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Abstract 

Incompressible Large Eddy Simulation and Direct Numerical Simulation of a Low-Pressure-

Turbine at Re=5.1810
4
 and 1.4810

5
 with discrete incoming wakes are analyzed to identify the 

turbulent kinetic energy generation mechanism outside of the blade boundary layer. The results 

highlight the growth of turbulent kinetic energy at the bow apex of the wake and correlate it to the 

stress-strain tensors relative orientation. The production rate is analytically split according to the 

principal axes, and then terms are computed by using the simulation results. The analysis of the 

turbulent kinetic energy is followed both along the discrete incoming wakes and in the stationary 

frame of reference. Both Direct Numerical and Large Eddy Simulation concur in identifying the 

same production mechanism that is driven by both a growth of strain rate in the wake, first, 

followed by the growth of turbulent shear stress after. The peak of turbulent kinetic energy diffuses, 

and can eventually reach the suction side boundary layer for the largest Reynolds number 

investigated here. As a consequence, the local turbulence intensity outside the boundary layer can 

grow significantly above the free-stream level with a potential impact on the suction side boundary 

layer transition mechanism.  

 

1. Introduction 

 

Typically, the time-averaged flow field of undisturbed plane wakes consists of two equally 

strong, slowly diverging, vortex sheets of opposite orientation. The rate at which the sheets diverge 

is proportional to d
½
, where d is the distance to the origin of the wake (see e.g. Schlichting [17]), 

indicating that for large d the two vortex sheets will be roughly parallel. Each vortex sheet 

corresponds to a plane shear layer not unlike a flat plate boundary layer. In a turbulent plane wake, 

each shear layer is associated with a peak in the turbulent kinetic energy, k, indicating that the 

production of k is concentrated near the regions of high shear. 

Castro and Bradshaw [2] and Gibson and Rodi [6] analysed the flow and turbulence structure 

of a highly curved mixing layer. The mixing layer under investigation bounds a normally impinging 

plane irrotational jet. In the experiment, turbulence was discovered to be first attenuated. Then, 

approximately after the first 50-60% of the curve, the normal and shear stresses were first amplified 

and exceeded the plane-layer values reached in relaxation region further downstream when the flow 

curvature vanishes. The analysis indicated that the overshoot of turbulent quantities was mostly due 

to shear-stress production. 
In the absence of strain, Moser et al. [14] observed a self-similar evolution of plane wakes. The 

effect of the presence of uniform mean strain was studied by Rogers [16], who performed direct 
numerical simulations of turbulent, time-evolving strained wakes using a pseudo-spectral method. 
In all his simulations, the strain was applied to the same self-similar wake flow field. He found that 
though the main flow reacts quickly on the applied strain, the response of turbulence to strain is 
more slowly; changes in the turbulence intensity could not keep pace with changes in the mean 
wake velocity. Turbulence is produced by two competing mechanisms; shear and strain. Rogers 
found that when the direction of compression is parallel to the centre-line of the wake (case C), the 
wake-width grows exponentially as the wake velocity deficit increases. The normal Reynolds 
stresses, u'u', v'v', w'w' and also u'v' are all found to increase in time while the typical structure of 
the time-averaged wake, i.e. the two more or less parallel shear layers, remains intact. When the 
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direction of expansion is parallel to the centre-line of the wake (case D), the wake-width, the wake 
velocity deficit and the Reynolds stresses all decrease in time, eventually degrading the structure of 
the wake.  

In summary, the measurements by Castro and Bradshaw [2] allow studying the evolution of 

shear layers (i.e. half portion of a wake) in presence of strong flow-core turning, whereas the DNS 

by Rogers [16] focus on the effect of strain on planar straight wakes. Both are relevant to the flow 

in a turbomachine in which the wakes produced by the preceding blade row are periodically 

ingested into a blade vane. In particular, while a plane wake travels through the passage between 

two turbine blades it is severely strained and distorted by the main flow. In contrast to the study of 

Rogers, the actual direction of the mean strain relative to the centre-line of the wake varies with the 

actual location. Moreover, the direction of shear, individuated by the wakes, differs from the flow 

direction because of the relative motion between blades and wakes. Hence, differences arise with 

respect to the flow geometry by Castro and Bradshaw too, in which the direction of shear is aligned 

with the core flow. 

Wu and Durbin [21] performed the DNS of the flow in a Low-Pressure (LP) linear turbine rotor 

blade with periodic incoming wakes. The wakes are subject to both flow curvature (as in Castro and 

Bradshaw [2]) and strain (as in Rogers [16]). The simulations revealed a peak in the turbulent 

kinetic energy located near the bow-apex of the wake, where the direction of compression is aligned 

with the centre-line of the wake, corresponding to case C of Rogers. Near the pressure side Wu and 

Durbin observed that the direction of expansion was almost aligned with the centre-line of the 

wake, corresponding to case D of Rogers. In the present paper we aim to further analyse the 

production of turbulence in the plane turbulent wake as it travels through the free-stream region of a 

turbine cascade.  

 

 

2. Description of the test cases 

The geometry under investigation is that of the low-pressure aft-loaded turbine blade T106. 

The flow around this blade assembled in a linear cascade was measured by Stadtmüller[18] and by 

Stadtmüller and Fottner[19]. In the experiments the blade aspect ratio (h/c) is 1.76, and the blade 

chord is 100mm. Therefore the flow at mid-span can be considered nearly two-dimensional and the 

three-dimensional computer simulations can be performed under the assumption of a homogeneous 

flow in the span-wise direction. The measurements were carried out at Re=5.1810
4
 and 210

5
 

(based on inlet conditions and axial chord) with the effect of an upstream row of blades simulated 

by a moving bar wake generator. The bar diameter to pitch ratio is db/C=0.02. Unfortunately, for the 

larger Re only, the bar-to-blade pitch ratio is not an integer number (0.4/0.525). To yield an exactly 

periodic flow, the simulations should hence be carried out by using eight blade vanes, which would 

require an excessive computational effort. Therefore we will focus on the DNS data by Wissink 

[20] and the LES data by Michelassi et al. [12], which refer both to the flow at the lower Reynolds 

number with a wake-to-blade pitch ratio of 0.5 (see test L in Table 1). The same geometry was also 

selected by Wu and Durbin [21] for a DNS at the significantly larger Re of 1.4810
5
 with a wake-

to-blade pitch ratio of one. This DNS was used as a reference data set by Michelassi et al. [12] who 

performed the LES of the same flow. The latter data set will also be used for further analysis under 

different operating conditions with respect to [20] and [12] (see test H in Table 1). 

 

3. Computational details 

 

3.1 Computational grids 

The blade stagger angle , the inlet flow angle 1, and the outlet flow angle 2, defined with 

respect to the axial direction as displayed in Figure 1, are summarised in Table 1. The grid 

employed in both the DNS and LES was carefully selected using the elliptic grid generation 

algorithm proposed by Hsu and Lee[7]. This elliptic mesh generation ensured a nearly orthogonal 
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grid close to the blade walls and it was therefore adopted for all the simulations. Table 2 

summarises the adopted grid sizes. The DNS grid [20] (see run D) consists of 101426664 nodes 

in the stream-wise, pitch-wise, and span-wise directions respectively. The grid extension in the 

span-wise direction and downstream of the trailing edge is 0.20Cax and 1.0Cax respectively. The 

grid of the LES under the same operating conditions (see run L1) [12] consists of 44814432 

points in the stream-wise, pitch-wise, and span-wise directions respectively, and provides a fair 

representation of the DNS flow field [12]. The LES grid extension in the span-wise direction and 

downstream of the trailing edge is 0.15Cax and 0.8Cax respectively. Further details on the grid 

resolution are available in [20,12]. The LES at Re=1.4810
5
 adopts 64625664 nodes in the 

stream-wise, pitch-wise, and span-wise directions, respectively. As in the DNS by Wu and Durbin 

[21], the grid extends 0.5Cax upstream of the leading edge of the blades and 1.0Cax downstream 

of the trailing edge. The span-wise width is h=0.15Cax. The grid in the span-wise direction is 

uniform for all runs. 

 

 

Table 1 

Test Re -deg 1-deg 2-deg tb/t Ubar db/C 

L 5.1810
4
 30.72 45.5 63.2 0.5 -0.41 0.02 

H 1.4810
5
 30.72 37.7 63.2 1.0 -1.204 0.02 

Details of the blade geometry and conditions 

 

 

Table 2 

Run Test Grid H SGS model 

D L
 

1014x260x64 0.2Cax None 

L1 L 454x144x32 0.15Cax  Dyn. Smagorinsky 

L2 H 646x256x64 0.15Cax  Dyn. Smagorinsky 

Summary of the Test Runs 

 

 

3.2 Boundary conditions and phase-averaging 

 A no-slip boundary condition is enforced at the surface of the blade and a periodic flow 

condition is enforced in the pitch-wise direction. The latter condition is not critical since the size of 

the expected flow structures is a small percentage of the blade pitch. Since the dynamically relevant 

motions are expected to have a span-wise extent smaller than the size of the computational domain, 

it is possible to enforce the periodicity of the instantaneous flow in the span-wise direction too. The 

respective values of the span-wise extension of the computational domain, H (see Table 2), had 

been carefully selected to avoid undesired effects on the development of flow structures. The inflow 

boundary condition for the wakes is enforced by using the database made available by Wu and 

Durbin, who generated the incoming turbulent wakes-like data with preliminary LES [22]. In all 

runs the wake data closely resembles those adopted in the DNS [21] in which the wake half-width is 

0.04Cax and the maximum mean wake velocity deficit is 18%. 

Apart from the Reynolds number and the inlet flow angle, the two test cases L and H differ 

in the incoming wake-to-blade pitch ratio and wake tangential speed. In particular, in test case H the 

tangential speed of the wake is significantly larger than in case L. In order to properly resolve the 

wake in both space and time, one period T=tb/Ub, was resolved using 9600 time steps in run D, 

4800 time steps in run L1, and 10240 in run L2. In all runs, this choice implies a maximum CFL 

number of approximately 0.30-0.50. In all the simulations the flow was allowed to develop for five 

periods T, i.e. five wake-passes. After this start-up period the flow developed a periodic behaviour 

and it was possible to initiate the phase averaging of the flow field. Phase-averaging is performed 
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over ten further periods. Run D stored 240 phases, while this number is reduced to 120 and 64 for 

runs L1 and L2 respectively. In the following, , with 0≤<1, corresponds to the phase of a phase-

averaged flow field. Angular brackets denote phase-averaged quantities. 

 

3.3 Calculation method and test runs 

The DNS and LES of the flow around the T106 turbine blade have been performed using the 

LESOCC code [1]. The incompressible continuity and momentum equations are discretized by 

means of a cell-centred finite volume method. Mass conservation is ensured by the implicit solution 

of a Poisson equation for the pressure correction, which is complemented with a Fourier solver in 

the span-wise direction that substantially reduces the computational effort. The equations are solved 

by marching in time with a three-stage Runge-Kutta algorithm. The mass conservation step was 

converged to a residual of 10
-8

. The SGS model used in the LES is the dynamic model by Germano 

et al. [5] with the modification of Lilly [10]. It employs an eddy viscosity model together with a 

procedure of reducing the model constant whenever the flow is well resolved. For the present 

computation, the SGS model employs filtering and averaging in the homogeneous span-wise 

direction. The test runs, which are summarised in Table 2, refer to two different Reynolds numbers 

and incoming wake frequencies. Therefore, the relatively large data availability allows the flow 

inside the blade vane to be analysed in different configurations and with different modelling 

assumptions. The next sections will deal with the DNS at Re=5.1810
4
 and the LES at both 

Re=5.1810
4
 and Re=1.4810

5
. 
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Figure 1. Flow configuration and grid for LES at Re=5.1810

4
 (every 6

th
 grid line 

 is shown in both stream-wise and pitch-wise directions). 

  

 

4. Flow visualisation 

 

 The dynamics of the wake, while it is convected inside the blade vane, has already been 

extensively discussed by Wu and Durbin (2001) for the Re=1.4810
5
 case, and by Wissink (2002) 

as well as by Michelassi et al. (2002) for the Re=5.1810
4
 case, both in terms of instantaneous and 

phase-averaged velocities, and it will not be repeated here. In particular, both Wu and Durbin 



 5 

(2001) and Wissink (2002) observed an accumulation of turbulent kinetic energy along the wake 

path inside the turbine vane. This phenomenon is illustrated in the plots of the phase averaged 

turbulent kinetic energy, k , of Figure 2. The phase-averaged three-dimensional flow field around 

the T106 blade is first averaged in the span-wise homogeneous direction. This allows extracting the 

two-dimensional phase-averaged snapshots of the turbulence quantities. The plots refer to two 

different phases for both the LES and the DNS at Re=5.1810
4
, and the LES at Re=1.4810

5
. In a 

DNS, basically all velocity fluctuations are resolved and thus contribute to the turbulent kinetic 

energy. In the LES, only the resolved velocity fluctuations are used to compute the turbulent kinetic 

energy. The absence of the SGS model contribution explains the slightly lower overall values of 

k shown by LES with respect to DNS. In all simulations, at the inlet the wake is the only source of 

velocity fluctuations in an otherwise uniform flow field. This is the reason for the absence of any 

visible turbulent kinetic energy in between wakes in the first 40-50% of the computational domain. 

Hence, the wake is easily identified with the flow regions in which the turbulent kinetic energy 

departs from zero. The figures illustrate how the turbulent kinetic energy increases while the wake 

is gradually turned and deformed inside the vane. The gradual increase of k is approximately 

located around the wake apex.  

Apparently, the turbulent kinetic energy keeps on growing while the wake travels from the 

leading to the trailing edge of the blade. This phenomenon does not seem to be very sensitive to the 

Reynolds number since the same trend is obtained at Re=5.1810
4
 as well as at Re=1.4810

5
. The 

only noticeable qualitative difference between the results obtained at different Reynolds numbers 

consists in the increased proximity of the peak of k to the suction side of the blade at Re=1.4810
5
. 

This, however, is most likely a consequence of the different inflow angle that is employed in the 

simulations at Re=5.1810
4
 compared to those at Re=1.4810

5
. At the lower Reynolds number the 

inflow angle is larger and the core of the flow region with large values of k  inside the vane never 

manages to hit the suction side boundary layer. Conversely, the wake region with increased k  

clearly hits the suction side boundary layer in the simulation with the larger Reynolds number and 

smaller inflow angle. The plots also indicate that the portion of the flow field with the large values 

of turbulent kinetic energy in the wake remains somewhat confined up to x/Cax0.6-0.7. Further 

downstream, while approaching the exit region of the flow, the spot with the large values of k 

diffuses and merges with the wake downstream of the trailing edge. Here, another difference arises 

between the simulations for different inflow angles and Reynolds numbers: while for the higher-

inflow-angle simulation the incoming wake merges with the trailing edge wake towards the 

pressure side, for the smaller- inflow-angle simulation the incoming and trailing edge wakes merge 

near the suction side.  

The observed large values of turbulent kinetic energy appear to stem from large values of 

local production, as is illustrated in Figure 3 which shows the production of turbulent kinetic 

energy, computed by using the phase averaged quantities, 
j

i

x

U
jik uuP




 . All plots reveal 

that the peak of turbulent kinetic energy coincides with large values of  the production in the blade 

vane. While there is not much production in the portion of the wake between the pressure side and 

the apex, in the portion from the apex to the suction side kP  values are obtained up to 10 times as 

large as those encountered in the wake near the inlet section.  

The circles on the lines “P” of Figure 4 represents the approximate location of the phase-

averaged turbulent kinetic energy peaks, observed in Figure 2, while the wake is swallowed into the 

blade vane for each of the three simulations. The path of line “P” corresponds to the path of the bow 

apex of the wake, which also corresponds roughly to the location of the maximum wake curvature. 

Moreover, the analysis of the unsteady flow field reveals that the location of the peak follows the 

path of a fluid element in the wake, which moves towards the suction side on account of the cross-

flow pressure gradient induced by the core flow turning. Figure 4 reveals that the peaks remain 

clearly outside the suction side boundary layer, although the turbulent kinetic energy clearly 
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diffuses close to wall in proximity to the trailing edge. For x/Cax>0.4-0.5, the distance from the wall 

becomes virtually constant. This can also be observed in the contour plots of k and Pk in Figure 2 

and Figure 3.  

Now that the peaks of turbulent kinetic energy in the vane are localised, it is desirable to 

show the magnitude of k and Pk along P at different phases . This is done by interpolating the 

desired quantities along the fixed line P at selected phases, and it is illustrated in Figure 5; the 

abscissa reports the axial co-ordinate x to avoid problems stemming from the slightly different 

lengths of the P curves for the three simulations. The plots start at x/Cax=0, which corresponds to 

the blade leading edge, and stop shortly downstream of the trailing edge, located at x/Cax=1. For the 

Re=5.1810
4
 case, Figure 5 shows five discrete curves, which correspond to five phase averaged 

snapshots of the flow field equally spaced to cover one full period. They are selected from the 

database with 120 stored phases for the LES and 240 for the DNS.  
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(a) =0.508  LES – Re=5.1810
4
   =0.008 (b) 

 
(c) =0.508  DNS – Re=5.1810

4
   =0.008 (d) 

 
(e) =0.008  LES – Re=1.4810

5
   =1.0 (f) 

 

Figure 2. Phase-averaged turbulent kinetic energy: (a) LES - Re=5.1810
4
, =0.508, (b) LES -

Re=5.1810
4
, =0.008, (c) DNS - Re=5.1810

4
, =0.508, (d) DNS - Re=5.1810

4
, =0.008, (e) 

LES - Re=1.4810
5
, =0.375, (f) LES -Re=1.4810

5
, =1.0. 

P1 

P2 
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(a) =0.508  LES – Re=5.1810
4
   =0.008 (b) 

 
(c) =0.508  DNS – Re=5.1810

4
   =0.008 (d) 

 
(e) =0.008  LES – Re=1.4810

5
   =1.0 (f) 

 

Figure 3. Phase-averaged production of turbulent kinetic energy: (a) LES - Re=5.1810
4
, =0.508, 

(b) LES -Re=5.1810
4
, =0.008, (c) DNS - Re=5.1810

4
, =0.508, (d) DNS - Re=5.1810

4
, 

=0.008, (e) LES - Re=1.4810
5
, =0.375, (f) LES -Re=1.4810

5
, =1.0. 
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(a)     (b)     (c) 

 

Figure 4. Approximate path of the peak of turbulent kinetic energy in the blade vane: (a) LES - 

Re=5.1810
4
 (b) DNS - Re=5.1810

4
, (c) LES -Re=1.4810

5
. 

 

 

For the Re=1.4810
5
 simulation the same figure reports four equally spaced phases out of 

the 64 stored phases. Both k and Pk are computed by using the phase averaged flow fields. The 

dashed curves draw the envelope of the peaks at different phases of both the selected quantities 

along the P line. The dashed curves show that the peak of turbulent kinetic energy increases while 

the wake is swallowed into the vane, and it begins to decrease slightly upstream of the trailing edge. 

Remarkably, this behaviour does not depend on the Reynolds number. For the Re=5.1810
4
 case, 

the peak of k in the LES result is located somewhat upstream of the position found in the DNS. It 

must be pointed out that some of the differences in the curves between DNS and LES at 

Re=5.1810
4
 may stem from the difficulties in tracing the peak of k and selecting exactly the same 

phase for the two simulations. Observe that each phase-averaged curve shows two peaks (see for 

example the peaks indicated by the labels P1 and P2 in Figure 5a): the first one refers to the new 

incoming wake, whereas the second one is clearly the product of the previous wake which travels 

downstream. They correspond qualitatively to the wake peaks labelled P1 and P2 in Figure 2b. The 

curves show that the peaks are quite sharp along the first 50 to 60% of the blade, i.e. the large 

values of k are localised in a narrow region. These peaks partly diffuse once the trailing edge of the 

blade is approached. An estimate of the growing strength of the localised peaks of k along the wake 

path is given by the ratio of the turbulent kinetic energy encountered in the wake upstream of the 

blade, kwake, and the maximum peak of k encountered when the wake is inside the blade vane, kvane. 

For the time phases considered here the ratio kvane/kwake can exceed the value of 10. Conversely, the 

growth of the turbulence intensity (defined as the ratio of the square root of the local turbulent 

kinetic energy and the mean local velocity, U/kTu 3
2 ), is not as steep since Tu reaches values 

approximately 50 to 60% larger than the levels found deep inside the wake upstream of the cascade.  

The production rates of turbulent kinetic energy, Pk, shown in Figure 5, also increases 

continuously while the wake is travelling in the first 50-60% of the blade vane. The plots reveal that 

the envelopes of the peaks of both k and Pk substantially coincide in the first 50 to 60% of the blade 

vane. This confirms the strong link between these two quantities, regardless of the Reynolds 

number, of the wake frequency, and of the nature of the simulation (DNS or LES). Further 

downstream the rate of production of turbulent kinetic energy drops and, consequently, the 

dissipation of turbulent kinetic energy takes over. Hence, the gradient of k reverts from positive to 

negative. The drop of Pk is the strongest in the Re=1.4810
5
 case.  

Now that the peaks of k and Pk have been clearly identified in both space and time by using 

the phase-averaged flow fields, it is possible to show how they are linked to the strain and stress 

tensors. Prior to do this it is convenient to recall the expression for the phase-averaged production 

rate: 

P P P 
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Figure 5. Peaks of turbulent kinetic energy, k, and production rate, Pk, along line P versus the axial 

co-ordinate in the blade vane: (a) LES - Re=5.1810
4
 (b) DNS - Re=5.1810

4
, (c) LES- 

Re=1.4810
5
. 
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Figure 6. Time averaged magnitude of the strain tensor eigenvalue along line P versus the axial co-

ordinate in the blade vane: (a) LES - Re=5.1810
4
 (b) DNS - Re=5.1810

4
, (c) LES -Re=1.4810

5
. 
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Figure 7. Time averaged magnitude of the stress tensor eigenvalue along line P versus the axial co-

ordinate in the blade vane: (a) LES - Re=5.1810
4
 (b) DNS - Re=5.1810

4
, (c) LES -Re=1.4810

5
. 

 

 

j,ij,ik SP                                                           (1) 

 

in which j,i and j,iS  are the turbulent stress and strain tensors respectively. The relative 

contribution of strain and stress to the production rate can be quantified by computing the 

eigenvalues of the two tensors. Analysing the 2D strain tensor instead of the 3D tensor suffices 

since we assume span-wise flow periodicity and because of the prismatic nature of the blade (i.e. in 
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the phase-averaged flow field S3,3=0). Since the flow is incompressible, implying that tr(Si,j) =0, the 

2D strain tensor can be rewritten along its principal axes as: 

 















s

sD2
S

0

0
                                                             (2) 

 

The same analysis can be carried out for the stress tensor. In this case the 3D tensor for the 

current flow configurations reads: 
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in which 0uuuuuuuu 32233113   because of span-wise periodicity. Therefore, for 

the present analysis once again it suffices to refer to the 2D sub tensor since there is no direct phase-

averaged production of turbulence from span-wise stresses. The third eigenvalue is 33uu , which 

corresponds to the third eigenvector aligned with the span-wise direction. Hence, the 2D sub stress 

tensor reads:  

 
















2212

2111D2
j,i uuuu
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The two-dimensional stress tensor eigenvalues read: 

 























 2

1
D2

0

0
                                                            (3) 

 

Now, the magnitude of the eigenvalues along the P line allows investigating what is the 

contribution of the strain and turbulent stress tensors to the production rate of equation (1) in the 

plane x-y. Most likely due to the limited number of phases used for the phase-averaging, the 

eigenvalues, S and -S, and 
1
 and 

2
 of the phase averaged 2D strain tensor and stress tensor 

respectively, extracted along the P line show a somewhat chaotic behaviour. Hence, it was decided 

to plot the average magnitude of the phase-averaged eigenvalues along the P line for the three 

simulations, as shown in Figure 6 and Figure 7. The curves reveal that the peak of the production 

rate roughly corresponds to the maximum of the largest strain tensor eigenvalue, while the peak of 

the stress tensor eigenvalue, although quite close, is located 0.10-0.15Cax downstream. Moreover, 

the overall shape of the largest strain tensor eigenvalue curve resembles the shape of the  turbulence 

production curve plotted in Figure 5. Apparently, the turbulent stress reacts to the turning and 

straining of the wake with some slight delay with respect to the strain tensor. This feature was 

already observed by Rogers [16] for linear wakes in which either the direction of compression or 

that of stretching was aligned with the wake path. 

 

 

5. Analysis along the wakes 

 

The previous section proved that the peak of production is located close to the strain tensor 
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eigenvalue peak and substantially stems from the concerted action of the peaks of both strain and 

turbulent stresses. In order to understand how the wake triggers both production and turbulent 

kinetic energy, it is convenient to concentrate the analysis on a line aligned with the phase-averaged 

wakes. For this purpose we selected two different phases, =0.008 and 0.508 for the Re=5.1810
4
 

case, and =0.375 and 1.00 for the Re=1.4810
5
 case respectively. The lines that identify the 

wakes follow the location of the maximum velocity magnitude defect, and are illustrated in Figure 

8. The 2D phase-averaged strain tensor eigenvectors allows to identify the local directions of 

compression and stretching and to compare these directions with those of the eigenvectors of the 

stress tensor along the selected wakes. This comparison is carried out in Figure 8 for both the LES 

and the DNS at Re=5.1810
4
 and the LES at Re=1.4810

5
. Observe that the eigenvector length is 

chosen to be proportional to the corresponding eigenvalue magnitude. The plots show a remarkable 

feature of flow; the wake is almost perfectly aligned with the direction of compression in the 

proximity of its apex. This seems to be a common feature for both the wake positions, and for both 

values of the Reynolds numbers, regardless of the nature of the simulation (DNS or LES). Wu and 

Durbin (2001) observed the same feature in their DNS of the same flow at Re=1.4810
5
.  

Apparently, while the wake is smoothly turned and deformed inside the blade vane, the 

portion which is entrained in the fastest part of the flow field, identified by the bow apex of the 

wake, gradually aligns with the direction of compression. The portion of the wake, shown in Figure 

8, close to the suction side is not aligned with either the direction of compression or that of 

stretching, whereas the portion from the apex to the pressure side is almost aligned with the 

direction of stretching. 

The plots showing the eigenvectors of the stress tensor along the wakes reveal a similar 

behaviour; one of the eigenvectors of the stress tensor is clearly tangent to the wake in proximity to 

its apex. This is again a common feature of the two Reynolds numbers and the two wake positions, 

and, at least for the lower Reynolds number case, it is predicted by both DNS and LES. Observe 

that, of the two, the eigenvector that is almost aligned with the wake is the one associated with the 

largest eigenvalue. This interesting feature of the flow was also observed for all other phase 

averaged positions of the wake, and it is not reported here for the sake of brevity. Figure 4 and 

Figure 7 reveal that the location of the turbulent kinetic energy peaks corresponds to the apex of the 

wakes. On turn the apex of the wakes is almost perfectly aligned with one of the eigenvectors of 

both the strain and stress tensors. In other words the location of the turbulent kinetic energy peak 

corresponds to the wake-eigenvectors alignment.  

 The production rate of turbulent kinetic energy can be split into normal and tangential 

contributions respectively. Unfortunately, in such a complex flow field the definition of normal and 

tangential production is not straightforward because of the relative motion of the wakes with respect 

to the background flow. Castro and Bradshaw (1976) analysed a highly curved mixing layer and 

Gibson and Rodi (1981) and Leschziner and Rodi (1981) formulated the rate of production of 

turbulent kinetic energy in terms of normal and tangential stresses contributions (i.e. production that 

stems from normal and tangential stresses respectively) for such flow. In the experiments by Castro 

and Bradshaw, and in the annular and twin parallel jets computed by Leschziner and Rodi, the 

direction of convection coincides with the direction of the shear layer, as illustrated in Figure 9. In 

this case the decomposition between normal and tangential production is trivial and can be carried 

out by following Gibson and Rodi. However, in the present flow configuration the direction of 

convection differs from the direction of the shear layer generated by the incoming wake (Figure 9). 

In particular, the angle between the two directions at the inlet section can be as large as 30 degrees, 

and it reaches approximately 90 degrees inside the blade vane. This is made evident in  

Figure 10, which shows on the same plot at =0.00 both the streamlines and the velocity defect 

defined as    2
022

2

011d vvuuu  . 
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Figure 8. Eigenvectors of the strain tensor (left) and of the stress tensor (right) along two selected 

wakes: (a) LES - Re=5.1810
4
 (b) DNS - Re=5.1810

4
, (c) LES -Re=1.4810

5
. (For the strain 

tensor, the red segment represents the direction of compression). 

(a) LES – Re=5.1810
4
 

(b) DNS – Re=5.1810
4
 

(c) LES – Re=1.4810
5
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Figure 9. Sketch of the convection and shear layer directions. Grey arrows indicate direction of 

convection, thick black arrows indicate orientation of shear layer in proximity to  

the bow apex of the incoming wakes. 
 

 

 
 

Figure 10. Phase averaged streamlines and velocity defect isolines computed by the LES,  

=0.00, Re=1.4810
5
.  

 

In order to determine whether the large production rate in proximity to the wake apex is 

mostly due to normal or tangential stresses, the particular orientation of both the strain and stress 

tensors eigenvectors with respect to the wake needs to be further investigated. Prior to this it is 

convenient to analyse what happens in a turbulent boundary layer as a simplified reference 

condition. This is done in Figure 11, where the typical eigenvectors of a turbulent boundary layer 

refer to the log-law region with moderate anisotropy. Here, the shear layer is aligned with the wall 

and with the direction of the core flow. Due to incompressibility, the strain tensor eigenvectors in 

the turbulent boundary layer are such that =45 deg, while for the stress tensor eigenvectors <45 

deg and the production rate is due to tangential stresses (see Pope (2001)). The strain and stress 

streamlines 

B 

A 

C 

 

(a) Castro and Bradshaw [2]                             (b) Present 
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tensor eigenvectors for the wake are extracted from the points labelled A and B as documented in 

Figure 10.The wake in the turbine vane can be imagined as the sum of two virtually parallel shear-

layers, as illustrated in Figure 11A, B,C. The rotation of the core flow only produces a very weak 

shear whose effect on the local production of turbulence can be neglected when compared to the 

effect of the wake shear layers. In point A (see Figure 11A), which is located away from the apex 

and close to the suction side the orientation of the eigenvectors with respect to the wake is very 

similar to what found for the boundary layer: both the strain and stress tensors eigenvectors are 

approximately at an angle  of 40-45 deg with the wake, and, consequently, with the main shear 

layers. Hence, the production rate is mostly governed by shear stresses. In point B the situation 

drastically changes: one of the eigenvectors of both the strain and stress tensors is almost aligned 

with the shear layer produced by the wake (see Figure 11B). This means that both tensors are 

diagonal in a reference frame aligned with the wake shear layer. Therefore, the absence of any 

significant contribution stemming from off-diagonal terms suggests that in point B the production 

of turbulence is predominantly due to normal stresses. In particular, it is the eigenvector that 

identifies the direction of compression that aligns with the bow apex of the wake. In point C the 

eigenvectors are still almost aligned with the wake, but here it is the direction of stretching that 

aligns with the shear layer. Hence, the strong straining of the shear layer considerably reduces the 

production rate with respect to point B. This is particularly evident for the first of the two wake 

positions reported in Figure 12 (=0.008 at Re=5.1810
4
 and =0.375 at Re=1.4810

5
). In fact, 

after the peak located at S/Smax0.5, Pk drops down while approaching the pressure side. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 11. Sketch of the strain tensor eigenvectors (black) and stress tensor eigenvectors (grey) in a 

turbulent boundary layer (left), and in two positions A and B, as detailed in  

Figure 10, along a typical wake. 

 

 

 

It is now possible to rearrange the production rate in the principal frame of reference 

identified by the eigenvectors of the strain tensor, and not in the direction of the flow. By defining  

as the angle between the x-axis and the direction of compression, the stress tensor components, ij, 

are: 

 

 cossinuv2sinvcosuu 22222
p  

 cossinuv2cosvsinuv 22222
p                             (4) 

 




  2222

pppp sincosuvcossinvuuvvu   

in which the subscript “p” denotes values in the principal frame of reference. In the same frame, the 

 

solid wall 

 

wake path (A) 

 

wake path (B,C) 
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strain tensor is obviously diagonal so that the production rate can be computed by a term by term 

multiplication of equations (2) and (4). The following normal stress contribution results: 

 





  2

pS
2
pSk

N
k vuPP                                                        (5) 

 

 As it could be expected, the contribution of the tangential stresses to the production rate in 

the principal frame of reference is analytically zero since: 

 

0vuvuP ppSppS
T
k






   

 

Therefore, the production rate is mostly due to normal stresses where the wake is aligned 

with one of the principal directions. 
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Figure 12. Turbulent kinetic energy, k, production rate, Pk, and strain tensor eigenvalue, , along 

two selected wakes: (a) LES - Re=5.1810
4
 (b) DNS - Re=5.1810

4
, (c) LES -Re=1.4810
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. 

 

 



 18 

It is now possible to plot k, Pk, and S along a phase-averaged wake-wise co-ordinate S, 

defined in Figure 8a, for both phase-averaged positions of the wakes illustrated in the same figure. 

The origin of S is located in the proximity of the suction side. Figure 12 shows the values of k along 

the two wakes. The circles and triangles help in locating the peak of k along the wakes of Figure 8. 

It is evident that the peak of k and the largest production of turbulent kinetic energy are 

approximately positioned at the point where the wake is aligned with the direction of compression 

and with one of the eigenvectors of the stress tensor. Both k and Pk gradually increase along the axis 

of the wake, starting from the suction side portion. They both reach a maximum and then decrease 

in the flow region where the wake is almost perfectly aligned with the direction of stretching. 

For the Re=5.1810
4
 case, along the first wake (=0.508), compared to DNS, LES 

underpredicts k and Pk. The reason for this may be partly the omission of SGS contributions in the 

LES. As remarked before, the maximum value of k is generally located closer to the suction side 

boundary layer than in the lower Re case. When switching to the second wake (=0.008), the 

discrepancies between DNS and LES is substantially reduced. A possible explanation is that at the 

previous phase there are not many significant flow structures and inside the wake mostly small 

scale fluctuations are present, which are not resolved, but modelled, by LES (and neglected in the 

plots). When moving further in time, turbulence has developed and there appear more flow 

structures (as evidenced by the flow visualisation), the contribution of which is directly captured by 

the LES. The plots related to the flow at Re=1.4810
5
 also reveal another interesting point. At 

=0.375 the location of the peaks of k and Pk coincides, but at =1.0 the location of the large value 

of k is different from that of Pk. This apparently contradicts what has been discovered so far. 

However, Figure 12(c) reveals that the maximum production rate at =1.0 is approximately 1/4 of 

that at =0.375. In other words, the build-up of turbulence is virtually complete when the apex of 

the wake reaches x/Cax0.9 at =1.0 (Figure 8). Therefore, the peak of turbulent kinetic energy 

visible along this wake at s/Smax0.2 (i.e. very close to the suction side) is the result of convection 

from upstream where the flow experiences large production rates. 
 

 

6. Conclusions 

 

The analysis conducted on both the DNS and LES data sets at two Reynolds numbers 

illustrates how the alignment of the wake with the strain tensor eigenvectors controls the position of 

the peak of turbulent kinetic energy production, while its strength is mainly controlled by the 

magnitude of the strain tensor eigenvalue. In practice the largest production of turbulent kinetic 

energy will take place at a particular position along the wake where the maximum strain tensor 

eigenvalue approximately coincides with the location of the alignment of the wake with the 

direction of compression. If this condition is not fulfilled, the turbulent kinetic energy may still 

grow locally, (in fact the peak of turbulent kinetic energy is constantly increasing up to x/Cax=0.85-

0.9) but at a smaller rate. 

LES was also found in fair agreement with the DNS at Re=5.1810
4
, suggesting that further 

analyses may be conducted by using much less computationally intensive LES as compared to 

DNS, provided the discretization quality is carefully controlled to appropriately resolve not only the 

boundary layers, but the incoming wakes as well. 

The high-fidelity simulation data sets identified all the mechanisms contributing the 

production rate of turbulent kinetic energy. The analysis showed the relative importance of the 

strain and stress tensors respectively, together with normal and tangential contribution to the 

production rate by comparing with Castro and Bradshaw results. A further analysis carried out in 

the strain tensor principal frame of reference showed the main contributions to the production rate 

of turbulent kinetic energy.  

The simulations also revealed differences in the location and intensity of the turbulent 

kinetic energy peaks when increasing the Reynolds number from 5.1810
4
 to 1.4810

5
. In 
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particular, at Re=1.4810
5
 the turbulent kinetic energy peak moves much closer to the suction side 

boundary layer. This phenomenon, associated with the local growth of turbulent kinetic energy 

above the free-stream level, is expected to improve the suction side boundary layer stability and it 

can provide very valuable information in the design of suction-side-separation-free low-pressure-

turbine blades. 

Last, but not least, the anisotropic turbulence production rate captured by the DNS and LES 

can be compared with the prediction of lower order models, to allow fixing eventual weaknesses by 

a strictly analytical manner. 
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