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Introduction

PTK6 (Protein Tyrosine Kinase 6) or Brk (Breast tumor 
Kinase) is a cytoplasmic non-receptor tyrosine kinase which has 
been shown to be highly expressed in various tumor types includ-
ing breast carcinomas (85% of samples), as well as colorectal, 
prostate, lung, head and neck carcinomas, and B and T lympho-
mas.1-6 In normal tissues, PTK6 expression is restricted to the 
differentiated epithelium of the skin and gut, while in tumors 
the highest levels of PTK6 expression correlate with higher 
tumor grade, larger size, metastasis, and consequently a poorer 
prognosis.7-9

PTK6 has specific functions in different tissue types, includ-
ing regulating differentiation in normal tissues and promoting 
proliferation and cell survival in tumors, brought about by varia-
tions in cellular localization.1,10 PTK6 is activated by a num-
ber of different ligands, as well as displaying a small amount 
of basal auto-phosphorylation in in vitro kinase assays.11 EGF 
(epidermal growth factor) and IGF (insulin-like growth fac-
tor) induced signaling have been shown to activate PTK6,9,12,13 
as have HGF (hepatocyte growth factor) and osteopontin 

(OPN).11,14 Radiation treatment has also been reported to lead 
to the induction of PTK6 in both mouse intestine epithelial 
cells and human colorectal cancer cells, however, little is known 
about the mechanisms that regulate the de novo expression of 
PTK6 in tumors.15,16

The importance of the microenvironment, particularly 
hypoxia, for tumor establishment and metastasis is well charac-
terized.17 Tumor hypoxia arises as a consequence of high meta-
bolic demand for oxygen caused by rapid tumor growth and the 
inefficiency of the tumor vasculature.18 Many studies have shown 
that tumor hypoxia is significant as hypoxic tumors are associ-
ated with increased invasion, metastasis, poor patient survival 
and increased resistance to therapy.19,20 One of the key regulators 
of the hypoxic response is the hypoxia-inducible transcription 
factor 1 (HIF-1). Hypoxia-inducible genes regulate many biologi-
cal processes including cell proliferation, angiogenesis, metabo-
lism, apoptosis, immortalization, and migration.21 Exposure to 
hypoxic conditions was recently shown to induce PTK6 in a HIF-
dependent manner in breast cancer cell lines.22 However, PTK6 
has not previously been identified as a HIF target, since no HIF 
binding to PTK6 promoter was identified in larger genome-wide 
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PTK6/Brk is a non-receptor tyrosine kinase overexpressed in cancer. here we demonstrate that cytosolic PTK6 is rap-
idly and robustly induced in response to hypoxic conditions in a hIF-1-independent manner. Furthermore, a proportion 
of hypoxic PTK6 subsequently re-localized to the cell membrane. We observed that the rapid stabilization of PTK6 is asso-
ciated with a decrease in PTK6 ubiquitylation and we have identified c-Cbl as a putative PTK6 e3 ligase in normoxia. The 
consequences of hypoxia-induced PTK6 stabilization and subcellular re-localization to the plasma membrane include 
increased cell motility and invasion, suggesting PTK6 targeting as a therapeutic approach to reduce hypoxia-regulated 
metastatic potential. This could have particular significance for breast cancer patients with triple negative disease.
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ChIP-seq studies.23,24 This indicated that there might be other 
parallel mechanisms for hypoxia-mediated PTK6 induction.

In this study, we showed that PTK6 was rapidly stabilized 
in hypoxic conditions in a posttranslational HIF-1-independent 
manner in both breast and colorectal cancer cell lines. Specifically, 
we demonstrated that, in normoxic conditions PTK6 was tar-
geted to the proteasome and that this process was inhibited in 
hypoxia. Hypoxia-mediated PTK6 induction was associated with 
increased hypoxia-dependent migration and invasion. These 
findings are significant as they point to an additional mechanism 
of PTK6-induction by hypoxia in human cancers.

Results

Hypoxia induces a rapid and robust stabilization of PTK6
Hypoxia is a known driver of many key aspects of tumor 

development. Recently, PTK6 has been shown to be hypoxia-
inducible in triple negative breast cancer cell lines.22 In order to 
confirm whether PTK6 is hypoxia-inducible in different can-
cer cell types, the hypoxia-mediated induction of HIF-1α and 
PTK6 at both the mRNA and protein levels was examined in the 
MDA-MB-231 (breast) and RKO (colorectal) cell lines. When 
protein levels were examined, a rapid and robust induction of 
PTK6 at the protein level in both cell lines was observed, as early 
as 5 min after exposure to hypoxia (Fig. 1A). PTK6 protein levels 
were induced in response to hypoxia prior to HIF-1α upregula-
tion (Fig. 1A) in contrast to previous studies.22 In MDA-MB-231 
cells, PTK6 mRNA increased after 18 h exposure to hypoxia, but 

not at earlier timepoints (6 h), whereas no significant increase 
of PTK6 mRNA levels was observed for RKO cells (Fig. 1B) at 
any of the time points studied. Due to the observed rapid PTK6 
protein level induction kinetics in hypoxia, preceding HIF-1α 
induction, it could be questioned whether PTK6 could in turn 
affect HIF-1α stabilization and/or activity. To address this, PTK6 
was suppressed by RNA interference in RKO and MDA-MB-231 
cells, which were then exposed to hypoxia (2% O

2
). HIF-1α 

induction in hypoxia was unaltered by the presence/absence of 
PTK6 (Fig. S1A and B). Similarly, no effect of PTK6 depletion 
was observed for the transcript levels of three well-characterized 
HIF-1 targets (Fig. S1C), indicating that hypoxic PTK6 does not 
affect HIF stability and function.

PTK6 is ubiquitylated in an oxygen-dependent manner
Due to its rapid kinetics, it was plausible that the transcription-

independent PTK6 protein stabilization in hypoxia depicted in 
Figure 1 could occur via posttranslational turnover in the ubiqui-
tin-proteasome system (UPS). In order to investigate this hypoth-
esis, MDA-MB-231 cells were exposed to proteasome inhibitors 
MG132, ALLN, Lactacystin, and Bortezomib for 6 h in normoxia 
(20% O

2
). Increased PTK6 levels were observed after treatment 

with these inhibitors, suggesting that, in normoxic conditions, 
PTK6 is actively degraded via the UPS (Fig. 2A). To investigate 
the role of direct protein ubiquitylation in PTK6 stabilization in 
hypoxia, constructs containing either tagged PTK6 (Flag-PTK6) 
and/or ubiquitin (HA-Ub) were transfected into HEK293T cells 
to ensure high levels of expression. The cells were then exposed 
to normoxia or hypoxia (2% O

2
) for 6 h and Flag-PTK6 was 

immunoprecipitated (Fig. 2B). Higher molecular weight forms 

Figure 1. hypoxia induces the rapid stabilization of PTK6. (A) RKO colorectal and MDa-MB-231 breast cancer cells were exposed to hypoxia (2% O2) for 
the periods indicated. Cells were lysed and PTK6 and hIF-1α levels were determined by western blotting. (B) RKO and MDa-MB-231 cells were exposed 
to hypoxia (2% O2) for the periods indicated. PTK6 and GLUT-1 expression levels were determined by qRT-PCR.
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1352 Cancer Biology & Therapy Volume 15 Issue 10

Figure 2. PTK6 is ubiquitylated in an oxygen-dependent manner. (A) MDa-MB-231 cells were treated for 6 h with either vehicle (DMsO), 10 μM MG132, 
50 μM aLLN, 5 μM lactacystin, or 50 nM bortezomib. PTK6 levels were determined by western blotting. hIF-1α was used as a positive control for 
proteasomal inhibition in normoxic conditions and GaPDh as a loading control. (B) heK293T cells were transfected with constructs expressing either 
Flag-PTK6, ha-Ub, or both and exposed to normoxia (Norm) or hypoxia 2% O2 (hyp) for 6h in the presence of 10 μM MG132. Flag-PTK6 was immunopre-
cipitated (IP) and analyzed by western blotting for the presence of ubiquitinated PTK6 (indicated by arrows). Whole cell extracts (WCe) were analyzed 
for the presence of PTK6 and GaPDh (loading control). endogenous and ectopically expressed PTK6 in WCe are indicated as * and **, respectively. 
(C) MDa-MB-231 (breast), RKO, and hCT116 (colorectal) cells were transfected with either scr (scramble) or c-Cbl siRNa for 72h. Western blotting was 
performed to detect the endogenous levels of c-Cbl and PTK6. (D) Whole cell extracts were prepared from the breast, colorectal, and bladder cancer cell 
lines indicated and western blotting was performed for PTK6 and c-Cbl. β-actin was used as a loading control. (E) histogram represents PTK6/c-Cbl ratios 
from panel in (D). Quantification values are depicted in Figure S2B. (a.u., arbitrary units of fold increase relative to β-actin).
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of PTK6 were detected in normoxic conditions when both con-
structs were present. This suggested that, under these conditions, 
PTK6 was ubiquitylated. The presence of these higher molecular 
weight forms of PTK6 was decreased in hypoxic conditions, indi-
cating that the level of PTK6 ubiquitylation was lower in hypoxia 
than in normoxic conditions (Fig. 2B). These data imply that 
an E3 ligase could control the level of PTK6 protein in an oxy-
gen-dependent manner. The role of the known tyrosine kinase 
E3 ligase c-Cbl was investigated in this context. MDA-MB-231 
(breast) and RKO and HCT116 (colorectal) cell lines were trans-
fected with c-Cbl siRNA. In MDA-MB-231 cells, suppression 
of c-Cbl led to a statistically significant increase in PTK6 lev-
els (Fig. 2C; Fig. S2A). This effect was also evident (albeit not 
significant) to a lesser extent in the colorectal cell lines, includ-
ing RKO (Fig. 2C; Fig. S2A). To support this finding the levels 
of c-Cbl and PTK6 were determined in a range of cancer cell 
lines by western blotting (Fig. 2D). This analysis demonstrated 
a reciprocal relationship between the levels of PTK6 and c-Cbl; 
that is, when one was relatively highly expressed the other was 
relatively low (Fig. 2D and E; Fig. S2B). Altogether, these data 
support the hypothesis that PTK6 is ubiquitylated and degraded 
via the UPS in normoxic conditions and that this degradation is 
decreased in response to hypoxia, thereby allowing the protein to 
accumulate.

Hypoxia-induced PTK6 promotes cell motility and invasion
The role of hypoxia in regulating the ability of cancer cells 

to disseminate and proliferate to secondary sites clearly contrib-
utes for the metastatic process.25 Furthermore, PTK6 has been 
reported to regulate a number of processes that are central for 
cellular proliferation and metastatic spread, when associated with 
different membrane subcellular fractions.26,27 The subcellular 
localization of normoxic and hypoxic PTK6 was investigated by 
biochemical and immunofluorescence approaches, where a clear 
increase in cytoplasmic hypoxic PTK6 was observed (Fig. S3). 
Although most PTK6 protein in hypoxic MDA-MB-231 cells 
remained cytoplasmic, a fraction of it translocated to the cell 
membrane and co-localized with F-actin (Fig. S3), indicating a 
potential role in cell motility under hypoxic conditions. In order 
to investigate this, scratch wound assays were performed in both 
MDA-MB-231 and RKO cells transfected with Scr (scramble) 
or PTK6 siRNA and exposed to hypoxic conditions (2% O

2
) 

(Fig. 3A and B). Wound closure was significantly delayed in the 
absence of PTK6 in hypoxic conditions for both cell lines (Fig. 3A 
and B). The xCELLigence real-time cell analyzer (RTCA) sys-
tem was used to allow real-time kinetic analysis of early motil-
ity events. This system allows the differentiation between early 
motility and proliferation events.28 Real-time hypoxic cell motil-
ity of MDA-MB-231 cells was decreased in the absence of PTK6 
(Fig. 3C). Although PTK6 knockdown did not affect cell pro-
liferation and clonogenic survival in hypoxia using 2D models 
(Fig. S4), its potential role in 3D growth in hypoxic conditions 
was investigated using the mammosphere system. This allows 
the evaluation of the ability of breast cancer cells to survive and 
proliferate in an ECM-like substrate. Control Scr transfected 
MDA-MB-231 cells formed larger mammospheres in hypoxic 

conditions (2% O
2
) when compared with normoxia (Fig. 3D; 

Fig. S5). However, mammospheres were significantly smaller in 
the absence of PTK6 (Fig. 3D), indicating a role for PTK6 in 
anchorage-independent 3D cell growth. Interestingly, mammo-
spheres formed from the cells lacking PTK6 were predominantly 
smooth, whereas PTK6-expressing mammospheres presented a 
spiky/invasive appearance (Fig. 3E). This phenotype has been 
previously associated with increased invasive and tumorigenic 
ability.29 The decreased invasive phenotype in the absence of 
PTK6 was further tested using conventional transwell assays, 
where both MDA-MB-231 and RKO cells had a lower inva-
sive ability in the absence of PTK6 (Fig. 3F; Fig. S6). This was 
reflected by an invasion index below 1 (0.46 for MDA-MB-231 
and 0.16 for RKO). These results indicate that PTK6 is impor-
tant for hypoxia-mediated cellular motility and invasion, which 
are key factors in metastasis.

PTK6 expression is linked to distant metastasis-free survival
To determine whether our in vitro data suggesting that PTK6 

expression is linked to metastatic potential correlated with find-
ings in human tumors we examined the effects of PTK6 expres-
sion on distant metastasis-free survival (DMFS) in 1609 breast 
cancer patients using data from Györffy and colleagues (2010).30 
High Brk expression was correlated with a reduced metastasis-
free survival (P = 0.0017) (Fig. 4A).

Given our findings in the triple-negative breast cancer cell 
line, MDA-MB-231, we determined whether PTK6 expression 
was particularly linked with DMFS in the 220 patients from the 
Györffy data set with triple-negative (basal-like) breast tumors. 
The Kaplan–Meier plot in Figure 4B shows that, as with the 
overall cohort, PTK6 expression is a poor prognostic indicator for 
DMFS in patients with basal-like breast cancer. Notably, there 
was a greater difference between the probabilities for basal-like 
breast cancers than was observed for the overall patient group.

Discussion

The role of hypoxia in tumor development and spread is well 
characterized.17 However, although many key players in this pro-
cess have been identified, many others remain uncharacterized. 
Lange and coworkers identified hypoxia to be an inducer of the 
non-receptor tyrosine kinase PTK6 in normal and neoplastic 
cells and that this induction was dependent on HIF-1α.22 In our 
study we describe the rapid, posttranslational induction of PTK6 
protein levels in response to hypoxia in both breast and colorectal 
cancer cell lines (Fig. 1) in a much shorter time frame than previ-
ously reported.22 PTK6 induction occurred prior to HIF-1α sta-
bilization, implying that there is an additional HIF-independent 
mechanism mediating PTK6 protein level increase in hypoxic 
conditions. We did observe an increase of PTK6 mRNA after 
prolonged exposures to hypoxia for the breast cancer cell line 
MDA-MB-231, similarly to the published findings by Lange 
and coworkers.22 However, as we observed no PTK6 transcript 
upregulation on shorter exposures to hypoxia in this cell line 
model, our data suggest that PTK6 induction could initially be 
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independent of mRNA expression in breast cancer cells. 
Importantly, there was no hypoxia-dependent transcriptional 
upregulation of PTK6 in the RKO colorectal cancer cell line 
model, indicating the hypoxia-mediated transcriptional upreg-
ulation of PTK6 could be cancer type-dependent. To confirm 

that PTK6 induction in hypoxia could be independent of HIF 
and transcriptional mechanisms we showed that, in response to 
hypoxia, proteasomal-mediated degradation of PTK6 is reduced 
and that this correlated with decreased ubiquitylation of PTK6 
(Fig. 2). A candidate-based approach was used to investigate the 

Figure 3. hypoxia-induced PTK6 promotes cell motility and invasion. (A) MDa-MB-231 and RKO cells were transfected with scr (scramble) or PTK6 siRNa. 
Graph represents the percentage of wound closure after 18 h in 2% O2. Graphs represent the mean of n = 3 independent experiments. (B) Representative 
images of scratch wound assays for (A). (C) MDa-MB-231 cells were transfected with scr or PTK6 siRNa. Kinetic real-time migration assays were per-
formed at 3% O2 using the xCelligence Real Time Cell analyzer (RTCa) DP instrument. The graph depicts changes in the cell index (CI). Graph represents 
n = 2 experiments. (D) MDa-MB-231 cells were transfected with scr or PTK6 siRNa. Mammospheres were established and exposed to normoxia (Norm) 
or 2% O2 (hyp) for 24 h. The graph represents a quantification of the average size of at least 150 mammospheres per condition. Data represent n = 6 
individual experiments. (E) MDa-MB-231 mammospheres were generated from cells transfected with scr or PTK6 siRNa and treated as described in 
(D). Mammospheres were scored according to their morphological phenotype as non-invasive or invasive. Representative images of both phenotypes 
depicted in inset. Graph represents the percentage of different morphologies under each condition. Data represent n = 6 individual experiments. 
(F) MDa-MB-231 and RKO cells were transfected with scr or PTK6 siRNa as before. Cells were seeded in control (uncoated) or matrigel coated Transwell 
inserts with 8 μm pore size and allowed to invade for 18 h at 2% O2. Invasion index = % invasion PTK6 siRNa/% invasion scr. Results are representative of 
n = 3 individual experiments. *P < 0.05; **P < 0.005; ***P < 0.0001
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possible role of specific E3 ligases in PTK6 stabilization. c-Cbl 
was prioritized as it is known to have substrates including both 
receptor and non-receptor tyrosine kinases.31,32 It appears that 
c-Cbl could, in part, be responsible for regulating PTK6 lev-
els during early hypoxia, independently of HIF, although how 
c-Cbl is itself regulated in an oxygen-dependent manner to effect 
PTK6 levels is still unclear. Recently, PTK6 has been reported 
to promote the ubiquitylation and degradation of c-Cbl through 
targeted phosphorylation, which raises the intriguing possibility 
that a reciprocal feedback loop exists between c-Cbl and PTK6.33 
Furthermore, other E3 ligases, namely CHIP (C terminus of 
Hsc70-interacting protein) and SOCS3 (suppressor of cytokine 
signaling 3) were recently reported to enhance the proteasomal 
degradation of PTK6.34,35 These data add further support to our 
finding that PTK6 levels are regulated by the proteasome and 
the regulation of E3 ligases in hypoxia warrants further inves-
tigation. This study also demonstrates that hypoxic PTK6 has 
a role in regulating cellular invasion and migration (Fig. 3). 
Importantly, this is associated with a relocalization to the cell 
membrane, a process that is reported to be essential for PTK6’s 
role in oncogenesis.36

Finally we show in a large patient cohort (1609 samples) that 
high PTK6 expression is correlated with reduced metastasis-
free survival (Fig. 4A) across all tumor subtypes. This supports 
our previous findings that elevated PTK6 expression is associ-
ated with breast tumors that are either invasive, more likely 
to metastasize, as well as data from other studies using much 

smaller sample sizes (less than 300).8,9,22,37 Aubele and colleagues 
reported that high PLA signals, indicating a physical interaction 
between PTK6 and HER2, correlated with reduced metastasis-
free survival, although their earlier findings in 193 invasive breast 
cancers suggest that PTK6 may be a positive prognostic indica-
tor.38 This discrepancy has been discussed elsewhere and does 
highlight the difference between expression at the mRNA level 
compared with protein-based studies.8

Additionally, given that the reduction in metastasis free sur-
vival with high PTK6 expression appeared to be more marked in 
the 220 patients with triple-negative or basal-like breast cancer 
(Fig. 4B), it is possible that, in the absence of other prognostic 
factors such as HER2, ER, and PR, PTK6 levels become more 
important in predicting prognosis.

It has been suggested that inhibition of PTK6 would be an 
effective therapeutic approach.5,27 However, the lack of com-
mercially available specific inhibitors has not allowed for further 
investigations. Our in vitro results in both breast and colorectal 
cell line models show that PTK6 induction in hypoxia can be 
regulated by HIF-independent mechanisms, such as posttransla-
tional modifications. Combined with the findings in breast can-
cers, our data add to the wealth of information describing the role 
of hypoxia in driving cell motility and invasion, indicating that 
targeting of PTK6 through the development of pharmacological 
inhibitors could potentially be used to decrease tumor metastatic 
potential and that this may be of particular benefit to patients 
with basal-like/triple negative breast cancers.

Figure 4. high PTK6 expression is associated with decreased distant metastasis-free survival in breast cancer patients. (A and B) Kaplan–Meier curves 
depicting the effect of PTK6 expression in distant metastasis-free survival (DMFs) in 1609 breast cancer patients (A) and a subset of 220 triple negative 
(basal-like) patients (B). Kaplan–Meier curves were generated using the KMplot online tool. Median expression was used as a cut-off for grouping into 
low (black) or high (gray) PTK6 expression. hR, hazard ratio
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Materials and Methods

Cell lines, hypoxia, drug treatment, and siRNA transfections
MDA-MB-231, MDA-MB-453, MDA-MB-468, 

MDA-MB-361, BT474, T47D, MCF-7 and SKBR3 (breast), 
RKO, HCT116 and DLD1 (colorectal), and RT112, VmCuB1, 
T24 and 253J (bladder) cancer cell lines were grown in DMEM 
or RPMI-1640 (Sigma) with 10% FBS. HEK293T (kidney) cells 
were grown in DMEM/10% FBS. All cell lines were purchased 
from ATCC or ECCAC and routinely tested as negative for 
mycoplasma. Hypoxia treatments were performed in an in vivo

2
 

400 (Ruskinn) or Heracell incubator (ThermoFisher). For exper-
iments at < 0.1% O

2,
 cells were plated in glass dishes and placed 

in a Bactron II anaerobic chamber (Shell labs). MG132 (Sigma), 
ALLN (Ac-LLnL-CHO, Sigma), lactacystin (Merck Millipore), 
and bortezomib (Selleck Chemicals) stocks were prepared in 
dimethyl sulfoxide (DMSO, Sigma). Cells were transfected 
with PTK6 siRNA (GGUGAUUUCU CGAGACAAC dTdT)8 
or scramble siRNA (Life Technologies) using DharmaFECT1 
(Thermo Scientific). Knockdown was obtained after double 
transfection over 48 h. Transfection with Flag-PTK6 and HA-Ub 
(gift from Jason Parsons) was done using PEI (Polyethylenimine, 
Polysciences).

Cell lysis and western blotting
For whole cell extract (WCE) preparation, cells were 

lysed in UTB (9 M urea, 75 mM TRIS-HCl pH 7.5, and 
0.15 M β-mercaptoethanol) and immunoblotted as previously 
described.39 Antibodies used were PTK6 (ICR-100),12 HIF-1α 
and GAPDH (BD Biosciences), c-Cbl, EGFR, and α-tubulin 
(Cell Signaling Technology), HA-tag (Abcam) and β-actin 
(Santa Cruz). The Odyssey infrared imaging technology was 
used for protein detection (LI-COR Biosciences). Densitometry 
was done using ImageJ software (NIH).

Immunoprecipitation (IP)
Cells were lysed in IP lysis buffer: 150 mM NaCl, 20 mM 

Hepes pH 7.5, 0.5 mM EDTA, 0.5% NP40, 1× Complete pro-
tease inhibitor cocktail, and 1× PhosStop phosphatase inhibitor 
cocktail (Roche). Flag-PTK6 was immunoprecipitated using 
Flag-M2 agarose (Sigma).

Quantitative real-time PCR
Quantitative real-time PCR (qRT-PCR) was performed using 

Thermo Scientific Verso™ QRT-PCR (Thermo Scientific) as 
previously described.40,41 The qPCR reaction was performed 
using the 7500 Fast Real Time PCR System (Life Technologies). 
PTK6 and GLUT-1 expression levels were normalized to 18S 
rRNA. Primer sequences are available in the Supplementary 
Material (Table S1).

Scratch wound assay and measurement of cellular invasion
Scratch wound assays were performed as described previously.42 

For cellular invasion assays, cells were plated in control or Matrigel 
invasion chambers with 8 μm pore size (BD Biosciences). Cells 

were allowed to invade for 18 h before fixing and staining with 
DAPI to visualize nuclei.

Measurement of cellular proliferation and motility using the 
xCelligence system

Experiments were performed using the xCelligence Real Time 
Cell Analyzer (RTCA) DP instrument (Cambridge Biosciences). 
Cell migration was assessed using 16-well CIM-plates 16 as 
described.28,43 DMEM/10% FBS was added to the lower cham-
ber as chemotractant and cells were seeded into the upper cham-
ber at 40 000/well in serum free medium.

Mammosphere formation assay
Matrigel (BD Biosciences, USA) diluted 1:1 in serum free 

medium was added to 24-well plates. Cells were seeded at 2500 
cells/well and allowed to adhere for 6 h before exposure to hypoxia 
(2% O

2
). After 24 h cells were returned to normal culture condi-

tions. Medium was changed every 2–3 d. After 10 d the mam-
mospheres were imaged using an Eclipse SE2000-E microscope 
(Nikon). Images were analyzed using ImageJ software (NIH). At 
least 150 mammospheres were measured per condition.

Breast cancer patient distant metastasis-free survival analysis
Kaplan–Meier curves for distant metastasis-free survival 

(DMFS) were generated using the KM-plotter online tool, 
(http://kmplot.com/analysis), which used microarray data for 
over 20 000 genes for 1609 breast cancer patients.30 Analysis of 
PTK6 expression (Affymetrix ID 206482_at) was performed for 
1609 breast cancer patient samples and a subset of 220 triple neg-
ative (basal-like) breast cancer patients. Both analyses were per-
formed regardless of lymph node status. Patients were grouped as 
having high or low PTK6 expression, and median expression was 
used as the cut-off.

Statistical analysis
Statistical significance was determined using the Student t 

test and error bars represent ± SEM.
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