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Structural alphabets derived from attractors
in conformational space
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Abstract

Background: The hierarchical and partially redundant nature of protein structures justifies the definition of
frequently occurring conformations of short fragments as ‘states’. Collections of selected representatives for these
states define Structural Alphabets, describing the most typical local conformations within protein structures. These
alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented
methods of protein structure analysis.

Results: A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset
of the protein data bank and extracting the high-density states as representative conformational states. Each
fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom,
capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural
Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of
proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and
ensembles of structures can be encoded with accuracy and robustness.

Conclusions: The density-based Structural Alphabet provides a novel tool to describe local conformations and it is
specifically suitable for application in studies of protein dynamics.

Background
Most proteins have arisen by natural selection to adopt
a hierarchical three-dimensional fold, where regularly
shaped structural motifs are packed together and form a
hydrophobic core. The first description of two of these
motifs introduced the concept of secondary structures
(a-helix and b-sheet) and demonstrated that some local
structures have a repetitive nature [1]. Later it was dis-
covered that almost all regions of a protein backbone
can be rebuilt by few substructures common to different
proteins [2]. With increasing availability of high quality
structures, it also became clear that some of the adopted
conformations are realised much more frequently than
others and more recently a detailed analysis of the
Ramachandran space [3] for structures of different crys-
tallographic resolution showed clustering of both sec-
ondary structure types and random coil conformations
at distinct conformational attractors [4]. These attractors
can be labelled as conformational ‘states’ and the protein

structure can be considered as a sequence of conforma-
tional states. Indeed, classical secondary structure attri-
bution encodes a protein structure into a sequence of
states.
However, the protein fold cannot be fully recon-

structed from the secondary structure sequence alone,
because this code describes the conformation of single
residues and provides too few states to capture the
entire variety of local conformations. To overcome these
limitations, comprehensive libraries of frequently occur-
ring fragments spanning several, typically 4-7, residues
were derived [5-12]. These libraries provide a richer
choice of conformational states and they comprise
intrinsically the structural correlation between consecu-
tive residues. Using fragments, protein fold reconstruc-
tion can be achieved by superimposing chains of
fragments in a head-to-tail arrangement.
Structural Alphabets are fragment libraries composed

of a relatively small number of fragments that comple-
ment each other to form a ‘universal code’ of local con-
formations. Several Structural Alphabets have been
derived [13] using methods such as cluster analysis
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[6,8,10,12,14], Kohonen maps [9] and Hidden Markov
Models [11,15]. Generally machine learning strategies
yielded better performing alphabets at the price of an
indirect description of the conformational space. Despite
the relative novelty, the potential of Structural Alphabets
has been exploited for decoy generation [16], local
structure prediction [9,17,18], sequence-based structural
comparison [19], combined sequence-structure align-
ments [20], 3D structure alignment [21], structure
mining [12,22-25], structure reconstruction from Ca

[26], fold classification [27], fold prediction [28], struc-
ture generation [29], de novo prediction [30,31], de novo
backbone design [32], but not yet for molecular motions
and conformational transitions. Therefore, a description
of high quality Structural Alphabets is needed that
allows for a projection of these properties into the con-
formational space of the alphabet, which would facilitate
the development of applications that combine a static
and dynamic description of proteins.
In this paper we devise a simple and explicit descrip-

tion of four-residue long fragments, the conformation of
each being defined by three internal angles. All protein
fragments were mapped as points in a three-dimensional
space of these internal angles. Structural Alphabets were
extracted directly from the conformational attractors on
that fragment map and assessed in terms of their accu-
racy in reconstructing protein structures. A performance
comparison was made with other Structural Alphabets
of four-residue fragments. Finally the suitability of our
best performing alphabet for the description of protein
dynamics was assessed by encoding the different struc-
tures in a test set of conformation ensembles and mea-
suring the correlation between local flexibility and
encoding variability.

Methods
Dataset
A reference set of high quality protein structures was
selected from ASTRAL SCOP 10 (v1.73), which includes
domains with less than 10% sequence identity [33,34].
The degree of quality was measured by the Summary
PDB ASTRAL Check Index (SPACI) [34]. This index
provides information on the reliability and precision of
protein structures. It includes three contributions: the
quality of the experimental data (resolution), the quality
of the fitting procedure (R-factor), and the quality of the
deposited model structure (stereochemical accuracy).
Only X-ray structures with complete backbone chains
and SPACI quality scores > 0.5 were included, yielding a
total of 1830 protein domains. The list of SCOP ids is
available for download at http://mathbio.nimr.mrc.ac.uk/
download/MK.dataset.txt.
The dataset of local structures was defined as the col-

lection of all four-residue long fragments within the

reference set. A fragment is represented by the Ca

atoms of four consecutive residues. To avoid sampling
bias and to allow for reconstruction, the extracted frag-
ments may overlap in the source structure and neigh-
bouring fragments share three atoms. For each
fragment, three pseudo-angles were defined between
their constituting Ca atoms: the angle between atoms 1-
2-3 (j1), atoms 2-3-4 (j2) and the torsion angle formed
by atoms 1-2-3-4 (θ) (see Figure 1). Angle values were
computed via the Cartesian coordinates of the Ca

atoms. Note that these angles are not directly related to
the Ramachandran angles (F, Ψ), as our fragment defi-
nition embodies a coarse grained representation of the
backbone without consideration of the peptide bond
geometry.
A molecule composed of N atoms possesses 3N

degrees of freedom. Removal of trivial rigid body
motions and bond constraints yields 3 * 4 - 6 - 3 = 3
degrees of freedom, which are entirely described by the
three independent internal angles j1, j2 and θ. Advan-
tages of this representation are the conceptual simpli-
city, the ease of visualisation and the fast comparison of
fragment geometries by angle differences instead of
atom super-positioning.

Density-based cluster analysis
Cluster analysis of the fragments extracted from the
selected set of 1830 protein domains (325923 fragments)
was performed in the conformational space of the three
internal fragment angles (j1, j2, θ). The values of these
angles were neither normalised nor standardised to pre-
serve the original ratio between the variance in the tor-
sional angle θ compared to the planar angles j. This
information is central to correctly detect the geometries
associated with secondary structures and the transitions
between them. A cubic grid with 2° resolution was
defined to obtain an initial fragment density estimate.
To reduce the computational complexity, irrelevant data
were removed by an initial filtering step: those frag-
ments in cubes containing in total less than 10 frag-
ments were removed. The final dataset included 133254
fragments.
Extraction of a Structural Alphabet from the data

cloud in this conformational space requires the

Figure 1 Fragment definition. Ca atoms are represented as
spheres. The conformation is entirely described by two pseudo
bond angles (j1, j2) and one pseudo torsion angle (θ).
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identification of representatives within the high-density
regions of point clusters. However, the data did not lend
themselves to standard clustering methods, because of
the large variation of cluster densities and the partial
overlap of clusters with different densities. To overcome
this problem, the OPTICS (Ordering Points To Investi-
gate the Clustering [35]) method was implemented in C
and applied to the dataset. A flow chart of the algorithm
is given in Additional File 1: Supplementary Figure S1.
OPTICS is based on a nearest neighbour walk through
the data space, thereby ordering and recording pairwise
point distances [36]. The approach is particularly suita-
ble for the extraction of a Structural Alphabet, because
fragments can be clustered hierarchically by density and
representatives may be selected amidst the highest point
densities. The algorithm requires only two input para-
meters: a neighbourhood radius (ε) and a minimum
number of neighbour points (MinPts). We set ε to 200°;
since the largest angular RMSD in the dataset is 78°,
each point is reachable and this parameter had no influ-
ence on the results.
Briefly, the algorithm starts at a random data point, cal-

culates the distance to all points within the neighbourhood
radius (ε) and, if at least a minimal number of points
(MinPts) is encountered, it records the nearest neighbour
distance (Reachability Distance) and the smallest radius
that encircles MinPts objects (Core Distance). If less than
MinPts points fall within ε, the point is considered as
noise. The algorithm repeats the same procedure for the
nearest neighbour point and proceeds iteratively until all
data points have been visited, thereby generating an
ordered list. Our specific choice of ε implies that none of
the fragments is labelled ‘noise’ and each is included in
one cluster at least. This choice allows to scan afterwards
for clusters at any density. Distances dij were calculated as
the root mean square deviation in angular coordinates
(aRMSD) between fragment pairs. Angle differences of j1
and j2 naturally fell into the value range [0,180], while for
θ periodicity was removed to retain the value range
[0,180]. The ordered list of Reachability Distances (RDs)
can be drawn as a comprehensive nearest neighbour dis-
tance plot (called Reachability Plot).

Structural Alphabet extraction
The cluster structure emerges directly from the Reach-
ability Plot. A variant of the Drop-Down algorithm [37]
was implemented to extract the clusters and their repre-
sentatives. The idea behind this algorithm is to hier-
archically extract the clusters by progressively increasing
a density threshold. Given a density threshold value, a
cluster is defined by a contiguous series of (ordered)
points having a density above the threshold. The algo-
rithm works as follows:

1. Generate a list in which the fragments are sorted
by decreasing Reachability Distance (increasing den-
sity) with ‘merge sort’.
2. Parse the sorted list to find two fragments that are
more than MinPts apart in the Reachability Plot;
these fragments enclose a candidate cluster.
3. If the size of the candidate cluster is at least
MinPts smaller than the parent cluster, label the
candidate cluster as accepted cluster and remove all
its points from the sorted list.
4. Repeat 2 until reaching the end of the sorted list.

In the first iteration, the entire Reachability Plot is
scanned for root clusters; in following iterations, new
clusters are extracted by processing the clusters that
were identified at the previous step. The fragment with
the lowest Core Distance (highest density of fragments
in its neighbourhood) is taken as the representative of a
cluster.

Redundancy removal
As previously reported [8], the distribution of pairwise
Euclidean distances between short protein fragments of
fixed length is multi-modal, with one peak correspond-
ing to intra-cluster distances (same fragment conforma-
tion) and the others to inter-cluster distances (different
fragment conformation). Using the same principle, we
derived a cutoff distance to remove redundant represen-
tatives from our set.
The distribution of pairwise distances was calculated

for a random sample of 13326 fragments from the data-
set. The Euclidean distance between the Ca atoms after
optimal superposition of all fragment pairs was com-
puted. The resulting distance distribution of the intra-
cluster peak is log-normal for values smaller than 1.0 Å
and it was fitted using the maximum-likelihood method
of the R [38] package MASS [39].
Occurrences within one standard deviation (0.307 Å)

account for 84% of the data and 0.307 Å was selected as
the redundancy distance cutoff for cluster
representatives.

Assessment by fit quality
The quality of a Structural Alphabet is generally
assessed by its accuracy in approximating real protein
structures. For this purpose the performance measure
previously used by other authors was adopted: local fit
and global fit accuracy [6]. A local fit is obtained if each
position of a given protein structure template is overlaid
with the best-fitting alphabet fragment. The coordinate
root mean square deviation (cRMSD) on the position of
each Ca atom from the template protein is then calcu-
lated. A global fit is obtained if the best-fitting sequence
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of fragments is given and the protein structure is recon-
structed by progressively overlaying the ends of neigh-
bouring fragments in the sequence. In this case the
cRMSD value is calculated after aligning the recon-
structed structure with the template.
In both cases the median of the protein RMSD fit was

calculated for a test set including 798 proteins from
ASTRAL SCOP superfamily level with SPACI scores >0.5
[33,34]. Dataset and test set did not overlap. The list of
SCOP ids of the test set is available for download at
http://mathbio.nimr.mrc.ac.uk/download/MK.testset.txt.
For this analysis the global fit procedure described by

[6] was implemented in C. Whenever possible, RMSD
calculations were performed with Theobald’s fast qua-
ternion method [40]. A heap size of 2000 was used to
ensure convergence of the encoding.

Assessment by information content
The performance of a discrete state model (such as the
Structural Alphabet) is a trade-off between the complex-
ity invoked by its number of states and the ability to
describe reality as reflected by its fit quality. A suitable
metric for this trade-off is Akaike’s Information Criter-
ion (AIC), an entropy based measure of the goodness of
fit for a given model with a varying number of para-
meters [41,42]. Being grounded in Information Theory,
it provides a relative measure of the information loss by
using the model instead of the real data. The general
expression for a model with k parameters and a maxi-
mum likelihood L (of the fit) reads:

AIC k L 2 2 ln( ). (1)

If the model errors are normally and independently
distributed, the AIC can be expressed in terms of the n
residual errors of the fit (εi) as

AIC k n ii
n

n
 


2

2
ln .

 (2)

The Structural Alphabets obtained for different values
of MinPts were ranked according to their AIC. The resi-
dual errors were calculated in the form of a local fit
RMSD of the 325923 fragments in the dataset. The
Structural Alphabet with the lowest AIC was selected as
the most informative alphabet, providing the highest fit
performance for the lowest number of constituting
fragments.

Genetic Algorithm optimisation of combined fragments
To overcome any potential bias by the hierarchical clus-
ter extraction, all fragments of the alphabets obtained
with MinPts parameters in the range [10, 99] (initially
1709 representative fragments, reduced to 106 non-

redundant fragments using a 0.1 Å cRMSD cut-off)
were submitted to a global optimisation within the fra-
mework of a Genetic Algorithm [43]. The purpose of
this optimisation is an independent alphabet derivation
to verify that any potential methodological biases of the
described OPTICS selection do not interfere with the
performance of the selected alphabets.
The target size of the optimised Structural Alphabet

was 25 fragments to match the size of our best perform-
ing alphabet (see below). Each fragment was represented
by a gene in the form of a binary number, where [1/0]
indicates either inclusion or exclusion with respect to
the final subset. The fitness of the genome was calcu-
lated as the average local fit on the 10 top quality pro-
teins (according to their SPACI score) in ASTRAL
SCOP 40, which cover a diverse set of folds. The GA
was run three times with a population size of 5000 gen-
omes over 50 generations, cross-over breeding of the fit-
test 5% genomes and elitism (fittest genomes survive).
The algorithm converged to a unique solution in 17
generations. The optimised subset was assessed by local
fit, global fit and AIC.

Analysis of native contacts and intrinsic flexibility
The local and global fit accuracy are robust and general
measures of reconstruction quality. For applications
other than reconstruction, specific quality measures
should complement the assessment. The Structural
Alphabets introduced here are intended to also capture
the intrinsic flexibility of protein structures. This implies
that the network of interactions in the native structure
is correctly described in the reconstructed structures.
Therefore, reconstructed structures were assessed in
terms of their dynamics and residue interactions. A use-
ful approach to test this is provided by the Gaussian
Network Model (GNM) [44-46]. With this simple but
elegant model it is possible to calculate the protein con-
tact map and to derive an estimate of the Root Mean
Square Fluctuation (RMSF) of the atom positions
directly from a single structure.
In the GNM a protein of N residues is described by

an elastic network where residues become nodes linked
by harmonic springs. Each node is subjected to Gaussian
fluctuations around its equilibrium position, defined by
the coordinates of the Ca atoms in the protein structure.
The model is isotropic and has N degrees of freedom
describing the amplitude of the fluctuation of each
node. The force constant of the spring (g) is generic and
identical for each residue type. The associated inter-resi-
due interaction potential is:

V R RT 
2

( )  (3)
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where ΔR is an N-dimensional vector whose ith ele-
ment is the fluctuation vector ΔRi of the individual resi-
due ith, and Γ is the N × N Kirchhoff contact matrix
with elements
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where dij is the distance between residues i and j and
the cutoff distance rC is 7 Å. The cross-correlation of
fluctuations between residues i and j can be calculated
from

  R R k Ti j B ij ( / )[ ]3 1 (5)

where kB is the Boltzmann constant and T is the abso-
lute temperature. Accordingly, the mean-square fluctua-
tions of the Ca atoms can be extracted from the
diagonal elements of Γ-1

 Ri ii
2 1 [ ] . (6)

Estimated RMSFs and cross-correlation matrices were
analysed for 798 pairs of native and reconstructed pro-
teins from ASTRAL SCOP superfamily level with SPACI
scores >0.5 (see above). The agreement of the RMSF
profiles was measured by the Pearson correlation coeffi-
cient, while the similarity of the cross-correlation
matrices was calculated by matrix overlap [47]:

s A B
d A B
trA trB

( , )
( , ) 


1 (7)

where A and B are the matrices to compare, tr is the
trace operator and d(A, B) is the matrix difference:

d A B tr A B( , ) [( ) ]./ / 1 2 1 2 2 (8)

The overlap ranges from 0 (no overlap) to 1 (identical
matrices).

Analysis of conformational states in structural ensembles
The suitability of the proposed Structural Alphabet to
analyse protein dynamics was further tested by investi-
gating both the robustness of the fragments to small
fluctuations and their ability to describe conformational
transitions. To limit the computational effort, the analy-
sis was performed on a set of 24 proteins. The confor-
mational space of each protein was explored with the
tCONCOORD method [48-50] that provides a more
accurate model than GNM, since an all-atom

representation of the system is used and anharmonicities
in atom motions are allowed, but it is still simpler and
faster than Molecular Dynamics (MD) simulations.
In tCONCOORD, ensembles of structures are gener-

ated by fulfilling a set of distance constraints between
atom pairs. The permitted distance intervals are deter-
mined on the basis of the distance values found in the
starting structure and of the type of the interaction (e.g.
covalent bonds, hydrogen bonds, salt bridges or hydro-
phobic interactions), so that lower tolerances are used
to describe stronger interactions. All the contacts in the
original structure are preserved, except for ‘under-
wrapped’ hydrogen bonds [49,51] which are considered
unstable since they are not sufficiently shielded from the
environment by hydrophobic groups. It has been shown
that the detection of unprotected hydrogen bonds,
together with the calibration of the distance constraint
definition, allows the prediction of conformational tran-
sitions [49]. Moreover, even if the molecule description
is less accurate than that provided by the force fields
generally used in MD simulations and there is no expli-
cit representation of the solvent, the collective motions
and the overall RMSF profiles extracted from tCON-
COORD ensembles have been found in good agreement
with both MD and experimental results [48,49,52,53].
The test set of 24 proteins was extracted from a larger

dataset of proteins annotated in the PiSite database [54]
and currently used by the authors to study the role of
flexibility in protein-protein interactions. To avoid the
introduction of biases due to the over-representation of
some secondary structure types or of some folds, the
first four classes of SCOP (a, b, a/b, and a + b) were
equally represented and a given fold was considered
only once (see Table 1). Moreover, within each group of
six proteins belonging to the same SCOP class, it was
ensured that the distributions of the total number of
residues and of the ratio between structured (H, G, I, E
and B in the DSSP [55] dictionary) and unstructured (T,
S and unassigned) regions was covering a wide range
(see Table 1). After full protonation and energy-minimi-
sation with the GROMACS 3.3.3 package [56] and the
OPLS-AA force field [57], tCONCOORD ensembles of
500 structures were generated for each protein.
A ‘per-fragment’ flexibility profile was obtained for

each protein by calculating the RMSFs of Ca over N-3
sliding windows of 4 residues. The roto-translational
motion was eliminated by least-square superposition of
the fragment in each frame to the reference starting
structure. The value assigned to each window was calcu-
lated as the quadratic mean of the RMSF values of each
Ca in the fragment.
For comparison, for each protein the structures in the

ensemble were encoded into structural strings by both
local and global fit procedure as previously described
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(see “Assessment by fit quality”). Conversely to the
encoding of a single structure, in the ensemble a given
fragment position can be generally described by different
letters. The letter variability per fragment was evaluated
through the Shannon Entropy [58]:

H p log pi ij ij

j

k

 

 2

1

(9)

where pij is the fraction of structures where fragment i
was encoded by letter j and k is the total number of let-
ters in the alphabet.

Results
Structural Alphabets from conformational attractors
A plot of the conformational space of 133254 fragments
derived from a set of 1830 high-resolution structures
sampled from sequence-unrelated protein domains (less
than 10% identity) is shown in Figure 2. The overall
clustering of the fragments at conformational attractors
is clearly visible. The existence and location of the high
density regions around these attractors is an intrinsic

property of the conformational space and it is within
the tested limits independent of the dataset size and the
resolution of the contained structures (see Additional
File 1: Supplementary Figure S2 for details). One can
readily identify main clusters around fragment confor-
mations typically found in protein structures: helix, turn,
extended and loop, as illustrated by the ball-and-stick
models of the representatives of these clusters on the
right panel. Although the main fragment clusters are
already informative, their fine structure needs to be
resolved computationally to extract fragment alphabets
with a high information content (entropy).
Using the density clustering method OPTICS [35], a

comprehensive and sorted density plot (Reachability
Plot) of all fragments was obtained (see bottom panel
Figure 3 for MinPts = 32 as example). The point density
is approximated by a nearest-neighbour distance (Reach-
ability Distance), measured as a Euclidean distance in
the internal angle space (aRMSD) of the fragments’
degrees of freedom (j1, j2, θ). The Reachability Plot
shows the fine structure of the OPTICS data clustering.
This density plot was then processed with a variant of

the Drop-Down algorithm [37], in which a density
threshold was progressively increased, to extract the
cluster structure (see Methods). A diagram of the hier-
archical extraction is presented in the top panel of
Figure 3, the resulting fragments and their location in
the Reachability Plot are shown in the middle panel. In
this scheme, frequently occurring fragments are selected
first, rarer conformations later, which can also be inter-
preted as the importance of the attractor (cluster) in the
conformational space. The collection of extracted frag-
ments forms the Structural Alphabet. The rugged fine
structure of the data density combined with the sensitive
clustering method yielded some representatives with
near-identical conformations. A plot of all pairwise frag-
ment distances (cRMSD) in the dataset showed that the
intra-cluster peak follows a log-normal distribution;
fragments were deemed redundant and removed if their
distance to an accepted representative within the intra-
cluster peak was shorter than a cutoff value (0.307 Å,
see Methods). An example of the distribution of frag-
ments of a Structural Alphabet is shown in Figure 2;
each fragment is indicated by an annotated circle. It is
noticeable that the fragments representing helical con-
formations (S-W) are spaced much closer than those of
extended conformations (A-I). Helical conformations
can be well represented by a few similar states, while
extended conformations are more versatile and require
more representatives to capture the variability of strands
in proteins.
The MinPts parameter was used to fine-tune the

extraction of Structural Alphabets to specific densities.
We generated Reachability Plots for values of MinPts in

Table 1 Dataset for the test on accuracy and robustness
in encoding structural ensembles.

PDB ID Chain SCOP superfamily
classification

H+E/L size

1a4p A a.39.1 3.18 92

2dn2 C a.1.1 2.92 141

2ilk A a.26.1 2.16 155

1v74 B a.24.20 1.81 87

2hue C a.22.1 1.34 82

1mz4 A a.3.1 1.30 131

1z5y D b.1.17 2.11 118

1n9r G b.38.1 2.09 68

2f3g B b.84.3 1.21 150

2z6k D b.40.4 1.09 117

2rac A b.6.1 0.91 105

1beh B b.17.1 0.69 183

1ay7 B c.9.1 2.30 89

1qjc B c.26.1 1.85 157

2vrw A c.37.1 1.49 177

2d1p B c.114.1 1.43 119

2trx B c.47.1 1.30 108

1uex C c.62.1 1.22 202

1gy6 B d.17.4 3.10 123

1oo0 A d.232.1 2.06 144

1gd0 C d.80.1 1.74 118

3eze B d.94.1 1.58 85

2uyz A d.20.1 1.20 156

2inc C d.15.12 1.07 83

H+E/L: ratio between regular (H+E) and irregular (L) secondary structure
elements according to DSSP [55] (H+E = H+G+I+E and L = T+S+unassigned in
the DSSP dictionary); size: number of residues.
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the range 10-100. Structural Alphabets derived for
MinPts values > 100 contain too few (< 14) fragments
and already those derived for values > 60 show an unsa-
tisfactory performance in reconstructing protein struc-
tures (global fit RMSDs 1.0-1.2 Å). Therefore, only
results for MinPts values in the range 10-60 are reported
here. Our alphabets are named according to their
MinPts parameter and size, for example ‘M32K25’ for
MinPts = 32 and k = 25. A comparison between the
location of the fragments of three Structural Alphabets
relative to the conformational attractors is given in
Figure 4. The M32K25 set is compared with two alpha-
bets from the literature of size 27 (CGT2004 [11]) and
28 (MSM2000 [8]), both composed by fragments of four
Ca. The centering of the M32K25 representatives at
data clusters is clearly visible.

Structural Alphabet performance assessment
Structural Alphabets capture the essence of conforma-
tional variability of the folded protein backbone in a
small number of states. By extracting the states of highest
density as representatives, we maximise the probability to
match this state in any given structure. Therefore, in

terms of a Structural Alphabet, a protein structure can be
thought of as a sequence of conformational states and
the representation of a protein structure can be reduced
to a string of alphabet characters (structure string). This
translation can be thought of as an encoding, achieved by
matching the best fitting alphabet fragment to each posi-
tion of the protein structure. This can be done for each
position independently (local fit) allowing for non-exact
fragment overlaps, or by searching for the sequence of
fragments that comprehensively best approximate the
geometry of the template structure (global fit) with exact
fragment overlaps. In both cases the cRMSD between
fitted and template structure is a measure for the error
associated with the encoding. The two fit procedures
exemplify also two extreme cases of the structure predic-
tion problem: local and fold prediction. As the aim of
this work is not to provide a new tool for structure pre-
diction, these two fit assessments should not be inter-
preted as a measure of the predictive ability of the
alphabets; further tests would be required to validate the
alphabets in the context of fold prediction.
The global fit error is generally higher than the local

fit error, because it incorporates the deviation between

Figure 2 Projection of the data into the conformational space of the internal angles (j1, j2, θ). Each dot (orange) corresponds to a
fragment. The plot is split at the periodic boundary -180/180° of the θ angle, while the angle range of the θ1 and θ2 dimensions has been
cropped to the populated region. Fragments of the M32K25 alphabet (see text) are shown as labelled circles and four selected fragments (Y
blue, U red, P cyan, A yellow) are rendered as ball-and-stick models on the right panel. The left models illustrate the [j1, j2] angles and the right
models the θ angle. The relation between the two views is a 90° rotation around a vertical axis in the paper plane and an adjustment to align
the two central atoms to a Newman projection. Atom ‘1’ is positioned left (left models) and front (right models). The plot was produced with
the R package scatterplot3d [63] and the side panel with PyMol [64].
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the alphabet fragments and the template structure (like
the local fit) and additionally the deviation arising from
the neighbour fragment super-positioning. The global fit
error is therefore a more stringent measure for the
assessment of an alphabet’s performance. An example of
a typical local/global fit reconstruction is shown in
Figure 5. The quality of each Structural Alphabet was
assessed by its ability to approximate real protein struc-
tures both by local fit and global fit reconstruction [6]
on a test set of 798 high quality protein structures. A
summary of the assessment is reported in Table 2 and
the complete table for MinPts 10-60 is included as
Additional File 1: Supplementary Table S1; for each set
the alphabet size (k) is given as well as the median and
inter quartile distance (IQD) of the cRMSD distribution.
These are robust statistical results unaffected by the pre-
sence of outliers. The Structural Alphabets CGT2004
and MSM2000 from the literature are included for com-
parison. Since the fit results are equivalent whether
done in the form of cRMSD or aRMSD (see Additional
File 1: Table S2 and Additional File 1: Figure S4), we

Figure 4 Comparison of fragment location for Structural
Alphabets of four Ca atoms. The fragment representatives for
M32K25, MSM2000 [8] and CGT2004 [11] are plotted in
conformational space [j1, j2, θ].

Figure 3 Reachability Plot and clustering scheme for the alphabet M32K25. The bottom panel shows the Reachability Distance (neighbour
distance) of all fragments in the order of the nearest-neighbour walk. Short distances correspond in general to high cluster density. The
Reachability Distance scale is cropped to 0-14° to preserve details. The order of cluster extraction is illustrated in the top scheme, where each
circle represents a cluster, its size inversely proportional to its Core Distance. The labels in the middle panel are those of the resulting Structural
Alphabet; lines indicate the location of the cluster representative in the Reachability Plot. For each cluster (dent region in the plot) the
corresponding representative was selected by lowest Core Distance (top scheme).
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decided to employ the former for compatibility with
previous studies [6,8,10,11].
For all fragment sets the quality of the global fit is

comparable to the experimental uncertainty in protein
structure determination: the median cRMSD is in the
range 0.70-1.00 Å with an IQD in the range 0.10-0.25
Å. The local fit results show that a representative frag-
ment can be found for any local conformation with an
average fit error in the range 0.2-0.3 Å.
The size of a discrete state model is a trade-off

between performance and complexity. A plot of the fit
accuracy as a function of alphabet size is given in

Figure 6. As predicted, the median cRMSD is generally
decreasing when more representatives are included in
the alphabet, but the trend is reversed beyond size 27.
This is consistent with a density-based approach: as we
increase the density cutoff, the fitness of the model
increases by including still informative but rarer states
until a global optimum is reached, after which any new
states are not providing more information but add to
the complexity.

Table 2 Performance assessment of Structural Alphabets
in terms of the local and global fit quality.

local fit global fit

alphabet x /Å IQD/Å x /Å IQD/Å AIC/kbit

M12K31 0.238 0.108 0.885 0.214 -604

M16K28 0.225 0.077 0.770 0.213 -640

M20K27 0.216 0.060 0.733 0.138 -654

M24K23 0.227 0.066 0.783 0.144 -638

M28K21 0.233 0.064 0.823 0.132 -624

M32K25 0.214 0.059 0.700 0.114 -668

M36K20 0.240 0.062 0.855 0.125 -615

M40K20 0.244 0.065 0.867 0.138 -611

M44K17 0.257 0.072 0.955 0.147 -585

M48K17 0.255 0.071 0.918 0.156 -590

M52K21 0.242 0.072 0.772 0.168 -609

M56K17 0.253 0.070 0.909 0.170 -589

M60K16 0.259 0.072 0.952 0.146 -584

CGT2004 0.218 0.062 0.666 0.150 -666

MSM2000 0.286 0.124 0.946 0.414 -604

MxK25GA 0.209 0.056 0.683 0.118 -676

x : median cRMSD, IQD: inter-quartile distance of cRMSD; AIC: Akaike
Information Criterion. Alphabets are labelled with their MinPts parameter
value (M) and alphabet size (K). The literature alphabets CGT2004 and
MSM2000 are of size 27 and 28, respectively. Best performing alphabets are
highlighted in bold font.

Figure 6 Median global fit cRMSD against alphabet size (k). MK
denotes the Structural Alphabets derived in this study. The test set
comprises 798 high resolution protein structures. Symbols denote
the alphabet type: (filled circle) the series of MxKy alphabets, (filled
triangle) M32K25 alphabet, (empty circle) CGT2004 alphabet, (empty
diamond) MSM2000 alphabet and (filled square) the alphabet
resulting from the GA optimisation of all fragments contained in the
MxKy series.

Figure 7 Akaike’s Information Content (AIC) against alphabet
size (k). Alphabets and test set are identical to those in Figure 6.
Symbols denote the alphabet type: (filled circle) the series of MxKy
alphabets, (filled triangle) M32K25 alphabet, (empty circle) CGT2004
alphabet, (empty diamond) MSM2000 alphabet and (filled square)
the alphabet resulting from the GA optimisation of all fragments
contained in the MxKy series.

Figure 5 An example of a typical local/global fit
reconstruction. Alignment of the template SCOP domain 1fm0d_
(black) and the reconstructed structure (orange) for both, local (left)
and global fit (right). Fit cRMSD values are 0.19 A (local) and 0.70 Å
(global). The image was generated with PyMol [64].
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Other groups have devised optimal alphabets of size
27 [11] and 28 [8]. While in those studies the identifica-
tion of the optimal size was not done by fit perfor-
mance, it is noteworthy that the range of optimal values
is similar to the one identified by OPTICS.
To correctly define the global optimum (best perform-

ing Structural Alphabet) we used Akaike’s Information
Content (AIC, see Methods) that allows comparison of
fitness models having a different number of parameters.
The results are reported in Figure 7. The trend is similar
to the global fit plot in Figure 6 and confirms that the
alphabet M32K25 derived for m = 32 (MinPts) and k =
25 (fragments) is performing best. In terms of the AIC,
this alphabet (M32K25) is roughly equivalent to the
alphabet CGT2004 [11] (k = 27). M32K25 is shown as a
black triangle in Figure 6 and 7.
The robustness of the AIC test was confirmed by

bootstrapping. The results of 10000 bootstraps are
reported as error bars in the plot in Additional File 1:
Supplementary Figure S3.

Structural Alphabet M32K25
The location of each of the 25 fragments of the M32K25
alphabet in the conformational space is illustrated in
Figure 2, where the fragments are labelled by capital

letters according to their order in the Reachability Plot
(see also top and middle panel of Figure 3). Angle values
are reported in Table 3. The alphabet includes represen-
tative fragments for each of the populated conforma-
tions, sampling both dense and sparser regions. One can
discern seven areas (note the periodic boundary of θ):
(A-I), (J-L), (M-N), (O-R), (S-W), (X), (Y). These areas
correspond to valleys in the Reachability Plot (Figure 3)
that are separated by peaks of inter-cluster distances.
While all three angles (j1, j2, θ) are needed to fully

describe the variety of conformations, the torsion angle
θ provides most of the information. This is confirmed
by the order of fragments in the Reachability Plot and
illustrated by the selected fragments on the right panel
of Figure 2: the order extended (A), loop (P), helical (U)
and turn (Y) corresponds to a progressive decrease of
the torsion angle θ.
This is also consistent with the secondary structure

attribution of STRIDE [59] to the 798 proteins included
in the test set: fragments (A-I) generally encode for
strand-like regions, (J-L, M-N, O-R) for loops, (S-W, X)
for helices and (Y) for turns. A detailed bar plot of the
fraction of secondary structures associated with each let-
ter of the alphabet is shown in Figure 8.
As previously reported [11], one should not expect a

strict correspondence between the states in a Structural
Alphabet and those obtained from secondary structure
assignment for the same local structures. The possibility
to fit some of the fragments to different structural envir-
onments is important to achieve high accuracy in pro-
tein reconstruction.

Optimisation of combined alphabets
To investigate how the hierarchical cluster extraction
scheme has biased the alphabet selection, we performed
a separate extraction. A Genetic Algorithm optimisation
was performed on the collection of all non-redundant
fragments of all alphabets within the MinPts range 10-
99. The optimisation was designed to select those 25
out of 106 fragments in the collection that yield the best
local fit score on a set of 10 high quality structures.
The resulting alphabet (MxK25GA) was assessed by

local fit, global fit and AIC performance (Table 2). The
improvement in local fit (0.01 Å) and global fit (0.02 Å)
is smaller than the variance in the corresponding fit pro-
cesses and the AIC difference is also relatively small (8.3
kbit). The GA optimised set is indeed equivalent to the
M32K25 alphabet, confirming the results of the hier-
archical extraction procedure.

Intrinsic flexibility of reconstructed proteins
The fit assessment is a simple and robust method to
measure the accuracy of a Structural Alphabet in
approximating real proteins, but it does not guarantee

Table 3 Angle values of the Structural Alphabet M32K25

fragment j1/° j2/° θ/°

A 122.4 119.4 -164.2

B 129.8 135.6 -176.6

C 117.1 111.0 -142.2

D 118.4 126.9 -146.1

E 116.7 138.6 168.7

F 115.6 112.9 -117.9

G 135.3 118.6 -148.5

H 120.1 114.3 -90.7

I 133.6 117.1 -120.8

J 115.9 91.4 -134.6

K 119.7 90.4 -105.9

L 110.0 90.8 -158.8

M 110.0 100.8 177.0

N 90.1 138.2 19.6

O 92.4 91.2 -127.4

P 91.8 96.7 -104.8

Q 95.9 117.7 136.0

R 94.5 112.6 115.0

S 96.3 94.7 112.0

T 93.0 92.8 83.1

U 91.4 90.7 49.8

V 93.3 89.1 68.3

W 93.8 105.2 32.3

X 111.4 94.6 21.8

Y 89.0 95.1 -54.4
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that all native features are correctly reproduced in the
reconstructed structure [6].
While the M32K25 alphabet has satisfied the neces-

sary requirement of reconstructing static structures
within the experimental error, it is important to validate
its ability to capture the intrinsic flexibility of proteins.
This can be done by comparing the flexibility of the
native and reconstructed structure: the dynamical prop-
erties should be unaffected by the discretisation imposed
by the Structural Alphabet. An elegant and fast method
to perform such an analysis is provided by the GNM
[44,45], that has already been used in several structural
studies [46] and proven to be a reliable approximation
for the dynamic properties of proteins.
For our purpose, the cross-correlation of atomic fluc-

tuations was derived by applying the GNM and com-
pared in the native and reconstructed structures (see
Methods). Both the atomic RMSF profiles and the
cross-correlation matrices demonstrated the suitability
of the M32K25 encoding. The reconstructed structures
preserved the required native features: both the RMSF
correlation (0.95 ± 0.04) and the matrix overlap (0.93 ±

0.02) are close to 1 for a large set of high quality struc-
tures. The former correlation is also higher than the one
reported with B-factors [60], confirming that the encod-
ing error is within the experimental uncertainty. Addi-
tionally the two indices are independent of the global
and local fit quality measures (correlations < 0.3).
This is also an indirect test of the ability of a struc-

tural alphabet encoding to preserve native contacts.
Indeed in this harmonic model the conformational free-
dom of each atom is a function of the number of neigh-
bour interactions [44,45]. The preservation of native
contacts is a necessary precondition to obtain similar
flexibility profiles.
For comparison purposes, this test was performed also

on the Structural Alphabets CGT2004 and MSM2000.
Both alphabets performed as well as the M32K25 in pre-
serving the native contacts and the intrinsic flexibility.
The RMSF correlations were 0.95 ± 0.03 (CGT2004)
and 0.92 ± 0.06 (MSM2000), while the matrix overlap
was 0.93 ± 0.03 for both.
While with a different aim and procedure, a previous

study [61] has also highlighted that pairwise contact

Figure 8 Barplot of overall secondary structure contribution per letter of the Structural Alphabet M32K25. The secondary structure
attribution is based on the annotation from STRIDE on the second Ca atom of each fragment.

Pandini et al. BMC Bioinformatics 2010, 11:97
http://www.biomedcentral.com/1471-2105/11/97

Page 11 of 18



Figure 9 Barplot of the Pearson correlation coefficients between RMSF and local-fit Shannon Entropy profiles. The 24 proteins are
ordered according to the SCOP class and, within a given class, to decreasing fraction of structured DSSP [55] elements. M32K25 values are
reported in black, CGT2004 in light blue and MSM2000 as empty bars.

Figure 10 Barplot of the Pearson correlation coefficients between RMSF and global-fit Shannon Entropy profiles. See Figure 9 caption.
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specificity is greater in terms of structural letters than
amino acids.

Accuracy and robustness in encoding structural
ensembles
To be able to capture the dynamical behaviour of a pro-
tein, a Structural Alphabet should be stable to small fluc-
tuations on one side and it should reproduce transitions
between different states on the other. Thus a first requi-
site of an alphabet is that, when used to encode different
structures in a conformational ensemble, the variability
of the letters is correlated with the flexibility of the posi-
tion that they describe. This means that a position
encoded by many different letters should also show large
fluctuations. On the other hand, if a fragment is relatively
rigid, only few letters should be sufficient to accurately
represent it. We analysed the relationship between flex-
ibility profiles and encoding variability by generating
ensembles of 500 structures for a set of 24 proteins with
the tCONCOORD method. This relies on a more accu-
rate description of the molecule than the GNM approach
used in the previous section. Moreover, it allows the
breaking of native contacts, so that the generated

ensembles contain also transitions between significantly
different conformations. A generally good agreement has
been found between tCONCOORD and Molecular
Dynamics (MD) [49,53]. However the aim of the present
test is to assess the performance of the alphabet in repro-
ducing structural variability in ensembles, independently
from the method used to generate them. Finally, since
the increased computational cost of tCONCOORD pre-
vented its application to the entire dataset used for the
other alphabet assessments, a limited number of proteins
had to be selected.
Correlations were calculated between the RMSFs of

the fragments’ geometries and the Shannon Entropies
of their encodings (see Figure 9, Figure 10 and
Table 4). Since the pure roto-translational motion of a
given fragment does not contribute to a letter change
in the encoding, it was eliminated in the RMSF calcu-
lation. Encodings using both local and global fit recon-
structions were performed with the M32K25,
CGT2004 and MSM2000 alphabets. From Figure 9 and
10, it is evident that the three alphabets have different
performances. Moreover, the degree of the correlation
does not mirror the accuracy of the reconstruction
(see Table 5). When the structures are encoded by
local fit (Figure 9), both the M32K25 and the
MSM2000 alphabets show good correlation coeffi-
cients, which are below 0.6 only in four cases for
M32K25 and in three cases for MSM2000. Smaller
values are generally found for CGT2004, whose perfor-
mance is comparable to the other two only for the b
class. Conversely both M32K25 and MSM2000 better
perform for proteins that contain a-helices (a, a/b,
and a+b). Overall, M32K25 has the highest correla-
tions in 7 cases, MSM2000 in 16 cases and CGT2004
in 1 case. However, differences between the M32K25
and MSM2000 values are often very small. When the
global fit encoding is employed (Figure 10), the corre-
lation values decrease for all alphabets: the reduced
accuracy in the representation of the local structure
required by a “seamless” reconstruction is a further
source of letter variation, not necessarily related with
the real flexibility of the fragment. The reduction in
correlation affects more the MSM2000 alphabet, so
that now M32K25 has the best performance in 15
cases, MSM2000 in 6 cases and CGT2004 in 3 cases.
When correlations are calculated per protein rather

than per residue, i.e. by comparing the average protein
RMSF with the average entropy (Figure 11), good results
are again obtained for M32K25 and MSM2000 with cor-
relations greater than 0.7. In this case the M32K25
alphabet best performs independently from the type of
reconstruction. Correlation values are much smaller for
the CGT2004 alphabet, in particular if the entropy from
local fit encoding is considered.

Table 4 Correlation coefficient between fragment RMSF
and encoding entropy

M32K25 CGT2004 MSM2000

PDB ID Chain R(LF) R(GF) R(LF) R(GF) R(LF) R(GF)

1a4p A 0.772 0.700 0.258 0.178 0.852 0.493

2dn2 C 0.729 0.645 -0.062 0.169 0.638 0.133

2ilk A 0.851 0.770 0.428 0.501 0.909 0.658

1v74 B 0.866 0.805 0.390 0.419 0.862 0.618

2hue C 0.875 0.795 0.383 0.295 0.910 0.594

1mz4 A 0.672 0.515 0.195 0.228 0.734 0.452

1z5y D 0.617 0.477 0.659 0.502 0.712 0.395

1n9r G 0.554 0.358 0.569 0.440 0.473 0.373

2f3g B 0.557 0.325 0.444 0.287 0.439 0.295

2z6k D 0.772 0.591 0.601 0.580 0.816 0.597

2rac A 0.686 0.431 0.754 0.568 0.804 0.518

1beh B 0.652 0.490 0.550 0.369 0.726 0.630

1ay7 B 0.564 0.502 -0.137 -0.247 0.638 0.126

1qjc B 0.616 0.483 0.119 0.172 0.738 0.504

2vrw A 0.763 0.536 0.455 0.372 0.838 0.641

2d1p B 0.759 0.598 0.451 0.388 0.772 0.539

2trx B 0.716 0.435 0.494 0.299 0.780 0.560

1uex C 0.790 0.545 0.452 0.369 0.881 0.676

1gy6 B 0.654 0.534 0.344 0.308 0.649 0.371

1oo0 A 0.812 0.624 0.362 0.399 0.799 0.483

1gd0 C 0.724 0.600 0.435 0.468 0.753 0.516

3eze B 0.580 0.388 0.098 -0.194 0.470 0.373

2uyz A 0.744 0.574 0.243 0.331 0.829 0.447

2inc C 0.728 0.514 0.535 0.424 0.716 0.428

R(LF) and R(GF): Pearson correlation coefficients between fragment RMSF and
Shannon Entropy of local fit (LF) and global fit (GF) encoding.
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Discussion
We have derived the structural alphabet M32K25 from
the conformational attractors of protein structures. The
intention of our approach was to devise a simple and
generic description of local conformations that is readily
amenable to visualisation and computational analysis. A
solution was found in the conformational space spanned
by three internal angles corresponding to the fragment’s
degrees of freedom.
The OPTICS algorithm provided two important

functions for the analysis of the data space. Firstly,
cluster representatives were extracted in the order of
decreasing density, which is equivalent with decreasing
importance for encoding. Secondly, the unique data
ordering corresponds to a minimum distance path,
providing a gradual inter-conversion among the states.
Therefore, despite the mutual independence between
fragments, the resulting Structural Alphabet includes
important connective fragments to allow for a smooth
protein reconstruction. Connectivity is partially implied
by the overlap of neighboured fragments in the original
structures: the j2 angle of a fragment in a given struc-
ture is identical to the j1 angle of the next C-terminal

fragment. The addition of a structural alphabet frag-
ment to a growing reconstruction model adds one
unconstrained atom (while three atoms overlap with
the previous fragment) and two unconstrained angles
j2 and θ (while j1 overlaps with j2 of the previous
fragment).
The OPTICS algorithm has been recently applied for

sequence clustering [62], but to the knowledge of the
authors, this is the first use in Structural Bioinformatics
and it suggests a general suitability of density-based
approaches for protein structure analysis.
A further objective of this study was to minimise the

number of free parameters in design and analysis.
Excluding the descriptive conformational parameters (j1,
j2, θ), only the MinPts parameter influenced the set of
representative fragments. We explored the range of suita-
ble values for MinPts and selected the most informative
alphabet. The high entropy of the M32K25 alphabet
allows for protein reconstruction with an error compar-
able to that of structure resolution techniques. Theoreti-
cal studies on small libraries of local structures [6,10]
predict the global fit accuracy for an alphabet of this size
to 0.60 Å in agreement with our results (0.70 ± 0.11 Å).

Table 5 Performance of Structural Alphabets in local and global fit reconstruction of tCONCOORD ensembles

M32K25 LF M32K25 GF CGT2004 LF CGT2004 GF MSM2000 LF MSM2000 GF

PDB ID x /Å IQD/Å x /Å IQD/Å x /Å IQD/Å x /Å IQD/Å x /Å IQD/Å x /Å IQD/Å

1a4p 0.225 0.014 0.664 0.037 0.207 0.014 0.575 0.046 0.261 0.012 1.005 0.034

2dn2 0.203 0.009 0.659 0.045 0.192 0.009 0.541 0.043 0.260 0.008 1.017 0.028

2ilk 0.261 0.013 0.771 0.046 0.237 0.013 0.673 0.053 0.286 0.011 1.024 0.025

1v74 0.218 0.016 0.653 0.046 0.209 0.015 0.559 0.049 0.280 0.014 1.018 0.025

2hue 0.250 0.017 0.700 0.045 0.230 0.016 0.622 0.051 0.291 0.014 1.001 0.029

1mz4 0.273 0.013 0.756 0.032 0.260 0.011 0.667 0.030 0.317 0.011 0.960 0.023

1z5y 0.308 0.021 0.852 0.085 0.307 0.016 0.873 0.082 0.356 0.015 0.940 0.055

1n9r 0.328 0.020 0.844 0.061 0.310 0.017 0.803 0.049 0.352 0.016 0.847 0.032

2f3g 0.294 0.011 0.808 0.026 0.299 0.011 0.798 0.025 0.338 0.009 0.854 0.017

2z6k 0.300 0.015 0.811 0.048 0.298 0.013 0.807 0.039 0.333 0.013 0.883 0.024

2rac 0.308 0.017 0.810 0.050 0.307 0.015 0.819 0.051 0.354 0.013 0.869 0.025

1beh 0.313 0.013 0.863 0.034 0.305 0.011 0.831 0.032 0.351 0.008 0.925 0.016

1ay7 0.248 0.014 0.654 0.030 0.239 0.015 0.601 0.045 0.307 0.013 0.963 0.025

1qjc 0.262 0.012 0.725 0.026 0.253 0.010 0.666 0.028 0.307 0.010 0.957 0.021

2vrw 0.268 0.013 0.721 0.028 0.264 0.013 0.688 0.031 0.311 0.012 0.912 0.015

2d1p 0.275 0.018 0.749 0.032 0.269 0.016 0.718 0.032 0.331 0.014 0.913 0.023

2trx 0.305 0.016 0.763 0.032 0.289 0.015 0.703 0.035 0.328 0.011 0.929 0.023

1uex 0.279 0.012 0.763 0.029 0.265 0.010 0.722 0.028 0.318 0.014 0.975 0.018

1gy6 0.271 0.023 0.807 0.094 0.259 0.019 0.788 0.096 0.328 0.020 0.955 0.059

1oo0 0.279 0.020 0.797 0.071 0.263 0.018 0.739 0.072 0.320 0.016 0.969 0.039

1gd0 0.286 0.017 0.819 0.046 0.266 0.015 0.757 0.053 0.337 0.014 0.959 0.038

3eze 0.284 0.017 0.735 0.036 0.269 0.016 0.694 0.047 0.314 0.015 0.921 0.042

2uyz 0.268 0.015 0.745 0.044 0.268 0.013 0.745 0.045 0.313 0.011 0.946 0.022

2inc 0.268 0.016 0.728 0.052 0.285 0.016 0.744 0.049 0.324 0.014 0.878 0.035

x : median cRMSD, IQD: inter-quartile distance of cRMSD. Values from the M32K25, CGT2004 and MSM2000 alphabets are calculated by local fit (LF) and global
fit (GF) encoding.
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Figure 11 Scatterplot of the average protein RMSF against the average Shannon entropy. Average RMSF values (in Å) calculated over all
the residues of each of the 24 proteins are reported against the average Shannon Entropy (in bits) for the M32K25 (upper panel), the CGT2004
(middle panel) and the MSM2000 (lower panel) alphabets. Left and right scatterplots contain Shannon Entropies from the local and the global fit
reconstructions, respectively. Empty squares are used for a-class proteins, empty circles for b, filled diamonds for a/b and filled triangles for a+b.
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A comparison can be drawn directly only to other
alphabets composed by fragments of the same type, i.e.
of length four Ca atoms. Previous Structural Alphabets
used a fragment representation in the form of a set of
Cartesian coordinates (MSM2000 [8]) or of a four-vec-
tor descriptor composed of three not-consecutive Ca-Ca

distances and the projection of the fourth atom onto the
plane formed by the other three (CGT2004 [11]). Our
angular representation has the advantage of being an
internal metric that is independent of the molecular
orientation, as for CGT2004, but with only three para-
meters. The other alphabets include collections of 27
fragments (CGT2004) and 28 fragments(MSM2000),
while our best alphabet M32K25 includes 25 states. The
performance as measured by the global fit (shown in
Table 2) is 0.70 ± 0.11 for M32K25, 0.67 ± 0.15 for
CGT2004 and 0.95 ± 0.41 for MSM2000, indicating that
the M32K25 alphabet achieves similar or better perfor-
mance with only 25 states.
But the main difference between the M32K25 alphabet

and other Structural Alphabets is its stringency in the
representation of high density states as shown by the
fragment locations in Figure 4: other approaches were
equally successful in describing only some of the attrac-
tors. The efficiency in our extraction was achieved by
including a minimal number (three) of the most infor-
mative (angular) degrees of freedom to describe each
fragment and by analysing selected high quality
structures.
Associating physico-chemical properties to the

M32K25 fragments automatically maps these properties
onto the most important conformational states. The
simplicity of this mapping together with the option to
visualise the map should be useful for protein structure
analysis and design.
The main advantage of a density-based selection is the

ability to directly capture the most highly populated
conformations; these have also a higher chance to be
sampled during protein dynamics. Borrowing Anfinsen’s
‘thermodynamic hypothesis’ one may speculate that the
alphabet fragments correspond to low energy conforma-
tions, because proteins can be reconstructed using solely
these fragments.
We investigated the suitability of the M32K25 alpha-

bet and its associated mapping in the analysis of confor-
mational ensembles of protein structures.
A precondition for this type of conformational analysis

is that the alphabet encoding can correctly preserve the
intrinsic flexibility of a protein structure. This was
demonstrated for the M32K25 by an assessment based
on GNM calculations: the native contacts and the flex-
ibility calculated with this harmonic model were com-
pletely preserved in the reconstructed structures. An
extension of the GNM calculations to structures

reconstructed with the CGT2004 and MSM2000 alpha-
bets also suggests that this fidelity is a general property
of structural alphabets, but not directly correlated to the
accuracy in fit reconstruction. A previous study [61] has
also demonstrated that the CGT2004 alphabet has more
specificity than the amino acid code in capturing inter-
residue contacts in protein complexes.
The ability to capture the dynamical behaviour of a

protein was tested by encoding the different structures
in conformational ensembles generated by tCON-
COORD. We measured the accuracy and robustness of
M32K25, CTG2004 and MSM2000 alphabets by the cor-
relation between the Shannon Entropy of the encoded
ensemble and its fragment flexibility in terms of RMSF.
Correlations are generally higher for local than global

fit encoding, because optimal global reconstruction is
achieved at expense of local accuracy. This suggests the
importance of designing strategies to estimate the
weight of this inaccuracy in the encoding. All three
alphabets have comparable results for b-class proteins,
but the performances are significantly better for
M32K25 and MSM2000 in the other SCOP classes.
Where the former has the best performance in global fit
and the latter in local fit (see Table 4 for details).
M32K25 is the more efficient in capturing the average

flexibility per protein (see Figure 11).
The performance difference between the structural

alphabets can be explained in terms of robustness. A set
of representatives that efficiently samples the conforma-
tional space with low redundancy will be less affected by
small fluctuations, while a set that contains groups of
relatively similar fragments describing the same state
will tend to overestimate the conformational difference.
This is a possible explanation for the performance of
CGT2004 for a-helix containing proteins: the alphabets
includes a group of closely located fragments in the a
region of the [j1, j2, θ] space (see Figure 4). On the
contrary a set of well spaced fragments does not imply
an accurate encoding. The good performance of
MSM2000 does not correspond to a good accuracy in
the reconstruction (see Table 5).
The fragment composition of a structural alphabet is

dependent on the type of strategy employed to select
conformational representatives. This can affect the over-
all encoding stability. Both M32K25 and MSM2000
were derived by indirectly maximizing the geometrical
diversity, while CGT2004 was optimized for statistical
representativity. The former strategy provides a clear
advantage in terms of encoding stability at the expense
of a minor (M32K25) to significant (MSM2000) decrease
in the encoding accuracy, while the reverse is true for
the CGT2004 set: the inclusion of statistically significant
but geometrically similar helical conformations can
decrease the stability but provides a very accurate
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description of linear, kinked and curved helices [11].
This limitation in encoding stability could be overcome
by considering the states as not strictly independent and
consequently by either weighting their contributions
according to their geometrical dissimilarity or by con-
structing a suitable substitution matrix. A successful
example of the latter approach has been already used in
the context of 3D structural alignment [21], where the
performance of string-based structural comparison was
increased allowing non-exact matches by means of a
structural alphabet substitution matrix.
We do not aim to provide an alternative framework

for structure prediction, but a novel tool for studies of
protein structures and their dynamics. The addition of
this newly designed assessment to the ones previously
proposed in the literature is in line with the purpose of
our alphabet. The density-based M32K25 alphabet has
proven to be accurate for protein reconstruction and
stable for ensemble encoding. The combination of these
features suggests that M32K25 is specifically suitable for
studies of protein dynamics.

Conclusions
The density-based Structural Alphabet provides a two-
fold advantage: ensembles of protein structures can be
encoded with high accuracy and sufficient robustness to
correctly describe local flexibility.
Future developments may involve the employment of

this Structural Alphabet to analyse and annotate struc-
ture ensembles from Molecular Simulations to easily
map molecular motions onto the fragment space. The
attractors can act as a guide to classify dynamics fea-
tures and to compare protein families or different ener-
getic states of the same protein. This can help in
understanding, for example, binding specificity to multi-
ple partners or conserved biological mechanisms.

Additional file 1: Supplementary tables and figures. The file contains
Figure S1: Flow-chart of the OPTICS algorithm; Figure S2: Projection of
ASTRAL SCOP 10 fragments into the conformational space of the internal
angles (j1, j2, θ); Figure S3: Akaike’s Information Content (AIC) against
alphabet size (k) with bootstrapping; Figure S4: Comparison of the
aRMSD and cRMSD distribution of matched fragments for the local fit of
the protein test set; Table S1: Performance assessment of Structural
Alphabets in terms of the local and global fit quality; Table S2: Fragment
statistics of alphabet M32K25 for local fit.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
97-S1.PDF ]
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