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Two-band fast Hartley transform
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Efficient algorithms have been developed over the past 30 years for
computing the forward and inverse discrete Hartley transforms
(DHTs). These are similar to the fast Fourier transform (FFT) algor-
ithms for computing the discrete Fourier transform (DFT). Most of
these methods seek to minimise the complexity of computations and/
or the number of operations. A new approach for the computation of
the radix-2 fast Hartley transform (FHT) is presented. The proposed
algorithm, based on a two-band decomposition of the input data, pos-
sesses a very regular structure, avoids the input or out data shuffling,
requires slightly less multiplications than the existing approaches,
but increases the number of additions.
Introduction: Hartley presented a new method, the continuous Hartley
transform, for the analysis of transmission problems in 1942 [1].
Subsequently, Bracewell introduced the discrete Hartley transform
(DHT) in 1983 [2] and the fast Hartley transform (FHT) in 1984 [3].
In the intervening years, many researchers have devised methods to
improve the computation of the FHT and the highly similar inverse
FHT [4–8], whereas others have tried to develop recursive [9] and/or
parallel methods for computing the FHT [10]. The DHT is commonly
used in signal processing, signal compression, image classification,
image encryption and communication systems [6, 7, 9].

This Letter proposes a two-band method, an entirely new approach for
computing the FHT, resulting in a highly regular structure with butter-
flies of constant geometry and a reduced multiplication operations
count compared with existing algorithms, while increasing the additions
operations count.

Discrete Hartley transform: The type II DHT of the N-point real-valued
data xn, n = 0, 1, 2, …, N− 1 is defined as

HN (k) =
∑N−1

n=0

x(n) cas
2p

N
nk

( )
, k = 0, 1, 2, . . . , N − 1 (1)

where cas(·) = cos(·) + sin(·). The transform is linear and its coefficients
HN(k) are real numbers. The DHT is its own inverse (involuntary), up to
an overall scale factor of 1/N. Calculating the DHT directly requires O
(N2) real operations, i.e. N2 real multiplications and N(N− 1) real
additions. Fast algorithms for different radices, similar to the fast
Fourier transform, have been proposed over the past 30 years, in an
attempt to reduce the complexity to O(N log N ). The most common
are the radix-2 decimation-in-time and decimation-in-frequency FHT
[3, 4] with (NP− 3N + 4) multiplications and (3NP− 3N + 4)/2
additions and the split-radix FHT with (2NP/3)− (19N/9) + 3 +
(−1)P(1/9) multiplications and (4NP/3)− (14N/9) + 3 + (−1)P(5/9)
additions, where P = log2 N [4]. Other approaches that appeared have
achieved an improvement on the above complexity figures at the
expense of a more complicated computational structure [5, 8, 9]. Fast
algorithms are usually in-place, resulting in a shuffling of the input
data or the output coefficients.

Discrete Hartley transform: The proposed method is based on the
decomposition of each pair of input data x(2n), x(2n + 1) into
low-band values xL(n) and high-band values xH(n). Specifically

xL(n) = 1

2
[x(2n)+ x(2n+ 1)] (2a)

xH(n) = 1

2
[x(2n)− x(2n+ 1)] (2b)

or

x(2n) = xL(n)+ xH(n) (3a)

x(2n+ 1) = xL(n)− xH(n) (3b)

Starting from the definition of DHT (1), decomposing into even-indexed
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and odd-indexed data and using (3a) and (3b), leads to
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By taking into account that

cas(A+ B) = casA cosB+ cas(−A) sin B (5)

(4) becomes

HN (k) = HL(k)+ [ cos q HH(k)+ sin q HH(−k)] (6)

where

q = 2pk/N (7)

HL(k) = HL
N/2(k)+ HH

N/2(k) (8)

HH(k) = HL
N/2(k)− HH

N/2(k) (9)

HH(−k) = HL
N/2(−k)− HH

N/2(−k) (10)

and
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HL
N/2(k) and H

H
N/2(k) are the N/2-point DHTs of xL(n) and xH(n), respect-

ively. On the basis of the properties of the cos(·), sin(·) and cas(·) func-
tions, it is easily derived that the DHT coefficients of (6) that are N/2
positions apart from k become

HN k + N

2

( )
= HL(k)− [ cos q HH(k)+ sin q HH(−k)] (13)

Equations (6) and (13) constitute the DHT pair for its fast computation.
By noting that

HH(−k) = HH
N
2 − k

( )
(14)

the DHT pair of (6) and (13) eventually becomes

HN (k) = HL(k)+ cosq HH(k)+ sinq HH
N
2 − k

( )[ ]
(15)

HN k + N

2

( )
= HL(k)− cosq HH(k)+ sinq HH

N
2 − k

( )[ ]
(16)

From (15) and (16), we can realise that the computation of an N-point
DHT has been decomposed into two DHTs of length N/2 each, com-
bined with (N− 1) multiplications by twiddle factors, as depicted in
the flow graph of Fig. 1. By eliminating the trivial multiplications occur-
ring for k equal to 0, N/4 and (N/2− k) the flow graph is further
simplified.
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Fig. 1 Flow graph for computation of N-point two-band fast DHT by means
of (15) and (16)

Note: for clarity purposes input data x(n) and output coefficients H(k) are denoted
as xn and Hk, respectively.
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The flow graphs for the computation of the 8-point and 16-point
two-band fast DHTs are depicted in Figs. 2 and 3, respectively. As in
all fast DHT algorithms, only two additions or subtractions are needed
for the 2-point FHT, i.e. M2 = 0 and A2 = 2. For the 4-point DHT only
eight additions/subtractions are required, i.e. M4 = 0 and A4 = 8.
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Fig. 2 Flow graph for computation of 8-point two-band fast DHT
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Fig. 3 Flow graph for computation of 16-point two-band fast DHT

The structure is simple, regular, modular and scalable, which facili-
tates software or hardware implementations. The structure resembles
‘constant geometry’ of fast transforms. Constant geometry algorithms
avoid the area and delay overhead of multiplexing different registers,
something that is desirable in high-throughput designs.

Table 1: Operation counts of two-band FHT
N
 Multiplications
 Additions
4
 0
 8
8
 2
 42
16
 14
 138
32
 54
 386
64
 166
 994
128
 454
 2434
256
 1158
 5762
512
 2822
 13 314
1024
 6662
 30 210
2048
 15 366
 67 586
4096
 34 822
 149 506
Computational complexity: On the basis of (15) and (16) and the corre-
sponding flow graphs, we can easily derive the number of operations
needed for the computation of the two-band N-point fast DHT. This is
calculated by means of the formulae

AN = 2AN/2 + 3N + N/2− 2 (17)

or

AN = (7N/2)log2 N − (11/2)N + 2 (18)

MN = 2MN/2 + N − 4 (19)

where MN is the number of multiplications and AN is the number of the
total additions and subtractions. Another two multiplications could be
saved for k =N/8 and k = (N/2 −N/8). In the first case (k =N/8), we
have θ = π/4 and thus cos(θ) = sin(θ), i.e. only one multiplication is
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needed; in the second case [k = (N/2−N/8)], θ = 3π/4 and thus cos(θ) =
−sin(θ), i.e. only one multiplication is performed. Taking into account
this additional saving, the multiplications count reduces to

MN = 2MN/2 + N − 6 (20)

or

MN = N log2 N − (7/2)N + 6, for N ≥ 8 (21)

The counts of multiplications and additions/subtractions for different N,
where N is a power of 2, are summarised in Table 1.

The multiplications counts are less than those of the corresponding
well-known radix-2 algorithm of Bracewell [3]. The additions are
approximately twice as large. It should be noted that a final multipli-
cation of each coefficient by 1/2 is needed in order for the result to be
correct, as dictated by (2).

Conclusions: A new two-band radix-2 algorithm has been proposed for
the computation of the fast DHT. The algorithm proceeds by applying
the DHT core on the summations and the differences of adjacent
samples, i.e. on the low-band and high-band values of adjacent
samples. This is equivalent to applying a two-band filter bank followed
by a down-sampling by 2. The computational structure is simplified and
symmetric, at the expense of increased numbers of additions and sub-
tractions. Multiplications are restricted only to the highs and their
count is slightly decreased. The derived structure of the algorithm facili-
tates its fast implementation in high-level or low-level applications. The
computation is in-place and compares favourably with the well-known
fast DHT algorithms.
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