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This paper is concerned with the receding horizon filtering problem for a class of dis-
crete time-varying nonlinear systems with multiple missing measurements. The phe-
nomenon of missing measurements occurs in a random way and the missing probability
is governed by a set of stochastic variables obeying the given Bernoulli distribution.
By exploiting the projection theory combined with stochastic analysis techniques, a
Kalman-type receding horizon filter is put forward to facilitate the online applications.
Furthermore, by utilizing the conditional expectation, a novel estimation scheme of
state covariance matrices is proposed to guarantee the implementation of the filtering
algorithm. Finally, a simulation example is provided to illustrate the effectiveness of
the established filtering scheme.
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1. Introduction

In signal processing and control areas, the Kalman filter (KF) has been regarded
as an efficiently recursive filter to estimate unknown system states by utilizing
measurements. However, since undesirable signals with internal states may accu-
mulate, the traditional KF algorithms might suffer from persistent modeling errors
(Fitzgerald, 1971; Sangsuk & Bullock, 1990) or numerical errors (Grewal & An-
derews, 1993). As such, it could take a long time to converge to a real state even
though the temporary undesirable errors disappear. To improve its performance,
an alternative filter, namely, the receding horizon filter, has been proposed in the
past few years. The main idea of this kind of filter is to estimate the state vector
in terms of finite measurement samples, and then discard the oldest measurement
sample as a new sample becomes available. It is not difficult to see that the mem-
ory length of the filter is fixed. As discussed by Kwon et al. (1994), the receding
horizon filter owns a series of good numerical characteristics such as the bounded
input bounded output (BIBO) stability, the low round-off noise, the no limit cy-
cles compared to the infinite impulse response(IIR), and so forth. Therefore, such
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a filtering approach has been widely applied in various engineering problems, for
instance, signal processing, control system design, mobile target tracking, wire-
less positioning system, see Alessandri et al. (2008, 2003); Buxbaum et al. (1974);
Friedlander et al. (1978); Jazwinski (1968); Kim (2010); Kwon et al. (1989, 1994,
2002); Park et al. (1997); Shmaliy et al. (2008); Shmaliy (2008) and the references
therein.
As the ever-increasing popularity of communication networks, the limited band-

width of the communication channel inevitably leads to some network induced
phenomena which have gained much research effort in the past decade (Hounkpevi
& Yaz, 2007; Kluge et al., 2010; Liang et al., 2014; Liu et al., 2014; Sahebsara et
al., 2007b; Sinopoli et al., 2004; Wang et al., 2003). Recently, the so-called multiple
missing measurement has been considered to account for the case that each sensor
owns a different occurrence probability of missing measurements in an array of
sensors, see (Bouibed et al., 2014; Dong et al., 2010; Hu et al., 2012; Shen et al.,
2010; Shen, 2014; Wei et al., 2009) for more details. On the other hand, nonlin-
earities exist universally in practice that have long been one of the main research
streams. In a networked environment, the nonlinearities might stem from the ran-
dom fluctuation of the network load and the unreliability of the wireless links and
therefore such nonlinearities themselves could experience random abrupt changes
in their type or intensity, see e.g. (He et al., 2013; Hu et al., 2012, 2013; Jacobson,
1974; Wei & Yaz, 2001). As such, it seems more reasonable to design the receding
horizon filter by taking both the multiple missing measurements and the stochastic
nonlinearities into account.
To the best of the authors’ knowledge, the receding horizon filtering problem for

discrete time-varying systems with multiple missing measurements or stochastic
nonlinearities has not been adequately investigated, despite its clear engineering
insight. The main reason is that the introduced phenomena would pose significant
challenges on the design of receding horizon filters. For instance, in this case, the
mean and covariance of the initial state would be unknown in the sliding-window
because a priori information is hardly available. Furthermore, traditional methods
handling covariance matrices of filtering error, such as setting values (e.g. ∞I),
least-squares techniques or maximum-likelihood methods, are no longer valid due
primarily to the coupling between the filtering error and the system state. As such,
the purpose of this paper is to shorten such a gap.
In this paper, we aim to examine the impact of missing measurements and

stochastic nonlinearities on the design of receding horizon filters. By employing
the projection theory combined with the stochastic analysis techniques, a receding
horizon Kalman-type filter is designed and a novel estimation method is provided to
obtain the covariance matrix of the filtering error. Moreover, a simulation example
is proposed to show the effectiveness of the established receding horizon filtering
scheme. The main contributions of this paper are outlined as follows: 1) the system
under consideration is comprehensive to cover several network-induced phenomena;
2) a kind of receding horizon filter is derived for the purpose of online applications;
and 3) a novel estimation scheme for the state covariance matrix is provided by
employing the augmented method in order to guarantee the implementation of the
filtering algorithm.
The rest of this paper is organized as follows. In Section 2, a class of discrete

time-varying nonlinear systems with multiple missing measurements and stochastic
nonlinearities are introduced. In Section 3, by using the projection theory, some re-
cursive algorithms of receding horizon filtering are derived, and then the estimation
of filtering error covariance matrix is carried out in terms of the conditional ex-
pectation. Furthermore, a simulation example is given in Section 4 to demonstrate
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the effectiveness. Finally, we conclude the paper in Section 5.
Notation The notation used here is fairly standard except where otherwise

stated. Rn and Rn×m denote, respectively, the n-dimensional Euclidean space and
the set of all n×m real matrices. I denotes the identity matrix of compatible dimen-
sion. The notation X ≥ Y (respectively, X > Y ), where X and Y are symmetric
matrices, means that X − Y is positive semi-definite (respectively, positive defi-
nite). AT and r(A) represent the transpose and rank of the matrix A, respectively.
Moreover, we may fix a probability space (Ω,F ,Prob), where Prob, the probabil-
ity measure, has total mass 1. E{x} stands for the expectation of the stochastic
variable x with respect to the given probability measure Prob. diag{· · · } stands
for a block-diagonal matrix. The symbol ⊗ and ◦ denote the Kronecker product
and the Hadamard product, respectively.

2. Main strategies of distributed filtering

Consider the following discrete time-varying nonlinear system:

{

xk+1 = Akxk + f(xk, ϑk) +Dkwk

yk = ΞkCkxk + Ekvk
(1)

where xk ∈ Rnx represents the state vector, yk ∈ Rny is the measurement output,
and wk ∈ Rp, vk ∈ Rq and ϑk ∈ Rs are mutually independent zero-mean white
Gaussian sequences with covariances Q, R and I, respectively. Ak, Ck, Dk and Ek

are known matrices with appropriate dimensions. Ξk = diag{α1,k, α2,k, · · · , αny,k}
with αi,k (i = 1, 2, · · · , ny) being ny unrelated random variables, which are also
unrelated with wk, vk, ϑk and x0. Furthermore, the stochastic variable αi,k is
assumed to be a Bernoulli-distributed white sequence taking values on 0 or 1 with:

Prob{αi,k = 0} = 1− ᾱi, Prob{αi,k = 1} = ᾱi.

The function f(xk, ϑk) with f(0, ϑk) = 0 is a stochastic nonlinearity (Wei et al.,
2009) having the following first moment for all xk:

E {f(xk, ϑk)|xk} = 0 (2)

and the covariances given by

E
{

f(xk, ϑk)f
T (xi, ϑi)|xk

}

= 0, i 6= k, (3)

and

E
{

f(xk, ϑk)f
T (xk, ϑk)|xk

}

=
∑m

i=1 Πix
T
k Γixk, (4)

where m is a known integer, Πi and Γi are known matrices with appropriate di-
mensions.
As discussed in Introduction, this paper focuses on the receding horizon filtering

problem, where the length of sliding-window is N + 1. Generally speaking, the
receding horizon filter employs only the finite measurements on the interval [k −
N, k] and discards the oldest measurements when a new measurement is available.
Denoted the information set as IN

k = {ykN
, ykN+1, · · · , yk} with kN = k − N , the
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filter is described by

x̂(k|k;N) =

k
∑

i=kN

H[k,i;N ]yi, yi ∈ IN
k (5)

where x̂(k|k;N) denotes the state estimate of system (1) at time k and H[k,i;N ] is the
filter parameter to be designed.
Our aim in this paper is to design a filter with the form (5) for system (1) with

stochastic nonlinearities and missing measurements. In other words, we are going
to determine the filter parameters H[k,i;N ] (kN ≤ i ≤ k) such that the following
orthogonality is satisfied:

E
{

(xk − x̂(k|k;N))y
T
i

}

= 0, kN ≤ i ≤ k. (6)

3. Main results

In this section, we will provide a recursive algorithm of the receding horizon filter
and then derive an estimation of state covariance matrix for the discrete time-
varying nonlinear systems (1) to apply the established recursive algorithm.

3.1 The design of receding horizon filter

Before proceeding further, we introduce the following lemma which provides a
fundamental iteration algorithm to design the filter parameter H[k,i;N ] by handling
a set of Riccati-type difference equations. Note that this lemma can be showed along
the similar lines of the proofs of Theorem 2 in Kwon et al. (1989) and Theorem
2.1 in Kwon et al. (1994), and therefore the proof is omitted to the space saving.

Lemma 1. Let the state covariance matrix E{xkN−1x
T
kN−1

∣

∣IN
k } := P[kN−1,kN−1;N ]

be given. For the discrete time-varying nonlinear system (1) with multiple missing
measurements, the filter parameters are uniquely determined by the following iter-
ation algorithms
1) H[k,i;N ] = H[k,i;n]|n=N for the fixed k and N , where H[k,i;n] satisfies the recursive
matrix difference equations



















H[k,i;i−kN] = R[k,i−kN ;N ]C
T
i ΞS

−1
[i;N ], (7a)

H[k,i;n+1] =
(

I −R[k,n+1;N ]C
T
kN+n+1ΞS

−1
[kN+n+1;N ]ΞCkN+n+1

)

AkN+nH[k,i;n],

kN ≤ i ≤ k, i− kN ≤ n ≤ N − 1; (7b)

or 2) H[k,i;N ] calculated directly by































H[k,i;N ] = Φk
[N,i−kN ]R[k,i−kN ;N ]C

T
i ΞS

−1
[i;N ], kN ≤ i ≤ k, (8a)

Φk
[N,m] = Φk

[N,m+1]

(

I −R[k,m+1;N ]C
T
kN+m+1ΞS

−1
[kN+m+1;N ]ΞCkN+m+1

)

AkN+m,

0 ≤ m ≤ N − 1, (8b)

Φk
[N,N ] = I, (8c)
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where

R[k,s+1;N ] = R̄[k,s;N ] − R̄[k,s;N ]C
T
kN+s+1ΞS̃

−1
[kN+s+1;N ]ΞCkN+s+1R̄[k,s;N ],

R̄[k,s;N ] = AkN+sR[k,s;N ]A
T
kN+s +

m
∑

l=1

Πltr(P[kN+s,kN+s;N ]Γl) +DkN+sQDT
kN+s,

S̃[kN+n+1;N ] = S[kN+n+1;N ] + ΞCkN+n+1R̄[k,n;N ]C
T
kN+n+1Ξ, s ≥ −1,

P[r+1,r+1;N ] = ArP[r,r;N ]A
T
r +

m
∑

l=1

Πltr(P[r,r;N ]Γl) +DrQDT
r , r ≥ kN − 1,

R[k,−1;N ] = P[kN−1,kN−1;N ], S[r;N ] = Ξ̃ ◦ (CrP[r,r;N ]C
T
r ) +ErRET

r ,

Ξ = diag{ᾱ1, ᾱ2, · · · , ᾱny
}, Ξ̃ = diag{ᾱ1(1− ᾱ1), ᾱ2(1− ᾱ2), · · · , ᾱny

(1− ᾱny
)}.

In the above lemma, two algorithms of the receding horizon filter have been
provided. Now, it is interesting to investigate how to modify the filter parameters by
using the obtained parameters when the length of sliding-windows is increased, and
how to design a Kalman-type receding horizon filter for the easy implementation.
As such, in terms of the information sets IN+1

k+1 and IN
k , the relationship on the

designed filter parameters is revealed in the following theorem.

Theorem 1. Let P[kN−1,kN−1;N ] and P[kN−1,kN−1;N+1] be given. For the discrete
time-varying nonlinear systems (1) with multiple missing measurements, there ex-
ists the following Kalman-type receding horizon filter

x̂(k+1|k+1;N+1) = Akx̂(k|k;N) +Kk+1(yk+1 − ΞCk+1Akx̂(k|k;N)) (9)

with the filter gain

Kk+1 = (R̄[k,N ;N ] +∆H
k+1)C

T
k+1ΞΥ

−1
k+1 (10)

and the filtering error covariance

R[k+1,N+1;N+1] =
1

2

{

(I −Kk+1ΞCk+1)∆
H
R + (∆H

R)
T (I −Kk+1ΞCk+1)

T
}

where

A(k:i) := AkAk−1 · · ·Ai (∀k > i), A(i−1:i) := I,

∆P
[s,k+1] = P[s,k+1;N+1] − P[s,k+1;N ] = (P[s,s;N+1] − P[s,s;N ])A

T
(k:s),

∆H
k+1 = ∆P

[k+1,k+1] −Ak

k
∑

s=kN

H[k,s;N ]ΞCs∆
P
[s,k+1],

∆H
R = AkR[k,N ;N ]A

T
k +

m
∑

l=1

Πltr(P[k,k;N ]Γl) +DkQDT
k +∆H

k+1

Υk+1 = ΞCk+1(R̄[k,N ;N ] +∆H
k+1)C

T
k+1Ξ + S[k+1;N+1].
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Furthermore, the relationship between H[k+1,i;N+1] and H[k,i;N ] can be described by

{

H[k+1,k+1;N+1] = Kk+1,

H[k+1,i;N+1] = (Ak −Kk+1ΞCk+1Ak)H[k,i;N ], kN ≤ i ≤ k.
(11)

Proof. First, (9) can be rewritten as

x̂(k+1|k+1;N+1) = (Ak −Kk+1ΞCk+1Ak)x̂(k|k;N) +Kk+1yk+1

=

k
∑

i=kN

(Ak −Kk+1ΞCk+1Ak)H[k,i;N ]yi +Kk+1yk+1.
(12)

Then, for kN ≤ i ≤ k, it is not difficult to see that

E
{

(xk+1 − x̂(k+1|k+1;N+1))y
T
i

∣

∣IN+1
k+1

}

= E
{

(xk+1 −Akx̂(k|k;N))y
T
i

∣

∣IN+1
k+1

}

−Kk+1E
{

(yk+1 − ΞCk+1Akx̂(k|k;N))y
T
i

∣

∣IN+1
k+1

}

= E
{

Ak(xk − x̂(k|k;N))y
T
i

∣

∣IN+1
k+1

}

+ E
{

(f(xk, ϑk) +Dkwk)y
T
i

∣

∣IN+1
k+1

}

−Kk+1E
{

ΞCk+1Ak(xk − x̂(k|k;N))y
T
i

∣

∣IN+1
k+1

}

−Kk+1E
{(

(Ξk+1 − Ξ)Ck+1Akxk

+ Ξk+1Ck+1(f(xk, ϑk) +Dkwk) + Ek+1vk+1

)

yTi
∣

∣IN+1
k+1

}

= 0.

(13)

Similarly, for i = k + 1, one has

E
{

(xk+1 − x̂(k+1|k+1;N))y
T
k+1

∣

∣IN+1
k+1

}

= E
{(

xk+1 −Akx̂(k|k;N)

)

yTk+1 −Kk+1ΞCk+1

(

xk+1 −Akx̂(k|k;N)

)

yTk+1

−Kk+1

(

(Ξk+1 − Ξ)Ck+1xk+1 + Ek+1vk+1

)

yTk+1

∣

∣

∣
IN+1
k+1

}

= (I −Kk+1ΞCk+1)E
{(

xk+1 −Akx̂(k|k;N)

)

yTk+1

∣

∣IN+1
k+1

}

−Kk+1S[k+1;N+1].

(14)

On the other hand, similar to Kwon et al. (1989), over the interval kN ≤ i ≤
kN + n, one has

R[k,n;N ] := P[kN+n,kN+n;N ] −
kN+n
∑

s=kN

H[k,s;N ]ΞCsP[s,kN+n;N ]. (15)
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Then, it follows from (14) and (15) that

E
{(

xk+1 −Akx̂(k|k;N)

)

yTk+1

∣

∣IN+1
k+1

}

= E
{

xk+1x
T
k+1C

T
k+1Ξk+1

∣

∣IN+1
k+1

}

−
k

∑

s=kN

AkH[k,s;N ]ΞCsE
{

xsx
T
k+1

∣

∣IN+1
k+1

}

CT
k+1Ξ

=
(

P[k+1,k+1;N+1] −Ak

k
∑

s=kN

H[k,s;N ]ΞCsP[s,k;N+1]A
T
k

)

CT
k+1Ξ

=
(

P[k+1,k+1;N+1] +Ak

(

R[k,N ;N ] − P[k,k;N ]

)

AT
k

)

CT
k+1Ξ

−Ak

k
∑

s=kN

H[k,s;N ]ΞCs∆
P
[s,k]A

T
kC

T
k+1Ξ

=
(

AkR[k,N ;N ]A
T
k +

m
∑

l=1

Πltr
(

P[k,k;N ]Γl

)

+DkQDT
k

)

CT
k+1Ξ

+
(

∆P
[k+1,k+1] −Ak

k
∑

s=kN

H[k,s;N ]ΞCs∆
P
[s,k+1]

)

CT
k+1Ξ

=
(

R̄[k,N ;N ] +∆H
k+1

)

CT
k+1Ξ.

(16)

Therefore, in light of the orthogonality, substituting (16) into (14) results in (10).
Finally, we can calculate the filtering error covariance:

R[k+1,N+1;N+1]

= E
{

(

xk+1 − x̂(k+1|k+1;N+1)

)(

xk+1 − x̂(k+1|k+1;N+1)

)T ∣
∣IN+1

k+1

}

=
1

2
E
{

(

xk+1 − x̂(k+1|k+1;N+1)

)

xTk+1 + xk+1

(

xk+1 − x̂(k+1|k+1;N+1)

)T ∣
∣IN+1

k+1

}

=
1

2
E
{[

(

I −Kk+1ΞCk+1

)

Ak

(

xk − x̂(k|k;N)

)

+
(

I −Kk+1Ξk+1Ck+1

)(

f(xk, ϑk) +Dkwk

)

−Kk+1(Ξk+1 − Ξ)Ck+1Akxk −Kk+1Ek+1vk+1

][

Akxk + f(xk, ϑk) +Dkwk

]T

+
[

Akxk + f(xk, ϑk) +Dkwk

][

(

I −Kk+1ΞCk+1

)

Ak

(

xk − x̂(k|k;N)

)

+
(

I −Kk+1Ξk+1Ck+1

)(

f(xk, ϑk) +Dkwk

)

−Kk+1(Ξk+1 − Ξ)Ck+1Akxk −Kk+1Ek+1vk+1

]T ∣
∣

∣
IN+1
k+1

}

=
1

2

{

(I −Kk+1ΞCk+1)∆
H
R + (∆H

R)
T (I −Kk+1ΞCk+1)

T
}

,

(17)

which completes the proof.
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3.2 The estimation of state covariance matrix

As discussed in Introduction, the state covariance matrix P[kN−1,kN−1;N ] has to

be estimated by means of the known measurement set IN+1
k . Obtaining such an

estimation can be divided into two steps, that is, 1) obtaining the unbiased estimate
x̂(kN−1|k) and 2) calculating the state covariance matrix. Now, let us introduce the
following assumption. It should be pointed out that, for the case of linear time-
invariant systems, such an assumption is equivalent to the observability condition
which is a basic requirement for state estimation problems.

Assumption 1. For all k ≥ 0, r(EkRET
k ) = ny and r(χk) = nx, where

χk :=
[

CT
kn−1 AT

k−1C
T
kn

· · · (Ak−1Ak−2 · · ·Akn+n−1)
TCT

k

]T

, n ≥ nx.

Firstly, let us obtain the unbiased estimate x̂(kN−1|k) of the initial state xkN−1

on each sliding-window. For this purpose, denoting

Yk = [yTk , yTk−1, · · · , yTkN−1]
T , w̃k = [wT

k−1, wT
k−2, · · · , wT

kN−1]
T ,

ṽk = [vTk , vTk−1, · · · , vTkN−1]
T , Θk = diag{Ξk,Ξk−1, · · · ,ΞkN−1},

f̃k = [fT (xk−1, ϑk−1) f
T (xk−2, ϑk−2) · · · f

T (xkN−1, ϑkN−1) ]
T ,

one has

Yk = ΘkCkxkN−1 +ΘkFkf̃k +ΘkDkw̃k + Ekṽk, (18)

where

Ck =
[

AT
(k−1:kN−1)C

T
k , AT

(k−2:kN−1)C
T
k−1, · · · AT

(kN−2:kN−1)C
T
kN−1

]T
,

Ek = diag{ Ek, Ek−1, · · · , EkN
, EkN−1 }, C̄(m:n) = CmA(m−1:n),

Dk = FkD̄k, D̄k = diag{Dk−1,Dk−2, · · · ,DkN−1},

Fk =



















C̄(k:k) C̄(k:k−1) · · · C̄(k:kN+1) C̄(k:kN )

0 C̄(k−1:k−1) · · · C̄(k−1:kN+1) C̄(k−1:kN )
...

. . .
...

...
...

0 0 · · · C̄(kN+1:kN+1) C̄(kN+1:kN )

0 0 · · · 0 C̄(kN :kN)

0 0 · · · 0 0



















.

Define ~k := ΘkCkxkN−1 + ΘkFkf̃k + ΘkDkw̃k + Ekṽk − Yk and Θ̄ = I ⊗ Ξ. It
follows that

E
{

~
T
k ~k|xkN−1

}

= E
{

xTkN−1C
T
k Θ

T
kΘkCkxkN−1 + 2xTkN−1C

T
k Θ

T
k

(

ΘkFkf̃k +ΘkDkw̃k + Ekṽk
)

− 2xTkN−1C
T
k Θ

T
k Yk + f̃T

k F
T
k Θ

T
kΘkFkf̃k + 2f̃T

k F
T
k Θ

T
k

(

ΘkDkw̃k + Ekṽk − Yk

)

+ (ΘkDkw̃k + Ekṽk)
T (ΘkDkw̃k + Ekṽk)− 2(ΘkDkw̃k + Ekṽk)

TYk + Y T
k Yk

∣

∣

∣
xkN−1

}

8
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which results in

E
{

~
T
k ~k|xkN−1

}

= xTkN−1C
T
k Θ̄CkxkN−1 − 2xTkN−1C

T
k Θ̄Yk + E

{

f̃T
k F

T
k Θ̄Fkf̃k

∣

∣xkN−1

}

+ E
{

(ΘkDkw̃k + Ekṽk)
T (ΘkDkw̃k + Ekṽk)

}

+ Y T
k Yk.

(19)

Furthermore, denote

ϕk := xTkN−1C
T
k Θ̄CkxkN−1 − 2xTkN−1C

T
k Θ̄Yk

+ E
{

(ΘkDkw̃k + Ekṽk)
T (ΘkDkw̃k + Ekṽk)

}

+ Y T
k Yk

and setting the derivative dϕk/dxkN−1 to zero yields

x̃(kN−1|k) := (CT
k Θ̄Ck)

−1CT
k Θ̄Yk = NkYk

with Nk := (CT
k Θ̄Ck)

−1CT
k Θ̄.

On the other hand, taking the above equation into consideration, one has

E
{

xkN−1 − x̃(kN−1|k)

∣

∣IN+1
k

}

= E
{

xkN−1 −NkYk

∣

∣IN+1
k

}

= E
{

xkN−1 −Nk(ΘkCkxkN−1 +ΘkFkf̃k +ΘkDkw̃k + Ekṽk)
∣

∣IN+1
k

}

= E
{

xkN−1 −NkΘkCkxkN−1

∣

∣IN+1
k

}

= E
{

xkN−1 −NkΘ̄CkxkN−1 −Nk(Θk − I)CkxkN−1

∣

∣IN+1
k

}

= E
{

(I −NkΘ̄Ck)xkN−1

∣

∣IN+1
k

}

.

which means that the unbiased estimate x̂(kN−1|k) is

NkΘ̄Ckx̂(kN−1|k) = x̃(kN−1|k), or x̂(kN−1|k) = (CT
k Θ̄

2Ck)
−1CT

k Θ̄Yk. (20)

Now, we are in a position to obtain the estimate P̂[kN−1,kN−1;N ] of the state
covariance matrix P[kN−1,kN−1;N ]. It is easily found that

E
{

(NkΘ̄CkxkN−1 − x̃(kN−1|k))(NkΘ̄CkxkN−1 − x̃(kN−1|k))
T
∣

∣IN+1
k

}

= E
{(

Nk(Θ̄ −Θk)CkxkN−1 −Nk(ΘkFkf̃k +ΘkDkw̃k + Ekṽk)
)

×
(

Nk(Θ̄−Θk)CkxkN−1 −Nk(ΘkFkf̃k +ΘkDkw̃k + Ekṽk)
)T ∣

∣

∣
IN+1
k

}

= Nk

(

Ek(I ⊗R)ET
k + Θ̃ ◦ (CkP[kN−1,kN−1;N ]C

T
k ) + Θ̄FkE{f̃kf̃

T
k }F

T
k Θ̄

+ Θ̃ ◦ (FkE{f̃kf̃
T
k }F

T
k ) + Θ̄Dk(I ⊗Q)DT

k Θ̄ + Θ̃ ◦ (Dk(I ⊗Q)DT
k )

)

N T
k

= Nk

(

Ek(I ⊗R)ET
k + Θ̃ ◦ (CkP[kN−1,kN−1;N ]C

T
k ) + Θ̄FkΩf (P)FT

k Θ̄

+ Θ̃ ◦ (FkΩf (P)FT
k ) + Θ̄Dk(I ⊗Q)DT

k Θ̄ + Θ̃ ◦ (Dk(I ⊗Q)DT
k )

)

N T
k

(21)

9



September 7, 2014 International Journal of General Systems Ding˙Wang14

where Θ̃ = I ⊗ Ξ̃ and

Ωf (P) := E{f̃kf̃
T
k } =

m
∑

l

(I ⊗Πl)diag
{

tr(P[k−1,k−1;N ]Γl), · · · , tr(P[kN−1,kN−1;N ]Γl)
}

.

Considering E{NkΘ̄CkxkN−1

∣

∣IN+1
k } = NkYk, one has

E
{

(NkΘ̄CkxkN−1 − x̃(kN−1|k))(NkΘ̄CkxkN−1 − x̃(kN−1|k))
T
∣

∣IN+1
k

}

= NkΘ̄CkP[kN−1,kN−1;N ]C
T
k Θ̄N T

k −NkYkY
T
k N T

k .
(22)

Therefore, according to (21) and (22), we have the following theorem.

Theorem 2. For the given information set IN+1
k , the estimate P̂[kN−1,kN−1;N ] of

the state covariance matrix P[kN−1,kN−1;N ] satisfies the following nonlinear matrix
equation:

P̂[kN−1,kN−1;N ] = (CT
k Θ̄

2Ck)
−1(L(P̂) + J (Y ))(CT

k Θ̄
2Ck)

−1 (23)

with











































L(P̂) := CT
k Θ̄

(

Θ̃ ◦ (FkΩf (P̂)FT
k )

+ Θ̃ ◦ (CkP̂[kN−1,kN−1;N ]C
T
k ) + Θ̄FkΩf (P̂)FT

k Θ̄
)

Θ̄Ck,

J (Y ) := CT
k Θ̄

(

Ek(I ⊗R)ET
k + Θ̄Dk(I ⊗Q)DT

k Θ̄

+ Θ̃ ◦ (Dk(I ⊗Q)DT
k ) + YkY

T
k

)

Θ̄Ck.

Remark 1. Note that the nonlinear matrix equation (23) is solvable if there exists
a scalar λ > 0 satisfying (CT

k Θ̄
2Ck)

2 − λ−1(L(λI) + N (Y )) > 0. Furthermore, its
approximate solution can be acquired by using some basic iterative methods, such
as Aitken’s multi-point iterative algorithm, Newton iterative method, and so forth.

Remark 2. In most existing literature, three arguably theoretical frameworks,
namely, the setting values, the least-squares technique and the maximum-likelihood
method, have been widely exploited to estimate the covariance matrix. Unfortu-
nately, all of these methods are no longer valid because of the nonlinear operation
(i.e. the “trace” and Hadamard-product operations) included in (21) and the un-
known probability density function of the augmented measurement Yk with missing
measurements. As such, in this paper, a novel two-stage scheme is provided to over-
come such a challenge. It is worth mentioning that the state covariance R[k,N ;N ] are
affected by both missing measurements and finite measurement data. An important
research topic in future is how to reduce such an effect from these two aspects.

4. A Numerical Example

In this section, a numerical example is utilized to illustrate the effectiveness of the
established filtering algorithm for discrete time-varying systems (1) with missing

10
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measurements. Consider the system with

Ak =





0.64 + 0.22 sin(0.12k) 0.40 0
0.25 0.32 + 0.10 cos(2k) 0.10
0.20 −0.30 0.45



 ,

Ck =





0.82 0.15
0.75 0
0 −0.80





T

, Dk =





0.10
0

−0.05



 , Ek =

[

−0.05 0.20
0.10 −0.15

]

.

Then, the nonlinear vector-valued function fk(xk, ϑk) is chosen as

fk(xk, ϑk) = (0.1sign(x1k)x
1
kϑ

1
k + 0.2sign(x2k)x

2
kϑ

2
k))





0.06
0.09
0.12





where xik and ϑi
k are, respectively, the i-th element of the system state xk and the

stochastic variable ϑk. Furthermore, ϑ1
k and ϑ2

k are zero mean, uncorrelated Gaus-
sian white noise sequences with unity covariances. The probabilities of multiple
missing measurements are taken as ᾱ1 = 0.98 and ᾱ2 = 0.96. The N is selected as
3. It is not difficult to verify that the above stochastic nonlinear function satisfies

E {f(xk, ϑk)|xk} = 0,

E
{

f(xk, ϑk)f
T (xk, ϑk)|xk

}

=





0.06
0.09
0.12









0.06
0.09
0.12





T

xTk





0.01 0 0
0 0.04 0
0 0 0



xk.

The simulation results are shown in Fig. 1, where Figs. 1(a)∼1(c) plot the system
state and its estimation, and Figs. 1(d)∼1(f) depict the absolute values of filtering
errors for the addressed system. The simulation results have confirmed that the
designed filter performance is very well.

5. Conclusions

In this paper, we have investigated the receding horizon filtering problem for a
class of discrete time-varying nonlinear systems. In order to reflect the reality
more closely, on one hand, the phenomenon of multiple missing measurements is
addressed, where the missing probability of each sensor is different. On the other
hand, the stochastic nonlinearity which covers several classes of well-studied non-
linearities as special cases, has been taken into account. In terms of the projection
theory combined with stochastic analysis techniques, a Kalman-type receding hori-
zon filter has been designed. Furthermore, by utilizing the conditional expectation,
a novel estimation scheme has been proposed to obtain the estimation of the state
covariance matrix. Further research topics include the extension of our results to
more general networked systems with various network-induced phenomena, such
as stochastic occurring nonlinearities, time-delays, quantization effect and so forth.
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Figure 1. The state estimation and filtering errors (absolute values).
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