
Portfolio Optimisation Models

Cristiano Arbex Valle

A thesis submitted for the degree of Doctor of Philosophy

School of Information Systems, Computing and Mathematics,

Brunel University

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29140425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii

Abstract

In this thesis we consider three different problems in the domain of portfolio optimisation.

The first problem we consider is that of selecting an Absolute Return Portfolio (ARP).

ARPs are usually seen as financial portfolios that aim to produce a good return regardless

of how the underlying market performs, but our literature review shows that there is little

agreement on what constitutes an ARP. We present a clear definition via a three-stage

mixed-integer zero-one program for the problem of selecting an ARP.

The second problem considered is that of designing a Market Neutral Portfolio (MNP).

MNPs are generally defined as financial portfolios that (ideally) exhibit performance in-

dependent from that of an underlying market, but, once again, the existing literature is

very fragmented. We consider the problem of constructing a MNP as a mixed-integer non-

linear program (MINLP) which minimises the absolute value of the correlation between

portfolio return and underlying benchmark return.

The third problem is related to Exchange-Traded Funds (ETFs). ETFs are funds

traded on the open market which typically have their performance tied to a benchmark

index. They are composed of a basket of assets; most attempt to reproduce the returns of

an index, but a growing number try to achieve a multiple of the benchmark return, such

as two times or the negative of the return. We present a detailed performance study of the

current ETF market and we find, among other conclusions, constant underperformance

among ETFs that aim to do more than simply track an index. We present a MINLP for

the problem of selecting the basket of assets that compose an ETF, which, to the best of

our knowledge, is the first in the literature.

For all three models we present extensive computational results for portfolios derived

from universes defined by S&P international equity indices with up to 1200 stocks. We

use CPLEX to solve the ARP problem and the software package Minotaur for both our

MINLPs for MNP and an ETF.
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Chapter 1

Introduction

1.1 Introduction

Ever since the pioneering work of Markowitz (1952), optimisation has been at the centre

of work concerned with deciding the composition of financial portfolios. As such, both

practitioners and academic researchers have been willing to trade off the disadvantages

of optimisation (multiple optimal solutions, solution sensitivity) for its advantages (clear

modelling framework, computational efficiency, algorithmic decision making).

The most popular portfolio optimisation problem is that of minimising risk for a given

target expected return, or, conversely, maximising expected return while constraining

risk. Different approaches measure risk differently, examples of different risk measures

are variance of returns, CVar (Conditional Value at Risk, Rockafellar & Uryasev (2000))

and Sortino ratio (Sortino & van der Meer (1991)). Another popular portfolio optimi-

sation problem is that of index tracking, where the concern is to reproduce (track) the

performance of a financial index. Once again, there are different ways to measure tracking

performance and hence there are different (and sometimes non-comparable) models for

this purpose.

In short, different types of portfolios require different mathematical models, and, even

for portfolios intended for the same purpose, the model to use is not uniquely defined. In

this thesis we examine three portfolio optimisation problems that are not clearly defined

in the present literature. We introduce optimisation models for the problems of selecting

an Absolute Return Portfolio (ARP), a Market Neutral Portfolio (MNP) and the basket

underlying an Exchange-Traded Fund (ETF).

ARPs are generally defined as financial portfolios that aim to produce good returns

regardless of how the underlying market performs. However, our literature review shows

that there is barely any agreement on what exactly defines a portfolio as an ARP. MNPs

are defined as financial portfolios that (ideally) exhibit performance independent from
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that of an underlying market. Once again, there are numerous models and different ways

to measure the independence of a MNP. Based on these definitions, both problems seem

similar and, indeed, one can think of a portfolio that is independent from a benchmark

as one which produces absolute returns irrespective of how the benchmark is performing.

These problems are however different, and, in this thesis, we present clear and unique

definitions and we introduce optimisation models for both of them.

ETFs, on the other hand, are not per se a portfolio model. They are funds that are

traded on the open market and that usually have their expected performance tied to a

benchmark index. ETFs are composed of a basket of assets held by the ETF creator and

shares that are issued and traded in the open market. An ETF share entitles its holder

to a portion of the underlying basket. Most ETFs are index trackers, however, some seek

to achieve a multiple of benchmark return. For example, some ETFs aim to achieve the

negative of index return, while others seek to achieve twice index return. The former

are called inverse ETFs and the latter are known as leveraged ETFs. In this thesis we

also examine the optimisation problem of defining an ETF basket of assets, a non-trivial

problem especially for leveraged and inverse ETFs.

1.2 Thesis outline

The structure of this thesis is as follows. In Chapter 2 we present a literature survey of

portfolio optimisation in general with special attention to ARPs, MNPs and ETFs. We

start by summarising the history and context of portfolio optimisation theory. We then

dedicate separate sections to the literature on each of the three main problems studied in

this thesis.

In Chapter 3 we consider the problem of selecting an ARP. We present a three-stage

mixed-integer zero-one program for the problem that explicitly considers transaction costs

associated with trading. The first two stages relate to a regression of portfolio return

against time, whilst the third stage relates to minimising transaction costs. We extend

our approach to the problem of designing portfolios with differing characteristics. Com-

putational results are given for portfolios of eleven different problem instances derived

from universes defined by S&P international equity indices.

In Chapter 4 we consider the problem of constructing a MNP. We formulate this

problem as a mixed-integer nonlinear program (MINLP), minimising the absolute value

of the correlation between portfolio return and index return. Our model is a flexible one

that incorporates decisions as to both long and short positions in assets. Computational

results, obtained using the software package Minotaur, are given for the same problem

instances as in Chapter 4. We also compare our approach against an alternative approach
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based on minimising the absolute value of regression slope (the zero-beta approach).

In Chapter 5 we present a survey of the current ETF market by collecting and analysing

a large snapshot of 8192 ETFs, which compose the vast majority of the ETF market. We

selected a subset of 822 ETFs to analyse more fully. Our performance analysis covers

the period from January 1993 to September 2011 and statistically analyses these 822

ETFs, which have a total market value of US$1.81 trillion, using over 1.1m daily return

observations. The accuracy with which ETFs replicate the behaviour of their benchmark

is a mixed story; only 19% of ETFs reproduce both the mean return and the volatility

of their benchmark within 1% p.a.. With respect to replicating benchmark volatility we

found that most ETFs have higher volatility than their benchmarks.

Following the ETF survey performed in Chapter 5, we consider in Chapter 6 the

problem of deciding the portfolio of assets that should underlie an ETF. We formulate

this problem as a MINLP. We mostly consider ETFs which have positive leverage with

respect to their benchmark index, as opposed to ETFs which simply attempt to track

the benchmark performance, and ETFs which have negative leverage (inverse ETFs).

Our formulation is a flexible one that incorporates decisions as to both long and short

positions in assets, as well as including rebalancing and transaction costs. Computational

results are given for problems for the same set of instances as used in Chapter 3. We

also computationally compare our model to a previous model in the literature for index

tracking.

Finally, in Chapter 7 we summarise the main results of our research, highlighting the

contribution to knowledge we have made, and suggest directions for future work.
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Chapter 2

Literature review

In this chapter we present a brief historical overview of portfolio optimisation and discuss

studies in the literature related to Absolute Return and Market Neutral portfolios. We

also discuss work related to Exchange-Traded Funds.

2.1 History of portfolio theory

The foundations of Modern Portfolio Theory (MPT) date back to the 1950s thanks to

a landmark article and subsequent book by Markowitz (1952, 1959). Prior to his work,

assets were analysed individually in order to construct a portfolio. Markowitz proposed

that portfolios should be selected based on overall (instead of individual) risk-return

assessment. An important assumption of MPT is that investors are risk averse, meaning

that given two portfolios that offer the same expected return, investors will choose the less

risky one. Investing is a tradeoff between risk and return; investors will take increased risk

only if compensated by higher expected returns. Following this assumption Markowitz

formulated the portfolio problem as that of finding the weighting of assets that minimise

risk given a target expected return. Risk is measured as variance of expected returns.

The important message of MPT is that assets should not be selected only on charac-

teristics that are unique to the asset. Rather, investors have to consider how each asset

relates to all other assets.

To present the basic Markowitz mean-variance portfolio model, we need to introduce

some notation. Let:
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N be the number of assets available,

r̄i be the expected (average, mean) return (per time period) of asset i,

ρij be the correlation between the returns for assets i and j (−1 ≤ ρij ≤ +1),

si be the standard deviation in return for asset i,

σij be the covariance between returns for assets i and j (σij = ρijsisj), and

M be the desired expected return from the portfolio chosen.

Then the decision variables are:

ωi the proportion of the total investment associated with asset i (0 ≤ ωi ≤ 1).

Observe that we imposed non-negativity (ωi), meaning we can only go long, that is,

buying and holding an asset in the hope that its price will rise. If we were to allow negative

weights (so ωi can be positive or negative), then we would be allowing shorting. Shorting

(or short selling) is when investors borrow a particular asset and sell it immediately in

the market, in the hope that the asset price will fall, enabling them to buy the asset back

later at a lower price and return it to the original lender.

Using the standard Markowitz mean-variance approach we have that the portfolio

optimisation problem is:

minimise
N∑
i=1

N∑
j=1

ωiωjσij (2.1)

subject to

N∑
i=1

ωir̄i = M, (2.2)

N∑
i=1

ωi = 1, (2.3)

0 ≤ ωi ≤ 1, i = 1, . . . , N. (2.4)

Here in Equation (2.1) we minimise the total variance (risk) associated with the portfolio.

Equation (2.2) ensures that the portfolio has an expected return of M . Equation (2.3)

ensures that the proportions sum to one, so that all available cash is invested in assets.

This formulation is a nonlinear programming problem. Usually nonlinear problems are

difficult to solve, however in this case, since the objective is quadratic and [σij] is positive

semidefinite (a property of covariance matrices), computationally effective algorithms exist

so that in practice the above model can be solved with little difficulty.



6

The point of the above optimisation problem is to construct an efficient frontier, a

smooth non-decreasing curve that gives the best possible tradeoff of risk against return,

i.e. the curve represents the set of Pareto-optimal (non-dominated) portfolios.

Beasley (2013) gives one such efficient frontier, shown in Figure 2.1, for assets drawn

from the UK Financial Times Stocks Exchange (FTSE) index of top 100 companies.

Note how this nice smooth continuous curve runs from the minimum variance portfolio

to the maximum return/maximum risk portfolio. Here we can choose to hold any of the

portfolios on this efficient frontier. For this particular data set the minimum variance

portfolio contained 30 out of the 100 assets.

Figure 2.1: Efficient Frontier for the FTSE100

Based on Markowitz’ mean-variance model, Treynor (1961), Sharpe (1964) and Lintner

(1965) independently introduced the Capital Asset Pricing Model (CAPM). CAPM says

that the expected return of an asset or portfolio equals the return on a risk-free asset

plus a risk premium. If an asset is to be added to an already diversified portfolio, CAPM

determines a theoretically appropriate rate of return that compensates the investor for

taking the risk premium associated with that asset. CAPM assumes that each individual

asset in a portfolio entails specific risk, but, through diversification, an investor’s net

exposure can be reduced to the systematic risk of the market portfolio.

The general idea behind CAPM is that investors need to be compensated in two ways:

time value of money and risk. The time value of money is represented by the risk-free

rate (which we denote as rf ), which means how much return an investor would expect

from an absolutely risk-free investment over a given period of time. A rational investor

that decides to take a risky investment expects at least to exceed the risk-free rate.

The other input to CAPM is the amount of compensation an investor needs for taking

additional risk. This is calculated by taking the asset’s sensitivity to non-diversifiable
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(specific) risk, often represented by the quantity β in the financial industry, and comparing

the asset returns to the market premium (return over a risk-free investment). Given

observed market returns rm and asset a returns ra, βa is calculated as:

βa =
σma
σ2
m

, (2.5)

where σma is the covariance between asset returns ra and market returns rm, and σ2
m is

the variance of market returns rm. Given expected market return r̄m, in order to decide

whether an asset should be added to a portfolio we have to apply, according to CAPM,

the formula:

r̄a = rf + βa(r̄m − rf ) (2.6)

where asset a should be included in a portfolio only if its expected returns exceed r̄a.

An important assumption of CAPM is that asset prices move together because of

one factor: the common movements of markets. The simplicity of CAPM led to the

development of Arbitrage Pricing Theory (APT), first proposed by Ross (1976). APT

considers that the expected return of an asset can be modelled as a linear function of

various macroeconomic factors or theoretical market indices, where sensitivity to changes

in each factor is represented by a factor-specific β coefficient. These models are usually

referred to as factor models (see Wilmott (1998); Alexander (2001); Elton et al. (2007)).

The standard form of a factor model can be written as

r̄a =
m∑
j=1

βajfj + εa (2.7)

where βaj are factor-specific sensitivities, m is the number of factors and εa is the portion

of the return on asset a not related to any of the m factors.

The success of factor models in predicting returns depends on both the choice of the

factors (fj) and the method for estimating factor sensitivities (βaj). Factors may be

chosen according to economics (interest rates, inflation, etc.), finance (market indices,

yield curves, exchange rates, etc.), fundamentals (book-to-market ratios, dividend yields,

etc.) or statistics (factor analysis, principal component analysis, etc.). Sensitivities can be

estimated using cross-sectional regression, time series techniques or eigenvalue methods.

The most popular factor model is the Fama-French three-factor model, designed by

Fama & French (1993) to describe asset returns. Fama and French observed that two

classes of assets have tended to outperform the market: small caps and assets with a

high book-to-market ratio. They expanded CAPM to include portfolio exposure to these

two classes. According to the Fama-French three-factor model, asset return is explained

according to the formula:
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r̄a = rf + βa1(r̄m − rf ) + βa2 SMB + βa3 HML + εa (2.8)

where SMB stands for “Small (market capitalisation) Minus Big” and HML stands for

“High (book-to-market ratio) Minus Low”. Here βa1 is analogous to the classical βa

(given in Equation (2.5)) but not equal to it since there are now two additional factors.

2.2 Discussion on portfolio models

In the Markowitz framework, the portfolio is decided so as to minimise risk, where risk

is defined as the in-sample variance in portfolio return. Clearly, risk can be defined in

different ways. For example, a downside risk framework would equate risk with portfolio

return falling below a predefined target. In this case, the objective of our optimisation

model would be changed.

In fact, minimising risk is one of many possible objectives when defining a portfolio

optimisation model. Take, for instance, the problem of designing an index tracking port-

folio, where the objective is to replicate the performance of an index such as the S&P500

or the FTSE100.

In order to achieve this, full replication (buying all assets in the proportions that they

compose the index) is possible, albeit for larger indices it can be an expensive strategy

in terms of transaction cost. For example, whenever an asset enters/leave the index, the

entire fund must be rebalanced, and any new money invested in the fund must be spread

across all assets to mirror the index. For these reasons it is common not to adopt full

replication. In such cases it is necessary to solve an index tracking portfolio optimisation

model where the number of assets that can be bought is restricted. The objective of

this problem is to minimise the tracking error, defined as the average squared difference

between the tracking portfolio return and the index return.

Tracking error, however, is not the only way to measure the success of an index tracking

portfolio. An alternative view on the above problem relates to regression. Suppose we

perform a linear regression of the return from the tracking portfolio against the return of

the index, i.e. the regression rt = α + βRt, where rt and Rt are the portfolio and index

returns at time t. If we are looking for an index tracking portfolio then clearly we want

an intercept α = 0 and a slope β = 1. We can obtain α and β by using an ordinary least-

squares regression (as in Canakgoz & Beasley (2009)), or, alternatively, by using quantile

regression (Mezali & Beasley (2013)). The former looks for regression coefficients based on

the least-squares mean regression line, while the latter uses coefficients based on median

regression (the 50% quantile).
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Recent work, other than that discussed above, dealing with index tracking can be

found in Chen & Kwon (2012), Garcia et al. (2011), Guastaroba & Speranza (2012),

Krink et al. (2009), Maringer (2008), Ruiz-Torrubiano & Suarez (2009), van Montfort

et al. (2008), and Wang et al. (2012).

Essentially, different types of portfolios require different mathematical models, and

even for portfolios intended for the same purpose, the model to use is not uniquely defined,

such as the index tracking problem discussed above. In this thesis, we concentrate on

three problems which in our view are not well defined in the literature: the problems of

selecting an absolute return portfolio, a market neutral portfolio and an asset basket for

an exchange-traded fund. We review the literature on each of these problems in the next

sections.

2.3 Absolute return portfolios

The reader should be aware that the term ‘Absolute Return Portfolio’ is not clearly

defined, as noted previously for example by Waring & Siegel (2006). Differing authors

interpret the phrase ‘Absolute Return’ differently, as will be seen in our discussion of the

literature below.

2.3.1 Stochastic programming models

One strand relevant to ARPs that can be found in the literature relates to guaranteed

return funds. They fall within the ARP category as they aim to achieve a minimum

absolute return. Work that deals with guaranteed return funds is often based on stochastic

programming or some other form of future scenario prediction. The minimum return will

hence be guaranteed provided the future is one of the predicted scenarios.

Dert & Oldenkamp (2000) proposed a stochastic programming model for a single-

period guaranteed return portfolio that may include European put and call options. In this

work a casino effect is shown to exist when one chooses portfolios to maximise expected

return subject to achieving a minimum level of return under all circumstances (scenarios).

The casino effect arises where there are high probabilities of obtaining low returns and

low probabilities of receiving high returns. Since investors may dislike casino solutions

the authors enhance their model by adding chance constraints which require that the

probabilities of achieving returns less than pre-specified levels should be small. Numeric

testing is based on options from the Standard & Poor’s 500 index for 1997 with an

investment horizon of 23 days. No details are given on the solution approach used.
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Berkelaar et al. (2002) proposed an interior point approach based on primal-dual

decomposition for a two-stage stochastic linear program. The work itself presents a general

algorithm for this class of stochastic problems, but as an illustration their method is

applied to a portfolio optimisation problem where an investor can invest in a money market

account, a stock index and options on the index; moreover, a minimum return has to be

guaranteed over a set of future scenarios. In their problem the portfolio (once constructed)

can be rebalanced once (on a set date) before the end of the time horizon. The author

mention, as advantages of their work, that the method proposed does not need a feasible

starting solution and its computation time seems to grow linearly with the number of

scenarios. Numeric testing is based on high liquidity options for the Standard & Poor’s

500 index for 1999. The number of scenarios considered is 50 for the rebalancing date and

100 for the time horizon. No computation time for this portfolio optimisation problem

is given, however there is a computational time comparison for some other test problems

where their algorithm shows a much better performance than its deterministic equivalent.

See Berkelaar et al. (2005) for an extension of this work to multistage stochastic convex

programs.

Another work that relies on stochastic programming to guarantee a minimum return

is that presented by Dempster et al. (2007). They proposed a stochastic formulation

to a complex multivariable problem where, after an initial investment in a closed end

guarantee fund, the objective is to hedge the risks involved in order to avoid having to

buy costly insurance to guarantee the minimum return. This problem requires long-term

forecasting in multiple time periods for many investment classes. They proposed a dy-

namic stochastic programming model to solve the problem. Stock prices are modelled

using both standard geometric Brownian motion and geometric Brownian motion with

Poisson jumps. Backtesting is presented for a 5 year period, from January 1999 to De-

cember 2003. The model is compared to the Euro Stoxx 50 index. Given a minimum

barrier which the portfolio must exceed over time, the model behaves quite well, the only

period where it drops below the barrier is on the 11th of September 2001. The number

of scenarios considered is either 7776 or 8192, depending on the tree structure used for

different horizon backtests, but no computation times are given. See also Dempster et al.

(2006).

Herzog et al. (2007) applied sequential stochastic programming to an Asset Liabil-

ity Management (ALM) problem that guarantees a minimal return on investments. The

stochastic programming optimisation is resolved for every time interval on a new set of

stochastic scenarios that is computed according to the latest conditional information.

They show that such a technique approximates a continuous state dynamic programming

algorithm and that, by using a sufficiently large number of scenarios, the difference be-
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tween the exact solution and the approximation can be made arbitrarily small. They also

argue that the most suitable risk measures for guaranteed return funds are shortfall risk

measures. Hence, they define a penalty function relating to any shortfall below guaran-

teed return. Their objective function is to maximise multi-period return while keeping

the penalty function under a certain level as defined by a coefficient of risk aversion. The

model also includes transaction costs. They presented a case study relating to a Swiss

fund with quarterly data over the period 1988 to 2005 with up to 5000 scenarios.

Barro & Canestrelli (2010) proposed a multistage stochastic programming framework

for a dynamic asset allocation problem which takes into account the conflicting objectives

of a minimum guaranteed return and of an upside capture of asset returns. They argue

that maximising the upside capture increases the total risk of the portfolio, thus they

attempt to balance this by introducing a second goal where they try to minimise the

shortfall with respect to the minimum guarantee level. To combine these two conflicting

goals they formulate them in the framework of a double dynamic tracking error problem

using asymmetric tracking measures, one for a risky benchmark and one for a minimum

guaranteed benchmark. The objective is a combination of both tracking errors functions.

They describe the uncertainty of future returns by using the concept of a scenario tree

where each scenario is represented as a path from the origin to a leaf of the tree. An

interesting feature of this model is the introduction of liquidity constraints which take

into account the bid-ask spread. They also briefly discuss a second approach where

the problem of minimum guaranteed return is tackled with the introduction of chance

constraints. No numerical results are given.

2.3.2 Other models

There are also papers presented in the literature that (unlike those discussed above) do

not use stochastic programming.

Nishiyama (2001) considered an absolute return strategy derived from multi-manager

investment, a fund of funds (FoF) approach, in Japan. He argued that FoFs have tra-

ditionally low correlation against the benchmark index and little impact from external

changes, thus being absolute return strategies. He observes that nonlinear events occur

frequently in the market, e.g. crashes, and that this phenomena should not be interpreted

using traditional theory framework, which divides a portfolio risk in two: systematic

(market) and unsystematic (specific) risk. He then proposes the use of the physics the-

ory of Self-Organised Criticality (SOC) to find the point at which a system changes its

behaviour or structure, for instance, from solid ice to liquid water. Unlike the melting

case, where the control parameter is the temperature, a SOC reaches a critical state by its
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intrinsic dynamics, e.g. the market reaches a critical state when it crashes and this is not

due to a control parameter. To understand the dynamics he focused on the correlation

matrix of nonlinear fluctuations in the market, where he looked into historical movement

of asset correlation and assumed its behaviour would be ex-ante signals of a market crisis.

He introduces a third risk category called group risk, which lies between systematic and

unsystematic risk and accounts for the nonlinear type of market movements. He believes

that minimising variance is not sufficient to measure risk, and he emphasises the impor-

tance of correlation rather than variance. Simulated results over the period 1995-2000,

so including the 1998 Russian crisis and the failure of Long-Term Capital Management,

were presented.

Korn (2005) proposed a different approach for portfolio selection with a positive lower

bound on the final wealth. The solution given consists of transforming the original problem

into an equivalent unconstrained portfolio problem with a modified utility function that

does not include the lower bound. Unlike the majority of work on guaranteed return funds,

time is considered a continuous series instead of being divided into discrete intervals. As

mentioned by the author, the unconstrained version is solved analytically via numerical

methods, although no details are given on which numerical methods were used. After the

problem is solved, the optimal final wealth is separated into a hedging term, needed to

satisfy the requirement of a minimum final wealth, and a speculative term. The hedging

term is a portfolio made up of put options and stocks. The speculative part could be

calculated by computing the delta of the corresponding options. A few examples are

given that demonstrate the relationship between stock investment and the growth or

decay of total wealth, however, the deltas (speculative term) are not computed since they

require lengthy expressions to be solved. No computational results are given for real world

data. Stock prices are modelled using generalised geometric Brownian motion.

Amenc et al. (2008) proposed an approach based on a dynamic core-satellite portfo-

lio. This technique, explained in detail in Amenc et al. (2004), consists of splitting the

cash allocation into different portfolios. The core portfolio is mainly a low-risk portfolio

that intends to respect the investor’s long-term risk return objectives, while the satellite

portfolio provides access to upside potential by investing in more risky assets that are

expected to outperform the benchmark. At discrete time intervals, the investor decides

the proportion invested in each portfolio based on a minimum guaranteed value that is

relative to the benchmark, e.g. 90% of an underlying index. The dynamic allocation pro-

cess will systematically increase the exposure to the satellite portfolio when it does well

with respect to the core, while controlling risks by shifting to the core when the satel-

lite does poorly. They gave an example where the core is composed of Euro bonds and

the satellite is an exchange-traded fund relating to the Euro Stoxx 50. They compared
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their core-satellite approach with an active manager simulation, and showed that overall

their dynamic core-satellite portfolio led to better results than a simulation of an actively

managed portfolio built on largely accurate forecasts.

Lejeune (2011) considered an absolute return strategy derived from a long-only fund of

funds approach which was formulated as a mixed-integer nonlinear programming problem.

Portfolio variance is constrained to be below a given limit, this is ensured through a Value-

at-Risk (VaR) constraint that limits the magnitude of the loss with a specified probability

level over a certain period of time. In the model presented VaR takes the form of a prob-

abilistic constraint. They estimate asset returns by using the Black-Litterman framework

(Black & Litterman (1992)) which attempts to overcome problems of highly-concentrated

input-sensitive portfolios. The model presented is computationally expensive and thus

the probability constraint is approximated deterministically by a second-order cone con-

straint which makes the problem convex for a wide range of probability distributions.

They present a specialised nonlinear branch-and-bound algorithm which is implemented

by an open source nonlinear solver. The branch-and-bound is compared to two other

solvers in terms of computational performance over 12 different problem instances.

Zymler et al. (2011) proposed an approach based on combining robust optimisation

with options, an approach they call insured robust portfolio optimisation. Robust optimi-

sation (e.g. see Ben-Tal & Nemirovski (1998)) gives a guarantee provided data variation

lies within a specified uncertainty set. They add another layer of guarantee to hedge

against rare events which are not captured by a reasonably sized uncertainty set. They

enrich the portfolio with specific derivative products to obtain a deterministic lower bound

that essentially provides a barrier (insurance) such that the portfolio value cannot drop

below the required level. They argue that enlarging the uncertainty set to cover extreme

events (instead of adding the second layer of insurance) would lead to robust portfolios

that are too conservative and could perform poorly under normal market conditions. The

model they develop is a convex second-order cone program which is scalable in the number

of stocks. Numeric results were given based on simulated data as well as historical data,

where they observed that while the uninsured portfolio tends to have higher expected re-

turns in normal market conditions, the proposed insured model shows clear advantages in

terms of Sharpe ratios, expected returns and cumulative wealth when the markets behave

abnormally.

2.4 Market neutral portfolios

The history of Market Neutral Portfolios traces back to the mid-1980s, when Morgan

Stanley assembled a group of mathematicians, physicists and computer scientists to de-
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velop trading programs whose intention was to take the intuition and trader’s “skill” out

of arbitrage and replace it with disciplined, consistent filter rules. Among other things,

this group identified pairs of securities that tended to move together. This marked the

beginning of Pairs trading, which is the first known market neutral technique and it is

generally assumed to be the ancestor of statistical arbitrage (see Gatev et al. (2006)).

Pairs trading works as follows. If two assets (say P and Q) are in the same industry or

have similar characteristics, one expects the two asset returns to track each other within

a certain error. If Pt and Qt denote the corresponding price series which are historically

correlated, then we can model a system such as:

ln(Pt/Pt0) = S ln(Qt/Qt0) + εt (2.9)

where εt is a stationary, or mean reverting, process, usually known as cointegration residual

and S is a constant equating ln(Pt/Pt0) with ln(Qt/Qt0). The model above suggests an

investment strategy where, if εt is sufficiently positive, we short S£ of asset Q for every

1£ invested in long positions of asset P . Conversely, if εt is sufficiently negative, we go

short on P and long on Q. The portfolio is expected to oscillate near some statistical

equilibrium, bringing εt closer to zero. This is usually called a mean-reversion strategy as

the investor bets that the prices will eventually revert to their historical trends. This is

typically associated with market overreaction: assets are temporarily under or overpriced

with respect to one or several reference securities (Lo & MacKinlay (1990)). See Pole

(2008) for a comprehensive review on statistical arbitrage and cointegration.

Pairs trading is considered market neutral as it provides a hedge against market risk.

For example, if the whole market crashes, and the two assets plummet along with it, the

trade should result in a gain on the short position and a loss on the long position, leaving

the profit close to zero in spite of the large move. Note, however, that market neutral

investing is not a single strategy; pairs trading is one possible technique to achieve market

neutrality. For instance, an alternative strategy is known as delta neutral, where delta

is defined as the sensitivity of an option value with respect to changes in the underlying

asset’s price when all other variables remain unchanged. A delta neutral portfolio is one

which tries to maintain its value unchanged when small changes occur in the value of the

underlying securities. Such a portfolio typically contains options and their corresponding

underlying securities such that positive delta components (namely, long call or short put

options) and negative delta components (short call or long put options) offset. Work

found in literature that study market neutral investments are summarised below.

Avellaneda & Lee (2010) define a market neutral portfolio as one that is uncorrelated

with the market. They define the market as the combination of multiple factors, where

they present a model to explain stock returns as composed of a systematic component
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dependent on factors and an idiosyncratic (uncorrelated) component. They then regard a

market neutral portfolio as one where the portfolio has zero exposure to these factors. To

estimate the factors they use two different approaches. The first one is called the Principal

Components Analysis (PCA) (see Jolliffe (1986)) which uses historical data to create an

empirical correlation matrix. From this matrix they extract eigenvalues and rank them in

decreasing order, where those that exceed a given percentage of the trace of the correlation

matrix are considered significant. From the significant eigenvalues they form weighted

“eigenportfolios”, which are the estimates of factors. In the second approach, they select

a sufficiently diverse set of Exchange-Traded Funds (ETFs) and consider them as factors.

Extensive computational results were given, where they noted that the performance of

mean-reversion strategies appears to benefit from situations where most of the variance

can be “explained” (with significant regression coefficients) by a relatively small number

of factors. If the “true” number of factors needed to explain variance was very large

then using only a few factors would not be enough to “defactor the returns”, so residuals

would “contain” market information that the model is not able to detect. If, on the

other hand, they used a large number of factors, the corresponding residuals would have

small variance, and thus the opportunity of making money, especially in the presence of

transaction costs, is diminished.

Baronyan et al. (2010) investigated different pairs trading strategies by combining

7 different policies of pairs selection with 2 trading methods, in a total of 14 strategies.

Together the pairs are meant to be “market neutral” although, as is clear from the varying

strategies proposed in Baronyan et al. (2010), there are many different measures that can

be used to decide whether a pair is “market neutral” or not. Computational results were

presented for pairs of stocks drawn from the Dow Jones 30 index, so
(

30
2

)
= 435 pairs.

Yearly tests were performed from N = 1999, . . . , 2006, where years N and N +1 comprise

the training (in-sample) period, and year N + 2 comprises the testing (out-of-sample)

period. Thus, the last test included the year of the global financial crisis. They compared

the seven different strategies and found that in general all of them resulted in positive

cumulative returns, especially in 2008. They argued that mispricings in pairs of similar

stocks are more commonplace in a global crisis, thus allowing more trading possibilities

to emerge in bad times.

Ganesan (2011) used a regression of individual stock returns against a number of fac-

tors. He defines a market neutral portfolio as one whose exposure to factors is zero. He

presents a single factor and a multi-factor model for describing the stocks expected re-

turns. He adopted a Markowitz mean-variance approach to portfolio construction, where

new constraints were added to transform the problem into that of finding a market neu-

tral portfolio. Using geometrical subspace analysis he shows that any portfolio can be
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decomposed as the sum of a market-neutral portfolio and a factor-exposure portfolio.

Examples with three stocks were used to explain both the single factor and multi-factor

approaches. An empirical study was performed comprising all U.S. stocks traded on New

York and NASDAQ (about 2000 stocks) during the period from 1998 to 2010. The study

results show that the performance of the market-neutral component depends on the cross-

sectional variation of stock returns (called dispersion), while the performance of the factor

component depends on the volatility of the overall stock market.

Kwan (1999) used a regression of stock returns against market returns and regarded

a market neutral portfolio as one where the long portfolio weighted regression parame-

ters relating to slope are equal to the equivalent short parameters. His model focused

on accurately portraying institutional procedures for short selling (i.e. by including in

the model all possible costs involved in short transactions) while adhering to the mean-

variance framework. The portfolio is subject to a constraint where the weighted average

of the long and short beta (slope) coefficients must be equal and the model’s objective is

to maximise the Sharpe ratio (Sharpe (1966, 1975, 1994)). The securities are doubled (to

account for long and short) and ranked according to criteria that take into consideration

how undervalued (overvalued) a particular asset is. The model is solved via an itera-

tive procedure where securities are added one by one to the portfolio while maintaining

feasibility. Computational results were given for one illustrative example involving 20

stocks from the Dow Jones Industrial index. The model is flexible enough to accommo-

date different market outlooks by adjusting the weights between the market-neutral and

market-sensitive components.

Ma et al. (2011) used a regression of individual stock returns against a number of fac-

tors. In their regression different parameters applied depending upon the market regime

(e.g. bull or bear market, where prices are increasing or decreasing respectively). They

formulated a stochastic linear program to maximise portfolio return whilst constraining

the portfolio factor exposure to lie within limits. The market neutral strategy is imple-

mented by constructing and rebalancing the portfolio that has overall zero betas for all

relevant risk factors and thus the return of the portfolio under such a strategy is uncor-

related with the market risk factors. They used Bayesian information criteria to estimate

the number of regimes. Three regimes were identified, where the third (apart from bull

and bear) was a transitional market. A transition probability matrix between the three

regimes is given, but no details are provided on how it was estimated. Computational

results were given for one example involving nine sector ETFs over the period January

2005 to September 2009. The strategy is compared to a benchmark strategy which invests

passively and equally among the nine sector ETFs. Their results show that, in general,

the regime-dependent strategy outperforms the benchmark strategy. Their evaluation,
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however, did not include a bear market situation.

Pai & Michel (2012) used a regression of stock return against market return and re-

garded a market neutral portfolio as one where the portfolio weighted regression parame-

ters relating to slope are nonlinearly constrained. They used a Markowitz mean-variance

approach to portfolio construction with a nonlinear portfolio risk constraint. They argued

that while the problem of constructing a basic market neutral portfolio could be modelled

as a linear program, its complexity would be greatly increased by adding constraints such

as investor preferences, market norms or investment strategies. Thus, they implement

a differential evolution heuristic (Storn & Price (1997)) that exploits a penalty function

strategy and employs weight standardisation procedures. These procedures are respon-

sible for the complex constraints handling, ensuring the feasibility of the population of

individuals in each step of the evolution cycle and leading to faster convergence. Compu-

tational results for portfolios with up to 64 stocks drawn from the Bombay stock exchange

were given, where they performed statistical hypothesis tests to prove the robustness of

their out-of-sample results.

Badrinath & Gubellini (2011) examined 27 market neutral funds over the time period

October 1990 to December 2007. They consider a market neutral strategy as a specific

implementation of a long-short strategy that minimises exposures along one of multiple

possible dimensions: VAR-neutral, mean-variance neutral, dollar-neutral just to name

a few. They concluded that market neutral funds monthly returns were uncorrelated

with those of the market, where the market is represented by the Fama-French three-

factor model and its momentum augmented version, the Carhart four-factor model (see

Carhart (1997)). They also conducted an evaluation of portfolio performance, where they

concluded that market neutral funds require relatively frequent adjustments to market-

risk exposure to achieve their goals; their analysis also showed a superior risk-adjusted

performance in down-market states when compared to up-market states.

During a week in August 2007, a number of high-profile market neutral hedge funds ex-

perienced unprecedented losses as the credit crunch crisis hit financial markets. Khandani

& Lo (2007, 2011) discussed the effect of these events on long/short market neutral funds.

They also attempted to explain the causes that led to such unusual market movements.

In Khandani & Lo (2007), they concluded that the rapid unwinding (liquidation) of such

a fund may have led to a cascade effect. They argue that these events are not particularly

relevant to the general efficacy of quantitative investing since the losses were more likely

to be the result of a firesale rather than shortcomings of quantitative methods. However,

they explain that the 2007 events show that problems in one corner of the financial mar-

ket can spill over to a completely unrelated corner, leading them to discuss regulation

of the hedge-fund sector. In Khandani & Lo (2011) they identified indirect evidence of
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two specific unwinds on August 1st and 6th 2007. They simulated the performance of a

high-frequency mean-reversion strategy that indirectly explained why liquidity declined

sharply during August 2007.

Patton (2009) pointed to a lack of clarity in the meaning of the term “market neutral”

and considered a number of different definitions. He considered the concept of neutrality

more generally than that implied by the use of beta by proposing five alternative concepts:

mean-neutrality (which nests the correlation or beta-based definition), variance, Value-

at-Risk and tail neutrality, and finally a concept of complete neutrality which corresponds

to statistical independence of fund and market returns. Statistical tests for each concept

of neutrality were introduced in the hope of aiding investors’ evaluation of funds. A

detailed study of a combined database of 1423 hedge funds in a variety of fund styles was

performed, using monthly returns, over the period April 1993 to April 2003. The market

benchmark was considered to be the S&P 500 index for most of the hedge funds, and he

showed that the results do not vary greatly if other equity indices are used. He found

that approximately 28% of 197 funds described as market neutral exhibited significant

correlation with the market at the 5% significance level. When comparing to other fund

categories he argues that his findings suggest that many market neutral funds are in

fact not market neutral, but overall, at least, they are more market neutral than other

categories.

2.5 Exchange-traded funds

Exchange-Traded Funds (ETFs) were introduced in the 1990s, early issues around their

introduction are discussed in Kupiec (1990) and Gastineau (2001). Kupiec discussed ETFs

predecessors, which were called Index Participation shares (IPs) and had been recently

approved but not yet issued. Their goal was to provide investors with a flexible tool

to trade an entire portfolio in a single transaction. The idea of a portfolio traded as

a share actually dates back from the 1970s and 1980s, when the introduction of S&P

500 index futures provided an arbitrage link between futures contracts and the traded

portfolio of stocks. The effect of all these developments was to make portfolio trading in

either cash or futures markets an attractive activity for many trading desks and for many

institutional investors, which naturally led to an interest in a readily tradable portfolio

or basket product for smaller institutions and individual investors. In the early 1990s IPs

grew in popularity. IPs were much like a futures contract, but they were margined and

collateralised like stocks. Like futures, there was a short position for every long and a

long position for every short. A federal court in Chicago found that the IPs were indeed

illegal futures contracts and had to be traded on a futures exchange. This eventually led
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to the end of IPs and paved the way for the development of ETFs and their subsequent

introduction in 1993.

Poterba & Shoven (2002) provided some statistics on the growth of ETFs since their

introduction. The total ETF market was approximately US$80bn in 2001, having grown

steadily since 1993. Two ETFs (the SPDR Trust SPY and the Nasdaq-100 QQQ) made

up some 60% of the market at that time. They compared the pre-tax returns of the SPDR

Trust SPY and the Vanguard Index 500 Fund, which is a domestic equity index fund, to

the S&P 500 returns. The calculations showed that the average return on both funds

was close to returns from the S&P 500 index, with the Vanguard Index 500 Fund returns

being slightly higher. They noted that the fact that ETF shares values are detached from

the actual basket value can lead to non-trivial year to year return differences. They also

showed that the difference in returns between the two funds was reduced when after tax

returns were considered, mainly because of the higher tax burden associated with mutual

and index funds.

Boehmer & Boehmer (2003) considered the introduction by the New York Stock Ex-

change (NYSE) of trading in three large ETFs (SPY, QQQ and a Dow Jones ETF,

DIA), plus a number of smaller ETFs, that had previously been traded just on other

exchanges. They documented double-digit percentage declines in quoted, effective, and

realised spreads after the NYSE entry. The difference between effective and realised

spread, an aspect of liquidity, also decreased significantly. The NYSE entry considerably

improved liquidity in the entire market and also in the individual market centres. Detailed

tests were conducted showing that this result was not due to shifts in informed trading

or a temporary phenomenon. They also concluded ETF trading costs were lowered. A

possible explanation for this reduction rests on the assumption that different market cen-

tres have comparative advantages with certain order types. For example, one market may

be better able to handle a large volume of small, uninformed orders, while another may

be better able to handle a high volume of large orders, because it has a deeper pool of

liquidity. Under this view, the NYSE entry may have led to a more efficient allocation of

orders to the respective lowest-cost market centre, such that all markets are able to offer

lower trading costs.

Kostovetsky (2003) examined the conditions under which it is preferable for an investor

to invest in an (index tracking) ETF as compared with a conventional index tracking

mutual fund. He developed a one-period model, which is then expanded to multi-period,

to examine the major differences between ETFs and index funds. The model, albeit

simple, emphasised the importance of management fees, shareholder transaction fees and

taxation. He also discusses qualitative differences between ETFs and index funds. For

example, some advantages of ETFs are the convenience of being able to trade at any time
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of the day and the ability to buy on margin and to short sell. The latter makes ETFs

appropriate for hedging strategies.

Alexander & Barbosa (2008) examined the hedging problem which arises in ETF

creation and redemption when the portfolio underlying the ETF shares involves illiquid

stocks with relatively high transaction costs. Their work examined the use of minimum

variance hedging using three different performance criteria: aversion to negative skewness,

excess kurtosis and effective reduction in variance. They found that minimum variance

hedging was preferable to a simple hedge (based on one long position in the ETF and

one short position in futures) if aversion to negative skewness and positive excess kurtosis

were considered. Their results considered an out-of-sample period from January 2001

until September 2006, in which they identified three distinct regimes. They argue that

the performance of each hedging strategy was independent of the market regime as little

difference in performance was observed in different regimes.

Mariani et al. (2009) examined the return distributions of three ETFs and their corre-

sponding benchmark indices using a Levy model. They described the temporal evolution

of financial markets as a normalised Truncated Levy Flight (TLF), which in their view is

more suitable for long-range correlation scales than classical Levy models. They exam-

ined the S&P 500 SPDR, the Dow Diamonds and the PowerShares QQQ and compared

them with the behaviour of their indices, namely the S&P 500, the Dow Jones Industrial

Average and the NASDAQ 100, respectively. The time period considered is extensive as

their data is composed of daily ETF and index prices from when the respective ETF was

issued until October 2007. The S&P 500 SPDR, for example, was issued in 1993. They

concluded that these ETFs exhibited the same behaviour as their indices and argued that

the normalised TLF model allowed them to accurately complete a numerical analysis.

Avellaneda & Zhang (2010), Giese (2010), Haugh (2011) and Jarrow (2010) all con-

sidered ETFs from the perspective that the underlying price dynamics of the assets can

be modelled using some stochastic process (e.g. Brownian motion).

Avellaneda & Zhang (2010) presented an exact formula linking the return of a lever-

aged ETF (an ETF which hopes to achieve a multiple of the benchmark return, for exam-

ple, a 2× leveraged ETF attempts to achieve twice the daily return of its benchmark) with

the corresponding multiple of the return of the unleveraged ETF and its realised variance.

They tested their formula using a number of ETFs (twenty-two 2× ETFs, twenty-two−2×
ETFs, six 3× ETFs, six −3× ETFs) and concluded that their formula is a good expla-

nation of ETF price behaviour. Their study showed that leveraged funds could be used

to replicate the returns of the underlying index, provided a dynamic rebalancing strategy

was used. Empirically, they found that rebalancing frequencies required to achieve this

goal are on the order of one week between rebalancings. From their formula they draw
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a series of conclusions about leveraged ETFs. For example, if the price of an underlying

unleveraged ETF does not change significantly over time, but the realised volatility is

large, the leveraged ETF will underperform the corresponding multiplied return of the

unleveraged ETF. This make leveraged ETFs unsuitable for buy-and-hold investors.

Giese (2010) presented a model in which there is a tradeoff between exploiting the

potential of higher returns, which grow linearly with the ETF leverage factor (e.g. 2×,

3×), and adverse losses owing to the volatility of the underlying, which is proportional

to the ETF leverage squared. Their model seeks an optimal leverage value, and it can

be adapted to either long or short leveraged trading strategies, but not both at the same

time. Leveraged ETFs are rebalanced on a daily basis and hence transaction costs cannot

be neglected, so these are taken into account. He observed that the optimal leverage value

strongly depends on prevailing market conditions, such as a bullish or bearish market.

They considered a numeric example based on the EUROSTOXX 50 total return index

in two different time periods, from 1991 until 2007 (when at the end the markets were

close to a peak) and from 1991 to 2009 (when at the end the markets were in a recession).

Their optimal leverage model outperformed both a 2× ETF and 4× ETF simulation.

Haugh (2011) considered a constant proportion trading strategy, where the fraction

of the total wealth invested in a risky asset remains fixed and does not vary over time.

Such a strategy requires constant (daily) rebalancing. He argues that this strategy can

be used to explain the performance of leveraged ETFs. They presented the terminal

wealth of a constant proportion trading strategy as a function of terminal asset prices,

which they used to explain leveraged ETF performance when specialised to the case of

just one underlying asset. Hence, a leveraged ETF that tracks an index (composed of

multiple assets) was not considered. They argued that an actively managed constant

proportion ETF could be a suitable product for investors, although the costs associated

with daily rebalancing would be prohibitively expensive for any small and individual

investors. In addition, the manager of a constant proportion ETF (or a normal leveraged

ETF) would necessarily sell at the close after an up-day and buy at the close after a

down-day and would therefore tend to dampen market volatility. Because the direction

of the daily rebalancing trades are widely known in the market, it is suspected that many

proprietary trading desks illegally take advantage of advance knowledge of pending orders

to profit from these trades. He suggests less frequent rebalances as a way to avoid this

risk and incidentally reduce management costs at the expense of rendering a less useful

approximation.

Jarrow (2010) presented a model where investment is dynamically switched between an

ETF (whose value followed a diffusion process) and a money market account in an attempt

to achieve a given multiple of ETF return. The model enables one to characterise the
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return distribution of the leveraged ETF over any investment horizon. The instantaneous

return on a k-times leveraged ETF is equal to k times the return on the ETF less the

interest paid on the borrowings. He also shows that the k-times return does not hold

over any finite investment horizon, due to the interest rate reduction component. He

emphasises that promotional materials for leveraged ETFs warn about the volatility effect

that devalues leveraged ETFs but usually ignore interest rate reductions. No numeric

results were given for their model.

2.6 Conclusion

In this chapter we gave an extensive review of previous studies on portfolio optimisation

models. In Section 2.1, we presented a historical context for portfolio optimisation. In

Section 2.2 we mentioned that portfolios are very diverse, with many different objectives.

Even for portfolios intended for the same purpose, the model to use is not uniquely defined,

which makes it difficult to compare different works in the literature.

In Section 2.3 we discussed several works that define their strategies as absolute return

portfolios. Most make use of a minimum guaranteed return and are based on stochastic

programming, but other solution methods also exist. In Section 2.4, we presented several

works that deal with market neutral portfolios. Market neutral models are more clearly

defined than absolute return portfolios, albeit there are still multiple ways to define what

market neutrality is.

Finally, in Section 2.5, we discussed a brief history of exchange-traded funds and

related works. Optimisation models for ETFs are still not common in the literature, and

most works study ETF properties and performance.

Overall, we summarise the works on these three models as very fragmented, with differ-

ent models and different data result in isolated papers, with great difficulty in connecting

them in a mathematical/data sense. Many works do not give detailed computational

results.



23

Chapter 3

Absolute return portfolios

3.1 Introduction

Absolute Return Portfolios (henceforth ARPs) are financial portfolios that aim to produce

a good return regardless of how the underlying market performs. This (clearly) is a

relatively easy task when the market is performing well, a much less easy task when the

market is performing poorly. Essentially investors are interested in ARPs either because:

• they believe that the market will perform poorly, and so wish to focus on portfolios

that will not perform as poorly; or

• they are unsure of how the market will perform and wish to hold an ARP as insur-

ance against market deterioration.

ARPs are a relatively popular strategy amongst managers of some hedge funds, which,

as their name suggests, often seek to hedge some of the risks inherent in their investments

using a variety of methods. Their objective is to achieve absolute returns by balancing

investment opportunities with the risk of financial loss. Al-Sharkas (2005), Connor &

Lasarte (2010), Jawadi & Khanniche (2012) and Till & Eagleeye (2003), discuss the

various strategies that hedge funds can adopt.

ARPs are sometimes called market neutral portfolios as they are designed to have a

low correlation with overall market return. Whilst, due to this strategy, ARPs may be

able to achieve positive returns in falling markets, on the other hand they may not perform

as well as market indices or other types of investments in rising markets. However, the

fear of significant financial events (we have seen the 2008 subprime financial crisis; in the

near future will we see a Eurozone default?) makes ARPs popular amongst investors,

who see them as a reasonable strategy to adopt given market uncertainty and volatility.
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In this chapter, we present a three-stage mixed-integer zero-one program for the prob-

lem of designing an ARP. Our formulation includes transaction costs associated with

trading, a constraint limiting the number of assets that can be held and a limit on the

total transaction costs that can be incurred. The first two stages relate to a regression

of portfolio return against time, whilst the third stage relates to minimising transaction

cost. One feature of note in our ARP approach is that we do not specify the

return that the ARP should achieve; rather that emerges as a result of an

optimisation.

The original contribution of our model/formulation relates not to the constraints

adopted (which are in fact standard and have been seen before in the literature, e.g. in

Canakgoz & Beasley (2009)). Rather the original contribution of our model relates to a

clear definition of an ARP via the three-stage objective function.

Because our approach is flexible we are able to extend it to the problem of designing

portfolios with differing characteristics. In particular we present models for enhanced

indexation (relative return) portfolios and for portfolios that are a mix of absolute and

relative return.

The rest of this chapter is organised as follows. In Section 3.2 we present our regression

based three-stage mixed-integer zero-one program used to decide an ARP. In Section 3.3

we go on to show how this formulation can be extended to design portfolios with differing

characteristics.In Section 3.4 we present computational results for portfolios derived from

universes defined by S&P international equity indices. In Section 3.5 we present our

conclusions.

3.2 Problem formulation

3.2.1 Overview

In the formulation presented in this chapter we adopt the view that in seeking an ARP we

are seeking a portfolio that achieves a constant return per time period . Of course

we may not find a portfolio with this property - but in terms of what we desire our view is

that if we can find such a portfolio then we would have an ideal ARP - giving us the same

(constant) return in each and every time period. Here the notion that an ARP is somehow

‘disconnected’ from the market is captured by the constancy of return. This is because

if we achieve a constant return in each and every time period, when (presumably) the

market varies, how can the portfolio and the market be related? This obviously simplifies

the situation, but does reflect the essence of what we would like to achieve in an ARP, a

portfolio with a constant return per time period.
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Now if we desire a portfolio with a constant return per time period should we specify

what that constant return is, or should we allow it to be determined in some other fashion?

Specifying the desired level of constant return might at first sight seem attractive, but in

reality it has some difficulties. If we specify a value that is too low then we may choose

a portfolio that will not generate as much return as could otherwise be achieved. If we

specify a value that is too high then we may not be able to find a portfolio that achieves

that return (even in-sample). Because of these considerations we in our model do not

specify the return that the ARP should achieve; rather that emerges as a

result of an optimisation .

In this chapter we adopt a regression based view of the problem of selecting an ARP. A

key computational advantage of this approach is that it allows us to develop a nonlinear

formulation which can be linearised in a standard way. Our approach is a three-stage

mixed-integer zero-one program. As such standard software packages, such as CPLEX

Optimizer (2013), can be used to find optimal solutions. Computational experience re-

ported in this chapter is that, for the test problems we examined, optimal solutions can

be found very quickly.

Before presenting our model/formulation we should mention here the well-known re-

gression based models, discussed in Section 2.1, that relate asset return (and by implica-

tion/extension portfolio return) to various factors, for example the capital asset pricing

model (Sharpe (1964)), the Fama-French three factor model (Fama & French (1993, 1996))

and the Carhart four factor model (Carhart (1997)). Recall here that, as discussed above,

we are defining an ARP as a portfolio that (ideally) achieves a constant return per time

period. As such a regression of portfolio return against time is the appropriate regression

to use. Regressing portfolio return against other factors (as in these models)

would not satisfy the definition we have set out for an ARP.

In the following sections we give our notation and present the constraints and objective

that we use to find an ARP.

3.2.2 Notation

We observe over times t = 0, 1, 2, . . . , T the value of N assets. We are interested in

selecting, at time T , the best set of K assets to hold (where K < N), as well as their

appropriate quantities (number of asset shares or, equivalently, units). Let:

T be the time period where the composition of the portfolio is decided

Vit be the value (price) of one unit of asset i at time t
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rit be the single period continuous time return for asset i at time t, i.e. rit =

ln(Vit/Vit−1)

α̂i,β̂i be the least-squares regression intercept and slope for asset i when the returns

rit from asset i are regressed against time, i.e. the regression equation is

rit = α̂i + β̂it

It be the value of the index at time t

Rt be the single period continuous time return for the index at time t, i.e. Rt =

ln(It/It−1)

Â,B̂ be the least-squares regression intercept and slope when the returns Rt from

the index are regressed against time, i.e. the regression equation isRt = Â+B̂t

C be the total value (≥ 0) of the current ARP [Xi] at time T ,
∑n

i=1XiViT , plus

cash change (either new cash to be invested or cash to be taken out)

f bi be the fractional cost of buying one unit of asset i at time T , so that the cost

incurred in buying one unit of asset i at time T is f bi ViT

f si be the fractional cost of selling one unit of asset i at time T , so that the cost

incurred in selling one unit of asset i at time T is f si ViT

γ be the limit (0 ≤ γ ≤ 1) on the proportion of C that can be consumed by

transaction cost

εi be the minimum proportion of the ARP that must be held in asset i if any

of the asset is held

δi be the maximum proportion of the ARP that can be held in asset i

Then our decision variables are:

xi the number of units (≥ 0) of asset i that we choose to hold in the ARP

wi the proportion of the initial investment (cash) C held in asset i (0 ≤ wi ≤ 1)

zi

{
1 if any of asset i is held in the ARP

0 otherwise

Gi the transaction cost (≥ 0) associated with buying or selling asset i

Without significant loss of generality (since the sums of money involved are large) we

allow [xi] to take fractional values. Note here that as xi ≥ 0 we are not considering short-

selling, rather we are considering long-only portfolios. Note also that the transaction costs

and the proportion variables are strictly unnecessary since they can be substituted out

algebraically and represented as functions of the x variables, but are introduced here to

ease the mathematics presented.
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3.2.3 Constraints

The constraints associated with the ARP problem are:

wi = xiViT/C, i = 1, . . . , N (3.1)

εizi ≤ wi ≤ δizi, i = 1, . . . , N (3.2)

N∑
i=1

zi = K (3.3)

Gi ≥ f si (Xi − xi)ViT , i = 1, . . . , N (3.4)

Gi ≥ f bi (xi −Xi)ViT , i = 1, . . . , N (3.5)

N∑
i=1

Gi ≤ γC (3.6)

N∑
i=1

xiViT = C −
N∑
i=1

Gi (3.7)

Gi ≥ 0, i = 1, . . . , N (3.8)

xi ≥ 0, i = 1, . . . , N (3.9)

zi ∈ [0, 1], i = 1, . . . , N (3.10)

Equation (3.1) defines the proportion wi of the ARP invested in asset i. Equation (3.2)

ensures that if an asset i is not in the ARP (zi = 0) then wi is zero (and Equation (3.1)

then ensures that xi is also zero). Equation (3.2) also ensures that if an asset i is chosen

to be in the ARP (zi = 1) the amount of the asset held satisfies the proportion limits

defined. Equation (3.3) ensures that there are exactly K assets in the ARP. Equation

(3.4) defines the transaction cost associated with selling asset i, where we have sold the

asset if the current holding Xi is greater than the new holding xi. Equation (3.5) defines

the transaction cost associated with buying asset i, where we have bought the asset if

the new holding xi is greater than the current holding Xi. Equation (3.6) limits the total

transaction costs. Equation (3.7) is a balance constraint which ensures that the value of

the ARP after trading is equal to its value before trading minus the total transaction costs

incurred. Equations (3.8) and (3.9) are the non-negativity constraints whilst Equation

(3.10) is the integrality constraint.
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Observe that since variables [xi] can take fractional values the value of the portfolio

after rebalancing is exactly equal to C minus transaction costs, i.e. there is no leftover

cash after the portfolio is rebalanced.

3.2.4 Three-stage objective

In this section we give our three-stage objective for the problem of selecting an ARP. Let

First stage, regression slope

Recall from the discussion above that we regard an ARP as a portfolio that achieves a

constant return per time period. This implies that when we regress the return from the

portfolio against time we should have a regression slope of zero.

Obviously a regression slope of zero may not be attainable, but we can adopt an

optimisation framework and choose a portfolio that minimises |regression slope| (i.e. has

a slope that is as close to zero as possible).

We make the usual approximation assumption that portfolio return is a weighted sum

of individual asset returns, i.e. that at time t portfolio return is given by
∑N

i=1wirit.

Then, since (see notation in Section 3.2.2) β̂i is the least-squares regression slope for asset

i when the returns rit from asset i are regressed against time, we have that the regression

slope for the ARP when its returns (
∑N

i=1wirit) are regressed against time is given by∑N
i=1wiβ̂i.

Hence our first stage objective is:

minimise |
N∑
i=1

wiβ̂i| (3.11)

Although this is nonlinear it can be linearised in a standard way. Introduce E ≥ 0

and then:

minimise E (3.12)

subject to (3.1)-(3.10) and:

E ≥
N∑
i=1

wiβ̂i (3.13)

E ≥ −(
N∑
i=1

wiβ̂i) (3.14)

E ≥ 0 (3.15)
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Second stage, regression intercept

Let E∗ be the optimal value for E as found at the first stage above. Then having achieved

the minimal absolute value for regression slope at the first stage we, at the second stage,

maximise the regression intercept. Ideally if the regression slope is zero this stage max-

imises the (constant) return we achieve in each and every time period. This relates to the

point discussed above in that we allow the return achieved by the ARP to be determined

as a result of optimisation, it is not pre-specified.

Since (see notation in Section 3.2.2) α̂i is the least-squares regression intercept for asset

i when the returns rit from asset i are regressed against time we have that the regression

intercept for the ARP when its returns (
∑N

i=1 wirit) are regressed against time is given by∑N
i=1wiα̂i.

Hence at the second stage our optimisation is:

maximise
N∑
i=1

wiα̂i (3.16)

subject to (3.1)-(3.10), (3.13)-(3.15) and:

E∗ − τ ≤ E ≤ E∗ + τ (3.17)

In this stage we maximise the regression intercept whilst maintaining the regression

slope at its (minimised) value as found at the first stage. Here τ is a small positive constant

to cope with the fact that we cannot get exact accuracy from any numeric software and so

imposing E = E∗ as a constraint is too restrictive. In the computational results reported

later below we used τ = 0.0001.

Third stage, transaction cost

Let ∆∗ be the optimal value for the regression intercept
∑N

i=1wiα̂i as achieved at the

second stage above. In the third stage we minimise the transaction cost associated with

achieving the optimal values for regression slope and intercept as at the first two stages.

Hence at the third stage our optimisation is:

minimise
N∑
i=1

Gi (3.18)

subject to (3.1)-(3.10), (3.13)-(3.15), (3.17) and:

∆∗ − τ ≤
N∑
i=1

wiα̂i ≤ ∆∗ + τ (3.19)
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3.2.5 Unavoidable transaction cost

Early computational results indicated that the three-stage model presented above encoun-

tered difficulties in terms of satisfying the transaction cost constraint (Equation (3.6)) in

certain circumstances. As will become apparent in the computational results presented

later below we use our model in a repeated fashion over time, rebalancing our ARP at

various points in time. When we decide to make a rebalance of our current portfolio [Xi]

some transaction cost may be unavoidable . For instance if we are holding an asset then

its price might have risen since we bought it such that we are now in breach of the upper

proportion limit for that asset (Equation (3.2)). In such cases we must sell some of the

asset to ensure that the holding is within the limit. In another case we may have fallen

below the lower proportion limit, here we can either buy some of the asset to reach the

lower limit, or sell all of it.

Given our current holding Xi let Wi = XiViT/C represent the proportion invested in

asset i in the current portfolio. If Xi > 0, the proportion limits for asset i are εi ≤ Wi ≤ δi.

If Wi > δi, we need to sell some of the asset. The maximum amount we can hold and

satisfy the proportion limit is given by δiC/ViT . Hence we sell [Xi − δiC/ViT ] and this

will incur a transaction cost of f si [Xi − δiC/ViT ]ViT = f si [XiViT − δiC].

If Wi < εi, we could conceivably sell the asset. However, in this process we would

be forcing another asset into the portfolio to satisfy Equation (3.3). Therefore, we shall

adopt the view here that we need to trade to bring the asset back up to the minimum

proportion. The minimum amount we can hold in order to satisfy the proportion limit is

given by εiC/ViT . We then buy [εiC/ViT − Xi] and this will incur a transaction cost of

f bi [εiC/ViT −Xi]ViT = f bi [εiC −XiViT ].

Hence, the unavoidable transaction cost we face under our proportion constraints is

G∗ given by:

G∗ =
N∑

i=1, Xi>0, Wi>δi

f si [XiViT − δiC] +
N∑

i=1, Xi>0, Wi<εi

f bi [εiC −XiViT ] (3.20)

Then Equation (3.6) becomes:

N∑
i=1

Gi ≤ γC +G∗ (3.21)

Here we have redefined γ to be the limit (0 ≤ γ ≤ 1) on the proportion of C that can

be consumed by avoidable transaction cost. We accordingly replace Equation (3.6) with

Equation (3.21) in the formulation presented above.
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3.2.6 Summary

We have in this section set out our three-stage mixed-integer zero-one program for deciding

an ARP. We refer to the model presented above as the ARP based on the regression of

Return against Time, ARP-RT.

Our approach however is flexible and we are able to extend it to the problem of

designing portfolios with differing characteristics. This we do in the next section below.

3.3 Extensions

There are two extensions/amendments to the formulation presented above that can be

made:

• the first extension relates to designing a portfolio that gives a constant excess return,

return over and above the market index. This is therefore a model for a relative

return portfolio, enhanced indexation (return above the index).

• the second extension relates to designing a portfolio with mixed characteristics, so

a portfolio that is a mix of absolute and relative return.

We deal with each of these extensions below.

3.3.1 Enhanced indexation (relative return) portfolio

One argument that can be advanced against ARPs is that in good times (when the

market/index is rising) it is a poor investment strategy to aim for an absolute return.

Rather one should aim to do better than the index and produce a relative return portfolio,

enhanced indexation. Due to the flexibility of our model we can easily amend it to produce

portfolios that are designed to out-perform an index. For simplicity we shall continue to

call the portfolio produced an ARP, rather than an enhanced indexation portfolio.

Suppose we regress the excess return of our chosen ARP (so return over and above

index return) against time over the period we are considering. Our approach to enhanced

indexation is to say that, ideally, this regression would have a slope of zero. This equates

to a portfolio that (over time) has a constant (expected) excess return per time period

(that return being given by the regression intercept).

Now (see notation above) Â and B̂ are the least-squares regression intercept and slope

when the returns from the index (Rt) are regressed against time. Hence we have that

when the excess return from the ARP (
∑N

i=1wirit − Rt) is regressed against time it will

have regression intercept (
∑N

i=1 wiα̂i − Â) and regression slope (
∑N

i=1 wiβ̂i − B̂).
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Our first stage optimisation for the excess return regression slope is to try and achieve

a regression slope that is, in absolute value terms, as close to zero as possible. This is

therefore minimise |
∑N

i=1 wiβ̂i − B̂|, which can be linearised to:

minimise E (3.22)

subject to (3.1)-(3.5), (3.7)-(3.10), (3.15), (3.21) and:

E ≥
N∑
i=1

wiβ̂i − B̂ (3.23)

E ≥ −(
N∑
i=1

wiβ̂i − B̂) (3.24)

Our second stage optimisation for the regression intercept, to try and achieve a re-

gression intercept that is as large as possible, has an objective function that is maximise∑N
i=1wiα̂i − Â. In this objective Â is a constant and so can be ignored. Hence we have

that the second stage objective here is precisely the same as the second stage objective

given above, Equation (3.16), where this objective is optimised subject to (3.1)-(3.5),

(3.7)-(3.10), (3.15), (3.17), (3.21) and (3.23)-(3.24).

The third stage follows in a similar fashion as for the ARP-RT model given above.

Here the objective is to optimise Equation (3.18) subject to (3.1)-(3.5), (3.7)-(3.10), (3.15),

(3.17), (3.19), (3.21) and (3.23)-(3.24).

We refer to the model presented here as the ARP based on the regression of Excess

Return against Time, ARP-ERT.

3.3.2 Mixed portfolio

In ARP-RT as presented above we have a pure absolute return model, whereas in ARP-

ERT as presented above we have a pure enhanced indexation (relative return) model. It

is possible to combine both models to produce portfolios with mixed characteristics - so a

combined absolute return/relative return portfolio. Again for simplicity we shall continue

to call the portfolio produced an ARP.

Let λ ≥ 0 represent the weight that we attach to relative return as compared to

absolute return. In the first stage optimisation for the regression slope we minimise

max[|
∑N

i=1wiβ̂i|, λ|
∑N

i=1wiβ̂i − B̂|], so minimise the maximum absolute value of both

regression slopes (for the regressions of return against time and excess return against time)

considered individually. Here we have introduced λ as a weighting for the regression slope

associated with the relative return component of the objective. Again this is nonlinear

but can be linearised as:
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minimise E (3.25)

subject to (3.1)-(3.5), (3.7)-(3.10), (3.13)-(3.15), (3.21) and:

E ≥ λ(
N∑
i=1

wiβ̂i − B̂) (3.26)

E ≥ −λ(
N∑
i=1

wiβ̂i − B̂) (3.27)

During the second stage optimisation, we maximise [min
∑N

i=1wiα̂i, λ(
∑N

i=1wiα̂i−Â)],

so maximise the minimum value of both regression intercepts considered individually.

Although this is a nonlinear objective as Â and λ are both constants we can simplify it to

maximise
∑N

i=1wiα̂i. Hence we have that the second stage objective here is precisely the

same as the second stage objective given above, Equation (3.16), where this objective is

optimised subject to subject to (3.1)-(3.5), (3.7)-(3.10), (3.13)-(3.15), (3.17), (3.21) and

(3.26)-(3.27).

The third stage follows in a similar fashion as for the ARP-RT model given above.

Here the objective is to optimise Equation (3.18) subject to (3.1)-(3.5), (3.7)-(3.10), (3.13)-

(3.15), (3.17), (3.19), (3.21) and (3.26)-(3.27).

We refer to the model presented here as the ARP based on the regression of Return

and Excess Return against Time, ARP-RERT.

3.4 Computational results

In this section we present computational results for our three models, ARP-RT, ARP-ERT

and ARP-RERT. We used an Intel Core2 Duo CPU E8500 @ 3.16GHz with 4GB of RAM

with Linux as the operating system. The code was written in C++ and CPLEX 12.1

(CPLEX Optimizer (2013)) was used as the mixed-integer solver. Detailed computation

times are not given below since the time needed to solve the cases considered was effectively

insignificant. For the worst case encountered computation time was approximately 17s.

On average the computation time over all cases considered below was approximately 1.4s.

3.4.1 Data and methodology

In our computational experimentation we used real-world historical weekly data taken

from the universe of assets defined by the S&P (Standard and Poor’s) Global 1200 index

and subindices over the period January 1999 to September 2006 (400 weeks of data).
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This index and its various subindices can be seen in Figure 3.1. This choice of universe

ensures coverage of the world’s major equity markets and means that we are dealing with

liquid assets. This data set was previously used in Meade & Beasley (2011) and has been

manually adjusted to account for changes in index composition. This means that our

models use no more data than was available at the time, removing susceptibility to the

influence of survivor bias. Note here that the S&P World ex-US 700 index, although

shown in Figure 3.1, was not used since it was only assembled in 2004.

S&P Global 
1200

S&P World
ex-US 700

S&P US 500

S&P Europe
350

S&P/Topix
Japan 150

S&P/TSX
Canada 60

S&P Latin 
America 40

S&P/ASX
Australia 50

S&P Asia 50

Hong Kong
Korea
Taiwan
Singapore

S&P Euro-Plus 225

Euro-Zone+
Denmark
Sweden

Norway
Switzerland

S&P UK 125

S&P Euro-Zone 175
Austria
Finland
Germany
Ireland
Netherlands
Spain

Belgium
France
Greece
Italy
Portugal

Figure 3.1: The structure of the S&P Global 1200 index, its components and the nations

covered

The methodology we adopt is successive periodic rebalancing over time. We start

from the beginning of our data set. We decide a portfolio using data taken from an in-

sample period corresponding to the first h weeks. This portfolio is then held unchanged

for an out-of-sample period of H weeks. We then rebalance (change) our portfolio, but

now using the most recent h weeks as in-sample data. The decided portfolio is then held

unchanged for an out-of-sample period of H weeks, and the process repeats until we have

exhausted all of the data.

To illustrate this process suppose h = 6 and H = 13. The first step is portfolio

selection based on the in-sample time period [0,h]=[0,6]. This time period contains 7

asset prices and so has h = 6 asset returns. We then evaluate the selected portfolio over
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the time period [6,6+H]=[6,19]. This time period gives us H = 13 out-of-sample returns,

the first return being the return from time period 6 to time period 7, then from 7 to 8, etc.

The next periods are [13,19] in-sample (containing 7 asset prices and h = 6 asset returns)

and [19,32] out-of-sample, giving another 13 out-of-sample returns; then [26,32] in-sample

and [32,45] out-of-sample; and so on until the data is exhausted. Once the data has been

exhausted we have a time series of portfolio return values for out-of-sample performance,

here from time period 7 (the first out-of-sample return value associated with the return

from period 6 to period 7) until the end of the data (in other words we amalgamate

together all out-of-sample return values) and this can be evaluated to see whether (or

not) the cumulative effect of the decided portfolios has been favourable out-of-sample.

3.4.2 ARP evaluation and parameters

This evaluation of the out-of-sample return series for the ARP is a two-step procedure.

For simplicity we describe the procedure for ARP-RT, the regression against time, but

the procedure for ARP-ERT and ARP-RERT is similar. Recall that the logic behind

ARP-RT is that we are seeking a portfolio that has a regression slope, when returns are

regressed against time, of zero. The first step in our out-of-sample evaluation procedure

therefore consists of performing a regression of out-of-sample returns against time and

asking the question: is the regression slope zero?

Here clearly hypothesis testing plays a role. The null hypothesis is H0:regression slope

is zero versus the alternative hypothesis H1:regression slope is different from zero, so a

two-sided hypothesis test. Usually in hypothesis testing we are interested in rejecting the

null hypothesis and so set a significance level of (typically) 5% or 1%. The significance

level is the probability of rejecting H0 when it is true. Here the situation is different. Here

we are interested in not rejecting the null hypothesis and so we set a higher significance

level (to make it easier to reject the null hypothesis). In the results presented below we

use significance levels of 10% and higher.

If we reject the null hypothesis (at the specified significance level) then the portfolios

produced by ARP-RT via successive rebalancing have (taken together) failed, in that we

have statistical evidence that the out-of-sample regression slope is not zero. We refer to

this hypothesis test as the slope test and passing the test (accepting H0) as a slope test

success .

If we have a slope test success then the second stage logic for ARP-RT was to maximise

the regression intercept. Although it was never explicit in our second stage optimisation

clearly we would hope that the regression intercept would be positive (so a positive return).

Hence the second step in our out-of-sample evaluation procedure is to look at the average
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out-of-sample return and conduct the one-sided hypothesis test H0:average out-of-sample

return is zero versus the alternative hypothesis H1:average out-of-sample return is greater

than zero. Here, since we are interested in rejecting H0, we can judge the significance of

the results obtained in a standard way, using p-values, as will be seen in the tables below.

On a technical note the reason why we conduct a hypothesis test on the average out-

of-sample return (rather than the out-of-sample regression intercept) is that the two are

equivalent given that slope test success means that the regression slope can be taken to

be zero. Conditional on this information the standard least-squares regression equation

for the regression intercept would give a regression intercept equal to the average out-of-

sample return.

With regard to parameter values we examine a variety of values for the in-sample pe-

riod h, and the out-of-sample period H, as will become apparent in the tables presented

below. We set C = 1000000 corresponding to an initial investment of US$1million. For

ARP-RERT we set the weighting parameter λ = 1, so weighting the absolute and relative

return components in ARP-RERT equally. Although the models we have presented con-

sider transaction cost, in the initial results below we allow trading to be free, so no cost

associated with transactions, equivalently f bi = f si = 0 for i = 1, . . . , N . For the later re-

sults presented below we do impose a cost associated with transactions and a transaction

cost limit.

We used K = 0.8N as the number of assets to be in the portfolio. We set εi = 0.25/K

and δi = 2/K for i = 1, . . . , N as the proportion limits for each asset in the portfolio.

This ensures that the portfolios selected are not dominated by a small number of assets.

Here the upper proportion limit is the same as that used previously in Meade & Beasley

(2011). The lower proportion limit ensures that if an asset in present in the portfolio

it is present at a reasonable level (having regard to the upper proportion limit already

defined).

3.4.3 Results, zero transaction cost

In this section we give results for our three models ARP-RT, ARP-ERT and ARP-RERT

at zero transaction cost. We first give results associated with a specific in-sample period

of h = 6 weeks. We then go on to show how the results change as we change the in-sample

period h. Finally we give Sharpe ratios for our chosen in-sample period.

In-sample period h = 6

In this section we give results for our three models ARP-RT, ARP-ERT and ARP-RERT

for a specific in-sample period at zero transaction cost.
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Table 3.1: Out-of-sample returns and excess returns for each model

Instance H
ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

S&P Latin America 40 4 0.00335++ −0.00014 0.00308++ −0.00041 0.00303++ −0.00046

13 0.00271+ −0.00078 0.00280+ −0.00069 0.00281+ −0.00068

26 0.00330++ −0.00019 0.00336++ −0.00013 0.00341++ −0.00007

52 0.00285+ −0.00064 0.00299++ −0.00050 0.00292+ −0.00057

S&P Asia 50 4 0.00241++ −0.00005 0.00233++ −0.00013 0.00244++ −0.00002

13 0.00353++ 0.00107+ 0.00351++ 0.00105 0.00337++ 0.00091

26 0.00349+++ 0.00103 0.00349+++ 0.00103 0.00350+++ 0.00104

52 0.00389+++ 0.00143++ 0.00374+++ 0.00128+ 0.00399+++ 0.00153++

S&P ASX 50 4 0.00302+++ 0.00120++ 0.00296+++ 0.00114++ 0.00296+++ 0.00113++

13 0.00383+++ (0.00200+++) 0.00336+++ 0.00154+++ 0.00330+++ 0.00147+++

26 0.00376+++ 0.00193+++ 0.00353+++ 0.00171+++ 0.00334+++ 0.00151+++

52 0.00331+++ 0.00149+++ 0.00328+++ 0.00145+++ 0.00333+++ 0.00151+++

S&P TSX 60 4 0.00358+++ 0.00128 0.00343+++ 0.00113 0.00332+++ 0.00102

13 0.00381+++ 0.00151+ 0.00398+++ 0.00168++ 0.00405+++ 0.00175++

26 0.00431+++ 0.00200++ 0.00451+++ 0.00221+++ 0.00450+++ 0.00220+++

52 0.00279++ 0.00049 0.00413+++ 0.00183++ 0.00390+++ 0.00160++

S&P UK 125 4 0.00119 0.00078 0.00120 0.00079 0.00119 0.00078

13 0.00159 0.00117+ 0.00157 0.00116+ 0.00158 0.00117+

26 0.00165+ 0.00124++ 0.00163+ 0.00122++ 0.00161 0.00119++

52 0.00205++ (0.00164+++) 0.00207++ (0.00166+++) 0.00206++ (0.00165+++)

S&P Topix 150 4 0.00132 0.00029 0.00135 0.00032 0.00144 0.00041

13 0.00260+ (0.00157+++) 0.00258+ 0.00154++ 0.00259+ 0.00156+++

26 0.00283++ 0.00180+++ 0.00276++ 0.00173+++ 0.00282++ 0.00179+++

52 0.00365++ (0.00262+++) 0.00368++ (0.00265+++) 0.00374++ (0.00271+++)

S&P Euro Zone 175 4 0.00162+ 0.00082 0.00177+ 0.00097+ 0.00171+ 0.00091

13 0.00197+ 0.00117++ 0.00195+ 0.00115++ 0.00191+ 0.00111++

26 0.00197+ 0.00117++ 0.00201++ 0.00120++ 0.00193+ 0.00113++

52 0.00212++ 0.00131++ 0.00216++ 0.00136++ 0.00213++ 0.00132++

S&P Euro Plus 225 4 0.00155+ 0.00070 0.00157+ 0.00072 0.00164+ 0.00079

13 0.00172+ 0.00086+ 0.00181+ 0.00096+ 0.00175+ 0.00090+

26 0.00189+ 0.00104+ 0.00200++ 0.00115++ 0.00197+ 0.00111++

52 0.00214++ 0.00128++ 0.00210++ 0.00124++ 0.00214++ 0.00128++

S&P Europe 350 4 0.00150+ 0.00081+ 0.00144+ 0.00075+ 0.00142 0.00074

13 0.00170+ 0.00102++ 0.00177+ 0.00108++ 0.00171+ 0.00102++

26 0.00195+ 0.00126+++ 0.00196++ 0.00127+++ 0.00192+ 0.00123++

52 0.00203++ 0.00134+++ 0.00199++ 0.00130+++ 0.00199++ 0.00130+++

S&P US 500 4 0.00109 0.00094+ 0.00120 0.00106++ 0.00108 0.00093+

13 0.00129 0.00115++ 0.00134 0.00120++ 0.00128 0.00114++

26 0.00189+ 0.00175+++ 0.00188+ 0.00174+++ 0.00189+ 0.00175+++

52 0.00154+ 0.00140+++ 0.00158+ 0.00144+++ 0.00158+ 0.00144+++

S&P Global 1200 4 0.00165+ 0.00114++ 0.00165+ 0.00114++ 0.00162+ 0.00110++

13 0.00193++ 0.00142+++ 0.00187++ 0.00136+++ 0.00191++ 0.00139+++

26 0.00229++ 0.00178+++ 0.00235++ 0.00184+++ 0.00233++ 0.00182+++

52 0.00244++ (0.00193+++) 0.00252+++ (0.00200+++) 0.00244++ (0.00193+++)

# of slope test successes 44 39 44 41 44 41 253

# of entries (+) 16 7 12 5 14 3 57

# of entries (++) 14 11 16 14 13 14 82

# of entries (+++) 9 9 11 11 10 11 61

# total 39 27 39 30 37 28 200

Note: Under the one-sided alternative hypothesis that the return / excess return is greater than zero, + means p < 10%,

++ means p < 5%, +++ means p < 1%
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The results in Table 3.1 compare each model (ARP-RT, ARP-ERT and ARP-RERT)

for different values of the out-of-sample holding period H. The return columns are the

average out-of-sample weekly continuous time returns and the excess return columns

represent the average out-of-sample excess over the average index weekly continuous time

return. This table uses an in-sample period h of 6 weeks.

For the slope test we used a significance level of 10%. An entry not enclosed in brackets

in Table 3.1 indicates a slope test success at this significance level, an entry in brackets

indicates a slope test failure at this significance level. In this table slope test failures are

only seen for the excess return columns, meaning that an ARP for which excess return

that was, in regression terms, statistically independent of time, could not be achieved for

that particular set {model, instance, H}. The total number of slope test successes can be

seen near the foot of Table 3.1.

Recall that given a slope test success we test the average out-of-sample return, and

success here is indicated by the p-values shown using plus subscripts. For example, con-

sider the entry of 0.00229++ in the return column for ARP-RT for the S&P Global 1200

with an out-of-sample period of H = 26 weeks. As this is not enclosed in brackets there

was a slope test success for this case. The average out-of-sample weekly return is 0.00229

(this is a continuous time fractional return, not a percentage) which corresponds to a

yearly percentage of 100(exp(0.00229 × 52) − 1) = 12.6%. The double plus subscript

means that this is associated with a p-value of less than 5%. In other words there is a

probability of this result arising by chance of less than 5% if the true underlying average

out-of-sample return was actually zero. The total number of entries for each p-value (but

excluding slope test failures, so entries in brackets) can be seen at the foot of Table 3.1.

Associated with the entry of 0.00229++ in the return column for ARP-RT for the S&P

Global 1200 with H = 26 we also see an entry of 0.00178+++ in the excess return column.

This corresponds to an evaluation of out-of-sample portfolio excess returns (returns over

and above the index). The average out-of-sample weekly excess return is 0.00178 which

corresponds to a yearly percentage of 100(exp(0.00178× 52)− 1) = 9.7%. The triple plus

subscript means that this is associated with a p-value of less than 1%.

Figure 3.2 shows the (normalised) value of the ARP-RT portfolio, as well as the index

value, over the out-of-sample period. Notice in particular how the portfolio substantially

out-performs the index over such a long time period. Moreover this figure exhibits the

behaviour we would expect if we were indeed achieving constant return per time period,

namely growth in portfolio value appearing to have a linear relationship with time.

Considering Table 3.1 we can observe that for all cases {model, instance, H}, the

average returns obtained by our models were strictly positive. Some of the average excess

returns however were negative. Although not all of the cases passed the slope test the
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Figure 3.2: Out-of-sample portfolio and index value, S&P Global 1200, ARP-RT, H = 26

vast majority (253 out of 264 cases) did. Clearly not every positive return/excess return

is (statistically) judged to be significant (greater than zero). However, over all the 264

entries shown in Table 3.1, 61 that passed the slope test were significant at the 1% level

and a further 82 were significant at the 5% level.

In Table 3.1 we have used a significance level for the slope test of 10%. Recall that the

significance level is the probability of rejecting the null hypothesis (H0:regression slope is

zero) when it is true. If we increase the significance level then we are making it harder to

pass the slope test since we are increasing the probability of rejecting it when it is true.

Table 3.2 shows summary results as we increase the significance level from 10% upward.

The returns and excess returns for each case are omitted from this table since they are

the same as in Table 3.1.

Considering Table 3.2 we can see that, as expected, we have a decrease in the number of

slope test successes as the significance level increases. However the effect is not especially

pronounced, neither is there a large effect in terms of a decrease in the number of entries

for the higher p-values (1% and 5%) until we reach a significance level of 50%. Overall

Table 3.2 does not indicate that the results in Table 3.1 are especially sensitive to the

slope test significance level adopted until we reach very high levels of significance.
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Significance Level ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

10% # of slope test successes 44 39 44 41 44 41 253

# of entries (+) 16 7 12 5 14 3 57

# of entries (++) 14 11 16 14 13 14 82

# of entries (+++) 9 9 11 11 10 11 61

# total 39 27 39 30 37 28 200

20% # of slope test successes 40 35 40 35 41 35 226

# of entries (+) 13 7 9 5 11 3 48

# of entries (++) 13 11 15 13 13 14 79

# of entries (+++) 9 5 11 7 10 5 47

# total 35 23 35 25 34 22 174

30% # of slope test successes 33 31 34 30 34 29 191

# of entries (+) 7 6 6 5 6 3 33

# of entries (++) 13 11 13 12 13 13 75

# of entries (+++) 9 3 11 4 10 2 39

# total 29 20 30 21 29 18 147

50% # of slope test successes 21 16 20 18 19 18 112

# of entries (+) 5 6 4 4 4 3 26

# of entries (++) 8 5 7 6 7 6 39

# of entries (+++) 5 0 6 1 5 1 18

# total 18 11 17 11 16 10 83

Note: Under the one-sided alternative hypothesis that the return / excess return is greater than zero, + means p < 10%,

++ means p < 5%, +++ means p < 1%

Table 3.2: Summary table for the slope test at varying significance levels

Varying the in-sample period h

Above we have considered a specific in-sample period of h = 6 weeks. To illustrate how

the results change as we vary the in-sample period we have Table 3.3. In that table

we show, for varying combinations of in-sample period h and out-of-sample period H,

the average returns and excess returns (averaged over all instances and all three models

combined). The entries in Table 3.3 for h = 6 are the averages of the appropriate results

seen in Table 3.1.

Taking the h = 6, H = 4 entry in Table 3.3 we have that over all three models the

average out-of-sample weekly return was 0.00200. The standard deviation associated with

these returns was 0.00082. With three models and eleven data instances the maximum

number of slope test successes is 33, and here in fact we did have 33 slope test successes.

For the 33 returns for which the slope test was a success the number that were significant

at each level can be seen (so for example 6 of these returns had a p-value less than 1%).

Considering Table 3.3 we can see that, judging from the averages at least, our models

generate positive returns and excess returns for all combinations of h and H. Broadly

the results in Table 3.3 indicate that, for the particular instances we have



41

H = 4 H = 13 H = 26 H = 52

return excess return return excess return return excess return return excess return

h = 6

Average 0.00200 0.00068 0.00241 0.00109 0.00267 0.00135 0.00271 0.00138

Standard deviation 0.00082 0.00049 0.00088 0.00064 0.00089 0.00059 0.00080 0.00076

# of slope test successes 33 33 33 31 33 33 33 24

# of entries (+) 11 5 15 8 11 1 5 1

# of entries (++) 6 7 6 12 12 10 19 10

# of entries (+++) 6 0 6 6 9 16 9 9

# total 23 12 27 26 32 27 33 20

h = 13

Average 0.00194 0.00077 0.00227 0.00110 0.00246 0.00129 0.00253 0.00136

Standard deviation 0.00073 0.00082 0.00083 0.00055 0.00082 0.00068 0.00085 0.00081

# of slope test successes 33 32 33 29 33 31 33 19

# of entries (+) 13 15 13 3 10 3 8 0

# of entries (++) 2 11 8 13 14 9 16 7

# of entries (+++) 5 0 6 7 6 13 6 9

# total 20 26 27 23 30 25 30 16

h = 26

Average 0.00198 0.00103 0.00192 0.00097 0.00247 0.00152 0.00221 0.00126

Standard deviation 0.00081 0.00040 0.00078 0.00060 0.00074 0.00052 0.00067 0.00046

# of slope test successes 21 32 28 33 30 27 32 29

# of entries (+) 4 5 7 4 8 1 12 2

# of entries (++) 3 8 3 9 13 8 6 14

# of entries (+++) 2 7 4 9 6 13 5 8

# total 9 20 14 22 27 22 23 24

h = 39

Average 0.00214 0.00107 0.00242 0.00135 0.00237 0.00130 0.00217 0.00110

Standard deviation 0.00073 0.00048 0.00080 0.00059 0.00070 0.00056 0.00068 0.00046

# of slope test successes 33 27 33 24 33 22 30 28

# of entries (+) 13 9 10 1 11 1 13 2

# of entries (++) 5 9 12 7 13 9 6 11

# of entries (+++) 6 3 8 12 6 7 5 7

# total 24 21 30 20 30 17 24 20

h = 52

Average 0.00185 0.00124 0.00163 0.00103 0.00160 0.00099 0.00166 0.00106

Standard deviation 0.00089 0.00055 0.00085 0.00051 0.00093 0.00042 0.00087 0.00039

# of slope test successes 16 26 9 31 9 30 10 33

# of entries (+) 3 2 0 7 0 6 0 8

# of entries (++) 5 14 2 11 3 10 3 13

# of entries (+++) 3 5 4 6 3 4 3 8

# total 11 21 6 24 6 20 6 29

Note: Under the one-sided alternative hypothesis that the return / excess return is greater than zero, + means p < 10%,

++ means p < 5%, +++ means p < 1%

Table 3.3: Average return and excess return for each choice of h and H

examined, relatively short in-sample periods are sufficient to generate good

out-of-sample performance for relatively long periods. We did investigate this

in much greater detail in order to understand it better, since it did run counter to what

we would have intuitively expected.

Recall that we must have K = 0.8N assets in the portfolio, so it must contain a large

number of assets and is very diversified. Each asset in the portfolio, in proportion terms,

must lie between 0.25/K and 2/K of the portfolio, so it is relatively restricted. This

means that at each rebalance there is limited freedom (for example in terms of the assets
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held in the portfolio, even if we have no transaction cost constraint). For this reason a

relatively short in-sample period is sufficient to generate a ‘good’ portfolio.

Sharpe ratio

To further validate our models we also calculated the (yearly) Sharpe ratio for the out-of-

sample returns and excess returns, as presented in Table 3.4. The Sharpe ratio (Sharpe

(1966, 1975, 1994)) is the excess return (excess being defined here as portfolio return

minus the risk-free rate) divided by the standard deviation of portfolio return. It is a

numeric measure that captures the tradeoff between return achieved in excess of the risk-

free rate and risk (as measured by variation in return). The higher the Sharpe ratio, the

better. For comparison purposes the Sharpe ratio obtained if we had exactly tracked the

index is also presented in Table 3.4. Here for a risk-free rate we used historic values for

the 3 month rate for US Treasury Constant Maturities.

Taking ARP-RT and H = 26 for the S&P Global 1200 we have in Table 3.4 that the

yearly Sharpe ratio if we had exactly tracked the index would have been -0.02988. Here

the negative sign indicates that over the out-of-sample period the return from the index

did not exceed the risk-free return. The portfolios produced by our ARP-RT model had

an out-of-sample performance corresponding to a yearly Sharpe ratio of 0.58879. Here

the (implicit) positive sign indicates that we did exceed the risk-free rate. Examining

Table 3.4 we can see that the returns from all three models produce superior Sharpe

ratios to the index Sharpe ratio except for the S&P Latin America 40.

3.4.4 Results, transaction cost

In this section we give results for our three models ARP-RT, ARP-ERT and ARP-RERT

when we incur transaction costs associated with trading at each rebalance, and also have

a constraint on total transaction costs incurred at each rebalance. We set the costs

associated with buying and selling using f bi = f si = 0.005 for i = 1, . . . , N . This effectively

corresponds to a round trip transaction cost of 1% (all costs associated with opening

and closing a financial transaction, see Meade & Beasley (2011) for a discussion as to

estimated round trip transaction costs). In terms of the limit on (avoidable) transaction

cost, Equation (3.21), we used γ = 0.005, so we were prepared to sacrifice at most 0.5%

of the portfolio value at each rebalance in avoidable transaction cost.

The results relating to transaction cost can be seen in Table 3.5. In that table we show

the returns and excess returns for our three models ARP-RT, ARP-ERT and ARP-RERT

for an in-sample period of h = 6. This table is therefore comparable with Table 3.1 which

was for the same in-sample period but with zero transaction cost.
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Table 3.4: Sharpe ratios

Instance H
ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

S&P Latin America 40 4 0.54814 −0.31723 0.49899 −0.43870 0.48902 −0.46246

13 0.42077 −0.63820 0.43241 −0.60572 0.44382 −0.58573

0.57367 26 0.55006 −0.37329 0.55762 −0.35105 0.57010 −0.32153

52 0.46329 −0.64154 0.48446 −0.56104 0.46132 −0.59870

S&P Asia 50 4 0.46626 −0.29596 0.44614 −0.32858 0.47734 −0.27806

13 0.69968 0.20531 0.70140 0.19388 0.66502 0.13755

0.40393 26 0.72171 0.18331 0.72727 0.18359 0.72411 0.18684

52 0.77731 0.36969 0.73984 0.30042 0.80641 0.41248

S&P ASX 50 4 0.75555 0.35483 0.73632 0.32365 0.73440 0.32260

13 0.90181 0.66102 0.84575 0.62110 0.82601 0.56338

0.36924 26 0.95936 0.83475 0.89995 0.70651 0.83852 0.59016

52 0.81679 0.57352 0.82520 0.55187 0.84003 0.57728

S&P TSX 60 4 0.88054 0.23966 0.85148 0.18901 0.81042 0.15128

13 0.84108 0.33567 0.87617 0.41516 0.91040 0.44844

0.42601 26 0.95019 0.54367 0.98430 0.64711 0.97811 0.64040

52 0.59228 −0.04585 0.86594 0.48814 0.81822 0.38718

S&P UK 125 4 0.18647 0.09672 0.18956 0.10236 0.18528 0.09503

13 0.27450 0.27175 0.27164 0.26767 0.27451 0.27084

−0.05901 26 0.29975 0.33301 0.29376 0.32259 0.28678 0.30820

52 0.43000 0.56350 0.43373 0.57080 0.43086 0.56510

S&P Topix 150 4 0.16285 −0.16518 0.16990 −0.14980 0.19117 −0.10212

13 0.45211 0.53166 0.44632 0.51637 0.44851 0.52475

0.09071 26 0.48896 0.69545 0.47483 0.65012 0.48919 0.68972

52 0.62657 1.11612 0.62790 1.12033 0.64246 1.16351

S&P Euro Zone 175 4 0.31064 0.10888 0.35632 0.18406 0.33977 0.15432

13 0.39486 0.31664 0.38810 0.30620 0.37573 0.28162

0.04990 26 0.41539 0.30717 0.42737 0.31908 0.40641 0.28372

52 0.45564 0.38657 0.46831 0.41546 0.45733 0.39686

S&P Euro Plus 225 4 0.28783 0.05106 0.29441 0.06174 0.31621 0.10196

13 0.31697 0.15168 0.34341 0.20920 0.32549 0.17314

0.06440 26 0.39215 0.24550 0.42553 0.30718 0.41451 0.29065

52 0.46315 0.40547 0.44978 0.38057 0.46341 0.40525

S&P Europe 350 4 0.28814 0.12838 0.27063 0.09461 0.26376 0.08235

13 0.32170 0.26912 0.34150 0.31137 0.32476 0.27465

0.02387 26 0.41209 0.45067 0.41481 0.45452 0.40342 0.42665

52 0.44589 0.50971 0.43248 0.48203 0.43110 0.48468

S&P US 500 4 0.14820 0.20968 0.18361 0.28257 0.14515 0.20305

13 0.19177 0.32109 0.20537 0.35349 0.18854 0.31137

−0.13630 26 0.36938 0.78238 0.36359 0.78757 0.36894 0.79760

52 0.28684 0.68293 0.29736 0.72240 0.29799 0.71720

S&P Global 1200 4 0.37647 0.35234 0.37617 0.35309 0.36258 0.32797

13 0.44116 0.55463 0.41912 0.51588 0.43362 0.55199

−0.02988 26 0.58879 0.91449 0.60957 0.96983 0.60348 0.94853

52 0.62215 1.13480 0.64703 1.18624 0.62395 1.11203

Conceptually transaction costs can be viewed as a cost that is incurred (in full) now as

the necessary price that we have to pay in order to change (rebalance) to a portfolio that

will, based on in-sample data, perform better than our existing portfolio in the future.
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Table 3.5: Out-of-sample returns and excess returns for each model, transaction cost case

Instance H
ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

S&P Latin America 40 4 0.00235+ −0.00114 0.00261+ −0.00088 0.00241+ −0.00108

13 0.00288+ −0.00061 0.00282+ (−0.00067) 0.00315++ −0.00034

26 0.00314++ −0.00035 0.00327++ −0.00022 0.00313++ −0.00036

52 0.00269+ −0.00080 0.00263+ −0.00086 0.00264+ −0.00085

S&P Asia 50 4 0.00156 −0.00090 0.00172 −0.00074 0.00163 −0.00083

13 0.00336++ 0.00090 0.00353+++ 0.00107+ 0.00330++ 0.00084

26 0.00344++ 0.00098 0.00343++ 0.00097 0.00355++ 0.00109+

52 0.00329++ 0.00083 0.00372+++ 0.00126+ 0.00370+++ 0.00124+

S&P ASX 50 4 0.00217++ 0.00035 0.00238++ 0.00056 0.00212++ 0.00029

13 0.00283+++ 0.00101++ 0.00284+++ 0.00102++ 0.00300+++ 0.00117++

26 0.00349+++ 0.00166+++ 0.00338+++ 0.00155+++ 0.00341+++ 0.00159+++

52 0.00313+++ (0.00131++) 0.00299+++ 0.00116++ 0.00308+++ 0.00125++

S&P TSX 60 4 0.00225++ −0.00005 0.00233++ 0.00003 0.00236++ 0.00006

13 0.00333+++ 0.00103 0.00378+++ 0.00148+ 0.00382+++ 0.00152+

26 0.00425+++ 0.00195++ 0.00449+++ 0.00219+++ 0.00436+++ 0.00206++

52 0.00257++ 0.00027 0.00391+++ 0.00160++ 0.00367+++ 0.00137+

S&P UK 125 4 0.00045 0.00004 0.00040 −0.00001 0.00045 0.00004

13 0.00133 0.00092 0.00133 0.00092 0.00132 0.00091

26 0.00185+ 0.00144++ 0.00187+ 0.00146++ 0.00174+ 0.00133++

52 0.00190+ 0.00148++ 0.00202+ (0.00160+++) 0.00190+ 0.00149++

S&P Topix 150 4 0.00033 −0.00070 0.00031 −0.00072 0.00029 −0.00075

13 0.00227+ (0.00124++) 0.00227+ (0.00124++) 0.00228+ (0.00125++)

26 0.00282++ (0.00179+++) 0.00275++ (0.00172+++) 0.00276++ (0.00173+++)

52 0.00346++ (0.00243+++) 0.00350++ (0.00247+++) 0.00350++ (0.00247+++)

S&P Euro Zone 175 4 0.00068 −0.00013 0.00051 −0.00030 0.00057 −0.00024

13 0.00190+ 0.00109++ 0.00165+ 0.00085+ 0.00160 0.00079

26 0.00168+ 0.00088 0.00165+ 0.00085 0.00169+ 0.00088+

52 0.00210++ 0.00129++ 0.00214++ 0.00134++ 0.00212++ 0.00132++

S&P Euro Plus 225 4 0.00076 −0.00009 0.00075 −0.00011 0.00069 −0.00016

13 0.00162 0.00076 0.00159 0.00073 0.00161 0.00076

26 0.00173+ 0.00087+ 0.00174+ 0.00089+ 0.00176+ 0.00091+

52 0.00209++ 0.00124++ 0.00206++ 0.00120++ 0.00200++ 0.00115++

S&P Europe 350 4 0.00046 −0.00022 0.00046 −0.00023 0.00045 −0.00024

13 0.00143 0.00074+ 0.00149 0.00080+ 0.00148 0.00079+

26 0.00175+ 0.00106++ 0.00175+ 0.00106++ 0.00174+ 0.00105++

52 0.00188+ 0.00119++ 0.00191+ 0.00122++ 0.00189+ 0.00120++

S&P US 500 4 0.00021 0.00006 0.00020 0.00006 0.00017 0.00002

13 0.00099 0.00084+ 0.00098 0.00083+ 0.00098 0.00084+

26 0.00174+ 0.00160+++ 0.00181+ 0.00166+++ 0.00177+ 0.00163+++

52 0.00164+ 0.00150+++ 0.00142 0.00128+++ 0.00162+ 0.00148+++

S&P Global 1200 4 0.00073 0.00022 0.00074 0.00023 0.00073 0.00022

13 0.00155+ 0.00104++ 0.00156+ 0.00105++ 0.00155+ 0.00104++

26 0.00219++ 0.00167+++ 0.00222++ 0.00170+++ 0.00222++ 0.00171+++

52 0.00225++ (0.00174+++) 0.00233++ (0.00182+++) 0.00230++ (0.00179+++)

# of slope test successes 44 39 44 38 44 40 249

# of entries (+) 14 3 13 7 12 8 57

# of entries (++) 13 10 10 9 12 10 64

# of entries (+++) 5 4 8 5 7 4 33

# total 32 17 31 21 31 22 154

Note: Under the one-sided alternative hypothesis that the return / excess return is greater than zero, + means p < 10%,

++ means p < 5%, +++ means p < 1%
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As the results in Table 3.1 were produced at zero transaction cost (where trading was

free) we would expect the transaction cost results in Table 3.5 to show reduced returns

compared to Table 3.1. This is, in general, what we do observe. Comparing Table 3.1 and

Table 3.5 we see a slight reduction in slope test successes (from 253 to 249, a reduction

of 1.6%) but a large reduction in the number of significant p-values (e.g. for p-values at

5% and 1% we have a reduction from 82+61=143 to 64+33=97, a reduction of 32.2%).

The yearly Sharpe ratios associated with the results shown in Table 3.5 can be seen

in Table 3.6. This table is therefore comparable with Table 3.4 which was for the same

in-sample period but with zero transaction cost. Just as transaction costs reduce returns

compared with the zero transaction cost case, so too they reduce Sharpe ratios. However

from Table 3.6 it is clear that we still, for the majority of cases, produce Sharpe ratios

superior to those exhibited by the indices themselves. One item of note that does come out

more clearly from Table 3.6, as compared with Table 3.5, is the appearance of negative

Sharpe ratios for a number of cases where H = 4. This out-of-sample holding period

requires many more rebalances than the larger H values of H = 13, 26, 52 considered

and this is reflected in the Sharpe ratios being much lower than those seen for H = 4 in

Table 3.4.

3.4.5 Regression against time

Recall here that, as discussed above, we are defining an ARP as a portfolio that (ideally)

achieves a constant return per time period. As such a regression of portfolio return against

time is the appropriate regression to use. Regressing portfolio return against other factors

(as in Carhart (1997); Fama & French (1993, 1996); Sharpe (1964)) would not satisfy

the definition we have set out for an ARP. Although for any individual asset time

may not be a significant explanatory variable of asset returns the key point

here is whether, or not, by adopting a regression against time viewpoint we

can construct portfolios that have the ARP characteristic of constant return

that we desire. The results given above, verified by statistical hypothesis testing with

respect to regression slope, did indicate that ARPs could be appropriately constructed.

As conducting a regression against time is not a usual procedure in terms of portfolio

construction/analysis in this section we investigate our use of this regression in greater

detail. Specifically we investigate:

• whether, when asset returns are regressed against time, we encounter significant

linear regressions

• Type II errors, associated with falsely accepting the null hypothesis when testing a

regression slope for significance
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Table 3.6: Sharpe ratios, transaction cost case

Instance H
ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

S&P Latin America 40 4 0.36401 −0.78790 0.42160 −0.67980 0.37372 −0.76015

13 0.46669 −0.60838 0.44070 −0.66238 0.51552 −0.46234

0.57367 26 0.51999 −0.46570 0.56357 −0.39554 0.51377 −0.46413

52 0.42956 −0.73906 0.41542 −0.76954 0.43015 −0.73546

S&P Asia 50 4 0.24548 −0.65453 0.28917 −0.57775 0.26470 −0.61931

13 0.66898 0.13893 0.71006 0.21745 0.64760 0.10852

0.40393 26 0.67810 0.16853 0.68747 0.16732 0.70431 0.21849

52 0.64188 0.09953 0.73945 0.29799 0.74756 0.28911

S&P ASX 50 4 0.48300 −0.15282 0.54909 −0.02830 0.46680 −0.18555

13 0.67747 0.26282 0.68949 0.26926 0.72949 0.36631

0.36924 26 0.87267 0.65193 0.84662 0.58542 0.85669 0.61425

52 0.76620 0.45378 0.72863 0.37100 0.76208 0.42069

S&P TSX 60 4 0.47571 −0.23275 0.49677 −0.20515 0.50857 −0.19436

13 0.71717 0.16166 0.82195 0.34174 0.84143 0.35867

0.42601 26 0.95376 0.53594 0.98621 0.64183 0.96842 0.59187

52 0.53046 −0.13263 0.81213 0.39353 0.76426 0.30066

S&P UK 125 4 −0.04781 −0.31443 −0.06542 −0.34453 −0.05026 −0.31947

13 0.20617 0.15700 0.20492 0.15485 0.20230 0.15003

−0.05901 26 0.35592 0.44164 0.35805 0.45071 0.32341 0.38120

52 0.37771 0.46618 0.41180 0.53250 0.37984 0.47041

S&P Topix 150 4 −0.06256 −0.66865 −0.06690 −0.67596 −0.07259 −0.68851

13 0.37752 0.35699 0.37708 0.35490 0.37937 0.36083

0.09071 26 0.48753 0.69544 0.47238 0.65561 0.47648 0.65784

52 0.58606 1.03832 0.59314 1.05328 0.59223 1.05381

S&P Euro Zone 175 4 0.02191 −0.37137 −0.02939 −0.45949 −0.01139 −0.42960

13 0.37052 0.27736 0.29953 0.13742 0.28406 0.10570

0.04990 26 0.32775 0.14306 0.32066 0.12706 0.32916 0.14622

52 0.45394 0.37035 0.46681 0.39436 0.46479 0.37541

S&P Euro Plus 225 4 0.04800 −0.38152 0.04319 −0.38971 0.02657 −0.41912

13 0.28637 0.09397 0.27751 0.07662 0.28461 0.09035

0.06440 26 0.34096 0.15261 0.34493 0.16182 0.35099 0.17192

52 0.44673 0.37319 0.44148 0.35061 0.42234 0.31788

S&P Europe 350 4 −0.04511 −0.51705 −0.04809 −0.52363 −0.04903 −0.52556

13 0.24189 0.09115 0.25854 0.12746 0.25691 0.12174

0.02387 26 0.35041 0.30408 0.35247 0.30276 0.34754 0.30041

52 0.39679 0.40076 0.40692 0.42242 0.39838 0.40460

S&P US 500 4 −0.12126 −0.33386 −0.12387 −0.34077 −0.13386 −0.36154

13 0.10412 0.14843 0.10293 0.13658 0.10405 0.13861

−0.13630 26 0.32506 0.70820 0.34276 0.75345 0.33539 0.73123

52 0.31947 0.78032 0.24698 0.62356 0.31258 0.77149

S&P Global 1200 4 0.04634 −0.24378 0.04790 −0.24157 0.04531 −0.24698

13 0.30869 0.31363 0.31104 0.31682 0.30869 0.31328

−0.02988 26 0.54255 0.83725 0.55551 0.86181 0.55473 0.86418

52 0.55324 0.99952 0.57734 1.07424 0.56968 1.04838

• using prediction intervals to assess whether, or not, we are achieving portfolios with

a constant return
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Regression of individual asset returns against time

Notwithstanding that regression against time is necessary in our approach we can explore

whether, when individual asset returns are regressed against time, we encounter significant

linear regressions.

To provide insight into this question we took each of the assets (stocks) in our largest

instance, the S&P Global 1200, and for successive in-sample periods of h = 6, 13, 26 weeks

over the entire set of asset returns, performed a regression of asset return against time. For

each regression we computed the p-value and compared it with 0.05 (indicating whether

the regression was significant at the 5% level or not). Table 3.7 shows the results obtained.

If there was no dependence between asset returns and time then we would expect (purely

by chance) to have 5% of p-values ≤ 0.05.

h = 6 h = 13 h = 26

Number of p-values 378154 371202 358301

Number of p-values ≤ 0.05 50680 23290 15229

Percentage of p-values ≤ 0.05 13.402 6.274 4.250

Table 3.7: Regression against time, p-value count

It can be seen from Table 3.7 however that for h = 6, 13 weeks we have a higher

percentage of p-values ≤ 0.05 then we would expect by chance. Given the number of

observations (observed p-values) involved, over 350000 observations in each case, these

results are highly significant and indicate that, taken collectively, more assets show sig-

nificant linear dependence on time than we would expect from pure chance. As might

be expected the longer the in-sample period (h) the less effect we see. The explanation

for this is that in the short-term (for this instance h = 6, 13 weeks) a linear regression

against time can be used to model asset returns. However over longer time periods such

a model is not sustainable. Note here that many of the results given in this chapter deal

with short in-sample periods such as h = 6, 13 weeks.

Type II errors

Recall that in order to check whether, or not, we have achieved a constant return per

time period we above adopted hypothesis testing and in a number of the tables presented

conducted hypothesis tests on regression slopes (as to whether regression slope was sig-

nificantly different from zero or not), at specified significance levels. If we judge that
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the regression slope is zero then this indicates that (statistically) we have evidence for a

constant return per time period.

Formally the null hypothesis used was H0:regression slope is zero versus the alterna-

tive hypothesis H1:regression slope is different from zero, so a two-sided hypothesis test.

Rejecting H0 when it is true is known as a Type I error and the significance level is

the probability of making a Type I error. In hypothesis testing a Type II error relates

to accepting (i.e. not rejecting) H0 when it is false and so we may be interested in the

probability of making such an error.

For simplicity we shall restrict our analysis of Type II errors purely to the first table

of results presented, Table 3.1. Values for the probability of a Type II error seen in this

section were calculated using the R statistical programming language and the pwr package

due to Champely (2013), based on Cohen (1988). Table 3.8 gives the results obtained.

To explain Table 3.8 consider the case of ARP-RT and excess return in Table 3.1.

Towards the foot of that table we can see that over the 44 cases there were 39 with a slope

test success. These are the 39 cases out of the 44 where the hypothesis test H0:regression

slope is zero versus the alternative hypothesis H1:regression slope is different from zero

did not reject H0 at the significance level of 10% adopted for Table 3.1. As for each of

these 39 cases we did not reject H0 we have the possibility (in each case) that we may

have made a Type II error of accepting H0 when it is false. In other words although we

accepted H0 we should really have rejected it and not recorded a slope test success.

Over the 44 hypothesis tests conducted at the 10% significance level for that column

of Table 3.1 we see from Table 3.8 that the average probability of a Type II error was 0.76

(the entry in Table 3.8 corresponding to a significance level of 10%, ARP-RT and excess

return). Therefore we have the question as to whether the 39 cases (out of the 44) where we

had a slope test success merely reflect Type II errors, or whether there is a genuine effect

occurring. To answer this question we calculate the p-value, which here is the probability

that we would have seen 39 (or more) cases of slope test success due to Type II errors, each

of which occur with probability 0.76 in the 44 hypothesis tests undertaken. This is a simple

binomial distribution calculation, namely
∑44

k=39[44!/(k!(44− k)!)](0.76)k(1− 0.76)(44−k),

which here equates to the 0.030 seen in Table 3.8. The lower the p-value the greater the

chance that the effect seen is genuine, i.e. it is not simply a reflection of chance Type II

errors occurring.

Table 3.8 gives p-values for varying significance levels, as in Table 3.2. Considering

Table 3.8 we can conclude that we are seeing genuine effects (since the p-values are very

small) for significance levels of 30% or less.
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Significance Level ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

10% # of slope test successes 44 39 44 41 44 41

Average probability of a Type II error 0.79 0.76 0.80 0.76 0.80 0.76

p-value 0.000 0.030 0.000 0.003 0.000 0.003

20% # of slope test successes 40 35 40 35 41 35

Average probability of a Type II error 0.66 0.63 0.66 0.64 0.66 0.64

p-value 0.000 0.014 0.000 0.020 0.000 0.020

30% # of slope test successes 33 31 34 30 34 29

Average probability of a Type II error 0.55 0.53 0.55 0.53 0.55 0.53

p-value 0.005 0.014 0.002 0.030 0.002 0.058

50% # of slope test successes 21 16 20 18 19 18

Average probability of a Type II error 0.40 0.37 0.41 0.38 0.41 0.38

p-value 0.186 0.591 0.325 0.400 0.440 0.400

Table 3.8: Probability of Type II errors and p-values

Prediction intervals

An alternative way to judge constancy of return (which does not involve regression) is to

use prediction intervals. In-sample we are deciding a portfolio that (ideally) would give

the same return in each and every time period. Ideally therefore, out-of-sample, we would

find that the decided portfolio has the same (mean) return as it had in-sample.

Since (in the real-world) nothing is ever truly constant we can expand this argument

as follows. Suppose we generate a 95% (say) prediction interval (henceforth PI) for the

out-of-sample mean portfolio return based on in-sample returns. If, out-of-sample, the

mean return that we do achieve lies in this 95% PI then this is evidence that the mean

returns, in-sample and out-of-sample, are equivalent.

For readers unfamiliar with the concept a prediction interval, based on in-sample

observations, is used to make an inference about either a single future (out-of-sample)

observation or a summary statistic relating to out-of-sample observations. It reflects both

uncertainty in parameter estimates as well as sampling variation associated with future

observations. More technically if we have h in-sample observations of portfolio returns,

whose mean is r and whose standard deviation is s, then the 100(1 − ε)% PI for the

out-of-sample mean return based on H out-of-sample return observations is given by

r± tε/2,h−1s(
√

1/h+ 1/H). This PI formula, based on the assumption that out-of-sample

returns follow the same underlying statistical distribution as in-sample returns, says there

is a 100(1 − ε)% probability that the mean out-of-sample return will lie in this PI. For

simplicity we shall restrict our PI analysis to the results shown in Table 3.1.

Table 3.9 shows the 95% PI analysis for Table 3.1, which used h = 6. In Table 3.9
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Table 3.9: 95% prediction interval counts

Instance H # rebalances
ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

S&P Latin America 40 4 98 86 92 85 91 88 94

13 31 28 30 28 30 28 30

26 16 16 16 16 16 16 16

52 8 8 8 8 8 8 8

S&P Asia 50 4 98 91 93 90 92 90 93

13 31 27 24 28 23 28 25

26 16 13 12 13 12 13 12

52 8 6 5 6 6 6 5

S&P ASX 50 4 98 88 86 88 86 87 88

13 31 26 29 25 27 26 29

26 16 16 15 16 15 16 15

52 8 8 8 8 6 8 7

S&P TSX 60 4 98 88 84 89 84 88 82

13 31 25 25 25 24 27 24

26 16 14 11 15 10 14 10

52 8 6 5 6 5 6 5

S&P UK 125 4 98 86 81 87 82 85 83

13 31 26 26 27 26 27 25

26 16 14 13 14 13 14 13

52 8 7 6 7 5 7 6

S&P Topix 150 4 98 91 92 91 92 91 90

13 31 30 25 30 24 30 27

26 16 16 13 16 12 16 11

52 8 8 6 8 5 8 6

S&P Euro Zone 175 4 98 87 84 87 83 87 83

13 31 20 23 20 23 20 24

26 16 11 11 11 11 11 11

52 8 6 5 6 5 6 5

S&P Euro Plus 225 4 98 87 79 87 80 87 79

13 31 21 23 21 23 21 22

26 16 11 10 11 9 11 9

52 8 6 4 6 4 6 4

S&P Europe 350 4 98 85 76 86 76 85 77

13 31 20 22 21 22 21 22

26 16 13 11 13 10 13 10

52 8 6 3 6 3 6 3

S&P US 500 4 98 86 66 86 64 86 66

13 31 24 18 24 17 24 18

26 16 14 6 14 5 14 7

52 8 6 3 6 2 6 3

S&P Global 1200 4 98 81 68 83 69 83 70

13 31 22 17 22 18 22 18

26 16 13 6 13 4 14 5

52 8 6 3 6 2 6 3

H = 4 1078 956 (89%) 901 (84%) 959 (89%) 899 (83%) 957 (89%) 905 (84%) 86%

H = 13 341 269 (79%) 262 (77%) 271 (79%) 257 (75%) 274 (80%) 264 (77%) 78%

H = 26 176 151 (86%) 124 (70%) 152 (86%) 117 (66%) 152 (86%) 119 (68%) 77%

H = 52 88 73 (83%) 56 (64%) 73 (83%) 51 (58%) 73 (83%) 55 (63%) 72%
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we have, for the S&P Latin America 40 with H = 4, for example, that the results in

Table 3.1 involve 98 rebalances over time. For 86 of these 98 rebalances the actual out-of-

sample mean return for ARP-RT lay within the 95% PI as calculated (using the formula

shown above) from in-sample data. This therefore is a good indication that out-of-sample

returns are following the same underlying statistical distribution as in-sample returns and

hence that that the mean return out-of-sample is equal to the mean return in-sample.

Note here that since returns can (potentially) be drawn from (−∞,+∞) a 95% PI, for

example, does not mean that 95% of mean out-of-sample returns should automatically lie

in this interval. Summary statistics for the four different H values are given at the foot of

Table 3.9. For H = 4 and ARP-RT, for example, for 956 out of 1078 rebalances (89% of

rebalances) the actual out-of-sample mean return lay within the in-sample derived 95%

PI. In general we can see that a high percentage of mean out-of-sample returns lie in the

95% PI derived from in-sample returns.

The actual average values for the mean return (r) and standard deviation in return

(s) as associated with Table 3.9, averaged over all rebalances, are given in Table 3.10. So

for example for ARP-RT for the S&P Latin America 40 with H = 4 the average (weekly)

return (over 98 rebalances) was 0.01289 and the average standard deviation in return was

0.02916. The average (weekly) excess return (over 98 rebalances) was 0.00872 and the

average standard deviation in excess return was 0.01928.

One issue with Table 3.9 is that since we are interested in the mean out-of-sample

return lying in the 95% PI we should also consider lower prediction levels (such as 90%

or below), hence reducing the size of the interval and making it harder for the mean

out-of-sample return to lie within the PI. Table 3.11 shows how the results change as we

reduce the size of the PI. The 95% PI results in that table are as in Table 3.9, but are

repeated there for convenience of comparison. Overall we can see that we still have a high

percentage of mean out-of-sample returns lying in the in-sample derived PI (indicating

that statistically the mean returns, in-sample and out-of-sample, are equivalent).

In summary here then our results, although produced from an approach based on

regression against time, when evaluated from a non-regression (prediction interval) based

viewpoint indicate that we are finding portfolios for which in-sample and out-of-sample

mean returns are equal. In other words these prediction interval results indicate that we

are achieving (mean) constancy of return.

Discussion

In this section we investigated three issues: whether, when asset returns are regressed

against time, we encounter significant linear regressions; Type II errors, associated with
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Table 3.10: Average mean return and standard deviation in return, averaged over all

rebalances

Instance H
ARP-RT ARP-ERT ARP-RERT

Ret AV Ret SD Exc AV Exc SD Ret AV Ret SD Exc AV Exc SD Ret AV Ret SD Exc AV Exc SD

S&P 4 0.01289 0.02916 0.00872 0.01928 0.01298 0.02952 0.00882 0.01895 0.01291 0.02953 0.00874 0.01941

Latin America 40 13 0.01271 0.03419 0.00892 0.01898 0.01283 0.03425 0.00904 0.01777 0.01241 0.03448 0.00862 0.01850

26 0.00863 0.03315 0.00674 0.01946 0.00867 0.03399 0.00678 0.01801 0.00933 0.03319 0.00744 0.01893

52 0.00920 0.03639 0.00495 0.02181 0.01026 0.03707 0.00600 0.01879 0.01114 0.03726 0.00689 0.02064

S&P 4 0.01122 0.02302 0.00892 0.02002 0.01106 0.02326 0.00876 0.02000 0.01103 0.02304 0.00874 0.02002

Asia 50 13 0.01459 0.02592 0.01068 0.01797 0.01442 0.02627 0.01051 0.01794 0.01402 0.02594 0.01011 0.01754

26 0.01315 0.02415 0.01106 0.01818 0.01332 0.02464 0.01123 0.01800 0.01318 0.02486 0.01109 0.01798

52 0.01747 0.02602 0.01208 0.01838 0.01799 0.02607 0.01261 0.01789 0.01806 0.02588 0.01268 0.01816

S&P 4 0.00942 0.01968 0.00748 0.01363 0.00934 0.01961 0.00739 0.01352 0.00941 0.01964 0.00747 0.01362

ASX 50 13 0.01127 0.01895 0.00769 0.01403 0.01153 0.01886 0.00795 0.01419 0.01141 0.01899 0.00783 0.01428

26 0.00866 0.02088 0.00705 0.01360 0.00890 0.02040 0.00730 0.01321 0.00891 0.02043 0.00730 0.01348

52 0.00953 0.02107 0.00479 0.01241 0.00989 0.02091 0.00515 0.01192 0.00995 0.02075 0.00521 0.01208

S&P 4 0.01353 0.02147 0.01126 0.01823 0.01383 0.02147 0.01156 0.01797 0.01386 0.02143 0.01159 0.01788

TSX 60 13 0.01414 0.02270 0.01149 0.01945 0.01481 0.02312 0.01217 0.01906 0.01439 0.02305 0.01175 0.01910

26 0.01164 0.02296 0.00902 0.01660 0.01305 0.02344 0.01043 0.01590 0.01299 0.02334 0.01037 0.01638

52 0.01358 0.02239 0.00925 0.01762 0.01588 0.02306 0.01155 0.01583 0.01544 0.02280 0.01111 0.01764

S&P 4 0.01080 0.01920 0.01013 0.01330 0.01080 0.01928 0.01014 0.01330 0.01081 0.01924 0.01014 0.01324

UK 125 13 0.01075 0.01912 0.01026 0.01505 0.01078 0.01905 0.01029 0.01502 0.01077 0.01904 0.01028 0.01508

26 0.00774 0.01991 0.01105 0.01600 0.00778 0.01983 0.01109 0.01602 0.00776 0.01989 0.01107 0.01597

52 0.01056 0.01852 0.01479 0.01617 0.01064 0.01825 0.01487 0.01620 0.01057 0.01856 0.01480 0.01614

S&P 4 0.01041 0.02697 0.00931 0.01638 0.01043 0.02692 0.00933 0.01631 0.01039 0.02698 0.00928 0.01632

Topix 150 13 0.00684 0.02664 0.00894 0.01609 0.00689 0.02669 0.00899 0.01606 0.00682 0.02670 0.00892 0.01614

26 0.00620 0.02817 0.01083 0.01427 0.00629 0.02830 0.01093 0.01430 0.00626 0.02811 0.01089 0.01427

52 0.00808 0.02801 0.01258 0.01577 0.00852 0.02792 0.01301 0.01523 0.00848 0.02793 0.01298 0.01518

S&P 4 0.01040 0.01885 0.00943 0.01572 0.01037 0.01896 0.00940 0.01576 0.01037 0.01885 0.00941 0.01576

Euro Zone 175 13 0.01158 0.01987 0.01079 0.01523 0.01148 0.01981 0.01069 0.01521 0.01149 0.01996 0.01070 0.01528

26 0.00839 0.01745 0.01230 0.01524 0.00831 0.01723 0.01223 0.01525 0.00831 0.01754 0.01223 0.01524

52 0.00870 0.01793 0.01276 0.01427 0.00860 0.01817 0.01266 0.01427 0.00871 0.01797 0.01277 0.01421

S&P 4 0.01050 0.01896 0.00948 0.01488 0.01050 0.01893 0.00948 0.01486 0.01049 0.01897 0.00948 0.01489

Euro Plus 225 13 0.01195 0.02049 0.01118 0.01481 0.01198 0.02033 0.01121 0.01489 0.01198 0.02056 0.01121 0.01492

26 0.00881 0.01801 0.01251 0.01507 0.00870 0.01804 0.01240 0.01494 0.00879 0.01813 0.01249 0.01507

52 0.00883 0.01894 0.01295 0.01413 0.00877 0.01899 0.01289 0.01414 0.00875 0.01913 0.01288 0.01414

S&P 4 0.01108 0.01819 0.01025 0.01300 0.01105 0.01817 0.01021 0.01298 0.01105 0.01824 0.01022 0.01300

Europe 350 13 0.01198 0.01944 0.01135 0.01348 0.01205 0.01936 0.01141 0.01352 0.01199 0.01946 0.01136 0.01351

26 0.00849 0.01860 0.01205 0.01348 0.00891 0.01847 0.01247 0.01349 0.00887 0.01845 0.01243 0.01353

52 0.00974 0.01856 0.01390 0.01321 0.00973 0.01872 0.01389 0.01334 0.00973 0.01872 0.01390 0.01325

S&P 4 0.01206 0.01949 0.01206 0.01291 0.01221 0.01961 0.01221 0.01286 0.01220 0.01955 0.01220 0.01285

US 500 13 0.01310 0.02146 0.01254 0.01423 0.01309 0.02166 0.01253 0.01411 0.01331 0.02159 0.01275 0.01428

26 0.00869 0.02115 0.01122 0.01138 0.00891 0.02139 0.01144 0.01090 0.00858 0.02126 0.01112 0.01106

52 0.00994 0.01873 0.01198 0.01044 0.01042 0.01903 0.01246 0.01007 0.01022 0.01897 0.01226 0.01019

S&P 4 0.01297 0.01676 0.01248 0.01261 0.01297 0.01677 0.01248 0.01253 0.01291 0.01670 0.01243 0.01256

Global 1200 13 0.01393 0.01858 0.01342 0.01234 0.01392 0.01861 0.01341 0.01229 0.01397 0.01857 0.01346 0.01230

26 0.01075 0.01788 0.01347 0.01179 0.01100 0.01784 0.01372 0.01166 0.01055 0.01782 0.01327 0.01166

52 0.01162 0.01703 0.01406 0.01100 0.01176 0.01715 0.01420 0.01070 0.01166 0.01704 0.01410 0.01083

H = 4 0.01139 0.02107 0.00996 0.01545 0.01141 0.02114 0.00998 0.01537 0.01140 0.02111 0.00997 0.01541

H = 13 0.01208 0.02249 0.01066 0.01561 0.01216 0.02255 0.01075 0.01546 0.01205 0.02258 0.01064 0.01554

H = 26 0.00920 0.02203 0.01066 0.01501 0.00944 0.02214 0.01091 0.01470 0.00941 0.02209 0.01088 0.01487

H = 52 0.01066 0.02214 0.01128 0.01502 0.01113 0.02230 0.01175 0.01440 0.01116 0.02227 0.01178 0.01477

falsely accepting the null hypothesis when testing a regression slope for significance; and

using prediction intervals to assess whether, or not, we are achieving portfolios with a
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Table 3.11: Prediction interval counts

% PI H # rebalances
ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

95% 4 1078 956 (89%) 901 (84%) 959 (89%) 899 (83%) 957 (89%) 905 (84%) 86%

13 341 269 (79%) 262 (77%) 271 (79%) 257 (75%) 274 (80%) 264 (77%) 78%

26 176 151 (86%) 124 (70%) 152 (86%) 117 (66%) 152 (86%) 119 (68%) 77%

52 88 73 (83%) 56 (64%) 73 (83%) 51 (58%) 73 (83%) 55 (63%) 72%

90% 4 1078 870 (81%) 811 (75%) 873 (81%) 806 (75%) 879 (82%) 807 (75%) 78%

13 341 244 (72%) 215 (63%) 241 (71%) 219 (64%) 243 (71%) 221 (65%) 68%

26 176 139 (79%) 96 (55%) 135 (77%) 90 (51%) 138 (78%) 93 (53%) 65%

52 88 68 (77%) 43 (49%) 66 (75%) 41 (47%) 66 (75%) 41 (47%) 62%

75% 4 1078 664 (62%) 607 (56%) 664 (62%) 602 (56%) 667 (62%) 613 (57%) 59%

13 341 190 (56%) 143 (42%) 187 (55%) 142 (42%) 191 (56%) 144 (42%) 49%

26 176 111 (63%) 58 (33%) 108 (61%) 58 (33%) 110 (63%) 58 (33%) 48%

52 88 47 (53%) 35 (40%) 46 (52%) 32 (36%) 46 (52%) 34 (39%) 45%

50% 4 1078 382 (35%) 391 (36%) 386 (36%) 368 (34%) 385 (36%) 380 (35%) 35%

13 341 99 (29%) 88 (26%) 94 (28%) 88 (26%) 95 (28%) 91 (27%) 27%

26 176 64 (36%) 40 (23%) 61 (35%) 33 (19%) 61 (35%) 38 (22%) 28%

52 88 29 (33%) 25 (28%) 28 (32%) 21 (24%) 27 (31%) 23 (26%) 29%

constant return.

Overall we found evidence that (for short in-sample periods) regressing asset returns

against time can be justified for more assets than one would expect by chance. With

respect to Type II errors we found clear evidence that our results are not due to an

accumulation of Type II errors. With respect to prediction intervals, which are derived

from a non-regression standpoint, we found evidence that our results indicate that we are

achieving portfolios with the same mean return in-sample as out-of-sample.

3.4.6 Further insight

In this section we investigate a number of components of our approach in an attempt to

provide further insight. Specifically we consider: intercept maximisation, the number of

assets (K) in the portfolio, and the equally-weighted (1/N) portfolio. All of these are

considered below.

Intercept maximisation

In the second stage of the three-stage objective presented above we maximise the re-

gression intercept (equation 3.16). This is done subject to a constraint (equation 3.17)

upon the absolute value of the regression slope achieved at the first stage. The question

therefore arises as to whether this stage actually adds value, i.e. whether given the con-
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straints that are applied there is actually flexibility to significantly increase the regression

intercept above the value that it took at the first stage.

Rebalance ARP-RT ARP-ERT ARP-RERT

period Minimum Actual Maximum Minimum Actual Maximum Minimum Actual Maximum

intercept intercept intercept intercept intercept intercept intercept intercept intercept

second stage first stage second stage second stage first stage second stage second stage first stage second stage

6 -0.0208531 -0.0026045 0.0130541 -0.0137571 0.0045750 0.0212491 -0.0178608 -0.0025197 0.0171434

58 -0.0349128 -0.0107490 0.0146454 -0.0349267 -0.0107526 0.0144553 -0.0346306 -0.0107508 0.0144322

110 -0.0156035 0.0002821 0.0181195 -0.0153263 0.0002836 0.0170755 -0.0153019 0.0010662 0.0180907

162 -0.0242924 -0.0052888 0.0061846 -0.0243803 -0.0052886 0.0073373 -0.0243129 -0.0037053 0.0067570

214 -0.0046683 -0.0025656 0.0003830 -0.0046615 -0.0025572 0.0002837 -0.0046442 -0.0025656 0.0007464

266 -0.0004425 0.0065422 0.0179883 -0.0021896 0.0065542 0.0187162 -0.0041764 0.0075600 0.0187396

318 -0.0071153 -0.0011524 0.0075390 -0.0065627 -0.0009106 0.0075240 -0.0067069 -0.0011523 0.0074886

370 -0.0051645 0.0068485 0.0195998 -0.0051045 0.0068487 0.0184260 -0.0051627 0.0068486 0.0196511

Table 3.12: Intercept values, S&P Global 1200, H = 52

To give insight into this question we present Table 3.12. Here, for simplicity, we focus

purely on the largest instance, the S&P Global 1200, associated with an in-sample period

of h = 6 weeks and out-of-sample periods of H = 4, 13, 26, 52 weeks. Table 3.12, which

corresponds to the H = 52 entry for the S&P Global 1200 in Table 3.1, shows for ARP-RT,

ARP-ERT and ARP-RERT the actual intercept value achieved at the first stage and the

maximum intercept value achieved at the second stage at each rebalance. For interest we

also show the minimum intercept value that is achievable at the second stage. The actual

intercept value achieved at the first stage must lie somewhere between these minimum

and maximum values, albeit the value given by the optimisation at the first stage will be

an arbitrarily decided value somewhere between these two limits. So in Table 3.12 for

ARP-RT we can have that at the first rebalance in week 6 the actual intercept at the first

stage is −0.0026045. The minimum and maximum values that the intercept can achieve

at the second stage are −0.0208531 and 0.0130541 respectively.

In order to decide whether the second stage maximisation is adding value we take the

difference between the maximum intercept value and the actual intercept value. This,

for Table 3.12 and the ARP-RT, will give eight difference values (of which the first will

be 0.0130541 − (−0.0026045) = 0.0156586) and we can then apply the hypothesis test

H0:differences are equal to zero versus H1:differences are greater than zero, so a one-sided

hypothesis test. When this is done for ARP-RT in Table 3.12 the result is highly significant

(a p-value of approximately 0.0004), indicating that the maximisation at the second stage

is giving significantly increased intercept values. Conducting the same hypothesis test for

ARP-ERT and ARP-RERT in Table 3.12 also indicates that the second stage is giving
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significantly increased intercept values (p-values also approximately 0.0004). For H =

4, 13, 26 for this instance the results (though not shown here) are even more significant.

Over these three values of H and all three of ARP-RT, ARP-ERT and ARP-RERT the

maximum p-value associated with this hypothesis test was 10−7. Overall then, from this

analysis, we can conclude that the second stage objective of intercept maximisation in

our three-stage objective is adding value.

Number of assets (K) in the portfolio

In the results presented above we have used a value for K, the number of assets in the

portfolio, equal to 0.8N . In this section we illustrate why we choose this particular value

of K and what happens as we change K. For simplicity we concentrate in this section

on the results shown in Table 3.1 for the largest instance, the S&P Global 1200, for the

ARP-RT associated with an in-sample period of h = 6 weeks and varying out-of-sample

periods, namely H = 4, 13, 26, 52.

Figure 3.3 shows for this instance the average out-of-sample return and the associated

risk (standard deviation in return) for ten different values ofK (K = 1.0N, 0.9N, . . . , 0.2N,

0.1N) for the four values of H considered.

It is evident from Figure 3.3 that for H = 13, 26, 52 as we decrease K from 1.0N we

increase the return achieved, but also increase the risk taken. For H = 4 the situation

is slightly different from the other values of H in that as K decreases from 1.0N we

initially reduce return, but after 0.5N we increase return. However even for this case as

K decreases we increase risk.

One clear point to emerge from Figure 3.3, which deals with the largest instance with

ten different values for K and four different values for H (so 40 out-of-sample cases), is

that the three-stage model we have used in this chapter is capable of producing portfolios

with good out-of-sample return performance across a wide range of different portfolio

sizes.

Given the behaviour seen in Figure 3.3 there is no one unique value of K that can be

recommended. For this instance, for all values of H, decreasing K from 1.0N to 0.1N will

increase risk, but for most values of H decreasing K from 1.0N to 0.1N will also increase

return. Hence there is a tradeoff to be made, how much increased risk is an investor

prepared to accept for increased return?

Given this implicit tradeoff we, in the results presented above, adopted a value for K of

0.8N . This means that the results given above are presented in a conservative

light (since Figure 3.3 indicates that higher levels of return are available for smaller values

of K), but also means that we are implicitly adopting a conservative attitude to risk (in
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that we do not want values of risk which are too high).

Clearly readers of this chapter might make other choices for K. The point we would

emphasise here is that, for simplicity, we have adopted a consistent value for K above

rather than attempt to present tables showing results for many different values of K. We

would make the point here though that our approach is capable of allowing an investor

to quickly investigate (since computational times are low, of the order of seconds) any

values of K that may be of interest to them.

Equally-weighted (1/N) portfolio

With regard to portfolio optimisation in a Markowitz mean-variance framework some

authors (e.g. De Miguel et al. (2009)) have argued for use of a non-optimised portfolio

based on allocating the same investment proportion to each of the N assets. This portfolio

is often referred to as the equally-weighted, or 1/N , portfolio. The question therefore arises

whether such a portfolio will perform better than the (optimised) portfolio produced by

the approach given in this chapter.

To give insight into this question we present Figure 3.4. Here, for simplicity, we focus

purely on the returns from ARP-RT, the first column of returns in Table 3.1. For each of

the 44 cases associated with that column we computed the average out-of-sample return

and standard deviation in return for the 1/N portfolio. Note here that as Table 3.1

involves rebalancing over time we also rebalanced our 1/N portfolio over time.

Figure 3.4 has on the vertical axis average return from our approach (as in the first

return column of Table 3.1) minus the average return from the 1/N portfolio. On the

horizontal axis in Figure 3.4 we have the standard deviation in return from our approach

minus the standard deviation in return from the 1/N portfolio. With these measures one

quadrant in Figure 3.4, namely the upper-left quadrant containing 11 cases, corresponds

to cases where our approach produces a result that dominates the 1/N approach (since

in that quadrant the return difference is positive, so our approach has a better return,

and the risk difference is negative, so our approach has a lower risk). The lower-right

quadrant, containing 5 cases, corresponds to cases where our approach produces a result

that is dominated by the 1/N approach. The upper-right and lower-left quadrants in

Figure 3.4, containing in total (44 − 11 − 5) = 28 cases, correspond to quadrants where

there is a risk-return tradeoff to be made between the portfolios given by our approach

and the 1/N portfolio. In the upper-right quadrant for example our approach gives a

better return, but at a higher risk, than the 1/N portfolio.

Although Figure 3.4 shows that in 11 of the 44 cases our approach dominates the 1/N

approach there are 28 cases where no clear conclusion can be drawn, since the approach



58

Figure 3.4: ARP-RT, our approach compared with the 1/N portfolio

preferred depends upon deciding a risk-return tradeoff. In order to gain insight into such

a risk-return tradeoff we present Sharpe ratios for the 1/N portfolio in Table 3.13. Sharpe

ratios, involving as they do the risk-free rate, are one way to perform a risk-return tradeoff

without the investor making a personal value judgement as to the relative worth of return

as against risk. The higher the Sharpe ratio, the better.

The Sharpe ratios in Table 3.13 are directly comparable with the Sharpe ratios seen

in Table 3.4. So for the S&P Latin America 40 with H = 4, with regard to the series of

returns obtained, the Sharpe ratio from our approach for ARP-RT in Table 3.4 is 0.54814,

whereas the Sharpe ratio for the 1/N approach in Table 3.13 is 0.57463, so slightly better.

With regard to the series of excess returns obtained, the Sharpe ratio from our approach

for ARP-RT in Table 3.4 is −0.31723 whereas the Sharpe ratio for the 1/N approach in

Table 3.13 is −0.43000, so slightly worse.

Table 3.14 gives the number of cases, out of 44, where the 1/N portfolio approach has

a better (higher) Sharpe ratio than our approach as in Table 3.4, and vice-versa, where

our approach is better. For the return column for ARP-RT in Table 3.14 there are 16

Sharpe ratios in Table 3.13 that are better than those in Table 3.4, and by implication 44-

16=28 cases in Table 3.4 where the Sharpe ratio is better than that in Table 3.13. Overall

we can see that for each of the six columns in Table 3.14 our approach out-performs the



59

Table 3.13: Sharpe ratios, 1/N portfolio

Instance H return excess return

S&P Latin America 40 4 0.57463 −0.43000
13 0.56399 −0.48071

0.57367 26 0.54736 −0.53535
52 0.53730 −0.59960

S&P Asia 50 4 0.73190 0.26619

13 0.70504 0.21540

0.40393 26 0.70950 0.22341

52 0.72837 0.27523

S&P ASX 50 4 0.86711 0.65426

13 0.86174 0.62166

0.36924 26 0.86918 0.63802

52 0.89287 0.70219

S&P TSX 60 4 0.84937 0.19442

13 0.85743 0.20541

0.42601 26 0.90225 0.26370

52 1.01176 0.37219

S&P UK 125 4 0.23813 0.25302

13 0.22612 0.22177

−0.05901 26 0.28677 0.34373

52 0.35368 0.47310

S&P Topix 150 4 0.37386 0.38686

13 0.36257 0.36101

0.09071 26 0.38663 0.44828

52 0.47576 0.72370

S&P Euro Zone 175 4 0.24576 0.06452

13 0.23941 0.04298

0.04990 26 0.27653 0.13583

52 0.33359 0.25246

S&P Euro Plus 225 4 0.26375 0.08314

13 0.25621 0.05522

0.06440 26 0.29277 0.15408

52 0.34214 0.26295

S&P Europe 350 4 0.27056 0.20272

13 0.25964 0.16502

0.02387 26 0.30555 0.29388

52 0.36381 0.43305

S&P US 500 4 0.28592 0.61640

13 0.24427 0.52750

−0.13630 26 0.27190 0.58455

52 0.30763 0.64860

S&P Global 1200 4 0.47589 0.81066

13 0.45016 0.74231

−0.02988 26 0.48780 0.82378

52 0.56958 0.96974
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1/N approach. In addition the summary values indicate that in 160 out of the 264 cases

considered (so 61% of cases) our approach out-performs the 1/N approach.

Since these results are for the case εi = 0.25/K, δi = 2/K where the maximum invest-

ment in any particular asset is restricted to be at most 2/K we also show in Table 3.14

results for the case εi = 0.25/K, δi = 0.10. In this case 25% of the total investment must

(as a minimum) be spread amongst the K assets, but the remaining 75% is free, and in-

deed up to 10% of the total investment could be placed in one (or more) individual assets.

We can see that for this case for each of the six columns in Table 3.14 our approach again

out-performs the 1/N approach. The summary values given indicate that in 157 out of

the 264 cases considered (so 59% of cases) our approach out-performs the 1/N approach.

Table 3.14: Sharpe ratios comparison

ARP-RT ARP-ERT ARP-RERT

return excess return return excess return return excess return

εi = 0.25/K, δi = 2/K

Number of cases where 1/N is better 16 17 16 18 19 18 104

Number of cases where our approach is better 28 27 28 26 25 26 160

εi = 0.25/K, δi = 0.10

Number of cases where 1/N is better 17 19 16 19 17 19 107

Number of cases where our approach is better 27 25 28 25 27 25 157

3.4.7 Discussion

In this chapter we have presented computational results considering eleven different prob-

lem instances with three parameters that the investor can choose: the number of assets

(K) in the portfolio, the length of the in-sample period (h) from which data is drawn

to decide the portfolio using our three-stage model and the length of the out-of-sample

period (H) for which the portfolio is held before rebalancing occurs.

For simplicity we limited the number of different combinations of K:h:H that we

examined in detail for eleven problem instances. However we hope that we have presented

sufficient results above to convince the reader that:

• our three-stage model is of benefit. To address this point we would mention the low

computation time and positive out-of-sample results and Sharpe ratios produced.

In addition we would stress here that within our three-stage model we can address

finding either an absolute return portfolio (ARP-RT), or a relative return portfolio

(ARP-ERT) or a mixed portfolio (ARP-RERT).
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• the individual stages in our three-stage model are each of value. To address this point

we would mention the logic of minimising the absolute value of the regression slope

at the first stage; the results showing that maximising the intercept at the second

stage leads to significantly better intercepts; the logic of including a transaction cost

minimisation third stage.

• the results obtained are not simply an artefact of the portfolio size (K) adopted.

To address this issue we would mention the results presented showing that over a

wide range of K values our three-stage model is capable of producing portfolios with

good out-of-sample return performance.

• the results obtained are better than those from an alternative approach. To address

this issue we would mention the results presented showing that over all eleven in-

stances our three-stage model produces portfolios with better out-of-sample Sharpe

ratios than an alternative approach based on an equally-weighted (1/N) portfolio.

3.4.8 Further research

It is clear that the work presented in this chapter can be taken further. In particular

there are three future lines of inquiry that we would highlight here: higher-frequency

price data, a rebalance/liquidate/reinvest trading strategy and comparison with other

models previously presented in the literature.

With respect to higher-frequency price data note that we have used weekly asset price

data. The data set we used in this chapter was previously used in Meade & Beasley

(2011) and had the advantage that it had been manually adjusted to account for changes

in index composition, removing susceptibility to the influence of survivor bias.

Whilst obtaining price data (say at daily frequency) from commercial databases such

as Datastream is relatively easy there is significant effort involved in adjusting such data

to account for index composition changes. These typically need to be included since in

deciding a portfolio (of any type) the asset universe needs to be defined. Frequently

asset universes are related to index composition, as in the work presented here, where

the universe at any point in time was composed of the assets that were in the considered

index at that point in time. In other words in historical back-testing, such as presented

in this chapter, one needs to know the index composition at any point in time.

Therefore, due to the effort required to assemble a survivor bias free set of daily price

data for sufficient markets/indices to establish results with any confidence, we believe

that investigating the performance of our three-stage model using such data remains a

topic for future research.
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A rebalance/liquidate/reinvest trading strategy is a strategy where, at each decision

point, an investor either: rebalances to a new portfolio (such as might be produced by

any of the models we have given above); or liquidates the entire existing portfolio for

cash; or reinvests from cash into a portfolio. For example an investor already holding a

portfolio might liquidate the portfolio if they believe that asset returns in the immediate

future will be negative. An investor holding cash from a previously liquidated portfolio

might choose to reinvest if they believe that asset returns in the immediate future will be

high enough. This strategy could be evaluated by considering cash as an asset with zero

return.

One way to incorporate such a trading strategy into the work we have presented here

is to look at the prediction interval for the mean out-of-sample return at each decision

point. Taking the example of possible liquidation, if at a specified prediction level this

prediction interval does not lie above zero (or an appropriate risk-free rate) then the

investor liquidates the portfolio, since the prediction is that out-of-sample returns will

not be high enough.

We do however believe that an investigation as to whether (or not) such a trading

strategy would (after accounting for transaction cost) generate higher returns (or produce

better Sharpe ratios) than the pure rebalance only strategy we have used in this chapter

is a matter for future research.

With respect to comparison with other models previously presented in the literature

then, as already mentioned above, different papers deal with different models, designed

for different purposes, and it is difficult to compare them one to another.

At the core of the three-stage model we have presented is an absolute return focus in

that (ideally) we would find a portfolio that achieves a constant return per time period.

Other models in the literature typically have a different focus. For example they may

focus on: simple Markowitz mean-variance based portfolio optimisation; or Markowitz

mean-variance based portfolio optimisation but with cardinality constraints; or simple

index tracking; or index tracking but with additional constraints upon tracking error such

as those based upon conditional value at risk; or enhanced indexation.

It is true that one can regard all of these models simply as black boxes which at any

given point in time produce a portfolio from in-sample data that one can evaluate in terms

of out-of-sample performance. The model that best rewards the investor in terms of out-

of-sample performance, based on historical back-testing, is the one that the (practical)

investor might choose.

However, given the number of different models that exist, we believe that such a

comparison remains a topic for future research.
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3.5 Conclusions

In this chapter we have considered the problem of selecting an absolute return portfolio.

We presented a three-stage mixed-integer zero-one program for the problem that explicitly

considers transaction costs associated with trading. We extended our approach to present

models for enhanced indexation (relative return) portfolios and for portfolios that are a

mix of absolute and relative return. Computational results were given for portfolios

derived from universes defined by S&P international equity indices which indicated that

all three models produced good quality results and that the computation time required

was not significant.
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Chapter 4

Market neutral portfolios

4.1 Introduction

A market neutral portfolio is a portfolio of financial assets that (ideally) exhibits perfor-

mance independent from that of an underlying market as represented by a benchmark

index. Funds that claim to adopt market neutral strategies are common. Traditionally

such funds hold both long and short positions. A long position in a particular asset is

where a fund purchases a number of units of that asset (e.g. stocks, shares). A fund will

typically hold a long position if it takes the view that the price of the asset will rise. If

their view is correct then they will see a gain in the value of the asset (which can, via

sale, be turned into a cash profit).

A short position is where the fund finds a current holder of a particular asset, borrows

it from them and sells the asset immediately in the market. They do this because they

think that the price of the asset will fall, enabling them to buy the asset back later at

a lower price and return it to the original lender. If their view that the price will fall is

correct this would yield a profit in cash terms. Holding a short position is also known as

shorting, or short selling.

In this chapter we consider the problem of constructing a market neutral portfolio

where we can hold both long and short positions in assets. We formulate this problem

as a mixed-integer nonlinear program, minimising the absolute value of the correlation

between portfolio return and index return.

The contribution of this chapter is:

• to present a model for market neutral portfolios that directly addresses, via mixed-

integer nonlinear programming, the minimisation of correlation between the port-

folio chosen and the return on the benchmark index

• to present computational results, for test instances involving up to 1200 assets, which
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indicate that our mixed-integer nonlinear approach is computationally feasible

• to show, for the test problems considered, that the results for the model proposed

out-perform an alternative approach based on minimising the absolute value of

regression slope (the zero-beta approach)

To the best of our knowledge this chapter is the first in the literature to directly address

correlation minimisation.

The structure of this chapter is as follows. In Section 4.2 we give our formulation of the

problem of constructing a market neutral portfolio. In Section 4.3 we give computational

results for constructing market neutral portfolios for eleven different problem instances

derived from universes defined by S&P international equity indices. In Section 4.4 we

present relevant discussions regarding our model. Finally in Section 4.5 we present our

conclusions.

4.2 Problem formulation

4.2.1 Overview

Market neutral portfolios seek to avoid market risk. One way (as in Patton (2009))

to define a market neutral portfolio (henceforth MNP) is as a portfolio that has zero

correlation with the market (for example, as represented by a benchmark index).

In the model presented in this chapter we adopt the view that in seeking a MNP we

are looking for a portfolio that ideally has zero correlation with a market benchmark. In

practice we may not find such a portfolio, but if we could find a portfolio whose returns

have zero correlation with market returns, we would then have an ideal MNP.

In this chapter we formulate a mixed-integer nonlinear program for the problem of se-

lecting a MNP. Nonlinearities exist in the model since our objective is to find a correlation

of zero between our portfolio and the market. Nonlinear formulations are often compu-

tationally challenging; in order to find (locally) optimal solutions we used the Minotaur

solver (Leyffer et al. (2013)), a toolkit for solving mixed-integer nonlinear optimisation

problems. In the following sections we give our notation and present the constraints and

objective that we used to find a MNP. Our model is a general one in that it allows both

long and short positions.

4.2.2 Notation

We observe over time 0, 1, 2, . . . , T the value of N assets. We are interested in selecting

the best set of K assets to hold (where K ≤ N), as well as their appropriate quantities.
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Let:

Vit be the value (price) of one unit of asset i at time t

rit be the single period continuous time return for asset i at time t, i.e. rit =

ln(Vit/Vit−1)

It be the value of the benchmark market index at time t

Rt be the single period continuous time return for the index at time t, i.e. Rt =

ln(It/It−1)

R̄ be the average return on the index, i.e. R̄ =
∑T

t=1Rt/T

C be the total cash available (≥ 0) at time T to invest in the MNP

CL, CS be the limits (> 0) on the total invested in long/short positions at time T

εLi , εSi be the lower limits (0 ≤ εLi , ε
S
i ≤ 1) on the proportion of CL and CS respec-

tively invested in long/short positions in asset i if any position is taken

δLi , δSi be the upper limits (0 ≤ δLi , δ
S
i ≤ 1) on the proportion of CL and CS

respectively invested in long/short positions in asset i

Then our decision variables are:

xLi , x
S
i the number of units (≥ 0) of asset i that we choose to hold in long/short

positions respectively

wLi , w
S
i the “proportion” of the initial investment (cash) C held in long/short posi-

tions in asset i

zLi , z
S
i

{
1 if any of asset i is held in long/short positions in the MNP

0 otherwise

Without significant loss of generality (since the sums of money involved are large) we

allow [xLi ], [xSi ] to take fractional values.

Observe that “proportion”, relating to wLi and wSi , is in inverted comma’s. When

we have shorting (as opposed to a long-only portfolio) the usual long-only proportion

interpretation changes. When we have a long-only portfolio we are using our initial

investment C to purchase assets. As such the proportion invested in any asset must

always be a fraction (≤ 1) of C.

However when we allow shorting we can increase the amount that we have available for

purchases. Here we first borrow from an intermediary xSi units of asset i (i = 1, . . . , N),

sell them immediately in the market for a price of ViT each and hence have a cash sum

C +
∑N

i=1 x
S
i ViT to invest in long positions. For this reason the amount invested in any

asset as a proportion of C can exceed 1, unlike the usual long-only interpretation of a

proportion as being ≤ 1.
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4.2.3 Constraints

The constraints associated with our formulation of the problem of finding a MNP are:

wLi = xLi ViT/C, i = 1, . . . , N (4.1)

wSi = xSi ViT/C, i = 1, . . . , N (4.2)

εLi z
L
i ≤ xLi ViT/C

L ≤ δLi z
L
i , i = 1, . . . , N (4.3)

εSi z
S
i ≤ xSi ViT/C

S ≤ δSi z
S
i , i = 1, . . . , N (4.4)

zLi + zSi ≤ 1, i = 1, . . . , N (4.5)

N∑
i=1

(zLi + zSi ) = K (4.6)

N∑
i=1

xLi ViT ≤ CL (4.7)

N∑
i=1

xSi ViT ≤ CS (4.8)

N∑
i=1

wLi −
N∑
i=1

wSi = 1 (4.9)

Equations (4.1) and (4.2) define the “proportion” wLi and wSi of the MNP invested

in asset i. These variables (although strictly unnecessary as they can be substituted

out algebraically) are introduced here to ease the mathematics presented. Equations

(4.3) and (4.4) ensure that if an asset i is not held in a long/short position in the MNP

(zLi = 0, zSi = 0) then xLi , xSi are also zero. If asset i is held then these equations ensure

that the proportions of CL, CS held respect the limits defined. Equation (4.5) says that

we cannot hold a long and short position in the same asset simultaneously. Equation (4.6)

ensures that there are exactly K assets in the MNP. Equations (4.7) and (4.8) ensure that

we respect the limits on the total invested in long/short positions.

Equation (4.9) is the monetary balance equation and is equivalent to:

N∑
i=1

xLi ViT = C +
N∑
i=1

xSi ViT (4.10)
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where we assume C 6= 0. This equation says that at time T we first generate cash∑N
i=1 x

S
i ViT by shorting, add that to C and then purchase long positions costing

∑N
i=1 x

L
i ViT .

Note here that amending the constraints we have given above so as to have long-

only portfolios without shorting is trivial (simply remove the variables associated with

shorting).

4.2.4 Objective function

According to our definition of a MNP, we seek zero correlation between portfolio return

and market benchmark return. Statistically, correlation is defined by a nonlinear formula

and it ranges from −1 to +1. Define the following additional decision variables:

Ct the value of the MNP at time t = 0, . . . , T

pt the MNP log-return at time t = 1, . . . , T

p̄ the average return on the MNP

These variables are given by:

Ct =
N∑
i=1

xLi Vit −
N∑
i=1

xSi Vit, t = 0, . . . , T (4.11)

pt = ln(Ct/Ct−1), t = 1, . . . , T (4.12)

p̄ =
T∑
t=1

pt/T (4.13)

In Equation (4.11) we have that at time t the MNP has xLi , i = 1, . . . , N in long

positions, collectively worth
∑N

i=1 x
L
i Vit. The short positions xSi , i = 1, . . . , N represent

obligations which have to be repaid (since in shorting, short selling, we borrow assets and

have to return them). Collectively the short positions represent a (monetary) repayment

of
∑N

i=1 x
S
i Vit and so the value of the MNP at time t is as given in Equation (4.11).

Equation (4.12) defines the log-returns for the MNP and Equation (4.13) the average

return.

It is clear from Equation (4.11) that the presence of short selling may mean that the

value of the MNP becomes negative (or zero). In either case this would mean that the

corresponding return (Equation (4.12)) is not defined. Numerically this would result in

the optimisation software we are using giving an error. For this reason we impose the

constraint that Ct, t = 0, . . . , T is greater than (or equal to) some small positive value. In
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the computational results reported later we used C = 1000000 and imposed the constraint

that Ct ≥ 10, t = 0, . . . , T .

In our model to find a MNP our objective is to minimise the absolute value of the

correlation between MNP return and benchmark index return. Utilising the formula for

correlation, the Pearson product-moment coefficient (which can be found in any statistics

textbook), our objective is:

minimise

∣∣∣∣∣
∑T

t=1(pt − p̄)(Rt − R̄)√∑T
t=1(pt − p̄)2

∑T
t=1(Rt − R̄)2

∣∣∣∣∣ (4.14)

This minimisation is subject to the constraints given in Equations (4.1)-(4.9), (4.11)-

(4.13). Our model for a MNP is a mixed-integer nonlinear program which is non-convex

(due to Equation (4.12)). Note here that although the objective (Equation (4.14)) can

be simplified, since the term
∑T

t=1(Rt − R̄)2 is a constant and so can be dropped from

the objective without affecting the optimal solution, we retain it in the form given for

consistency.

Note also that we can replace this nonlinear modulus objective by a linear objective

(if so desired) by introducing, in a standard way, a single additional variable (E ≥ 0) and

two nonlinear constraints. The model then becomes:

minimise E (4.15)

subject to (4.1)-(4.9), (4.11)-(4.13) and:

E ≥
∑T

t=1(pt − p̄)(Rt − R̄)√∑T
t=1(pt − p̄)2

∑T
t=1(Rt − R̄)2

(4.16)

E ≥ −
∑T

t=1(pt − p̄)(Rt − R̄)√∑T
t=1(pt − p̄)2

∑T
t=1(Rt − R̄)2

(4.17)

4.2.5 Other constraints

The model we have given above for the problem of deciding a market neutral portfolio

can be easily extended to deal with additional (user specified) constraints that may be

encountered in practice. Examples of such constraints that are especially relevant to

MNPs are given below.

Dollar neutral

The term “dollar neutral” with respect to a MNP is used to signify that, over a set Q of

assets at time T , the value of the long positions is equal to the value of the short positions.
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The constraint that enforces this is:

∑
i∈Q

xLi ViT =
∑
i∈Q

xSi ViT (4.18)

For example, we might impose dollar neutrality on a set of assets within one or more

economic sectors (e.g. banking, telecommunications) when forming an equity/stock based

MNP. Note here however that attempting to impose dollar neutrality on the entire MNP,

i.e. using Q = [1, . . . , N ], would from Equation (4.10) explicitly require C = 0. This,

depending upon how portfolio returns are calculated, can introduce complexities into

the model, since potentially we start with C = 0 and generate via judicious long/short

positions some money from nothing. For a discussion as to this issue see Khandani & Lo

(2007).

It is a simple matter to extend the concept of dollar neutrality to ensure that the net

position over a set Q of assets, i.e.
∑

i∈Q x
L
i ViT −

∑
i∈Q x

S
i ViT , lies within prescribed limits.

Long/short fix

In a long/short fix MNP we specify, as a proportion of C, the amount that can be held

in long/short positions. Letting α (where 0 ≤ α ≤ 1) be the proportion of C that can be

held in short positions we have:

CS = αC (4.19)

CL = (1 + α)C (4.20)

If α = 0.30, for example, we would hold a maximum of 30% of C in short positions

and a maximum of 130% of C in long positions. Note here that if we wish to exactly

specify the amount held in long/short positions all that needs to be done is to change the

inequalities in Equations (4.7) and (4.8) to equalities.

There are many funds that limit their exposure with a proportion α = 0.30 and they

are usually referred to as 130/30 funds (see Lo & Patel (2008); Tol & Wanningen (2009,

2011)). Other values for α are also encountered, e.g. α = 0.20 for 120/20 funds (Jacobs

& Levy (2007)) or α = 0.50 for 150/50 funds.

Regulation T

Regulation T is a rule that applies in the USA to investors of certain types who make

use of shorting. It essentially prevents the proceeds from shorting being used for long

purchases. In a rule of this type the entire proceeds from shorting (so
∑N

i=1 x
S
i ViT ), plus
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an additional fraction γ of this amount, must be set aside. This additional fraction is

to cover the risk that the price of assets that have been shorted will rise. For example,

regulation T uses γ = 0.5. If a rule of this type applies then Equations (4.10) and (4.9)

become:

N∑
i=1

xLi ViT = C − γ
N∑
i=1

xSi ViT (4.21)

N∑
i=1

wLi + γ
N∑
i=1

wSi = 1 (4.22)

So here in Equation (4.21) the initial cash sum C available for long purchases is reduced

by the fraction needed to support shorting (c.f. Equation (4.10) where the initial cash sum

C is supplemented by the proceeds from shorting). Equation (4.11), defining the value of

the portfolio at time t, changes to:

Ct =
N∑
i=1

xLi Vit −
N∑
i=1

xSi Vit + (1 + γ)
N∑
i=1

xSi ViT , t = 0, . . . , T (4.23)

In this equation the value of the portfolio at time t is composed of a long position

(
∑N

i=1 x
L
i Vit); a short position which is an obligation to be repaid (

∑N
i=1 x

S
i Vit); plus the

proceeds from shorting that have been set aside (
∑N

i=1 x
S
i ViT ); plus an additional fixed

amount, taken at time T from C, of γ
∑N

i=1 x
S
i ViT .

In-sample returns

The model presented above seeks to find a MNP with a correlation of zero between

portfolio and market returns, but does not seek to achieve high returns in-sample (over

the period t = 1, . . . , T ). In order to improve in-sample MNP return (which may, or may

not, improve out-of-sample return) we can add:

p̄ ≥ R̄ (4.24)

This constraint ensures that the average return from the portfolio chosen will be at

least that of the benchmark index.

4.2.6 Zero-beta approach

One alternative approach to constructing a market neutral portfolio is the zero-beta ap-

proach. Here beta relates to the slope of the regression line when portfolio returns are

regressed against the returns from the benchmark index. In this approach portfolio return

is defined using the usual linear approximation as a weighted sum of asset returns:
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pt =
N∑
i=1

(wLi − wSi )rit, t = 1, . . . , T (4.25)

Let β̂i be the regression slope when the returns rit from asset i are regressed against

index returns Rt (in-sample, so over the period t = 1, . . . , T ). The zero-beta model

involves minimising the absolute value of the (in-sample) portfolio regression slope when

portfolio returns pt are regressed against index returns Rt. From Equation (4.25) this is:

minimise |
N∑
i=1

(wLi − wSi )β̂i | (4.26)

This minimisation is subject to the constraints given in Equations (4.1)-(4.9). Al-

though the modulus in Equation (4.26) makes the objective nonlinear it can be linearised

in the same fashion as for Equation (4.14) above, meaning that the zero-beta model is a

mixed-integer linear program that computationally can be easily solved.

We would note in passing here that some authors in the literature (see Alexander

(1977); Baele & Londono (2013); Black (1972)) consider the minimum variance zero-beta

portfolio, where the objective function is to minimise the variance in portfolio return

and a constraint is imposed to ensure that beta is precisely zero. The difficulty with this

approach is that, whilst it is possible to find such a portfolio when the problem is effectively

unrestricted, as additional restrictions (such as considered above, Equations (4.3)-(4.8))

are added it can become impossible to make beta precisely zero. Such approaches typically

also use the linear approximation (Equation (4.25)) referred to above.

As discussed above our approach directly minimises |correlation|, as given in Equa-

tion (4.14). Suppose we were to regress the actual returns (pt, Equation (4.12)) from

the portfolio chosen against index returns Rt, so without any approximation (such as

Equation (4.25)). The regression slope β that we would get is related to correlation

by correlation = β[sd(Rt)/sd(pt)]. It is clear from this that minimising |correlation| is

equivalent to minimising |β/sd(pt)|, since sd(Rt) is a constant. Our approach therefore is

related to minimisation of the regression slope β obtained without approximation, but is

not exactly the same, since we include the term sd(pt) involving the standard deviation

in MNP return (again without approximation).

In summary here therefore the key differences between the zero-beta model and our

MNP approach are:

• the zero-beta approach adopts a linear approximation of portfolio return (Equa-

tion (4.25)) in order to achieve a computationally efficient mixed-integer linear model
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• we adopt a nonlinear model that involves no approximation of portfolio return and

directly addresses the minimisation of correlation

4.3 Computational results

In this section we present computational results for our approach to constructing market

neutral portfolios. We used an Intel Xeon CPU E5-2640 @ 2.50GHz with 64GB of RAM

with Linux as the operating system. The code was written in C++ with Minotaur 0.1.1

(Leyffer et al. (2013)) used as the mixed-integer nonlinear solver for our MNP model:

optimise Equation (4.15) subject to Equations (4.1)-(4.9), (4.11)-(4.13), (4.16), (4.17),

(4.19), (4.20) and, where appropriate below, Equation (4.24).

4.3.1 Minotaur

Minotaur is a recently developed toolkit for solving mixed-integer nonlinear programs.

It has two main solvers, one based on nonlinear branch-and-bound denoted as bnb, the

other an implementation of a QP-diving algorithm. In the work presented in this chapter

we used the bnb solver.

With reference to our choice of the Minotaur solver the reader may be aware that

there are many mixed-integer nonlinear solvers available (e.g. 25 different solvers are

listed in Burer & Letchford (2012); Bussieck & Vigerske (2011)). Our choice of Minotaur

was guided by results given recently by Mittelmann (2012). He compared a number of

well-known solvers (such as BARON, Couenne, KNITRO, LINDO-global, Minotaur and

SCIP) on hundreds of test problems (including those in Bussieck et al. (2003); MINLP

Library (2013)). Of the solvers he considered he recommended Minotaur as a first choice,

followed by KNITRO and then SCIP. Of these solvers two (Minotaur and SCIP) are free

to download and use permanently for academic purposes, KNITRO requires a licence. We

have investigated both Minotaur and SCIP. Overall SCIP, for the specific test problems

we considered, did not out-perform Minotaur and so in the results presented below we

use Minotaur.

Clearly a different solver may give better results than Minotaur for the test problems

we considered, but in our view the results presented below are of sufficient quality (both in

terms of computation time and in terms of solution optimality) to make further exploration

of different solvers a secondary issue.

Independently of the chosen solver, mixed-integer nonlinear programs are computa-

tionally hard to solve and given the current state of software packages benefit can be

gained by the user manually amending a formulation. Here an issue that caused instabil-
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ities with regard to Minotaur was the inclusion of the square root term associated with

correlation. We rewrote Equations (4.16) and (4.17) by adding variable b ≥ τ (where τ

was a small positive constant, we used 10−8). These variables were defined using:

b2 −

(
T∑
t=1

(pt − p̄)2

T∑
t=1

(Rt − R̄)2

)
= 0 (4.27)

E × b ≥

(
T∑
t=1

(pt − p̄)(Rt − R̄)

)
(4.28)

E × b ≥ −

(
T∑
t=1

(pt − p̄)(Rt − R̄)

)
(4.29)

4.3.2 Data and methodology

In our computational experimentation we adopted successive periodic rebalancing over

time and we used the same real-world historical weekly data as described in Section 3.4.1,

the reader may refer to that section for details on the methodology.

With regard to parameter values we, unless otherwise stated, set the in-sample period

h = 13 and the out-of-sample period H = 13. We set C = 1000000 corresponding to

an initial investment of US$1 million. We examined α = [0, 0.30, 0.50], which represent

Long Only, 130/30 and 150/50 portfolios. Unless otherwise stated we used K = N as

the number of assets in the MNP; εLi = εSi = 0 and δLi = δSi = 1 for i = 1, . . . , N

as the proportion limits for each asset in the MNP. With these values the solver has

complete freedom to choose the best (lowest correlation) in-sample MNP amongst all

possible solutions.

We imposed a time limit of max[2N, 400] seconds for each rebalance of our MNP, if

the time limit is reached before Minotaur terminates we retrieve the best feasible solution

found so far. In order to speed up Minotaur we provided a feasible solution (when available

from the previous rebalance) as a warm start.

4.3.3 Results, in-sample

Table 4.1 compares the three variations investigated (Long Only, 130/30 and 150/50)

for each test instance. The correlation columns give the average in-sample correlation

(Equation (4.14)) value over all rebalances. Given the total number of time intervals

(400 weeks) and our choice of H = 13, there were a total of b400/Hc = 30 rebalances.

The return columns are the average in-sample weekly continuous time returns and the

excess columns represent the average in-sample excess over the average index weekly

continuous time return. The t(s) columns are the average times (in seconds) taken
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by Minotaur at each rebalance. The first of the bottom rows of Table 4.1 shows the

average value for each column, whilst the last row shows the annualised returns and

excess returns (in percentage per annum). The conversion of average weekly returns to

yearly returns is given by the expression 100(exp(return × 52) − 1). For instance, the

average in-sample return for Long Only is 0.00386 which corresponds to a yearly return

of 100(exp(0.00386× 52)− 1) = 22.23%.

Table 4.1: Summary of in-sample results

Instance
Long Only 130/30 150/50

correlation return excess t(s) correlation return excess t(s) correlation return excess t(s)

S&P Latin America 40 0.59099 0.00511 0.00201 0.06 0.01537 0.00988 0.00679 2.73 −0.01183 0.00933 0.00623 1.91

S&P Asia 50 0.17830 0.00165 −0.00058 0.03 0.00000 0.00225 0.00002 4.58 0.05679 0.00730 0.00507 4.12

S&P ASX 50 0.28930 0.00019 −0.00169 0.03 0.00001 0.00273 0.00084 4.04 0.04547 0.01084 0.00896 3.12

S&P TSX 60 0.07486 0.00268 0.00053 0.04 0.00002 0.01670 0.01455 3.75 −0.00006 0.01185 0.00970 3.02

S&P UK 125 0.00198 0.00202 0.00177 0.07 0.01214 0.00684 0.00658 8.91 −0.00001 0.00557 0.00531 6.11

S&P Topix 150 0.02336 0.00409 0.00317 0.07 0.11975 0.02368 0.02277 40.71 0.10280 0.02804 0.02712 30.41

S&P Euro-Zone 175 0.03409 0.00470 0.00436 0.10 0.00001 0.00714 0.00680 27.77 0.00000 0.00775 0.00741 41.50

S&P Euro-Plus 225 0.00349 0.00097 0.00058 0.12 −0.00001 0.00539 0.00501 54.37 −0.00002 0.00555 0.00516 72.40

S&P Europe 350 0.02503 0.00576 0.00542 0.16 0.00911 0.00940 0.00906 115.79 0.00001 0.00560 0.00526 95.84

S&P US 500 0.00018 0.00542 0.00537 0.21 0.11566 0.04635 0.04630 166.75 0.04556 0.03467 0.03463 312.39

S&P Global 1200 0.13051 0.00988 0.00954 0.52 −0.00001 0.00927 0.00893 890.12 0.00000 0.04695 0.04662 969.73

Average 0.12292 0.00386 0.00277 0.13 0.02473 0.01269 0.01160 119.96 0.02170 0.01577 0.01468 140.05

Yearly Return (%) 22.23 15.49 93.46 82.80 127.06 114.55

In terms of execution time, Minotaur is able to solve the Long Only case very efficiently.

The addition of short selling increases execution time substantially, but at manageable

levels. Considering all rebalances for all instances (so 30× 11 = 330 cases), the time limit

was reached in only three cases: once for the S&P US 500 with 150/50 and twice for the

S&P Global 1200, once with 130/30 and once with 150/50.

The consequence of adding short selling can also be seen in Table 4.1 where the average

in-sample correlation for Long Only is in most cases considerably higher than the average

in-sample correlation for 130/30 and 150/50. The introduction of short selling, adding

flexibility to the MNP that can be constructed, improves in-sample correlation (as we

would expect).

Even though in the results seen in Table 4.1 no special modification (such as Equa-

tion (4.24)) was made to improve returns, the in-sample MNPs found consistently outper-

formed the index. For Long Only the average weekly excess return was 0.00277 (15.49%

yearly) and for 9 of the 11 instances the Long Only MNPs outperformed the index. The

introduction of short selling improved the in-sample returns even further, where the MNPs

for all instances outperformed their respective indices and the average weekly excess re-

turns were 0.01160 and 0.01468 (82.80% and 114.55% yearly) respectively for 130/30 and
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150/50.

Minotaur may not be able to guarantee solution optimality for non-convex problems,

but given our formulation we know that a MNP which has zero in-sample correlation with

the index must be an optimal solution. Table 4.2 shows for each instance how many times

(out of the 30 rebalances) a correlation of zero was found (within a tolerance of 10−4).

In most cases Minotaur was able to find an optimal solution to the problem. Moreover,

we cannot tell if a correlation different from zero means a suboptimal solution. For Long

Only the average number of proven optima was 20.3, whilst for 130/30 and 150/50 the

average number of proven optima was approximately 26.

Table 4.2: Number of optimal solutions found

Instance Long Only 130/30 150/50

S&P Latin America 40 4 27 28

S&P Asia 50 16 28 25

S&P ASX 50 7 29 25

S&P TSX 60 22 27 27

S&P UK 125 27 27 27

S&P Topix 150 26 24 23

S&P Euro-Zone 175 22 27 27

S&P Euro-Plus 225 27 28 28

S&P Europe 350 26 24 28

S&P US 500 25 19 22

S&P Global 1200 21 27 26

Average 20.3/30 26.1/30 26.0/30

4.3.4 Results, out-of-sample

In this section we analyse how our MNPs perform out-of-sample. Table 4.3 presents the

out-of-sample results. It has the same format as Table 4.1, except for the absence of the

time column.

Compared to the in-sample results we would expect deterioration in out-of-sample

correlation, and this can indeed be seen when comparing Table 4.3 with Table 4.1. The

average out-of-sample correlation was 0.52379 for Long Only, 0.40825 for 130/30 and

0.40467 for 150/50. Again we can see that the inclusion of short selling improves the

correlation. In terms of returns, even though there was also deterioration as compared

to in-sample, out-of-sample the MNPs still performed better than the index in most

instances: namely in 8, 7 and 7 of the 11 instances for Long Only, 130/30 and 150/50

respectively. Whilst the in-sample returns were higher when we included short selling,
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Table 4.3: Summary of out-of-sample results

Instance
Long Only 130/30 150/50

correlation return excess correlation return excess correlation return excess

S&P Latin America 40 0.66847 0.00539 0.00236 0.46693 0.00221 −0.00082 0.41558 0.00225 −0.00078

S&P Asia 50 0.48222 0.00086 −0.00124 0.44551 0.00083 −0.00127 0.40066 0.00278 0.00068

S&P ASX 50 0.50134 0.00045 −0.00135 0.46967 −0.00100 −0.00281 0.44516 0.00152 −0.00028

S&P TSX 60 0.35245 0.00068 −0.00156 0.23426 0.00458 0.00234 0.34455 0.00312 0.00089

S&P UK 125 0.57860 0.00244 0.00210 0.48193 0.00379 0.00346 0.55159 0.00275 0.00241

S&P Topix 150 0.42840 0.00122 0.00056 0.40607 0.00447 0.00381 0.37390 −0.00002 −0.00068

S&P Euro-Zone 175 0.57333 0.00443 0.00362 0.43123 0.00262 0.00181 0.44034 0.00443 0.00361

S&P Euro-Plus 225 0.58486 0.00246 0.00158 0.42279 0.00357 0.00269 0.37137 0.00251 0.00163

S&P Europe 350 0.55033 0.00390 0.00323 0.44945 0.00291 0.00224 0.49490 0.00161 0.00094

S&P US 500 0.55907 0.00308 0.00312 0.40525 0.00528 0.00531 0.37808 0.00318 0.00322

S&P Global 1200 0.48257 0.00632 0.00596 0.27766 −0.00168 −0.00205 0.23523 −0.00141 −0.00177

Average 0.52379 0.00284 0.00167 0.40825 0.00251 0.00134 0.40467 0.00207 0.00090

Yearly Return (%) 15.91 9.07 13.94 7.22 11.36 4.79

Long Only had on average a better out-of-sample performance with an average return of

0.00284 (15.91% yearly), compared to 0.00251 and 0.00207 (13.94% and 11.36% yearly)

for 130/30 and 150/50.

4.3.5 Comparison with the zero-beta portfolio

Table 4.4 presents results comparing the model we have presented in this chapter with the

zero-beta model: optimise Equation (4.26) subject to Equations (4.1)-(4.9),(4.19),(4.20).

To ensure a consistent comparison these results are just for the first optimisation (so

no rebalancing is performed, since if we were to consider rebalancing our model and the

zero-beta model might well pursue different trajectories through time due to choosing

different portfolios). The three columns associated with our model show the in-sample

correlation and in-sample regression slope (β) associated with the portfolio chosen, and

the time taken to generate that portfolio. Note that the correlation value (ignoring the

sign) corresponds to the optimised objective function (Equation (4.14)) value.

For the zero-beta model the first column shows the optimised objective function (Equa-

tion (4.26)) value and the fourth column the time taken. In all but one instance (Long

Only, S&P ASX 50) the objective function value is effectively zero. For the portfolio

chosen by the zero-beta model we show in the second column its in-sample correlation

and in the third column its in-sample regression slope. Note that the difference between

the first and third columns here is due to the fact that in the zero-beta model a linear

approximation has been applied through the use of Equation (4.25). This typically means

that the actual regression slope, as computed directly from the portfolio chosen (third col-

umn), will differ from the optimised objective function value (first column). Comparing
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Table 4.4: Comparison with the zero-beta model

Case Instance
Our model Zero-beta model

Correlation Slope β t(s) Objective value Correlation Slope β t(s)

Long Only S&P Latin America 40 −0.00001 −0.00001 0.02 0.00000 −0.01698 −0.01888 0.00

S&P Asia 50 −0.00001 −0.00001 0.02 0.00000 −0.00534 −0.00336 0.00

S&P ASX 50 0.02282 0.03173 0.02 0.03170 0.02282 0.03173 0.00

S&P TSX 60 −0.00001 −0.00001 0.02 0.00000 0.06855 0.03400 0.00

S&P UK 125 −0.00000 −0.00001 0.03 0.00000 −0.00323 −0.01068 0.00

S&P Topix 150 −0.00000 −0.00000 0.04 0.00000 0.18121 0.18166 0.00

S&P Euro Zone 175 −0.00002 −0.00006 0.03 0.00000 0.00010 0.00028 0.00

S&P Euro Plus 225 0.00001 0.00002 0.04 0.00000 0.01169 0.01499 0.00

S&P Europe 350 −0.00002 −0.00004 0.06 0.00000 0.00325 0.00606 0.01

S&P US 500 0.00002 0.00006 0.08 0.00000 −0.00221 −0.00586 0.01

S&P Global 1200 0.00001 0.00002 0.16 0.00000 −0.00205 −0.00322 0.03

Mean Absolute Value 0.00208 0.00291 0.05 0.00288 0.02886 0.02825 0.00

130/30 S&P Latin America 40 −0.00001 −0.00001 1.06 0.00000 −0.03983 −0.02680 0.01

S&P Asia 50 0.14055 0.12169 0.47 0.00000 0.14160 0.12278 0.01

S&P ASX 50 0.00001 0.00001 1.80 0.00000 0.00558 0.01120 0.01

S&P TSX 60 0.00002 0.00001 0.95 0.00000 0.01151 0.00890 0.01

S&P UK 125 0.00000 0.00001 4.37 0.00000 0.00183 0.00529 0.03

S&P Topix 150 0.00000 0.00000 6.90 0.00000 0.15222 0.22825 0.03

S&P Euro Zone 175 −0.00001 −0.00004 4.79 0.00000 0.00170 0.00470 0.03

S&P Euro Plus 225 −0.00000 −0.00002 21.32 0.00000 0.02318 0.08521 0.04

S&P Europe 350 −0.00001 −0.00004 20.55 0.00000 0.00237 0.00886 0.08

S&P US 500 −0.00002 −0.00003 298.64 0.00000 −0.00976 −0.01271 0.15

S&P Global 1200 −0.00001 −0.00006 863.86 0.00000 0.00158 0.00759 0.49

Mean Absolute Value 0.01279 0.01108 111.34 0.00000 0.03556 0.04748 0.08

150/50 S&P Latin America 40 −0.00002 −0.00001 0.69 0.00000 0.04291 0.02867 0.01

S&P Asia 50 0.00001 0.00000 0.93 0.00000 −0.02135 −0.01287 0.01

S&P ASX 50 0.00001 0.00002 2.15 0.00000 −0.03718 −0.06362 0.01

S&P TSX 60 −0.00001 −0.00001 1.14 0.00000 −0.01568 −0.01805 0.01

S&P UK 125 0.00000 0.00000 5.27 0.00000 0.01252 0.05414 0.03

S&P Topix 150 −0.00000 −0.00000 6.80 0.00000 −0.02562 −0.05244 0.03

S&P Euro Zone 175 0.00002 0.00005 9.28 0.00000 −0.00151 −0.00446 0.04

S&P Euro Plus 225 0.00000 0.00002 8.92 0.00000 0.02283 0.12897 0.04

S&P Europe 350 −0.00002 −0.00005 55.54 0.00000 −0.03009 −0.10259 0.09

S&P US 500 0.00001 0.00002 133.03 0.00000 0.01183 0.03039 0.15

S&P Global 1200 −0.00000 −0.00002 772.58 0.00000 0.04193 0.24992 0.49

Mean Absolute Value 0.00001 0.00002 90.58 0.00000 0.02395 0.06783 0.08

our model and the zero-beta model then:

• with regard to correlation in all 33 instances |correlation| is lower (or equal) for our

model than for the zero-beta model

• with regard to regression slope (β) we can see by comparing the second column

under our model with the actual regression slope associated with the zero-beta

model (third column for that model) that in all 33 instances the portfolios chosen

by our model have lower (or equal) |β| values than the portfolios chosen by the

zero-beta model
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Clearly (especially for the larger instances) our model requires more time than the

zero-beta model. However, given its superiority (for the instances considered) with regard

to the actual in-sample correlations and regression slopes associated with the portfolios

chosen, we can reasonably claim that the portfolios produced by our model out-perform

those produced by the zero-beta model.

4.3.6 Comparison with market neutral S&P 500 funds

In this section we compare the performance of our approach to selecting MNPs with funds

that define themselves as market neutral.

We searched for market neutral funds which had one of our S&P indices (Figure 3.1),

as a benchmark. Since our data spans 7 years from 1999 to 2006, market neutral funds

were required to have at least 50 prices during this time period. Data was collected from

Thomson Reuters Datastream (2013), where we found a total of 7 funds whose benchmark

was the S&P 500 index and which met our requirements. Market neutral funds that use

the other S&P indices as benchmark and which were active prior to 2006 are relatively

rare and thus we only present results for market neutral S&P 500 funds.

A comparison between our MNP approach and these S&P 500 funds (labelled Funds

1 to 7) is shown in Table 4.5. Once again the correlation , return and excess columns

for our MNPs are out-of-sample averages. The column labelled # is the number of weeks

of data we have for each fund. All funds have a starting date somewhere within the period

1999 to 2006. To achieve a fair comparison, in each row of Table 4.5 the correlation, return

and excess for our approach only includes the time period over which the respective fund

was active.

Table 4.5: Comparison with market neutral S&P 500 funds

Fund #
Fund performance Long Only 130/30 150/50

correlation return excess correlation return excess correlation return excess correlation return excess

Fund 1 168 0.34564 0.00052 -0.00099 0.64355 0.00424 0.00273 0.29689 0.00454 0.00303 0.37325 0.00343 0.00192

Fund 2 168 0.33655 0.00042 -0.00110 0.64355 0.00424 0.00273 0.29689 0.00454 0.00303 0.37325 0.00343 0.00192

Fund 3 168 0.34434 0.00042 -0.00110 0.64355 0.00424 0.00273 0.29689 0.00454 0.00303 0.37325 0.00343 0.00192

Fund 4 234 0.14031 -0.00025 -0.00071 0.56119 0.00402 0.00355 0.38520 0.00218 0.00172 0.38975 0.00282 0.00235

Fund 5 234 0.13141 -0.00030 -0.00077 0.56119 0.00402 0.00355 0.38520 0.00218 0.00172 0.38975 0.00282 0.00235

Fund 6 324 0.08832 -0.00002 0.00039 0.56335 0.00319 0.00360 0.38670 -0.00102 -0.00061 0.32419 0.00101 0.00142

Fund 7 285 0.23301 -0.00018 -0.00055 0.57507 0.00385 0.00348 0.39191 -0.00021 -0.00058 0.35985 0.00205 0.00168

Average 0.23137 0.00009 -0.00069 0.59878 0.00397 0.00320 0.34853 0.00239 0.00162 0.36904 0.00271 0.00194

Yearly Return % 0.47 -3.52 22.93 18.04 13.29 8.79 15.13 10.61

Overall these funds achieve better out-of-sample correlations than our approaches.

However for funds 1, 2 and 3 both our 130/30 and 150/50 MNPs achieve competitive

correlations (slightly better for 130/30, slightly worse for 150/50).
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Of course a practical investor in a market neutral fund will be interested in the return

gained and here the comparison between these 7 funds and our MNPs is marked. Only

one fund (fund 6) generated return in excess of the S&P 500 benchmark over the relatively

long-term timescale considered (from 168 to 324 weeks, 3.2 to 6.2 years). Even there that

excess return (0.00039 weekly, 2.05% yearly) was not large.

By contrast our MNPs were able to outperform the S&P 500 index in the vast majority

of the (different) time periods considered. In only 2 of the 21 MNP cases in Table 4.5 was

underperformance against the benchmark seen. Long Only had on average the best out-

of-sample performance with an average weekly excess return of 0.00320 (18.04% yearly),

compared to 0.00162 and 0.00194 (8.79% and 10.61% yearly) for 130/30 and 150/50.

Of course our approach to constructing MNPs does not include transaction costs. The

funds shown in Table 4.5 would have incurred transaction costs associated with trading

(but these are not known, nor is the frequency at which these funds trade known).

Various authors have given different estimates of transaction cost for long-only pur-

chases (see Meade & Beasley (2011) for a discussion as to this). Given that the results in

Table 4.5 are for a holding period H of 13 weeks then rebalancing only occurs 4 times per

year. As an approximation therefore unless the transaction costs associated with rebalanc-

ing a Long Only portfolio exceed 18.04/4 = 4.5% our Long Only MNP would (on average)

have out-performed the index. Estimates given in Meade & Beasley (2011) indicate that

such a high transaction cost is unlikely, particularly since here we are considering assets

in the S&P 500 which are very liquid and frequently traded. Overall therefore it seems

reasonable to conclude that our Long Only MNP would have out-performed the market

and the funds considered.

With respect to the cost of shorting Cohen et al. (2007) provide a discussion. A similar

approximation as to transaction cost can be done for 130/30 and 150/50 as was done

above for Long Only. However, in our view, the differences in estimated costs of shorting

given in the literature make any conclusions that we might draw somewhat speculative

(particularly as our holding period of H = 13 weeks implies that any assets we borrow

and short will be absent from their lender for a considerable period of time).

4.3.7 Variations

Above we have presented computational results for eleven different problem instances

with a number of parameters that the user can set. Our MNP approach is very flexible

and has a significant number of parameters which can be varied. For example, K the

number of assets in the MNP and H the length of the out-of-sample period.

For simplicity we did not investigate all possible variations. However Table 4.6 presents
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in-sample summary statistics, averaged over the eleven problem instances, for a number

of variations. The first row in Table 4.6 is as the summary row at the foot of Table 4.1

and is repeated here for ease of comparison. The next row presents the result when we

include Equation (4.24) which ensures that in-sample return is at least index return. The

next two rows are as the first two rows, except here for an out-of-sample holding period of

H = 4 weeks. In the final three rows the number of assets K in the MNP is 0.2N . In the

last but one row we apply Equation (4.24), whilst in the final row we apply proportions

(εLi = εSi = 0.25/K; δLi = δSi = 2/K). Table 4.7 is as Table 4.6 except that it relates to

out-of-sample summary statistics. In Table 4.7 the first row is as the summary row at the

foot of Table 4.3.

Table 4.6: In-sample summary statistics, different variations

K H Extra
Long Only 130/30 150/50

correlation return excess t(s) correlation return excess t(s) correlation return excess t(s)

N 13 - 0.12292 0.00386 0.00277 0.13 0.02473 0.01269 0.01160 119.96 0.02170 0.01577 0.01468 140.05

N 13 p̄ ≥ R̄ 0.12187 0.01260 0.01151 0.07 0.02363 0.05700 0.05593 89.18 0.01367 0.06836 0.06727 93.51

N 4 - 0.10841 0.00357 0.00244 0.06 0.00509 0.01067 0.00953 134.15 0.01332 0.01201 0.01088 142.26

N 4 p̄ ≥ R̄ 0.19567 0.01371 0.01258 0.06 0.01123 0.03908 0.03794 130.66 0.01395 0.05633 0.05522 122.87

0.2N 13 - 0.11368 0.00428 0.00319 44.09 0.02061 0.01129 0.01021 155.89 0.00526 0.01484 0.01376 153.75

0.2N 13 p̄ ≥ R̄ 0.10166 0.01682 0.01576 21.99 0.01988 0.08469 0.08368 110.11 0.00936 0.14861 0.14755 92.93

0.2N 13 Proportions 0.11266 0.00195 0.00086 50.07 0.00290 0.00382 0.00286 165.27 0.00017 0.00511 0.00408 159.42

Table 4.7: Out-of-sample summary statistics, different variations

K H Extra
Long Only 130/30 150/50

correlation return excess correlation return excess correlation return excess

N 13 - 0.52379 0.00284 0.00167 0.40825 0.00251 0.00134 0.40467 0.00207 0.00090

N 13 p̄ ≥ R̄ 0.51053 0.00228 0.00111 0.40074 0.00206 0.00089 0.34118 0.00023 -0.00093

N 4 - 0.51837 0.00282 0.00165 0.44827 0.00201 0.00084 0.39624 0.00119 0.00002

N 4 p̄ ≥ R̄ 0.47898 0.00313 0.00196 0.39580 0.00036 -0.00080 0.33535 0.00111 -0.00005

0.2N 13 - 0.53371 0.00315 0.00198 0.39303 0.00239 0.00122 0.38484 0.00065 -0.00052

0.2N 13 p̄ ≥ R̄ 0.45883 0.00349 0.00232 0.35415 0.00224 0.00107 0.26937 0.00140 0.00023

0.2N 13 Proportions 0.72186 0.00247 0.00131 0.63721 0.00199 0.00082 0.60861 0.00206 0.00089

Examining Tables 4.6 and 4.7 there is a mixed picture. For example, comparing the

nine cases where we include Equation (4.24), with the equivalent cases where we do not,

shows that for all of these cases Equation (4.24) results in better returns in-sample, but in

only three cases do we see better returns out-of-sample. Using H = 4 instead of H = 13,

so a shorter holding period out-of-sample, does not seem to result in any improvement

in returns, either in-sample or out-of-sample. With respect to the use of proportions the

results indicate a significant increase in out-of-sample correlation.

Using K = 0.2N (without proportions) instead of K = N , so having fewer assets in
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the MNP, is better in four out of six cases both in-sample and out-of-sample. So here

there is some evidence, based on averaging over eleven instances in each of the six cases,

that restricting the number of assets in the MNP can be beneficial.

4.4 Discussions

4.4.1 Choice of regression for the ARP model

In Chapter 3 we presented the ARP model, which searches for a portfolio with a constant

return per time period. In that model, we used a regression based strategy as opposed to

a correlation based one.

In fact, we could not have chosen correlation as a suitable nonlinear objective function

for the ARP model, due to the nature of the constant return assumption. For instance, the

correlation between time, the benchmark we chose for the ARP (e.g. time represented as

numbers from 1 to h), and a hypothetical investment whose returns are perfectly constant

would be undefined. As the variance of the constant return investment is zero, we cannot

calculate the Pearson correlation coefficient.

Now suppose our returns are as close as possible to being perfectly constant, i.e. h− 1

constant returns and a single return that is different from the others by a very small

amount. The correlation of this example does not follow a predictable pattern, and this

can be verified by artificially constructing simple examples.

4.4.2 Pearson correlation coefficient

In this chapter we seek to minimise the most familiar measure of dependence between

two random variables, the Pearson product-moment coefficient, defined in Equation 4.14

(where the absolute value component was added to correctly represent the objective of

our MNP model). The Pearson correlation coefficient between two variables is defined as

the covariance of the two variables divided by the product of their standard deviations.

The Pearson coefficient is known to have some limitations. For example, being a

measure of linear association between two variables, it may fail to capture a nonlinear

relationship. Also, the coefficient can be drastically influenced by a few extreme outliers.

In general, the Pearson coefficient is not considered suitable for non-normal distributed

random variables. Egan (2007), for example, analysed the returns of the S&P500 index

and concluded that the normal and lognormal distributions are a poor fit for its returns,

the best fit being a t-distribution with location/scale parameters. The disadvantages of

the Pearson coefficient are discussed in Joe (1997) and Hutchinson & Lai (1990).
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There are alternative approaches that are considered more sensitive to nonlinear rela-

tionships, and which could be used as our objective function instead. The most popular

alternative is the Spearman rank correlation coefficient ρ. The Spearman ρ is a “quasi-

ordinal” correlation coefficient which is equivalent to the Pearson coefficient after the

variables have been transformed into rank orders. The Spearman coefficient is often de-

scribed as being “nonparametric” as a perfect Spearman correlation is obtained when two

variables are related by any monotonic function, in contrast with the Pearson correlation,

which only gives a perfect value when the variables are related by a linear function.

Another variable dependence coefficient that was introduced to address some of Pear-

son deficiencies is the Distance correlation, introduced by Székely et al. (2007) and Székely

& Rizzo (2009). The Distance coefficient is analogous to the Pearson coefficient, but it

is based on the pairwise Euclidean distances of each vector of random variables. This

coefficient requires the calculation of the distance variance, distance standard deviation

and distance covariance, defined similarly. The Distance correlation coefficient R satisfies

0 ≤ R ≤ 1, and an important property is that R = 0 if and only if the random variables

are statistically independent.

We leave the investigation of these alternative correlation measures for future work.

4.4.3 Alternative approaches to MNP

In this work we considered a MNP as a portfolio that is uncorrelated to the market

benchmark, in which we considered the underlying index as the sole representation of the

market. An alternative definition is to consider the market as represented by multiple

factors, such as the Fama-French three-factor model (Fama & French (1993)) and the

Carhart four-factor model (Carhart (1997)). If we redefine a MNP as a portfolio that is

“independent” from multiple factors (instead of a single one), to retain a similar objective

function we would need to transform Equation (4.14) into a function that minimises the

multiple correlation coefficient (which takes values between zero and one), a much more

complex and impractical task. An alternative is to redefine a MNP in the form of a “factor

immune/independent portfolio” as defined below.

Under a factor assumption with M factors the standard (linear) equation for the return

rit on asset i at time t is:

rit = αi +
M∑
j=1

βijFjt + some random noise element (4.30)

In other words the return on asset i at time t is made up from some asset dependent

term αi plus factor terms made up from a linear sum of the factors, where βij is the
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coefficient for asset i in relation to factor j. Here the coefficients αi and βij are time

independent and are typically estimated from in-sample data using multiple least-squares

regression.

The basic approach is therefore as follows. Using multiple least-squares regression

estimate the coefficients αi and βij in the in-sample period [1, . . . , T ]. Let α̂i and β̂ij

be the estimates. If we have a weight wi associated with investment in asset i (where∑N
i=1wi = 1) we approximate portfolio return at time t by the weighted sum of asset

returns, namely
∑N

i=1wirit.

Turning to the factor equation and neglecting the noise term, it follows that the return

on the portfolio at time t is given by:

N∑
i

wirit =
N∑
i=1

wi

(
α̂i +

M∑
j=1

β̂ijFjt

)
=

N∑
i=1

wiα̂i +
M∑
j=1

( N∑
i=1

wiβ̂ij

)
Fjt (4.31)

So under this equation the portfolio return (at time t) is composed of two terms:∑N
i=1wiα̂i a term dependent only on the assets in the portfolio∑M
j=1

(∑N
i=1 wiβ̂ij

)
Fjt a term involving time dependent factors

We want to minimise dependence on the market, where the market is driving the

factors that we observe. Hence we want the influence of the factor term on the portfolio

return to be as small as possible.

One way to achieve this is simply to minimise |
∑T

t=1

∑M
j=1

(∑N
i=1 wiβ̂ij

)
Fjt|, so the

total factor contribution to portfolio return (summed over all time periods) is as small as

possible. Other objectives are also possible, e.g. minimise
∑T

t=1 |
∑M

j=1

(∑N
i=1wiβ̂ij

)
Fjt|,

which minimises the sum of the absolute values of factor terms at each time period t.

In fact, we did perform some preliminary investigations with this model and tested it

with publicly available Fama-French factors for the US market, for portfolios composed

of assets from the S&P500 index. The results we obtained were not encouraging and thus

we did not do further research on this model.

4.5 Conclusions

In this chapter we considered the problem of constructing a market neutral portfolio

where we can hold both long and short positions in assets. We formulated this problem

as a mixed-integer nonlinear program, minimising the absolute value of the correlation

between portfolio return and index return, and solved it using the Minotaur software

package.
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Computational results were presented for eleven different problem instances derived

from universes defined by S&P international equity indices. These indicated that in-

sample we could achieve very low correlations (in many cases zero correlation) in reason-

able computation times. Out-of-sample correlations were higher, but for the majority of

cases examined the market neutral portfolios constructed using the approach given in this

chapter outperformed their benchmark indices.

Computational results, for the test problems considered, indicated that the model

proposed out-performed an alternative approach based on minimising the absolute value

of regression slope (the zero-beta approach).

We compared our approach with the performance of seven funds that adopt market

neutral strategies with respect to the S&P 500. This comparison indicated that for three of

these seven funds we had similar correlations, the other four funds had lower correlations

than our market neutral portfolios. However in contrast to these seven funds (only one

of which outperformed the index, and then only slightly) our market neutral portfolios

outperformed the index by a significant amount in the vast majority of the cases examined.
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Chapter 5

Exchange-traded funds: a survey

and performance analysis

5.1 Introduction

ETFs (exchange-traded funds) have grown significantly in recent years, in terms of the

number and size of funds and in trading volume. At their simplest ETFs offer replication

of a market index such as the S&P500, and thereby offer the investor exposure to a market

index in a much more flexible manner than a conventional mutual fund. In some countries

ETFs also offer tax advantages over mutual or index funds.

Estimates of the total size of the ETF market vary, but as an indication BlackRock

(2011) estimates it was approximately US$1.5 trillion (i.e. US$1.5 × 1012) at the end of

2011. The market size has doubled since late 2008. Due to the growth of the market for

ETFs, regulators around the world have become concerned at their potential for inducing

(or exacerbating) market risk and instability.

In the light of the growing importance of ETFs, we survey and classify existing ETFs

and analyse their performance in replicating the behaviour of their underlying assets. We

were able to identify 8192 ETFs (of which some are no longer active); we were able to find

sufficient information to classify 6937 active ETFs. We selected a subset of 822 ETFs to

conduct a detailed statistical performance analysis.

This chapter is structured as follows. We first discuss how plain vanilla ETFs and

synthetic (leveraged/inverse) ETFs are constructed, mention regulatory concerns with

regard to ETFs and review the academic literature relating to ETFs. We then describe

our ETF survey database and generate insights into the ETF market by classifying this

data (involving 6937 ETFs). The performance analysis of 822 ETFs follows.
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5.2 ETF construction and literature review

Here we first discuss how ETFs are constructed and then briefly discuss concerns that

have been expressed by regulatory authorities worldwide with respect to ETFs. We then

go on to survey the literature with respect to ETFs.

5.2.1 ETF construction

Suppose that we wish to construct an ETF that replicates the performance of the S&P500

index and further suppose that we have $1m in cash that we can use to create the ETF.

The ETF creator (also known as a provider) first uses their cash to purchase a basket

of all the stocks that are in the S&P500 in the same proportions as they are represented

in the index. This basket will rise and fall in value exactly in line with the S&P500.

Now the ETF creator can issue shares entitling the holder to a share of the underlying

basket. If they issue 100000 (say) shares then as the underlying basket is worth $1m each

share is initially worth $1m/100000 = $10 (for simplicity, we ignore transaction costs

associated with purchasing the basket of S&P500 stocks). As the value of the underlying

basket changes (exactly in line with the S&P500) so too does the value of each share. In

this manner the ETF share has an underlying value over time that exactly replicates the

returns given by the S&P500.

Once the ETF creator has issued shares then they can be traded in the market. As they

are traded their price may deviate, because of supply and demand considerations, from

the underlying net asset value, NAV, to which the ETF shareholder is entitled. Here the

NAV is defined as the total value of the underlying basket divided by the total number

of ETF shares issued. However, any difference between an ETF share price and the

underlying NAV gives rise to arbitrage possibilities. Hence ETF prices will (in practice)

be arbitraged back to their underlying NAV (e.g. see Engle & Sarkar (2006), Kayali &

Ozkan (2007) and Ackert & Yisong (2008) for a discussion of the evidence supporting the

hypothesis that ETFs trade close to their underlying NAV).

One point to note here is that the ETF creator may not trade directly with all investors,

instead the creator may trade directly only with a (small) selection of “authorised partic-

ipants” who in turn trade with all investors. Authorised participants act as the interface

between the ETF creator and the marketplace. One role these authorised participants

play is to introduce liquidity into the market (i.e. they act as a market maker), by creat-

ing and redeeming ETF shares. They may create more ETF shares, by giving the ETF

creator cash and/or appropriate stocks that they can use to enlarge the size (value) of

the underlying basket. Alternatively, they may redeem ETF shares with the ETF creator

for their underlying NAV, receiving cash and/or an appropriate proportion of the stocks
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in the basket. To exclude small trades, it is common for the ETF creator to constrain

authorised participants to ensure that creations/redemption only take place in multiples

of a given number of ETF shares (known as the “creation unit”, for example 50000 ETF

shares).

This description captures the ETF process for a plain vanilla product that replicates

the performance of an index. This index may, as above, be an equity index, but it could

also be a bond or commodity index, or a single commodity price. Note here that the ETF

creator makes three basic decisions: the benchmark index to use, the target return

(tied to the chosen index) and the basket to hold to achieve that return. Once these

decisions have been made the success (or failure) of the ETF depends upon its ability to

attract marketplace investors. Readers interested in greater detail as to the process of

creating ETFs and the role played by authorised participants are referred to Gastineau

(2004), Deville (2008), Gastineau (2010), IndexUniverse (2011) and Investment Company

Institute (2012).

Historically ETFs started out as index trackers, aiming to give the same return as a

benchmark index. Here, because index composition is known, the ETF basket can fully

replicate the index. Alternatively, approaches based on replicating the index by holding

a subset of the assets in the index could be used to decide the composition of the basket

(e.g. see Beasley et al. (2003) and Canakgoz & Beasley (2009) for approaches to index

tracking).

As ETFs evolved, their scope widened beyond index tracking. Leveraged ETFs, aiming

to give a multiple of index return (e.g. 1.5× or 2×), appeared. Inverse (or short) ETFs

aiming to give the negative of index return (so −1×) also appeared. Here we refer to

an ETF as a L× ETF if the ETF aims to return a multiple L of the benchmark index

return. So an index tracking ETF would be referred to as a 1× ETF. ETFs aiming to

give a leveraged inverse (say −1.5× or −2×) have also now appeared. Note here that L×
ETFs with L > 1 are sometimes called “bull ETF” L× ETFs with L ≤ −1 are sometimes

called “bear ETFs”.

For leveraged and inverse ETFs deciding the composition of the basket that the ETF

creator should hold so as to achieve the target return is a genuinely difficult task. Conse-

quently “synthetic” ETFs have been developed. For ETFs of this type the ETF creator

enters into a contract with a third-party, typically a bank. At its simplest this third-party

invests on behalf of the ETF creator and promises to deliver the target return of L× with

respect to the benchmark index specified. The advantage of this arrangement from the

viewpoint of the ETF creator is that it relegates all issues relating to basket composition

to a third-party. Indeed the ETF creator does not even have to know the details of how

the third-party delivers L×, merely needs to trust that the third-party will deliver their
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promised return of L×. In practice third-parties typically employ swaps/futures/deriva-

tive contracts to deliver the promised return. Leveraged/inverse ETFs require daily re-

balancing in order to achieve promised returns. Cheng & Madhavan (2009), Rollenhagen

(2009) and Little (2010) discuss leveraged and inverse ETFs in greater detail.

A more recent evolution in the ETF market has been the introduction of actively

managed ETFs where professional managers actively trade the underlying basket in an

attempt to generate return. In ETFs of this type there is (potentially) no need for the

ETF to be tied to an index.

5.2.2 Regulatory concerns

As mentioned above due to the growth of the market for ETFs, regulators around the

world have become concerned at their potential for inducing (or exacerbating) market

risk and instability. In the USA a US Senate (2010) report into the “flash crash” of May

6th 2010 discussed the role that ETFs played in that market event and in October 2011

the US Senate Committee on Banking, Housing and Urban Affairs conducted a hearing

into ETFs. One point arising from this US Senate investigation is that when ETF market

makers detect unusual movements that raise questions about the price of one or more of

the stocks in the basket underlying an equity based ETF then they may cease to provide

liquidity in that ETF. Madhavan (2012) provides an example of a particular ETF whose

price, although usually closely tracking the intraday NAV based on the underlying basket,

deviated significantly from that NAV for 25 minutes during the flash crash.

In the UK, in June 2011, the Bank of England Financial Stability Report (2011) noted

that the growth and evolution of the ETF market has sparked regulatory concern. That

report identifies three issues: complexity, interconnectedness and opacity associated with

financial instruments and notes that synthetic (e.g. leveraged/inverse) ETFs which lack an

underlying basket of physical/equity assets, are a particular cause for concern in relation

to systemic risk. In June 2012 the Bank of England Financial Stability Report (2012)

rated 18 different financial instruments and synthetic ETFs were one of only four judged

to be in the worst category of “highly opaque”.

Internationally in April 2011, the Financial Stability Board (2011) (national regulators

from 24 countries, including the G-20) highlighted the potential stability risks arising from

ETFs. Also in April 2011, Ramaswamy (2011), writing for the Bank of International

Settlements, identified a number of channels by which ETFs could contribute to financial

stability risk. Complexity, opacity, synthetic ETFs and liquidity were some of the issues

highlighted there, reflecting the fact that broadly speaking regulators worldwide have

similar concerns about ETFs.
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5.2.3 Literature review

To summarise the relevant literature relating to ETFs, we have focused primarily on

published academic literature. ETFs were introduced in the 1990s, some early issues

around their introduction are discussed in Kupiec (1990) and Gastineau (2001). Poterba

& Shoven (2002) provide some statistics on the growth of ETFs since their introduction in

the 1990s. The total ETF market was approximately US$80bn in 2001 with just two ETFs

(the SPDR Trust SPY and the Nasdaq-100 QQQ) making up some 60% of the market.

Boehmer & Boehmer (2003) considered the introduction by the New York Stock Exchange

(NYSE) of trading in three large ETFs (SPY, QQQ and a Dow Jones ETF, DIA), plus a

number of smaller ETFs, that had previously been traded just on other exchanges. They

concluded that this introduction had lowered ETF trading costs. Kostovetsky (2003)

examined the conditions under which it is preferable for an investor to invest in an (index

tracking) ETF as compared with a conventional index tracking mutual fund. Alexander &

Barbosa (2008) examined the hedging problem which arises in ETF creation/redemption

when the basket underlying the ETF shares involves illiquid stocks with relatively high

transaction costs.

Mariani et al. (2009) examined the return distributions of three ETFs and their cor-

responding benchmark indices using a Levy model, concluding that the ETFs exhibit the

same behaviour as their respective indices. Avellaneda & Zhang (2010), Giese (2010)

and Jarrow (2010) presented models for a leveraged (and inverse) ETF by assuming that

the ETF follows a diffusion process. Lin & Mackintosh (2010) discussed issues related to

tracking error calculations for ETFs. With respect to papers that focus on ETF perfor-

mance we present Table 5.1, where we summarise the scope of each study (ETFs covered)

and its conclusions.

Table 5.1: Papers dealing with the performance of ETFs

Paper Scope Conclusions

Elton et al. (2002) One index tracking ETF over the pe-

riod 1993 to 1998

ETF underperformed the index by 28.4 basis points

Poterba & Shoven

(2002)

One index tracking ETF over 7 years ETF returned 19.17% per year, a mutual fund

19.33%, the index 19.39%.

Agrrawal & Clark

(2007)

38 ETFs over the period 2002 to 2007 Regression of ETF return against market return indi-

cates that regression slopes (beta’s) are not affected

by return frequency, but are affected by estimation

period

De Jong & Rhee

(2008)

Up to 217 ETFs with weekly data over

the period 1996 to 2005

Momentum and contrarian strategies will yield signif-

icant excess returns

Hlawitschka &

Tucker (2008)

9 ETFs over the period 2002 to 2005 Performance of a mean/variance portfolio drawn from

the major stock constituents of the ETFs superior to

other portfolios examined

Continued on next page
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Table 5.1 – continued from previous page

Paper Scope Conclusions

Rompotis (2008) 62 German ETFs with weekly data

over the period 2000 to 2006

ETFs slightly underperform their benchmark indices;

they have greater risk (standard deviation in return)

than their indices

Elston & Choi (2009) One −1× ETF and five −2× ETFs in

2008

5 of the 6 ETFs underperformed with respect to their

target return

Johnson (2009) Daily and monthly data for 20 index

tracking ETFs over the period 1997 to

2006

Explanatory factors for the correlations found in-

cluded return relative to USA index and overlapping

exchange opening hours

Maister et al. (2009) 505 US-listed ETFs in 2008 Average difference between NAV return and index re-

turn was 52 basis points

Rompotis (2009) 20 index tracking ETFs within the pe-

riod 2004 to 2006

ETFs slightly underperform their benchmark indices

Aber et al. (2009) 4 index tracking ETFs Mixed picture as to tracking ability with respect to

returns achieved

Maister et al. (2010) 563 US-listed ETFs in 2009 Average difference between NAV return and index re-

turn was 125 basis points

Shin & Soydemir

(2010)

26 ETFs with daily data over the pe-

riod 2004 to 2007

ETFs underperform their benchmark indices

Wong & Shum (2010) Daily performance of 15 ETFs over

the period 1999 to 2007

ETF returns are higher in bullish, than bearish, mar-

kets; some ETFs with the same benchmark index per-

form differently

Agapova (2011) Monthly performance of 11 ETFs with

comparable index tracking funds over

the period 2000-2004

Very few significant differences between ETFs and in-

dex tracking funds

Charupat & Miu

(2011)

8 Canadian leveraged (2×, −2×)

ETFs, compared with four non-

leveraged (1×, −1×) ETFs

Leveraged ETFs more actively traded than non-

leveraged ETFs; daily returns regression indicated

that the ETFs were giving returns close to the ±2×
promised

Rompotis (2011a) 37 inverse leveraged (−2×, −3×)

ETFs within the period 2006 to 2011

ETFs underperform their daily target return

Rompotis (2011b) 50 index tracking ETFs over the pe-

riod 2002 to 2007

ETFs outperformed the S&P500; tracking error with

respect to the benchmark index is strongly persistent

in the short term

Rompotis (2011c) 14 actively managed ETFs within the

period 2008 to 2010

No significant difference with regard to average daily

return and risk when comparing the ETFs to the

S&P500

Sabbaghi (2011) 15 green ETFs within the period from

2005 to 2009

Positive cumulative returns from inception through

to end of 2008, negative thereafter

Schmidhammer et al.

(2011)

Five ETFs and three index certificates

replicating the DAX using minute

prices over two months in 2008

ETFs based on complete replication perform better

than index certificates or ETFs based on swaps

Blitz & Huij (2012) 7 global emerging markets equity

ETFs from inception until December

2010

High levels of tracking error, higher than developed

market ETFs

Blitz et al. (2012) 3 European ETFs over the period

2003 to 2008

Dividend taxes and expense ratios contribute to un-

derperformance

Buetow & Henderson

(2012)

845 US-listed ETFs over the period

1994-2010

On average ETFs closely track their benchmark index

Haga & Lindset

(2012)

Four Norwegian leveraged (2×, −2×)

ETFs over the period from January

2008 to May 2010

Regression indicated that the ETFs are not achieving

the ±2× returns promised

Continued on next page
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Table 5.1 – continued from previous page

Paper Scope Conclusions

Rompotis (2012) 68 leveraged and inverse (2×, −1×,

−2×, −3×) ETFs

ETFs are not achieving the returns promised, on av-

erage the majority of daily returns deviate from the

target multiple by at least 10 basis points

Sharifzadeh & Hojat

(2012)

34 ETFs, matched with passive index

mutual funds, over the period 2002 to

2010

No statistical support for the hypothesis that ETFs

outperform index funds; no overall difference between

ETFs and index funds in terms of Sharpe ratio

The 27 papers seen in Table 5.1 cover a range of time periods and a range of ETFs.

Most studies involve only a small number of ETFs and concentrate solely on a limited

range of ETFs (so only consider L× ETFs for one or two different values of L). Of the

three studies with a large number of ETFs, two studies (Maister et al. (2009, 2010)),

each cover only a single year. The study by Buetow & Henderson (2012) does cover

multiple years, but does not separately identify ETFs of varying types L×. In view of the

limitations of these analyses, we consider that a much fuller analysis is necessary. Our

analysis covers a large number of ETFs over many years and considers different values

of L (i.e. looks at leveraged and inverse ETFs). Our analysis provides a comprehensive

snapshot of the ETF market with 6937 ETFs being surveyed and classified; further, it

presents a detailed statistical performance analysis relating to 822 ETFs, of varying types

L× (L = +1,−1,+2,−2,+3,−3), over all years from 1993 onwards.

5.3 ETF survey

In our survey of the ETF market the information given here was collected from Thomson

Reuters Datastream (2013) and is a market snapshot taken in September 2011. According

to Datastream, in September 2011, there were a total of 7198 active and 994 dead or

suspended ETFs, giving a total of 8192 ETFs. Datastream does not include information

on which benchmark indices (if any) are tracked by each ETF. For this reason we had to

manually carry out extensive work to find this information for as many ETFs as possible,

as well as to classify ETFs by their target return (i.e. find the value of L for each L×
ETF). Much of this manual work required examination of individual ETF websites.

Although the ETF market started in 1993, it has experienced a sharp increase in the

past 5-6 years. Figure 5.1 shows the cumulative number of ETFs created over the years,

(including those that are currently dead or suspended). A sharp rise can be seen from

2005 onward. Since then the number of ETFs created has soared, from less than 1000, to

8192 as of September 2011. From the end of 2005 to the end of 2010 (the last full year

for which we have data) the number of ETFs increased at a compound rate of 55% per
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year. In the 12 months to September 2011, the date of our snapshot, 1578 new ETFs

were launched, a creation rate of over 6 ETFs per trading day. Of these 8192 ETFs, 902

are leveraged/inverse ETFs. There are 2018 different underlying benchmarks associated

with these 8192 ETFs.

Figure 5.1: Cumulative number of ETFs over time

All ETFs were classified into one of several major categories (e.g. Single Market Eq-

uity Tracker), and then further subdivided within those major categories (e.g. Real Es-

tate Sector). The results of this classification are shown in Table 5.2; the first column

shows the major classification, the second column the sub-classification; within each sub-

classification the number of active ETFs for each desired return (e.g. L×) is given; the

final two columns give the total number of active and dead/suspended ETFs within that

sub-classification.

As can be seen from Table 5.2 the vast majority of active ETFs track equity indices,

2607 ETFs (37.6% of active ETFs) track single market equity indices, 2272 (32.8%) multi-

market equity indices. The next most common categories are commodity (13.5%) and

bond (12.4%) trackers. In terms of the type of performance expected, 87.7% of active

ETFs are simple trackers (1×); 4.4% are inverse ETFs (−1×), so offering the equivalent

of shorting the underlying benchmark; 4.3% are leveraged (2×, 3×); 2.5% are inverse

leveraged (−2×,−3×); 0.8% offer excess return.

In Table 5.3 we show the creation date of the (currently) active ETFs as seen in Table

5.2, subdivided by category. 514 of these ETFs were created before the end of 2005. The
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Table 5.2: ETF summary by number within each major and sub-classification and per-

formance type

Major classification

(no. active) Sub-Classification 1× −1× 2× −2× 3× −3× E
x
c
.

R
e
tu

r
n

O
th

e
r

A
c
ti

v
e

D
e
a
d

Bond Tracker (860) Bond Index 785 41 5 6 2 2 6 847 102

Bonds 1 2 5 5 13 1

Commodity Tracker Commodity 244 15 18 7 4 4 292 7

(935) Commodity Futures 7 1 2 3 13 26 8

Commodity Index 428 40 74 2 31 575 0

Commodity Index 3 month forward 42 42 0

Currency Tracker (202) Currency 66 42 3 3 14 14 142 4

Currency Index 42 1 43 0

Interest Rate Index 17 17 4

Derivative Tracker (2) General 2 2 1

Hedge Fund Tracker (26) Hedge Fund Index 26 26 11

Inflation Tracker (2) Inflation Index 1 1 0

Interest Rate Index 1 1 0

Interest Rate Tracker (1) Interest Rate Index 1 1 0

Loan Market Tracker (1) Loans 1 1 0

Multi-Market Equity Futures 5 5 0

Tracker (2272) General 1215 26 40 33 3 3 1 1321 159

Real Estate Sector 66 66 8

Sector 760 44 4 4 1 1 814 118

Specialised 66 66 17

Multi-Asset Index Tracker

(16)

Comm. or Bond or Equity / Currency

Index

1 5 6 0

General 10 10 0

Real Estate Tracker (9) Mortgage 4 4 2

Real Estate Index 5 5 0

Single Market Equity Futures 10 1 11 1

Tracker (2607) General 1763 86 92 59 10 8 2 2020 210

Real Estate Sector 49 1 1 2 1 2 56 10

Sector 416 8 20 17 7 6 474 106

Specialised 46 46 22

Volatility Tracker (4) Implied Volatility Index 2 2 0

Volatility Index 2 2 0

Total 6082 308 265 141 38 36 56 11 6937 791

Percentage of active ETFs 87.7 4.4 3.8 2 0.5 0.5 0.8 0.2

Notes:

(a) A multi-market equity tracker means that the ETF benchmark index contains stocks from two or more

national/country markets (for example the S&P1200)

(b) A single market equity tracker means that the ETF benchmark index contains stocks from only one

national/country market (for example the FTSE100)

(c) Real estate trackers track property price indices, in equity indices the real estate sector trackers follow

indices related to stocks in real estate companies

(d) Specialised equity trackers track indices that are subject to specific policies, such as Islamic indices

(e) For bond, commodity and currency trackers some track indices and others track prices (or future prices)

(f) There are 7728 ETFs in the above table, we were unable to find sufficient information to accurately

classify 464 (approx. 5.7%) of the 8192 ETFs in our survey (recall that this classification is not automatic

in Datastream but must be manually generated, e.g. by individually examining each ETF website)
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vast majority of non-equity ETFs was formed after 2005. The first of these ETFs to offer

excess/leveraged return was launched in 2005. Inverse and inverse leveraged ETFs began

appearing in 2006.

Table 5.3: Number of active ETFs by year of introduction and category

Year Single

Market

Equity

Tracker

Multi-

Market

Equity

Tracker

Commodity

Tracker

Bond

Tracker

Currency

Tracker

Hedge

Fund

Tracker

Multi-

Asset

Index

Tracker

Real

Estate

Tracker

Others Total

1993 1 1

1994

1995 2 2

1996 18 18

1997 2 2

1998 9 2 11

1999 5 1 6

2000 47 7 2 56

2001 46 15 1 62

2002 25 11 4 40

2003 19 10 1 9 39

2004 62 48 4 12 126

2005 79 53 7 11 1 151

2006 234 174 92 55 7 2 1 1 566

2007 287 272 151 98 7 2 1 1 819

2008 293 340 135 64 34 5 1 872

2009 401 462 182 249 53 7 3 3 1360

2010 663 509 260 194 62 7 1 1696

2011 414 368 103 162 38 12 7 2 4 1110

Total 2607 2272 935 860 202 26 16 9 10 6937

Note: 2011 data ranges from January to September

Considering Table 5.3 we can see that, even though equity trackers still dominate the

ETF market, there has been clear diversification in recent years. If we take the ETF

market as it was at the end of 2005, equity trackers constituted (by number) 90% of the

entire market. By the end of 2007, this had fallen to 75%, falling further to 70% now.

This fall in equity ETFs has been compensated for by a rise in bond and commodity

ETFs which were jointly responsible for just 10% of the entire ETF market at the end of

2005, 23% by the end of 2007 and, finally, 26% at the time of our market snapshot.

Considering both Figure 5.1 and Table 5.3 it would be hard to discern that in 2007-

8 there was a global financial crisis. Even looking within the data for any sign of a

shift in ETF emphasis it is hard to identify any significant effect. For example one

might hypothesise that the financial crisis would divert investment attention from older

economies to newer, and more emerging, economies. At the end of 2007, before the

financial crisis had taken hold, 79% of all single market ETFs tracked markets in Europe,

North America (USA/Canada) or Japan. By the end of 2009, two years later and after the

financial crisis had hit, 77% tracked these markets. This 2009 percentage is effectively the
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same as the 2007 percentage, despite the growth in ETFs that occurred in the meantime,

as evidenced in Table 5.3. Of the 545 single market ETFs started in the 12 months to

September 2011 64% tracked markets in Europe, North America or Japan. Overall these

data do not appear to indicate that the global financial crisis has diverted the ETF market

away from older economies.

In terms of the size of each ETF we were able to get the market value (equivalent

to the number of ETF shares times the NAV) for approximately 30% of active ETFs.

Information from Thomson Reuters Datastream (2011) indicated that they rely on ETF

providers to supply this information and some do not. It was clear from our data that

lack of market value information was more of an issue with newer ETFs than older ETFs.

For example we had market values for 65% of the ETFs created before 2006; for ETFs

created in 2010 we had market values for just 21%.

The available market values (MVs) are summarised in Table 5.4, all converted into

US$ for ease of comparison. Over half the market value is in single market equity trackers;

nearly 70% of market value is in equities in some form. We can see 20.9% of market value

is in commodity trackers despite being only 7.4% of active ETFs by number. Commodity

trackers have the highest (arithmetic) mean market value; this is contrast with multi-

market equity trackers which have a comparatively low mean market value. Comparing

the (arithmetic) mean and median ETF size (as in the ratio column in Table 5.4) reveals

that the distribution of ETF MVs within each sector is highly skewed. This is most clearly

apparent for commodity trackers, where the ratio is 59.7 (so the mean ETF MV is nearly

60 times larger than the median ETF MV). In fact in this category 95% of the total MV

is concentrated in 10% of the ETFs by number.

Table 5.4: ETF market value (MV) summary

Classification Number

active

Number

with

available

MV

% with

available

MV

Total

MV

(US$m)

MV

%

total

Mean

ETF

MV

(US$m)

Median

ETF

MV

(US$m)

Ratio

(mean/

median)

Bond Tracker 860 252 11.9 238167.7 8.1 945.1 80.7 11.7

Commodity Tracker 935 157 7.4 618330.9 20.9 3938.4 66 59.7

Currency Tracker 202 42 2 55296.2 1.9 1316.6 112.2 11.7

Derivative Tracker 2 2 0.1 148.8 0 74.4 74.4 1

Hedge Fund Tracker 26 5 0.2 444 0 88.8 29.7 3

Inflation Tracker 2 1 0 26 0 26 26 1

Loan Market Tracker 1 1 0 166.4 0 166.4 166.4 1

Multi-Market Equity Tracker 2272 473 22.3 484177.2 16.4 1023.6 58.7 17.4

Multi-Asset Index Tracker 16 14 0.7 1492.7 0.1 106.6 77.7 1.4

Real Estate Tracker 9 7 0.3 6044.9 0.2 863.6 50.9 17

Single Market Equity Tracker 2607 1171 55.1 1551126.2 52.5 1324.6 63.7 20.8

Total 6932 2125 2955421

One point of interest from Table 5.4 relates to the total size of the ETF market.
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BlackRock (2011) estimated the size of the ETF market as approximately US$1.5 trillion

(i.e. US$1.5 × 1012) at the end of 2011, and involving (at most) 4200 ETFs. Although

the precise classification of a particular fund as an ETF can vary, as do daily market

values, our survey indicates that these figures potentially underestimate the total size of

the market. In Table 5.4, which uses data for 2125 ETFs (31% of 6932 active ETFs) we

find a total market value of US$2.96 trillion (so approximately US$3 trillion). As with

commodity trackers, there is a distinct Pareto effect in ETF market values: 13% of ETFs

represent 90% of market value; 7% of ETFs make up 80% of total market value. In fact

the ETF market is so highly skewed that just 28 ETFs make up 50% of total market

value.

We now look at the larger categories of ETFs in more detail. Firstly, in Figure 5.2, we

consider single market (country) equity ETFs, the performance of these ETFs is linked

to an index in a particular country, either a market index or a more specialised sector

index. The figure shows the top twenty countries ranked by ETF MVs, the number of

ETFs is also shown. We can see that the United States dominates with 25% of total

MV; ETFs following indices in China represent 17%, Japan 15%. The remaining BRIC

countries (Brazil, Russia, India, excluding China) represent 7% of total MV. Considering

ETF numbers, 40% follow the United States; roughly five times more than follow the next

most popular single country, China.

Secondly, we consider equity ETFs following multi-market (country) indices. Figure

5.3 shows the top twenty (by MV) indices tracked. It can be seen that MV is highly

concentrated, with 29% of MV associated with ETFs following emerging markets. EAFE

(Europe, Australasia and Far East) countries account for 24% of MV; Europe accounts

for 20% and ETFs following global indices account for 16%. With respect to the number

of ETFs, 40% track European, and 25% global, indices.

Thirdly, we consider commodity based ETFs and in Figure 5.4, we show the top ten

commodities or commodity indices tracked. Again MV is highly concentrated; with ETFs

tracking gold accounting for 53% of MV and 38% of MV is in ETFs tracking WTI (West

Texas Intermediate) oil futures contracts. Crude oil is tracked by several other indices,

but WTI dominates. The third largest commodity tracked by MV is silver with 5% of

market value. Taken together these three commodities account for approximately 95% of

total MV associated with commodity ETFs. In terms of the number of ETFs, 11% follow

gold, 8% follow general commodity indices (Dow Jones - UBS Commodity index or the

S&P GSCI), 6% follow platinum or palladium and 5% follow silver.
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Figure 5.2: Single market equity ETFs: the top 20 countries by market value, showing

percentage of total by market value and number of ETFs

Figure 5.3: Multi-market equity ETFs: the top 20 indices by market value, showing per-

centage of total by market value and number of ETFs
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Figure 5.4: Commodity ETFs: the top 10 commodity or commodity indices by market

value, showing percentage of total by market value and number of ETFs

5.4 ETF performance

The term performance is used here to denote the accuracy with which an ETF replicates

the return behaviour of its benchmark. We first discuss how our database of ETFs for

performance analysis was selected and then present the statistics we calculated.

We draw our performance database from the 2125 active ETFs for which we had a

market value (recall from above that total MV was US$2.96 trillion). Since our snap-

shot is as at the end of September 2011 we excluded any ETFs that were created after

September 2009 (so we had at least two years of data), and this left 1413 ETFs as poten-

tial candidates for analysis. For these candidates we collected daily price and benchmark

index values from Datastream with which to calculate daily returns. The price series for

some ETFs were intermittently reported so unless an ETF had at least 70% of possible

return observations available it was not included in our performance database. A small

number of ETFs were also excluded as a result of a preliminary analysis which indicated

that they appeared to be outliers, probably due to a misinterpretation on our part as

to the underlying benchmark index. Our performance database, after the process de-

scribed above, contained 822 ETFs. This represents 39% of the initial 2125 ETFs, but

these 822 ETFs had a total MV of US$1.81 trillion, so we captured in our database 61%
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(= 100(1.81/2.96)%) of ETFs by MV. The ETF with the most return observations in this

database, 4755 dating from 1993, was the very first ETF, the SPDR Trust SPY, which

tracks the S&P500.

These ETFs were associated with 444 different benchmark indices. Note here that we

explicitly identified the benchmark index (and the associated value of L) for each ETF

in our performance database. Our performance database contained 686 tracking (1×)

ETFs, 16 inverse (−1×) ETFs, 58 positive leveraged ETFs (51 2×, 7 3×) and 62 inverse

leveraged ETFs (one −1.5×, 55 −2×, 6 −3×) ETFs. In terms of our classification (as

in Table 5.2) there were 59 bond trackers (all tracking an index); 57 commodity trackers

(37 commodity, one futures and 19 index); 21 currency trackers (all tracking a currency);

2 derivative trackers; 204 multi-market equity trackers (139 general, 8 real estate sector,

55 sector, 2 specialised); 4 multi-asset index trackers (all general); 4 real estate trackers

(2 mortgage, 2 real estate index); 471 single market equity trackers (322 general, 16 real

estate sector, 130 sector, 3 specialised).

To perform our analysis, we used returns based on the daily changes of log prices

(e.g. the return on an ETF at (trading) day t is rt = ln(ETF price at day t/ETF price

at day t − 1)). We define the benchmark return Bt on day t for a L× ETF using Bt =

L× (ETF benchmark index return on day t), this allows us to compare L× ETFs with

varying values for L (either positive or negative) in a consistent manner.

The investor holds an ETF with the expectation that its return behaviour will mimic

that of the underlying benchmark index. This behaviour can be summarised by average

return and volatility. Let us define:

µr = E(rt) and σ2
r = V (rt) as the mean and variance of the ETF’s return;

µB = E(Bt) and σ2
B = V (Bt) as the mean and variance of the benchmark’s return.

The difference in mean return is (µB − µr) and the difference in volatility is measured by

the difference in variances (σ2
B − σ2

r).

Let us model the return of the ETF as a linear model of the benchmark

rt = α + βBt + εt where V (εt) = σ2
ε . (5.1)

Ideally the ETF perfectly reproduces the behaviour of the index and α is zero, β is unity

and σ2
ε is zero. Underperformance occurs if (µB − µr) is positive or (since µr = α+ βµB)

if

(1− β)µB − α > 0. (5.2)

Similarly σ2
r = β2σ2

B + σ2
ε , thus the ETF is more volatile than the benchmark (σ2

r > σ2
B)
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if

σ2
ε − (1− β2)σ2

B > 0. (5.3)

5.4.1 Underperformance in mean return

In Figure 5.5, we compare the mean return of each ETF with that of its benchmark using

all the data available for each benchmark (shown as % p.a.). The diagonal line in Figure

5.5 divides the plot into two triangles. Points in the top left (upper) triangle of the plot

show ETFs which produce a greater mean return than their benchmarks (µr > µB); in

general this outperformance is small. Points in the lower right triangle show ETFs whose

mean return is less than that of their benchmarks; there are many examples of severe

underperformance by ETFs. The distribution of (µB−µr) is positively skewed: the lower

quartile is -0.51% p.a.; the median is 0.59% p.a.; the upper quartile is 3.9% p.a.; the 95

percentile is 33% p.a. Describing the variation in accuracy another way, 37% (53%) of

ETFs yielded a mean return within 1% p.a. (2% p.a.) of the benchmark return.

In order to investigate why some ETFs fail to reproduce the benchmark return the

possible causes of the failure we consider are the degree of (inverse) leverage required;

the category of the benchmark; the periods over which the returns were observed. The

following regression was estimated.

µB − µr = θ0 + θ1L−2 + θ2L−1 + θ3L2 + θ4 ln(Market Value)

+θ5Cat(Bond) + θ6Cat(Commodity) + θ7Cat(Currency)

+θ8Cat(Multi-market) + θ9(pre 2000) + θ10(pre 2005)

+θ11(pre 2007) + θ12(pre 2009) + error

(5.4)

where L−2 is a zero/one binary indicator that is unity if the ETF is inverse and leveraged

by a factor of 2 or more (zero if not); L−1 indicates whether an ETF is inverse (non-

leveraged), L2 indicates whether an ETF is leveraged by a factor of 2 or more. Cat(Bond)

is a binary indicator that is unity if the ETF is a Bond Tracker (zero if not); the other

Cat() indicators are defined similarly. The binary indicators describing the start date of

the ETF are set to unity if the start date is before the beginning of the year mentioned.

If the ETF is a simple single equity market tracker with start date in February 2009, for

example, then all the binary indicators are zero.

Note here that given regression equation (5.4) and the fact that underperformance

occurs if (µB − µr) is positive a negative coefficient (θ1 to θ12) indicates a factor that

contributes to reducing underperformance, a positive coefficient a factor that increases

underperformance. For all of the regression results given in this chapter we only regard a
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Figure 5.5: A comparison of ETF mean return with that of its benchmark. The mean is

calculated over all available data

regression coefficient as significant if it has a p-value of 0.01 or less (so a 1% significance

level).

The estimation results are summarised in Table 5.5, where the significant regression

coefficients have been highlighted. The R2 value is 66%, which means that over half

the variation in (µB − µr) can be explained by the properties of the ETFs. On average,

both inverse trackers and leveraged trackers have significantly greater underperformance

than a single equity tracker (since they have significant positive coefficients in Table 5.5).

Currency trackers, with a significant negative coefficient in Table 5.5, tend to track their

benchmark slightly better than a single equity tracker.

Looking at equation (5.2) underperformance can be decomposed into failing to fully

capture the direction of changes in the benchmark, measured by (1−β)µB, or a systematic

failure to capture the level of returns, measured by −α. The median (upper quartile) value

of (1−β)µB is 0.00012% per day (0.0020% per day) whereas the median (upper quartile)

value of −α is 0.0021% per day (0.0190% per day). It is clear that failure to capture the



103

Table 5.5: Regression to explain (µB − µr) in terms of the properties of the ETF

Analysis of (µB − µr) R2 = 0.66

Coefficient Standard Error p-value

Intercept -0.003 0.004 0.42

L−2 0.157 0.004 0.00

L−1 0.052 0.008 0.00

L2 0.054 0.005 0.00

ln(MV) 0.000 0.001 0.97

Bond 0.007 0.004 0.10

Commodity 0.001 0.004 0.78

Currency -0.030 0.007 0.00

Multi-market 0.005 0.003 0.06

pre 2000 0.002 0.006 0.68

pre 2005 -0.002 0.004 0.60

pre 2007 -0.005 0.003 0.13

pre 2009 0.008 0.003 0.02

level of returns is far more important than failing to capture the direction of change. To

obtain more insight into the reasons for these failures, we repeat the regression in equation

(5.4), firstly with |1 − β| (using the deviation of β from one as a measure of failure to

capture directional change) and secondly with α (as a measure of the systematic failure

to capture the level of returns) as dependent variables.

The results are shown in Table 5.6. Considering the left-hand panel first, only 20%

of the variability of the deviations |1 − β| are explained by the properties of the ETFs.

Considering the significant coefficients, we see that inverse and/or leveraged ETFs tend to

achieve β closer to one than simple single market equity ETFs. The negative coefficients

associated with the start dates indicate that β is better captured by those ETFs with

earlier start dates, but the effect is not significant for start dates earlier than 2000.

Considering the right-hand panel of Table 5.6, we see that 64% of the variation in

α, the more important source of underperformance, is explained by the properties of the

ETFs. Inverse and/or leveraged ETFs tend to fail to reproduce the level of the benchmark

return. There is a slight difference due to the type of benchmark, currencies tend to do

better than the rest, multi-market tend to do slightly worse than the rest. The timing

factors show deterioration in reproducing the level of return for start dates before January

2009 and an improvement for start dates before January 2007. This indicates that ETFs

tended to replicate the level of return less well during the 2007-8 financial crisis.

In summary, a non-negligible proportion of ETFs underperform their benchmark in

terms of return. Although there is a slight difference due to the type of index tracked,

underperformance tends to be concentrated in inverse and leveraged ETFs. This under-

performance is mainly due to failure to capture the level of returns of the benchmark, this
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Table 5.6: Two regressions to decompose the underperformance of an ETF in terms of

the properties of the ETF

Analysis of |1− β| R2 = 0.20 Analysis of α R2 = 0.64

Coefficient Standard Error p-value Coefficient Standard Error p-value

Intercept 0.322 0.038 0.00 Intercept 0.008 0.005 0.06

L−2 -0.191 0.039 0.00 L−2 -0.154 0.005 0.00

L−1 -0.254 0.071 0.00 L−1 -0.052 0.008 0.00

L2 -0.209 0.040 0.00 L2 -0.050 0.005 0.00

ln(MV) 0.035 0.005 0.00 ln(MV) 0.000 0.001 0.45

Bond -0.106 0.040 0.01 Bond -0.003 0.005 0.51

Commodity -0.066 0.040 0.10 Commodity 0.004 0.005 0.44

Currency -0.053 0.062 0.40 Currency 0.033 0.007 0.00

Multi-market -0.036 0.024 0.13 Multi-market -0.007 0.003 0.01

pre 2000 0.004 0.053 0.94 pre 2000 -0.003 0.006 0.61

pre 2005 -0.152 0.031 0.00 pre 2005 0.002 0.004 0.57

pre 2007 -0.114 0.028 0.00 pre 2007 0.011 0.003 0.00

pre 2009 -0.138 0.030 0.00 pre 2009 -0.021 0.004 0.00

failure tended to be more pronounced during the 2007-8 financial crisis.

5.4.2 Underperformance in volatility

In Figure 5.6, we compare the volatility (% p.a.) of each ETF with that of its benchmark

using all the data available for each benchmark. The diagonal line in Figure 5.6 divides the

plot into two triangles. Points in the top left (upper) triangle of the plot show ETFs which

are more volatile than their benchmarks (σr > σB); there are several ETFs where the

excess volatility is very large. Points in the lower right triangle indicate instances where

the ETF is less volatile than its benchmark; here the differences are small compared

to the upper triangle. The distribution of the difference between the variance of the

benchmark and the variance of the ETF, (σ2
B − σ2

r), is negatively skewed. Describing this

distribution in more familiar volatility per annum; the lower quartile is equivalent to a

volatility difference of 16.1% p.a. and the median is equivalent to a volatility difference of

4.8% p.a. (where the ETF volatility exceeds that of the benchmark); the upper quartile

is equivalent to a volatility difference of 5.1% p.a. (where ETF volatility is less than that

of the benchmark). Looking at these data in another way, 35% (51%) of ETFs yield an

annual volatility within 1% p.a. (2% p.a.) of the volatility of their benchmark.

In order to try to explain why some ETFs fail to reproduce the volatility of the

benchmarks, the following regression was estimated.
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Figure 5.6: A comparison of ETF volatility with that of its benchmark. Volatility is

calculated over all available data

ln(σ2
B/σ

2
r) = θ0 + θ1L−2 + θ2L−1 + θ3L2 + θ4 ln(Market Value)

+θ5Cat(Bond) + θ6Cat(Commodity) + θ7Cat(Currency)

+θ8Cat(Multi-market) + θ9(pre 2000) + θ10(pre 2005)

+θ11(pre 2007) + θ12(pre 2009) + error

(5.5)

where the indicators/variables are as previously defined above. The estimation results

are summarised in Table 5.7. Note here that given regression equation (5.5) a negative

coefficient (θ1 to θ12) indicates a factor that contributes to greater excess volatility, a

positive coefficient a factor that reduces excess volatility.

The R2 of the regression is only 7% so much of the variation is unexplained. However,

the variables that have a significant negative effect (leading to greater excess volatility)

are those that identify the category of multi-market tracker and inverse leveraged trackers.

From equation (5.3), we see that the difference in variance has two components: (1−
β2)σ2

B due to failure to capture changes in benchmark returns; σ2
ε due to noise in the
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Table 5.7: Regression to explain the difference between the volatility of an ETF and that

of its benchmark in terms of the properties of the ETF

Analysis of ln(σ2
B/σ

2
r) R2 = 0.07

Coefficient Standard Error p-value

Intercept -0.926 0.536 0.08

L−2 -2.900 0.554 0.00

L−1 0.447 0.997 0.65

L2 0.107 0.563 0.85

ln(MV) -0.041 0.070 0.56

Bond -0.838 0.556 0.13

Commodity -0.265 0.557 0.63

Currency 0.442 0.877 0.61

Multi-market -1.349 0.334 0.00

pre 2000 -0.529 0.737 0.47

pre 2005 0.169 0.439 0.70

pre 2007 0.185 0.395 0.64

pre 2009 0.911 0.423 0.03

tracking process. These components are similar in importance, the median values are

0.7 and 0.9 (% per day)2 respectively. We repeat the regression shown in equation (5.4),

firstly with (1− β2) as the dependent variable and secondly with ln(σ2
ε) as the dependent

variable. These results are summarised in Table 5.8.

Table 5.8: Regressions looking at a decomposition of the difference between the volatility

of an ETF and that of its benchmark in terms of the properties of the ETF

Analysis of (1− β2) R2 = 0.15 Analysis of ln(σ2
ε) R2 = 0.32

Coefficient Standard Error p-value Coefficient Standard Error p-value

Intercept 0.415 0.045 0.00 Intercept -0.041 0.172 0.81

L−2 -0.204 0.047 0.00 L−2 0.496 0.178 0.01

L−1 -0.249 0.084 0.00 L−1 -0.804 0.32 0.01

L2 -0.221 0.047 0.00 L2 -0.192 0.180 0.29

ln(MV) 0.031 0.006 0.00 ln(MV) -0.020 0.022 0.36

Bond -0.033 0.047 0.48 Bond -1.687 0.178 0.00

Commodity 0.010 0.047 0.83 Commodity 0.431 0.178 0.02

Currency 0.016 0.074 0.83 Currency -1.088 0.281 0.00

Multi-market -0.079 0.028 0.01 Multi-market 0.676 0.107 0.00

pre 2000 0.050 0.062 0.42 pre 2000 0.902 0.236 0.00

pre 2005 -0.118 0.037 0.00 pre 2005 -0.789 0.141 0.00

pre 2007 -0.132 0.033 0.00 pre 2007 -0.662 0.127 0.00

pre 2009 -0.147 0.036 0.00 pre 2009 0.306 0.136 0.02

Considering the left-hand panel of Table 5.8, the departures of β2 from unity are not

well explained by the regression with a R2 value of only 15%; there is a large amount of

unexplained variation. This is a similar analysis to the left-hand panel of Table 5.6 with

a different way of representing the departure of β from one; consequently the findings are

similar with the extra suggestion that multi-market ETFs capture β better than single
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market ETFs.

Considering the right-hand panel of Table 5.8, where ln(σ2
ε) is the dependent variable,

we are seeking to explain the extent of the variability in an ETF’s tracking of its bench-

mark. This regression has a R2 value of 32%. This variability increases by the largest

amount for multi-market ETFs. The variability decreases for bond and currency ETFs.

The effect of inverse leverage (L−1 and L−2) is mixed. The values for the start date

coefficients suggest that variability increased during the period of the 2007-8 financial

crisis.

To summarise, the volatility of the benchmark is exceeded by most ETFs; the discrep-

ancy in volatility is caused in roughly equal proportions by failure to capture the direction

and size of changes in returns of the benchmark (β) and by the variability in the tracking

process (σ2
ε). The type of benchmark mainly affected the variability, whereas the nature

of the ETF (inverse and/or leveraged) mainly affected the capture of β. The variability

in the tracking process increased during the recent financial crisis.

5.5 Summary and Conclusions

We have described the current composition of the market for ETFs and its rapid growth.

The market value of the ETF market was estimated to exceed US$3 trillion (September

2011) having grown from US$2 billion in 2001. Equities represent 70% of this market

value; single market equity ETFs are concentrated in US, China and Japan; the largest

proportion of multi-market equity ETFs follow emerging markets. Commodities, mainly

gold and oil, represent 20% of ETF market value. Approximately one in eight ETFs is

either an inverse tracker, a leveraged tracker or both.

The availability of data limited the extent of our analysis. We were able to get a

useful data history for 822 ETFs out of the 7198 ETFs active in September 2011. The

accuracy with which ETFs replicate the behaviour of their benchmark is a mixed story.

Using the data available to us from 1993 onwards, only 19% (29%) of ETFs reproduce

both the mean return and the volatility of their benchmark within 1% p.a. (2% p.a.).

Tracking accuracy tended to deteriorate during the 2007-8 financial crisis. We found that

discrepancies in replicating the mean return of the benchmark tended to be associated with

either leveraged or inverse (or both) ETFs. There was some evidence that discrepancies in

replication of benchmark volatility was associated with multi-market ETFs; in contrast to

bond and currency ETFs which tended to reproduce benchmark volatility more accurately

than single market ETFs.

We have established that for many ETFs the replication of their benchmarks is im-

perfect. This means that in practice, if an ETF is used to hedge exposure to a market or
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a commodity under the assumption that the ETF will replicate its benchmark, then the

discrepancies we have discussed mean that the hedge will be defective. To discover the

reasons underlying these imperfections further work is needed.

One area of fruitful investigation would be to explore the mechanisms used to produce

leveraged and inverse (synthetic) ETFs; identification of less successful mechanisms would

improve overall benchmark tracking accuracy. A second area that could be explored

would be the feasibility of providing regular publication of an up-to-date summary of the

benchmark tracking accuracy of each ETF by an appropriate regulatory body, as this

would very likely lead to improved tracking accuracy. Both of these areas would go some

way to address the commonly articulated concerns of regulators with regard to complexity

and opacity, especially with regard to synthetic ETFs.
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Chapter 6

An optimisation approach to

constructing an exchange-traded

fund

6.1 Introduction

In Chapter 5, we presented an extensive survey and performance analysis of the ETF

market up to 2011. In our study we observed constant underperformance for leveraged

and inverse ETFs when compared to their benchmark, this is due especially to the nature

of how they achieve the aimed multiple of the returns. ETF providers typically em-

ploy swaps/futures/derivative contracts that need to be rebalanced daily, incurring high

transaction costs which undermine ETF performance.

For leveraged and inverse ETFs (so any ETF where L 6= 1) deciding the composition

of the underlying portfolio to hold so as to (if possible) achieve the target return is a

genuinely difficult task. For example, what portfolio of assets should one hold for a 2×
ETF aiming to achieve twice the return on the S&P 500? In this chapter we consider the

problem of deciding the portfolio of assets that should underlie an ETF. Note here that

since index tracking (so L = 1) has been extensively considered in the literature (e.g. see

Chen & Kwon (2012); Chiam et al. (2013); Garcia et al. (2011); Guastaroba & Speranza

(2012); Mezali & Beasley (2013); Scozzari et al. (2013); Wang et al. (2012) for recent

work) we primarily focus here only on cases where L 6= 1, so portfolios of assets aiming

to give a return different from that of the benchmark index.

We formulate a mixed-integer nonlinear program for the problem of selecting the

portfolio of assets underlying an ETF. Nonlinear formulations are often computationally

challenging; in order to find (locally) optimal solutions we used the Minotaur solver



110

(Leyffer et al. (2013)), a toolkit for solving mixed-integer nonlinear optimisation problems.

Our formulation allows both long and short positions.

The structure of this chapter is as follows. In Section 6.2 we give our formulation of

the problem of deciding the portfolio of assets that should underlie an ETF. In Section 6.3

we give computational results for constructing ETFs for ten different problem instances

derived from universes defined by S&P international equity indices, involving up to 500

assets. In Section 6.4, we compare our model with an alternative model for index-tracking.

Finally in Section 6.5 we present our conclusions.

We would note here that, to the best of our knowledge, this chapter is the first in

the literature to present a model for deciding the underlying assets to be held in order to

construct an ETF which achieves a given multiple of benchmark return.

6.2 Problem formulation

In this section we formulate the problem of deciding the portfolio of assets that should

underlie an ETF as a mixed-integer nonlinear program. We consider ETFs which have

positive leverage with respect to their benchmark index and ETFs which have negative

leverage (inverse, short, ETFs). Our formulation is a flexible one that incorporates deci-

sions as to both long and short positions in assets, as well as including rebalancing and

transaction cost.

6.2.1 Notation

We observe over time 0, 1, 2, . . . , T the value of N assets. We are interested in selecting,

at time T , the best set of K assets to hold (where K ≤ N), as well as their appropriate

quantities, to create an ETF whose return is a known multiple L of the benchmark index

return. Here L is the ETF leverage factor, e.g. L = 2 for an ETF that aims to achieve

twice the return of the benchmark index, L = −1 for an ETF that aims to achieve the

negative of that return. Let:
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Vit be the value (price) of one unit of asset i at time t

It be the value of the benchmark market index at time t

Rt be the single period continuous time return for the index at time t,

i.e. Rt = loge(It/It−1)

XL
i , X

S
i be the number of units (≥ 0) of asset i held in the current ETF at

time T in long/short positions respectively

Ccash be the cash change in the ETF at time T (Ccash > 0 represents new

cash to be invested in the ETF, Ccash < 0 represents cash to be

taken out of the ETF)

C be the total available (≥ 0) at time T to invest in the ETF, so

C = Ccash +
∑N

i=1 X
L
i ViT −

∑N
i=1 X

S
i ViT

CL, CS be the limits (> 0) on the total invested in long/short positions at

time T

εLi , εSi be the lower limits (0 ≤ εLi , ε
S
i ≤ 1) on the proportion of CL and

CS respectively invested in long/short positions in asset i if any

position is taken

δLi , δSi be the upper limits (0 ≤ δLi , δ
S
i ≤ 1) on the proportion of CL and

CS respectively invested in long/short positions in asset i

FL
i (ζ, θ), F S

i (ζ, θ) be transaction cost functions that give the transaction cost (≥ 0)

incurred for asset i in moving at time T from a position (long/short

respectively) involving ζ units of the asset to θ units of the asset,

where FL
i (ζ, θ) = F S

i (ζ, θ) = 0 if ζ = θ

γ be the limit on the proportion of C that can be consumed by trans-

action cost (where 0 ≤ γ ≤ 1)

Then our decision variables are:

xLi , x
S
i the number of units (≥ 0) of asset i that we choose to hold in long/short

positions respectively

Ct the value of the ETF at time t = 0, . . . , T

zLi , z
S
i

{
1 if any of asset i is held in long/short positions in the ETF

0 otherwise

Without significant loss of generality (since the sums of money involved are large) we

allow [xLi ], [xSi ] to take fractional values.



112

6.2.2 Constraints

The constraints associated with our formulation of the problem are:

εLi z
L
i ≤ xLi ViT/C

L ≤ δLi z
L
i , i = 1, . . . , N (6.1)

εSi z
S
i ≤ xSi ViT/C

S ≤ δSi z
S
i , i = 1, . . . , N (6.2)

zLi + zSi ≤ 1, i = 1, . . . , N (6.3)

N∑
i=1

(zLi + zSi ) = K (6.4)

N∑
i=1

xLi ViT ≤ CL (6.5)

N∑
i=1

xSi ViT ≤ CS (6.6)

N∑
i=1

FL
i (XL

i , x
L
i ) +

N∑
i=1

F S
i (XS

i , x
S
i ) ≤ γC (6.7)

N∑
i=1

xLi ViT +
N∑
i=1

FL
i (XL

i , x
L
i ) +

N∑
i=1

F S
i (XS

i , x
S
i ) = C +

N∑
i=1

xSi ViT (6.8)

Ct =
N∑
i=1

xLi Vit −
N∑
i=1

xSi Vit, t = 0, . . . , T (6.9)

Equations (6.1) and (6.2) ensure that if an asset i is not held in a long/short position in

the ETF (zLi = 0, zSi = 0) then xLi , xSi are also zero. If asset i is held then these equations

ensure that the proportions of CL, CS held respect the limits defined. Equation (6.3) says

that we cannot hold a long and short position in the same asset simultaneously. Equation

(6.4) ensures that there are exactly K assets in the ETF. Equations (6.5) and (6.6) ensure

that we respect the limits on the total invested in long/short positions. Equation (6.7)

limits total transaction cost appropriately.

Equation (6.8) is the monetary balance equation and says that at time T we first gen-

erate cash
∑N

i=1 x
S
i ViT by shorting, add that to C and then use that sum to purchase long

positions costing
∑N

i=1 x
L
i ViT , as well as pay the total transaction cost,

∑N
i=1 F

L
i (XL

i , x
L
i )+∑N

i=1 F
S
i (XS

i , x
S
i ). Note here that amending the constraints we have given above so as to
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have long-only ETFs without shorting is trivial (simply remove the variables associated

with shorting).

In Equation (6.9) we have that at time t the ETF has xLi , i = 1, . . . , N in long

positions, collectively worth
∑N

i=1 x
L
i Vit. The short positions xSi , i = 1, . . . , N represent

obligations which have to be repaid (since in shorting, short selling, we borrow assets and

have to return them). Collectively the short positions represent a (monetary) repayment

of
∑N

i=1 x
S
i Vit and so the value of the ETF at time t is as given in Equation (6.9). On a

technical issue here note that Equation (6.9) is a valuation of the ETF portfolio at time t.

The monetary value we would achieve at time t were we to liquidate the portfolio would

potentially be less than this valuation due to transaction cost.

6.2.3 Objective function

In our formulation our objective is to minimise the tracking error (henceforth TE ), the

averaged sum of the squared differences between ETF return and the required return, i.e.:

minimise TE =
T∑
t=1

(loge(Ct/Ct−1)− LRt)
2/T (6.10)

It is clear from Equation (6.9) that the presence of short selling may mean that the

value of the ETF becomes negative (or zero). In either case this would mean that the

corresponding return in our objective function (Equation 6.10) is not defined. Numerically

this would result in the optimisation software we are using giving an error. For this

reason we impose the constraint that Ct, t = 0, . . . , T is greater than or equal to some

small positive value. In the computational results reported later, since C is large, we

(arbitrarily) imposed the constraint that Ct ≥ 10, t = 0, . . . , T .

Our formulation, minimise Equation (6.10) subject to Equations (6.1)-(6.9), is a

mixed-integer program with a nonlinear objective function, so a MINLP (mixed-integer

nonlinear program). Depending upon the nature of the transaction cost functions (FL
i (ζ, θ),

F S
i (ζ, θ)) which appear in Equations (6.7) and (6.8) the constraints may be linear or non-

linear. In the simplest case when trading is free (so transaction cost is zero) the constraints

are linear.

MINLPs are by their nature algorithmically and computationally challenging, since

they combine discrete and continuous variables and are nonlinear. However packages for

such programs have been improving (e.g. see Bussieck & Vigerske (2011)) and certainly

our computational experience with Minotaur (Leyffer et al. (2013)) is that it is capable of

solving quite large problems. With reference to our choice of the Minotaur solver please

refer to Section 4.3.1.
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6.2.4 Long/short fix

Similarly to Section 4.2.5, the amount that can be held in long/short positions is defined

by the following equations:

CS = αC (6.11)

CL = (1 + α)C (6.12)

where α (where 0 ≤ α ≤ 1) is the proportion of C that can be held in short positions.

6.3 Computational results

In this section we present computational results for our approach to constructing an ETF.

We used an Intel Xeon CPU E5-2640 @ 2.50GHz with 64GB of RAM with Linux as the

operating system. The code was written in C++ and Minotaur 0.1.1 (Leyffer et al. (2013))

was used as the mixed-integer nonlinear solver in order to find (locally) optimal solutions

to our formulation.

6.3.1 Data and methodology

In our computational experimentation we adopted successive periodic rebalancing over

time and we used the same real-world historical weekly data as described in Section 3.4.1,

the reader may refer to that section for details on the methodology. Two of the indices

shown in Figure 3.1 are not used in this chapter. The first is the S&P World ex-US 700

index, since it was only assembled in 2004 (so we had limited data), and the second is

the S&P Global 1200. Although we have data for this index for all years, the number of

assets involved (N = 1200) meant that it was beyond the computational range of Minotaur

(which consistently failed to find feasible solutions, even when given a substantial time

limit).

With regard to parameter values we, unless otherwise stated, set the in-sample period

h = 52 and the out-of-sample period H = 13. For the main results we used α = 0.50,

although in later sections we examine α = [0, 0.30, 0.50], which represent Long Only,

130/30 and 150/50 ETFs.

Unless otherwise stated we used K = N as the number of assets to be in the ETF;

εLi = εSi = 0 and δLi = δSi = 1 for i = 1, . . . , N as the proportion limits for each asset

in the ETF. We set the initial ETF portfolio to consist of an investment of US$1 million
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in the first K assets held in equal proportions, with no short holdings. In other words

XL
i = (1000000/K)/Vi0 i = 1, . . . , K; XL

i = 0 i = (K + 1), . . . , N ; XS
i = 0 i = 1, . . . , N .

For the main results we used FL
i (ζ, θ) = F S

i (ζ, θ) = 0 so transaction cost was zero.

With these values the solver has complete freedom to choose the best (lowest tracking

error) in-sample ETF amongst all possible solutions. However we do also present results

below for the case where transaction cost was non-zero.

We imposed a time limit of max[2N, 900] seconds for each rebalance of our ETF, if

the time limit is reached before Minotaur terminates we retrieve the best feasible solution

found so far. We examined L = −1 and L = 2, which represent inverse and 2× leveraged

ETFs.

6.3.2 Results, inverse ETFs

Table 6.1 shows the tracking errors for L = −1 (inverse ETFs). The table presents in-

sample and out-of-sample tracking errors. Given the total number of time intervals (400

weeks) and our choice ofH = 13, for each instance there were a total of b(400−h)/H+1c =

27 different rebalances, each with its own tracking error calculated from 52 different

returns. The column labelled Num shows the number of successful rebalances (out of

27), meaning that Minotaur was able to find a feasible solution. Notice that this number

deteriorates as the instance size grows. If a rebalance is unsuccessful we leave the ETF

unchanged (i.e. the current ETF is carried forward).

There are four columns under In-sample TE . The first column contains the Average

tracking error over all successful rebalances, while columns Max and Min show the

maximum (worst) and minimum (best) TE respectively. The SD (standard deviation)

completes the remaining in-sample columns. Column Out-of-sample TE gives the

total out-of-sample tracking error as calculated from the single time series of out-of-

sample returns, while column Time shows the average CPU time (in seconds) needed

to solve each rebalance. The average time here is calculated over successful rebalances

(unsuccessful rebalances requiring max[2N, 900] seconds).

Our model tends to find better in-sample solutions for larger instances, even though

they are harder (more time consuming) to solve. This can be seen when we examine

the average in-sample tracking error, which shows a decreasing trend as the problem size

increases. Larger instances offer a wider selection of assets to choose from, which com-

pensates for the greater difficulty in finding a solution. The in-sample standard deviation

also tends to be smaller for the larger instances.

For the eight instances where all rebalances were successful the out-of-sample track-

ing errors are all smaller than the average in-sample tracking error. For the two larger
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Table 6.1: Tracking errors for the 150/50 case with L = −1

Index
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

S&P Latin America 40 27 1.463× 10−3 6.926× 10−3 5.630× 10−4 1.261× 10−3 2.472× 10−3 0.65

S&P Asia 50 27 9.507× 10−4 7.504× 10−3 2.643× 10−4 1.392× 10−3 1.118× 10−3 7.01

S&P ASX 50 27 1.370× 10−3 9.653× 10−3 4.964× 10−4 1.768× 10−3 2.201× 10−3 0.52

S&P TSX 60 27 7.150× 10−4 1.337× 10−3 3.458× 10−4 2.323× 10−4 1.696× 10−3 5.11

S&P UK 125 27 2.702× 10−4 5.274× 10−4 5.295× 10−5 1.073× 10−4 1.489× 10−3 54.67

S&P Topix 150 27 1.013× 10−3 7.286× 10−3 2.279× 10−4 1.509× 10−3 2.314× 10−3 143.68

S&P Euro Zone 175 27 2.951× 10−4 5.216× 10−4 4.089× 10−5 1.081× 10−4 1.484× 10−3 52.99

S&P Euro Plus 225 27 2.712× 10−4 5.127× 10−4 2.415× 10−5 1.029× 10−4 1.430× 10−3 180.25

S&P Europe 350 23 1.201× 10−4 2.706× 10−4 1.628× 10−8 7.619× 10−5 1.311× 10−3 88.27

S&P US 500 19 4.197× 10−5 2.307× 10−4 4.812× 10−7 5.763× 10−5 1.785× 10−3 344.27

Average 25.8 6.511× 10−4 3.477× 10−3 2.016× 10−4 6.614× 10−4 1.730× 10−3 87.74

instances where we had some unsuccessful rebalances (and so carried the ETF forward

without change) the out-of-sample tracking errors are larger than the average in-sample

tracking errors.

6.3.3 Results, leveraged ETFs

In this section we examine the results for the case when L = 2, so leveraged ETFs.

Table 6.2 summarises the results. Similarly to the results shown in Table 6.1, we can see

that lower in-sample tracking errors are achieved for larger instances.

6.3.4 Varying h and α

In the previous results we used h = 52 and α = 0.5. In this section we show what happens

when we vary these parameters.

Table 6.3 shows average tracking error results over all instances for α = 0.5 with

L = −1 and L = 2, whilst varying h between 13 and 52 weeks. It should be noted that,

under column Num , the total number of rebalances for h = [13, 26, 39, 52] is [30, 29, 28, 27]

respectively. The rows in this table for h = 52 are as the final rows in Tables 6.1 and 6.2,

but are repeated here for ease of comparison.

In Table 6.3 we can observe that (both for L = −1 and L = 2) the higher the value of h,

the better our in-sample and out-of-sample results are, both in terms of average tracking

error and in terms of standard deviation in tracking error. As might be expected, the



117

Table 6.2: Tracking errors for the 150/50 case with L = 2

Index
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

S&P Latin America 40 27 5.089× 10−4 9.067× 10−3 8.725× 10−5 1.712× 10−3 8.066× 10−4 0.65

S&P Asia 50 27 1.095× 10−4 2.270× 10−4 3.830× 10−5 5.990× 10−5 3.451× 10−4 1.17

S&P ASX 50 27 3.927× 10−4 3.337× 10−3 1.265× 10−4 6.019× 10−4 8.274× 10−4 8.31

S&P TSX 60 27 1.328× 10−4 2.788× 10−4 6.200× 10−5 5.299× 10−5 6.224× 10−4 10.80

S&P UK 125 27 4.890× 10−5 1.155× 10−4 1.042× 10−5 2.698× 10−5 5.719× 10−4 137.61

S&P Topix 150 26 2.939× 10−4 5.839× 10−3 1.966× 10−6 1.132× 10−3 7.809× 10−4 156.82

S&P Euro Zone 175 27 4.117× 10−5 9.930× 10−5 2.590× 10−6 2.843× 10−5 6.079× 10−4 27.85

S&P Euro Plus 225 27 2.388× 10−5 6.815× 10−5 2.075× 10−6 1.491× 10−5 5.698× 10−4 202.53

S&P Europe 350 27 1.018× 10−6 5.149× 10−6 1.502× 10−19 1.534× 10−6 4.215× 10−4 328.06

S&P US 500 15 1.334× 10−7 1.949× 10−6 3.354× 10−17 5.023× 10−7 5.963× 10−4 568.94

Average 25.7 1.553× 10−4 1.904× 10−3 3.311× 10−5 3.631× 10−4 6.150× 10−4 144.27

average solution time also increases as h increases. Comparing the results for inverse ETFs

and leveraged ETFs we can observe that, for all values of h considered, the leveraged ETF

gives a lower average tracking error (both in-sample and out-of-sample) than the inverse

ETF.

Table 6.3: Average values for all instances with α = 0.5

L h
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

L = −1 h = 13 30.0 3.204× 10−3 1.974× 10−2 2.253× 10−5 4.909× 10−3 4.030× 10−3 23.65

h = 26 29.0 1.095× 10−3 7.878× 10−3 7.108× 10−5 1.820× 10−3 2.421× 10−3 59.57

h = 39 27.9 7.380× 10−4 3.446× 10−3 1.429× 10−4 8.292× 10−4 2.131× 10−3 66.48

h = 52 25.8 6.511× 10−4 3.477× 10−3 2.016× 10−4 6.614× 10−4 1.730× 10−3 87.74

L = 2 h = 13 29.9 3.776× 10−3 2.580× 10−2 2.931× 10−10 6.381× 10−3 2.659× 10−3 37.57

h = 26 29.0 5.373× 10−4 3.260× 10−3 6.606× 10−6 9.482× 10−4 1.067× 10−3 85.56

h = 39 28.0 3.577× 10−4 2.589× 10−3 2.052× 10−5 6.984× 10−4 8.039× 10−4 104.21

h = 52 25.7 1.553× 10−4 1.904× 10−3 3.311× 10−5 3.631× 10−4 6.150× 10−4 144.27

We now fix h = 52 and vary α, the level of shorting allowed in the model. Table 6.4

shows results for both L = −1 and L = 2 where we examine α = [0.0, 0.3, 0.5], which

represent Long Only, 130/30 and 150/50 ETFs. The rows in this table for 150/50 are as

the final rows in Tables 6.1 and 6.2, but are repeated here for ease of comparison.

In Table 6.4 we can see that (both for L = −1 and L = 2) the higher the value of α,
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the better our in-sample and out-of-sample results are, both in terms of average tracking

error and in terms of standard deviation in tracking error. Here the addition of shorting

helps in reducing both in-sample and out-of-sample tracking errors, since we are adding

the flexibility to short as compared with the Long Only case.

Comparing the results for inverse ETFs and leveraged ETFs we can see that, for all

values of α considered, the leveraged ETF gives a lower average tracking error (both

in-sample and out-of-sample), as well as a lower standard deviation in tracking error, as

compared with the inverse ETF.

Table 6.4: Average values for all instances with h = 52

L Case
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

L = −1 Long Only 27.0 2.952× 10−3 8.082× 10−3 8.843× 10−4 2.002× 10−3 3.535× 10−3 0.11

130/30 26.8 1.156× 10−3 5.120× 10−3 2.996× 10−4 1.206× 10−3 1.934× 10−3 42.87

150/50 25.8 6.511× 10−4 3.477× 10−3 2.016× 10−4 6.614× 10−4 1.730× 10−3 87.74

L = 2 Long Only 27.0 1.490× 10−3 5.486× 10−3 1.742× 10−4 1.418× 10−3 1.684× 10−3 0.14

130/30 26.0 3.130× 10−4 2.654× 10−3 5.199× 10−5 5.989× 10−4 6.680× 10−4 89.87

150/50 25.7 1.553× 10−4 1.904× 10−3 3.311× 10−5 3.631× 10−4 6.150× 10−4 144.27

6.3.5 Results with transaction cost

We now examine results for the case when we include transaction cost in the model. We

used FL
i (XL

i , x
L
i ) = 0.01|XL

i −xLi |ViT and F S
i (XS

i , x
S
i ) = 0.01|XS

i −xSi |ViT , i.e. transaction

cost was one percent of the value of the assets traded (for both long and short trading).

We used γ = 0.01 as the limit on the proportion of C that can be consumed by transaction

cost, so one percent of the total cash available. For simplicity we just consider here results

for 150/50 ETFs (so α = 0.50, as in Table 6.1 and Table 6.2).

Table 6.5 and Table 6.6 show the results for inverse and leveraged ETFs. If we compare

Table 6.5 to Table 6.1 and Table 6.6 to Table 6.2 we can see that there is a deterioration

in both in-sample and out-of-sample tracking errors (as we would expect, since impos-

ing a transaction cost constraint restricts the opportunities available at each rebalance).

Computation times for these test problems do not seem to be significantly affected by the

addition of the transaction cost constraint.

Comparing the average tracking errors for L = −1 with those for L = 2 in Tables 6.5

and 6.6 we can see that for each of the ten instances the average tracking error, both

in-sample and out-of-sample, is larger for L = −1 than for L = 2.
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Table 6.5: Tracking errors with transaction cost and L = −1

Index
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

S&P Latin America 40 27 3.621× 10−3 9.701× 10−3 6.905× 10−4 2.360× 10−3 4.263× 10−3 0.37

S&P Asia 50 27 1.655× 10−3 3.811× 10−3 3.110× 10−4 1.012× 10−3 1.768× 10−3 1.03

S&P ASX 50 27 3.381× 10−3 9.079× 10−3 5.718× 10−4 2.416× 10−3 2.848× 10−3 1.03

S&P TSX 60 27 1.701× 10−3 8.974× 10−3 3.673× 10−4 2.096× 10−3 1.798× 10−3 34.79

S&P UK 125 27 9.329× 10−4 3.273× 10−3 1.772× 10−4 8.257× 10−4 1.763× 10−3 81.29

S&P Topix 150 27 1.828× 10−3 4.682× 10−3 2.998× 10−4 1.260× 10−3 2.921× 10−3 118.74

S&P Euro Zone 175 27 7.019× 10−4 2.110× 10−3 1.665× 10−4 4.698× 10−4 1.859× 10−3 144.59

S&P Euro Plus 225 25 6.766× 10−4 2.536× 10−3 1.051× 10−4 5.855× 10−4 1.588× 10−3 136.85

S&P Europe 350 24 3.084× 10−4 1.301× 10−3 1.678× 10−5 3.232× 10−4 1.340× 10−3 120.63

S&P US 500 22 4.587× 10−4 3.015× 10−3 2.921× 10−5 7.280× 10−4 1.641× 10−3 96.12

Average 26.0 1.526× 10−3 4.848× 10−3 2.735× 10−4 1.208× 10−3 2.179× 10−3 73.54

Table 6.6: Tracking errors with transaction cost and L = 2

Index
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

S&P Latin America 40 27 8.489× 10−4 5.269× 10−3 1.218× 10−4 1.241× 10−3 9.839× 10−4 0.76

S&P Asia 50 27 1.425× 10−3 4.227× 10−3 5.258× 10−5 1.274× 10−3 1.051× 10−3 0.80

S&P ASX 50 27 1.389× 10−3 4.061× 10−3 2.086× 10−4 1.144× 10−3 9.921× 10−4 1.46

S&P TSX 60 27 1.636× 10−4 3.572× 10−4 6.413× 10−5 8.136× 10−5 6.147× 10−4 8.77

S&P UK 125 27 1.861× 10−4 1.337× 10−3 3.513× 10−5 2.953× 10−4 5.460× 10−4 46.05

S&P Topix 150 27 2.899× 10−4 1.170× 10−3 4.835× 10−5 3.329× 10−4 6.622× 10−4 189.51

S&P Euro Zone 175 27 1.120× 10−4 8.345× 10−4 1.407× 10−5 1.543× 10−4 5.750× 10−4 134.96

S&P Euro Plus 225 27 6.550× 10−5 1.809× 10−4 1.320× 10−5 4.765× 10−5 5.141× 10−4 148.44

S&P Europe 350 20 5.471× 10−5 5.763× 10−4 4.050× 10−6 1.246× 10−4 4.375× 10−4 284.91

S&P US 500 21 5.847× 10−6 7.031× 10−5 1.958× 10−12 1.520× 10−5 4.191× 10−4 687.77

Average 25.7 4.541× 10−4 1.808× 10−3 5.619× 10−5 4.710× 10−4 6.796× 10−4 150.34

6.3.6 Results with restrictions on asset holdings

In the results presented above we did not enforce minimum or maximum limits on the

proportion of the ETF that could be held in any asset. In this section we investigate the

effect of this. We used εSi = εLi = 0.25/K and δSi = δLi = 2/K and as well set K = 0.2N

to simultaneously restrict the number of assets in the ETF. As before we just consider

here results for 150/50 ETFs (so α = 0.50, as in Table 6.1 and Table 6.2).
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Table 6.7 and Table 6.8 show the results for inverse and leveraged ETFs. If we compare

Table 6.7 to Table 6.1 and Table 6.8 to Table 6.2 we can see that there is a deterioration

in both in-sample and out-of-sample tracking errors. Computation times are significantly

higher in Table 6.7 and Table 6.8 than in Table 6.1 and Table 6.2.

Table 6.7: Tracking errors with asset limits, L = −1

Index
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

S&P Latin America 40 27 3.574× 10−3 9.570× 10−3 9.608× 10−4 2.648× 10−3 4.118× 10−3 186.63

S&P Asia 50 27 1.532× 10−3 3.141× 10−3 4.812× 10−4 7.968× 10−4 1.802× 10−3 371.29

S&P ASX 50 27 1.828× 10−3 5.551× 10−3 7.639× 10−4 1.187× 10−3 2.642× 10−3 402.95

S&P TSX 60 27 9.598× 10−4 1.807× 10−3 5.265× 10−4 3.273× 10−4 1.887× 10−3 256.64

S&P UK 125 27 9.577× 10−4 2.648× 10−3 3.216× 10−4 5.407× 10−4 2.151× 10−3 579.67

S&P Topix 150 27 1.745× 10−3 6.375× 10−3 4.060× 10−4 1.405× 10−3 3.044× 10−3 578.14

S&P Euro Zone 175 27 1.017× 10−3 2.463× 10−3 2.978× 10−4 6.089× 10−4 1.893× 10−3 584.87

S&P Euro Plus 225 27 8.916× 10−4 2.083× 10−3 2.830× 10−4 5.081× 10−4 1.866× 10−3 602.89

S&P Europe 350 27 6.302× 10−4 1.731× 10−3 2.125× 10−4 4.166× 10−4 1.672× 10−3 636.90

S&P US 500 27 6.405× 10−4 1.702× 10−3 1.039× 10−4 5.332× 10−4 1.608× 10−3 945.34

Average 27.0 1.378× 10−3 3.707× 10−3 4.357× 10−4 8.971× 10−4 2.268× 10−3 514.53

Table 6.8: Tracking errors with asset limits, L = 2

Index
In-sample TE Out-of-sample

TE

Time

(seconds)Num Average Max Min SD

S&P Latin America 40 27 9.506× 10−4 3.471× 10−3 2.975× 10−4 8.073× 10−4 1.161× 10−3 205.63

S&P Asia 50 27 7.858× 10−4 2.783× 10−3 2.743× 10−4 6.548× 10−4 8.349× 10−4 307.56

S&P ASX 50 27 7.700× 10−4 3.487× 10−3 2.479× 10−4 6.648× 10−4 8.935× 10−4 306.06

S&P TSX 60 27 2.909× 10−4 7.609× 10−4 1.260× 10−4 1.602× 10−4 9.255× 10−4 242.43

S&P UK 125 27 2.692× 10−4 5.796× 10−4 4.048× 10−5 1.536× 10−4 6.665× 10−4 635.19

S&P Topix 150 27 2.521× 10−4 5.444× 10−4 8.831× 10−5 1.451× 10−4 7.013× 10−4 668.76

S&P Euro Zone 175 27 1.674× 10−4 3.995× 10−4 4.422× 10−5 8.503× 10−5 5.912× 10−4 833.71

S&P Euro Plus 225 27 1.724× 10−4 6.702× 10−4 3.083× 10−5 1.575× 10−4 5.615× 10−4 835.08

S&P Europe 350 27 1.873× 10−4 6.423× 10−4 3.131× 10−5 1.479× 10−4 4.913× 10−4 680.99

S&P US 500 26 1.644× 10−4 7.371× 10−4 1.598× 10−5 1.884× 10−4 4.697× 10−4 1088.60

Average 26.9 4.010× 10−4 1.407× 10−3 1.197× 10−4 3.165× 10−4 7.296× 10−4 580.40

Comparing the average tracking errors for L = −1 with those for L = 2 in Tables 6.7

and 6.8 we can see that for each of the ten instances the average tracking error, both
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in-sample and out-of-sample, is larger for L = −1 than for L = 2.

It is noticeable that 19 of the 20 instances in Table 6.7 and Table 6.8 have 27 rebalances

(so all rebalances were successful), the remaining instance (the S&P US 500 with L = 2)

has 26 rebalances. Having a value of 26 in the Num column for the S&P US 500 with

L = 2 indicates that at just one rebalance Minotaur could not find a solution and so

the current ETF had to be carried forward. This sharply contrasts with Table 6.1 and

Table 6.2 and indicates that (albeit at the expense of computation time) the reduction

in the search space brought about by the imposition of constraints on asset holdings and

the number of assets held enables Minotaur to more successfully solve the problem.

6.4 Results, index tracking (L = 1)

Since index tracking problems have been widely studied in the literature, in this chapter

we emphasised leveraged and inverse ETFs. In this section, however, we compare our

MINLP model solved by Minotaur with L = 1 (so an index tracking optimisation model)

to the Population Heuristic (PH) presented in Beasley et al. (2003).

Beasley et al. (2003) constructed five test data sets by considering the assets involved

in five different capital market indices drawn from around the world. Specifically they

considered the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), S&P 100

(USA) and Nikkei 225 (Japan). The data consists of weekly prices from March 1992 to

September 1997 for the assets in these indices, obtained via Thomson Reuters Datastream

(2013). Stocks with missing values were dropped. There were 291 values for each stock

from which to calculate (weekly) returns.

For the comparisons presented below we used the same configuration as in Beasley et al.

(2003). We start the optimisation process with an initial tracking portfolio of the first

K = 10 assets in equal proportions, i.e. Xi = (C/K)/Vi0, i = 1, . . . , K; Xi = 0 ∀i > K.

We set C = 106 and the model as Long Only. The index and each stock (composed of

291 prices) have 290 returns, we set h = H = 145 so half the time period was considered

in-sample, and the other half out-of-sample, with no rebalancing of the portfolio. Since

the problems solved are large (having h = 145), we set a time limit of 4800 seconds.

6.4.1 Artificial index

The first comparison regards how close the results are to optimality. Their heuristic cannot

guarantee that the problem will be solved optimally. Hence, in the absence of benchmark

optimal solutions against which to compare heuristic solutions, they artificially set the

index value as It =
∑N

i=N−K+1 Vit, so that the index value is composed of the last K



122

assets; and solved the problem in the situation corresponding to zero transaction cost,

εi = 0 and δi = 1 ∀i. In this case they know that it is possible to track the index with a

tracking error of zero.

Table 6.9 compares the tracking errors obtained by Minotaur with those of the PH.

The average time needed by PH was, in 2003, approximately 400 seconds. Due to the

difficult nature of MINLPs, in terms of execution time Minotaur is clearly expected to

be at a disadvantage, and we do not include PH times in the table as it is not a fair

comparison due to the year in which they were executed.

Table 6.9: Artificial index, Minotaur versus PH

Index N
Tracking error

Time (seconds)
Minotaur PH

Hang Seng 31 8.538× 10−10 2.560× 10−8 49.33

DAX 85 7.480× 10−11 6.405× 10−5 2457.47

FTSE 89 2.298× 10−10 1.911× 10−4 290.62

S&P 98 9.761× 10−10 1.528× 10−4 291.64

Nikkei 225 7.267× 10−4 2.294× 10−4 4800.52

In terms of tracking errors, for the first four instances, Minotaur found better solutions

than PH and finished its execution within the preset time limit. The solutions obtained

are very close to zero. For the Nikkei 225, Minotaur was not able to solve the problem

before the time limit and the best solution found was slightly worse than the heuristic

solution. Clearly for large problems here choosing a heuristic is advantageous over solving

with MINLP.

6.4.2 Real index

In this section we compare, for different transaction cost limits, the PH and Minotaur

results. We simulate the exact experiments as conducted in Beasley et al. (2003), so we

set εi = 0.01 and δi = 1 ∀i. For transaction cost, we used FL
i (XL

i , x
L
i ) = 0.01|XL

i −xLi |ViT
and F S

i (XS
i , x

S
i ) = 0.01|XS

i − xSi |ViT .

Table 6.10 compares the Minotaur results to PH, both in-sample and out-of-sample.

For each instance, we test γ = [0, 0.0025, 0.0050, 0.0075, 0.0100]. Setting γ = 0 essentially

means that we cannot make any changes to our portfolio and hence the results are exactly

the same as those obtained by PH. The higher γ is, the more freedom there is to choose

a better tracking portfolio. On the other hand, the problem is less constrained and more

difficult to solve.

For both in-sample and out-of-sample, there are two columns in the Table: T. error ,
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containing the tracking errors found by Minotaur, and % of PH , meaning how Minotaur

results compare (in terms of percentage) to PH results. For example, taking the Hang

Seng index, γ = 0.0025, Minotaur found an in-sample tracking error that is 96.56% of

the tracking error found by PH. We can verify in the Table that, with few exceptions, the

higher γ is, the better our in-sample tracking errors are. In most cases this trend is also

repeated out-of-sample. Computational times also grow as γ grows.

For all instances solved by Minotaur within the time limit, the in-sample tracking

error was better than that of PH, with the exception of Nikkei 225, γ = 0.0025. Minotaur

results were slightly better overall, with an average tracking error of 99.21% of the average

PH tracking error. The out-of-sample results, however, are a mixed picture. A better in-

sample result does not necessarily turn into a better out-of-sample tracking error. On

average, Minotaur out-of-sample results were 108.09% worse than those obtained by PH.

The long out-of-sample period (145 weeks), with no rebalance, can perhaps explain these

mixed results.

In general, Minotaur is, in manageable times, able to compete with PH. However, for

larger problems (large instances or long in-sample periods) we can benefit from using a

heuristic method.

6.5 Conclusions

In this chapter we have considered the problem of deciding the portfolio of assets that

should underlie an exchange-traded fund in order to achieve a given multiple L of the

return on a benchmark index. We formulated this problem as a mixed-integer nonlinear

program and our formulation took into account long/short positions, rebalancing and

transaction cost.

Computational results, obtained using the Minotaur solver, were given for problems

derived from universes defined by S&P international equity indices, involving up to 500

assets. These indicated that, for the instances we examined, inverse (L = −1) ETFs were

associated with larger tracking errors than leveraged (L = 2) ETFs.

Computational results also indicated that, for the instances examined, we were able

to deal with transaction cost and asset limits, albeit at an increase in computation time

when asset limits were imposed.

To the best of our knowledge, this chapter is the first in the literature to present a

model for deciding the underlying assets to be held in order to construct an exchange-

traded fund which achieves a given multiple of benchmark return.
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Table 6.10: In-sample and out-of-sample tracking errors, Minotaur versus PH

Index N
T. cost In-Sample Out-of-Sample

Time (s)
limit γ T. Error % of PH T. Error % of PH

Hang Seng 31

0.0000 1.028× 10−3 100.00 1.267× 10−3 100.00 0.00

0.0025 8.425× 10−4 96.56 1.060× 10−3 99.44 12.99

0.0050 6.739× 10−4 98.54 8.783× 10−4 100.80 14.84

0.0075 5.199× 10−4 99.05 6.453× 10−4 100.62 20.60

0.0100 4.099× 10−4 89.32 4.300× 10−4 75.31 45.74

DAX 85

0.0000 1.173× 10−3 100.00 2.049× 10−3 100.00 0.00

0.0025 9.500× 10−4 99.16 1.904× 10−3 107.21 148.46

0.0050 7.426× 10−4 96.87 1.635× 10−3 101.36 4800.06

0.0075 6.339× 10−4 106.73 1.352× 10−3 96.99 4800.03

0.0100 4.345× 10−4 96.23 1.217× 10−3 106.20 4800.29

FTSE 89

0.0000 1.021× 10−3 100.00 9.584× 10−4 100.00 0.00

0.0025 8.023× 10−4 95.70 9.357× 10−4 101.52 305.63

0.0050 6.584× 10−4 99.70 8.390× 10−4 102.94 4800.27

0.0075 5.475× 10−4 94.48 8.020× 10−4 104.02 4800.18

0.0100 5.150× 10−4 99.23 8.121× 10−4 125.70 4800.18

S&P 98

0.0000 1.038× 10−3 100.00 1.032× 10−3 100.00 0.00

0.0025 7.656× 10−4 94.45 8.096× 10−4 114.89 52.96

0.0050 6.130× 10−4 95.93 7.651× 10−4 118.60 4800.04

0.0075 5.146× 10−4 101.98 5.838× 10−4 87.82 4800.31

0.0100 5.248× 10−4 108.92 7.470× 10−4 115.81 4800.99

Nikkei 225

0.0000 7.803× 10−4 100.00 8.213× 10−4 100.00 0.00

0.0025 6.017× 10−4 100.17 9.976× 10−4 100.30 3807.26

0.0050 5.547× 10−4 100.36 7.219× 10−4 102.41 4800.41

0.0075 5.025× 10−4 100.00 7.767× 10−4 92.17 4800.91

0.0100 4.895× 10−4 106.75 7.092× 10−4 108.41 4800.72

Average 99.21% 108.09%
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Chapter 7

Conclusions

7.1 Summary

The aim of this thesis was to examine three different portfolio optimisation problems that,

albeit being relatively well known, are not clearly defined from a scientific point of view.

The three problems are that of defining an Absolute Return Portfolio (ARP), a Market

Neutral Portfolio (MNP) and the basket underlying an Exchange-Traded Fund (ETF).

We have presented a mathematical model for each of these three problems, along with

extensive computational results.

In Chapter 2 we gave a review of previous work on ARPs, MNPs and ETFs, as well as

on portfolio optimisation theory in general. We observed that there is no single accepted

mathematical description to any of these problems. Overall, we summarise the works on

these three models as very fragmented, with different models and different data result in

isolated papers, and great difficulty in connecting them in a mathematical/data sense.

Many of the papers seen in the literature lack detailed computational results.

In Chapter 3 we have considered the problem of selecting an ARP. We presented

a three-stage mixed-integer zero-one program for the problem that explicitly considers

transaction costs associated with trading. We extended our approach to present models

for enhanced indexation (relative return) portfolios and for portfolios that are a mix of

absolute and relative return. Computational results were given for portfolios derived

from universes defined by S&P international equity indices which indicated that all three

models produced good quality results and that the computation time required was not

significant.

In Chapter 4 we considered the problem of constructing a MNP where we can hold

both long and short positions in assets. We formulated this problem as a mixed-integer

nonlinear program, minimising the absolute value of the correlation between portfolio re-

turn and index return, and solved it using the Minotaur software package. Computational
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results were presented for the same set of instances as used in Chapter 3. These indicated

that in-sample we could achieve very low correlations (in many cases zero correlation) in

reasonable computation times. Out-of-sample correlations were higher, but for the major-

ity of cases examined the market neutral portfolios constructed using the approach given

out-performed their benchmark indices. Computational results, for the test problems con-

sidered, indicated that the model proposed out-performed an alternative approach based

on minimising the absolute value of regression slope (the zero-beta approach). We also

compared our approach with the performance of seven funds that adopt market neutral

strategies with respect to the S&P 500, this comparison indicated that in general we had

comparable to worse correlations but significant better performance.

In Chapter 5 we described the current composition of the market for ETFs and its

rapid growth. The market value of the ETF market was estimated to exceed US$3 trillion

(September 2011). Equities represent 70% of this market value; commodities, mainly gold

and oil, represent 20% of ETF market value. Approximately one in eight ETFs is either

an inverse tracker, a leveraged tracker or both.

The availability of data limited the extent of our analysis. We were able to get a

useful data history for 822 ETFs out of the 7198 ETFs active in September 2011. The

accuracy with which ETFs replicate the behaviour of their benchmark is a mixed story.

Using the data available to us from 1993 onwards, only 19% (29%) of ETFs reproduce

both the mean return and the volatility of their benchmark within 1% p.a. (2% p.a.).

Tracking accuracy tended to deteriorate during the 2007-8 financial crisis. We found that

discrepancies in replicating the mean return of the benchmark tended to be associated

with either leveraged or inverse (or both) ETFs. We have established that for many ETFs

the replication of their benchmarks is imperfect. This means that in practice, if an ETF

is used to hedge exposure to a market or a commodity under the assumption that the

ETF will replicate its benchmark, then the discrepancies we have highlighted mean that

the hedge will be defective.

Following our conclusions in Chapter 5, in Chapter 6 we considered the problem of

deciding the portfolio of assets that should underlie an exchange-traded fund in order

to achieve a given multiple L of the return on a benchmark index. We formulated this

problem as a mixed-integer nonlinear program and our formulation took into account

long/short positions, rebalancing and transaction cost. Computational results, obtained

using the Minotaur solver, were given for the instance set described in Chapter 3, but

limited to up to 500 assets due to difficulties in solving larger instances of our model. These

indicated that, for the instances we examined, inverse (L = −1) ETFs were associated

with larger tracking errors than leveraged (L = 2) ETFs. Computational results also

indicated that we were able to deal with transaction cost and asset limits, albeit at an
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increase in computation time when asset limits were imposed. We also compared our

model with L = 1 to a population heuristic presented by Beasley et al. (2003).

7.2 Contribution to knowledge

Chapter 2 demonstrated that we have read, and are familiar with, the relevant scientific

literature with regard to ARPs, MNPs and ETFs. All of the mathematical/computational

work presented in Chapters 3, 4 and 6 is, to the best of our knowledge, an original

contribution to knowledge.

In Chapter 3, we clearly defined an ARP via the three-stage objective function. In

Chapter 4, we presented a nonlinear model that minimises the correlation between the

portfolio chosen and the return of the benchmark index, and which we could solve with

up to 1200 stocks. To the best of our knowledge this chapter is the first in the literature

to directly address correlation minimisation. In Chapter 6, we presented what we believe

to be the first model for deciding the underlying assets to be held in order to construct

an ETF which achieves a given multiple of benchmark return.

Moreover, in Chapter 5, we performed the largest ETF snapshot/analysis presented

to date in the literature, with 8192 ETFs with a total market value in September 2011

of US$2.96 trillion. We also present, for a subset of 822 ETFs, a regression based per-

formance analysis to gain insight into the relationship between ETF characteristics and

their performance in replicating both benchmark return and benchmark volatility. This

analysis was based on over 1.1m daily return observations.

The work in each chapter presented in this thesis has been submitted as four different

papers to appropriate journals.

7.3 Future research

There are a number of ways in which we can take our work further. One approach that

was discussed in Section 3.4.8 but remains valid for all three models presented in this

thesis is with respect to higher-frequency price data. We have used weekly asset price

data which had been manually adjusted to account for changes in index composition,

removing susceptibility to the influence of survivor bias. Whilst obtaining price data (say

at daily frequency) from commercial databases is relatively easy there is significant effort

involved in adjusting such data to account for index composition changes. This effort

remains a topic for future research.

Another line of inquiry discussed in Section 3.4.8, but which may also be applicable

to MNPs, is a rebalance/liquidate/reinvest trading strategy, in which we may choose to
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liquidate our position if it does not seem to be advantageous to hold long/short positions

(i.e. simply hold cash). We also leave this possibility for future research.

Another possible line of research that is valid for all three models is to use some sort

of scenario prediction instead of basing our decision only on the immediate past. There

are several techniques to generate future scenarios for asset prices, such as Geometric

Brownian Motion (Freedman (1972)) or GARCH models (Bollerslev (1986)). Whether or

not our models could benefit from more sophisticated predictions of prices is also a topic

for future research.

Regarding MNPs, we have not performed computational experiments when transaction

costs are included, which is left as future research. We have also discussed in Section 4.4.2

the possibility of adopting other correlation measures as opposed to the Pearson product-

moment coefficient. Due to the more complex nature of other proposed coefficients, we

also leave the exploration of these alternative coefficients for future work.

Our ETF model is restricted to trading on assets. Leveraged and inverse ETFs typi-

cally employ swaps/futures/derivative contracts as means to achieve the multiple of their

benchmark return. As future research, it may well be possible to expand our model to

include these more complex financial products.

For our nonlinear models, we could explore other solvers or develop specialised exact

algorithms, or heuristic methods, so as to reduce computational times. For the ETF

basket model in Chapter 6, computational time was an issue since we could not find

meaningful results for the S&P Global 1200 index. Also, we observed in Section 6.4 that

for larger instances a heuristic method can be beneficial.
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