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Abstract

This paper is concerned with polynomial filtering and fault detection problems for a class of nonlinear systems subject to
additive noises and faults. The nonlinear functions are approximated with polynomials of a chosen degree. Different from the
traditional methods, the approximation errors are not discarded but formulated as low-order polynomial terms with norm-
bounded coefficients. The aim of the filtering problem is to design a least squares filter for the formulated nonlinear system
with uncertain polynomials, and an upper bound of the filtering error covariance is found and subsequently minimized at each
time step. The desired filter gain is obtained by recursively solving a set of Riccati-like matrix equations, and the filter design
algorithm is therefore applicable for online computation. Based on the established filter design scheme, the fault detection
problem is further investigated where the main focus is on the determination of the threshold on the residual. Due to the
nonlinear and time-varying nature of the system under consideration, a novel threshold is determined that accounts for the
noise intensity and the approximation errors, and sufficient conditions are established to guarantee the fault detectability for
the proposed fault detection scheme. Comparative simulations are exploited to illustrate that the proposed filtering strategy
achieves better estimation accuracy than the conventional polynomial extended Kalman filtering approach. The effectiveness
of the associated fault detection scheme is also demonstrated.

Key words: Polynomial filtering; nonlinear systems; polynomial approximation; fault detection; adaptive threshold; recursive
algorithm, Kronecker power.

1 Introduction

The past few decades have seen the nonlinear state es-
timation problem as a recurring research theme due to
the pervasive existence of nonlinearities in almost all
real-world industrial systems. If not adequately dealt
with, the intrinsic nonlinearities may lead to undesir-
able dynamic behaviors such as oscillation or even in-
stability. Indeed, the nonlinear analysis issue has been
the main stream of research for systems control and es-
timation problems attracting researchers from a variety
of disciplines. So far, much effort has been devoted to
the estimation/filtering problems for nonlinear systems,
see e.g. [2, 4, 7, 11–13, 19, 21, 23, 27, 35, 36] and the ref-
erences therein. Among others, the renowned extended
Kalman filter (EKF) algorithm has proved to be an ef-
fective method to solve the estimation problem for non-
linear systems in the least mean square sense. Recently,
considerable attention has been paid to the performance
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improvement of the traditional EKF with respect to the
insensitivity to the parameter uncertainties as well as the
capability of handling nonlinearities [22, 32, 38]. When
the system states and observations are polynomial with
additive Gaussian white noises, the mean-square filter
has been designed where the statistical characteristics of
Gaussian distribution have been made use of to recur-
sively calculate the filtering error covariance [1, 3, 5].

Polynomial extended Kalman filter (PEKF) is an exten-
sion of EKF with aim to cater for inherent nonlinearies
using polynomial approximations. Traditional EKF is
only concerned with the linear term and simply ignores
the linearization error, while PEKF considers the Car-
leman approximation of a nonlinear system of a given
order µ [26]. The order could be determined according
to the form of the nonlinearity and the estimation per-
formance specification. In this sense, the PEKF is more
applicable than EKF as far as the accuracy is concerned.
When the order µ = 1, PEKF reduces to conventional
EKF. A PEKF is designed to cope with an augmented
state which is made of Kronecker powers of the original
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state [15]. Due to its higher accuracy than that of EKF,
the PEKF has stirred quite a lot research attention and
many corresponding results have been reported in the
literature [14, 16, 17, 28]. Nevertheless, the PEKF ap-
proach still ignores the Carleman approximation errors
which would give rise to certain conservatism especially
when the nonlinearities are severe.

In theory, well-behaved nonlinear functions could only
be approximated accurately by polynomials whose or-
ders approach infinity. In engineering systems, however,
the polynomials with extremely high orders are difficult
to be realized. A feasible way is to determine the finite
order of the polynomials for satisfactory approximation
of the nonlinear dynamics according to the degree of
the nonlinearities and the nature of the research prob-
lem. As such, the unavoidable high-order approxima-
tion errors would be impacting on the estimation perfor-
mances that should be taken into account. While EKF
and PEKF work quite well for system with relatively low
degree of nonlinearities, the classical EKF algorithm ig-
nores the linearization errors and most available PEKF
approaches discard the Carleman approximation errors.
It is noted that the approximation errors differ greatly
from each other due to various forms of nonlinearities.
Instead of being simply dropped, the approximation er-
rors do offer further room for improving the estimation
accuracy if properly coped with. This seemingly natural
idea, unfortunately, would inevitably bring us substan-
tial challenges when calculating the covariances of the
estimation errors in the least mean square sense since
the approximation errors could not be exactly known.
Moreover, coupled with both the low-order terms and
external disturbances, the approximate errors would be-
come very complicated to analyze. These identified dif-
ficulties motivate us to address the PEKF problem by
allowing for the Carleman approximation error with aim
to obtain higher approximation accuracy and better es-
timation performance.

The fault detection (FD) problem is another active re-
search topic in control engineering due primarily to the
increasingly higher and higher safety requirements. Yet,
the FD problem provides an ideal platform to demon-
strate the applicability of the polynomial filter technique
to be developed. Since a properly designed filter could
generate residual signal so as to efficiently detect abnor-
mal changes in the system, filter/observer based FD has
become a common technique. In filter/observer based
FD methods, a fault would be detected and diagnosed
effectively via comparing the actual system output with
the filter output signal since the faults would normally
bring in unexpected variations in the system measure-
ment. To date, a great number of results have been pub-
lished on this issue, see [18,33,41,44] and the references
therein. Residual evaluation, which consists of threshold
and decision logic, is critical to the performance of FD.
For systems varying with time or parameters, the adap-
tive threshold has been of particular research importance

for its better trackability and faster self-adjustment as
compared with the constant threshold.

So far, many existing results have focused on adaptive
threshold generation for linear systems [29–31,43]. How-
ever, the corresponding results for nonlinear systems
have been scattered in spite of their engineering signif-
icance [24, 34]. In [40, 42], the nonlinear dynamics have
been assumed to be uniformly bounded and the bounds
have been utilized to determine the adaptive threshold.
In the context of polynomial fault detection for nonlinear
systems, the adaptive threshold determination problem
is essentially difficult mainly for two reasons: 1) the ex-
pressions of the disturbances and approximation errors
are sophisticated and their influences on the threshold
remain unclear; and 2) it is non-trivial to calculate the
bounds of the disturbances and approximation errors
in order to propose a reasonable fault detection thresh-
old. Up to date, the polynomial fault detection scheme
has not been fully investigated, not to mention the case
where the Carleman approximation errors are taken into
consideration. This constitutes another motivation of
our present work.

Summarizing the discussions made above, in this paper,
both the polynomial filtering and fault detection prob-
lems are thoroughly investigated for a class of nonlinear
systems. The Carleman approximation of a given order
is introduced to approximate the nonlinear functions. In
contrast to existing literature, the high-order approxi-
mation errors are explicitly taken into account in terms
of low-order polynomials with uncertain but bounded
coefficients. A time-varying filter is first designed at each
time step to guarantee that the filtering error covariance
is bounded in the fault-free case. Such a bound is subse-
quently minimized with respect to a properly designed
filter gain. To show the applicability of the proposed fil-
ter scheme, a fault detection strategy is then proposed
consisting of the calculation of adaptive threshold and
decision logic. The filter gain and adaptive threshold are
determined using the information from the approxima-
tion errors and additive disturbances. With the fault de-
tection strategy, the fault detectability is also investi-
gated.

The main contribution of the paper can be highlighted as
follows: 1) a polynomial estimation scheme for a class of
nonlinear systems is presented by taking account of the
Carleman approximation errors, which leads to higher
estimation accuracy; 2) an upper bound of the estima-
tion error covariance in the polynomial scheme is calcu-
lated and minimized by designing an appropriate filter
gain; 3) adaptive fault detection threshold is developed
for the desired polynomial filter to realize efficient detec-
tion and the fault detectability is analyzed; and 4) the
proposed algorithms for both the filter gain design and the
adaptive threshold computation are recursive and there-
fore suitable for online applications. The rest of paper
is organized as follows. In Section 2, the Carleman ap-
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proximation and the approximation error analysis are
introduced for nonlinear systems. The polynomial filter
design problem is solved in Section 3 and the adaptive
fault detection scheme is established in Section 4. A sim-
ulation example is illustrated in Section 5 and the paper
is concluded in Section 6.

Notations. The notation used in the paper is standard.
Rn and Rn×m denote, respectively, the n-dimensional
Euclidean space and the set of all n ×m real matrices.
The superscripts AT and A−1 denote the transpose and
inverse of matrix A, respectively. The notation X ≥ Y
(respectively, X > Y ), where X and Y are symmet-
ric matrices, means that X − Y is positive semidefinite
(respectively, positive definite). I is the identity matrix
with compatible dimension. E{x} stands for the expec-
tation of the stochastic variable x. ∥A∥ denotes the spec-
tral norm of matrix A, and ∥x∥ refers to the Euclidean
norm of vector x. ⊗ is the Kronecker product defined as

A⊗B =


a1,1B · · · a1,nB

...
. . .

...

am,1B · · · am,nB

. x[m] represents themth

Kronecker power of vector x, where x[m] = x[m−1] ⊗ x
and x[0] = 1 [6,10].

2 Problem Formulation

Consider the following class of stochastic discrete-time
nonlinear systems:{

xk+1 = g(xk, uk) + vk + fk,

yk = h(xk) + wk,
(1)

where xk ∈ Rn is the system state; yk ∈ Rb is the mea-
surement output; uk ∈ Rl is the control input; fk ∈ Rn is
the additive fault; g : Rn×Rl 7→ Rn and h : Rn 7→ Rb are
µ+ 1 times continuously differentiable nonlinear maps.
The state noise vk ∈ Rn and the output noise wk ∈ Rb

are uncorrelated zero-mean sequences. The initial state
x0 is random and independent of the noises. It is as-
sumed that

E
{
x
[i]
0

}
= ζ0,i, E

{
v
[i]
k

}
= ξv,k,i, E

{
w

[i]
k

}
= ξw,k,i,

(2)

for all i = 1, 2, . . . , 2µ, where ζ0,i, ξv,k,i, and ξw,k,i are

known vectors.Meanwhile, x
[i]
0 , v

[i]
k , andw

[i]
k are assumed

to be distributed in bounded domains and the following
inequalities hold definitely:∥∥∥x[i]

0

∥∥∥ ≤ s0,i,
∥∥∥v[i]k

∥∥∥ ≤ sv,k,i,
∥∥∥w[i]

k

∥∥∥ ≤ sw,k,i, (3)

where s0,i, sv,k,i and sw,k,i are known scalars for all i =
1, 2, . . . , µ. The fault fk is assumed to be norm-bounded

so that the measurements and the estimated states will
not go infinity in a finite time in the faulty case.

2.1 Polynomial approximation of nonlinear functions

Consider the sequences x
[m]
k+1 and y

[m]
k , the Kronecker

powers of the state and measurement around the state
estimate x̃k for m = 0, 1, . . . , µ. With Taylor polynomi-
als around x̃k, when the nonlinear functions are µ + 1
times continuously differentiable, we have

x
[m]
k+1 =

µ∑
i=0

Gm,i(x̃k, uk, vk, fk)(xk − x̃k)
[i]

+Gm,µ+1(xk, x̃k, uk, vk, fk)(xk − x̃k)
[µ+1],

y
[m]
k =

µ∑
i=0

Hm,i(x̃k, wk)(xk − x̃k)
[i]

+Hm,µ+1(xk, x̃k, wk)(xk − x̃k)
[µ+1],

(4)

where x̃θk = Θkxk+(I−Θk)x̃k, Θk = diag {θ1k, . . . , θnk},
θik ∈ [0, 1] for all i = 1, 2, . . . , n, and

Gm,i(x̃k, uk, vk, fk)

=
1

i!

(
∇[i]

x ⊗ (g + v + f)[m]
)∣∣∣∣

(x=x̃k,u=uk,v=vk,f=fk)

,

(5)

Hm,i(x̃k, wk)

=
1

i!

(
∇[i]

x ⊗ (h+ w)[m]
)∣∣∣∣

(x=x̃k,w=wk)

, (6)

where the operation ∇[i]
x ⊗ applied to a function χ(x) is

defined as:

∇[0]
x ⊗ χ = χ, (7)

∇[i+1]
x ⊗ χ = ∇x ⊗ (∇[i]

x ⊗ χ), i > 0, (8)

with ∇x = [∂/∂x1, . . . , ∂/∂xn].

In order to obtain a least squares filter and determine
the adaptive threshold for fault detection, now we con-
sider system (1) with fk = 0. Firstly we focus on the
expression of the remainder terms. Denote

∇[µ]
x ⊗ (g + v)[m] = [ε1,µ,m(x, u, v), . . . , εnm,µ,m(x, u, v)]T ,

(9)

where εi,µ,m(x, u, v) : Rn × Rl × Rn 7→ Rnµ

for all i =
1, . . . , nm. It can be easily verified that

Gm,µ+1(xk, x̃k, uk, vk, 0)(xk − x̃k)
[µ+1]

=G(xk, x̃k, uk, vk)(xk − x̃k)
[µ], (10)
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where

G(xk, x̃k, uk, vk) =
1

(µ+ 1)!

×


(xk − x̃k)

T (∇T
x ⊗ εT1,µ,m(x̃θk , uk, vk))

...

(xk − x̃k)
T (∇T

x ⊗ εTnm,µ,m(x̃θk , uk, vk))

 . (11)

We assume that xk is bounded in an ellipsoid of center
x̃k and shape matrix Ek, i.e. xk = x̃k + Ekzk, for some
zk ∈ Rn and ∥zk∥ ≤ 1. Since the nonlinear functions
∇T

x ⊗ εTi,µ,m(x̃θk , uk, vk) are assumed to be continuous,
their norm reaches an extremum on the bounded ellip-
soid domain, thus there exist constants m̄1,k, . . . , m̄nm,k,
such that for i = 1, 2, . . . , nm,∥∥∇T

x ⊗ εTi,µ,m(x̃θk , uk, vk)
∥∥ ≤ m̄i,k. (12)

With xk = x̃k + Ekzk and ∥zk∥ ≤ 1, it follows directly
that∥∥(xk − x̃k)

T (∇T
x ⊗ εTi,µ,m(x̃θk , uk, vk))

∥∥ ≤ m̄i,k∥Ek∥,
(13)

therefore there exist vectors ςi,k ∈ Rnµ

such that ∥ςi,k∥ ≤
1 and

(xk − x̃k)
T (∇T

x ⊗ εTi,µ,m(x̃θk , uk, vk)) = m̄i,k∥Ek∥ςTi,k.
(14)

Denoting Ξk = [ς1,k, . . . , ςnm,k]
T , we have

G(x̃θk , uk, vk) =
1

(µ+ 1)!
∥Ek∥diag{m̄1,k, . . . , m̄nm,k}Ξk.

(15)

From the definition of Ξk and ∥ςi,k∥ ≤ 1, it is obvious

that ∥Ξk∥ ≤
√
nm. Therefore, denote

Lg,m,k =

√
nm

(µ+ 1)!
∥Ek∥diag{m̄1,k, . . . , m̄nm,k}, (16)

then G(xk, x̃k, uk, vk) can be written as

G(xk, x̃k, uk, vk) = Lg,m,k∆g,m,k, (17)

where Lg,m,k and ∆g,m,k are problem-dependent matri-
ces with ∥∆g,m,k∥ ≤ 1. Similarly, we can have that

Hm,µ+1(xk, x̃k, wk)(xk − x̃k)
[µ+1]

=Lh,m,k∆h,m,k(xk − x̃k)
[µ], (18)

where Lh,m,k and ∆h,m,k are problem-dependent matri-
ces with ∥∆h,m,k∥ ≤ 1 as well.

Remark 1 The way of processing the high-order ap-
proximation errors is along the similar line of coping
with the linearization errors in [8, 20, 39] where linear
terms with norm-bounded matrix coefficients have been
utilized to formulate the linearization errors. Different
from [8,20,39], in this paper, polynomial terms of orders
higher than µ, namely, the approximation errors, are for-
mulated as terms of lower orders with norm-bounded ma-
trix coefficients. The unknown bounded matrices ∆g,m,k

and ∆h,m,k are functions of both xk and x̃k, and they are
not expressed as ∆g,m,k(xk, x̃k) and ∆h,m,k(xk, x̃k) only
for simplicity. Notice that the approximation errors have
been ignored in previous PEKF studies, which may lead
to unsatisfactory estimation performance especially when
the encountered nonlinearities are severe. Obviously, the
approximation errors have a great influence on the esti-
mation accuracy, and the novel error formulation (18)
helps to achieve a better approximation and estimation
performance in the sequel, which will be demonstrated in
the simulation.

2.2 The polynomial nonlinear systems

Before proceeding further, the following lemma is intro-
duced.

Lemma 1 [9] For any integer h ≥ 0 and for any a, b ∈
Rn, we have

(a+ b)[h] =
h∑

k=0

Mk
h (a

[k] ⊗ b[h−k]), (19)

with a set of suitably defined matricesMk
h ∈ Rnh×nh

(k =
0, 1, . . . , h).

With Lemma 1, (17), (18) and the fact that

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (20)

(4) in the fault-free case can be written as follows:

x
[m]
k+1 =

µ∑
j=0

Am,j,kx
[j]
k + Lg,m,k∆g,m,k

µ∑
j=0

Υj,kx
[j]
k

+vm,k,

y
[m]
k =

µ∑
j=0

Cm,j,kx
[j]
k + Lh,m,k∆h,m,k

µ∑
j=0

Υj,kx
[j]
k

+wm,k,

(21)

where

Am,j,k =

µ∑
i=j

m∑
p=0

1

i!
Mp

m

((
∇[i]

x ⊗ g[p]
)
⊗ ξv,k,m−p

)
×M j

i

(
Inj ⊗ (−x̃k)

[i−j]
)
, (22)
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Cm,j,k =

µ∑
i=j

m∑
p=0

1

i!
Mp

m

((
∇[i]

x ⊗ h[p]
)
⊗ ξw,k,m−p

)
×M j

i

(
Inj ⊗ (−x̃k)

[i−j]
)
, (23)

vm,k =

µ∑
i=0

m∑
p=0

1

i!
Mp

m

(((
∇[i]

x ⊗ g[p]
)
(xk − x̃k)

[i]
)

⊗
(
v
[m−p]
k − ξv,k,m−p

))
, (24)

wm,k =

µ∑
i=0

m∑
p=0

1

i!
Mp

m

(((
∇[i]

x ⊗ h[p]
)
(xk − x̃k)

[i]
)

⊗
(
w

[m−p]
k − ξw,k,m−p

))
, (25)

Υj,k =M j
µ

(
Inj ⊗ (−x̃k)

[µ−j]
)
. (26)

Denote the following augmented state andmeasurement:

x
(µ)
k =



1

xk

x
[2]
k

...

x
[µ]
k


, y

(µ)
k =



1

yk

y
[2]
k

...

y
[µ]
k


, (27)

then (21) can be written as:{
x
(µ)
k+1 = Akx

(µ)
k + Lg,k∆g,kΥkx

(µ)
k + v

(µ)
k ,

y
(µ)
k = Ckx

(µ)
k + Lh,k∆h,kΥkx

(µ)
k + w

(µ)
k ,

(28)

where

Ak =


A0,0,k . . . A0,µ,k

A1,0,k . . . A1,µ,k

...
. . .

...

Aµ,0,k . . . Aµ,µ,k

 ,

Ck =


C0,0,k . . . C0,µ,k

C1,0,k . . . C1,µ,k

...
. . .

...

Cµ,0,k . . . Cµ,µ,k

 ,

v
(µ)
k = (vT0,k, . . . , v

T
µ,k)

T , w
(µ)
k = (wT

0,k, . . . , w
T
µ,k)

T ,

Υk = [Υ0,k, . . . ,Υµ,k], Lg,k = diag{Lg,0,k, . . . , Lg,µ,k},
Lh,k = diag{Lh,0,k, . . . , Lh,µ,k},
∆g,k = diag{∆g,0,k, . . . ,∆g,µ,k},
∆h,k = diag{∆h,0,k, . . . ,∆h,µ,k}, (29)

and it is straightforward to see that ∥∆g,k∥ ≤ 1 and
∥∆h,k∥ ≤ 1. It is noted that when g(xk, uk) (respec-

tively, h(xk)) is linear, the parameter Lg,k (respectively,

Lh,k) is zero. From the facts that E
{
v
[i]
k

}
= ξv,k,i and

E
{
w

[i]
k

}
= ξw,k,i, it follows that v

(µ)
k and w

(µ)
k are both

zero-mean. However, it is quite difficult to calculate

E
{
v
(µ)
k (v

(µ)
k )T

}
and E

{
w

(µ)
k (w

(µ)
k )T

}
due to that v

(µ)
k

and w
(µ)
k involve the system state, the state estimate,

and the nonlinear dynamics.

2.3 The filter and the fault detection problems

For system (28), the filter to be designed is of the fol-
lowing form:

x̃
(µ)
k+1 = Akx̃

(µ)
k +Kk

(
y
(µ)
k − Ckx̃

(µ)
k

)
, (30)

where x̃
(µ)
k is the estimate of x

(µ)
k at time step k with

x̃
(µ)
0 = E

{
x
(µ)
0

}
. Kk is the filter gain to be determined.

We are now in a position to state the addressed poly-
nomial filter and fault detection problems as follows. 1)
We are interested in designing the filter gain Kk in (30)
for the system (28) such that the resulting estimation
error covariance is bounded and such a bound is subse-
quently minimized. 2) Based on the proposed filter de-
sign scheme, the associated fault detection problem is
to generate a residual signal whose threshold is adap-
tively computed by reflecting the approximation errors
and external disturbances.

Remark 2 Based on the degrees of the nonlinearities
and the engineering requirement, the integer µ could be
chosen in advance. A bigger µ would lead to higher ap-
proximation accuracy at the cost of heavier computation
burden. In this sense, the determination of µ should be
made according to the trade-off between the estimation
accuracy and the computation expense. Therefore, the
polynomial filter to be developed is applicable in many
nonlinear cases since the order could be selected adap-
tively. When µ = 1 and the approximation errors are not
considered, the filter to be designed reduces to the con-
ventional EKF.

Remark 3 Though the polynomial approximation er-
rors could be represented in a mathematical way, they
remain indeterminate to the designers because of the un-
known matrix coefficients. As a result, the accurate esti-
mation error covariance could not be obtained. A natural
alternative is to find an upper bound of the estimation
error covariance and then minimize it by a properly de-
signed filter gainKk. This way, the feasibility of the algo-
rithm is enhanced and the robustness with respect to the
approximation errors is maintained. After the determi-
nation of Kk, an adaptive fault detection strategy would
be established accordingly.
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Remark 4 It is observed from (21)-(28) that, in the pro-
posed filter (30), Ak and Ck are quite complicated since
they are nonlinear functions of the estimated states, ad-
dressed nonlinear dynamics as well as the statistics of

disturbances. Rather than A
(
x̃
(µ)
k

)
and C

(
x̃
(µ)
k

)
, they

are denoted by Ak and Ck for simplicity only. By no
means are they similar to the known system matrices in
the linear case. In the estimation process, these two pa-
rameters have to be updated at each time instant by fairly
complicated computation.

3 Polynomial Filter Design

The following lemmas are essential in establishing the
main results.

Lemma 2 [37] Given matrices A, H, E and F with
appropriate dimensions such that FFT ≤ I. Let X be a
symmetric positive definite matrix and γ be an arbitrary
positive constant such that γ−1I > EXET . Then the
following inequality holds

(A+HFE)X (A+HFE)
T ≤A

(
X−1 − γETE

)−1
AT

+ γ−1HHT . (31)

Lemma 3 [20] For any two vectors x, y ∈ Rn, the fol-
lowing inequality holds

xyT + yxT ≤ εxxT + ε−1yyT , (32)

where ε > 0 is a scalar.

Denote the estimation error as

ek = x
(µ)
k − x̃

(µ)
k , (33)

and the estimation error covariance conditional on the
observations yj(j = 0, . . . , k) as

Pk+1 = E
{
ek+1e

T
k+1|y0, . . . , yk

}
. (34)

For presentation convenience, x̃
(µ)
k , ek and Pk are parti-

tioned as follows:

x̃
(µ)
k =


x̃
(µ)
0,k

x̃
(µ)
1,k

...

x̃
(µ)
µ,k

 , ek =


e0,k

e1,k
...

eµ,k

 ,

Pk =


P0,0,k P0,1,k · · · P0,µ,k

P1,0,k P1,1,k · · · P1,µ,k

...
...

. . .
...

Pµ,0,k Pµ,1,k · · · Pµ,µ,k

 , (35)

where ei,k, x̃
(µ)
i,k ∈ Rni

and Pi,j,k ∈ Rni×nj

for any i, j =

0, 1, . . . , µ. It can be seen that Pi,j,0 = st−1
ni,nj (ζ0,i+j) −

ζ0,iζ
T
0,j , where st−1

a,b is the inverse of the stack operator

defined as: for a vector ρ = [ρ1, . . . , ρa×b], st
−1
a,b(ρ) =

[ϱij ]a×b, where ϱij = ρ(j−1)a+i.

The first goal of this paper is to design a filter in the form
of (30) for system (28) such that an upper bound of the
covariance of the filtering error Pk can be provided and
minimized. For this purpose, let us now deal with the
covariance of the filtering error in the following lemma.

Lemma 4 Denoting

Ǎk =(Ak −KkCk) +
√
2 [Lg,k,−KkLh,k]

×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υk, (36)

Ψv
k =E

{
v
(µ)
k (v

(µ)
k )T

}
, (37)

Ψw
k =E

{
w

(µ)
k (w

(µ)
k )T

}
, (38)

the covariance of the filtering error in (34) obeys the
following recursion:

Pk+1 =E
{
ǍkPkǍ

T
k

}
+ 2 [Lg,k,−KkLh,k]

× E
{[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υkx̃

(µ)
k

(
x̃
(µ)
k

)T
ΥT

k

×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]}
[Lg,k,−KkLh,k]

T

+
√
2E
{
Ǎkek

(
x̃
(µ)
k

)T
ΥT

k

[
1√
2
∆T

g,k,
1√
2
∆T

h,k

]}
× [Lg,k,−KkLh,k]

T
+
√
2 [Lg,k,−KkLh,k]

× E

{[
1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υkx̃

(µ)
k eTk Ǎ

T
k

}
+KkΨ

w
k K

T
k +Ψv

k. (39)

Proof: Substituting (28) and (30) into (33) yields

ek+1 =

(
(Ak −KkCk) +

√
2 [Lg,k,−KkLh,k]

×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υk

)
ek + v

(µ)
k −Kkw

(µ)
k

6



+
√
2 [Lg,k,−KkLh,k]

[
1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υkx̃

(µ)
k .

(40)

Noticing that v
(µ)
k and w

(µ)
k are zero-mean disturbances

and independent of ek, (39) can be obtained directly
with the definition of Ǎk. The proof now is complete.

As discussed before, the accurate estimation error covari-
ance in Lemma 4 could not be obtained due to the un-
known matrix coefficients. To solve the estimation prob-
lem, an upper bound of the estimation error covariance
will be derived in the next theorem, and the filter gain
will then be designed to minimize the bound at each time
step.

Theorem 1 Let γ1,k, γ2,k, γ3,k, ε be positive scalars.
With initial condition P̄0 = P0, assume that the follow-
ing discrete Riccati-like equation

P̄k+1 =(1 + ε)Ak

(
P̄−1
k − γ1,kΥ

T
kΥk

)−1
AT

k + 2
(
γ−1
1,k

× (1 + ε) + γ−1
2,k(1 + ε−1)

)
Lg,kL

T
g,k + Ψ̄v

k

− ZT
k Y

−1
k Zk (41)

has positive definite solutions such that the following con-
straints

γ−1
1,kI −ΥkP̄kΥ

T
k > 0, (42)

γ−1
2,kI −Υkx̃

(µ)
k (x̃

(µ)
k )TΥT

k > 0, (43)

γ−1
3,kI −ΥkX̄kΥ

T
k > 0, (44)

are satisfied, where

Yk =(1 + ε)Ck

(
P̄−1
k − γ1,kΥ

T
kΥk

)−1
CT

k + 2
(
γ−1
1,k

× (1 + ε) + γ−1
2,k(1 + ε−1)

)
Lh,kL

T
h,k + Ψ̄w

k ,

(45)

Zk =(1 + ε)Ck

(
P̄−1
k − γ1,kΥ

T
kΥk

)−1
AT

k , (46)

Ψ̄v
a,b,k =

µ∑
i=0

µ∑
j=0

a∑
p=0

b∑
q=0

1

i!j!
Mp

a

(((
∇[i]

x ⊗ g[p]
)
Ω̄i,j,k

×
(
∇[j]

x ⊗ g[q]
)T )

⊗
(
st−1

na−p,nb−q (ξv,k,a−p+b−q)

− ξv,k,a−pξ
T
v,k,b−q

))
(Mq

b )
T , (47)

Ψ̄w
a,b,k =

µ∑
i=0

µ∑
j=0

a∑
p=0

b∑
q=0

1

i!j!
Mp

a

(((
∇[i]

x ⊗ h[p]
)
Ω̄i,j,k

×
(
∇[j]

x ⊗ h[q]
)T )

⊗
(
st−1

na−p,nb−q (ξw,k,a−p+b−q)

− ξw,k,a−pξ
T
w,k,b−q

))
(Mq

b )
T , (48)

Ω̄i,j,k =
i∑

p=0

j∑
q=0

Mp
i

((
Inp ⊗ (−x̃k)

[i−p]
)
X̄p,q,k

(
Inq ⊗ (−x̃k)

[j−q]
)T )

(Mq
j )

T , (49)

X̄k+1 =Ak

(
X̄−1

k − γ3,kΥ
T
kΥk

)−1
AT

k + γ−1
3,kLg,kL

T
g,k

+ Ψ̄v
k, (50)

X̄0 =E
{
x
(µ)
0

(
x
(µ)
0

)T}
.

Similar to Pk, matrices X̄k, P̄k, Ψ̄
v
k and Ψ̄w

k are parti-
tioned as follows:

X̄k =


X̄0,0,k X̄0,1,k · · · X̄0,µ,k

X̄1,0,k X̄1,1,k · · · X̄1,µ,k

...
...

. . .
...

X̄µ,0,k X̄µ,1,k · · · X̄µ,µ,k

 ,

P̄k =


P̄0,0,k P̄0,1,k · · · P̄0,µ,k

P̄1,0,k P̄1,1,k · · · P̄1,µ,k

...
...

. . .
...

P̄µ,0,k P̄µ,1,k · · · P̄µ,µ,k

 ,

Ψ̄v
k =


Ψ̄v

0,0,k Ψ̄v
0,1,k · · · Ψ̄v

0,µ,k

Ψ̄v
1,0,k Ψ̄v

1,1,k · · · Ψ̄v
1,µ,k

...
...

. . .
...

Ψ̄v
µ,0,k Ψ̄v

µ,1,k · · · Ψ̄v
µ,µ,k

 ,

Ψ̄w
k =


Ψ̄w

0,0,k Ψ̄w
0,1,k · · · Ψ̄w

0,µ,k

Ψ̄w
1,0,k Ψ̄w

1,1,k · · · Ψ̄w
1,µ,k

...
...

. . .
...

Ψ̄w
µ,0,k Ψ̄w

µ,1,k · · · Ψ̄w
µ,µ,k

 , (51)

where X̄i,j,k, P̄i,j,k, Ψ̄
v
i,j,k ∈ Rni×nj

, Ψ̄w
i,j,k ∈ Rmi×mj

for
any i, j = 0, 1, . . . , µ. Then, with the filter gain given by

Kk = ZT
k Y

−1
k , (52)

the matrix P̄k is an upper bound of Pk in the fault-free
case. Moreover, the filter gain given by (52) minimizes
the upper bound at each time step.

Proof: For notational simplicity, we denote

Ψv
i,j,k = E

{
vi,kv

T
j,k

}
, Ψw

i,j,k = E
{
wi,kw

T
j,k

}
,
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Xk = E
{
x
(µ)
k

(
x
(µ)
k

)T}
,

Ωi,j,k = E
{
(xk − x̃k)

[i]
(
(xk − x̃k)

[j]
)T}

. (53)

Ψv
k and Ψw

k have been defined in Lemma 4.

Before proving that P̄k is an upper bound of Pk, we are
going to show that Xk ≤ X̄k, Ψ

v
k ≤ Ψ̄v

k, and Ψw
k ≤

Ψ̄w
k . These results could be obtained by induction. With

X̄0 = E
{
x
(µ)
0

(
x
(µ)
0

)T}
, we assume that i = 1, 2, . . . , k,

Xi ≤ X̄i. Now it remains to show that Ψv
k ≤ Ψ̄v

k, Ψ
w
k ≤

Ψ̄w
k , and Xk+1 ≤ X̄k+1.

Noting the fact that vk is independent of xk, it follows
from Lemma 1, (20) and (24) that

Ψv
a,b,k =

µ∑
i=0

µ∑
j=0

a∑
p=0

b∑
q=0

1

i!j!
Mp

a

(((
∇[i]

x ⊗ g[p]
)
Ωi,j,k

×
(
∇[j]

x ⊗ g[q]
)T )

⊗ E
{(

v[a−p] − ξv,k,a−p

)
×
(
v[b−q] − ξv,k,b−q

)T })
(Mq

b )
T , (54)

and

Ωi,j,k =

i∑
p=0

j∑
q=0

Mp
i

((
Inp ⊗ (−x̃k)

[i−p]
)
E
{
x
[p]
k

×
(
x
[q]
k

)T }(
Inq ⊗ (−x̃k)

[j−q]
)T )

(Mq
j )

T .

(55)

In fact, vm,k can be written as:

vm,k =

µ∑
i=0

m∑
p=0

1

i!
Mp

m

((
∇[i]

x ⊗ g[p]
)

⊗
(
v
[m−p]
k − ξv,k,m−p

))
(xk − x̃k)

[i]
. (56)

Recalling Lemma 1 and the definition of x
(µ)
k , one has

vm,k = Xm(x̃k, uk, vk)x
(µ)
k , (57)

where Xm(·, ·, ·) is a proper nonlinear mapping. Then,

v
(µ)
k can be expressed as

v
(µ)
k = X(x̃k, uk, vk)x

(µ)
k , (58)

where

X(x̃k, uk, vk) =
[
XT

0 (x̃k, uk, vk), . . . ,X
T
µ (x̃k, uk, vk)

]T
.

(59)

Now, it follows from the assumption Xk ≤ X̄k and the
independence between vk and xk that

Ψv
k = E

{
X(x̃k, uk, vk)E

{
x
(µ)
k

(
x
(µ)
k

)T}
XT (x̃k, uk, vk)

}
≤ E

{
X(x̃k, uk, vk)X̄kX

T (x̃k, uk, vk)
}
. (60)

The above inequality shows that, by replacing the term

E
{
x
[p]
k

(
x
[q]
k

)T}
with X̄p,q,k in (55), we would get an

upper bound of Ψv
k. Therefore, from (47) and (49), it

follows directly that Ψv
k ≤ Ψ̄v

k. Similarly, we can get
Ψw

k ≤ Ψ̄w
k .

It remains to show that Xk+1 ≤ X̄k+1. With (28), we
have

Xk+1 =E
{
(Ak + Lg,k∆g,kΥk)Xk (Ak + Lg,k∆g,kΥk)

T
}

+Ψv
k. (61)

Since it has been proved that Ψv
k ≤ Ψ̄v

k, we have

Xk+1 ≤E
{
(Ak + Lg,k∆g,kΥk)Xk (Ak + Lg,k∆g,kΥk)

T
}

+ Ψ̄v
k. (62)

With the assumption that Xk ≤ X̄k and the condition
(44), it follows from Lemma 2 that

Xk+1 ≤ Ak

(
X̄−1

k − γ3,kΥ
T
kΥk

)−1
AT

k + γ−1
3,kLg,kL

T
g,k

+ Ψ̄v
k = X̄k+1. (63)

So far, we have proved that Xk ≤ X̄k, Ψ
v
k ≤ Ψ̄v

k, and
Ψw

k ≤ Ψ̄w
k , and we are going to deal with Pk next. The

corresponding results can also be obtained by induction.
It is already known that P̄0 = P0. Then, assuming that,
for i = 1, 2, . . . , k, Pi ≤ P̄i and it remains to prove that
Pk+1 ≤ P̄k+1.

With Lemma 3, we can have the following inequality:

√
2Ǎkek

(
x̃
(µ)
k

)T
ΥT

k

[
1√
2
∆T

g,k,
1√
2
∆T

h,k

]
× [Lg,k,−KkLh,k]

T
+

√
2 [Lg,k,−KkLh,k]

×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υkx̃

(µ)
k eTk Ǎ

T
k

≤εǍkeke
T
k Ǎ

T
k + 2ε−1 [Lg,k,−KkLh,k]
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×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υkx̃

(µ)
k

(
x̃
(µ)
k

)T
ΥT

k

×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]
[Lg,k,−KkLh,k]

T
. (64)

Substituting (64) into (39) yields

Pk+1 ≤(1 + ε)E
{
ǍkPkǍ

T
k

}
+ 2(1 + ε−1) [Lg,k,−KkLh,k]

× E

{[
1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υkx̃

(µ)
k

(
x̃
(µ)
k

)T
ΥT

k

×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]}
[Lg,k,−KkLh,k]

T

+KkΨ
w
k K

T
k +Ψv

k. (65)

From the upper bounds of the covariances of v
(µ)
k and

w
(µ)
k and the assumption that Pk ≤ P̄k, we have

Pk+1 ≤(1 + ε)E
{
ǍkP̄kǍ

T
k

}
+ 2(1 + ε−1) [Lg,k,−KkLh,k]

× E

{[
1√
2
∆T

g,k,
1√
2
∆T

h,k

]T
Υkx̃

(µ)
k

(
x̃
(µ)
k

)T
ΥT

k

×
[

1√
2
∆T

g,k,
1√
2
∆T

h,k

]}
[Lg,k,−KkLh,k]

T

+KkΨ̄
w
k K

T
k + Ψ̄v

k. (66)

Noticing that
∥∥∥[ 1√

2
∆T

f,k,
1√
2
∆T

h,k

]∥∥∥ ≤ 1, it follows from

(42), (43) and Lemma 2 that

Pk+1 ≤(1 + ε)
(
(Ak −KkCk)

(
P̄−1
k − γ1,kΥ

T
kΥk

)−1

× (Ak −KkCk)
T + 2γ−1

1,k

(
Lg,kL

T
g,k +KkLh,k

× LT
h,kK

T
k

))
+ 2γ−1

2,k(1 + ε−1)
(
Lg,kL

T
g,k

+KkLh,kL
T
h,kK

T
k

)
+ Ψ̄v

k +KkΨ̄
w
k K

T
k . (67)

Furthermore, it can be seen from (45) and (46) that

Pk+1 ≤KkYkK
T
k −KkZk − ZT

k K
T
k + (1 + ε)Ak

(
P̄−1
k

− γ1,kΥ
T
kΥk

)−1
AT

k + 2
(
γ−1
1,k(1 + ε) + γ−1

2,k(1

+ ε−1)
)
Lg,kL

T
g,k + Ψ̄v

k. (68)

Considering Yk = Y T
k > 0 and completing the square

with respect to Kk, we have

Pk+1 ≤
(
Kk − ZT

k Y
−1
k

)
Yk

(
Kk − ZT

k Y
−1
k

)T − ZT
k Y

−1
k Zk

+ 2
(
γ−1
1,k(1 + ε) + γ−1

2,k(1 + ε−1)
)
Lg,kL

T
g,k

+ (1 + ε)Ak

(
P̄−1
k − γ1,kΥ

T
kΥk

)−1
AT

k + Ψ̄v
k.
(69)

It is now obvious that, when Kk = ZT
k Y

−1
k , the upper

bound of Pk+1 is minimized and

Pk+1 ≤− ZT
k Y

−1
k Zk + (1 + ε)Ak

(
P̄−1
k − γ1,kΥ

T
kΥk

)−1

×AT
k + 2

(
γ−1
1,k(1 + ε) + γ−1

2,k(1 + ε−1)
)
Lg,kL

T
g,k

+ Ψ̄v
k = P̄k+1, (70)

which concludes the proof.

Remark 5 The filter gain Kk is calculated at each time
instant to minimize an upper bound of the filtering er-
ror covariance. The system (28) under consideration in-
cludes the polynomial approximation errors, thereby bet-
ter reflecting the reality. Specific efforts have been made
to handle the approximation errors. Though the unknown
matrices ∆g,k and ∆h,k can not be introduced to design
the filter, the matrices Lg,k and Lh,k reflect the effects of
the approximation errors on the filter design in a quan-

titative way. The value of the state estimate x̃
(µ)
k can be

directly used to design Kk since x̃
(µ)
k is already obtained

at time step k. Due to the consideration of the polynomial
approximation errors, the accurate covariances Ψv

k and
Ψw

k cannot be obtained as done in [14, 15]. Instead, the
upper bounds of the covariances have been calculated and
employed to design the suboptimal filter. It is worth men-

tioning that, Φ̄w
k , an upper bound of E

{
w

(µ)
k (w

(µ)
k )T

}
,

could guarantee the invertibility of Yk in (52). The param-
eter ε can be determined to balance the intrinsic charac-
teristic of the proposed polynomial filter and the impact
brought from the state estimates in the upper bound of the
filtering error covariance. The proposed algorithm can be
applied to nonlinear time-varying systems that are µ+1
times continuously differentiable. Furthermore, the gain
Kk can be designed recursively by a Riccati-like equation,
which is applicable for online computations.

Theorem 1 provides a recursive way to obtain the filter
gain Kk. The algorithm is summarized in Algorithm 1
to show the calculation of Kk at each time step with a
given order µ.

4 Fault Detection

To efficiently detect the fault in the system (1), we need
to define a residual signal based on the proposed polyno-
mial filter and then evaluate it properly. Here, we utilize
the following signal as the residual:

rk = y
(µ)
k − Ckx̃

(µ)
k . (71)

In the next theorem, a time-varying fault detection
threshold will be calculated for the residual defined
in (71). The state estimate, approximation error and
bounds of the noises are all taken into consideration.
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Algorithm 1: the calculation of Kk

Step 1. Select the initial values P̄0 and x̃
(µ)
0 based on

the distribution of x0.

Step 2. Determine Ek and m̄i,k(i = 1, . . . , nµ) accord-
ing to the system dynamics, the disturbances,
and the initial estimation error, and compute
the Carleman approximation matrices Ak, Ck,
Lg,k, Lh,k, and Υk based on (16)-(18) and (21)-
(29).

Step 3. Determine γ1,k, γ2,k, and γ3,k with (42)-(44).

Step 4. Compute Ω̄k, Φ̄w
k , and Φ̄v

k according to (47)-
(51).

Step 5. Choose a positive scalar ε, and calculate Yk and
Zk based on (45) and (46).

Step 6. Obtain the desired filter gain Kk with (52).

Step 7. Update the estimate x̃
(µ)
k+1 by (30).

Step 8. Calculate P̄k+1 and X̄k+1 using (41) and (50).

Step 9. Set k = k + 1 and go to Step 2.

Theorem 2 For system (1), let us consider the filter
(30) designed in Theorem 1. Then, the residual in (71)
satisfies the following inequality in the fault free case:

∥rk∥ ≤ (∥Ck∥+ ∥Lh,k∥ ∥Υk∥) δe,k + ∥Lh,k∥
∥∥∥Υkx̃

(µ)
k

∥∥∥
+ δw,k := δr,k, (72)

where

δe,k+1 =
(
∥Ak −KkCk∥+

√
2 ∥[Lg,k,−KkLh,k]∥ ∥Υk∥

)
× δe,k +

√
2 ∥[Lg,k,−KkLh,k]∥

∥∥∥Υkx̃
(µ)
k

∥∥∥
+ ∥Kk∥ δw,k + δv,k, (73)

δv,m,k =

µ∑
i=0

m∑
p=0

1

i!
∥Mp

m∥
∥∥∥∇[i]

x ⊗ g[p]
∥∥∥ ρ̄i,k(sv,k,m−p

+ ∥ξv,k,m−p∥
)
, (74)

δw,m,k =

µ∑
i=0

m∑
p=0

1

i!
∥Mp

m∥
∥∥∥∇[i]

x ⊗ h[p]
∥∥∥ ρ̄i,k(sw,k,m−p

+ ∥ξw,k,m−p∥
)
, (75)

ρ̄i,k =
i∑

q=0

∥∥∥Mq
i

(
Inq ⊗ (−x̃k)

[i−q]
)∥∥∥(∥∥∥x̃(µ)

q,k

∥∥∥+ δe,k

)
,

(76)

δv,k =

√√√√ µ∑
m=0

(δv,m,k)2, (77)

δw,k =

√√√√ µ∑
m=0

(δw,m,k)2, (78)

and the initial values of δe,k are given by

δe,i,0 = s0,i + ∥ζ0,i∥ , δe,0 =

√√√√ µ∑
i=0

δ2e,i,0. (79)

Then δr,k is the threshold that we can utilize to detect the
fault.

Proof: Substituting (28) and (30) into (71), we have

rk = Ckek + Lh,k∆h,kΥk(ek + x̃
(µ)
k ) + w

(µ)
k . (80)

With ∥∆h,k∥ ≤ 1 and triangle inequality, we can get

∥rk∥ ≤ (∥Ck∥+ ∥Lh,k∥∥Υk∥) ∥ek∥+ ∥Lh,k∥∥Υkx̃
(µ)
k ∥

+ ∥w(µ)
k ∥. (81)

If we can prove that ∥ek∥ ≤ δe,k and ∥w(µ)
k ∥ ≤ δw,k, then

(72) follows directly from (81).

It follows from (25) that,

∥w(µ)
m,k∥ ≤

µ∑
i=0

m∑
p=0

1

i!
∥Mp

m∥
∥∥∥∇[i]

x ⊗ h[p]
∥∥∥∥∥∥(xk − x̃k)

[i]
∥∥∥

×
∥∥∥w[m−p]

k − ξw,k,m−p

∥∥∥ , (82)

and the upper bound of
∥∥∥(xk − x̃k)

[i]
∥∥∥ can be determined

as follows:

∥∥∥(xk − x̃k)
[i]
∥∥∥ =

∥∥∥∥∥
i∑

q=0

Mq
i

(
Inq ⊗ (−x̃k)

[i−q]
)
x
[q]
k

∥∥∥∥∥
≤

i∑
q=0

∥∥∥Mq
i

(
Inq ⊗ (−x̃k)

[i−q]
)∥∥∥

×
∥∥∥x̃(µ)

q,k + eq,k

∥∥∥ . (83)

Noticing the fact that ∥eq,k∥ ≤ ∥ek∥, we have

∥∥∥(xk − x̃k)
[i]
∥∥∥ ≤

i∑
q=0

∥∥∥Mq
i

(
Inq ⊗ (−x̃k)

[i−q]
)∥∥∥

≤
i∑

q=0

∥∥∥Mq
i

(
Inq ⊗ (−x̃k)

[i−q]
)∥∥∥

×
(
∥ek∥+ ∥x̃(µ)

k ∥
)
. (84)

With (84), we can see that if ∥ek∥ ≤ δe,k, then ∥w(µ)
m,k∥ ≤

δw,m,k and ∥w(µ)
k ∥ ≤ δw,k. Similarly, we have that if

∥ek∥ ≤ δe,k, then ∥v(µ)k ∥ ≤ δv,k. Thus, to obtain (72),
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all we need to verify is that ∥ek∥ ≤ δe,k. This can be
proved by induction. It is obvious that ∥e0∥ ≤ δe,0. As-
suming that ∥ei∥ ≤ δe,i (i = 1, 2, . . . , k), we are going to
demonstrate that ∥ek+1∥ ≤ δe,k+1.

With (40) and
∥∥∥[ 1√

2
∆T

f,k,
1√
2
∆T

h,k

]∥∥∥ ≤ 1, it follows that

∥ek+1∥ ≤
(
∥Ak −KkCk∥+

√
2 ∥[Lg,k,−KkLh,k]∥ ∥Υk∥

)
× ∥ek∥+

√
2 ∥[Lg,k,−KkLh,k]∥

∥∥∥Υkx̃
(µ)
k

∥∥∥
+ ∥v(µ)k ∥+ ∥Kk∥ ∥w(µ)

k ∥. (85)

Based on our assumption that ∥ek∥ ≤ δe,k, we have

∥w(µ)
k ∥ ≤ δw,k and ∥v(µ)k ∥ ≤ δv,k. Then it is straightfor-

ward to see that ∥ek+1∥ ≤ δe,k+1. Now we can draw the
conclusion that ∥ek∥ ≤ δe,k. Substituting ∥ek∥ ≤ δe,k

and ∥w(µ)
k ∥ ≤ δw,k into (81) yields (72). The proof now

is complete.

The algorithm is summarized in Algorithm 2 to show
the determination of the threshold δr,k at each time step
with a given order µ. Based on Theorem 2, a natural

Algorithm 2: the determination of δr,k

Step 1. Determine the initial values δr,0 with (72) and
(79).

Step 2. Calculate the Euclidean norm of the matrices
∥Ak∥, ∥Ck∥, ∥Lg,k∥, ∥Lh,k∥, ∥Υk∥, and ∥Kk∥
based on (21)-(28) and (52).

Step 3. Compute ρ̄i,k with (76).

Step 4. Choose δv,k and δw,k according to (74),(75),
(77) and (78).

Step 5. Obtain δr,k based on (72).

Step 6. Update δe,k+1 based on (73).

Step 7. Set k = k + 1 and go to Step 2.

fault detection strategy follows directly as follows:{
∥rk∥ ≤ δr,k =⇒ no fault

∥rk∥ > δr,k =⇒ fault detected
(86)

With the proposed filter and fault detection threshold,
the fault detectability is analyzed in the sequel.

Theorem 3 For system (1), consider the filter (30) de-
signed in Theorem 1 and the fault detection strategy given
in (86). The fault will be detected at time step k+1 if the
following inequality holds:

αv,f,k >
1

|∥Ck+1∥ − ∥Lf,h,k+1∥∥Υk+1∥|

(
δr,k+1 + δw,k+1

+ ∥Lf,h,k+1∥∥Υk+1x̃
(µ)
k+1∥

)
+ ∥Kk∥ ∥w(µ)

k ∥

+
(
∥Ak −KkCk∥+

√
2 ∥[Lf,g,k,−KkLf,h,k]∥

× ∥Υk∥
)
δe,k +

√
2 ∥[Lf,g,k,−KkLf,h,k]∥

×
∥∥∥Υkx̃

(µ)
k

∥∥∥ , (87)

where

αv,f,m,k =(∥fk∥ − sv,k,1)
m − ∥ξv,k,m∥

−
µ∑

i=0

m∑
p=1

1

i!

∥∥∥Mp
m

(
∇[i]

x ⊗ g[p]
)∥∥∥ ρ̄i,k((∥fk∥

+ sv,k,1)
m−p + ∥ξv,k,m−p∥

)
, (88)

αv,f,k =

√√√√ µ∑
m=0

(αv,f,m,k)2, (89)

Lf,g,k and Lf,h,k are the problem-dependent matrices in
the faulty case, which are corresponding to Lg,k and Lh,k

in the fault-free case, respectively.

Proof: In the presence of fk, vm,k can be written as

vm,k =

µ∑
i=0

m∑
p=0

1

i!
Mp

m

(((
∇[i]

x ⊗ g[p]
)
(xk − x̃k)

[i]
)

⊗
(
(vk + fk)

[m−p] − ξv,k,m−p

))
. (90)

Then it follows directly that

∥vm,k∥ ≥(∥fk∥ − sv,k,1)
m − ∥ξv,k,m∥

−
µ∑

i=0

m∑
p=1

1

i!

∥∥∥Mp
m

(
∇[i]

x ⊗ g[p]
)∥∥∥ ρ̄i,k((∥fk∥

+ sv,k,1)
m−p + ∥ξv,k,m−p∥

)
= αv,f,m,k. (91)

Subsequently, we have

∥v(µ)k ∥ ≥αv,f,k. (92)

With (40), we have

∥ek+1∥ ≥∥v(µ)k ∥ −
√
2 ∥[Lf,g,k,−KkLf,h,k]∥

∥∥∥Υkx̃
(µ)
k

∥∥∥
−
(
∥Ak −KkCk∥+

√
2 ∥[Lf,g,k,−KkLf,h,k]∥

× ∥Υk∥
)
∥ek∥ − ∥Kk∥ ∥w(µ)

k ∥. (93)

Substituting (87) into (93) yields

∥ek+1∥ >
1

|∥Ck+1∥ − ∥Lf,h,k+1∥∥Υk+1∥|

(
δr,k+1

+ δw,k+1 + ∥Lf,h,k+1∥∥Υk+1x̃
(µ)
k+1∥

)
. (94)
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Considering (80), we have

∥rk+1∥ ≥ |∥Ck+1∥ − ∥Lf,h,k+1∥∥Υk+1∥| ∥ek+1∥
− ∥Lf,h,k+1∥∥Υk+1x̃

(µ)
k+1∥ − ∥w(µ)

k+1∥. (95)

From (94) and (95), it follows that

∥rk+1∥ ≥ δr,k+1. (96)

Based on the proposed fault detection strategy (86), the
fault can be detected at time step k + 1 and that con-
cludes the proof.

Remark 6 Theorem 2 puts forward a recursive method
to determine the fault detection threshold for system (28).
With the adaptive threshold, abnormal changes in sys-
tems can be detected accordingly. The fault may be some
state-dependent abrupt changes (e.g. actuator or sen-
sor failures in a control system). The approximation er-
rors, additive disturbances, and initial estimation error
have all been considered in the threshold. The spectral
norms of matrices and the upper bounds of Euclidean
norms of vector disturbances have been introduced to cal-
culate the threshold. In this way, the false alarms can
be avoided in the proposed fault detection scheme. More-
over, the threshold is related to the measurement and es-
timated states, and hence needs to be updated online at
each time step, which makes the method adaptive. With
the proposed filter and fault detection strategy, the fault
detectability is analyzed in Theorem 3 as well. The fault
detectability condition established in Theorem 3 takes the
Carleman approximation and the approximation error
into account and therefore looks complicated. Neverthe-
less, such a condition can be easily verified and also pro-
vides inequality constraints on the fault size. The explicit
consideration of the approximation error in the filter and
fault detector designs constitutes the main difference be-
tween our work and those in [14,15], and the derivation of
the threshold and fault detectability analysis for nonlinear
systems with polynomial approximation are new. If the
stability analysis of the proposed filter approach becomes
a concern, some additional assumptions can be made on
the system parameters so as to ensure the boundedness
of the estimation errors [25, 32]. In the next section, a
numerical simulation would be carried out to show the
effectiveness of the presented fault detection strategy.

5 Illustrative Example

Consider the following nonlinear discrete system:
x1,k+1 = 0.85x1,k + 0.5x2,k sin(x1,k) + v1,k + fk,

x2,k+1 = 1.15uk − 0.5x1,k sin(x2,k) + v2,k,

yk = x2,k + wk,

uk = yk.

The state noises andmeasurement noise are independent
and obey the following distributions (for i = 1, 2):

P
(
vi,k = −1× 10−3

)
= 0.6,

P (vi,k = 0) = 0.2,

P
(
vi,k = 3× 10−3

)
= 0.2,

and {
P
(
wk = −7× 10−3

)
= 0.3,

P
(
wk = 3× 10−3

)
= 0.7.

When the order µ = 2, how to construct the polyno-
mial filter is explained step by step as follows. For the
addressed system, we have

g(xk, uk) =

[
0.85x1,k + 0.5x2,k sin(x1,k)

1.15uk − 0.5x1,k sin(x2,k)

]
h(xk) = x2,k,

With the linear measurement, we can easily obtain that
Lh,k = 0 and

Ck =


1 0 0 0 0 0 0

0 0 1 0 0 0 0

E{w[2]
k } 0 0 0 0 0 1

 .

With (22) and (29), Ak can be determined. Based on
(26), we have

Υk =


x̃2
1,k −2x̃1,k 0 1 0 0 0

x̃1,kx̃2,k −x̃2,k −x̃1,k 0 1 0 0

x̃1,kx̃2,k −x̃2,k −x̃1,k 0 0 1 0

x̃2
2,k 0 −2x̃2,k 0 0 0 1

 .

The matrix Ek is set to be 0.075I based on the system
dynamics, the disturbances, and the initial estimation
error, and it can be seen that the assumption on the
estimation error (i.e. xk = x̃k + Ekzk for some zk ∈ Rn

and ∥zk∥ ≤ 1) holds with such a choice of Ek. Based
on Ek and the values of m̄i,k for i = 1, 2, . . . , nµ, the
matrix Lg,k can be chosen as 0.1I. After getting all the
aforementioned parameters, Theorem 1 can be applied
to recursively calculate the desired filter gain.

In the fault-free case, the average estimation error co-
variances with the proposed method and the ones with
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the conventional PEKF algorithm [14,15] are both listed
in Table 1. Monte-Carlo simulations with 50 runs are
carried out in the cases where µ = 1 and µ = 2. From the
table, two conclusions can be drawn: 1) approximating
the system with a polynomial of a higher order implies
a more accurate approximation of the original nonlinear
system and gives better estimation results, no matter
whether the approximation errors are considered or not;
and 2) the proposed filter outperforms classical PEKF,
thanks to the specific efforts we have made to deal with
the high-order approximation errors.

Table 1
Average Trace of the Estimation Error Covariance

µ = 1 µ = 2

Traditional PEKF 6.1763× 10−4 4.9531× 10−4

Proposed Filter 5.5649× 10−4 3.9534× 10−4

To demonstrate the fault detection strategy, we add the
following fault to the system:

fk =

{
0.003, if k > 20,

0, otherwise.

Figs. 1-2 show the actual states and the estimates when
µ = 2. It can be concluded that, the proposed filter
performs well when there is no fault in the system (when
k ≤ 20), and the obvious difference between the actual
state and estimated state in the faulty case (when k >
20) could help us to detect the fault. The Euclidean norm
of residual and the adaptive threshold are illustrated in
Fig. 3. It can be seen that using the adaptive threshold,
the additive fault could be detected immediately after
it occurs. This result presents the effectiveness of our
adaptive fault detection strategy.

Remark 7 The computational complexity of the pro-
posed algorithm is O(n3µ). The numerical experiments
are performed on a 2.83 GHz quad-core desktop computer
with 3.50 GB RAM using 32 bit MATLAB. When µ = 1,
the execution time is 15ms; when µ = 2, the execution
time is 94ms. So it is obvious that the computational
burden of the proposed algorithm increases exponentially
with a bigger degree of polynomials. When µ = 2, the av-
erage Euclidean norm of the residuals obtained with the
proposed filter after the fault occurs is 7.250×10−3 in 50
Monte-Carlo simulations. With traditional PEKF, the
average Euclidean norm of the residuals is 5.280× 10−3.
So the proposed filter are more sensitive to the fault and
can better solve the fault detection problem.

6 Conclusion

The filtering and fault detection problems for a class
of nonlinear systems have been addressed with a poly-
nomial approach in the paper. The nonlinear functions
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have been approximated with polynomials of a chosen
degree, and the approximation errors, which result from
high-order remainder terms of series expansions, have
been written as low-order terms with norm-bounded co-
efficients. An upper bound of the filtering error covari-
ance has been derived in the presence of the approxima-
tion errors. Then the filter has been designed to mini-
mize the bound at each time step in the fault-free case.
The desired filter gain could be obtained with a set of
Riccati-like recursive matrix equations, thus the algo-
rithm is applicable for online computation. A fault detec-
tion strategy with adaptive threshold has been proposed
to efficiently detect the possible fault, taking account of
the noises and the approximation errors. Sufficient con-
ditions have been established to guarantee the fault de-
tectability for the proposed fault detection scheme. A
numerical simulation has been given to illustrate that
the proposed method could achieve accurate state esti-
mation and effective fault detection. It should be noted
that two of the future research topics would be to in-
vestigate the fault diagnosis and fault tolerant control
problems after the fault detection.
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Extended and unscented filtering algorithms using one-step
randomly delayed observations. Applied Mathematics and
Computation, 190(2): 1375–1393, 2007.

[20] J. Hu, Z. Wang, H. Gao, and L. K. Stergioulas. Extended
Kalman filtering with stochastic nonlinearities and multiple
missing measurements. Automatica, 48(9): 2007–2015, 2012.

[21] J. Hu, Z. Wang, B. Shen, and H. Gao. Gain-constrained
recursive filtering with stochastic nonlinearities and
probabilistic sensor delays. IEEE Transactions on Signal
Processing, 61(5): 1230–1238, 2013.

[22] M. R. James, and I. R. Peterson. Nonlinear state estimation
for uncertain systems with an integral constraint. IEEE
Transactions on Signal Processing, 46,(11): 2926–2937, 1998.

[23] H. R. Karimi. Robust H∞ filter design for uncertain linear
systems over network with network-induced delays and
output quantization. Modeling, Identification and Control,
30(1): 27–37, 2009.

[24] A. Q. Khan, and S. X. Ding. Threshold computation
for fault detection in a class of discrete-time nonlinear
systems. International Journal of Adaptive Control and
Signal Processing, 25(5): 407–429, 2011.

14



[25] S. Kluge, K. Reif, and M. Brokate. Stochastic stability of the
extended Kalman filter with intermittent observations. IEEE
Transactions on Automatic Control, 55(2): 514–518, 2010.

[26] K. Kowalski, and W. H. Steeb. Nonlinear Dynamical Systems
and Carleman Linearization. Singapore: World Scientific,
1991.

[27] P. Li, J. Lam, and G. Chesi. On the synthesis of linear H∞
filters for polynomial systems. System and Control Letters,
61(1): 31–36, 2012.

[28] G. Mavelli, and P. Palumbo. The Carleman approximation
approach to solve a stochastic nonlinear control problem.
IEEE Transactions on Automatic Control, 55(4): 976–982,
2010.

[29] J. Meseguer, V. Puig, T. Escobet, and J. Saludes. Observer
gain effect in linear interval observer-based fault detection.
Journal of Process Control, 20(8): 944–956, 2010.

[30] S. Montes de Oca, V. Puig, and J. Blesa. Robust fault
detection based on adaptive threshold generation using
interval LPV observers. International Journal of Adaptive
Control and Signal Processing, 26(3): 258–283, 2012.

[31] V. Puig, J. Quevedo, T. Escobet, F. Nejjari, and S. de las
Heras. Passive robust fault detection of dynamic processes
using interval models. IEEE Transactions on Control Systems
Technology, 16(5): 1083–1089, 2008.

[32] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen. Stochastic
stability of the discrete-time extended Kalman filter. IEEE
Transactions on Automatic Control, 44(4): 714–728, 1999.

[33] B. Shen, Z. Wang, and S. X. Ding. Finite-horizon H∞
fault estimation for linear discrete time-varying systems with
delayed measurements. Automatica, 49(1): 293–296, 2013.

[34] Z. Shi, F. Gu, B. Lennox, and A. D. Ball. The development
of an adaptive threshold for model-based fault detection of
a nonlinear electro-hydraulic system. Control Engineering
Practice, 13(17): 1357–1367, 2005.

[35] Z. Shu, J. Lam, and J. Xiong. Non-fragile exponential
stability assignment of discrete-time linear systems with
missing data in actuators. IEEE Transactions on Automatic
Control, 54(3): 625–630, 2009.

[36] G. Wei, Z. Wang, and H. Shu. Robust filtering with
stochastic nonlinearities and multiple missing measurements.
Automatica, 45(3): 836–841, 2009.

[37] L. Xie, Y. C. Soh, and C. E. de Souza. Robust
Kalman filtering for uncertain discrete-time systems. IEEE
Transactions on Automatic Control, 39(6): 1310–1314, 1994.

[38] K. Xiong, L. Liu, and Y. Liu. Robust extended Kalman
filtering for nonlinear systems with multiplicative noises.
Optimal Control Applications and Methods, 32(1): 47–63,
2011.

[39] K. Xiong, C. Wei, and L. Liu. Robust extended Kalman
filtering for nonlinear systems with stochastic uncertainties.
IEEE Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, 40(2): 399–405, 2010.

[40] X. Zhang. Sensor bias fault detection and isolation in a class
of nonlinear uncertain systems using adaptive estimation.
IEEE Transactions on Automatic Control, 56(5): 1220–1226,
2011.

[41] K. Zhang, B. Jiang, and P. Shi. Fault estimation observer
design for discrete-time Takagi–Sugeno fuzzy systems based
on piecewise Lyapunov functions. IEEE Transactions on
Fuzzy Systems, 20(1): 192–200, 2012.

[42] X. Zhang, M. Polycarpou, and T. Parisini. Robust fault
isolation for a class of non-linear input-output systems.
International Journal of Control, 74(13): 1295–1310, 2001.

[43] M. Zhong, S. X. Ding, J. Lam, and H. Wang. An LMI
approach to design robust fault detection filter for uncertain
LTI systems. Automatica, 39(3): 543–550, 2003.

[44] D. H. Zhou, X. He, Z. Wang, G. -P. Liu, and Y. D. Ji. Leakage
fault diagnosis for an Internet-based three-tank system: An
experimental study. IEEE Transactions on Control Systems
Technology, 20(4): 857–870, 2012.

15


