
An algorithm for moment-matching scenario

generation with application to financial

portfolio optimization

K. Ponomareva a, D. Roman a, P. Date a

aSchool of Information Systems, Computing and Mathematics, Brunel University,
UK.

Abstract

We present an algorithm for moment-matching scenario generation. This method
produces scenarios and corresponding probability weights that match exactly the
given mean, the covariance matrix, the average of the marginal skewness and the
average of the marginal kurtosis of each individual component of a random vec-
tor. Optimisation is not employed in the scenario generation process and thus the
method is computationally more advantageous than previous approaches. The algo-
rithm is used for generating scenarios in a mean-CVaR portfolio optimisation model.
For the chosen optimization example, it is shown that desirable properties for a sce-
nario generator are satisfied, including in-sample and out-of-sample stability. It is
also shown that optimal solutions vary only marginally with increasing number of
scenarios in this example; thus, good solutions can apparently be obtained with a
relatively small number of scenarios. The proposed method can be used either on its
own as a computationally inexpensive scenario generator or as a starting point for
non-convex optimisation based scenario generators which aim to match all the third
and the fourth order marginal moments (rather than average marginal moments).

1 Introduction and Motivation

One of the traditional approaches for decision-making under uncertainty and
risk is stochastic programming. It has wide ranging applications such as finan-
cial planning, energy systems management, supply chain logistics, agricultural
planning; an extensive discussion of these may be found in [22].

Stochastic programming involves optimisation problems in which (some of)
the parameters are not certain, but are described by statistical distributions.
In order for the stochastic programs to be numerically solved, the distribu-
tions involved are approximated by discrete distributions with a finite number

Preprint submitted to Elsevier 7 June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29140251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of outcomes (scenarios). The approximation process, called “scenario gener-
ation”, is important for the quality of the solution obtained: using “poor”
scenarios could only result in obtaining a “poor” approximation of the true
optimal solution.

One way to obtain scenarios is by sampling from an assumed distribution (or,
simply, from historical data). As an example, future prices of financial assets
may be assumed to follow a Geometric Brownian Motion, or a GARCH process
([1]). Sampling methods have clear advantages; however, it may be argued that
such distributional assumptions are too strong, or are only applicable to one
domain, viz. finance.

Other approaches to scenario generation with specific emphasis on opera-
tions research applications include principal component analysis-based simula-
tion [21], stochastic approximation based on transportation metrics ([16], [7])
and hidden Markov models as in ([4], [14] and [19]). A detailed survey of
different scenario generation methods appears in [11].

Another class of scenario generation methods are based on matching a small
set of statistical properties, e.g. moments (e.g., see [9]). These methods can
be broadly divided into two groups.
Under the first approach, the statistical properties of the joint distribution
are specified in terms of moments, usually including the covariance matrix.
In [8], cubic transformation of univariate, standard normal random variables
and Cholesky factorization of covariance matrix are used to produce a mul-
tivariate distribution which approximately matches a given set of marginal
central moments and the covariance matrix. Similar moment matching ap-
proach is employed to generate probability weights and support points using
non-convex optimization in [6]. In [20], entropy maximization method is used
to generate a discrete approximation to a given continuous distribution.
In the second group, specified (parametric) marginal distributions are sampled
independently and the samples are then used along with Cholesky factoriza-
tion of the covariance matrix to generate the necessary multivariate distribu-
tion. An iterative procedure of this type in described in [12], where specified
marginal distributions and correlation matrix are used to produce the corre-
lated vectors of random numbers.

The moment-matching scenario generation methods have been successful in
the practical applications of stochastic optimization. They have several advan-
tages: they are not specific to a particular field, they do not assume a specific
parameterised family of distributions and allow for very different shapes of the
marginals. It is only the moments that have to be specified - using historical
data, predictions, specialist knowledge or a combination of these.
However, the moment matching approaches described in the above papers

2



have certain limitations.

Firstly, they use non-convex optimization to generate scenarios which match
a specified set of statistical properties, in addition to a needed factorization of
the covariance matrix. Given a univariate random variable with known first
12 central moments, the approach used in [8] and [9] finds a cubic polynomial
function of this random variable which has the required four central moments.
This requires a non-convex optimization in terms of the coefficients of the
polynomial. The procedure has to be repeated iteratively for each marginal
distribution. Similarly, the algorithm in [12] requires a non-convex optimiza-
tion over the space of lower triangular matrices.

Secondly, the achieved moments of the generated samples match the target
moments only approximately. There are two sources of error in these moment
matching methods: one is due to the fact that only local optima are found
for the non-convex optimization problem and the other is the inexact starting
moments of samples of univariate random variables. Since these procedures
employ samples from a known, “simple” univariate distribution, the achieved
moments usually depend on the sample moments of univariate random vari-
ables used.

In [2], the authors developed a method which uses convex optimization to
match the given mean vector, covariance matrix exactly, and to minimise the
mismatch between the marginal kurtosis across all the variables.

In this paper, we propose a scenario generation method that modifies the
algorithm in [2] to match the given mean vector, the covariance matrix, the
average marginal skewness as well as average marginal kurtosis (thus catering
for assymetric marginals) of each individual component of the random vector,
without needing an optimization procedure.

A modified version of the same method in [2] was used in [17] in the
context of nonlinear time series filtering. However, to authors’ knowledge,
a moment-matching sigma point generation algorithm, which generates prob-
ability weights as well, has not been employed in the context of financial
optimization before. This algorithm may be used as a scenario generator on
its own or its scalar version may be adopted to produce an initial guess for the
optimization routines proposed by other authors. Being able to match a small
set of statistical properties exactly, possibly with a very small set of scenarios,
may be preferable to generating a very large number of scenarios to model the
entire distribution. This is especially true when the scenarios are to be used
in stochastic optimization procedures.
Specifically, the proposed moment-matching scenario generation algorithm has
two major advantages over the existing methods:

3



(1) It is computationally inexpensive - generating scenarios does not involve
optimisation. This is in contrast with all the other existing methods for
moment matching which cater for moments higher than order two.

(2) It generates scenarios (i.e. support points of the multivariate distribu-
tion) together with corresponding probability weights, which are unequal
in general. This represents a big advantage not only because it elimi-
nates the need to attach user-defined probabilities, but also because the
computational difficulty and time for solving the stochastic program can
be much decreased - a relatively modest number of distinct scenarios is
needed to capture the spacial properties of multivariate density surface,
such as marginal tail weights and asymmetry.

The significant reduction in computational complexity comes at the cost of
matching only the average of third marginal moments and the average of
fourth marginal moments exactly (instead of matching all third and fourth
marginal moments approximately, as in [8]). However, the computational sim-
plicity as well as stability of results demonstrated in this paper arguably out-
weigh this shortcoming. If better moment-matching is needed for higher order
marginals, the proposed method can provide an inexpensive initial guess for
another moment matching algorithm such as the one proposed in [8].

We test the quality of the proposed scenario generator in a financial portfolio
optimisation problem. We generate scenarios for the future asset returns and
use them as parameters in an optimisation problem in which the portfolio’s
CVaR (Conditional Value-at-Risk) is minimised ([18]). We test the in-sample
stability as well as out-of-sample stability of our scenario generator, using a
variety of options as tuning parameters. The performance of scenario generator
is also compared to using the historic returns as scenarios.

The rest of the paper is organised as follows. Section 2 gives details of the
algorithm for the scenario generation that matches the mean vector, the co-
variance matrix and the average marginal third and fourth moments. Section
3 describes the mean-CVaR model for portfolio optimisation. Computational
set up, stability of the results and analysis of the optimal solutions are covered
in Section 4. Conclusions are drawn in Section 5.

2 Algorithm for scenario generation

We assume that the information about the distribution of anN -variate random
vector r =

[
r1 r2 · · · rN

]>
is available in terms of the following quantities being

known:

4



µ target mean vector,

Σ target (positive definite) covariance matrix,

κj marginal third central moment of rj, j = 1, 2, . . . , N

ζj marginal fourth central moment of rj, j = 1, 2, . . . , N

Let rjk denote the outcome of rj under scenario k. For notational brevity,
denote the average marginal moments as

1

N

N∑
j=1

κj = κ,
1

N

N∑
j=1

ζj = ζ.

For example, r could represent the future returns of N assets, rjk being the
return of asset j under scenario k. The algorithm is generic and not specific
to financial portfolio applications; it is valid for generating scenarios of any
random vector r with moment properties specified as above. In the light of
the application considered in this paper, we will stick to notation prevalent in
the financial optimization literature.

The outline of how the algorithm which follows works is as follows. An even
number of scenarios, 2Ns, proportional to the vector’s dimension, are gener-
ated such that they match the first and second moments. These scenarios are
symmetrically distributed around the expected value such that the variance-
covariance matrix is matched. Three additional scenarios are generated in or-
der to match the average marginal skewness and the average marginal kurtosis
of each individual component of the random vector r.

The specific steps of the scenario generation algorithm are described next.
The motivation behind these steps will be clear from the proof of proposition
1 and the subsequent remarks later in this section.

Scenario generation algorithm

Step 1: Parameters for scenario generation

Scenario generation procedure has the following inputs: mean µ of the random
vector r, vector’s covariance matrix Σ, dimension N and average marginal
moments κ and ζ defined above. User needs to choose an arbitrary positive
integer s, an aribtrary non-zero deterministic vector Z, such that Σ−ZZ> > 0,
and a scalar ρ ∈ (0, 1). Once these are determined, the remaining parameters

5



can be calculated as follows:

α =
1

2
φ1 +

1

2

√
4φ2 − 3φ2

1,

β = −1

2
φ1 +

1

2

√
4φ2 − 3φ2

1,

w1 =
1

α(α + β)
,

w2 =
1

β(α + β)
,

w0 = 1− 1

αβ
,

γ = 2s2

Nζ̄ − 3
4

∑N
j=1 Z

4
j

(
Nκ̄∑N

j=1
Z3
j

)2

∑
l,k L

4
lk

,

where

φ1 =
Nκ
√
ps+1∑N

j=1 Z
3
j

, φ2 = ps+1

Nζ − 1
2s2
∑
l,k L

4
lk

(∑s
i=1

1
pi

)
∑N
j=1 Z

4
j

and where L is a positive definite matrix such that Σ = LL> + ZZ> holds.
Constraint γ is required in step 2 to ensure the expression under square root
for α and β does not become negative. Given all the inputs and the calculated
parameters, probability weights can now be generated.

Step 2: Probability weights

(1) Generate real scalars pi ∈ (0, 1) for i=1,2,..., s, such that
∑s
i=1 pi <

1
2N

and
∑s
i=1

1
pi
< γ, ps+1 = 1− 2N

∑s
i=1 pi.

Probability weights pi correspond to 2Ns symmetric scenarios and ps+1

is associated with the three additional scenarios that match higher order
moments. More details are provided in Proposition 1.

(2) Given p1, p2...ps+1 and w0, w1, w2 from step 1, vector P of the 2Ns + 3
probability weights is formed as follows:

P = {p1, p2, · · · , ps, p1, p2, · · · , ps, · · · , ps+1w0, ps+1w1, ps+1w2}.

(3) Note that Z can also be generated randomly, provided it satisfies the
above mentioned constraint. In the numerical experiments, we used Zj =

ρ
√

Σjj, where ρ ∈ (0, 1) is a scalar. However, this is only one of many
possible ways to generate Z vector.

6



(4) Also note that pi can be generated using a random number generator, and
s is an arbitrary positive integer. Hence the number of scenarios generated
is independent of the dimension of the random vector r. Note also that
the distribution of pi is of no consequence since the moment-matching is
independent of how pi are generated.

(5) One way to generate pi that satisfy the constraints is to choose:

pi =
s

Nγ
+

(
1

2Ns
− s

Nγ

)
U,

where U ∈ (0, 1) is a uniformly distributed random variable. Another way
is to generate pi from a gamma distribution, for example pi = − ln(U)
with U ∈ (1

e
, 1). Note it is necessary to normalise the weights generated

using this method, for example

p′i =
pi

Ns(2
∑
pi +max(pi))

,

to ensure that
∑s
i=1 p

′
i <

1
2N

constraint is satisfied. There are many more
different ways to generate pi and Z while matching the moments, and a
natural question to ask whether the results are sensitive to the choice of
these parameters. We will investigate empirically the impact of the choice
of pi on the generated moment-matching scenarios later in section 4. In
particular, in section 4.2 the (admittedly limited) evidence provided by
our numerical experiments indicates that this might not be the case.

Step 3: Support points

Generate S = 2Ns + 3 support points rk of the multivariate distribution
of returns, with their probability weights given by Pk from step 2 and k =
1, ..., 2Ns+ 3, as follows:

P
(
r(i−1)N+c = µ+

1√
2spi

Lc

)
= pi = Pi+s(c−1), (1)

P
(
r(s+i−1)N+c = µ− 1√

2spi
Lc

)
= pi = Pi+s(N+c−1), (2)

P
(
r2Ns+1 = µ

)
= ps+1w0 = P2Ns+1, (3)

P
(
r2Ns+2 = µ+

α
√
ps+1

Z

)
= ps+1w1 = P2Ns+2, (4)

P
(
r2Ns+3 = µ− β

√
ps+1

Z

)
= ps+1w2 = P2Ns+3, (5)

where i = 1, 2, . . . , s, c = 1, 2, . . . , N and Lc is cth column of L.

7



Note that there is no optimization involved in generation of rk.
The ouput of the scenario generation algorithm are the 2Ns+3 support points

{r1, r2, · · · , r2Ns+1, r2Ns+2, r2Ns+3}

and the corresponding probability weights

P = {p1, p2, · · · , ps, p1, p2, · · · , ps, · · · , ps+1w0, ps+1w1, ps+1w2}.

The proposition below summarises the properties of the discrete distribution
of the random variable r, based on the output support points and probability
weights:
Proposition 1 For rk, Pk defined in (1)-(5), the following moment properties
hold:

2N
s∑
i=1

pi + ps+1

(
2∑
i=0

wi

)
= 1, (6)

E (r) = µ, (7)

E
(
(r − µ)(r − µ)>

)
= Σ, (8)

N∑
j=1

2Ns+3∑
k=1

E
(
rjk − µj

)3
= Nκ, (9)

N∑
j=1

2Ns+3∑
k=1

E
(
rjk − µj

)4
= Nζ, (10)

where the expected values are taken with respect to the probability measure
defined by Pk.

Proof: The first two equations are straightforward. The third follows since

E
(
(r − µ)(r − µ)>

)
= 2

s∑
i=1

pi
1

2spi

N∑
j=1

LjL
>
j + ps+1

(
w1

α2

ps+1

+ w2
β2

ps+1

)
ZZ>

= LL> + ZZ> = Σ, (11)

by definition of Lj and wi. For the two last equations, substituting expression
for rk and Pk from step 2 into left-hand side of equations (9)-(10) we get:

N∑
j=1

2Ns+3∑
k=1

E
(
rjk − µj

)3
=

N∑
j=1

2Ns+3∑
k=1

Pk(r
j
k − µj)3 =

(α− β)
∑N
j=1 Z

3
j√

ps+1

,

N∑
j=1

2Ns+3∑
k=1

E
(
rjk − µj

)4
=

N∑
j=1

2Ns+3∑
k=1

Pk(r
j
k − µj)4 =

(α2 − αβ + β2)
∑N
j=1 Z

4
j

ps+1

+
1

2s2

∑
l,k

L4
lk

(
s∑
i=1

1

pi

)
,

8



where Pk is the kth element of the probability weights vector P . Using defini-
tions of α and β from step 2 provides the required result:

(α− β)
∑N
j=1 Z

3
j√

ps+1

= φ1

∑N
j=1 Z

3
j√

ps+1

= Nκ,

(α2 − αβ + β2)
∑N
j=1 Z

4
j

ps+1

+
1

2s2

∑
l,k

L4
lk

(
s∑
i=1

1

pi

)

= φ2

∑N
j=1 Z

4
j

ps+1(Nζ − 1
2s2
∑
l,k L

4
lk

(∑s
i=1

1
pi

)
)

= Nζ,

which completes the proof.

To summarise, the above algorithm generates moment matching scenarios
which match a given mean vector, covariance matrix, average marginal third
central moment and average marginal fourth central moment. Average com-
putational time for this algorithm ranges from 0.034 seconds for 123 scenarios
to 0.088 seconds for 5043 scenarios. All the numerical experiments were per-
formed using Matlab 7.2 on a desktop with a dual core Pentium IV processor,
2.40GHz and 3.24Gb RAM.

Some remarks on the above proposition are in order.

• Equation (11) makes the motivation behind the chosen structure of sup-
port points clear; due to 1

2spi
term in the denominator of the support points

defined by (1)-(5), pi cancels out while constructing a covariance matrix
and we end up with known mean vector and covariance matrix irrespec-
tive of choice of pi (provided they form a valid probability measure). This
freedom of choosing pi can then be partially exploited to match more mo-
ment properties. Matching two more scalar moment properties (in addition
to the mean and the covariance) is feasible in closed-form, as we end up
with only having to solve a quadratic equation. Technically, it is possible to
match higher order moments, although it might require optimization and it
might hence defeat the whole purpose of this exercise, which is to provide
a inexpensive moment-matching scenario generation method.
• The number of scenarios generated is S = 2Ns+ 3, where s is an arbitrary

integer and N is the dimension of r. The distribution of these scenarios
is defined by the set of support points and their corresponding probability
weights, as given by equations (1)-(5). We don’t have a function closed-form
expression for this distribution. However, the purpose is to match the given
moment properties, which is achieved (as shown by proposition 1).
• The use of a similar algorithm in unscented Kalman filters reported else-

where (e.g. in [17]) is unrelated to the application proposed here and is
unrelated in general to applications within operations research.

9



• Technically, the choices made in generating pi and Z affects the generated
scenarios. In the admittedly limited number of numerical experiments re-
ported here, it was found that the effect was marginal. In case a severe
variation is observed in the generated scenarios or in decisions taken based
on those scenarios, one can always use one of the choices of pi and Z as
an initial feasible solution to a more sophisticated scenario generation algo-
rithm which uses optimization.

In section 4, we evaluate the performance of this scenario generator for a real
financial portfolio selection problem.

3 The mean-CVaR model for portfolio optimisation

In our numerical experiments, we generate scenarios for a one-period portfolio
optimisation problem: given a set of N assets in which one may invest, how
to divide now an amount of money between these assets, such that, after a
specified period of time T , we obtain a return on investment as high as possible?

Let us denote by r =
[
r1 r2 · · · rN

]>
the random vector representing the future

returns of the assets.

Let xj be the proportion of capital invested in asset j and let x = (x1, . . . , xN)
represent the portfolio resulting from this choice. This portfolio’s return is the
random variable: rx = x1r

1+· · ·+xNrN ; its distribution depends on the choice
x = (x1, . . . , xN) and on the distribution of r1, . . . rN .

With the popular “mean - risk” theory, a portfolio’s return distribution is
described by two statistics: the expected value and a “risk” value (desired to
be kept low). The portfolio chosen for implementation should be “efficient”,
meaning, it should have the lowest risk value for a given expected return.
An efficient portfolio is found by solving an optimisation problem in which,
for example, the risk of the portfolio is minimised, while a constraint on the
expected return is imposed.

In most cases, there are no closed form solutions for these optimisation prob-
lems. They have to be solved numerically, by approximating the distributions
of the future asset returns with discrete ones with finite number of realisations;
that is, by generating scenarios for the future asset returns.

Traditionally, risk is measured by variance ([13]). In the mean-variance opti-
misation problem, we do not need scenarios for the future asset returns, but
only their expected values and the covariance matrix. However, it has been
pointed out that risk may be better quantified and several alternatives risk
measures have been proposed. More recently, portfolio optimisation problems

10



include more sophisticated risk measures, most notably those concerned with
left tails of distributions. Risk measures in this category include Conditional
Value-at-Risk (CVaR), which has good theoretical and computational proper-
ties and has gained wide acceptance among academics and practitioners ([18],
[15]).

In our numerical experiments, we generate scenarios for future asset returns
in a mean-CVaR optimisation model, which, unlike the mean-variance model,
requires the full set of scenario returns.

The definition of CVaR and the model formulation, are presented below.

Let rx be a random variable representing the return of a portfolio x over a
given holding period and A ∈ (0, 1) a percentage which represents a sample of
“worst cases” for the outcomes of rx (usually, A = 1%, A = 5% or A = 10%).

The definition of CVaR at the specified level A is the mathematical transcrip-
tion of the concept “average of losses in the worst A of cases”. More formally,
the CVaR at level A of rx is defined as minus the mean of the A-tail dis-
tribution of rx, where the A-tail distribution is obtained by taking the lower
A part of the distribution of rx (corresponding to extreme unfavourable out-
comes) and rescaling it to span [0,1]. The A-tail distribution of rx considers
only losses above Value-at-Risk; for a detailed definition of CVaR, see [18].

An important result is that CVaR can be computed and optimised by solving
convex optimisation problems. In ([18]), an auxiliary function is used, F :
X × R→ R, where X is the set of feasible portfolios.

FA(x, v) =
1

A
E[−rx + v]+ − v,

where [u]+ = u if u ≥ 0 and 0 otherwise. It was proved that minimising CVaR
over X can be done by minimising FA over X × R.

When the random asset returns are represented as discrete random variables
(via scenarios), the CVaR optimisation problem can be formulated as a linear
program (LP) as below:

11



min v +
1

A

S∑
k=1

Pk · yk (M-CVaR)

Subject to:

v −
N∑
j=1

rjkxj ≤ yk, ∀k ∈ {1 . . . S}

yk ≥ 0, ∀k ∈ {1 . . . S}
N∑
j=1

µjxj ≥ d; x ∈ X,

where the parameters of the model are:

• S = the number of scenarios, (for example, with our proposed algorithm,
S = 2Ns+ 3),
• N = the number of assets,
• Pk = the probability of scenario k occuring, k = 1 . . . S,
• rjk = return of asset j under scenario k, k = 1 . . . S, j = 1 . . . N ,
• µj = the expected return of asset j, j = 1 . . . N ,
• d = the desired expected return of the portfolio (investor-specified).

Here, Pk and rjk can be obtained from scenario generation or sampling of
historical data, µj are estimated prior to optimisation (possibly from historical
data). The parameter d is decided by the investor. By not imposing the last
constraint on portfolio’s expected return, we obtain the (absolute) minimum
CVaR portfolio.

The decision variables of the model are:

• xj = the fraction of portfolio wealth invested in asset j, j = 1 . . . N ,
• v = an A-quantile of the portfolio return distribution,
• yk = the magnitude of the negative deviations of the portfolio return from

the A-quantile, for every scenario k ∈ {1 . . . S} (they are 0 if the portfolio
return

∑N
j=1 r

j
kxj is higher than the A-quantile).

4 Numerical experiments: A case study for an investment problem

4.1 Scope and computational set-up

We investigate the behaviour of the proposed scenario generator, as used in
conjunction with a mean-CVaR optimisation problem (M-CVaR). We are in-
terested in:

12



(a) the stability of the scenario generator, both in-sample and out-of-sample;
(b) how the number of scenarios considered affects the optimal solution and
the optimum;
(c) quality of the solution as compared to the solution obtained using histori-
cal data as scenarios;
(d) testing the effect of different parameter selection on the scenario generation
algorithm.

We use a dataset drawn from FTSE 100, the share index of the stocks of the
100 companies listed on the London Stock Exchange with the highest market
capitalisation. The dataset has N=20 stocks and prices monitored weekly over
the period of over 14 years from July 1997 until November 2011 (747 time
periods of historical data). These 20 stocks were chosen in such a way that
their combined market capitalisation was roughly over 60% of FTSE 100.
Please see ([10]) for more information about the FTSE 100 index.

We compute the corresponding historical returns and calculate the moments
for these series; they are displayed in Tables A1 - A3 in Appendix.

We generate scenarios for the future weekly returns of these stocks using the
proposed moment-matching method, with the first four moments as above.
We consider various number of scenarios: S = 43, S = 123, S = 243, S = 363,
S = 603, S = 723, S = 1083 and S = 5043. Since S = 2Ns+ 3 = 40s+ 3, this
corresponds to generating s = 1, 3, 6, 9, 15, 18, 27 and 126 distinct probability
weights respectively. A wide set of values is chosen in order to test the impact
of choosing small or large number of scenarios on the achieved optimum.

We solve (M-CVaR) using the generated Pk and rjk, k = 1 . . . S, d is fixed to
0.3%. We consider CVaR at confidence level A = 10%.

It is common practice to use for comparison the “benchmark” scenario genera-
tor with the same optimisation model. In this study, we are using the historical
returns as “benchmark” scenarios. Thus, we also solve (M-CVaR) using Pk and
rjk as given by historical data, i.e. S = 747, Pk = 1/747 , rjk =historical return
of stock j at time period k, k = 1 . . . S, j = 1 . . . N .

The optimisation problems are formulated in AMPL ([5]) and solved with the
FortMP solver ([3]).

4.2 Stability of the scenario generator

Stability is a basic and very important requirement. Since any scenario gener-
ator has an element of randomness, the final outcome depends on the values
drawn from the corresponding distributions. Stability guarantees that the op-
timum and the optimal solution of the optimisation problem of interest does

13



not vary (but, possibly, only to a small extent) with the specific scenario set
chosen.

A scenario generator is said to manifest in-sample stability if, when generating
several scenario sets of the same size and solving the optimisation problem
on each of these scenario sets, the optimums are similar (here, the optimum
is evaluated on the same scenarios used for obtaining the solution, see for
example [11]).

A scenario generator is said to manifest out-of-sample stability, if, when gener-
ating several scenario sets of the same size and solving the optimisation model
on each of these scenario sets, the optimal solutions obtained yield similar
“true” objective function values (i.e., the solutions obtained with in-sample
scenarios and then they are evaluated using another scenario set, standing for
the “true” distribution of the random variables involved).

In [11] it is emphasised that, while it is straightforward to test in-sample sta-
bility (we only solve the scenario-based optimisation problems), it is difficult
to test the out-of-sample stability - that would mean knowing the “true” dis-
tribution of the random vector involved. What is usually done in practice
is to use a “benchmark” scenario tree: a large scenario set obtained exoge-
nously, that is known to be stable; this scenario set will stand for the “true”
distribution.

In-sample stability does not imply the out-of sample one or vice versa. It is
possible to have in-sample instability (of the objectives) but not stability of
the solutions - in this case, it is likely to have out-of-sample stability, since,
in this case, all the solutions are tested on the same scenario set, representing
the “true” distribution.

We test the in-sample stability of our scenario generator in the following way.
For each number of scenarios S considered in our example, we generate 20 sets
of scenarios and use them as input in the mean-CVaR optimisation problem
(M-CVaR).

As seen in section 2, the choice of pi and the choice of Z are free parameters in
our algorithm. In our numerical experiments, we consider three different ways
of generating moment matching scenarios:

(1) case 1: pi are generated by sampling from a uniform distribution method

and Zj = 0.7
√

Σjj,

(2) case 2: pi are generated by sampling from a uniform distribution method

and Zj = 0.45
√

Σjj,

(3) case 3: pi are generated by sampling from a gamma distribution method

and Zj = 0.45
√

Σjj.

For each scenario size, we obtain a set of 20 optimal objective values; their
statistics are displayed in Tables 4.1 -4.3 below.

14



Table 4.1 In-sample stability: Statistics of the sets of optimums for
various scenario sizes for case 1 (uniform distribution for pi,

Zj = 0.7
√

Σjj)

S Mean StDev Min Max Range
43 0.032613 0.000431 0.032142 0.033444 0.001302
123 0.032736 0.000336 0.032209 0.033004 0.000795
363 0.033326 0.000300 0.033053 0.033699 0.000646
723 0.036456 0.000276 0.036120 0.036751 0.000630
1083 0.036835 0.000234 0.036581 0.037163 0.000581
5043 0.037465 0.000128 0.037277 0.037702 0.000425

Table 4.2 In-sample stability: Statistics of the sets of optimums for
various scenario sizes for case 2 (uniform distribution for pi,

Zj = 0.45
√

Σjj)

S Mean StDev Min Max Range
43 0.030776 0.000417 0.030115 0.031210 0.001095
123 0.031461 0.000377 0.031076 0.031790 0.000714
363 0.032186 0.000361 0.031553 0.032205 0.000652
723 0.033283 0.000297 0.032620 0.033140 0.000519
1083 0.035876 0.000239 0.035581 0.036033 0.000452
5043 0.037767 0.000184 0.037477 0.037844 0.000367

Table 4.3 In-sample stability: Statistics of the sets of optimums for
various scenario sizes for case 3 (gamma distribution for pi,

Zj = 0.45
√

Σjj)

S Mean StDev Min Max Range
43 0.037160 0.000411 0.036549 0.037361 0.000812
123 0.037259 0.000391 0.036875 0.037604 0.000729
363 0.037863 0.000362 0.037531 0.038204 0.000673
723 0.038202 0.000262 0.038755 0.039263 0.000508
1083 0.038918 0.000237 0.038857 0.039293 0.000436
5043 0.039146 0.000166 0.038915 0.039244 0.000329

Tables 4.1 - 4.3 show that, when pi’s are generated from the same distribu-
tion and the vector Z is fixed, the in-sample stability is very good, even with
scenario sets of relatively small sizes. As expected, stability is increased with
increasing number of scenarios. For example, in case 1 (pi’s generated using

uniform distribution, Zj = 0.7
√

Σjj), when considering 123 scenarios, the op-

timal CVaRs range between 3.22% and 3.3%, while for 5043 scenarios, the
optimum values range between 3.73% and 3.77% (table 4.1). Also expected
is the increase in optimal CVaR values as the number of scenarios increases.
This is due to the fact that CVaR only takes into account a specified number

15



of worst ourcomes (left tail) and ignores the rest of the distribution; in this
case, CVaR is the negative of the expected loss under the worst 10% scenarios,
expressed as a percentage of investment value.

Generating scenarios with different values of Z makes the procedure somewhat
less stable; however, for large scenario sets, the differences between optimal
CVaRs are marginal. For example, for 5,043 scenarios and pi’s generated from
the uniform distribution, the optimal CVaRs range between 3.73% and 3.77%

when Zj = 0.7
√

Σjj and between 3.75% and 3.78% when Zj = 0.45
√

Σjj. Even
when pi’s are generated from the gamma distribution, the optimal CVaRs are
between 3.89% and 3.92% which, for the practical purposes of the problem
considered, represents only a minor difference: it tells the decision maker that,
irrespective of the choice of parameters pi’ and Z, the expected loss under the
worst 10% cases is between 3.7% and 3.9% of capital invested.

Based on our numerical experiments we have found the following range ρ ∈
[0.4, 0.8] to provide stable results for our specific data set. However, differences
upon using different choices for generating the free parameters should be tested
with what seems more reasonable for the specific problem.

For testing the out-of-sample stability, we use the historical data as the bench-
mark scenario set. Each of the optimal solutions obtained before are evaluated
on the historical data, i.e. we use the portfolio weights previously obtained
(using our scenario generator) and compute the corresponding CVaRs using
historical scenarios. Thus, we obtain 20 “true” optimums (“historical CVaRs”)
for each scenario size. Their statistics are displayed in Tables 4.4-4.6.

Table 4.4. Out-of-sample stability: Statistics of the sets of “true”
optimum CVaRs for case 1

S Mean StDev Min Max Range
43 0.041506 0.000702 0.040648 0.042075 0.001427
123 0.040995 0.000613 0.040315 0.041675 0.001360
363 0.040461 0.000554 0.039921 0.041088 0.001167
723 0.040277 0.000506 0.039700 0.040855 0.001155
1083 0.040221 0.000342 0.039397 0.040514 0.001117
5043 0.039621 0.000283 0.039211 0.040264 0.001053

Table 4.5. Out-of-sample stability: Statistics of the sets of “true”
optimum CVaRs for case 2

16



S Mean StDev Min Max Range
43 0.042010 0.000608 0.041813 0.043311 0.001498
123 0.041894 0.000599 0.041315 0.042639 0.001324
363 0.041680 0.000556 0.041192 0.042447 0.001255
723 0.041357 0.000346 0.040700 0.041872 0.001172
1083 0.040495 0.000275 0.040397 0.041525 0.001128
5043 0.040395 0.000226 0.040211 0.041275 0.001064

Table 4.6. Out-of-sample stability: Statistics of the sets of “true”
optimum CVaRs for case 3

S Mean StDev Min Max Range
43 0.043075 0.000733 0.042312 0.043890 0.001578
123 0.042337 0.000611 0.041315 0.042686 0.001371
363 0.041135 0.000545 0.040921 0.042185 0.001264
723 0.040311 0.000458 0.039860 0.041040 0.001180
1083 0.040297 0.000322 0.039820 0.040991 0.001171
5043 0.040188 0.000192 0.039526 0.040618 0.001092

The “true” optimums (i.e. the CVaRs of the portfolios obtained with our
scenario generator, evaluated on historical data) are very close in value, irre-
spective of the way pi and Z are generated for running the optimisation: they
range between 3.9% and 4.1% (tables 4.4 - 4.6). We notice that the best out-
of-sample stability and also the closest match between in-sample and out-of
sample CVaRs are obtained when pi are generated from the gamma distribu-
tion: with 5,043 scenarios, the in-sample CVaRs range around 3.9% and 3.9%
(table 4.3) while the out-of-sample CVaRs range around 4%.

The out-of-sample stability is also obvious, even for small in-sample scenario
sets, particularly when using a consistent method for generating pi and Z. For

example, in case 1 (pi’s generated using uniform distribution, Zj = 0.7
√

Σjj),

with 123 in-sample scenarios, the “true” CVaRs range between 4.03% and
4.16%. As expected, we get better solutions with increasing number of (in-
sample) scenarios: not only even more stable, but also resulting in a better
(i.e. smaller) out-of-sample CVaRs. Again we notice that, when increasing
the number of (in-sample) scenarios, the difference between the out-of-sample
CVaRs is small: an average “true” CVaR of 4.01% is obtained for 123 in-
sample scenarios; the average “true” CVaR for 5043 in-sample scenarios is
3.96% (table 4.4).
Similar results are obtained for the other two cases (tables 4.5 and 4.6). We
notice that, in all three cases, for 5043 in-sample scenarios, the average “true”
CVaR is in the range of 4%. The specific method used for generating the free
parameters seems again to result in (only) marginal differences.

Moreover, with increasing number of in-sample scenarios, the optimum (in-

17



sample) CVaRs get progressively close in value to the out-of-sample CVaRs
(evaluated on historical data). In the case of 5043 in-sample scenarios, the
in-sample CVaRs are in the range of 3.8% when pi are generated using the
uniform distribution (cases 1 and 2; tables 4.1 and 4.2) and in the range of
3.9% when pi are generated using the gamma distribution (case 3; table 4.3) ;
the out-of-sample CVaRs are in the range of 4%, in all three cases (tables 4.4,
4.5, 4.6).

4.3 Optimal solutions

We notice that the proposed scenario generator is not only stable in-sample
and out-of-sample (with respect to the optimum CVaR), but also manifests
“stability of optimal solutions” for the chosen problem. With a specified num-
ber of in-sample scenarios, the optimal portfolio weights obtained are very
similar under different runs. This is valid even in the case of smallest scenario
sets (123 scenarios). Table A4 in the Appendix displays the optimal portfolio
weights obtained in each of the 20 runs, when the scenario size is 5043 and pi’s

are generated using the uniform distribution, Zj = 0.7
√

Σjj (case 1). Similar
results are obtained for the other cases. The full set of results would consid-
erably lengthen the paper without adding much value; they can be obtained
upon request from the authors.

Moreover, with increasing number of scenarios, the optimal portfolio weights
change only marginally, i.e. the portfolio weights obtained by using 123 sce-
narios are similar to the portfolio weights obtained by using 5043 scenarios
(please see table 4.7).

This supports the idea that stable solutions may be obtained with relatively
small number of scenarios and increasing the number of scenarios leads only
to a marginal change in the optimal solution.

A natural question to ask is: how do these solutions compare with the portfolio
solution obtained by using the historical data as in-sample scenarios?

Table 4.7 displays a summary of optimal solutions obtained by using in-sample:
(a)the proposed scenario generator with pi generated using the uniform dis-

tribution, Zj = 0.7
√

Σjj (case 1), various scenario set sizes and (b) historical
data. For a given scenario set size, the weights displayed are obtained by av-
eraging the (very similar) optimal weights obtained for the 20 different runs.
“HD” signifies the portfolio weights obtained using historical data as in-sample
scenarios (747 scenarios equally probable scenarios). Note that “HD” solutions
are included for comparison purposes only and not as part of stability analysis
of our scenario generation methodology.
The ”HD” optimal portfolio is different from the solutions obtained via the

18



proposed scenario generator - we notice however that assets with strictly pos-
itive weight are roughly the same in both cases; also, there are roughly the
same assets with highest weights (e.g. assets 6, 8, 12, 15, 16).

Table 4.7. Optimal portfolio weights obtained using (a) the
proposed method with various number of scenarios and (b)

historical data(HD) as scenarios

S CVaR(in) CVaR(out) x2 x6 x7 x8 x9 x10

HD 0.038712 13.83% 24.50% 0.00% 16.37% 3.55% 8.33%
43 0.032554 0.041192 4.15% 38.89% 0.88% 7.94% 5.63% 4.52%
123 0.032736 0.040995 4.20% 37.92% 0.92% 7.99% 5.66% 4.62%
243 0.032828 0.040559 4.28% 36.24% 0.51% 8.58% 5.48% 4.76%
363 0.033326 0.040461 3.70% 34.92% 0.36% 9.21% 5.82% 3.97%
603 0.033704 0.040449 4.38% 35.27% 1.18% 8.90% 2.88% 6.00%
723 0.036456 0.040277 4.41% 35.62% 0.61% 9.66% 5.09% 4.72%
1083 0.036835 0.040221 4.62% 35.87% 0.65% 9.45% 5.05% 5.27%
5043 0.037465 0.039621 5.00% 32.85% 0.87% 9.46% 4.69% 6.02%
x12 x13 x14 x15 x16 x17 x18 x19 x20

5.69% 6.50% 0.60% 9.35% 9.64% 1.64% 0.00% 0.00% 0.00%
5.27% 5.38% 2.27% 7.11% 5.08% 2.73% 0.74% 5.08% 4.34%
5.37% 5.40% 2.26% 7.09% 5.38% 2.74% 0.84% 5.11% 4.50%
5.18% 5.71% 2.11% 8.95% 5.63% 2.61% 0.79% 4.85% 4.30%
5.23% 6.33% 2.40% 9.75% 4.97% 2.98% 0.86% 4.93% 4.57%
5.90% 5.24% 3.39% 8.12% 6.72% 1.64% 0.31% 5.34% 4.72%
5.32% 6.05% 2.62% 7.24% 6.18% 2.92% 0.00% 5.07% 4.49%
5.11% 5.67% 2.39% 7.77% 6.16% 2.72% 0.00% 5.02% 4.24%
5.20% 5.87% 2.86% 7.84% 7.01% 3.17% 0.00% 4.88% 4.28%

Another encouraging result is that the “true” CVaR of the portfolio obtained
using historical data in-sample (that is, the optimisation and evaluation of
CVaR is done on historical data) is 3.87%.

Thus, as measured on the benchmark scenario generator, a solution obtained
using our scenario generator in-sample gives a “true” CVaR of 3.96%, while
the solution obtained using historical data in-sample gives a value only 0.09%
lower.

5 Conclusions

We proposed a moment-matching scenario generation method. Given a dis-
tribution of a random vector that is partially specified in terms of first four
marginal moments and covariance matrix, this method generates scenarios
and corresponding probabilities that match exactly the first two moments, the
covariance matrix, the average marginal skewness and the average marginal
kurtosis.

19



The method presents several advantages over the existing approaches. First, it
is computationally cheap; there is no optimisation involved in generating sce-
narios. Secondly, due to the (unequal) generated probabilities of the scenarios,
this method may perform well even with a relatively small number of scenar-
ios. In contrast, methods that would assume by default equal probabilities
would need a larger number of scenarios.

These assertions are supported by the numerical results. We tested the qual-
ity of the proposed scenario generator in a mean-CVaR portfolio optimisation
model. Several observations were made. First, the method appears to be re-
markably stable, both in-sample and out-of-sample. For the problem solved, it
also demonstrates stability of optimal solutions, i.e. not only the optimums are
similar, but also the optimal portfolio weights, representing the solution to im-
plement. Secondly, the optimal solutions vary only marginally with increasing
number of scenarios. That means, by using only a small number of scenarios,
we may obtain a reasonably good solution. Since the method allows for some
freedom for generating the probability weights and scenarios which match the
given moments, we tested the algorithm for three different ways of generating
the probability weights and scenarios. The results obtained by varying the
underlying distribution of pi and/or the value of the free parameter matrix Z
appear to be qualitatively similar.

In the numerical case presented here, direct comparison with solutions ob-
tained via using historical data could be made. We comment that the proposed
scenario generation method is applicable to cases where there is no (or not
enough) historical data available, but only expert opinion on the statistical
properties involved.
This method may also present a big advantage when used with a computation-
ally difficult optimisation model, requiring only a limited number of scenarios;
stable and good quality solutions may be obtained with a relatively small
number of scenarios. Intuitively, this may be attributed to the fact that un-
equal and random probability weights are generated along with the support
points.

The numerical results are very encouraging. Note that the single example cho-
sen focuses on the tail behaviour of the distribution and is hence challenging
from a scenario generation point of view. This scenario generation method
may work well for multi-stage stochastic optimisation, where generally only a
limited number of scenarios can be considered and there are scale-up issues;
this is something we plan to investigate in the future.

20



6 Appendix

Table A1. Means for weekly returns of 20 assets, 10−4

1 2 3 4 5 6 7 8 9 10
Mean 6.27 25.51 8.9 13.79 7.06 38.6 37.67 36.97 13.08 19.25

11 12 13 14 15 16 17 18 19 20
Mean 4.43 16.6 46.45 17.22 29.19 18.98 16.33 21.79 20.65 17.72

Table A2. Marginal 3rd and 4th moments for weekly returns of 20
assets, 10−6

1 2 3 4 5 6 7 8 9 10
Marginal 3rd moment −8.36 25.34 1.74 5.29 9.27 74.39 86.66 26.93 −3.76 −3.81
Marginal 4th moment 26.5 24.22 11.6 14.93 10.32 44.83 133.18 23.55 15.04 7.93

11 12 13 14 15 16 17 18 19 20
Marginal 3rd moment −29.87 −63.57 191.96 −13.48 7.29 −8.86 3.33 285.29 157.21 42.79
Marginal 4th moment 21.5 29.4 121.67 12.31 31.28 9.97 6.96 459.01 87.35 23.84

21



Table A3. Covariance matrix for weekly returns of 20 assets, 10−4

1 2 3 4 5 6 7 8 9 10
1 18.58 6.18 7.14 7.03 4.48 3.47 10.37 5.21 4.22 4.42
2 6.18 22.69 3.03 3.07 5.01 2.89 5.13 3.44 5.09 1.28
3 7.14 3.03 15.15 11.67 4.17 3.59 10.65 7.79 3.79 3.04
4 7.03 3.07 11.67 16.58 4.77 4.04 11.87 7.94 4.33 3.64
5 4.48 5.01 4.17 4.77 13.25 3.36 2.94 3.18 8.54 3.52
6 3.47 2.89 3.59 4.04 3.36 17.6 4.54 3.37 3.07 4.43
7 10.37 5.13 10.65 11.87 2.94 4.54 37.81 12.57 2.56 3.66
8 5.21 3.44 7.79 7.94 3.18 3.37 12.57 18.32 3.62 3.64
9 4.22 5.09 3.79 4.33 8.54 3.07 2.56 3.62 16.04 3.92
10 4.42 1.28 3.04 3.64 3.52 4.43 3.66 3.64 3.92 11.43
11 7.11 3.4 4.96 4.93 2.51 2.99 6.96 6.31 2.68 3.89
12 4.58 2.37 3.16 3.42 3.05 3.09 4.44 3.5 3.5 3.24
13 10.55 4.94 10.99 12.93 2.14 4.06 25.27 11.52 2.17 3.64
14 4.92 2.26 3.95 5.64 4.44 5.42 4.36 3.26 4.18 4.03
15 5.76 4.72 3.8 3.92 3.2 1.54 5.75 4.06 2.92 4.46
16 2.95 5.43 2.89 3.13 4.03 3.75 2.65 3.71 4.47 2.85
17 4.52 2.33 3.37 4.28 4.19 5.24 4.3 3.73 3.61 3.44
18 16.51 7.71 9.31 8.47 7.36 4.24 13.66 8.99 6.91 5.48
19 6.73 8.89 4.07 4.42 3.02 1.13 4.87 4.16 3.74 1.89
20 6.16 8.01 4.45 4.49 3.27 2.49 6.55 3.66 4.17 2.7

11 12 13 14 15 16 17 18 19 20
1 7.11 4.58 10.55 4.93 5.76 2.95 4.52 16.51 6.73 6.16
2 3.4 2.37 4.94 2.26 4.72 5.43 2.33 7.71 8.89 8.01
3 4.96 3.16 10.99 3.95 3.8 2.89 3.37 9.31 4.08 4.45
4 4.93 3.42 12.93 5.64 3.92 3.13 4.28 8.47 4.42 4.49
5 2.51 3.05 2.14 4.44 3.2 4.03 4.19 7.36 3.02 3.27
6 2.99 3.09 4.06 5.42 1.54 3.75 5.24 4.24 1.13 2.49
7 6.96 4.44 25.27 4.36 5.75 2.65 4.3 13.66 4.87 6.55
8 6.31 3.5 11.52 3.26 4.06 3.71 3.73 8.99 4.16 3.66
9 2.68 3.5 2.17 4.18 2.92 4.47 3.61 6.91 3.74 4.17
10 3.89 3.24 3.64 4.03 4.46 2.85 3.44 5.48 1.89 2.7
11 14.97 4.24 7.4 3.05 6.09 3.41 2.28 11.38 4.54 4
12 4.24 19.85 4.71 4.98 4.02 2.5 4.36 7.32 0.96 2.4
13 7.4 4.71 34.81 4.25 5.79 2.19 4.51 13.44 6.9 5.63
14 3.05 4.98 4.25 14.12 4.34 2.46 6.24 6.3 2.29 2.49
15 6.09 4.02 5.79 4.34 22.62 2.84 3.28 9.1 5.02 4.01
16 3.41 2.5 2.19 2.46 2.84 10.65 3 5.11 4.23 3.79
17 2.28 4.36 4.51 6.24 3.28 3 11.76 6.9 1.36 1.77
18 11.38 7.32 13.44 6.3 9.1 5.11 6.9 46.21 10.27 8.75
19 4.54 0.96 6.9 2.29 5.02 4.23 1.36 10.27 28.29 12.14
20 4 2.4 5.63 2.49 4.01 3.79 1.77 8.75 12.14 19.22

22



Table A4. Optimal portfolio weights for S= 5043 scenarios for case
1

CVaR x2 x6 x7 x8 x9 x10 x12

0.040264 4.63% 36.00% 0.82% 9.76% 5.16% 5.06% 5.18%
0.039535 5.07% 32.67% 0.81% 9.37% 4.62% 6.16% 5.25%
0.039442 5.11% 32.10% 0.90% 9.58% 4.70% 6.24% 5.27%
0.039774 5.09% 33.65% 0.70% 9.54% 4.46% 5.99% 5.06%
0.039512 5.02% 32.36% 0.95% 9.09% 4.88% 6.14% 5.31%
0.039266 5.10% 30.83% 0.89% 9.68% 4.57% 6.34% 5.26%
0.039261 5.14% 30.87% 0.99% 9.60% 4.67% 6.31% 5.23%
0.040007 4.81% 34.80% 0.59% 9.40% 4.89% 5.59% 5.17%
0.039491 5.08% 32.08% 0.95% 9.75% 4.39% 6.20% 5.25%
0.039575 4.95% 32.53% 0.74% 9.98% 4.53% 5.94% 5.28%
0.039644 5.18% 33.00% 0.76% 9.40% 4.79% 6.20% 5.01%
0.039828 4.88% 33.83% 0.96% 9.24% 4.62% 5.82% 5.29%
0.039679 5.07% 33.16% 0.98% 9.29% 4.53% 6.04% 5.24%
0.039211 5.28% 30.75% 0.92% 9.63% 4.79% 6.58% 5.06%
0.039463 5.10% 32.34% 0.97% 9.20% 4.80% 6.23% 5.17%
0.039384 5.10% 31.40% 0.83% 9.82% 4.63% 6.28% 5.13%
0.039395 5.20% 31.85% 0.84% 9.68% 4.74% 6.39% 4.99%
0.040039 4.75% 35.02% 0.97% 9.04% 4.72% 5.52% 5.22%
0.039810 4.77% 33.74% 1.10% 8.87% 4.74% 5.70% 5.35%
0.039845 4.73% 33.94% 0.73% 9.39% 4.68% 5.61% 5.19%

CVaR x13 x14 x15 x16 x17 x19 x20

0.040264 5.47% 2.21% 7.80% 6.09% 2.59% 4.95% 4.28%
0.039535 5.76% 2.87% 7.89% 7.13% 3.22% 4.90% 4.27%
0.039442 5.79% 2.98% 7.68% 7.08% 3.35% 4.85% 4.38%
0.039774 6.00% 2.63% 7.84% 7.16% 2.99% 4.86% 4.02%
0.039512 5.90% 2.95% 7.78% 7.08% 3.27% 4.87% 4.39%
0.039266 6.24% 3.13% 7.84% 7.44% 3.45% 4.84% 4.40%
0.039261 6.07% 3.14% 7.96% 7.24% 3.54% 4.91% 4.33%
0.040007 5.99% 2.64% 7.65% 6.52% 2.83% 4.87% 4.27%
0.039491 5.81% 2.96% 7.85% 7.01% 3.41% 4.91% 4.34%
0.039575 5.94% 2.89% 7.73% 6.77% 3.35% 4.95% 4.41%
0.039644 6.15% 2.95% 7.89% 7.06% 2.84% 4.72% 4.06%
0.039828 5.64% 2.68% 7.88% 6.67% 3.15% 4.95% 4.39%
0.039679 5.67% 2.89% 7.84% 6.93% 3.15% 4.91% 4.29%
0.039211 6.16% 3.13% 7.92% 7.41% 3.40% 4.83% 4.14%
0.039463 5.64% 2.95% 8.02% 7.10% 3.30% 4.90% 4.28%
0.039384 6.33% 2.93% 8.03% 7.37% 3.18% 4.72% 4.26%
0.039395 6.05% 2.99% 7.90% 7.54% 3.02% 4.70% 4.11%
0.040039 5.41% 2.71% 7.73% 6.76% 2.91% 4.98% 4.27%
0.039810 5.52% 2.85% 7.78% 6.74% 3.31% 5.07% 4.46%
0.039845 5.96% 2.75% 7.72% 7.04% 3.03% 4.91% 4.33%

References

[1] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics, 31, 1986.

23



[2] P. Date, L. Jalen, and R. Mamon. A new algorithm for latent state estimation in
nonlinear time series models. Applied Mathematics and Computation, 203:224–
232, 2008.

[3] E.F.D. Ellison, M. Hajian, H. Jones, R. Levkovitz, I. Maros, G. Mitra, and
D. Sayers. FortMP Manual, 2008.

[4] C. Erlwein, G. Mitra, and D. Roman. HMM based scenario generation for an
investment optimisation problem. Annals of Operations Research, 193-1:173–
192, 2012.

[5] R. Fourer, D. M. Gay, and B. Kernighan. AMPL: A Mathematical Programming
Language, 1989.

[6] N. Gulpinar, B. Rustem, and R. Settergren. Optimisation and simulation
approaches to scenario tree generation. Journal of economic dynamics and
control, 28:1291–1315, 2004.

[7] R. Hochreiter and G.Ch. Pflug. Financial scenario generation for stochastic
multi-stage decision processes as facility location problems. Annals of
Operations Research, 152:257–272, 2007.

[8] K. Høyland, M. Kaut, and S.W. Wallace. A heuristic for moment matching
scenario generation. Computational Optimization and Applications, 24:169–185,
2003.

[9] K. Høyland and S.W. Wallace. Generating scenario trees for multistage decision
problems. Management Science, 47:295–307, 2001.

[10] http://www.londonstockexchange.com.

[11] M. Kaut and S.W. Wallace. Evaluation of scenario generation methods for
stochastic programming. Pacific Journal of Optimization, 3:257–271, 2007.

[12] P.M. Lurie and M.S. Goldberg. An approximate method for sampling correlated
random variables from partially specified distributions. Management Science,
44:203–218, 1998.

[13] H. Markowitz. Portfolio selection. Journal of Finance, 7:77–91, 1952.

[14] E. Messina and D. Toscani. Hidden markov models for scenario generation.
IMA Journal of Management Mathematics, 4:379–401, 2008.

[15] G. C. Pflug. Some remarks on the Value-at-Risk and the Conditional
Value-at-Risk, in“Probabilistic Constrained Optimization: Methodology and
Applications”. Ed. S. Uryasev, Kluwer Acadedemic Publishers, 2000.

[16] G.C. Pflug. Scenario tree generation for multiperiod financial optimization by
optimal discretization. Mathematical Programming, 89:251–271, 2001.

[17] K. Ponomareva and P. Date. Higher order sigma point filter: A new heuristic for
nonlinear time series filtering. Applied Mathematics and Computation, 22:662–
671, 2013.

24



[18] R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss
distributions. Journal of Banking and Finance, 26:1443–1471, 2002.

[19] D. Roman, G. Mitra, and N. Spagnolo. Hidden markov models for financial
optimization problems. IMA Journal of Management Mathematics, 21(2):111–
129, 2010.

[20] J.E. Smith. Moment methods for decision analysis. Management Science,
39:340–358, 1993.

[21] N. Topaloglou, H. Vladimirou, and S.A. Zenios. CVaR models with selective
hedging for international asset allocation. Journal of banking and finance,
26:1535–1561, 2002.

[22] S.W. Wallace and W.T. Ziemba. Applications of Stochastic Programming.
SIAM, 2005.

25


