
On the Structure of the h-Vector of a Paving

Matroid

Criel Merino∗, Steven D. Noble†, Marcelino Ramı́rez-Ibañez‡,
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‡Instituto de Matemáticas, Universidad Nacional Autónoma de México, Area de la
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Abstract

We give two proofs that the h-vector of any paving matroid is a
pure O-sequence, thus answering in the affirmative a conjecture made
by R. Stanley, for this particular class of matroids. We also investigate
the problem of obtaining good lower bounds for the number of bases
of a paving matroid given its rank and number of elements.

1 Introduction

Matroids are important structures in combinatorics, particularly in relation
to combinatorial optimization and graph theory, see [18, 25, 33]. With any
matroid M there is an associated simplicial complex ∆(M) given by the in-
dependent sets ofM . Such simplicial complexes are called matroid complexes
and are known to be shellable, that is, the maximal faces are equicardinal
and can be arranged in a certain order that helps inductive proofs. (We give
a full definition of shellability in the next section). One key combinatorial
invariant associated with a shellable complex is its h-vector which encodes
information such as, for example, its face and Betti numbers. For these rea-
sons shellable complexes have received much attention, see [3, 5, 6, 31, 34].
The concept of shellability is also important in theoretical computer science
as the entries of the h-vector of a graphic matroid M(G) are the coeffi-
cients of the H-form of the reliability polynomial of the underlying graph
G, see [11].

A non-empty set of monomialsM is a multicomplex if whenever m ∈M
and m′|m, then m′ ∈ M. A finite or infinite sequence h=(h0, h1, . . ., hd)
of integers is called an O-sequence if there exists a multicomplex containing
exactly hi monomials of degree i. An O-sequence is pure if there exists a
multicomplex containing hi monomials of degree i such that all the maximal
elements in the multicomplex have the same degree. Properties of pure O-
sequences are mentioned in Section 2.

In 1977, Richard Stanley made the following conjecture linking h-vectors
of matroid complexes and O-sequences [28], (see also [29]).

Conjecture 1.1. The h-vector of a matroid complex is a pure O-sequence.

No progress was made on this conjecture for some considerable time. But
in 1997, work of Norman Biggs [1, 2] together with [22] implicitly proved
Conjecture 1.1 for cographic matroids. For an explicit exposition see [23].
More recently, the conjecture was proved for rank two matroids in [30], for
lattice-path matroids in [26], for cotransversal matroids in [24] and most
recently for rank three matroids in [13].
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A paving matroid is one in which all circuits have size at least r(M).
Interest in paving matroids goes back to 1976 when Dominic Welsh [32] asked
if most matroids are paving. This question was motivated by numerical
results obtained in [7], where a catalogue of all matroids with up to eight
elements was presented. The numerical data was updated in [21] to include
matroids with nine elements, and the results made the problem even more
intriguing. More recently, the authors of [20] conjecture that asymptotically
almost every matroid is paving, that is, the proportion of n-element matroids
which are paving tends to one as n tends to infinity.

In this work we give a proof that paving matroids satisfy Conjecture 1.1.
Should paving matroids genuinely form a significant proportion of all ma-
troids, then our result will be of a different kind from all the previous work
on Conjecture 1.1, as all previous work only considers classes of matroids
whose size is insignificant compared with the total number of matroids.

This article is organized as follows. In Section 2 we give definitions and
basic properties of matroids, h-vectors and O-sequences. In the next section
we prove Stanley’s conjecture for paving matroids. The direct approach to
Stanley’s conjecture is to attempt to get good bounds on the number of
bases of a paving matroid in terms of its number of elements and rank and
on the minimum number of elements in a pure multicomplex of degree r in d
indeterminates which contains every monomial of degree r−1. This was our
original approach to the problem but we were unable to obtain good enough
explicit bounds. However, there appear to be some intriguing open questions
concerning these problems including potential links with various other well-
studied combinatorial objects. A subclass of paving matroids, namely sparse
paving matroids, was introduced by Jerrum in [16] and has recently received
attention in [21]. In Section 5 we obtain a good lower bound for the number
of bases of a sparse paving matroid in terms of the rank r and number n of
elements. We have examples showing that this bound is tight for infinitely
many values of r and n. We then move on to consider bounds on the sizes
of pure multicomplexes of degree r in d indeterminates which contain every
monomial of degree r−1 and conjecture a link with the number of aperiodic
binary necklaces. The last section contains our conclusions.

2 Preliminaries

In this section we introduce some definitions and key properties of shellable
complexes and matroids. We assume some familiarity with matroid theory.
For an excellent exposition of shellability of matroid complexes see [4] and
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for matroids see [25].

2.1 h-vectors

Let ∆ be a simplicial complex on the vertex set V = {x1, . . . , xn}. Thus, ∆
is a collection of subsets of V such that for all i, {xi} ∈ ∆, and if F ∈ ∆ and
F ′ ⊆ F , then F ′ ∈ ∆. The subsets in ∆ are called faces and the dimension
of a face with i + 1 elements is i. The dimension of ∆ is the maximum
dimension of a face in ∆. Associated with ∆ we have its face vector or f -
vector (f0, f1, . . . , fd), where fi is the number of faces of size i (or dimension
i − 1) in ∆. The face enumerator is the generating function of the entries
of the f -vector, defined by

f∆(x) =

d∑
i=0

fix
d−i.

The maximal faces of ∆ are called facets. When all the facets have the same
cardinality, ∆ is said to be pure. From now on we will only consider pure
d− 1-dimensional simplicial complexes.

Given a linear ordering F1, F2, . . . , Ft of the facets of a simplicial complex
∆, let ∆i denote the subcomplex generated by the facets F1, F2, . . . , Fi, that
is, F ∈ ∆i if and only if F ⊆ Fj for some j with 1 ≤ j ≤ i.

For a pure simplicial complex ∆, a shelling is a linear order of the facets
F1, F2, . . . , Ft such that, for 2 ≤ l ≤ t,

{F : F ⊆ Fl and F ∈ ∆l−1}

forms a pure (dim(∆) − 1)-dimensional simplicial complex, where ∆0 = ∅.
A complex is said to be shellable if it is pure and admits a shelling.

For 1 ≤ l ≤ t, define R(Fl) = {x ∈ Fl | Fl \ x ∈ ∆l−1}. The number
of facets such that |R(Fl)| = i is denoted by hi and, importantly, does not
depend on the particular shelling, see [4]. The vector (h0, h1, . . . , hd) is called
the h-vector of ∆. The shelling polynomial is the generating function of the
entries of the h-vector, given by

h∆(x) =

d∑
i=0

hix
d−i.

It is well known, see for example [4], that the face enumerator and the
shelling polynomial satisfy the relation

h∆(x+ 1) = f∆(x)
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and so the coefficients satisfy

fk =
k∑

i=0

hi

(
d− i
k − i

)

and

hk =

k∑
i=0

(−1)i+kfi

(
d− i
k − i

)
, (1)

for 0 ≤ k ≤ d.

2.2 Matroids and their complexes

A matroid is an ordered pair M=(E, I) such that E is a finite set and I is
a collection of subsets of E satisfying the following three conditions:

1. ∅ ∈ I;

2. if I ∈ I and I ′ ⊆ I, then I ′ ∈ I;

3. if I1 and I2 are in I and |I1| < |I2|, then there is an element e ∈ I2 \ I1

such that I1 ∪ {e} ∈ I.

Maximal independent sets are called bases and it follows easily from the
conditions above that all bases have the same cardinality. This common
cardinality is called the rank of the matroid and is usually denoted by r(M)
or just r.

One fundamental example is the class of uniform matroids. The uniform
matroid with rank r and n elements is denoted by Ur,n. A set of its elements
is independent if and only if it has size at most r.

We recall some basic definitions of matroid theory. A minimal subset C
of E that is not independent is called a circuit. The closure A of a subset
A of E is defined by

A = A ∪ {a |M has a circuit C such that a ∈ C ⊆ A ∪ {a}}.

A subset S is spanning if S = E. A subset H is a hyperplane if it is a
maximal non-spanning set. For all the other concepts of matroid theory we
refer the reader to Oxley’s book [25].

If M=(E, I) is a matroid, the family of all independent sets forms a
simplicial complex of dimension r(M)− 1, which we denote by ∆(M). The
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facets of ∆(M) are the bases of M and therefore ∆(M) is pure. Complexes
of this kind are called matroid complexes. Matroid complexes are known to
be shellable, see [4].

Loops of a matroid are circuits of rank zero and therefore do not belong
to any independent set. Consequently they do not play any role in ∆(M)
and so to investigate Conjecture 1.1, we can safely just consider loopless
matroids.

Furthermore, coloops of a matroid are elements contained in every basis.
Equivalently, they belong to every facet of ∆(M). Suppose M is formed from
M ′ by deleting a coloop. Then r(M) = r(M ′)−1, but more pertinently if the
h-vector of M is (h0, h1, . . . , hr), then the h-vector of M ′ is (h0, h1, . . . , hr, 0).
Thus, all the relevant information concerning the h-vector of a matroid can
still be obtained after deleting all its coloops. Consequently, for our purposes
we only need to consider coloopless matroids.

2.3 Pure O-sequences

An explicit characterization of O-sequences can be found in [28]. However, a
complete characterization is not known for pure O-sequences, but Hibi [15]
has shown that a pure O-sequence (h0, h1, . . . , hd) must satisfy the following
conditions.

h0 ≤ h1 ≤ · · · ≤ hbd/2c (2)

and

hi ≤ hd−i, whenever 0 ≤ i ≤ bd/2c. (3)

Hibi also conjectured that the h-vector of a matroid complex must satisfy
inequalities (2) and (3).

The following result concerning the h-vector of a matroid complex is due
to Brown and Colbourn [8].

Theorem 2.1. The h-vector of a connected rank-d matroid satisfies the
following inequalities.

(−1)j
j∑

i=0

(−b)ihi ≥ 0, 0 ≤ j ≤ d, (4)

for any real number b ≥ 1 with equality possible only if b=1.
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This theorem shows that the converse of Stanley’s conjecture is not true
because the sequence (1, 4, 2) is a pure O-sequence but does not satisfy the
conditions of the theorem.

Later, Chari [10] proved a stronger result which generalizes Theorem 2.1
and solves Hibi’s conjecture. The fact that the h-vector of a coloop free
matroid satisfies inequalities (2)–(4) can also be proved [9] using the Tutte
polynomial.

3 Stanley’s conjecture for paving matroids

A paving matroid M = (E, I) is a matroid whose circuits all have size at
least r(M). If M is a rank-r paving matroid, the face vector of ∆(M) is easy
to compute. Every subset of size i < r is a face of ∆(M) and the facets are
the bases of M . Then, we get the following result, which is implicit in [4].

Proposition 3.1. The h-vector of a rank-r paving matroid with n elements
and b(M) bases is (h0, . . . , hr) where hk =

(
n−r+k−1

k

)
for 0 ≤ k ≤ r− 1 and

hr = b(M)−
(
n−1
r−1

)
.

Proof. Using (1) and fi =
(
n
i

)
for 0 ≤ i ≤ r − 1 we see that

hk =

k∑
i=0

(−1)i+k

(
r − i
k − i

)(
n

i

)
.

for 0 ≤ k ≤ r − 1. Using the identity (−1)a
(
b
a

)
=
(
a−b−1

a

)
we get

hk =
k∑

i=0

(
k − r − 1

k − i

)(
n

i

)
.

Now using the Vandermonde convolution formula
(
a+b
k

)
=
∑k

i=0

(
a
i

)(
b

k−i
)

we
get

hk =

(
n− r + k − 1

k

)
.

Because
∑r

i=0 hi = b(M), we get

hr = b(M)−
r−1∑
i=0

hi = b(M)−
r−1∑
i=0

(
n− r + i− 1

i

)
= b(M)−

(
n− 1

r − 1

)
.
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Figure 1: On the left-hand side the point (i,j) represents the monomial xiyj .
Thus the 18 points represent a multicomplex over 2 variables with f(5, 2)
monomials of degree 5 and all monomials of degree 4. On the right-hand
side the point (i,j,k) represents the monomial xiyjzk. Thus the 13 points
represent a multicomplex over 3 variables with f(3, 3) monomials of degree
3 and all monomials of degree 2.

The idea for proving that the h-vector of a coloopless paving matroid is
the O-sequence of a pure multicomplex is simple. We define the multicom-
plex Mr,d to be the pure multicomplex in which the maximal elements are
all monomials of degree r in d indeterminates z1, . . . , zd. This multicomplex
has O-sequence (h0, . . . , hr), where hk =

(
d+k−1

k

)
.

Now, for r ≥ 1 and d ≥ 1, define the function

f(r, d) = min{hr | (h0, . . . hr) is the pure O-sequence of M⊃Mr−1,d}.

This means that f(r, d) is the minimum number of monomials of degree r in
a pure multicomplex of degree r which contains every monomial of degree
r−1 in the d indeterminates z1, . . . , zd. In Figure 1 we present two examples.
So for any positive integers d and r, if hk =

(
d+k−1

k

)
for 0 ≤ k ≤ r − 1 and

f(r, d) ≤ hr ≤
(
d+r−1

r

)
, the sequence (h0, h1, . . . , hr) is a pure O-sequence.

If M is a paving matroid with n elements and rank r, then by taking
d = n − r, we see that the h-vector of M satisfies hk =

(
d+k−1

k

)
for 0 ≤

k ≤ r− 1. To prove Stanley’s conjecture for the class of loopless, coloopless
paving matroids, it will be sufficient to prove that for all r > 0 and d > 0,
f(r, d) ≤ hr ≤

(
d+r−1

r

)
or equivalently that for all r and n with 0 < r < n

f(r, n− r) ≤ b(M)−
(
n− 1

r − 1

)
≤
(
n− 1

r

)
.
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By the remarks at the end of Section 2.2, this is enough to establish the
conjecture for the class of all paving matroids. The second inequality is
trivial since b(M) ≤

(
n
r

)
, so we focus on the first inequality.

Some initial values of f are easy to get.

Lemma 3.2. For r ≥ 1 and d ≥ 1 we have f(1, d) = 1, f(2, d) = dd/2e,
f(r, 1) = 1 and f(r, 2) = dr/2e.

Lemma 3.3. For r ≥ 2 and d ≥ 2, f(r, d) ≤ f(r, d− 1) + f(r − 1, d).

Proof. Let M′ be a multicomplex in indeterminates z1, . . . , zd−1 containing
Mr−1,d−1, having h-vector (h′0, . . . , h

′
r) satisfying h′r = f(r, d− 1). Let M′′

be a multicomplex in indeterminates z1, . . . , zd containing Mr−2,d, having
h-vector (h′′0, . . . , h

′′
r−1) satisfying h′′r = f(r − 1, d).

Consider the multicomplex M that is the union of M′ and

zdM′′ = {zdm|m ∈M′′}.

Then,M contains all the monomials over z1, . . . , zd−1 of degree at most r−1
and all the monomials over z1, . . . , zd of degree at most r − 1 where zd has
degree at least 1. These are precisely all the monomials over z1, . . . , zd of
degree at most r − 1. Therefore M contains Mr−1,d.

It remains to prove that M is a multicomplex. Let m ∈ M and m′|m.
Then m′ is a monomial in indeterminates z1, . . . , zd and either m′ = m or
m′ has degree at most r − 1. By using the previous part of the proof, in
either case we obtain that m ∈M.

Finally, the O-sequence of M is (h′0, h
′
1 + h′′0, . . . , h

′
r + h′′r−1).

Let Pr,n be the class of coloopless, loopless rank-r paving matroids on
n elements. Note that by asking for loopless paving matroids, we are just
eliminating rank-1 paving matroids with loops. We define

g(r, n) = min
{
b(M)−

(
n− 1

r − 1

)
|M ∈ Pr,n

}
.

Observe that g(r, n) equals the minimum value of hr among all h-vectors
of matroids in Pr,n. Thus, to prove Stanley’s conjecture for paving matroids
it is enough to show that g(r, n) ≥ f(r, n− r).

Lemma 3.4. For all n ≥ 1, g(1, n) ≥ f(1, n− 1).

Proof. Up to isomorphism, the only matroid in P1,n is U1,n, thus g(1, n) =
n− 1 and f(1, n− 1) = 1.
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The 2-stretching of a matroid M is the matroid obtained by replacing
each element of M by 2 elements in series. We use the following result
from [12].

Lemma 3.5. Let M be a rank-r coloopless paving matroid. If for every
element e of M , M \ e has a coloop, then one of the following three cases
happens.

1. M is isomorphic to Ur,r+1, r ≥ 1.

2. M is the 2-stretching of a uniform matroid Us,s+2, for some s ≥ 1.

3. M is isomorphic to U1,2 ⊕ U1,2.

Lemma 3.6. Let M be a rank-r coloopless paving matroid with n elements.
If for every element e of M , M \ e has a coloop, then b(M) −

(
n−1
r−1

)
=

f(r, n− r).
Proof. It follows from the previous lemma that we just have to check three
cases. If M ∼= Ur,r+1, b(M) = r + 1 =

(
r

r−1

)
+ f(r, 1).

If the matroid M is the 2-stretching of Us,s+2, it has rank 2s + 2, with
2s+ 4 elements and 2(s+ 2)(s+ 1) bases. Thus b(M)−

(
2s+3
2s+1

)
= s+ 1. On

the other hand, f(2s+ 2, 2) = s+ 1, and we have equality.
Finally, if M ∼= U1,2⊕U1,2, then b(M) = 4 and f(2, 2) = 1 which implies

equality.

Theorem 3.7. If 0 < r < n we have g(r, n) ≥ f(r, n− r).
Proof. We prove the statement by induction on r + n. If r = 1, the result
follows by Lemma 3.4. On the other hand suppose that r = n − 1. In any
coloopless matroid, for each edge e, there must be a basis not containing e.
Consequently any such matroid with n elements and rank n− 1 must have
at least n bases. Hence

g(n− 1, n) ≥ n−
(
n− 1

n− 2

)
= 1 = f(n− 1, 1).

Now suppose that 1 < r < n − 1 and that the theorem is true for all
r′ and n′ with r′ + n′ < r + n. Let M be a matroid in Pr,n such that
b(M) =

(
n−1
r−1

)
+ g(r, n). Suppose first that M \ e has no coloops for some

e ∈ E(M). Then

g(r, n) = b(M)−
(
n− 1

r − 1

)
= b(M \ e)−

(
n− 2

r − 1

)
+ b(M/e)−

(
n− 2

r − 2

)
≥ g(r, n− 1) + g(r − 1, n− 1) ≥ f(r, n− r − 1) + f(r − 1, n− r)
≥ f(r, n− r).
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If M has no such element e then the result follows by Lemma 3.5.

Corollary 3.8. The h-vector of the matroid complex of a paving matroid is
a pure O-sequence.

4 Bounds on the number of bases of a sparse paving
matroid

One intriguing problem is to determine more about the functions f and g
from the previous section. This appears to be a rather hard problem, in
particular we have not been able to find tight bounds on the number of
bases of a paving matroid in terms of its rank and number of elements. In
this section we find a tight bound for the number of bases for a subclass of
paving matroids, namely the sparse paving matroids.

We will require the following result on paving matroids which is an ex-
ercise in [25] (Page 132, Exercise 8).

Proposition 4.1. Paving matroids are closed under minors. Moreover a
matroid M is paving if and only if it does not contain the matroid U2,2⊕U0,1

as a minor.

Sparse paving matroids were introduced by Jerrum in [16, 21]. A rank-r
matroid M is sparse paving if M is paving and for every pair of circuits C1

and C2 of size r we have |C1 4 C2| > 2. For example, all uniform matroids
are sparse paving matroids.

There is a simple characterization of paving matroids which are sparse
in terms of the sizes of their hyperplanes.

Theorem 4.2. Let M be a paving matroid of rank r ≥ 1. Then M is sparse
paving if and only if all the hyperplanes of M have size r or r − 1.

Proof. For the forward implication let H be a hyperplane of M and I be a
maximal independent set contained in H. If there are two elements e 6= f
in H \ I, then C1 = I ∪ {e} and C2 = I ∪ {f} are circuits of size r but
|C1 4 C2| = 2, contrary to the assumption that M is sparse paving. Thus,
any hyperplane has size either r − 1 or r.

To prove the converse first note that the closure of any circuit of size r
is a hyperplane. By assumption, hyperplanes have size at most r and so any
circuit of size r is a hyperplane. Suppose that C1 and C2 are distinct circuits
of size r in M . Then I = C1∩C2 is an independent set and because I is the
intersection of two hyperplanes, its rank is at most r−2. So, |C1∩C2| ≤ r−2
and |C1 4 C2| > 2.

11



Note that we can say a little more about the circuits and hyperplanes of
size r in a sparse paving matroids of rank r. In the proof of the preceding
theorem we show that any circuit of size r is a hyperplane. Conversely
any proper subset of a hyperplane of size r is independent and so such a
hyperplane must be a circuit. So the circuits of size r are precisely the
hyperplanes of size r.

The fact that the class of sparse paving matroids is closed under duality
appears to be (recent) folklore but we are unable to find a reference.

Theorem 4.3. If M is an n-element sparse paving matroid, then M∗ is
also sparse paving.

Proof. If M has rank zero or rank n, then M∗ is isomorphic to Un,n or U0,n

respectively. Both of these matroids are sparse paving.
Let us suppose that M has rank 1 ≤ r ≤ n−1. By duality, C is a circuit

of a matroid N over E if and only if E \ C is a hyperplane of N∗. From
Theorem 4.2 it follows that all the hyperplanes of M have size r or r − 1.
Consequently all the circuits of M∗ have size n− r or n− r+ 1 and so M∗ is
paving. Furthermore all the hyperplanes of M∗ have size n− r or n− r− 1
and so by Theorem 4.2 M∗ is sparse paving.

The next result was first proved by Jerrum [16]. It follows immediately
from Theorem 4.3 and the fact that the collection of circuits of M \ e is the
collection of circuits of M that do not contain e.

Theorem 4.4. Sparse paving matroids are closed under minors

Theorem 4.5. A matroid M is sparse paving if and only if it does not have
U2,2 ⊕ U0,1 nor U0,2 ⊕ U1,1 as minors.

Proof. By Proposition 4.1, it is enough to prove that a paving matroid M
is sparse if and only if M does not contain U0,2 ⊕ U1,1 as a minor.

If a rank-r paving matroid M contains U0,2 ⊕ U1,1 as a minor, then M∗

contains U2,2⊕U0,1 as a minor and by Proposition 4.1 it is not paving. Thus
M cannot be sparse paving by Theorem 4.3.

Suppose M is a rank-r paving matroid with n elements that is not sparse.
By Theorem 4.2 there must exist a hyperplane H of size at least r + 1. Let
I be a maximal independent subset of H and let {e, f} ∈ H \ I. Now let
g 6∈ H. If we delete the elements in E \ (H ∪{g}) and contract the elements
in H \ {e, f} we get a U0,2 ⊕ U1,1 minor.

In order to get more properties of sparse paving matroids, we need the
following definition from [25]. Given integers k > 1 and m > 0, a collection
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T = {T1, . . . , Tk} of subsets of a set E, such that each member of T has at
least m elements and each m-element subset of E is contained in a unique
member of T , is called an m-partition of E. The following proposition is
also from [25].

Proposition 4.6. If T is an m-partition of E, then T is the set of hyper-
planes of a paving matroid of rank m+ 1 on E. Moreover, for r ≥ 2, the set
of hyperplanes of every rank-r paving matroid on E is an (r − 1)-partition
of E.

The collection of hyperplanes of a sparse paving matroid M of rank r ≥ 2
are the circuits of size r together with the independent sets of size r− 1 not
contained in any circuit of size r. Because the hyperplanes of M form an
(r− 1)-partition, any subset A of size r− 1, that is not a hyperplane, (so A
is an independent set contained in some circuit of size r) is contained in a
unique circuit of size r.

Any Steiner system S(r−1, r, n) corresponds to a sparse paving matroid
by taking the bases to be all sets of size r not appearing as blocks of the
Steiner system. As the number of blocks in a S(r − 1, r, n) is 1

r

(
n

r−1

)
, we

see that the number of bases of the corresponding sparse paving matroid
is
(
n
r

)
− 1

r

(
n

r−1

)
= n−r

r

(
n

r−1

)
. The next results show that this is a lower

bound for the number of bases of a sparse paving matroid. Because the
Steiner systems S(2, 3, 6p+ 1), S(2, 3, 6p+ 3) (see [17]) and S(3, 4, 6p+ 2),
S(3, 4, 6p+4) (see [14]) exist for all p, there is an infinite number of matroids
that achieve our bound.

The following lemma is straightforward.

Lemma 4.7. If M is a sparse paving matroid with rank 1 and n elements,
then M is isomorphic to either U1,n or U1,n−1 ⊕ U0,1.

Theorem 4.8. Let M be a rank-r matroid with n elements and r ≥ 1. If
M is a sparse paving matroid then it has at least n−r

r

(
n

r−1

)
bases.

Proof. If r = 1, M is isomorphic to either U1,n or U1,n−1⊕U0,1 by Lemma 4.7.
Both of these matroids have at least n− 1 bases.

Let us suppose that r ≥ 2. Because M is paving, every subset of size
r − 1 is independent and, because it is sparse, the remarks preceding the
theorem imply that any set of size r − 1 is in at most one circuit of size r.
Now, form the bipartite graph of bases and independent sets of size r − 1.
That is, the vertices are the independent sets of sizes r or r− 1 and there is
an edge (B, I) if and only if the basis B contains the independent set I. The
degree of any independent set I of size r−1 is at least n− r. So the number

13



of edges in the bipartite graph is at least (n− r)
(

n
r−1

)
. As the degree of any

basis in this graph is r, the result follows.

Many invariants that are usually difficult to compute for a general ma-
troid are easy for sparse paving matroids. For example, observe that if M
is sparse paving, all subsets of size k < r are independent, and all subsets of
size k > r are spanning. On the other hand the subsets of size r are either
bases or circuit–hyperplanes. Thus, the Tutte polynomial of a rank-r sparse
matroid M with n elements and λ circuit–hyperplanes is given by

TM (x, y) =

r−1∑
i=0

(
n

i

)
(x−1)r−i +

(
n

r

)
+λ(xy−x−y) +

n∑
i=r+1

(
n

i

)
(y−1)i−r.

5 Bounds for number of bases of paving matroids
and sizes of multicomplexes

In the previous section we gave a tight lower bound for the number of bases
of a sparse paving matroid. Such a lower bound is more difficult to obtain
in the case of paving matroids. One lower bound for the number of bases of
a loopless, coloopless paving matroid of rank r with n elements is given by
f(r, n− r) +

(
n−1
r−1

)
. In this section we investigate further the function f and

give an alternative proof of Corollary 3.8.

5.1 The function f(r,d)

We define two families of graphs. First, we define the graph Gr,d to have
one vertex corresponding to each monomial of degree r over d variables and
to have an edge {m,m′} if and only if there exist distinct variables x and y
such that m′ = m

x y. The second family is similar. We define TGr,d to have
one vertex for each monomial of degree at most r over d variables and to
have an edge {m,m′} if and only if there exist different variables x and y
such that m′ = m

y x or there exists a variable y such that m′ = m
y .

Clearly, Gi,d is an induced subgraph of TGr,d for all 0 ≤ i ≤ r. Recall
that a set U of vertices dominates a set U ′ of vertices in a graph if every
vertex in U ′ \U is adjacent to a vertex in U . The problem of finding f(r, d)
can be translated to the problem of finding the vertex subset of Gr,d of
minimum size that dominates the vertex set of Gr−1,d.

For this purpose we define the standard colouring %d of Gr,d. Let us
suppose the d variables are {x0, . . . , xd−1}. To each variable xi we associate
the colour %d(xi) = i mod d and then we extend this colouring linearly to

14



all monomials, that is, for a monomial m = xt00 · · ·x
td−1

d−1 , the value of %d(m)
is 0 t0 + . . .+ (d− 1)td−1 mod d.

Lemma 5.1. The standard colouring %d is a proper colouring and χ(Gr,d) ≤
d.

Proof. If (m,m′) is an edge of Gr,d, then there exist i 6= j such that m′ =
m
xi
xj . So, %d(m) − %d(m′) = i − j 6≡ 0 (mod d). Thus, m and m′ receive

different colours and %d is a proper d-colouring of Gr,d.

Proposition 5.2. The chromatic number χ(Gr,d) equals the clique number
ω(Gr,d) and both equal d.

Proof. From the previous lemma we know that χ(Gr,d) ≤ d. Clearly the
vertices in {xr0, x

r−1
0 x1, . . . , x

r−1
0 xd−1} form a clique. Thus ω(Gr,d) ≥ d. But

for any graph G we have ω(G) ≤ χ(G) and the result follows.

Observe that in the previous proof we show that xr0 is in a d-clique.
Actually, any monomial in Gr,d is in as many cliques of size d as the number
of different variables in the monomial. That is, if xi|m, then the vertices
{mxi

x0, . . . ,
m
xi
xd−1} form a clique. Thus, any colour class of a d-colouring

of Gr,d dominates V (Gr,d). So any colour class of a d-colouring of Gr,d is a
dominating independent set and thus, it is a maximal independent set and
a minimal dominating set.

Another important observation is that a colour class of a d-colouring of
Gr,d dominates the vertex subset V (Gr−1,d) in TGr,d. This is because the
neighbours of a monomial m of rank r−1 in V (Gr,d) are {mx0, . . . ,mxd−1}
and form a d-clique. So they must intersect each colour class of a d-colouring
of Gr,d.

We now define the function f(r, d) to be the minimum size of a chromatic
class in the standard coloring %d of Gr,d. The previous paragraph proves the
following.

Proposition 5.3. For all r ≤ d, we have f(r, d) ≤ f(r, d).

Now, it is easy to give an upper bound for f(r, d).

Proposition 5.4. For all r ≤ d, we have f(r, d) ≤
(
r+d−1
d−1

)
/d.

Proof.
(
r+d−1
d−1

)
/d is the average size of a colour class in a d colouring of

Gr,d.

15



While trying to find a formula for f(r, d), our computations appeared to
point to the number of aperiodic necklaces with r black beads and d white
beads, also known as the number of binary Lyndon words of length r + d
and density r. Binary necklaces or necklaces of beads with colours black and
white are circular sequences of 0’s and 1’s, where two sequences obtained by
a rotation are considered the same. That is, the necklaces of length n are
the orbits of the action of the cyclic group Cn on circular sequences of 0’s
and 1’s of length n. A necklace of length n is called aperiodic if the orbit
has size n.

The number of aperiodic necklaces with n beads, r black and d white, is

L2(r, d) =
1

r + d

∑
k|(r+d,r)

µ(k)

(
(r + d)/k

r/k

)
,

where (a, b) denotes the greatest common divisor of the integers a and b
and µ is the classical Möbius function. This formula is well known and is
a typical example of the Möbius inversion formula, see [19]. In particular,
note that when d and r are coprimes, the formula simplifies to

(
n
r

)
/n=(

n−1
r−1

)
/r=

(
n−1
d−1

)
/d.

Theorem 5.5. If n and r are coprime, then f(r, n − r) equals the number
of aperiodic necklaces of n beads, r black and d = n− r white.

Proof. Consider ϕ the action of the cyclic group Cd over Gr,d given by

ϕ(xt00 · · ·x
td−1

d−1 ) = xt01 · · ·x
td−2

d−1 x
td−1

0 .

The orbits of this action correspond to necklaces with r black beads and
d white beads. Variables correspond to white beads and to the right of
the black bead corresponding to xi we place as many black beads as the
exponent of xi, for 0 ≤ i ≤ d − 1. The orbits of size d correspond to
aperiodic necklaces.

Let us see the effect of ϕ on the standard colouring %, that is, we want to
find %(ϕ(m)) for a monomial m=xt00 · · ·x

td−1

d−1 . We have %(ϕ(m))− %(m) ≡ r
mod d. Thus, every orbit has size d and all the monomials in the orbit
have different colours. We conclude that in this case the number of aperi-
odic necklaces equals the common size of any colour class in the standard
colouring % of Gr,d.

Conjecture 5.6. f(r, d) = f(r, d) = L2(r, d).
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Notice that if I ′ is a set of monomials of size f(r, d) which dominates
the vertices in Gr−1,d, it is a dominating set in Gr,d. This is because, if
m ∈ V (Gr,d), then for some xi the monomial m′ = m/xi is in V (Gr−1,d).
But the set of neighbours of m′ in V (Gp,d) is S = {m′ x0, . . . ,m

′ xd−1} and
m ∈ S. As an element m′′ of I ′ has to be in S and S induces a complete
graph, we conclude that m′′ and m are adjacent.

5.2 An alternative proof of Theorem 3.7

For a connected paving matroid we can use the Brown-Colbourn Theo-
rem 2.1 mentioned earlier to bound hr for r ≥ 1 from below by

S(r, n) = (−1)r−1
r−1∑
i=0

(−1)i
(
n− r + i− 1

i

)
.

A few values of S are given by the following, where we adopt the usual
convention that

(
a
0

)
= 1 for all a and

(
a
b

)
= 0 for all integers a and b such

that b > a and b > 0.

Proposition 5.7.

• S(1, n) = 1 for all n ≥ 1.

• S(2, n) = n− 3 for all n ≥ 2.

• S(n, n) = (−1)n−1 for all n ≥ 1.

• S(n− 1, n) = n− 1 mod 2 for n ≥ 2.

• S(n− 2, n) = bn−1
2 c

Proof.

• S(1, n) = (−1)0
(
n−2

0

)
= 1 for all n ≥ 1.

• S(2, n) = (−1)(
(
n−3

0

)
−
(
n−2

1

)
) = n− 3 for all n ≥ 2.

• S(n, n) = (−1)n−1
∑n−1

i=0 (−1)i
(
i−1
i

)
= (−1)n−1 for all n ≥ 1.

• S(n − 1, n) = (−1)n−2
∑n−2

i=0 (−1)i
(
i
i

)
= (−1)n−2

∑n−2
i=0 (−1)i, that is

1 if n is even and 0 otherwise.

• S(n− 2, n) = (−1)n−3
∑n−3

i=0 (−1)i
(
i+1
i

)
= (−1)n−3

∑n−3
i=0 (−1)i(i+ 1).

This is (−1)n−3(−(n− 1)/2) = (n− 2)/2 if n is even and (n− 1)/2 if
n is odd.
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The sequence {S(r, n)} has a similar recursion to the binomial coeffi-
cients.

Theorem 5.8. For n > r > 0

S(r + 1, n+ 1) = S(r + 1, n) + S(r, n)

Proof. This follows directly from Pascal–Stifel’s formula
(
n+1
r+1

)
=
(

n
r+1

)
+(

n
r

)
.

This result is enough to show that the integer sequence {S(r, n)} is
sequence A108561, in [27], where in the notation used there T (n, r) =
S(r + 1, n + 1). Both sequences satisfy the same recurrence and the same
boundary conditions.

How does S(r, n) compare with f(r, n− r)? We can prove the following.

Theorem 5.9. If 1 ≤ r ≤ n− 2 we have f(r, n− r) ≤ S(r, n)

Proof. We prove the theorem by induction on n. For r = 1, f(n, n − r) =
1 = S(r, n) for all n. For r = n − 2, we have f(r, n − r) = dn−2

2 e =
bn−1

2 c = S(r, n). If 1 < r < n− 2, then using Lemma 3.3, we have f(r, n−
r) ≤ f(r, n − r − 1) + f(r − 1, n − r). Using induction this is at most
S(r, n− 1) + S(r − 1, n− 1) which equals S(r, n).

A coloopless paving matroid that is not connected must have rank at
most one, so the previous result implies that f(r, n− r) ≤ g(r, n) whenever
2 ≤ r ≤ n− 2. Thus, we have an alternative proof of Corollary 3.8, because
it is easy to check the inequality for the remaining values of r and n.

6 Conclusion

We have proved Stanley’s conjecture for paving matroids. This adds another
case to the stream of results that prove the conjecture for a particular family
of matroids [23, 24, 26, 30]. Hopefully, all this work will lead to a proof of
this conjecture, or at least to a better understanding of the h-vector of a
matroid.

The problem of giving good lower bounds on the number of bases of a
loopless, coloopless paving matroid appears to be a challenging but interest-
ing problem. The lower bound found by computing f(r, n−r)+

(
n−1
r−1

)
is not

tight in most cases. When n − r = 2 and n is even, we get a lower bound
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of n(n − 2)/2 which is achieved by the dual matroid of the 2-thickening of
U2,m; when n is odd we get a lower bound of (n − 1)2/2 which is achieved
by the dual matroid of the free extension of the 2-thickening of U2,m. So, in
this case, the lower bound is tight. But when n−r = 3 the situation is quite
different. When the rank is 2, the bound gives 6 bases, which is achieved by
the paving matroid U1,3 ⊕ U1,2. When the rank is 3 the lower bound gives
13. There are 8 coloopless paving matroids with 6 elements and rank 3, yet
the minimum number of bases is 15. Even if we use the alternative lower
bound S(r, n) +

(
n−1
r−1

)
we only get a lower bound of 14 in this case.

The function f is very intriguing and seems very difficult to compute
from the definition. We can prove that f(r, d) = f(r, d) for d = 1, 2, 3
and all r ≥ 1 and also for d = 4 for 1 ≤ r ≤ 6. We have checked that
f(r, d) = L2(r, d) for many small values of r and d with (r, d) > 1 by using
Maple. Conjecture 5.6 would imply, for example, that f(r, d) = f(d, r)
which geometrically is not so easy to see and we have been unable to prove
it.
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