) is defined in Lemma.3and

39—p(1+B+5) p(A+B+d)—g g— p(1+ﬁ+5)
O =¢2 1—0~ C -0y ¢ B*

Proof. Without loss of generality, we assum®@| = 1 in this proof. Let¢ be a large
number to be chosen later and write

w(t) = u?(t).
Then a straightforward calculation gives

4d(€ 1)

14 _
(310)  Bfwl?, = IVl =l + g [ e

Note that? € (0,1) as/ is large andim,_,, # = 1. By the second inequality 08(8),
we have

(3.11) 0<vy<1 as /(is sufficiently large.
By Hdlder inequality and the following Gagliardo-Nirengenequality
(3.12) lwll 2o < C(IVwllze + llwllz2) [lwll 2",

we have
(3.13)

é_lq/ up—1+édx: é_lq/ uocpup—l—ocp-i-fdx
@ O

1—p = p
(1+5+8)— 2 u
s ([uta) ()

= P
2 20(1— u
< CePIHAHI=0 (||| g2 + [Jw] 12)* ||| 35" <€1+6+5) '

Note thaty € (0, 1), the above and Young inequalities give

1 1
@/““%mwwwwwyﬂwmf
O

P
P(1+B+6)—q ue 10 20(1—7)
e (W) ]l 2
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This inequality, together with3(10), yields that ag is sufficiently small

P

p(145+8)—q u® \ 1 260-)

ol < Ce“ = ()T i
(3.14)

p(1+B+8)—q
-6

. o AT, 2001)
S C ( Hlf 6(8)) (W) ”U}HLQ_ K Vt c [O, 1],

0<s<1

where the last inequality is by the fact ttféﬁ’i;ij)*q < 0 (due to the assumption 6j.
Thanks to 8.2), we have

pP(1+B+8)—q

(3.15) (Oigrtl;g(t)) <.
Writing 7(t) = |Jw(t)||3., it follows from (3.14) and @.15 that
00—y o
(3.16) om(t) < CO <Os§1§)177(t)) o (#ﬁ%) o vt € [0, 1].

Thanks to the second inequality iB.8), we have;; < 1 as/ is sufficiently large,
thus the above and Holder inequalities give

_p 0(1—)

0<t<1 0<t<1

If supg<;<; n(t) > 1, (3.17) implies

1-6 P

(0221"(”) <)+ ce (/01 %ds) L

and thus

10 oy (1 W0(s) =
t) <nt=o (0)+COT ——d :
"= [ eie)

This and Lemma&.3give

(1—6+)¢

sup n(t) < C (HU||L€1_G +@%Aﬁ(5, Q,B,/\/l(g)) if sup n(t) > 1.
1

0<t< 0<t<1

Combining this with the caseip,.,-, n(t) < 1 immediately yields the desired inequal-
ity. o O
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3.2. Existence and uniqueness of the global solutiorBefore proving the global ex-
istence and uniqueness of the solution, we recall some famts ([16, pp. 15-16]).
ConsiderA with Neumman boundary as an operatorid{©) with ¢ > 1. Then the
associated Helmholtz operator is given by

H=1-A.

We can definé{“ for all « sinceS(t) is an analytic operator. Lé2(#)) be the domain
of H* equipped with the norm.{[pg) = ||.||ze + [|H*.|[ze. There exists somg > 0
such that

(3.18) [HS ()N pag) S e V€ (0, 20]-

As o > 2L D(H*)is continuously embedded @(O).
20

Proof of Theoreni.1. We first concentrate on proving the global existence anduaiq
ness of the solution and follow the spirit ind].
By the a’priori estimates of3(3) and (3.2), to show the global existence of E4..9),
it suffices to show that: can be globally extended. Suppose that there exists some
measurable set C  with P(A) > 0 such that for eactv € A there exists somg’*
such that
lim
T
Without loss of generality, we may assume< 1)) < 1, wheret, is the constant in
(3.189. Lett* =1 — %0 Then, choosing such thatzip < 1 and somey € (%, 1), by
(8.2 and @3.19, for all t € (t*, T} — €] with anye € (0,t,/4) we have

(3.19)

!W@Hbo@)éHS@—¢UUUUHmya%i/

*

u(t)]|c = oo.

t

*

5@—ﬁrwwwm+[u—$”&§——s

S =)l g + 2Bt =) sup [fu(s)|},
0<s<T%—¢

wheresupy.,<r._. ||u(s)|%,, < C andC only depends om, ¢, p,q,6.a, 8,w by
Lemma3.4 Sincec € (0,ty/4) andt* = T3 — %, from the above inequality we
get

1T = &)llppig) S to“llvllze + €2+ 9Pic 5~ C.
By Sobolev embedding, we further get

(T =)l St lult) o + 2 i C.
Sincee > 0 can be arbitrarily small, we have

lu(T3 =)l < to~llu() o + eBataBicagt=og,
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This gives a contradiction. Hence, EqgL.%) admits a global unique solution for all
w e a.s..
Now we prove the estimates in the theorem. Fr8m)( it is easy to see that

£(t) > et 1B,

On the other hand, by2(6) and a bootstrap argument, we obtain foralE €2 up to a
negligible set,
u(t,z) >0 Vt>0xeO.

4. LARGE DEVIATION RESULT

In this section, we prove the large deviation results. Warbleyg recalling the defini-
tion of the large deviation principle. LétX<, ¢ > 0} be a family of random variables
defined on a probability spa¢€, 7, P) and taking values in a Polish spageDenote
expectation with respect t8 by [E. The large deviation principle is concerned with
exponential decay df(X° € O) as ¢ — 0.

Definition 4.1. (Rate function) A function/ : £ — [0, oo is called a rate function on
&, ifforeachM < oo the level sefx € £ : I(x) < M} is a compact subset éf. For
O € B(&), we definel (O) = inf,co ().

Definition 4.2. (Largedeviation principle) Let I be a rate function oéi. The sequence
{X¢} is said to satisfy the large deviation principle 6rwith rate function! if the
following two conditions hold.
a. Large deviation upper bound. For each closed subsdt€,
limsupelogP(X® € F) < —I(F).

e—0

b. Large deviation lower bound. For each open subset £,
limsupelogP(X® € G) > —I(G).

e—0

Remarkd.3. Note that theg above is a function from sets to real numbers. To define the
rate function/, it suffices to define its value at each point.

4.1. Large deviation result and the method. Without loss of generality, we shall
prove the LDP result for the dynamics in the time interjeall]. Before stating our
large deviation result, let us first recall the following lorenaries.

The Cameron-Martin space associated to the Brownian maétjas as follows:

t
H = {he HN(0. 1R hit) = [ h(s)ds, oo < o<
0

ThenH is a Hilbert space with the norm
Iallez = IRl z2qonzy  Vh € H.
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It is clear to see
(4.1) h(t) = h(s)| < |hllx YO<s<t<1.
Fix N > 0, and denote
A% ={h € H, ||hllz < N}.

Then.A% is a compact Polish space endowed with the weak topolody.diVe denote
the weak convergence iHg by - — -. Then for{h,}, C H andh € H, h,, — h if

lim ¢ d&i/¢ (s)ds V¢ € L*([0,1];R).

n—oo

Define
A* ={h; h:Q x[0,1] — R satisfies h(w,.) € H Yw € Q
and h(.,t) is F; measurable V¢ € [0, 1]}
and for allN > 0
={he A |h(w)|lg <N Vwe}.

Leth € H, consider the following differential equation

p

h
Owup, = Auy, — up, + g

h

c@:—@a+%@+gﬁw,
h

(4.2)

with the same boundary and initial conditions as in Bqg5)(
Lete € [0,1] and let(h.)o<.<1 C A%, to study the large deviation of Eql.(), we
also need to consider the following stochastic PDEs:

p

Ug p
atua,h8 = Au57hs — Ue,h. T q7 -
(4.3) e
hs
df&,hg gs hgdt + B dt + \/_fs hEdBt + gs hgdh ( )

&,he

with the same boundary and initial conditions as in Bg5)( By the same argument as
in the previous section, we can prove the global existendeuamjueness of the solu-
tions to Egs. 4.2) and @.3).

Now we are at the position to state our large deviation result
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Theorem 4.4(Large deviation principle)Let {(u., &)} be the solution of the equation

(

Oy, = Au, — u, + g—%’,
dga = _fedt + Z_gdt + \/gfadBta

(4.4) o _
u:(0) = v,
L 55(0) =C.

Then{(u., &)} satisfies a large deviation principle i@'([0, 1]; C' x R) with the rate
function given as follows: for anyu, ¢) € C([0, 1]; C' x R) we have

1
I = inf —||A|I?
() =, mf (2!\ HH),

with the conventiomf{()} = oo, where(uy, &) is the solution to Eq(4.2).

We shall follow the method inl; Theorem 4.4] to prove the above LDP. According
to this method, we only need to show the following two proposs.

Proposition 4.5. Letg,,, h € A% and (u,,,&,,) be the solution of Eq(4.2) with h
replaced byy,. Up to taking a subsequence, we have

lim, [ (ug,., €.) — (un, En)ll o0 xm) = 0.

n

Proposition 4.6. For a family {h.} C A% for which h. converges in distribution té
under the weak topology @f, up to taking a subsequence, the solutjap;,_, . 5. ) of
(4.3) converges in distribution touy, £,); more precisely, for all bounded continuous
functionsf : C([0,1]; C x R) — R, up to taking a subsequence, the following relation
holds:

(4.5) ll_f)% Ef (ve ., Eene) = Ef (un, &)

4.2. Proof of Proposition 4.5. Before showing Propositiof.5 we prove the follow-
ing lemmas which provide the preliminaries for using Sob@mbedding and\rzela-
Ascoli Theorem.

Lemma 4.7. For all t € [0, 1], we have the following estimates
(4.6) &n(t) > eI,

1

(4.7) &n(t) < ellhlng + ellflla < sup u_g(t)) e )

0<t<1

Proof. From Eq. ¢.2), we have

(4.8) APty = —(1+ B)ETP (At + (14 B)ET (t)dh(t) + (1 + B)ufi(t)dt,
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which clearly implies
t
§i+ﬁ(t) = o (LAHIHBAW) (148 | (1 +5)/ ef(1+ﬁ)(t*8)+(1+5)(h(t)*h(8))u_zc(s)ds_
0

This equality and4.1) clearly imply the desired two inequalities. O

Lemma 4.8. We have

boud(s)
/O st < A(5,¢ k) Vteo,1],

where
A6, C h) =610+ IRl =0 4 66(1"'”}1”H)HhHH'

Proof. Differentiating¢, °(t) we get

&0(t _5/§h s)ds — & /§1+6+ﬁ ds— & /gh hs,

which, together with4.6) and Hdlder inequality, gives

/gHﬂg ds<oct s [ gias | [ g i

" 3
< 6710 4 Il =0 (/ g;%(s)ds) |2]| &
0
< 571(5 i 66(1+HhHH)C75 + e5(1+||h||H)”h”H
forall ¢ € [0, 1]. This completes the proof. -

Lemma 4.9. Letp, ¢, 0,y be the same as in Lemn3a4. Letd € (0, @). As/ is
sufficiently large so thatt € (0,1),7 € (0,1) and £ € (0, 1), we have

(A—6v)¢

ammmmmsc(mm” +€Wxﬁw¢m0v1
0<t<1

whereC depends o, 3, p, q, A(6, (, h) is defined in Lemmaé.8and

~ 1 5 1 5 1 5
O — eq pl( ;ﬂﬁﬁ )gp( v;ﬁgr )— qeq p( +B+ )”h”H

Proof. Repeating the argument for deriving {7) and using4.1), we get

1 _Oz( ) ﬁ 9(1*9"/)
~ us(s 1—-0v
su t) <n(0)+CO /hids (su t) ,
s (1) < (0) <O§ww® ) s (1)

wheren(t) = |lu,(t)||%,. By the same argument as that afteri(), we get the desired
inequality. O
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Lemma 4.10. Let (uy, £,) be the solution of Eqi4.2). We have

(4.9) sup || (un, &) |leo,;cxr) < C,
he A,

whereC' depends oV, (, ||v]||c, «, 5, p, q.

Proof. Similar as in the proof of Lemma.1, set

Ar v = {(u,f) c O([0,T]; C(O,R) x R) : u(t) >0, £(t) > e " N(,VO <t < T;

u(0) = v, €0) = G [[(,€) | eqorpexny < M}

with M > 2+||v||¢+e™¢ andT > 0 being some number depending®nM, o, 53, p, q.
By a similar argument as in the proof of Lemrad, we have

(4.10) sup ||(un, &n)llcqomoxr) < M.
heAd,

To complete the proof, we only need to bound the solution ertithe intervalT’, 1].
On the one hand, by4(6), (4.7) and Lemma&4.9, there exists somé€ depending only
onw, ¢, N such that

(4.11) sup 1€l (o,1:m) SU

heAd

Repeatlng the argument as in the proof of Theofeirand choosingy > £, we have

someC' depending only om, ¢, a, 3, N such that

26’

sup sup HuhHD(HQ) < C.
heAd, T<t<1

This inequality and Sobolev embedding theorem further give

(4.12) sup |Jup||lcqr/20) < C,
he A,

whereC depends only on, ¢, o, 3, N. Hence,
(4.13) sup || (un, &)l cqo,:oxr) < C+C.

heAg,
The proof is complete. O

Proof of Propositiord.5. Let all constants”' below be some numbers depending on
N, ¢, ||v|le, o, B, p, q, whose exact values may vary from line to line. Recilt) =
e~V and denote\,, ,,,(t) = u,, (t) — u,, (). Observe

ot = [ 0= (G5 - 00
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Thanks to Lemmd.7 and Lemmat.10Q we have

(4.14)
Hllub (s) B ub (s)
Am(®lle < [ |5 ggm(s)

P _
/ Hun gg gm 3 Hcds—}-/ ||ugm Hp

SC/O Amn(s ds+0/ €5, (5) — &g, (5)]ds.

ds

1

§gn( )T

For alls,t € [0,1] andg, € A%, by Lemma4.10and the second equation af.p), we
have

0.0~ 660 < [ 6,00 +/Z_
<C(t—s)+C(t—s) +</ 1€, () er)2(/0 |gn(7“)|2dr>;

<C(t—s)+C(t—s).

r
Dt [0 i)l

The above inequality clearly implies thgd,,, n > 1} is equi-continuous. Byrzela-
Ascoli Theorem, there exist sondjes C([0,1]; R) and a subsequence ff,,, n > 1}
(say{¢,,, n > 1} without loss of generality) such that

(4.15) Tim [, = Elloqo.nr) = 0-
It follows from (4.6) and @.9) that for allt € [0, 1]

g(t) = et Mg,

Moreover, ¢.15 and @.14) clearly imply that{w,, , n > 1} is a Cauchy sequence in
C'(]0,1]; C). Hence, there exists somes C([0, 1]; C') so that

(4.16) Jim flug, —ulleqono) = 0.
Since
t uP (3)
ug, (t :Stv+/5t—s o7 ds,
0= S0+ [ 50 —s) g3

lettingn — oo we get

(4.17) u(t) = S(ty + / t st — )3 g,
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On the other hand, by}(15 andg,, — hin H,
| 6@ - [ it
0 0

t
0

~ [0 = 6 Nante)s + [ €(6)lan(s) ~is)as =0

asn — oo. Lettingn — oo, the above limit and the following relation

b0 =c— [ &t [ ?E; s+ [ (s

give

f(t):C—/Otg(s)ds+/0t géj))ds—k/oté(s)h(s)ds.

This relation, together with4(17), implies that(u, ) solves Eq. 4.2). Thanks to the
uniqueness, we have, &) = (uy, &,) and thus

gliglh H(ugrm égn) - (u/w éh)HC([Oal};CXR) = O

0

4.3. Proof of Proposition 4.6. Before showing Propositiod.6, let us first prove the
following lemmas which give the preliminaries for using $#ood embedding and an
asymptotic tightness criterion in probability theory.

Lemma 4.11.Lete > 0 be such that — ge > 0 andh. € A%. We have the following
estimates

(4.18) Eon(t) > e TFRENTVEB e [0,1],
(4.19) Jnf &g (8) > e TVERIC,

Moreover, we have

1

* * —_— T
(4.20) sup &, (1) S eNTVEPICH 4 @NH2VER < SUp ug, (t)> .

0<t<1 0<t<1
Proof. We simply writeu = u. _, £ = & . andh = h.. By Ito formula, we have
1
g™ 2(t) = =5 (14 B)(2 = e P (1)t + (1 + B)E7 (H)dh(t)
+Ve(1+ B)EFP(1)dB, + (1 + B)us(t)dt,

(4.21)
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which clearly implies

£140 (1) = o= FEETE (14RO +VELHH)Be (145

t —
+(1+8) / o FEE =)+ () (RO -h() HVEA+) (B~ By (5) ds
0

t
Se(1+5)|h|H+\/E(1+B)Bf€1+B+(1+B)/ e(1+5)||h||H+2\/E(1+5)Bfua(s)ds’
0

where the last inequality is byt(1). The above inequality clearly implies the three
desired inequalities. O

Letd > 0, define

¢
M. 5(t) :/ f;ga(s)st, M 5= sup |[Mcs(t)].
0

0<t<1
Lemma 4.12.Lety > 0 andd > 0, for all € € [0, 1] we have
(4.22) E(M:s)" <,
whereC' depends only op, N, 6 and(. Moreover, we have
(4.23) f5<00  as.

Proof. We only have to show the desired inequality for the gase2 since the case of
0 < o < 2is an immediate corollary from the former. We simply wigte= &, ,_.
By Burkholder-Davis-Gundy inequality and Hélder ineqtialive have

E ( &Vsmﬂlkﬁ%m4{gﬂ/5@”®@y

0
which, together with4.19), gives

E ( :75)M < CEe/LzSJr/MSNJr,u(;\/EBT C*/J,(S.

The desired inequality immediately follows from the abowequality andZ.2). The
second inequality is a direct corollary from the first one. O

Lemma 4.13.Lete > 0 be such tha — 5 > 0 and leth. € A3,. Forall § > 0, we
have

1 o
/ qii’;—;ff)ds < A(C e, B, N, 3, M2 ),
0 fa,hg (8)

where

(2 + & + de + 2N ) HONFOVEB]

A(¢,e,B,N, 6, M:5) =0"¢"+ 5

(0 VML,
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Proof. For notational simplicity, we shall writ€(t) = &, (t) andu(t) = .. (t).
Applying Ito formula to&¢ —°(¢), we get

s s 0(2+e+de) [ (s boun(s) )
§°(t) —¢ ——/5 (s)ds =0 §1+5+6()d

—5/5 hds—é\/_/g s)dB,,

which gives

t & t
/ u®(s) ds<5_lg_5+2+€+58/§_5

o E1POtB(s) —
26 ! -6 dBS
/s |

(2+e+de+ 2Hh€HH)e‘H‘S”hE”HJ“‘S\/EBT

2
!/54@MBS
0

where the last inequality is byt (19. This clearly implies the desired inequality. [J

kil + V2 Sup

<t<L1

+ sup

0<t<1

<50+

+ /e sup

0<t<1

)

Lemma 4.14. Let p, ¢, 0, v be the same as those in Lem®d&. Leth. € A% and
0 € (0, W). Astis sufficiently large so that € (0,1), v € (0, 1) and £ € (0, 1),
we have

(1—6v)¢

swu%ummSO(mm“ +@wAw@eBN6W1Q
0<t<1

whereC' depends owv, 3, p, q, A(C, ¢, B, N, 6, M} 5) is defined in Lemma.13and

~ a— p(1+ﬁ+5) p(14+B+8)—q g— p(1+6+5) *
@ — 1+N) T—0y e \/_B

Proof. Repeating the argument for gettiriy17) and using4.1), we get

= s
(4.24) ¢ / Uepe(s ( t) o
osglzlg)l () < {’HB’L‘S 0552177( )
wheren(t) = |lu..(t)||;.. Repeating the argument aftet.{7), we immediately get
the desired inequality. O

Proof of Propositiont.6. For notational simplicity, we shall write, = u. ;. and¢. =
&.n.. We choos€ > 0 in Lemma4.14to be sufficiently large so thdt > 2« and fix
it. We also fix the numbep, 0,~,6 in Lemma4.14 By their definitions,/, p,0,~, ¢
are all some fixed numbers dependingaar®, p, q. Let all C' below be some numbers
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depending od, v, a, 3, p, g and N, whose exact values may vary from one another. We
shall prove the proposition by the following two steps.

(Step 1)We shall prove in Step 2 below that there exist sgme C(]0, 1], R) and a
subsequencgs,, } with lim,, ,, &, = 0 such that
(4.25) lim &, = ¢ in distribution under the topology C([0, 1], R).
n—oo

By Skorohod embedding theorem, there exist a probabilige(f2, 7, P) and random

variables{¢., } and¢ which have the same distributions &} and¢, respectively,
such that

lim (&, = Ellcqonm =0 as.

Consider the equations

Tlp
Oite, = A, — ite, + =2, 1, (0) =,
Tlp
(4.26) Oyt = At — 01+ = a(0) = v,
q

both with the same boundary condition, by the same argunsanttae proof of Propo-
sition4.5, we get

(427) lim H’llsn — ﬁ”c([ovl];c) =0 a.s..

n—oo

It is clear that the distribution dfii.,£., ) is the same as those ff., . ¢. ). By (4.36)
lim E+y/e sup

below, we have
t
dB,| = 0.
e—04+ 0<t<1 \/0\ gs 5

Hence, up to taking a subsequence, we have
t
lim /e, sup / &, dBg| = 0.
n—oo 0§t§1 0
By the same argument as in the proof of Propositidinwe get
R t t @(S) t .
(4.28) Et)=C— [ &(s)ds+ ——ds+ [ &(s)h(s)ds.
0 0o &8(s) 0

Now (4.26) and @.28) yield that(, é) satisfies Eq.4.2). By uniqueness of the solution,

(a, é) and(uy, &,) have the same distribution. Hence, we have completed tredf ppo
to showing ¢.25.

(Step 2)Now we show £.25. To this end, it suffices to prove the following asymp-
totic tightness criterion ([5, Theorem 2.1]):

() Forany0 < ¢, < t, < .. < t, < 1 withn € N, the distribution of
(§€(t1)7 ctty Ss(tn))ogggl iS t|ght
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(i) Forall A > 0
(4.29) limlimsupP ¢ sup [&(t) — &(s)| > A p =0.
6—0e—0 0<s<t<1
sl <s

First of all, for all > 0, by Holder inequality and Lemméa14we have

ra

v v
{sup u_g‘(t)} < (sup Hue(t)Hél) <C [eclBl + 2B ( :’6) 3} 7

0<t<1 0<t<1

where ¢y, co, c3 all depend oy, 5, p, ¢, v. Thanks to Lemmat.12 and @.2), using
Holder and the above inequalities, we have

(4.30) E [sup u_g‘(t)} <C.

0<t<1
Thanks to ¢.19 and @.2), by a similar but easier argument, we get
(4.31) E |:0%It1£1 fa(t)} <C.

By Holder inequality and4.20), we have

* * _ 1+
sup €2(0) S L4 VB (sup T () )
0<t<1 0<t<1
2

THE
AN+42BF | 2N+4B} —=
Se L+e 1| sup u(t) .
0<t<1

Thanks to ¢.30 and @.2), using Holder and the above inequalities, we have
(4.32) E sup &(t) < C.

0<t<1

For all smallc > 0, choosingK = \/é and by Chebyshev inequality, there exists some
K > 0 such that

=C

) < ESUP0§t§1 552(75)

P ( sup &(t) > K 02

0<t<1

and thus

]P’(sup fs(t)gK) >1—c.

0<t<1
Foranyl <t; <ty <..<t, <1lwithn €N, we have

P(ﬁa(tl) <K, '--aéa(tn) < K) >1-—c

Sincec > 0 is arbitrary, the distribution of¢. (1), ..., &-(¢,)) is tight. Hence, (i) above
holds.
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Next we check that (ii) also holds. Observe

sup [€(t) —&e(s)| <9 [Sup E(t) + sup F@)]

s—t|<6 0<t<1 0<t<1 &L (t
433 " t = () t
+ sup / E(r)he(s)ds| + 24/ sup / ¢.dB,
|s—t|<é 0<t<1|Jo

By Holder inequality, we get
sup

/ & (r)h(s)ds
ls—t/<s

which, together with4.32), yields

t 3
< sup {/ §?(T)ds] | hell g < NV§ sup &.(t),
s 0<t<1

[s—t| <8

[ st

ul(t) — . _
< a(t £ &P(t
0S<13<p1 55( ) (osgligl ug( )> <0gt1§1§€ ( )) ’
by (4.30), (4.31) and Holder inequality, this further gives

(4.34) E sup

|s—t|<é

Observing

(4.35) E sup -

Moreover, by Holder and martingale inequalities araddentity, we get

(4.36)
/0 B, /0 ‘can)|

1 2 1 3
_ 2
E /0 £.dB, =2 {/0 El&.| ds} < Chv/e,

where the last inequality is byt(32. Combining ¢.32), (4.39, (4.34), (4.36 with
(4.33, we immediately obtain

E sup |&(t) —&(s)| < C(6 + V6 +5).

|s—t/<6

By Chebyshev inequality,

Eve sup < Ve

0<t<1

E sup

0<t<1

1
2

<2

0<s<t<1
[t—s|<6

P{ sup |6.(t) - &(s)] > A} < ON(6+VE+VA),

which immediately implies (ii).
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4.4. Proof of the large deviation theorem.

Proof. By Theorem 4.4 in]], and Propositiont.5 and Propositiort.6, we can obtain
Theorem4.4. Thel in the theorem is an immediate consequence.pf4.3)]. O

5. DISCUSSION ANDOUTLOOK

Finally, let us mention some directions of our future reskamn the stochastic Gierer-
Meinhardt system. Some important questions including tileviing have been left
open in this study and we plan to explore them next. When do@sbp of solutions oc-
cur? Can related results be derived for stochastic prosegker than one-dimensional
standard Brownian motion? Can our results be extended fhenstochastic shadow
Gierer-Meinhardt system to the full Gierer-Meinhardt sys? Do similar results hold
for other pattern-forming systems such as the Gray-Sc@thnakenberg models?

For pattern formation in the deterministic Gierer-Meirdtanodel many interesting
phenomena have been established such as Turing instabdaked steady states with
single or multiple spikes, and various kinds of bifurcaiorWe are interested in the
guestion what will happen if some random forces are addebdset models. Due to
the randomness in the system, the peaked patterns anditbesations will be random
rather than deterministic and we expect that the naturesif iffiteractions will change.
Depending on the exact conditions, they can likely be dd&at by the stochastic
effects and new patterns might emerge. Our next goal is &siigate the trajectories
of random patterns and their bifurcations and gain furthsight into the mechanisms
controlling these interactionsH{)).
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