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The objective of this paper is to define the guidelines for the design of new boiling test sections with a
large number of artificial nucleation sites during nucleate boiling for thin substrates horizontally
immersed in a saturated liquid with artificial cavities located on the upper surface. The findings of
numerical simulations of pool boiling heat transfer for a single bubble and for a large number of nucle-
ation sites based on the analysis of experimental cases were analysed. Dedicated test sections were used
in experiments for the study of boiling mechanisms and interactions between active sites so that the
numerical models representing the physics of the problem could be improved. The hybrid nature of
the code used in this study, combining the complete solution of the three-dimensional time-dependent
energy equation in the solid substrate with semi-empirical models representing the physical phenomena
occurring in the liquid side, in a simplified way, allows a large number of simulations in a reasonable
computational time.

The present paper focuses in the first part on the capability of the model to reproduce the experimental
results for various conditions, while in the second part, the results for a large number of nucleation sites
are analysed. Regarding the single bubble growth, two series of simulations will be presented in this
paper: the first one analyses the mechanisms of nucleate boiling on a silicon substrate immersed in
the dielectric fluid FC-72. The second series studies the behaviour of bubbles on metallic substrates, plat-
inum and titanium, in saturated water. In the last section, the effect of the position of a site during sim-
ulations of a large population of sites (of the order of 100) on the waiting time, growth time, type and
occurrence of coalescence and the thermal characteristics is presented.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Boiling heat transfer has always been a very interesting
research field because of the high efficiency of this process in
removing heat from a solid body using liquids. Several studies
focussed on the understanding of the fluid-solid combinations in
order to obtain the highest heat fluxes at the minimum superheat.
High values of this parameter could lead to possible alteration of
thermal heat transfer characteristics of the solid substrate. How-
ever, despite the fact that research has been carried on for several
decades, the complete picture of the processes involved is far from
complete, due in part to the non-uniformity of the conditions and
characteristics of the materials during experiments (substrates and
liquids as well as measuring instrumentation), to the non-linearity
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of the processes and to the possible presence of hysteresis phe-
nomena (generally related to the activation temperature for a
nucleation site significantly higher than the expected or theoretical
value). Due to the complexity of the research area, the studies
focus on different aspects, from the formulation of predictive cor-
relations to dedicated experiments investigating specific aspects or
to the analysis of results of complex numerical simulations. The
first studies focussed on the prediction of the average heat flux
between the liquid and the solid substrate and the associated max-
imum wall superheat, as for instance in the models suggested by
Rohsenow [1] or Engelberg-Foster and Greif [2] and often based
on dimensionless numbers, as described in [3]. Past studies inves-
tigated also bubble growth: the analysis of the conditions neces-
sary for the activation of a nucleation site (for instance [4,5] or
[6]) and their connection to the presence of a vapour nucleus
trapped in a cavity (acting as a nucleation site) that starts growing
when superheat increases. When the temperature of the walls of
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Nomenclature

Latin letters

An Ay cell lateral surface areas
cr specific heat of liquid

f dimensionless factor

g gravity acceleration

h heat transfer coefficient
HTC heat transfer coefficient
Hpy latent heat of evaporation
ij, k numerical identifier

k thermal conductivity

p pressure

q" heat flux

Qvol volumetric heat source
Q heat contributions

r bubble radius

S distance

t time

T temperature

Vv volume

X, ¥,z  Cartesian coordinates
Xr radial coordinate

Wyy mesh width

Greek letters

o thermal diffusivity

Yvol volumetric thermal expansion coefficient
1 thickness

Ap pressure drop

At time step

AT superheat

Az thickness of the layer

i liquid viscosity

\ liquid kinematic viscosity
o density

4 surface tension

10 contact angle
Subscripts

act activation

air air

av average

b bubble

bd bubble departure
c contact area
cacav cavity

CL contact line

D dome of the bubble
decr decreasing

eff effective

enh enhancement

eq equivalent

g growth

H heater substrate
i,j, k generic site

in initial value

L liquid

m mesh

max maximum

ML micro-layer

NC natural convection
NS nucleation site

S shape of the bubble
sat saturation

scal scaled

SEN sensor

tot total

w wall

Vv vapour

Vol volume

0 initial value

@ contact angle

the cavity with the trapped nucleus starts to increase, and if
enough heat flux is provided, the nucleus grows up to the border
of the cavity and then expands outside it. The shape of the growing
bubble is determined by the advancing mode of the triple contact
line (i.e. the theoretical line that divides liquid, solid and vapour
phases, as for instance in Tong et al. [7]) at the surface immediately
outside the cavity border. Kenning [8] reviewed the model of
Chesters [9] for the growth of bubbles out of the cavity and related
it to the bubble growth speed. Three growth models were identi-
fied for it: slow confined, slow spreading and fast bubble growths.
Several studies assume that the bubble grows apparently as a trun-
cated sphere, and that its shape is connected to the apparent con-
tact angle, i.e. the apparent angle formed between the solid
substrate and the dome. For this parameter, a distinction was made
depending on whether the liquid-vapour interface was moving
towards the vapour/gas region (advancing contact angle) or away
from it (receding), as reported in [7]. The semi-empirical models
suggested for the bubble growth, focussed on the identification
of dedicated correlations for the average bubble radius and bubble
departure radius (e.g. described in [10-13]). Two phases for the
bubble growth were generally identified, the first one dominated
by inertial forces and the second by thermal phenomena. The
departure of the bubble was related to the breakdown of the equi-
librium between forces that keep the bubble attached to the
substrate (and in particular the surface tension) and forces trying

to detach it (gravity and hydro-dynamic lift). Departure of the bub-
ble was observed to have a strong influence on the temperature
distribution over an area larger than the bubble size due to the
high heat flux during the bubble growth and mostly to the wake
effect on the liquid side due to the lifting of the departed bubble.
The quantification of this area, often called “influence area”, was
also investigated, amongst the others by Han and Griffith [14]
and Mikic and Rohsenow [15], concluding the influence area to
have a diameter approximately double the bubble departure diam-
eter. The influence area and superheat distribution were also
related to the waiting time, i.e. the time between the departure
of a bubble and the nucleation of a new one out of the same cavity.
All these theoretical and empirical models can provide useful and
easy to use correlations, but they are strongly limited by their
dependence to the experimental conditions to which they refer.
Stephan and Abdelsalam [16] and Pioro et al. [17] analysed the dif-
ferences between the use of simple general correlations (generally
valid for a wide range of conditions but limited by a significantly
low accuracy) and more precise predictive equations (very precise
but presenting the drawback of a validity limited to a narrow range
of conditions). Recently, several efforts were directed on the devel-
opment of sophisticated numerical codes: this was possible
because of the continuously increasing computational power as
well as of the more precise experimental equipment and accuracy
of the results. However, the higher the level of detail introduced in
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the representing mathematical models, the more complicate the
phenomena appear, making part of the scientific community
merely doubt the fact that a complete understanding of the physics
is even possible. The solution of the three dimensional time depen-
dant equations for both liquid and solid domains for a large num-
ber of nucleation sites independently acting is still not achievable
in reasonable computational times. Different approaches have then
been studied to simplify the problem, limiting the analysis to the
case of bubbles growing on the upper surface of a solid substrate
horizontally immersed in a saturated liquid. Initially, a model
was created for a single bubble growing out of an isolated
nucleation site for a substrate modelled at constant temperature
[18-20]. This approach presented two main disadvantages: firstly,
the condition of isolated bubble is applicable only to low or inter-
mediate heat fluxes, so that the density of active nucleation sites
and interaction phenomena are limited. Secondly, the hypothesis
of constant temperature in the substrate was shown to be unreal-
istic [21] and on the contrary the effects of temperature differences
across the substrate were shown to play an important role in the
activation of the sites [22]. However, a great advantage introduced
by this model was the creation and coupling of the so-called micro
and macro regions, indicating respectively the areas in proximity
and around the triple contact line area. The use of this solution
allows a high level of detail and a finer mesh distribution in the
region with high variation of the curvature of the bubble dome,
supposed here to correspond to the area with the strongest evap-
oration (micro-region). A similar model was also adopted by the
team led by Stephan, as described for instance in [24,25], improved
by the elimination of the constant temperature in the substrate.
The model is still not applicable to a large number of nucleation
sites due to computational limitations and to the different interac-
tions between a growing bubble and the surrounding space. Those
were studied by Zhang and Shoji [26], and four types were identi-
fied: (1) interactions through the solid substrate, (2) through the
liquid, (3) between the bubble and the environment and (4)
between different bubbles at adjacent sites. The interaction
through the substrate strongly depends on the characteristics of
the substrate itself, on its thickness and thermal conductivity,
and then in general on its thermal capacity, which can lead to a
more or less uniform distribution of the temperature field.

The studies on site interaction relate to the limitation or
enhancement of the activity of a specific nucleation site due to
the presence of another active or previously active site located at
close distance. These effects, often identified respectively as inhibi-
tion and seeding effects, were connected to phenomena on the
liquid side and in particular to removal or deposition of a vapour
nucleus on a cavity after departure of the bubble at the adjacent site
[27]. A vapour nucleus, in fact, is supposed to be trapped in the cav-
ity or scratch acting as nucleation site either during the shrinking of
the neck of the bubble while departing, as shown schematically in
Tong et al. [7], or by deposition after spreading and subsequent
shrinking of the contact area of a bubble at an adjacent nucleation
site as described before. Considering all the uncertainties to which
these phenomena are subject, this brief introductive analysis shows
the main difficulties that a programmer may face while creating a
new numerical model. For this reason, some physical models need
to be significantly simplified and others not accounted for alto-
gether depending on the objectives of the study and according to
the computational power. The hybrid approach used for the present
calculations is particularly interesting due to the possibility of
studying the interactions between bubbles and the temperature
distribution across the substrate. The original version of the
model/code was developed by Pasamehmetoglu and Nelson [28],
allowing only one bubble per cell. The code was subsequently mod-
ified, as described in Golobic et al. [29,30] using the same approach
but introducing a mechanism able to refine the mesh distribution

around a nucleation site every time this becomes active. The origi-
nal model/code and its subsequent improved versions were
acquired and modified in this study to describe the growth of bub-
bles from artificial sites. In order to comply with the objectives of
this work, a restructuring process was done (so that the code was
also suitable for parallel computing). Moreover, several aspects of
the physical model were modified and improved in order to make
them more similar to experimental evidence, together with a first
process of verification of the numerical code. The modifications
focussed on the variation of the bubble shape and the contraction
of the contact area during the final stage of the bubble growth,
the different heat contributions at the dome and at the base of
the bubble and finally the study of interactions between bubbles
growing at adjacent sites. This study will focus on the results of sim-
ulation using different substrate-liquid conditions for a single bub-
ble. In fact, the code will be used to simulate a silicon substrate
immersed in FC-72 and a metal foil in water. The numerical results
are compared to experiments carried by Hutter et al. [31] and Gol-
obic et al. [32]. The code was also used to investigate the interac-
tions between a large number of nucleation sites (~100), with
focus on their effects on the activity of the sites, the average bubble
growth time and radius and the superheat variation at the nucle-
ation site and in the area around it.

2. Description of the physical model used in the code

The use of a hybrid code as the one adopted for the current
simulations relies on input data obtained either from experiments
or from theoretical models applicable for the specified conditions.
If the data is not available, assumed values must be introduced and
verified afterwards. The data are related to an isolated growing
bubble as well as to the properties of the liquid and substrate
and the numerical input used for mesh management. The most
important data are listed here:

e The bubble departure radius r,4, i.e. the final radius that the
bubble assumes when departing.
e The growth time (when available) t,, i.e. the time that the bub-
ble requires to reach the bubble departure radius from
nucleation.
The apparent contact angle ¢, i.e. the angle between the sub-
strate and the bubble, supposed to grow as a truncated sphere.
This value is not a real physical value and should not be con-
fused with the real contact angle, which is determined by the
balance of the forces acting on the bubble at each instant and
which may strongly depend also on the shape of the cavity
and other thermal-hydraulic factors.
The activation conditions for a nucleation site and the average
superheat of the substrate ATy,. It is assumed in the code that
activation occurs when the temperature at the nucleation site
exceeds a fixed value called activation temperature T

As mentioned before, the approach is based on a mesh distribu-
tion that is modified when a nucleation site becomes active in
order to have a finer mesh around it. The original version of the
model used an irregular distribution of triangular cells that was
locally refined around an active nucleation site, as shown in
Fig. 1. The present model uses square cells arranged in a Cartesian
grid, as shown in Fig. 2. In both cases, (a) represents the phase
where no nucleation site is active and the mesh distribution is
coarse; once the conditions for activation of a site (described later)
are satisfied (b) the mesh located around the nucleation site in a
pseudo-circular region are removed and replaced (c) by a finer
mesh distribution arranged with central symmetry. The cell distri-
bution is identically repeated for all the layers in which the
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Fig. 1. Mesh distribution for cells with triangular base - irregular distribution [30].
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Fig. 2. Mesh distribution for cells with square base - regular distribution.

substrate is vertically divided, for both cases of active and inactive
nucleation sites (respectively unrefined and refined mesh). This
process allows fast simulations and the location of the nucleation
sites in whichever position in the upper surface of the substrate.

At the beginning of the simulations, the code automatically num-
bers the cells with a progressive identification number. Once a
nucleation site activates, the cell identification numbers are chan-
ged, and the new refined cells assume high values. For each cell,
following the numbering and starting from the top layer, the code
solves (with an explicit method) the 3-dimensional (x, y, z) time
dependent (t) energy equation (Eq. (1)). The discretised form, shown
in Eq. (2), is used in the code in order to calculate the temperature T
in each cell from the contribution of the heat through the surfaces at
the interface with the other cells or the boundaries. g, represents
the volumetric heat source that may be present to simulate for
instance electrically induced heat generation; its value can be also
set equal to zero, as it was during the present simulations.

T OT T
ox2  oyr 0z

Q = qvolAv,kAZ +Au.k

g_ kH
ot~ puCu

ol
PHCH

(1)

Ky o - , _

X KZ [T(f:k,z—1) — 2T(£; k,z) + T(F;k,z+ 1)] + ZJ:A,,,,{,JA

kHAZ
Sk_j

[T(t:k,2) - T(t:],2)] (2)

The symbols of the single cell variables as shown in Fig. 3.

At the initial time step (t = 0 s) the temperature for all the cells
and all layers is set equal to a fixed value (T;,), either equal to the
saturation temperature or higher. The code imposes that the tem-
perature at the lateral edges of the substrate is equal to the satura-
tion temperature, as expressed in Eq. (3), with the symbols as in
Fig. 4. For the bottom surface (z=0), natural convection with the
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Fig. 3. Geometry of a cell.
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Fig. 4. Geometry of the substrate [30].

surrounding area is supposed, as expressed in Eq. (4), with hg;,
equal to zero if adiabatic conditions are to be simulated.

= Tsat (3)

T‘x:o,x:xmax.yzo‘y:ymax;nggo'y
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a2 — h(T — Tar) (4)
0<X<Xmax,0<Y<Ymax 2=0

For each nucleation site i, an activation temperature, Tyc;, iS
assigned; for each of the inactive sites, at each time step, the code
checks the temperature for the cell k corresponding to its centre.
If the value exceeds the activation temperature, Eq. (5), and if the
not-overlapping mesh condition is satisfied (Eq. (13) discussed
later), activation of the site occurs, and the mesh distribution is
locally refined as described before. The bubble grows until depar-
ture, which occurs when the equivalent bubble radius req(t)
reaches a maximum value, called bubble departure radius rpq;, EQ.
(6), specified by the user for each nucleation site on the base of
experimental or literature data.

T(t, k,ZaH) > Tact,i (5)

Teqi(t) > Tpd,i (6)

The activation of a nucleation site depends on the activation super-
heat, AT, which can be imposed either as a constant or, if exper-
imental data are not available, can be calculated from Eq. (7),
supposing that the activation temperature is the minimum temper-
ature necessary for a nucleus of radius equal to the cavity radius to
start growing.

{ 4p = 20/rcay (a)

log,op(Pa) = 9.729 — 1562/T(K) (b) @

For a cavity of fixed cavity mouth radius (r.y) and surface tension
(o), the minimum overpressure (Ap) needed for the bubble to start
growing is defined by Eq. 7(a). From Eq. 7(b), with values specific for
FC-72 (based on [33]), the saturation temperature at experimental
conditions and the temperature at a pressure equal to the experi-
mental value plus the overpressure may be calculated. The activa-
tion superheat can then be derived. Alternative criteria may be
studied and easily introduced in the code, based for instance on
variations of the superheat instead of its absolute value. Moreover,
a modifiable uncertainty parameter has been added to the nominal
activation superheat to simulate the uncertainty of data from
experimental results. At activation (occurring for instance at t = t;)
the bubble starts from a zero bubble radius, r,(ts) = 0, so that the
initial nucleus radius is neglected. From the following time step,
the bubble grows as a truncated sphere with a fixed apparent

4 { heate
W. : / 7 r

Fei t,) ' '

i
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I
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Fig. 5. Advancing triple contact line.

contact angle from nucleation to departure ¢ = ¢o. Evaporation
occurs at the contact area (i.e. the region enclosed by the triple
contact line) and at the dome of the bubble, as described in Eq.
(8). The term on the left side represents the cumulative heat due
to evaporation at the considered time step; the first term on the
right side represents the cumulative heat at the previous time step;
the second and third terms account for evaporation in the inner
area (with heat transfer coefficient h;, = HTC;,) and contact line area
(hc = HTC¢). The last term Qp; accounts for the evaporation at the
dome. The equivalent bubble radius is calculated according to Eq.
(9), assuming a truncated sphere shape for the bubble. The
bubble radius r(t) is then obtained by considering the shape of
the bubble.

The contact area radius is then calculated, r(t) = rp(t)sing. Fig. 5
shows the fundamental bubble growth parameters for the advanc-
ing triple contact line.

QuiE+At) = Qui()) + D AyHTCinj[T(E:], 0) — Tsar AL

(xj.yj)€
inner area

+ Z Ay jHTCj[T(t:], 0n) — Tsar)At + Qp; (8)

(597)€
triple cont area

5/3Q,,(t + At)

et A0 =\ g, Hy

9)
Three different areas have been identified for the heat transfer coef-
ficient imposed on the upper surface, depending whether the cell is
located outside, inside or at the border (i.e. the triple contact line) of
the contact area. For the region outside the bubble contact area, a
natural convection heat transfer coefficient (hyc=HTCyc) is
assumed, which in the specific case of a silicon substrate immersed
in FC-72 [34]is given in Egs. (10) and (11) for the case of a metal foil
in water, [30].

hne = HTCxe = fonn314[T — Too]™? (10)
ke \?
hye = HTCne = fon0.14p,c, P;—“g <—L> (T - Tsm)} (11)
L \PLCpL

For the heat transfer model at the contact area, two models can be
used in the code at the moment (although the code is very flexible
and new ones may be easily implemented), as shown in Fig. 6: the
micro-layer model (ML) supported by recent experimental results of
[35] and the contact line model (CL) supported by Stephan and
Hammer [24] and Stephan and Fuchs [36].

For the first model, a thin film of liquid (micro-layer) is sup-
posed to be trapped between the bubble and the substrate leading
to pure conduction in the liquid, so that HTC = o"ﬁ The heat trans-
fer coefficient distribution presents a peak at the centre of the con-
tact area (i.e. the micro-layer is supposed to have its minimum
thickness) and a radial decrease, with no high heat transfer value
near the triple contact line. The latter model assumes that a strong
evaporation occurs at the triple contact line while a zero heat
transfer coefficient is supposed in the inner area. The contact line
model CL imposes a very high heat transfer coefficient in the triple
contact line area, corresponding to the circular perimeter of the
contact area of radius r(t) = r,(t)sing. In this area, pure conduction
in the liquid micro-layer of thickness &,y occurs, as shown in
Eq. (12). The thickness of the micro-layer is also defined as input
data by the user at the beginning of simulations, so that the heat
transfer coefficient in this area is indirectly imposed. The width
of the contact line area corresponds to the width of the refined cells
in the radial direction (dependent on the bubble size at departure
and number of rings used for the refined mesh area). It is generally
much larger than the theoretical contact line area, so that the heat
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HTCq /HTCyc ; gH HTCyc
HTC~2HTCye
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) I

HTC ~ 2HTCy. -

Fig. 6. Heat transfer coefficients models: (a) Micro-layer model (ML); (b) Contact Line model (CL).

transfer coefficient values are required to be scaled to obtain the
correct heat flux from the area.

he = HTCq = & (12)
omL

It is not clear which of the two models is to be chosen and when to
be applied. Different studies support one or the other model (as in
[35,24,36]) and for this reason it was here opted to have a flexible
model able to simulate both.

The second contribution to the bubble growth is due to the
evaporation at the dome. This has been seen to be very important
in determining the bubble growth rate and also to provide a signif-
icant contribution with increasing final size of the bubble. For this
reason a simple evaporation model has been implemented based
on Eq. (13): Qp; represents for site i the cumulative heat contribu-
tion through the dome of the bubble from the activation time ¢, ;
to the generic instant t when the bubble has an effective radius rp;
(t); fp,i is a constant parameter, generally equal either to 0 or 1 (but
it in principle may assume whichever positive value) to adjust the
evaporation contribution at the dome; fs;(t) is a time-dependant
geometrical shape factor introduced to take into account the trun-
cated sphere shape. Tog; in Eq. (14), depends on the activation tem-
perature defined for each site; it is defined by assuming that the
external part of the liquid thermal layer around the bubble dome
stays at a temperature equal to the activation temperature Ty ;
throughout the whole bubble growth.

Qs = fo[anr fos)] - | =) | ¢ 13)
oy, (t - tact.i)
Tefi = M (14)

The effect of this contribution is particularly relevant for large
bubbles or for very thin or poorly conductive substrates, as shown
in the next sections during the analysis of the numerical results.

Once the site becomes active, the bubble is assumed to grow as a
truncated sphere with a constant apparent contact angle during the
first stage of the bubble growth, and decreasing to zero with the
inverse of the volume of the bubble when the bubble radius exceeds
a fixed fraction of its maximum value, according to Eq. (15).

(po if I’b‘,‘(t - tuct) <fq7.decrrbd,i

(p'(t - tact) = 13 (t—tact) .
(Poﬁ {1 — t} if 7p;(t = tact) > fodearThai

@.decr bi
(15)

This method, which allows an increasing and then decreasing con-
tact area with consequent advancing and receding contact line, was
introduced also to limit the problems of bubble at adjacent nucle-
ation sites growing at alternative times, mentioned before. In fact,
the code does not allow the presence of overlapping mesh due to
two (or more) close refined sites. Two sites cannot be active at
the same time if their distance S does not satisfy Eq. (15).

S > 1.2(Fmj + I'mj) + 1.0wy (16)

This limitation may lead in some cases to nucleation sites that alter-
nate in activation, due to numerical reasons and this effect must be
taken into account while analysing the results. The replaced area
has a radius r,, slightly larger than the maximum contact area r¢max
(reached, in the original version of the code, at bubble departure
since the apparent contact angle has a fixed value, so that r.max =
T'pq - SIN(@p); in the new version of the code, the maximum contact
area is reached sometimes before departure and its value is smaller
than in the original version, due to the shrinking of the contact area
during the final phase of the bubble growth); its value may vary
from site to site. When the site becomes inactive again, the original
coarse cell distribution is restored. All the variables are indicated in
Fig. 7.

Coalescence phenomena, not taken into account in the original
version of the code, are considered to have a very important impact
on heat transfer rates. Three kinds of coalescence may be identified
in literature: horizontal, declining and vertical coalescence.
According to the conclusion of Shoji et al. [23], vertical coalescence
does not depend on the distance between nucleation sites and on
site population. This phenomenon is not taken into account in
the code yet. On the other hand, horizontal coalescence is consid-
ered to have a very large influence on the heat transfer rates
between the substrate and the liquid and to possibly induce signif-
icant temperature variations. For this reason, a very simplified
model for horizontal coalescence has been introduced for two or
more bubbles growing in close proximity so that their domes
may come in contact while the contact areas are still separated
(so that the limitation on mesh distribution as expressed in Eq.
(16) is satisfied). At the moment, the model supposes the occur-
rence of coalescence once the bubble domes come in contact.
Two situations, both of them observed in Golobic€ et al. [32], are
considered at present, as shown in Fig. 8:

(a) Coalescence type C1: If the bubbles have similar sizes, they
are assumed to continue growing as two independent iso-
lated bubbles (with truncated sphere shape), with interfer-
ing domes, but with no variations of the heat transfer
coefficients between the substrate and the liquid. Deforma-
tion of the bubble is not taken into account. The bubbles
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Fig. 8. Coalescence models.

grow independently until each of them departs when the
defined bubble departure radius is reached. An improve-
ment to this model may be implemented by introducing
an enhancing heat transfer coefficient (HTCc) in the area
below the interfering domes: this would take into account
the strong evaporation in the new contact area of the elon-
gated shape of the bubble. Several bubbles may coalesce at
the same time.

Coalesce type C2: If the sizes of two bubbles are significantly
different (at present, if the bubble radii ratio is equal or larger
than 2.0) the smaller bubble (2) is assumed to be instanta-
neously absorbed by the larger bubble (1), and then com-
pletely disappear. Bubble (1) undergoes a sudden increase
in volume equal to the volume of bubble (2). The bubble
departure radius is then increased according by a factor
accounting for the inclusion of the smaller bubble volume
into the bigger bubble. The bubble departure diameter is also
modified in order to avoid the possibility for the bigger bub-
ble to disappear immediately after inclusion by exceeding its

maximum bubble size. Moreover, this solution allows simu-
lation of multiple sequential coalescence, as may happen
when a large bubble absorbs several smaller bubbles one
after the other. A further improvement may be included in
this model, by assuming a fast detachment phase of the small
bubble after coalescence instead of instantaneous inclusion
and disappearance.

The model does not consider coalescence between an attached
bubble and a detached bubble from adjacent sites (declining coa-
lescence), so that a review would be necessary if this type of coa-
lescence was found to have a strong influence.

3. Numerical and experimental results

Two series of simulations have been run to reproduce the
experimental behaviour of a bubble growing out of an isolated
nucleation site. The first series refers to experiments carried out
by Hutter et al. [31] for a silicon substrate (380 um thick) com-
pletely immersed in dielectric FC-72 at saturation conditions. The
details of the experimental facility and results can be found in
[31]. The second series of simulations refers to the experimental
results described in Golobic et al. [32,35], respectively for titanium
(25 pum thick) and platinum (7 pm thick) foils immersed in water
at atmospheric pressure and saturated conditions. In both cases,
the main experimental results will be only summarised here, while
the study will focus on the analysis of the numerical results for the
bubble activity, superheat variations during the bubble growth at
the nucleation site and in the area around it.

4. Single bubble growth: silicon substrate on FC-72

The experimental results refer to five bubble growth cases (each
of them obtained as average value of several bubble growths at
specified experimental conditions) for bubble growing out of an
isolated nucleation site, but referring to imposed heat fluxes
applied to the back of the substrates, ranging from 0.46 to
13.4 kW/m?, as summarised in Table 1 together with the measured
average wall superheat (ATy), the average bubble departure radius
(rpa) and the bubble growth time (t,), see [31]. Three different test
sections were used as substrates during the experiments. Test sec-
tion #1, a circular disc of radius equal to 762 mm and thickness
0.38 mm, was only used to test the rig. Test section #2 was
19 x 39.5 mm?, with a heated area of 15 x 10 mm? with artificial
cavities 10 pm in diameter 40, 80 and 100 pum deep (although
the results were taken only from the 100 um deep cavity), with
temperature sensors located on the back of the substrate. For test
section #3, the cavity of interest was 10 um in diameter and
80 um deep, with temperature sensors located around the nucle-
ation site on the upper surface of the substrate. The contact line
heat transfer model was imposed for these simulations, with a high
heat transfer in the contact line region and a zero heat flux in the
inner part of the contact area. The bubble growth histories are
shown in Figs. 9-13 with comparison with the results from simu-
lations. Coalescence was never observed during these experiments.

Table 1

Summary of experimental results (Hutter et al. [31]).
Case Test section q’ ATy Senn Thd tg

[kw/m?] [K] (-1 [mm] [ms]

1 2nd 0.85 1.4 1.97 0.16 59.0
2 2nd 134 10.1 2.66 0.36 24.0
3 3rd 4.48 8.1 1.16 033 21.0
4 3rd 2.36 4.8 1.14 0.22 18.0
5 3rd 0.46 14 0.98 0.19 27.0
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Fig. 9. Experimental bubble growth showing bubble growth radius versus time for
case 1 (q" = 0.85 kW/m?).

0.4

——Runl

—=—Run2

—+—Run3

Average

radius [mm]

q"=13.4kW/m?
AT = 10.1K
2" generation

T

0 20
time [ms]

40 60

Fig. 10. Experimental bubble growth showing bubble growth radius versus time for
case 2 (q" = 13.4 kW/m?).

0.4 Case 3 ——Runl
o —=—Run2
03 ——Run4
E ——Run5
-E- 0.2 ~——Run6
3 ——Run7
® ——Run8
0.1 q"=4.48kW/m? __ p g
4T = 8.1K Average
‘ 34 generation
0 % T T 1
0 20 40 60

time [ms]
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Fig. 13. Experimental bubble growth showing bubble growth radius versus time for
case 5 (q" = 0.46 kW/m?).

Figs. 9-13 show that the experimentally measured bubble radius
varies strongly with the applied heat flux, but it does not signifi-
cantly change once the heat flux is fixed. A direct correlation
between the variation of the heat flux and the variation of the bub-
ble radius was not observed. For an applied heat flux of 0.46-
13.6 kW/m?, the bubble radius varied from 0.16 to 0.35 mm (more
than double) with growth times even more unpredictable, ranging
from 59 to 24 ms, with a minimum of 18 ms for q” = 2.36 kW/m?.
The comparisons between the experimental and simulated dimen-
sionless bubble growth for the five cases under the two conditions
of fseer =0.6 and 0.9 are shown in Fig. 14 respectively (a) and (b).
The natural convection enhancement factor f,,, was modified for
each simulation to match the experimental superheat. In the fig-
ure, the time has been made dimensionless by dividing it by the
average growth time (t/t;), while the dimensionless bubble radius
has been obtained by dividing the bubble radius by the bubble
departure radius (rp/rpq). The figure shows that the code is able
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Fig. 14. Comparison of experimental and simulated dimensionless bubble growths.
(a) fdecr =0.6; (b) fdecr =0.9.
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to reproduce well the bubble growth histories under different con-
ditions and that all the bubbles grow similarly if the dimensionless
values are considered. The parameters used here to reproduce the
single bubble growth will be used, unchanged to study the interac-
tions between nucleation sites. The analysis of long term bubble
growth histories showed that significantly long inactivity times
have been detected for the cases with applied low heat fluxes
(and consequently low wall superheat), cases #1 and #5, but the
physical reason of this phenomenon is still unknown. The code is
then unable to reproduce it, due to the fact that during the simula-
tions the superheat at the top surface was always higher than the
activation superheat. This could suggest that the condition use for
activation (based only on the punctual superheat values) could be
too restrictive. The inactivity time may in fact depend on local
hydro-dynamic effects in the liquid side, as for instance agitation
and wake effects after the departure of the bubble.

For case #3 (where an applied heat flux of 4.48 kW/m? was
used), a more detailed analysis has been carried out, as shown in
Fig. 15: a good agreement for the superheat variation (ATsgy) for
an area corresponding to the experimental size of the sensors
(0.84 x 0.84 mm?) can also be seen. However, the variation is very
small for both experiments and simulations (<+0.2 K) and signifi-
cantly lower than the sensitivity of the sensors themselves, so that
a proper agreement or disagreement cannot be deducted from the
comparison. For larger bubble departure radii, the superheat vari-
ations are expected to be larger. However, large variations ran-
domly distributed, as seen in experiments, are probably due to
the uncertainties in measurements and not directly related to the
bubble growth. In simulations, if the degree of superheat is larger
than the activation superheat, the nucleation site may appear con-
tinuously active, with negligible waiting time. Fig. 15 highlight that
for a faster departure process (higher f), the bubble growth is
more linear, reducing the effect of fast growth during the initial
phase and slow towards the end. A similar effect can be observed
in simulations varying the heat contribution at the dome of the
bubble. The higher the contribution, the more linear the bubble
growth becomes. For this case, the superheat variation along a line
passing through the nucleation site at the beginning (3 ms) and
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Fig. 15. Comparison of experimental and simulated dimensionless bubble growths.
(@) faeer=0.6; (b) fueer=0.9, case 1 (q” = 4.4 kW/m? with a measured superheat of
8.1 K, corresponding to an average bubble growth radius and time of 0.33 mm and
21 ps respectively).

end (20 ms) of the bubble growth is shown in Fig. 16, on the top
and bottom surfaces of the substrate, as well as the comparison
of the growing bubble (supposed a truncated sphere) with the sen-
sor size. It can be noted that the attenuation effect due to the thick-
ness of the substrate (380 um), that tends to level all local
variations, similarly to what happens when measuring with a sen-
sor of the same size of the bubble, is clear in the figure. From the
analysis of the variation on the top substrate, two different distri-
butions can be seen at the two different time steps. For t=3 ms,
two large negative peaks are located around the contact line, with
values significantly lower than in the area far from the nucleation
site (for instance for x ~ 8 mm, i.e. at ~1 mm from the nucleation
site that is located at x =9 mm). Moreover, a partial superheat
recovery can be observed at the nucleation site, due to the zero
heat transfer coefficient in the inner part of the contact area. Also
in this case, the maximum simulated superheat variation is
~0.4 K, smaller than the sensitivity of the sensors (0.5 K, [31]).
From the analysis of the second time sequence (t =20 ms), only
one central negative peak can be identified, due to the fact that
the contact area has already contracted so that only one mesh cell
is involved, with a superheat variation significantly smaller than at
the previous time steps (the shrinking of the contact area reduces
the area of large HTC).

5. Single bubble growth on thin metal substrate in water

The second comparison for the single bubble growth was devel-
oped for experiments on thin metal foils immersed in saturated
water. The micro-layer heat transfer mode was imposed for these
simulations, with a high heat transfer at the centre of the contact
area. The maximum value of the heat transfer to be used in the
model is obtained from experimental results and it depends on
the liquid-foil combination. Two series of experiments were used,
both developed by Golobi¢ et al. [32,35], using either a titanium
foil 25 pm thick with an applied heat flux of 50 kW/m? or a plati-
num foil 7 pm thick with an applied heat flux of 100 kW/m?,
respectively. From the analysis of the dimensionless heat transfer
coefficient at the nucleation site (scaled by the maximum value
as obtained from experimental data, and equal to 54 kW/m?K for
the titanium experiments and to 105 kW/m?K for the platinum
experiments) versus the dimensionless time (scaled by the bubble
growth time) a very important resemblance for the two cases has
been observed here for the first time by the present authors.

=) 1 'E‘
&
AN 7}
(]) 2
8.1 i 0o
Sk o [sENBOR] e
g G
oy 8
<
w
I
14
& 79
2
7}
—+3ms ; top ‘ﬂ
7.8 1—420 ms : top
- = +3ms bottom l l
--- #20ms: bottom
7.7 ; 1
6 7 8 9 10 11 12

X [mm]

Fig. 16. Bubble dimension and superheat distribution along a diametric line, for
case 1 (q” = 4.4 kW/m? with a measured superheat of 8.1 K, corresponding to an
average bubble growth radius and time of 0.33 mm and 21 ps respectively).
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Results are shown in Fig. 17. Although the values have been
directly taken from the studies with no further manipulation, the
results appear surprisingly similar. For this reason, the heat trans-
fer coefficient distribution with time has been imposed in these
simulations for these two cases, in difference to the previous case,
where the HTC was obtained from tuning on the bubble growth
time. The maximum HTGC,,x values, together with the growth time
t; and the bubble departure radius rp4 as listed in Table 2, were
used as input data. It must be noted that the characteristics of
the substrate may be affected by uncertainties due to their depen-
dence on their exact composition, leading to a possible over-esti-
mate of the input heat flux, Kenning et al. [37].

The tuning effect during these simulations was applied to the
heat contribution at the dome, varied in order to match the exper-
imental growth time. This contribution was seen to be very impor-
tant in both the cases with metal foils, contrary to the case of the
silicon wafer in water, where it was negligible. This is probably
related to the bubble size, much larger in the metal foil case, so
that the bubble dome surface (to which the dome contribution is
proportional) is larger.

With regards to the case of the titanium foil, the values explic-
itly provided in Golobic et al. [10] for the bubble growth are only
the time when the bubble reaches its maximum contact area
radius (t = 6 ms) and the departure time (t = 18 ms). The other data
used here to compare the simulations with the experimental
results are listed in Table 3. The contact area radii (r.) and the
superheat at the nucleation site (ATys) at different time steps were
derived from analysis of the temperature distribution along a line
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Fig. 17. Dimensionless heat transfer coefficient (HTC(t)/HTCnax) versus dimension-
less time (t/ty).

Table 2

Bubble growth characteristics.
Substrate Tha tg HTCnax
Titanium 2.67 mm 18 ms 54 kW/m? K
Platinum 1.1 mm 9 ms 105 kW/m? K

Table 3

Bubble growth data and superheat values at the nucleation site (Golobic et al. [32]).
The data were obtained from figures in the papers and are hence subject to a degree of
uncertainty.

t [ms] 0 1 2 4 6 10 14 18
rp [mm] 0 040 1.17 163 190 217 244 267
re [mm)] 0 026 0.76 114 140 134 060 O
ATys [K] 125 75 40 23 22 22 25 48
HTCpax [KW/m?] 5 33 54 30 NA 25 14 5

shown in [32]. On the other hand, the bubble radius values (1)
were obtained from the analysis of the bubble growth sequence.
In both cases, the data may be affected by uncertainties, which
are difficult to estimate, due to the quality of the figures in [32]
and resolution when reading them. Also the apparent contact angle
(equal to 45°) has been chosen from analysis of the bubble growth
sequence, although its value is only a rough approximation due to
the mirror effect. The value for the activation superheat (15.5 K)
was chosen according to the analysis described in [30] for a stain-
less steel substrate immersed in saturated water; a value that
agreed to that shown in the experimental results of [35]. Similarly,
the natural convection heat transfer coefficient was maintained,
with an enhancing factor able to guarantee a superheat of ~17 K
in the region outside the contact area in order to agree with the
experimental results presented in [32]. The micro-layer heat trans-
fer coefficient model has been applied to the inner part of the con-
tact area. Its maximum value has been obtained from observation
of the experimental data.

Fig. 18 shows a very good agreement between numerical and
experimental results for bubble radius, superheat and heat transfer
coefficient histories at the nucleation site. This shows that the
model is a reasonably good representation of the physics and the
code is able to reproduce the growth of a single bubble provided
the correct heat transfer coefficients are applied. However, it
appears that simulations slightly underestimate the bubble radius
and contact area radius. A visual comparison of the bubble size at
the steps of Fig. 18 is shown in Fig. 19. It must also be pointed out
that the experimental results may be affected by uncertainties and
optical effects.

Fig. 20 shows the superheat distribution along a line passing
through the nucleation site at different time steps from simula-
tions (on the right side) in order to compare with the experimental
results (left side) from [32], together with the contact area diame-
ter (on the top of the graph). The area outside the contact area
influenced by the bubble in simulations appears to be slightly
smaller than for experiments. Also, the small peaks in superheat
that can be observed immediately outside it (x ~18.4 mm) for
instance at t =0, 1,2 ms, which are probably due to hydro-dynamic
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Fig. 18. Comparison between experimental [32] for a 25 pm thick titanium foil
with applied heat flux of 50 kW/m? and simulation results for bubble and contact
radii, superheat and HTCax.
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6ms

Fig. 19. Comparison of experimental [32] for a 25 um thick titanium foil with
applied heat flux of 50 kW/m? and simulation results for a bubble growing on a thin
metal foil.
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Fig. 20. Superheat distribution along a line. Comparison of experiments and
simulations for titanium (25 pm). The diameter of the simulated contact area is also
included.

phenomena not included in the numerical model, do not appear in
the numerical results. It must be also specified that the superheat
distribution in experiments, was slightly asymmetrical with
respect to the nucleation site (only half of the distribution is shown
here). However, it was noted that for this range of variation the
conditions outside the contact area do not significantly affect the
bubble growth and superheat variation, mostly determined by
the heat contributions, in particular at the dome. Similarly,
Fig. 21 shows the comparison for the HTC distributions along a line
passing through the nucleation site at different time steps. This
shows a good agreement for the central HTC peak, apart for the
case at t = 4 ms, when the experimental distribution appears much
flatter than in the simulations. However, this phenomenon is prob-
ably related to the method used to derive the HTC distribution in
[32], based on the variations of the temperature. Small errors in
detection of this variable may lead to significantly greater differ-
ences in the HTC values. Finally, the comparison of the heat flux
at the top surface along a line passing through the nucleation site
is shown in Fig. 22. Three different trends can be distinguished. (1)
During the initial stage, the heat flux has a central peak similar to
the HTC distribution. (2) After that, for instance for t=2 or 4 ms,
the drop in superheat in the central area results in a drop in heat
flux, so that the heat flux distribution assumes a crater like shape
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Fig. 21. HTC distribution along a line passing through the nucleation site for
titanium (25 pm). The diameter of the simulated contact area is also included.
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Fig. 22. Heat flux distribution along a line passing through the nucleation site for
titanium (25 pm).

with a maximum in proximity of the contact area. During the final
stage (3), the heat flux becomes smaller down to values similar to
the natural convection area, leading also to a circular depression at
the periphery of the contact area or immediately outside
(t = 10 ms).

The analysis for the platinum foil with an imposed heat flux of
100 kW/m? was more complicated due to the lack of data provided
in [35]. Only the contact and bubble radii when the bubble reached
its maximum contact area and size were specified (respectively
0.775 and 1.1 mm). The analysis was made even more complicated
by the lack of a visual sequence for the bubble growth due to other
growing bubbles during the experiments. The bubble was said to
depart 9 ms after nucleation. The superheat and HTC histories were
extrapolated from the graphs along the line passing through the
nucleation site, as listed in Table 4. Similar to the titanium case,
the comparison between experiments and simulations for the bub-
ble radius, superheat and HTC,.x are shown in Fig. 23, highlighting
a good agreement for superheat and HTCx, apart for the interme-
diate stages (t =2 and 3 ms) for the HTC,x.

For the bubble growth analysis, the uncertainty in the provided
input data made the numerical results different from the experi-
mental ones, although the final size was maintained. The difference
during the initial stage is due to the quick increase of the bubble
radius during the experiments that the code is not able to repro-
duce. Also, an important inconsistency between experimental
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Table 4

Bubble growth data and superheat values at the nucleation site (Golobic et al. [35]).
The data were obtained from graphs in the papers and are hence subject to a degree of
uncertainty.

t [ms] 0 1 2 3 5 7 9
1, [mm] 0 1.1 1.1
re [mm)] 0 0.775 0
ATys [K] 16 2 2 2 2 4 7
HTCpnax [KW/m?] 8 105 55 55 50 22 8
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Fig. 23. Comparison between experimental [35] and simulation results for bubble
and contact radii, superheat and HTCn,x for platinum (6 pm).

and numerical results is the waiting time, approximately equal to
40 ms for experiments and much shorter (~2 ms) for the simula-
tions. This highlights that the activation model (that is simply
based on the activation temperature) and the heat transfer mech-
anisms after bubble departure used in the code should be
improved. This effect is probably due to the fact that the hydro-
dynamic phenomena in the liquid side are not taken into account
by the code.

Figs. 24-26 show respectively the comparison of superheat, HTC
and heat transfer along a diametrical line, highlighting that the
influence area in the experiments is considerably larger than for
simulations. In fact, the flat distributions visible even at 0.5 mm
from the nucleation site in experiments (for t=2 and 3 ms) are
reduced to less than 0.2 mm in simulations. The agreement is gen-
erally good, but poorer than for the titanium case, which can pos-
sibly be related to the faster bubble growth (leading to a more
complicated data acquisition) for platinum. In particular, for the
heat transfer distribution, the crater shape simulated does not
agree with experiments that show a central high peak. Also, it
can be noted here that for ¢t = 2, 3 and in part for 5 ms, the HTC dis-
tributions are flat and almost constant in the central area, high-
lighting a phenomenon only slightly visible for titanium at t = 4 ms.

6. Interactions between a large number of nucleation sites

The effects of interactions between a large number of potential
nucleation sites, such as the variation of the local superheat, the
activity of each nucleation site, the inhibition effects and the
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Fig. 24. Superheat distribution along a line. Comparison of experiments and
simulations for platinum (6 pm).
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Fig. 25. HTC distribution along a line passing through the nucleation site for
platinum (6 pm).
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Fig. 26. Heat flux distribution along a line passing through the nucleation site for
platinum (6 pm).

waiting time are presented in this section. Two different combina-
tions of liquid and substrate are analysed, as it was during the sin-
gle bubble growth analysis: a relatively thick silicon substrate



A. Sanna et al./ International Journal of Heat and Mass Transfer 76 (2014) 45-64 57

immersed in FC-72 and a very thin titanium foil in water. The con-
cept of unrefined sites was also introduced here to take into account
the boundary effects. The unrefined sites are located in the simula-
tions in the areas close to the boundaries; for them, the mesh dis-
tribution is not modified during calculations and a simplified heat
transfer model was used. This allows the simulation of a realistic
heat transfer coefficient at the boundaries without further limit
the number of nucleation sites and without loss in computational
speed. The so-called refined sites (i.e. those using the mesh modifi-
cation and heat transfer models, as described in the single bubble
section) are located in the central area of the simulated substrate.
For both analyses of silicon and titanium substrates, 100 refined
sites were simulated. These sites are distributed in a regular square
arrangement and the effect of the distance between them was ana-
lysed. Figs. 27 and 28 show the sites arrangements for the two
cases. The sites are grouped in 6 different zones and identified with
a numbers. For each substrate, the nominal parameters obtained
from the single bubble analysis were used. Their values are sum-
marised respectively in Tables 5 and 6. A second analysis was rea-
lised for the case of silicon in FC-72: this analysis takes into
account an uncertainty on the nominal values of bubble departure
radius and activation superheat. This means that for each of these
two parameters, for each nucleation site and each time that this
becomes active (except for the first activation) a random value is
automatically and independently chosen by the code for the
parameter, in a range +10% of the nominal value. The value was
chosen from the analysis of experimental results presented by Hut-
ter et al. [31]. Simulations were run for 10s.

6.1. Silicon substrate in FC-72

For the analysis of the silicon substrate in FC-72, the results for
the bubble radius and for the superheat for 4 selected nucleation
sites (#1, #32, #79 and #100) are shown in Fig. 29 for the case
without uncertainty parameters (on the left side) and with the
uncertainty parameter (on the right side). The figure clearly show
that the superheat on average decreases in order to reach its
asymptotic value during an initial transient period of ~0.1s. During
the second phase, called quasi-steady state, the superheat fluctu-
ates around its mean value. The bubble distribution at the different
nucleation sites is shown in Fig. 30 for all the active refined sites at
different time steps for the case with the uncertainty parameter
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equal to 10%. The circles represent the computed bubble diameter.
It is evident that while for the case (a) at t=0.1 s the bubbles are
growing similarly to the previous simulations with no uncertainty
parameters, for the other cases, t=0.2 (b), 2.1 (c) and 9.9 s (d), the
bubble distribution becomes irregular with the bubbles growing
out of phase. In fact, at t = 0.2 s the first effects of breaking the sym-
metry is visible in the central region, although in the external
region the bubbles are still growing almost regularly. Instead, at
t=5.3 and 9.9 s, the loss of regularity is complete: big bubbles (also
larger than the nominal bubble departure radius) are generally sur-
rounded by much smaller bubbles or by areas where bubbles do
not grow at all. The sites activities considering all the bubbles
and the bubbles with large diameters (i.e. those having a departure
radius larger than 0.1 times the nominal bubble departure radius)
are shown in Fig. 31.

The growth time, the waiting time and the period for the two
cases without and with uncertainty parameters are shown in
Fig. 32. It is clear that, if for the case without uncertainty parame-
ters, each bubble grows regularly and independently of the others,
on the other case, the uncertainty parameters introduce almost
immediately a perturbing factor that strongly reduces the super-
heat variations and the sites activity, such that the sites became
immediately asynchronous. The growth times and the waiting
times, quite regular for the case without uncertainty parameters,
become very spread for the other case, although a clear tendency
of increase with the calculation time is shown for the waiting time
and the period. The effects of coalescence were also studied. Hori-
zontal coalescence type C1 (bubbles of similar dimensions) was
observed in both cases with and without uncertainty parameter.
Coalescence occurrence was very regular for the case without
uncertainty parameter and becomes more random for the other
case. Fig. 33(a) shows a graphical representation of horizontal coa-
lescence for the case with uncertainty parameter, the length of the
blue lines proportional to the occurrence of coalescence type C1
between the connected sites. The phenomenon appears to be more
frequent for the central sites and with the bubbles that are not
immediately adjacent in the square arrangement. Fig. 33(b) shows
coalescence type C2 (bubbles of different sizes, where the larger
incorporates the smaller one): occurrence is more regular apart
from the site close by the boundaries. This type of coalescence
occurs more frequently between bubbles which are close spaced
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Table 5
Input data for a large distribution of sites for Silicon.
Substrate On PH cy ky q=4.48 l%/
[Silicon] 6.0 x 6.0 mm? 0.38 mm 2340 k¢ 750 @ 110 2%
Liquid [FC-72] 1 Atm, 57.15 °C Pv pL a ki 0.054 ¢ Hye
12.76 k& 1611 k& 1088 ply 85,200 i
Bubble growth and heat Transfer Exper tg Tha ATy Sdecr ATy
21.0 ms 0.33 mm 1K 0.6 225K
Numer HT model HTC, fo ®o Natural convection
c ~170 kW 1.0 30° Eq. (3.15), fonn = 1.16
Numerical data At Wyy Ny ng Number of sites
1.0 us 0.1 mm 2 7 100 standard

96 unrefined

Table 6
Input data for a large distribution of sites for titanium in water.
Substrate [Titanium] 36 x 36 mm? S 25 pm PH CH ky G=50 l%/
4500 ke 523 gy 21.9 W
Liquid [Water] 1 Atm, 100 °C Pv oL (o} ki Hgy
k k w
0.5974 & 958 X& 4216 ¢ 0.677 ;%% 2257300 £
Single bubble growth and heat Transfer Exper tg Tbd ATgee Sdecr ATy
18.1 ms 2.665 mm 155K 0.6 175K
Numer HT model HTCpq2 fo ®o Natural convection
ML ~80 kW 1.84 30° Eq.(3.7), fenn = 1.42
Numerical data At Wyy Ny ng Number of sites
0.5 ps 0.5 mm 2 7 100 standard
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Fig. 29. Superheat variation at the nucleation site and bubble growth histories for the nucleation sites #1, #32, #79 and #100, for the nominal values on the left and for an
uncertainties parameter equal to 10% on the right.

in the square arrangement. Fig. 34 shows the bubble growths at #4, #6 and #8), together with the superheat variations at the
site #1 and at four surrounding sites immediately adjacent (#2, nucleation site #1 for the time period between 1.5 and 2s of
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activity.

simulations. Four different phenomena are visible, indicated with
an arrow and identified with the letters A, B, C and D. For the event
A (1.585s<t<1.655s) four time steps are identified (numbered
from 1 to 4). The bubble growths and the superheat variations
along the line connecting sites #2, #1 and #6 are shown in

Fig. 35 at the time steps corresponding to event A. For all the cases,
the superheat variations at the base are very small (less than 0.1 K)
and site #2 never becomes active. At t=1.585s (event Al), the
bubbles at sites #1 and #6 have similar radii (the one at site #1
is slightly larger) and due to the close distance, the two domes
interfere so that coalescence type C1 occurs. However, since the
bubble radii for the bubble at site #1 is close to the departure
radius, the contact angle and contact area are very small, so that
the superheat variations are small as well. When the bubble at site
#1 departs at t=1.59s, a new bubble starts growing, and at
t=1.608 s (Event A2), bubble at site #1 is through coalescence into
bubble at site #6 (type C2, since r,, < 0.5 1p6). This event forces the
bubble at site #1 to disappear (after which a new small bubble is
generated here at t =1.609 s, Event A3) and the bubble at site #6
to undergo an increase of the bubble radius and bubble growth rate
(Fig. 34), as well as an increase of the bubble departure radius. The
bubble departure radius is further increased by sequential coales-
cence events type C2, not only of bubbles generated at site #1. Dur-
ing the two events A2 and A3 the superheat variation at site #6
does not change significantly, while at site #1 the variation is lar-
ger due to the sudden change in the size of the contact area. At
t ~ 1.649 s, site #1 becomes completely inactive, due to the inter-
ference of the refined mesh with the ones of the surrounding sites.
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At t=1.65s, site #1 is inactive and the superheat in that region fur-
ther increased.

Event B is essentially similar to event A2, with bubbles at sites
#1 and #6 having both large bubble radii and coalescing (type C1).
However, in this case, both bubbles at sites #1 and #6 have incor-
porated bubbles from adjacent sites following coalescence type C2,
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33. Occurrence of coalescence type C1 (a) and C2 (b) for the silicon substrate in water for the case with uncertainty parameter for the silicon substrate in FC72.

as evident from analysis of the bubble growth rate and the produc-
tion of small bubbles at the other sites. Event C represents instead
the case in which site #1 is forced to become inactive because of
the limitations in the mesh distribution. This conclusion is derived
by the absence in variation in bubble growth rate or bubble radius
for the bubble at site #6 and confirmed by analysis of the coales-
cence event data.

Event D represents the opposite case with respect to event A2,
with bubble at site #1 incorporating bubble at sites #6, #2, and #4.

6.2. Titanium foil in water

Concerning the analysis of the platinum foil immersed in water,
the superheat variations at the nucleation site and the bubble
growth histories for four different sites belonging to different
zones (site #1, #32, #79 and #100) are shown for the initial stage
(i.e. t <0.75 s) and for the final stage (9.75 s < t < 10 s) respectively
in Fig. 36(a) and (b). The transient period seems negligible in this
case with respect to the case of silicon in FC-72, with the superheat
at the nucleation site immediately fluctuating between ~1.9 and
15.5K. In the followings, the average values will be considered
only for events occurring after the initial 0.5 s. Moreover, it is clear
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Fig. 36. Superheat variation at the nucleation site and bubble growth histories for
the nucleation sites #1, #32, #79 and #100 on titanium. Uncertainty
parameters = 0%.

that synchronization in bubble growth is lost after the short initial
transient time, due to the large variations in superheat during the
bubble growth that lead to an average superheat at departure

always lower than the activation value (15.5 K). Significant waiting
times during which the superheat recovers can be consequently
observed. For this reason, although the sites were arranged regu-
larly and no uncertainty parameter was considered, the bubbles
seem to grow independently from each other contrary to what
was detected for the silicon substrate. The bubble distribution at
different time steps shown in the presence of bubbles departing
with small radii (indicated with the arrows in Fig. 36(b) at
t ~9.77 and ~9.83 s for site #1 and at t ~ 9.92 s for site #79) high-
lights that coalescence phenomena are taking place. This highlights
that thermal interactions across the substrate are much smaller for
titanium due to the smaller thickness and lower thermal capacity.
For this reason, the case with uncertainty parameter will be not
examined. The bubble distribution at the different nucleation sites
is shown in Fig. 37 for all the active standard sites at different time
steps (t=0.25 (a), 0.55 (b), 0.65 (c) and 9.5 s (d)). The lost in syn-
chronization is visible already at t=0.25s (a). Here, most of the
sites are active, but the radii slightly differ and some of them are
inactive, with clear left-right symmetry in activation. The symme-
try effect becomes more evident when the sites start to activate
more independently, as it occurs in the central and lower part of
the substrate for t=0.55 and 0.65 s (cases (b) and (c)). However,
this phenomenon is visible only until t ~ 0.7 s. The symmetry itself
and the apparent larger activity in the lower part of the substrate
during the first stage of simulations may have been generated by
a chaotic behaviour of the system. Moreover, it seems that the sites
activate in clusters defined for the purposes of this analysis as
“groups of close sites with similar bubble growth characteristics”,
which assume particular geometries, for the entire length of simu-
lations and an example of it is indicated by green arrows for
t=9.55s (case (d)). A complete analysis of the presence of chaotic
behaviour and activation in clusters is beyond the goal of this
study. The sites activities considering all the bubbles and only
the large bubbles (i.e. those having a departure radius larger than
0.1 times the nominal bubble departure radius) are shown in
Fig. 38. This figure confirms that the sites act independently from
each other. The growth time, the waiting time and the period are
shown in Fig. 39. Bubbles seem to grow regularly and indepen-
dently of the others, such that the sites became immediately
asynchronous.

The analysis of occurrence of horizontal coalescence shows
that both coalescence types C1 and C2 occur almost uniformly
across the entire surface, but while type C1 involves all the
eight sites surrounding a specific one (apart for those located
close to the edges of the site distribution), type C2 involves only
the four closest sites, since the distance between the others is
too large to allow this type of coalescence. Examples of occur-
rence of coalescence types C1 are shown in Fig. 40, events A
and B: in case A, after departure of a small bubble at site #1
due to coalescence, the site requires ~17 ms to become active
again, while for event B the required time is ~11 ms. The differ-
ence depends on the size of the small departed bubble and on
the superheat drop at the nucleation sites during its growth.
At t~9.9s (event C) it is possible to observe the coalescence
type C2, when site #1 incorporates the bubble at site #4, and
undergoes a large increase of the bubble radius and of the bub-
ble growth rate.

The analysis of coalescence occurrences showed that for type
C2, the frequencies are much smaller, due to the absence of
sequential coalescence (i.e. when a large bubble incorporates sev-
eral small ones in a series) with respect to the silicon substrate.
This phenomenon is connected to the waiting time: for silicon,
the superheat was always higher or close to the activation value,
while for titanium the site may require several milli-seconds
before the conditions for activations are again satisfied.
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Fig. 37. Bubble distribution at the standard sites on titanium at different time steps when the uncertainty parameters are equal to 0.
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7. Conclusions

The numerical results obtained with this code, originally devel-
oped at the Los Alamos National Laboratory, have been compared
with experimental results for silicon immersed in FC-72 and of
metal foils, made of titanium and platinum, immersed in water
at saturation conditions, so that they could be used in a first vali-
dation of the code mathematical models and processes. The two
different models for the heat transfer at the base of the bubble
were applied to the simulation for the silicon substrate in FC-72
and for the metal foil (titanium or platinum) in water, according
to the experimental results. During the analysis for silicon in FC-
72, the code was shown to be able to reproduce well the bubble
growth at an isolated site with different applied heat fluxes. The
experimental average superheat could be also predicted well,
although the correlations used to evaluate the importance of the
natural convection in the area outside the bubble contact area
were tuned. However, analyses of long term superheat variations
for an isolated nucleation site (presented in [31]), showed that
the numerical code is able to reproduce well the transient super-
heat variations when the site switches from a period of regular
activity to a period of inhibition and vice versa, although the phys-
ical reasons of this phenomenon was not fully understood. For this
reason, the activity and inactivity periods have been imposed dur-
ing the current simulations.

Validation of the code against results of bubble growing on thin
metal foils showed that the code can reproduce very well the bub-
ble growth and local superheat variations around the nucleation
site (which was not isolated during these simulations), if the
experimental heat flux conditions are imposed, and using the
micro-layer heat transfer theory as a heat transfer model. The
choice of the maximum heat transfer coefficients to be applied to
the centre of the contact area was determined by the understand-
ing of the very important and surprising similarity for the increas-
ing-decreasing trend for the dimensionless heat transfer
coefficient versus the dimensionless growth time for two essen-
tially different cases of thin foils (titanium (25 pm) and platinum
(7 pm)).

The capability of the code to adapt to different experimental
conditions (i.e. variable input heat flux at the bottom of the sub-
strate leading to different measured average superheat and bubble
departure radii) was proved, although the heat transfer coefficients
below the growing bubbles needed to be tuned to match the aver-
age bubble growth times.

The analysis of results for a distribution of 100 potential nucle-
ation sites allowed the conclusion that the substrate-liquid combi-
nation strongly affects the variation of superheat and the relative
influence area. It was shown that for titanium in water the super-
heat variation was very similar to the single bubble case. By

contrast, for silicon on FC-72 the average superheat at the nucle-
ation site dropped from ~8 K for the single bubble case to ~1 K
(and then comparable to the activation superheat) for the large
distribution.

Moreover, uncertainties in the input data and the possibility of
occurrence of coalescence may play a very important role in the
regularity of activation of the sites and the growth of the bubbles.
In fact, the introduction of uncertainty parameters for the case of
silicon substrate in FC-72 used to correct the nominal values intro-
duced differences in the average activity of the sites. This suggests
that this phenomenon cannot be neglected: further studies are
required to refine the current modes of mesh refinement and coa-
lescence, also according to experimental findings. Considering the
case when the uncertainty parameters were used, the site activa-
tion frequency was not uniform for all the sites over the whole sur-
face, showing a distribution with alternating more active sites.

The case of titanium on water, only developed without taking
into account the uncertainty parameters, showed that the sites lost
synchronisation in activation after only few activation cycles. Acti-
vation in clusters seemed to occur, although the final average acti-
vation frequency was similar for all the sites. Both type of
coalescence occurred in this case, although for the type for dissim-
ilar sizes the frequency was greatly smaller than for the case of sil-
icon on FC-72.

Comparison of the results for a thick silicon substrate in FC72
and a thin titanium foil in water showed also that stronger thermal
interaction between sites was recognisable for the silicon case,
leading to lower average superheat around the nucleation sites
for a large distribution of sites with respect to an isolated site. This
led also to much larger growth times, due to the smaller heat flux
contribution at the base of the bubble. Moreover, the superheat
distribution across the substrate became flatter. On the contrary,
for the titanium case all the sites appear to act more indepen-
dently, and the superheat variations to be very similar between
an isolated site and a large distribution.

From the numerical point of view, the capacity of the code in
adapting its mesh distribution and the ease in modifying correla-
tions and conditions according to the different situations simulated
make it a very powerful instrument to investigate thermal interac-
tions despite of the simplicity of some of the models, as for
instance the one for horizontal coalescence.
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