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Abstract. Ultrasonic cavitation treatment of melt significantly improves the downstream 

properties and quality of conventional and advanced metallic materials. However, the transfer 

of this technology has been hindered by difficulties in treating large volumes of liquid metal. 

To improve the understanding of cavitation processing efficiency, the Full Cavitation Model, 

which is derived from a reduced form of the Rayleigh-Plesset equation, is modified and applied 

to the two-phase problem of bubble propagation in liquid melt. Numerical simulations of the 

sound propagation are performed in the microsecond time scale to predict the maximum and 

minimum acoustic pressure amplitude fields in the domain. This field is applied to the source 

term of the bubble transport equation to predict the generation and destruction of cavitation 

bubbles in a time scale relevant to the fluid flow. The use of baffles to limit flow speed in a 

launder conduit is studied numerically, to determine the optimum configuration that maximizes 

the residence time of the liquid in high cavitation activity regions. With this configuration, it is 

then possible to convert the batch processing of liquid metal into a continuous process. The 

numerical simulations will be validated against water and aluminium alloy experiments, 

carried out at Brunel University. 

1.  Introduction 

Significant improvement of quality and properties in metallic materials is observed when melt is 

treated with ultrasound [1][2]. These improvements are primarily due to ultrasonic cavitation, with the 

creation, growth, pulsation, and collapse of bubbles in the liquid. However, this technology has not 

been successfully transferred to the industry due to the difficulty in treating large volumes of liquid 

metal, as is required by processes such as continuous casting. A fundamental study of the ultrasonic 

treatment of melt is thus required to circumvent these difficulties. 

The full cavitation model was developed by Athavale et al [3][4] to provide the capability for 

multidimensional simulation of cavitating flows, the modelling of which is crucial to the design of 

many engineering devices [5]. In their approach, the authors derived source terms for the bubble mass 

fraction transport equation from the Rayleigh-Plesset equation [6], which governs the evolution of a 

spherical bubble [7], to predict the formation and collapse of bubbles in cavitating flows. This model 

has been used in the modelling of the solidification structure evolution by Nastac [8]. 

In this study, the full cavitation model is modified to compute the bubble concentration in a launder. 

The novelty here is to understand the effect of ultrasonic treatment on flowing melt, paving the way to 

the ultrasonic treatment of liquid metal in batch. 
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2.  Numerical method 

The approach consists of solving the wave equation and using the acoustic pressure solution in the 

source term of a non-condensable gas mass fraction, 𝑓𝑔, equation. The Reynolds-Averaged Navier-

Stokes (RANS) equations are solved along with the mass fraction transport equation. The density of 

the fluid is calculated as a function of the non-condensable gas mass fraction. 

2.1.  Governing equations 

2.1.1.  Fluid equations. Fluid flow is governed by the RANS equations: 

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌𝒖) = 0

 
𝜕(𝜌𝑢𝑖)

𝜕𝑡
+ ∇ ⋅ (𝜌𝒖𝑢𝑖) = ∇ ⋅ [(𝜇 + 𝜇𝑡)∇𝑢𝑖] + 𝑆𝑢𝑖

 (2) 

where 𝜌 is the fluid density, 𝒖 is the fluid velocity, 𝜇 is the dynamic viscosity, 𝜇𝑡 is the eddy viscosity, 

and 𝑆𝑢𝑖
 are the momentum sources. The fluid density is related to the vapour and non-condensable gas 

mass fractions, 𝑓𝑣 and 𝑓𝑔, according to: 

 
1

𝜌
=

𝑓𝑣

𝜌𝑣
+

𝑓𝑔

𝜌𝑔
+

1−𝑓𝑣−𝑓𝑔

𝜌𝑙
 (3) 

where 𝜌𝑣 is the density of the vapour in the bubbles, 𝜌𝑔 is the density of the non-condensable gas–

hydrogen for aluminium melt–, and 𝜌𝑙 is the liquid density [4]. The standard 𝑘 − 𝜀 model [9] is used 

for closure in the RANS formulation. 

2.1.2.  Wave equation. The wave equation is: 

  
𝜕2𝑝

𝜕𝑡2 − 𝑐2 𝜕

𝜕𝑥𝑖
(

𝜕𝑝

𝜕𝑥𝑖
) = 𝑐2𝑆𝑝 (4) 

where 𝑝 is acoustic pressure, 𝑐 is the speed of sound, and 𝑆𝑝 are the wave source terms. 

2.1.3.  Full cavitation model. The liquid-bubble mass transfer is governed by the cavity transport 

equation [4]: 

 
𝜕(𝜌𝑣𝑓𝑣)

𝜕𝑡
+ ∇ ⋅ (𝜌𝑣𝒖𝑓𝑣) = ∇ ⋅ (Γ∇𝑓𝑣) + 𝑆𝐺 − 𝑆𝐶 (5) 

where Γ =  𝜇 + 𝜇𝑡 is the effective exchange coefficient, and 𝑆𝐺  and 𝑆𝐶  are the mass transfer source 

terms related to the growth and collapse of the cavitation bubbles respectively.  𝑆𝐺 and 𝑆𝐶 are derived 

from the Rayleigh-Plesset equation [6] and are given by [4]: 

when 𝑝 < 𝑝𝑣: 

 𝑆𝐺 = 𝐶𝐺
√𝑘

𝑆
𝜌𝑙𝜌𝑣 [

2

3

𝑝𝑣−𝑝

𝜌𝑙
]

1

2
(1 − 𝑓𝑣 − 𝑓𝑔) (6) 

when 𝑝 > 𝑝𝑣: 

 𝑆𝐶 = 𝐶𝑐
√𝑘

𝑆
𝜌𝑙𝜌𝑣 [

2

3

𝑝−𝑝𝑣

𝜌𝑙
]

1

2 (𝑓𝑣) (7) 

where 𝐶𝐺 = 0.02 and 𝐶𝐶 = 0.01. 𝑝𝑣 is the sum of the vapor pressure and an estimation of the local 

values of turbulent pressure fluctuations [4]: 

 𝑝𝑣 = 𝑝𝑠𝑎𝑡 + 0.39𝜌𝑘/2 (8) 
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2.1.4.  Modification of the full cavitation model for melt modelling. In liquid aluminium, cavitation due 

to vapour pressure is hard to attain and cavitation is mainly due to non-condensable gases, mainly 

hydrogen. The full cavitation model is therefore modified to account for this difference. 

The vapour mass fraction is ignored and the density and mass fraction transport equations are re-

written as: 

 
1

𝜌
=

𝑓𝑔

𝜌𝑔
+

1−𝑓𝑔

𝜌𝑙
 (9) 

 
𝜕(𝜌𝑔𝑓𝑔)

𝜕𝑡
+ ∇ ⋅ (𝜌𝑔𝒖𝑓𝑔) = ∇ ⋅ (Γ∇𝑓𝑔) + 𝑆𝐺 − 𝑆𝐶 (10) 

where the sources are now given by: 

when 𝑝𝑚𝑖𝑛 < (𝑝𝑔 + 0.39𝜌𝑘/2): 

 𝑆𝐺 = 𝐶𝐺
√𝑣𝑐ℎ

𝑆
𝜌𝑙𝜌𝑔 [

2

3

𝑝𝑔+0.39𝜌𝑘/2−𝑝

𝜌𝑙
]

1

2
(1 − 𝑓𝑔) (11) 

when  𝑝𝑚𝑎𝑥 > (𝑝𝑔 + 0.39𝜌𝑘/2): 

 𝑆𝐶 = 𝐶𝑐
√𝑣𝑐ℎ

𝑆
𝜌𝑙𝜌𝑔 [

2

3

𝑝−𝑝𝑔−0.39𝜌𝑘/2

𝜌𝑙
]

1

2
(𝑓𝑔) (12) 

The coefficients of Athavale et al [3] are used in the source terms, although their application to this 

modified model has to be validated from experiment. 𝑣𝑐ℎ is estimated as 1 % of the mean flow speed.  

2.1.5.  Modelling flow and bubble generation in the macro- time scale. In order to run simulations in a 

time scale more appropriate for the flow, the minimum and maximum acoustic pressures 𝑝𝑚𝑖𝑛 and 

𝑝𝑚𝑎𝑥 are first computed from a microsecond time scale simulation, with the time-step chosen so as to 

ensure that a minimum of 20 points are available per ultrasonic cycle. These stored pressures are then 

respectively applied to the generation and collapse source terms given by equations (11) and (12). 

2.2.  Discretization 

2.2.1.  Leap-frog scheme for the wave equation. Wave equation (4) is discretized using a second-order 

scheme. Acoustic pressures are stored at cell centres at each time step. Velocity components are stored 

on faces half time step apart from the pressures. 

𝑝k = 𝑝𝑘−1 −
𝑐Δ𝑡

𝑥𝑖
 (𝑢

𝑖,𝑑𝑤𝑛𝑑

𝑘−
1
2 − 𝑢

𝑖,𝑢𝑝𝑤𝑛𝑑

𝑘−
1
2 ) + 𝑆Δ𝑡

𝑢
𝑖

𝑘+
1
2 = 𝑢

𝑖

𝑘−
1
2 − 𝑐Δ𝑡 (𝑝𝑑𝑤𝑛𝑑

𝑘 − 𝑝𝑢𝑝𝑤𝑛𝑑
𝑘 ) + 𝑆𝑖Δ𝑡

where 𝑢𝑖 are the wave velocities. 

2.2.2.  Finite volume method. The finite volume method is used to discretize the RANS and transport 

equations. 

3.  Problem description 

In order to model continuous treatment of melt, the launder, shown in Figure 1, is used for the 

computational domain. The sonotrode is at the center of the domain and the tip is immersed 1 cm 

below the liquid surface. The inlet and outlet are at the lowest and highest y values respectively. Clean 

liquid, that is without bubble, enters the domain at a velocity of 0.01 m s-1 in the y direction. The 

launder problem is solved for both water and aluminium. The launder boundaries are full reflective to 

ultrasound. 
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The distance between the baffles is varied as a function of the sound wavelength. In water, the 

wavelength 𝜆 of ultrasound at 20 kHz is 7.4 cm, and in aluminium, the wavelength is 23 cm. The case 

is run for each liquid for the following distances 𝐿 between baffles: 0.5 𝜆, 1 𝜆, and 1.5 𝜆. The material 

properties for the melt – aluminium –, and water are shown in Table 1. 

 

 Table 1. Material properties of liquid aluminium and water [1]. 

Material Property Aluminium (700 ºC)  Water (20 ºC) 

Sound speed 𝒄 (m s-1) 4600  1481 

Density 𝝆𝒍 (kg m-3) 2350  1000 

Dynamic viscosity 𝝁 (mPa s) 1.3 0.798 

Surface tension (hydrogen interface) 𝑺 (N m-1) 0.87 0.072 

Vapour pressure 𝒑𝒔𝒂𝒕 (kPa) 0 4.24 

 

4.  Results 

4.1.  Acoustic run 

The wave equation (4) is solved with a time step of 1 µs, and the minimum and acoustic pressure in 

the domain is obtained, as shown in Figure 2 and Figure 3 for the baffles separated at 37 cm, half the 

wavelength of sound in water at 20 ºC. As expected, the extreme values of pressure are at their highest 

just below the sonotrode, in the middle of the domain. The cavitation threshold of -1.0 x 105 Pa is 

achieved in the whole domain for this configuration. 

 

 
Figure 1. 50 cm x 9 cm x 8 cm launder. L denotes the length between baffles, of thickness 8 mm 

each.  The sonotrode is immersed 1 cm into the free surface at the center of the domain. 

 
Figure 2. Predicted minimum acoustic pressure (Pa) in domain for a configuration with baffles 

separated at a distance of 0.5 𝝀 for water. 

L 

Inlet 

Outlet 

Sonotrode position 
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The low values of maximum acoustic pressure at the left of the first (upstream) separation hinders 

the collapse of bubbles, and can yield large values of bubble concentration upstream, as shown in the 

next section. 

4.2.  Cavitation run 

The full cavitation model is run for 20 s of simulation time with a time step of 1 ms for both water and 

aluminium. Figure 4 and Figure 5 show the bubble mass fraction below the sonotrode at the end of the 

run time for both the water and aluminium simulations. Figure 6 and Figure 7 describe the variation of 

the bubble concentration along the axis of the launder. 

 

 

 

 

Figure 4. Bubble mass fraction along the axis of 

the sonotrode for water after a run time of 20 s. 

Mass fraction values are taken along the axis of 

the sonotrode. 

 Figure 5. Bubble mass fraction along the axis of 

the sonotrode for aluminium after a run time of 

20 s. Mass fraction values are taken along the 

axis of the sonotrode. 

 

For water, the baffle configuration that maximises the bubble concentration in the domain is when 

the baffles are separated by a distance of 0.5 𝜆 . The flow pattern generated with this optimum 

separation distance effectively convects the bubbles downstream, resulting in a large the bubble 

concentration downstream. For aluminium, a separation of 1.0 𝜆 between the baffles is the optimum 

configuration. More bubbles are also convected downstream with this configuration. 

The small opening of the upstream baffles forces a strong current at the bottom of the launder, 

resulting in a recirculation of the fluid beneath the sonotrode region, as shown in Figure 8 for 

aluminium and a baffle separation of 1.0 𝜆. The shortest path for exiting the domain is along the strong 

bottom current. Table 2 lists the shortest residence time for each configuration. 

 
Figure 3.  Predicted maximum acoustic pressure (Pa) in domain for a configuration with baffles 

separated at a distance of 0.5 𝝀 for water. 
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Figure 6. Bubble mass fraction across the 

launder for water after a run time of 20 s. Mass 

fraction values are taken along the axis of the 

launder. 

 Figure 7. Bubble mass fraction across the 

launder for aluminium after a run time of 20 s. 

Mass fraction values are taken along the axis of 

the launder. 

 

 

Table 2. Minimum residence time (s) for each configuration. The following values 

denotes the time taken for the liquid to leave the domain along the shortest path. 

L (λ) 𝑳aluminium (cm) Aluminium at 700 ºC (s) 𝑳water (cm) Water at 20 ºC (s) 

0.5 11.5 16.0  3.7 21.2 

1.0 23.0 12.5  7.4 15.5 

1.5 34.5 9.8 11.1 13.8 

5.  Conclusion 

In search of a complete model, multi-scale model for the ultrasonic treatment of liquid metals, this 

study computes the bubble concentration for the flow in a launder with baffles to create recirculations 

around the sonotrode. Cavitation threshold pressures are achieved in the large part of the domain, and 

bubble concentration as a function of baffle separation can be predicted in a timescale of seconds. The 

optimum configuration for the ultrasonic treatment of aluminium melt is found to be with a baffle 

separation of 1.0 𝜆. 

 

Figure 8.  Recirculation in configuration with baffles separated at a distance of 1.0 𝝀 

for aluminium. Contour colours represent speed in m s-1. 
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