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Measurements of two-particle angular correlations between an identified strange hadron (K0
S or Λ/Λ) 

and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity 
and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 nb−1, were 
collected at a nucleon–nucleon center-of-mass energy (

√
sN N ) of 5.02 TeV with the CMS detector at 

the LHC. The results are compared to semi-peripheral PbPb collision data at √sN N = 2.76 TeV, covering 
similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative 
pseudorapidity are used to extract the second-order (v2) and third-order (v3) anisotropy harmonics of K0

S
and Λ/Λ particles. These quantities are studied as a function of the charged-particle multiplicity in the 
event and the transverse momentum of the particles. For high-multiplicity pPb events, a clear particle 
species dependence of v2 and v3 is observed. For pT < 2 GeV, the v2 and v3 values of K0

S particles are 
larger than those of Λ/Λ particles at the same pT. This splitting effect between two particle species is 
found to be stronger in pPb than in PbPb collisions in the same multiplicity range. When divided by the 
number of constituent quarks and compared at the same transverse kinetic energy per quark, both v2
and v3 for K0

S particles are observed to be consistent with those for Λ/Λ particles at the 10% level in 
pPb collisions. This consistency extends over a wide range of particle transverse kinetic energy and event 
multiplicities.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Studies of multiparticle correlations provide an important in-
sight into the underlying mechanism of particle production in 
high-energy collisions of protons and nuclei. A key feature of such 
correlations in ultrarelativistic nucleus–nucleus (AA) collisions is 
the observation of a pronounced structure on the near side (rela-
tive azimuthal angle |�φ| ≈ 0) that extends over a large range in 
relative pseudorapidity (|�η| up to 4 units or more). This feature, 
known as the “ridge”, has been found over a wide range of AA en-
ergies and system sizes at both the Relativistic Heavy Ion Collider 
(RHIC) [1–5] and the Large Hadron Collider (LHC) [6–10] and is 
interpreted as arising primarily from the collective hydrodynamic 
flow of a strongly interacting, expanding medium [11,12].

Similar long-range correlations have also been discovered in 
proton–proton (pp) [13], proton–lead (pPb) [14–16], and deuteron–
gold (dAu) [17] collisions with high final-state particle multiplicity. 
As the collision volume size is reduced, it is possible that the 
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system will not be able to equilibrate and the hydrodynamic de-
scription will break down. As such, there has been no consensus 
on the origin of the particle correlation structure in these smaller 
systems. A variety of theoretical models have been proposed to 
interpret this phenomenon in pp [18], pPb, and dAu collisions. Be-
sides hydrodynamic effects in a high-density system [19,20], an 
alternate model including gluon saturation in the incoming nucle-
ons has also been shown to describe these data [21,22].

In hydrodynamical descriptions, the collective flow manifests it-
self as an azimuthal anisotropy in the distribution of final-state 
particles. An additional key consequence of these models is that 
the measured anisotropies will depend on the mass of the par-
ticle [23–25]. More specifically, for particles with transverse mo-
mentum below about 2 GeV, the anisotropy will be larger for 
lighter particles. The presence of this mass ordering is well estab-
lished in AA collisions at RHIC and LHC energies [26–30]. This phe-
nomenon has recently also been observed in pPb [31] and dAu [17]
collisions, consistent with expectations from hydrodynamic mod-
els [32,33]. The analysis presented in this paper aims to further 
explore this effect by extracting anisotropies of identified strange 
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mesons (K0
S ) and baryons (Λ and Λ) in pPb and in PbPb collisions 

that produce similar final-state particle multiplicity.
The azimuthal correlations of emitted particle pairs are typ-

ically characterized by their Fourier components, dNpair

d�φ
∝ 1 +∑

n 2Vn� cos(n�φ), where Vn� are the two-particle Fourier co-
efficients and vn = √

Vn� denote the single-particle anisotropy 
harmonics [34]. In particular, the second and third Fourier com-
ponents are known as elliptic (v2) and triangular (v3) flow, re-
spectively [12]. In hydrodynamical models, v2 and v3 are directly 
related to the response of the medium to the initial collision ge-
ometry and its fluctuations [35–37]. As such, these Fourier compo-
nents can provide insight into the fundamental transport proper-
ties of the medium.

In AA collisions at RHIC, a scaling of v2 as a function of pT
with the number of constituent quarks (nq) has been observed in 
the range 2 < pT < 6 GeV [38]. Specifically, the values of v2/nq

are found to be very similar for all mesons (nq = 2) and baryons 
(nq = 3) when compared at the same value of pT/nq . This empirical 
scaling may indicate that final-state hadrons are formed through 
recombination of quarks in this pT regime [39–41], possibly pro-
viding evidence of deconfinement of quarks and gluons in these 
systems. At lower pT (pT < 2 GeV), a similar scaling behavior is ob-
served, although, according to perfect fluid hydrodynamics, v2/nq
values must be compared at the same transverse kinetic energy 
per constituent quark (KET/nq , where KET =

√
m2 + p2

T − m) to ac-

count for the mass difference of hadrons [42,43].
This paper presents an analysis of two-particle correlations with 

identified strange hadrons, K0
S and Λ/Λ, in pPb collisions at a 

center-of-mass energy per nucleon pair (
√

sN N ) of 5.02 TeV. With 
the implementation of a dedicated high-multiplicity trigger, the 
2013 pPb data sample gives access to multiplicities comparable 
to those in semi-peripheral PbPb collisions. Two-particle correla-
tion functions are constructed by associating a K0

S or Λ/Λ particle 
with a charged particle (pairs of K0

S or Λ/Λ particles are not 
studied due to their limited statistical precision). In the context 
of hydrodynamic models, Fourier coefficients of dihadron correla-
tions can be factorized into products of single-particle azimuthal 
anisotropies. Assuming that this relationship holds, v2 and v3 are 
extracted from long-range two-particle correlations as a function of 
strange hadron pT and event multiplicity. To examine the validity 
of constituent quark number scaling, v2/nq and v3/nq are obtained 
as a function of KET/nq for both K0

S and Λ/Λ particles. A direct 
comparison of the pPb and PbPb results over a broad range of sim-
ilar multiplicities is presented.

2. The CMS experiment and data sample

A description of the CMS detector in the LHC at CERN can be 
found in Ref. [44]. The main detector component used in this pa-
per is the tracker, located in a superconducting solenoid of 6 m 
internal diameter, providing a magnetic field of 3.8 T. The tracker 
consists of 1440 silicon pixel and 15 148 silicon strip detector mod-
ules, covering the pseudorapidity range |η| < 2.5. For hadrons with 
pT ≈ 1 GeV and |η| ≈ 0, the impact parameter (distance of closest 
approach from the primary collision vertex) resolution is approxi-
mately 100 μm and the pT resolution is 0.8%.

Also located inside the solenoid are the electromagnetic cal-
orimeter (ECAL) and the hadron calorimeter (HCAL). The ECAL 
consists of 75 848 lead tungstate crystals, arranged in a quasi-
projective geometry and distributed in a barrel region (|η| < 1.48) 
and two endcaps that extend to |η| = 3.0. The HCAL barrel and 
endcaps are sampling calorimeters composed of brass and scintil-
lator plates, covering |η| < 3.0. Iron/quartz-fiber forward calorime-
ters (HF) are placed on each side of the interaction region, covering 

2.9 < |η| < 5.2. The detailed Monte Carlo (MC) simulation of the 
CMS detector response is based on geant4 [45].

The data sample used in this analysis was collected with the 
CMS detector during the LHC pPb run in 2013. The total integrated 
luminosity of the data set is about 35 nb−1 [46]. The beam en-
ergies are 4 TeV for protons and 1.58 TeV per nucleon for lead 
nuclei, resulting in a center-of-mass energy per nucleon pair of 
5.02 TeV. The direction of the proton beam was initially set up to 
be clockwise (20 nb−1), and was later reversed (15 nb−1). As a 
result of the energy difference between the colliding beams, the 
nucleon–nucleon center-of-mass in the pPb collisions is not at rest 
with respect to the laboratory frame. Massless particles emitted 
at ηcm = 0 in the nucleon–nucleon center-of-mass frame will be 
detected at η = −0.465 (clockwise proton beam) or 0.465 (coun-
terclockwise proton beam) in the laboratory frame. A sample of 
peripheral PbPb data at 

√
sN N = 2.76 TeV corresponding to an in-

tegrated luminosity of about 2.3 μb−1, collected during the 2011 
LHC heavy-ion run, is also analyzed for comparison with pPb data 
at similar charged-particle multiplicity ranges.

3. Online triggering and offline track reconstruction and 
selection

The online triggering and the offline reconstruction and selec-
tion follow the same procedure as described in Ref. [47]. Mini-
mum bias pPb events are triggered by requiring at least one track 
with pT > 0.4 GeV to be found in the pixel tracker for a pPb
bunch crossing. Because of hardware limits on the data acquisition 
rate, only a small fraction (∼ 10−3) of all minimum bias triggered 
events are recorded. In order to collect a large sample of high-
multiplicity pPb collisions, a dedicated high-multiplicity trigger is 
also implemented using the CMS Level 1 (L1) and high-level trigger 
(HLT) systems. At L1, two event streams were triggered by requir-
ing the total transverse energy summed over ECAL and HCAL to be 
greater than 20 or 40 GeV. Charged tracks are then reconstructed 
online at the HLT using the three layers of pixel detectors, and re-
quiring a track origin within a cylindrical region of 30 cm length 
along the beam and 0.2 cm radius perpendicular to the beam. For 
each event, the number of pixel tracks (Nonline

trk ) with |η| < 2.4 and 
pT > 0.4 GeV is counted separately for each vertex. Only tracks 
with a distance of closest approach of 0.4 cm or less to one of 
the vertices are included. The online selection requires Nonline

trk for 
the vertex with the most tracks to exceed a specific value. Data 
are taken with thresholds of Nonline

trk > 100, 130 (from events with 
L1 threshold of 20 GeV), and 160, 190 (from events with L1 thresh-
old of 40 GeV). While all events with Nonline

trk > 190 are accepted, 
only a fraction of the events from the other thresholds are kept. 
This fraction is dependent on the instantaneous luminosity. Data 
from both the minimum bias trigger and high-multiplicity trigger 
are retained for offline analysis.

In the offline analysis, hadronic collisions are selected by the 
presence of at least one tower with energy above 3 GeV in each 
of the two HF calorimeters. Events are also required to contain 
at least one reconstructed primary vertex within 15 cm of the 
nominal interaction point along the beam axis and within 0.15 cm 
transverse to the beam trajectory. At least two reconstructed tracks 
are required to be associated with the primary vertex, a condi-
tion that is important only for minimum bias events. Beam related 
background is suppressed by rejecting events for which less than 
25% of all reconstructed tracks pass the high-purity selection (as 
defined in Ref. [48]). The pPb instantaneous luminosity provided by 
the LHC in the 2013 run resulted in a 3% probability of having at 
least one additional interaction present in the same bunch crossing 
(pile-up events). The procedure used for rejecting pile-up events is 
described in Ref. [47] and is based on the number of tracks as-
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sociated with each reconstructed vertex and the distance between 
different vertices. A purity of 99.8% for single pPb collision events 
is achieved for the highest multiplicity pPb interactions studied in 
this paper. With the selection criteria above, 97–98% of the events 
are found to be selected among those pPb interactions simulated 
with the epos lhc [49] and hijing 2.1 [50] event generators that 
have at least one particle from the pPb interaction with energy 
E > 3 GeV in each of the η ranges −5 < η < −3 and 3 < η < 5.

In this analysis, high-purity tracks are used to select primary 
tracks (tracks originating from the pPb interaction). Additional re-
quirements are applied to enhance the purity of primary tracks. 
The significance of the separation along the beam axis (z) between 
the track and the best vertex, dz/σ (dz), and the significance of 
the impact parameter relative to the best vertex transverse to the 
beam, dT/σ (dT), must be less than 3, and the relative pT uncer-
tainty, σ(pT)/pT, must be less than 10%. To ensure high tracking 
efficiency and to reduce the rate of misreconstructed tracks, pri-
mary tracks with |η| < 2.4 and pT > 0.3 GeV are used in the analy-
sis (a pT cutoff of 0.4 GeV is used in the multiplicity determination 
to match the HLT requirement). Based on simulation studies using
geant4 to propagate particles from the hijing event generator, the 
combined geometrical acceptance and efficiency for primary track 
reconstruction exceeds 60% for pT ≈ 0.3 GeV and |η| < 2.4. The ef-
ficiency is greater than 90% in the |η| < 1 region for pT > 0.6 GeV. 
For the event multiplicity range studied in this paper, no depen-
dence of the tracking efficiency on multiplicity is found and the 
rate of misreconstructed tracks is 1–2%.

The entire pPb data set is divided into classes based on the re-
constructed track multiplicity, Noffline

trk , where primary tracks with 
|η| < 2.4 and pT > 0.4 GeV are counted. Details of the multiplic-
ity classification in this analysis, including the fraction of the full 
multiplicity distribution and the average number of primary tracks 
before and after correcting for detector effects in each multiplicity 
range, are provided in Ref. [47].

A subset of semi-peripheral PbPb data collected during the 
2011 LHC heavy-ion run with a minimum bias trigger are also 
reanalyzed in order to directly compare pPb and PbPb systems 
at the same collision multiplicity. The reanalyzed events were in 
the range of 50–100% centrality, where centrality is defined as 
the fraction of the total inelastic cross section, with 0% denoting 
the most central collisions. This sample was reprocessed using the 
same event selection and track reconstruction algorithm as for the 
present pPb analysis. A description of the 2011 PbPb data can be 
found in Refs. [47,51].

4. Reconstruction of K0
S and Λ/Λ candidates

The reconstruction technique for K0
S and Λ/Λ candidates (gen-

erally referred to as V 0s) at CMS was first described in Ref. [52]. 
To increase the efficiency for tracks with low momentum and large 
impact parameters, both characteristic of the K0

S and Λ/Λ de-
cay products, the standard loose selection of tracks (as defined in 
Ref. [48]) is used in reconstructing the K0

S and Λ/Λ candidates. 
Oppositely charged tracks with at least 4 hits and both transverse 
and longitudinal impact parameter significances greater than 1 
(with respect to the primary vertex) are first selected to form a 
secondary vertex. The distance of closest approach of the pair of 
tracks is required to be less than 0.5 cm. The fitted vertex in x, y, 
z of each pair of tracks is required to have a χ2 value normalized 
by the number of degrees of freedom less than 7. The pair of tracks 
is assumed to be π+π− in K0

S reconstruction, while the assump-
tion of π−p (π+p) is used in Λ (Λ) reconstruction. For Λ/Λ, the 
lower-momentum track is assumed to be the pion.

Due to the long lifetime of K0
S and Λ/Λ particles, a require-

ment on the significance of the V 0 decay length, which is the 

three-dimensional distance between the primary and V 0 vertices 
divided by its uncertainty, to be greater than 5 is applied to reduce 
background contributions. To remove K0

S candidates misidentified 
as Λ/Λ particles and vice versa, the Λ/Λ (K0

S ) candidates must 
have a corresponding π+π− (pπ−) mass more than 20 (10) MeV 
away from the PDG value of the K0

S (Λ) mass [53]. The angle θpoint

between the V 0 momentum vector and the vector connecting the 
primary and V 0 vertices is required to satisfy cos θpoint > 0.999. 
This reduces the effect of nuclear interactions, random combina-
tions of tracks, and Λ/Λ particles originating from weak decays 
of Ξ and Ω− particles. From MC simulations using Geant4 and 
the hijing event generator, it is found that the contribution of 
Λ/Λ particles from weak decays is less than 3% after this require-
ment. The K0

S (Λ/Λ) reconstruction efficiency is about 6% (1%) 
for pT ≈ 1 GeV and 20% (10%) for pT > 3 GeV within |η| < 2.4. 
This efficiency includes the effects of acceptance and the branch-
ing ratio for V 0 particle decays into neutral particles. The relatively 
low reconstruction efficiency of the V 0 candidates is primarily due 
to the decay length cut and the low efficiency for reconstructing 
daughter tracks with pT < 0.3 GeV or large impact parameters.

Examples of invariant mass distributions of reconstructed K0
S

and Λ/Λ candidates are shown in Fig. 1 for pPb data, with V 0

pT in the range of 1–3 GeV and event multiplicity in the range 
220 ≤ Noffline

trk < 260. Since the results for Λ and Λ are found to be 
consistent, they have been combined in this analysis. The V 0 peaks 
can be clearly identified with little background. The true V 0 sig-
nal peak is well described by a double Gaussian function (with a 
common mean), while the background is modeled by a 4th-order 
polynomial function fit over the entire mass range shown in Fig. 1. 
The mass window of ±2σ wide around the center of the peak 
is defined as the “peak region”, where σ represents the root mean 
square of the two standard deviations of the double Gaussian func-
tions weighted by the yields (with typical value of σ indicated in 
Fig. 1). To estimate the contribution of background candidates in 
the peak region to the correlation measurement, a “sideband re-
gion” is chosen that includes V 0 candidates from outside the ±3σ
mass range around the V 0 mass to the limit of the mass distribu-
tions shown in Fig. 1.

5. Analysis of two-particle correlations

The construction of the two-particle correlation function fol-
lows the same procedure established in Refs. [6,7,14,47]. However, 
in this paper, reconstructed V 0 candidates from either the peak or 
sideband region are taken as “trigger” particles within a given ptrig

T
range, instead of charged tracks as used in previous publications. 
The number of trigger V 0 candidates in the event is denoted by 
Ntrig. Particle pairs are formed by associating each trigger particle 
with the remaining charged primary tracks in a specified passoc

T in-

terval (which can be either the same as or different from the ptrig
T

range). The two-dimensional (2D) correlation function is defined in 
the same way as in previous analyses as

1

Ntrig

d2Npair

d�η d�φ
= B(0,0) × S(�η,�φ)

B(�η,�φ)
, (1)

where �η and �φ are the differences in η and φ of the pair. The 
same-event pair distribution, S(�η, �φ), represents the yield of 
particle pairs normalized by Ntrig from the same event,

S(�η,�φ) = 1

Ntrig

d2Nsame

d�η d�φ
. (2)
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Fig. 1. Invariant mass distribution of K0
S (left) and Λ/Λ (right) candidates in the pT range of 1–3 GeV for 220 ≤ Noffline

trk < 260 in pPb collisions at √sN N = 5.02 TeV. The solid 
line shows the fit function of a double Gaussian plus a 4th-order polynomial (dashed line).
The mixed-event pair distribution,

B(�η,�φ) = 1

Ntrig

d2Nmix

d�η d�φ
, (3)

is constructed by pairing the trigger V 0 candidates in each event 
with the associated charged primary tracks from 20 different ran-
domly selected events in the same 2 cm wide range of vertex po-
sition in the z direction and from the same track multiplicity class. 
Here, Nmix denotes the number of pairs taken from the mixed 
events. The ratio B(0, 0)/B(�η, �φ) mainly accounts for the pair 
acceptance effects, with B(0, 0) representing the mixed-event as-
sociated yield for both particles of the pair going in approximately 
the same direction and thus having maximum pair acceptance 
(with a bin width of 0.3 in �η and π/16 in �φ). Thus, the quan-
tity in Eq. (1) is effectively the per-trigger-particle associated yield. 
A pair is removed if the associated particle belongs to a daughter 
track of any trigger V 0 candidate (this contribution is negligible 
since associated particles are mostly primary tracks).

The same-event and mixed-event pair distributions are first 
calculated for each event, and then averaged over all the events 
within the track multiplicity class. The range of 0 < |�η| < 4.8
and 0 < |�φ| < π is used to fill one quadrant of the (�η, �φ) his-
tograms, with the other three quadrants filled (for illustration pur-
poses) by reflection to cover a (�η, �φ) range of −4.8 < �η < 4.8
and −π/2 < �φ < 3π/2 for the 2D correlation functions, as will 
be shown later in Fig. 2. In performing the correlation analyses, 
each reconstructed primary track and V 0 candidate is weighted by 
a correction factor, following the procedure described in Refs. [6,
7,14,47]. This correction is also applied in calculating Ntrig. This 
factor accounts for detector effects including the reconstruction 
efficiency, the detector acceptance, and the fraction of misrecon-
structed tracks. This correction factor is found to have a negligible 
effect on the azimuthal anisotropy harmonics.

5.1. Extraction of vn harmonics

Motivated by hydrodynamic models of long-range correlations 
in pPb collisions, azimuthal anisotropy harmonics of K0

S and Λ/Λ

particles are extracted via a Fourier decomposition of �φ corre-
lation functions averaged over |�η| > 2 (to remove short-range 
correlations such as jet fragmentation),

1

Ntrig

dNpair

d�φ
= Nassoc

2π

[
1 +

∑
n

2Vn� cos(n�φ)

]
, (4)

as was done in Refs. [6,7,14,47]. Here, Vn� are the Fourier coeffi-
cients and Nassoc represents the total number of pairs per trigger 

V 0 particle for a given (ptrig
T , passoc

T ) bin. The first three Fourier 
terms are included in the fits to the correlation functions. Includ-
ing additional terms has a negligible effect on the results of the 
Fourier fit.

If the observed two-particle azimuthal correlations arise purely 
as the result of convoluting anisotropic distributions of single par-
ticles, then the Vn� coefficients can be factorized into the product 
of single-particle anisotropies [47],

Vn�

(
ptrig

T , passoc
T

) = vn
(

ptrig
T

) × vn
(

passoc
T

)
. (5)

Following this assumption, the elliptic (v2) and triangular (v3)

anisotropy harmonics of V 0 particles can be extracted as a func-
tion of pT from the fitted Fourier coefficients,

vn
(

pV 0

T

) = Vn�(pV 0

T , pref
T )√

Vn�(pref
T , pref

T )

, n = 2,3. (6)

Here, a fixed pref
T range for the “reference” charged primary par-

ticles is chosen to be 0.3 < pT < 3.0 GeV (the lowest pT region 
accessible by CMS and the same as was used in Ref. [47]), to min-
imize correlations from back-to-back jets at higher pT.

The vn values are first extracted for V 0 candidates from the 
peak region (which contains small contributions from background 
V 0s) and sideband region, denoted as vobs

n and vbkg
n , respectively. 

The vn signal of true V 0 particles is denoted by vsig
n and is ob-

tained by

vsig
n = vobs

n − (1 − f sig) × vbkg
n

f sig
, n = 2,3, (7)

assuming vsig
n and vbkg

n are independent from each other. Here, f sig

represents the signal yield fraction in the peak region determined 
by the fits to the mass distribution shown in Fig. 1. This fraction 
exceeds 80% for Λ/Λ candidates at pT > 1 GeV and is above 95% 
for K0

S candidates over the entire pT range.

5.2. Systematic uncertainties

Table 1 summarizes different sources of systematic uncertain-
ties in vsig

n (identical for K0
S and Λ/Λ particles) for pPb and PbPb

data. The dominant sources of systematic uncertainties are related 
to the reconstruction of V 0 candidates. The systematic effects are 
found to have no dependence on pT so the estimated systematic 
uncertainties are assumed to be constant percentages over the en-
tire pT range. Systematic uncertainties in vsig

3 are assumed to be 
the same as those in vsig

2 , as was done in Ref. [47].
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Table 1
Summary of systematic uncertainties in vsig

n for pPb and PbPb data.

Source pPb (%) PbPb (%)

V 0 mass distribution range used in fit 1 1
Size of V 0 mass region for signal 2 2
Size and location of V 0 mass sideband region 2.2 2.2
Misidentified V 0 mass region 2 2
V 0 selection criteria 3 3
Tracker misalignment 2 2
MC closure test 4 4
Trigger efficiency 2 –
Pile-up 1 –

Total 6.9 6.6

The range of the V 0 mass distributions used in fitting the sig-
nal plus background (Fig. 1) is varied by 10%. This change, which 
could affect the value of f sig used in Eq. (7), yields a systematic 
uncertainty of less than 1% for the vsig

2 results. Changing the mass 
range included in the peak region could impact the values of both 
f sig and vobs

2 . For a variation from ±1σ to ±3σ , the vsig
2 values are 

found to be consistent within 2%. Systematic uncertainties due to 
selection of different sideband mass regions, which could change 
vbkg

2 , are estimated to be 2.2%. Possible contamination by resid-
ual misidentified V 0 candidates (i.e., K0

S as Λ/Λ, and vice versa) 
is also investigated. Variation of the invariant mass range used to 
reject misidentified V 0 candidates leads to variations of less than 
2% on vsig

2 . Systematic effects related to selection of the V 0 can-
didates are evaluated by varying the requirements on the decay 
length significance and cos θpoint, resulting in an uncertainty of 3%. 

As misalignment of the tracker detector elements can affect the 
V 0 reconstruction performance, an alternative detector geometry 
is studied. Compared to the standard configuration, this alternative 
has the two halves of the barrel pixel detector shifted in opposite 
directions along the beam by a distance on the order of 100 μm. 
The values of vsig

2 found using the shifted configuration differed by 
less than 2% from the default ones.

To test the procedure of extracting the V 0 signal v2 from 
Eq. (7), a study using epos lhc pPb MC events is performed to 
compare the extracted vsig

2 results with the generator-level K0
S and 

Λ/Λ values. The agreement is found to be better than 4%. Other 
systematic uncertainties introduced by the high-multiplicity trigger 
efficiency (1%) and possible residual pile-up effects (1–2%) for pPb
data are estimated in the same way as in Ref. [47], and found to 
make only a small contribution. The various sources of systematic 
uncertainties are added together in quadrature to arrive at the final 
systematic uncertainties (6.9% for pPb and 6.6% for PbPb), which 
are shown as shaded boxes in Figs. 4–7.

6. Results

The 2D two-particle correlation functions measured in pPb col-
lisions for pairs of a K0

S (left) and Λ/Λ (right) trigger particles 
and a charged associated particle (h±) are shown in Fig. 2 in the 
pT range of 1–3 GeV. The 2D correlation functions are corrected 
for the background V 0 candidates, following the same approach 
of correcting vn in Eq. (7). The correction is negligible in this 
pT range because of the high signal yield fraction of V 0 candi-
dates. For low-multiplicity events (Noffline

trk < 35, Fig. 2(a) and (b)), 
a sharp peak near (�η, �φ) = (0, 0) due to jet fragmentation 
Fig. 2. The 2D two-particle correlation functions in pPb collisions at √sN N = 5.02 TeV for pairs of a K0
S (a), (c) or Λ/Λ (b), (d) trigger particle and a charged associated 

particle (h±), with 1 < ptrig
T < 3 GeV and 1 < passoc

T < 3 GeV, in the multiplicity ranges Noffline
trk < 35 (a), (b) and 220 ≤ Noffline

trk < 260 (c), (d). The sharp near-side peak from 
jet correlations is truncated to emphasize the structure outside that region.
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Fig. 3. The 1D �φ correlation functions from pPb data after applying the ZYAM procedure, in the multiplicity range Noffline
trk < 35 (open) and 220 ≤ Noffline

trk < 260 (filled), for 
trigger particles composed of inclusive charged particles (left), K0

S particles (middle), and Λ/Λ particles (right). Selection of a fixed ptrig
T and passoc

T range of both 1–3 GeV is 
shown for the long-range region (|�η| > 2) on top and the short-range (|�η| < 1) minus long-range region on the bottom. The curves on the top panels correspond to the 
Fourier fits including the first three terms. Statistical uncertainties are smaller than the size of the markers.
(truncated for better illustration of the full correlation structure) 
can be clearly observed for both K0

S –h± and Λ/Λ–h± correlations. 
Moving to high-multiplicity events (220 ≤ Noffline

trk < 260, Fig. 2(c) 
and (d)), in addition to the peak from jet fragmentation, a pro-
nounced long-range structure is seen at �φ ≈ 0, extending at least 
4.8 units in |�η|. This structure was previously observed in high-
multiplicity (Noffline

trk ∼ 110) pp collisions at 
√

s = 7 TeV [13] and 
pPb collisions at 

√
sN N = 5.02 TeV [14–16,47] for inclusive charged 

particles, and also for identified charged pions, kaons, and protons 
in pPb collisions at 

√
sN N = 5.02 TeV [31]. A similar long-range 

correlation structure has also been extensively studied in AA col-
lisions over a wide range of energies [1–9], where it is believed 
to arise primarily from collective flow of a strongly interacting 
medium [34].

To investigate the correlation structure for different species of 
particles in detail, one-dimensional (1D) distributions in �φ are 
found by averaging the signal and mixed-event 2D distributions 
over |�η| < 1 (defined as the “short-range region”) and |�η| > 2
(defined as the “long-range region”), as done in Refs. [6,7,13,14,47]. 
Fig. 3 shows the 1D �φ correlation functions from pPb data for 
trigger particles composed of inclusive charged particles (left) [47], 
K0

S particles (middle), and Λ/Λ particles (right), in the multiplic-
ity range Noffline

trk < 35 (open) and 220 ≤ Noffline
trk < 260 (filled). The 

curves show the Fourier fits from Eq. (4) to the long-range re-
gion, which will be discussed in detail later. Following the standard 
zero-yield-at-minimum (ZYAM) procedure [47], each distribution is 
shifted to have zero associated yield at its minimum to represent 
the correlated portion of the associated yield. Selection of fixed 
ptrig

T and passoc
T ranges of 1–3 GeV is shown for the long-range 

region (top) and for the difference of the short- and long-range 
regions (bottom) in Fig. 3. As illustrated in Fig. 2, the near-side 
long-range signal remains nearly constant in �η. Therefore, by 
taking a difference of 1D �φ projections between the short- and 
long-range regions, the near-side jet correlations can be extracted. 
As shown in the bottom panels of Fig. 3, due to biases in mul-
tiplicity selection toward higher pT jets, a larger jet peak yield 
is observed for events selected with higher multiplicities. Because 
charged particles are directly used in determining the multiplic-

ity in the event, this selection bias is much stronger for charged 
particles than K0

S and Λ/Λ hadrons. For Noffline
trk < 35, no near-side 

correlations are observed in the long-range region for any particle 
species. The PbPb data show qualitatively the same behavior as the 
pPb data, and thus are not presented here.

Recently, the v2 anisotropy harmonics for charged pions, kaons, 
and protons have been studied using two-particle correlations in 
pPb collisions [31], and are found to be qualitatively consistent 
with hydrodynamic models [32,33]. In this paper, the elliptic (v2) 
and triangular (v3) flow harmonics of K0

S and Λ/Λ particles are 
extracted from the Fourier decomposition of 1D �φ correlation 
functions for the long-range region (|�η| > 2) in a significantly 
larger sample of pPb collisions such that the particle species de-
pendence of vn can be investigated in detail. In Fig. 4, the vsig

2
of K0

S and Λ/Λ particles are plotted as a function of pT for the 
three lowest multiplicity ranges in PbPb and pPb collisions. These 
data were recorded using a minimum bias trigger. The range of 
the fraction of the full multiplicity distribution that each multi-
plicity selection corresponds to, as determined in Ref. [47], is also 
specified in the figure. In contrast to most other PbPb analyses, the 
present work uses multiplicity to classify events, instead of the to-
tal energy deposited in HF (the standard procedure of centrality 
determination in PbPb) [47,51]. By examining the HF energy dis-
tribution for PbPb events in each of the multiplicity ranges, the 
corresponding average HF fractional cross section (and its standard 
deviation) can be determined, which are presented for PbPb data 
in the figure.

In the low multiplicity region (Fig. 4), the v2 values of K0
S and 

Λ/Λ particles are compatible within statistical uncertainties. As 
there is no evident long-range near-side correlation seen in these 
low-multiplicity events, the extracted v2 most likely reflects back-
to-back jet correlations on the away side. Away-side jet correla-
tions typically appear as a peak structure around �φ ≈ π , which 
contributes to various orders of Fourier terms.

The top row of Fig. 5 shows the measured v2 values for K0
S

and Λ/Λ particles as a function of pT from the high multiplic-
ity pPb data, along with the previously published results for in-
clusive charged particles [47]. In the pT � 2 GeV region for all 
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Fig. 4. The v2 results for K0
S (filled squares) and Λ/Λ (filled circles) particles as a function of pT for three multiplicity ranges obtained from minimum bias triggered PbPb

sample at √sN N = 2.76 TeV (top row) and pPb sample at √sN N = 5.02 TeV (bottom row). The error bars correspond to statistical uncertainties, while the shaded areas 
denote the systematic uncertainties. The values in parentheses give the mean and standard deviation of the HF fractional cross section for PbPb and the range of the fraction 
of the full multiplicity distribution included for pPb.

Fig. 5. Top row: the v2 results for K0
S (filled squares), Λ/Λ (filled circles), and inclusive charged particles (open crosses) as a function of pT for four multiplicity ranges 

obtained from high-multiplicity triggered pPb sample at √sN N = 5.02 TeV. Middle row: the v2/nq ratios for K0
S (filled squares) and Λ/Λ (filled circles) particles as a function 

of KET/nq , along with a fit to the K0
S results using a polynomial function. Bottom row: ratios of v2/nq for K0

S and Λ/Λ particles to the fitted polynomial function as a function 
of KET/nq . The error bars correspond to statistical uncertainties, while the shaded areas denote the systematic uncertainties. The values in parentheses give the range of the 
fraction of the full multiplicity distribution included for pPb.
high-multiplicity ranges, the v2 values of K0
S particles are larger 

than those for Λ/Λ particles at each pT value. Both of them 
are consistently below the v2 values of inclusive charged parti-
cles. As most charged particles are pions, the data indicate that 
lighter particle species exhibit a stronger azimuthal anisotropy sig-
nal. This mass ordering behavior is consistent with expectations 

in hydrodynamic models and the observation in 0–20% central-
ity pPb collisions [31]. A similar trend was first observed in AA
collisions at RHIC [28,29]. At higher pT, the v2 values of Λ/Λ par-
ticles are larger than those of K0

S . The inclusive charged particle 
v2 values fall between the values of the two identified strange 
hadron species but are much closer to the v2 values for K0

S parti-
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Fig. 6. Top row: the v2 results for K0
S (filled squares), Λ/Λ (filled circles), and inclusive charged particles (open crosses) as a function of pT for four multiplicity ranges 

obtained from minimum bias triggered PbPb sample at √sN N = 2.76 TeV. Middle row: the v2/nq ratios for K0
S (filled squares) and Λ/Λ (filled circles) particles as a function 

of KET/nq . Bottom row: ratios of v2/nq for K0
S and Λ/Λ particles to a smooth fit function of v2/nq for K0

S particles as a function of KET/nq . The error bars correspond to 
statistical uncertainties, while the shaded areas denote the systematic uncertainties. The values in parentheses give the mean and standard deviation of the HF fractional 
cross section for PbPb.
cles. Note that the ratio of baryon to meson yield in pPb collisions 
is enhanced at higher pT, an effect that becomes stronger as mul-
tiplicity increases [54,55]. This should also be taken into account 
when comparing vn values between inclusive and identified parti-
cles. Comparing the results in Fig. 4 and Fig. 5, the dependence of 
v2 on the particle species may already be emerging in the multi-
plicity range of 60 ≤ Noffline

trk < 120.
The scaling behavior of v2 divided by the number of con-

stituent quarks as a function of transverse kinetic energy per 
quark, KET/nq , is investigated for high-multiplicity pPb events in 
the middle row of Fig. 5. After scaling by the number of quarks, 
the v2 distributions for K0

S and Λ/Λ particles are found to be 
in agreement. The middle row of Fig. 5 also shows the result of 
fitting a polynomial function to the K0

S data. The bottom row of 
Fig. 5 shows the nq-scaled v2 results for K0

S and Λ/Λ particles di-
vided by this polynomial function fit, indicating that the scaling 
is valid to better than 10% over most of the KET/nq range, except 
for KET/nq < 0.2 GeV where the deviation grows to about 20%. In 
AA collisions, this approximate scaling behavior is conjectured to 
be related to quark recombination [39–41], which postulates that 
collective flow is developed among constituent quarks before they 
combine into final-state hadrons. Note that the scaling of v2 with 
the number of constituent quarks was originally observed as a 
function of pT, instead of KET, for the intermediate pT range of a 
few GeV [38], and interpreted in a simple picture of quark coales-
cence [39]. However, it was later discovered that when plotted as 
a function of KET in order to remove the mass difference of identi-
fied hadrons, the scaling appears to hold over the entire kinematic 
range [42,43]. However, this scaling behavior is not expected to be 
exact at low pT in hydrodynamic models because of the impact of 
radial flow. As the vn data tend to approach a constant value as a 
function of pT or KET for pT � 2 GeV, the scaling behavior in terms 

of pT and KET cannot be differentiated in that regime. Therefore, 
the nq-scaled vn results in this paper are presented as a function 
of KET/nq in order to explore the scaling behavior over a wider 
kinematic range.

The particle species dependence of v2 and its scaling behav-
ior is also studied in PbPb data over the same multiplicity ranges 
as for the pPb data, as shown in Fig. 6. The mean and standard 
deviation of the HF fractional cross section of the PbPb data are 
indicated on the plots. Qualitatively, a similar particle-species de-
pendence of v2 is observed. However, the mass ordering effect 
is found to be less evident in PbPb data than in pPb data for 
all multiplicity ranges. In hydrodynamic models, this may indi-
cate a stronger radial flow is developed in the pPb system as 
its energy density is higher than that of a PbPb system due to 
having a smaller size system at the same multiplicity. Moreover, 
the nq-scaled v2 data in PbPb at similar multiplicities suggest 
a stronger violation of constituent quark number scaling, up to 
25%, than is observed in pPb, especially for higher KET/nq val-
ues. This is also observed in peripheral AuAu collisions at RHIC, 
while the scaling applies more closely for central AuAu colli-
sions [56].

The triangular flow harmonic, v3, of K0
S and Λ/Λ particles is 

also extracted in pPb and PbPb collisions, as shown in Fig. 7. Due 
to limited statistical precision, only the result in the multiplicity 
range 185 ≤ Noffline

trk < 350 is presented. A similar species depen-
dence of v3 to that of v2 is observed and, within the statistical 
uncertainties, the v3 values scaled by the constituent quark num-
ber for K0

S and Λ/Λ particles match at the level of 20% over the 
full KET/nq range. To date, no calculations of the quark number 
scaling of triangular flow, v3, have been performed in the parton 
recombination model.
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Fig. 7. Top: the v3 results for K0
S (filled squares), Λ/Λ (filled circles), and inclusive charged particles (open crosses) as a function of pT for the multiplicity range 185 ≤

Noffline
trk < 350 in pPb collisions at √sN N = 5.02 TeV (left) and in PbPb collisions at √sN N = 2.76 TeV (right). Bottom: the nq -scaled v3 values of K0

S (filled squares) and Λ/Λ

(filled circles) particles as a function of KET/nq for the same two systems. Ratios of vn/nq to a smooth fit function of vn/nq for K0
S particles as a function of KET/nq are 

also shown. The error bars correspond to statistical uncertainties, while the shaded areas denote the systematic uncertainties. The values in parentheses give the mean and 
standard deviation of the HF fractional cross section for PbPb and the range of the fraction of the full multiplicity distribution included for pPb.
7. Summary

Measurements of two-particle correlations with an identified K0
S

or Λ/Λ trigger particle have been presented over a broad trans-
verse momentum and pseudorapidity range in pPb collisions at √

sN N = 5.02 TeV and PbPb collisions at 
√

sN N = 2.76 TeV. With 
the implementation of a high-multiplicity trigger during the LHC 
2013 pPb run, the identified particle correlation data in pPb col-
lisions are explored over a broad particle multiplicity range, com-
parable to that covered by 50–100% centrality PbPb collisions. The 
long-range (|�η| > 2) correlations are quantified in terms of az-
imuthal anisotropy Fourier harmonics (vn) motivated by hydrody-
namic models. In low-multiplicity pPb and PbPb events, similar v2
values of K0

S and Λ/Λ particles are observed, which likely originate 
from back-to-back jet correlations. For higher event multiplicities, 
a particle species dependence of v2(pT) and v3(pT) is observed. 
For pT � 2 GeV, the values of vn for K0

S particles are found to be 
larger than those of Λ/Λ particles, while this order is reversed 
at higher pT. This behavior is consistent with RHIC and LHC re-
sults in AA collisions and for identified charged hadrons in pPb
and dAu collisions. For similar event multiplicities, the particle 
species dependence of v2 and v3 at low pT is observed to be 
more pronounced in pPb than in PbPb collisions. In the context 
of hydrodynamic models, this may indicate that a stronger radial 
flow boost is developed in pPb collisions. Furthermore, constituent 
quark number scaling of v2 and v3 between K0

S and Λ/Λ parti-

cles is found to apply for PbPb and high-multiplicity pPb events. 
The constituent quark number scaling is found to hold at the 10% 
(25%) level in pPb (PbPb) collisions, for similar event multiplicities. 
It will be interesting to see if this scaling law continues to hold 
for other particles. The results presented in this paper provide im-
portant input to the further exploration of the possible collective 
flow origin of long-range correlations, and can be used to evaluate 
models of quark recombination in a deconfined medium of quarks 
and gluons.
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