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Abstract 

 

Engine downsizing is one of the most effective ways to reduce vehicle fuel 

consumption. Highly downsized (>50%) 4-stroke gasoline engines are constrained 

by knocking combustion, thermal and mechanical limits as well as high boost. 

Therefore a research work for a highly downsized uniflow 2-stroke engine has been 

proposed and carried out to unveil its potential. 

In this study, one-dimensional (1D) engine simulation and three-dimensional (3D) 

computational fluid dynamic analysis were used to predict the performance of a 

boosted uniflow 2-stroke DI gasoline engine. This was experimentally complemented 

by the in-cylinder flow and mixture formation measurements in a newly 

commissioned single cylinder uniflow 2-stroke DI gasoline engine. 

The 3D simulation was used to assess the effects of engine configurations for engine 

breathing performance and in order that the design of the intake ports could be 

optimised. The boundary conditions for 1D engine simulation were configured by the 

3D simulation output parameters, was employed to predict the engine performance 

with different boost systems. The fuel consumption and full load performance data 

from the 1D engine simulation were then included in the vehicle driving cycle 

analysis so that the vehicle performance and fuel consumption over the NEDC could 

be obtained.  

Based on the modelling results, a single cylinder uniflow 2-stroke engine was 

commissioned by incorporating a newly designed intake block and modified intake 

and exhaust systems. In-cylinder flow and fuel distribution were then measured by 

means of Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence 

(PLIF) in the single cylinder engine.  

The numerical analysis results suggested that a 0.6 litre two-cylinder boosted uniflow 

2-stroke engine with an optimised boosting system was capable of delivering 

comparable performance to a NA 1.6 litre four-cylinder 4-stroke engine yet with a 

maximum 23.5% improvement potential on fuel economy. Furthermore, simulation 
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results on in-cylinder flow structure and fuel distribution were then verified 

experimentally.  
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Nomenclature 

Abbreviations 

ATDC After Top Dead Centre 

BDC Bottom Dead Centre 

BDD Blow-Down Duration 

BR Burnt Rate 

BSFC Brake Specific Fuel Consumption 

BTDC Before Top Dead Centre 

BUSDIG Boosted Uniflow Scavenged Direct Injection Gasoline 

CA Crank Angle 

CAI Controlled Auto Ignition 

CCD Charge Coupled Device 

CE Charging Efficiency 

CFD Computational Fluid Dynamics 

DAQ Data Acquisition  

DCA Degree Crank Angle 

DEV Duration of Exhaust Valves Opening 

DI Direct Injection 

DIATA Direct Injection Aluminium Through-Bolt Assembly 

DISI Direct Injection Spark Ignition 

DPM Discrete Phase Model 
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DR Delivery ratio 

EGR Exhaust Gas Recirculation 

EVC Exhaust Valve Closing 

EVO Exhaust Valve Opening 

FMEP Friction Mean Effective Pressure 

FTP Federal Test Procedure 

GDI Gasoline Direct Injection 

HWA Hot Wire Anemometry 

IA Interrogation Area 

IMEP Indicated Mean Effective Pressure 

IPC Intake Port Closing 

IPO Intake Port Opening 

LDA/LDV Doppler Anemometry/Velocimetry 

LES Large-eddy Simulation 

LIEF Laser Induced Exciplex Fluorescence 

LIF Laser-Induced Fluorescence 

LRS Laser Rayleigh Scattering 

MBF Mass of Burned Fraction 

NA Natural Aspirated 

NEDC New European Drive Cycle 

PFI Port fuel injection 

PIV Particle image velocimetry 
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PLIF Planar Laser-Induced Fluorescence 

PTV Particle Tracking Velocimetry 

RANS Reynolds-Averaged Navier-Stokes 

SE Scavenging Efficiency 

SI Spark Ignition 

SMD Sauter Mean Diameter 

SOI Start of Injection  

SRS Spontaneous Raman Scattering 

TDC Top Dead Centre 

TE Trapping Efficiency 

TTL Transistor–Transistor Logic 

VCT Variable Cam Timing 

VVT Variable Valve Timing 

WOT Wide Opening Throttle 
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Symbols in Roman 

A engine stroke 

AE effective area of intake port 

Aeff effective area of the valve 

Afront vehicle frontal area 

Ai axis inclination angle 

Aj area at the cell centre 

Ap intake port area along the cylinder wall 

BSR* blade speed ratio 

Cdrag aerodynamic drag coefficient 

Cf flow coefficient 

Cht heat transfer multiplier constant 

CoVcyc 

deviation of the mean light intensity to the ensemble average 

value  

CoVf 

deviation of the light intensity at each pixel from the mean light 

intensity 

Cp specific heat of the gas 

Cpb port width ratio 

Croll tyre rolling resistance factor 

Cwb exponent in Wiebe function 

D valve reference diameter 

Dref reference diameter 
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d feature diameter of pipe wall 

E total energy 

Ev spectral fluence of the laser 

   force vector 

Fdrag drag force 

Froll tyre rolling resistance force 

f lens focal length 

H angular momentum 

h enthalpy 

he elevation of the point above a reference plane 

Gb generation of turbulence kinetic energy due to buoyancy 

Gk generation of turbulence kinetic energy due to the mean 

velocity gradients 

   gravitational acceleration 

I momentum inertia 

Ii light intensity of each pixel 

Imean 

mean light intensity of all pixels in the region of interest of each 

frame 

Imean,cyc mean light intensity of all frames taken with same condition 

Iv laser spectral intensity 

      diffusion flux 

k turbulence kinetic energy 

ke conductivity of the wall 
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keff effective conductivity  

L valve lift 

m mass flow 

mload passenger and cargo mass 

mveh vehicle mass 

    dimensionless mass flow 

N number of ports 

N* dimensionless speed 

Nr rotational speed 

PR pressure Ratio 

Pr prandtl number 

Δp pressure drop along the pipe 

p pressure 

pcyl peak in-cylinder pressure 

ps piston location from TDC at specified crank angle 

Q heat transfer between pipe wall and inner gas 

R resistivity of the absorptive material 

RE effective ratio of area 

Re Reynolds number 

Rg gas constant 

   location vector 

rcy engine bore 
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rp radius of swirl circle 

S swirl ratio 

Sh heat of chemical reaction, and any other volumetric heat 

sources 

Sm mass added to the continuous phase from the dispersed 

second phase 

SAwall wall surface area 

T temperature 

Tcb combustion duration 

Tgas inner gas temperature 

Tt engine Torque 

Twall wall temperature 

t time 

Δt time interval 

Uj velocity at the cell centre 

ui fluid velocity 

v fluid kinematic viscosity 

   velocity vector 

Wc power consumed by the compressor 

Wt power generated by the turbine 

Δx length of the cell 

    element displacement 

xb effective port shoulder width      
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xp effective port width 

YM 
contribution of the fluctuating dilatation in compressible 

turbulence to the overall dissipation rate 
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Symbols in Greek 

Γ* dimensionless torque coefficient 

Ψ state of the particle ensemble 

Ω collection solid angle 

γ special heat capacity ratio 

ε turbulence dissipation rate 

θ degrees past start of combustion 

θb port shoulder width angle      

θc crank angle 

θp port width angle 

η transmission efficiency of the collection optics 

ρ density 

τ Shaft torque 

   stress tensor 

φp swirl orientation angle 

ω0 crank shaft angular velocity 
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Chapter 1  Introduction 

1.1 Introduction 

Since their introduction over a century ago, internal combustion (IC) engines have 

played a key role in shaping the modern world. It is currently widely realised 

throughout the automotive industry that the IC engine will continue to remain the 

dominant powerplant for decades, albeit operating in refined form and in some cases 

as part of a hybrid powertrain. However, in recent decades, serious concerns have 

been raised with regard to the environmental impact of the gaseous and particulate 

emissions arising from operating such engines. As a result, ever stringent 

legislations of pollutants emitted from the vehicles have been introduced by 

governments globally. In addition, concerns in world's finite oil reserves, and more 

recently, climate change due to CO2 emissions has led to increased taxation on road 

transport. These two factors have forced vehicle manufacturers to continue 

researching and developing ever cleaner and more fuel efficient vehicles. 

Nonetheless, there are technologies that could theoretically provide many 

environmentally sound alternatives to IC engines, such as fuel cells and battery 

powered electric motors; practicality, cost, efficiency and power density issues will 

prevent them from replacing IC engine in any significant volume in the near future. 

Engine downsizing achieved by reducing the total capacity has drawn more and 

more interest in engine studies in recent years. By downsizing the engine, the CO2 

emission can be reduced by shifting the engine operating conditions to the more 

efficient regions. At same engine speed and load, the downsized engine operation 

points are moved to higher IMEP or torque region, within such region, the engine 

efficiency and fuel economy is normally better. And to avoid penalizing the output 

power, boosting system is required to supply same air flow rate on a downsized 

engine as on its larger counterparts. Besides, the downsizing strategy allows 

engines to be operated at higher torque, which lets the engine cruise at lower rpm 

with less frictional and pumping losses.  

However, further downsizing beyond 50% in the 4-stroke gasoline engines is limited 

by knocking combustion, thermal and mechanical limits, potential turbo lag as well as 
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reliability and durability of the engine components. For diesel engines, the main 

limitation of applying such technology is thermal loads and consequently the right 

type of cooling as well as the emission of particulate matter and nitrogen oxides, 

which would become drawbacks within the idea of reducing CO2. 

The 2-stroke engine has double the firing frequency of the 4-stroke engine, and for 

the same output torque its IMEP and peak in-cylinder pressure are approximately 

halved. Thus the 2-stroke engine has much greater potential over the 4-stroke 

engine for aggressive downsizing without having to increase the boost to a degree 

that 4-stroke engine requires. This may meet the existing challenges that are with 4-

stroke engine downsizing. 

However, the conventional 2-stroke engines suffer from uneven thermal and 

mechanical loads, poor gas-exchange efficiency which result in poor durability, fuel 

economy and emission issues. In comparison, the uniflow 2-stroke engine can avoid 

the uneven thermal and mechanical loads due to its simple piston design, it provides 

better scavenging efficiency and it has great potential to deliver better performance 

by thorough optimisation. Therefore, it was decided that a feasibility study would be 

needed to explore the potential of a boosted uniflow 2-stroke DI gasoline engine via 

combination of engine modelling and testing. 

1.2 Objectives 

The aim of this work is to study the feasibility and potential of a boosted uniflow 2-

stroke DI gasoline engine, as a highly downsized engine to achieve significant 

reduction in fuel consumption by replacing a large NA 4-stroke gasoline engine. The 

specific objectives are as follows: 

 Development and application of 3D CFD simulation for the study of in-cylinder 

flow structure, mixture formation and the optimisation of intake ports design in 

a uniflow 2-stroke engine; 

 Development and application of 1D engine simulation for the prediction of 

engine performance and boosting system optimisation; 
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 Development and application of a vehicle driving cycle simulation program to 

predict the fuel savings potential of a boosted uniflow 2-stroke DI gasoline 

engine over a larger 4-stroke NA counterpart; 

 Commissioning a single cylinder uniflow 2-stroke engine via designing and 

implementing of a new engine intake block, with modifications to the intake 

and exhaust systems; 

 Characterisation of in-cylinder flow and fuel distributions via laser diagnostics 

and combustion visualisations. 

1.3 Outline of thesis 

Following the introduction and summary of the objectives presented in Chapter 1, 

Chapter 2 is a review of relevant literature relating to this project. It starts with a brief 

introduction to vehicle CO2 emission legislation. Advanced high efficiency engines 

and engine downsizing techniques are then discussed. In addition, relevant research 

and development works in 2-stroke engines are reviewed. The applications of PIV 

and LIF for in-cylinder flow and fuel distributions are also discussed. 

Chapter 3 focuses on the CFD simulation for engine breathing and fuel injection 

processes. A 2D based model was initially set up to investigate the axis inclination 

angle of intake port. Then a 3D model was developed and applied to the optimisation 

of intake port swirl orientation as well as their geometries and numbers. Direct fuel 

injection was then added to the model. Finally the optimum fuel injection strategy 

was investigated and the split injections were shown to improve the fuel evaporation 

and mixture quality. 

In Chapter 4, the 3D CFD simulation used for the optimisation of the engine 

breathing process through the intake port design is described. In addition, the 3D 

CFD flow results used to provide the intake flow data for the subsequent 1D 

calculation is discussed. The calibration of Flynn-Chen model was introduced for the 

estimation of the engine friction FMEP. The effects of engine configurations on the 

engine breathing process are then discussed. 

Chapter 5 covers the discussion of the 1D simulation of the uniflow 2-stroke engine. 

First, the modelling work of the boosted uniflow 2-stroke engine and vehicle fuel 
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consumption calculation based on NEDC is introduced. Then the simulation results 

that cover the engine breathing, output and fuel consumption are presented. The 

engine boost system optimisation is discussed according to 1D simulation results. 

The fuel consumption calculation based on NEDC is presented and discussed. 

Chapter 6 details the general set-up of the test facility as well as the newly 

commissioned single cylinder uniflow 2-stroke engine. Specifications of the engine 

and test bed are presented, along with details of the modifications applied to achieve 

the uniflow 2-stroke operation and optical access. Also, the intake system, exhaust 

system, equipment control unit and data acquisition system are presented. 

Chapter 7 describes the engine and PIV experiments. The laser, flow seeding device 

and imaging setup of the PIV system are introduced. The in-cylinder flow structure 

obtained from the experiment under different engine operating conditions and the 

comparison with previous simulation results are presented and discussed. 

Chapter 8 explains the engine configuration and experimental facilities for PLIF 

measurements and the flame propagation study on the uniflow 2-stroke engine. 

Several parameters are introduced to describe the fuel distribution characteristics. 

For the flame propagation study, two image capturing strategies were employed for 

both continuous frame sequence and cyclic high resolution images. The results from 

two systems and their compatibility are discussed.  

Chapter 9 begins by briefing the general conclusions drawn as a result of knowledge 

gained from this project. The conclusions are summarised from Chapter 3, 4, 5, 7 

and 8. This chapter also includes recommendations for further work.  
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Chapter 2  Literature Review 

2.1 Introduction 

In the last few years, significant efforts have been made to research and develop 

more efficient IC engines and to reduce the CO2 emission from passenger vehicles 

due to increased fuel cost and the concerns over greenhouse gases. 

 

Figure 2.1 Comparison of global regulations for passenger cars [1] 

Figure 2.1 provides the legislation trends of vehicle CO2 emissions around the world. 

The data has been converted to be consistent with EU standards applied. It can be 

concluded that the CO2 emission regulation is becoming more and more rigorous 

globally. 

 The EU legislation sets the CO2 emission target of the sales-weighted averaged 

new car to 130g/km by 2015, and 95g/km by 2020. In the case that the target cannot 

be satisfied, a penalty up to €95 for each gram of CO2 emission exceeding the limit 

multiplied by the EU-wide registration will be applied [2]. 
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2.2 Advanced engine technologies 

In order to improve the engine performance and comply with the legislations, various 

technologies have emerged to optimise IC engines. 

The fuel delivery system affects the IC engine fuel economy directly. Research 

works have indicated that fuel Direct Injection (DI) shows great potential in improving 

engine performance. For the conventional engine fuel delivery system, known as 

Port Fuel Injection (PFI), fuel is injected onto the back of intake valves via the intake 

ports. This method requires the amount of fuel delivered to greatly exceed the ideal 

stoichiometric ratio and causes a lag of fuel delivery. This is mainly attributed to the 

partial vaporisation of the fuel film on the back of the intake valves. With a direct fuel 

injection system, while the fuel is injected directly into the combustion chamber, the 

issues of over fuelling with PFI can be reduced and also offers a potential for lean 

combustion [3]. The research work of Kume et al. has proved that with fuel direct 

injection, especially at part load, the engine can reach very lean combustion, an 

air/fuel ratio exceeded 40 could be achieved and significant fuel economy 

improvement was found [4]. Also, Toyota [5] has revealed that a stratified in-cylinder 

mixture was achieved via Gasoline Direct Injection (GDI) with concaved pistons, and 

a 22% fuel consumption reduction was obtained. Another study focused on the in-

cylinder mixture formation and suggested general requirements of combining fuel 

direct injection and stratified mixture, such as the air fuel ratio around spark plug 

should be 10 to 20, and the spray with 15μm Sauter Mean Diameter (SMD) is 

achievable for the in-cylinder swirl flow [6]. 

The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous 

Charge Compression Ignition (HCCI) is another technique combining the advantages 

of both Spark Ignition (SI) and Compression Ignition (CI) methodologies. It is 

receiving more and more attention in engine development study and research [7]. 

CAI/HCCI combustion is achieved by controlling the temperature, pressure, and 

composition of the fuel and air mixture, so that it spontaneously ignites the air/fuel 

mixture in the engine. This unique characteristic of CAI/HCCI allows the combustion 

to occur within very lean or diluted mixtures, resulting in low temperatures that 

dramatically reduce engine NOx emissions. Similar to an SI engine the charge is well 

mixed which minimises the particulate emissions, also inheriting the advantages of a 
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CI engine being no throttling losses, therefore an overall higher efficiency can be 

achieved [8]. Oakley, Zhao and Ladommatos presented an experimental study of 

CAI/HCCI combustion in a 4-stroke engine, and the results suggested that with EGR 

dilution, the CAI/HCCI improves the fuel economy by 20% at moderate engine load 

[9]. In addition, Christens et al. presented that with supercharged CAI/HCCI 

favourable 59% net indicated efficiency can be achieved [10].  

2.3 Engine downsizing and boosting technologies 

Engine downsizing via reducing the total engine capacity is now reasonably 

understood as one of the most effective means to reduce the fuel consumption of IC 

engines. The idea of engine downsizing concept is to move the engine operation 

point towards the higher load region; within such region, the engine normally 

performs with higher efficiency. This can be achieved by reducing the engine 

displacement, which is known as downsizing, this technique can also be combined 

with downspeeding, achieved by adopting higher transmission ratios while used on 

vehicle applications. Meanwhile, engine downsizing also reduces the relative 

mechanical losses and the engine manufacturing costs. 

For example, one research work of Nobuhiro et al. [11] claimed a 12% BSFC 

reduction at its maximum torque with a 2.3L boosted gasoline engine delivered 

comparative driving performance to 3.0 to 3.5L Natural Aspirated (NA) engine. The 

study carried out by Han et al. [12] showed a fuel consumption decrease of 17% 

based on Federal Test Procedure (FTP) city mode when replacing a V6 3.3L 

gasoline engine with a 2.0L turbocharged Direct Injection Spark Ignition (DISI) unit. 

Also, a 0.66L downsized gasoline engine delivered a 5.7% fuel economy 

improvement based on the Japanese 10-15 mode [13]. 

The FORD downsized 1.2L Direct Injection Aluminium Through-Bolt Assembly 

(DIATA) diesel engine showed a good compromise between emissions, noise, and 

fuel consumption [14]. A downsized 1.5L diesel engine designed by FEV also shows 

that by downsizing a 4-cylinder to 3-cylinder benefits the engine performance in 

many ways such as fuel economy and et al [15]. 

Engine downsizing is possible with boosting techniques for the reason of avoiding 

the output power and torque penalty due to the reduction of displacement.  The 
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boosting systems applied on IC engines normally consist of supercharging and/or 

turbocharging. A supercharger usually utilises an air compressor arranged on the 

upstream of intake manifold driven by the crankshaft directly. The turbocharger 

consists of a turbine, normally propelled by the exhaust gas and a compressor 

coupled to the turbine via a common shaft and driven by the turbine. Both systems 

have advantages and disadvantages. For supercharger, since the compressor is 

driven directly by the crankshaft, response time lag is therefore eliminated, but it 

suffers from parasitic losses. Compared to supercharging, turbocharging shows 

better performance from its thermodynamic prospective. This is mainly because no 

power drained from the engine crankshaft directly to drive the compressor. However 

the downside is its poor performance which occurs due to insufficient exhaust gas 

energy at low load conditions, where the sufficient power for exhaust gas to drive the 

turbine is not yet reached, so the turbocharger cannot operate at its high efficient 

region. Furthermore, a response delay which called turbo lag is also associated. This 

response delay is mainly due to the acceleration of the rotor of the turbine and the 

pressure increase delay because of the flow fluid dynamic characteristic. And at high 

engine speed, the turbocharger may elevate the exhaust back pressure, resulting in 

pumping losses. This is mainly because of the pressure difference across the turbine, 

which created by the turbine itself to drive the compressor. 

 Turner et al. carried out study on a downsized engine with an ultra-boost system 

[16]. The boost system in this case was a combination of a supercharger and a 

turbocharger, capable of providing 4.5bar or above to its 5L V8 test engine. The 

results suggested that a 23% fuel economy improvement can be achieved with a 60% 

downsizing factor. The study of Lake et al. demonstrated another example of 

boosted downsized engine [17]. In this work, a substantial fuel economy benefit of 

more than 20% has been analysed in comparison with the base NA vehicle whilst 

being capable of maintaining half of Euro IV emissions over the NEDC cycle. The 

feasibility of replacing larger engines found in compactly sized regular passenger 

vehicles with smaller engines has also been investigated by William P. Attard, 

Steven Konidaris, Elisa Toulson and Harry C. Watson [18], the study presented that 

the performance of a 1.25L NA engine found in the 2007 Ford Fiesta can be 

matched by a 0.43L turbocharged engine, meanwhile, the fuel economy 

improvement can reach 20%. 
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Although the engine performance can be benefit by downsizing and boosting, there 

are numerous limitations of such a technology awaiting advanced solutions to 

overcome. 

As revealed by the research work of Maria Thirouard and Pierre Pacaud [19], with a 

0.5L single cylinder engine, to reach a power density of 80kW/L or above, a boost 

pressure of at least 3bar was required, and at 90kW/L the boost pressure level was 

found to be 3.4bar, the in-cylinder peak pressure was measured ~200bar. 

A research work presented by University of Melbourne revealed the limits of boost 

system applications with a supercharger and a turbocharger [20]. The PL was 

defined by the author as the Performance Limit, corresponding to the Wide Opening 

Throttle (WOT) condition, and the MAP was defined as the Manifold Absolute 

Pressure. As shown in Figure 2.2, the engine performance at high speed, high load 

area was restricted by the compressor flow limit of the supercharger. Meanwhile, the 

high load area suffered from the knocking combustion although it was still below the 

failure limit. Turbocharger boosting system in this case was capable of delivering 

higher boost pressure. However, at medium speed high load, the engine 

performance was limited by the turbocharger flow, and at high speed high load, it 

was restricted by the flow limit due to the intake and exhaust system. Meanwhile, the 

rest of the high load area can be reached but knocking combustion frequently 

occurred. The results also suggested that supercharging are not restricted by the 

intake and exhaust system whereas turbocharging suffers from back pressure 

elevation. 
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In general, the main technical barriers of downsizing strategy for conventional 4-

stroke engines are as follows [21]: 

 Combustion limitations – Increased propensity to knock leads to reduced 

compression ratio and retarded spark timing, hence lower efficiency 

 Steady state low speed torque – With increased downsizing, low speed BMEP 

requirement increases to maintain acceptable performance 

 Transient performance – Transient response needs to be maintained with 

increased low speed torque requirement 

 Engine geometry/layout – As engine capacity falls below 1 litre, bore size 

and/or cylinder number will require re-optimisation 

 Part load fuel economy – As downsizing continues the fuel economy gains 

inherently reduce due to the limitation of boosting system, measures will need 

to be taken to mitigate this 

Besides, for gasoline engines, the major technique barriers are also knocking, 

thermal and mechanical loads of the engine components, response time of 

turbocharging as well as reliability and durability of the engine parts. And for diesel 

engines, the main limitation of applying such technology is thermal loads and 

consequently the right type of cooling as well as the emission of particulate matter 

and nitrogen oxides would become drawbacks within the idea of reducing CO2. And 

  

Supercharged Turbocharged 

Figure 2.2 Limits of engine boosted by supercharger and turbocharger [20] 
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to extend the engine working range, the boost system design can be greatly 

complicated. 

By comparison, the 2-stroke engine has double firing frequency of the 4-stroke, and 

for the same output torque its IMEP and the peak pressure are approximately halved. 

Thus the 2-stroke engine has much greater potential over the 4-stroke for aggressive 

downsizing without having to increase the boost to a degree that 4-stroke engine 

demands. These advantages promise to address existing challenges associated with 

4-stroke engine downsizing. 

2.4 2-stroke engines 

2.4.1 Scavenging methods of the 2-stroke engine 

The 2-stroke engines rely on the scavenging of burned gases by fresh charge during 

the overlap period of intake and exhaust processes. The scavenging can be 

achieved by cross-flow, loop-flow and uniflow methods, as shown in Figure 2.3. In 

early 2-stroke configurations, the cross-flow is applied by arranging the scavenge 

ports virtually opposite to the exhaust ports. During the scavenging process, some of 

the incoming charge passes directly across the cylinder and exits the exhaust ports, 

which is known as charge short circuiting. The piston is therefore shaped with a 

deflector on the crown to direct the fresh charge upwards towards the cylinder head. 

In the case of loop-flow, the exhaust ports are positioned on the same side as the air 

intake ports so that the intake charge is directed towards the other side of cylinder 

and then reflected off the cylinder wall before they flow back to the exhaust ports.  In 

comparison, the uniflow scavenging method is achieved by combining intake ports at 

the lower part of the cylinder volume and poppet valves on the cylinder head.  The 

intake ports are designed typically to generate an upward swirling flow structure. The 

positive pressure difference across the intake and exhaust as well as ascending 

piston forces the in-cylinder charge towards the exhaust valves. Alternatively, the 

reversed uniflow can be arranged by supplying the intake charge through the valves 

on the cylinder head. 
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Cross-flow Loop-flow Uniflow 

Figure 2.3 Typical 2-stroke engine scavenging methods 

Among all these scavenging methods, a uniflow 2-stroke engine produces better 

scavenging [22] and minimum short circuiting. The short circuiting will deliver fresh 

charge directly into exhaust system, wasting the boosted energy, creating a error 

measurement of the lambda sensor, and combustion could happen in the exhaust 

system. In addition, the uniflow 2-stroke engine can be boosted at higher intake 

pressure by closing the exhaust valves earlier and may operate with proven wet 

sump and poppet valve technology.  The uniflow 2-stroke engine avoids bore 

distortion caused by uneven thermal loads in the conventional ported design with its 

cold intake port on one side and hot exhaust port on the other.  Furthermore, the 

uniflow 2-stroke engine is by nature very suitable for CAI combustion operation 

which gives stable and fuel efficient part-load operation by adjusting the scavenging 

efficiency and hot residual gases through phasing of the poppet exhaust valves 

using variable cam timing (VCT) devices. Using CAI addresses the unstable part 

load combustion often experienced by the 2-stroke gasoline engine resulting in 

further reduced uHC and CO emissions, better fuel economy and significantly lower 

NOx emissions. Finally, a centrally mounted injector can be installed in such engines 

of smaller bore size due to the absence of intake valves. By combining direct 

injection and a uniflow layout, the air and fuel short circuiting associated with 

conventional 2-stroke SI engines can be avoided.    
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2.4.2 Previous research on uniflow 2-stroke engines 

Uniflow 2-stroke engines are widely used in large marine diesel engines (eg. MAN, 

Wärtsilä-Sulzer) and in some diesel locomotives (Electro-Motive Diesel). Detroit 

Diesel had been manufacturing uniflow 2-stroke direct injection diesel engines for 

heavy duty vehicles until late 1990s as well as for military vehicles requiring very 

high power density engines. The most recent and relevant example for passenger 

applications is Daihatsu E202 engine shown at the 1999 Frankfurt Motor show [23]. 

It is a prototype 3-cylinder 987cc, uniflow 2-stroke direct injection diesel engine with 

a hybrid scavenging system that combines a supercharger and a turbocharger. 

Variable Valve Timing (VVT) was used to control the timing of exhaust valves in the 

cylinder head, in order to ensure startability at start-up and best possible fuel 

consumption and output. A high pressure common rail fuel injection system was 

used to feed centrally located injectors for optimum mixture formation and engine 

performance. A 1.0 litre 3-cylinder uniflow 2-stroke direct injection diesel engine 

designed for automotive applications was also demonstrated by AVL with a similar 

design in the mid 90s [24]. Daimler-Benz conducted an experimental evaluation of a 

single cylinder uniflow 2-stroke DI diesel engine and demonstrated that it had similar 

performance to the 4-stroke DI diesel engine [25].  

However, there have been very few works carried out on the uniflow 2-stroke direct 

injection gasoline engine. Chiba University and Fuji Heavy Industry did some 

preliminary research on a reverse uniflow 2-stroke direct injection gasoline engine 

[26]. In this work, the scavenging processes and in-cylinder flow patterns at various 

load and speed conditions were studied using 3D CFD simulation. Universidade do 

Minoho presented the design of a single cylinder crankcase boosted semi-direct 

injection gasoline uniflow 2-stroke engine of 43.3cm3 displacement volume [27]. The 

engine was predicted to produce a rated BMEP of 8bar and was intended for a 

student marathon fuel economy competition. 

As discussed above, for 2-stroke engines, the scavenging process plays significant 

role to the engine performance. And among all scavenging methods, the uniflow 

shows best scavenging efficiency. Daimler-Benz AG presented a study of 2-stroke 

engines with common rail fuel supply systems [25]. The study compared the 

performance of 2-stroke loop-flow and uniflow configurations. As shown in Figure 2.4, 

http://en.wikipedia.org/wiki/W%C3%A4rtsil%C3%A4
http://en.wikipedia.org/wiki/Diesel_locomotive
http://en.wikipedia.org/wiki/Electro-Motive_Diesel
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the uniflow method shows better performance than the loop-flow under similar 

engine conditions. 

 

Figure 2.4 Full-load performance of loop-flow and uniflow 2-stroke engine [25] 

Although the uniflow scavenging shows superior performance, the uniflow 

scavenging method has a disadvantage. It is the significantly greater cylinder 

spacing and the unfavourable overall engine lengths. When the engine bore/stroke 

ratio is extremely high of low, it is very hard for the intake port design to optimize and 

generate a proper flow to blow the residual gas due to the spatial narrow shape. AVL 

carried out research work on the intake port to optimise the scavenging process of 

the uniflow 2-stroke engine [24]. As shown in Figure 2.5, a), the conventional intake 

port arrangement and b) illustrated the optimised intake port arrangement. With 

careful design of the size and orientation of the intake ports, the lack of scavenging 

ability around the centre of the engine can be overcome. 
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a) 

 

b) 

Figure 2.5 In-cylinder flow structure (a) (b) [24] 

Being different from the conventional 4-stroke engine, the boost system for 2-stroke 

engines is indispensable. It is due to the scavenging method for 2-stroke engine 
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breathing, that the intake and exhaust processes have much greater overlap than 4-

stroke engines. The boost system of a 2-stroke engine requires careful optimisation.  

Mattarelli et al. published their study on a 2-stroke GDI engine [28]. The study 

revealed the strategy of boost system optimisation on 2-stroke engines. For a 

supercharger, it is relatively easy to increase the engine power & torque, 

unfortunately, the fuel consumption also increases due to the mechanical losses. 

The strategy is to keep the boost pressure as low as possible while the engine power 

target is satisfied. For a turbocharger, the conflict is that while the requirement of 

boost pressure is higher, the turbine nozzle size has to be smaller. However, the 

exhaust pressure will increase and therefore the fuel consumption increases too. 

The strategy of turbocharger optimisation is to compromise the nozzle size and the 

required boost pressure. 

2.5 In-cylinder flow measurements 

The in-cylinder flow structure has a great effect on the engine gas-exchange, air/fuel 

mixing, combustion and output performance [22]. For conventional engines, large 

scale flow structures, such as swirl or tumble are often used to maintain the flow's 

kinetic energy until the end of the compression stroke, where they break down into 

micro scale turbulence, promoting early flame kernel growth and increased flame 

speed [29], which increases the engines knock limit, allowing the use of increased 

compression ratios that result in increase fuel efficiency and reduced CO2 emissions. 

In addition, higher flame speed allows leaner air/fuel mixture to be burned for better 

fuel economy. For uniflow 2-stroke engine, the effect of in-cylinder flow organisation 

is even more significant on the engine performance. In order to provide information 

to optimise the in-cylinder flow structure, the in-cylinder flow investigation is required. 

Despite the development of ever more powerful CFD modelling tools that are of 

great value to designers of such combustion systems, their limitations mean that 

experimental validation of models will still be required for the foreseeable future. 

The Hot Wire Anemometry (HWA) and Laser Doppler Anemometry/Velocimetry 

(LDA/LDV) methods have been developed to provide single point flow data [30] 

[31][32][33][34][35]. The complex flow structure in the cylinder is better measured by 

the spatially resolved flow field measurement techniques.  In early stage of the in-

cylinder flow structure studies, smoke, metaldehyde crystals and white goose down 
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cut into short pieces after the heavier pieces had been removed were all used as the 

mediums to trace the in-cylinder air flow [36]. The quantitative whole field 

measurement began with the development of Particle Tracking Velocimetry (PTV) 

[37][38][39] and Particle Image Velocimetry (PIV) [40][41][42]. Such techniques have 

been developed and enabled to provide instantaneous, cycle resolved, two-

dimensional velocity maps across extended measurement planes within the cylinder. 

With these in-cylinder flow measurement methods, small seeding particles are 

required to indicate the flow movement, the seeding particles are normally planted at 

the upstream of the intake ports, and then illuminated by a certain light source, such 

as lasers in most of the cases, so two frames recorded within a very short time 

interval can be obtained. 

With the PTV technique, the particles are identified individually and correlated 

between two exposures taken in a narrow time window, the particles velocity vectors 

can be determined by their displacements. The PTV method has been used to 

conduct an extensive in-cylinder flow visualisation study. For example, the research 

of the intake-generated fluid motion produced different intake configurations [43], the 

cyclic variability of the pre-combustion flow field in a motored engine [44], and the 

effects of intake port configurations on in-cylinder flow organisation [45]. These 

previous research works have proved that the PTV method is able to provide useful 

data for in-cylinder flow study. However, there are several technique barriers that 

restrict the application within engine research. Firstly, the light source for the PTV 

method is required to be with long pulses, this requirement leads to a low power 

density of the illumination of seeding particles. To provide images with adequate 

quality, the seeding particles have to be large size so they can scatter sufficient light 

to be captured by cameras. Furthermore, because of the combination of low light 

power density and large size seeding particles, the planting density of the particles 

has to be low in order to avoid confusion of seed pairs during analysis, the lean flow 

will increase the load of post-processing works. 

The development of the PIV technique and its application to IC engines has allowed 

in-cylinder flow field measurement to be obtained with high spatial resolution. For 

PIV measurements, the seeding particles are illuminated by high energy, thin laser 

sheet pulses, and two frames are captured in a very short duration. The whole region 

of interest is divided into small interrogation areas, the mean flow velocity vectors are 
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calculated within these interrogation areas, typically with a cross-correlation method. 

By doing so, the identification of distinct, individual particles is no longer required. 

The illumination light source for PIV with short pulse and high power density allows 

the use of micron sized particles that can track high frequency flows. The high 

density seeding particles is allowed to be used, so a more comprehensive velocity 

map can be obtained than with PTV. The PIV method is suitable for the 

measurement of both large scale and small scale flow structures.  

General Motors R&D Centre has carried out a study applying PIV technique to take 

measurements of in-cylinder flow velocity in order to calculate the swirl and tumble. 

The results were also compared with numerical calculation results [46]. The 

experiments were carried out on a motored 4-stroke engine, and the measured and 

computed turbulence distributions at TDC compression both show a maximum near 

the cylinder centre that agreed to within 25% of each other. Apart from running PIV 

on combustion investigation, David L. Reuss has also carried out a study using PIV 

technique to a motored engine [47], this study proved that not only a steady in-

cylinder flow structure can be created, but also a flow structure with different scale 

can be achieved within the same cycle. The research of Haider et al. applied the PIV 

technique to a large 2-stroke marine engine [48], the study focused on the effect of 

the piston position to the in-cylinder flow structure while the intake ports were 

partially and fully opened. 

2.6 In-cylinder fuel distribution 

The effort of the engine in-cylinder fuel distribution and the air/fuel mixing process 

affects the engine performance to a great extend. In the case of a 2-stroke direct 

injection engine, the fuel atomisation and mixture formation are even more important 

due to the reduced time for the mixing process. 

Several non-intrusive laser based diagnostic techniques have been developed to 

allow in-cylinder fuel concentration measurement. The major techniques are based 

on Rayleigh scattering, Raman scattering and laser induced fluorescence. 

The Laser Rayleigh Scattering (LRS) is a simple and user friendly method for 

measuring gaseous species concentration. The Rayleigh scattering signal is the 

strongest among the three techniques mentioned above. However, the LRS method 
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suffers from the interference of the Rayleigh signal by Mie scattered light from both 

solid and liquid particles and the cylinder walls and it is not species specific. LRS 

was used in some early studies of in-cylinder fuel vapour distribution. For example, 

the concentration of Freon-12 vapour from diesel injector was measured by LRS to 

study the simulated diesel injection process in [49]. The in-cylinder gasoline fuel 

vapour concentration in a motored engine was measured by LRS through careful 

optical arrangement and calibration.  A research work focused on a steady flow rig 

was presented in a series of studies [50]. A more substantial case of LRS application 

was presented for the fuel vapour concentration measurement in an evaporating and 

combusting spray in an optical DI diesel engine under fired and motored conditions 

[51]. 

The Spontaneous Raman Scattering (SRS) technique is capable of providing 

simultaneous multiple-species measurements of major species such as N2, O2 and 

CO2 and etc. With the appropriate laser and multi-channel detector developed, multi-

point, multi-species SRS measurements have been demonstrated [52]. But the SRS 

suffers from very weak signal-to-noise ratio due to the small Raman scattering cross 

section. 

Among all three techniques, the Laser-Induced Fluorescence (LIF) is probably the 

most successful and the most widely used for engine fuel distribution studies. The 

main reason of its success is the ability of providing fuel distribution data with a good 

signal to noise ratio. With proper calibration, this method can be used to obtain 

quantitative air/fuel ratio measurements. 

According to the work of Christof Schulz and Volker Sick [53], the ideal tracer for LIF 

should behave like the base fuel used, and should yield LIF signal intensities that are 

directly proportional to the desired quantity and should not be influenced by the 

ambient conditions. Toluene has been used as LIF tracer in research work carried 

out by Sandia National Laboratories [54], while an Nd:YAG laser (266 nm) was used 

as the excitation source, and iso-octane was used as the fuel because of their similar 

boiling points. The inert gas in this case was N2, because the tracer toluene 

experienced fluorescence quenching problems due to oxygen. Another research 

applied PLIF technique to a DISI engine using same laser light source, the tracer in 

this study was 3-pentanone, and to compensate the early depletion of the 3-
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pentanone, 3- hexanone was also used. The advantages of 3-pentanone for fuel 

distribution measurements is that its boiling point (102ºC) closely matches the iso-

octane (99ºC) at ambient temperature and pressure. However, evidences also 

indicated that Rapid depletion of 3-pentanone in the liquid mixture shows significant 

uncertainties in iso-octane distribution measurements, especially in a GDI engine 

when the fuel is evaporated in the combustion chamber [55]. A very recent 

publication of LIF technique applied on a GDI engine was carried out by Changan 

Automobile Company [56]. In this research work, a KrF excimer laser with the 

wavelength of 248nm is used as the excited laser source. The tracer was 3-

pentanone and it was mixed up with iso-octane with a 1:9 ratio in volume. The 

properties of iso-octane and 3-pentanone are shown in Table 2.1.  

Table 2.1 Key properties of the experimental fuels and dopant 

 Iso-Octane 3-Pentanone 

Lower Heating Value 

(MJ/kg) 
44.31 33.4 

RON 100 - 

MON 100 - 

(R+M)/2 100 - 

Density at 15ºC (kg/dm3) 0.69 0.81 

H/C Ratio 2.25 2 

O2 (% weight) 0 18.6 
 

2.7 Summary 

This chapter presents the related research literature dedicated to reducing the 

engine fuel consumption, and also many related techniques applied to IC engines. 

Studies suggest that engine downsizing is a very effective way to reduce the engine 

CO2 emission. However, some technical barriers restrict the further downsizing of 4-

stroke gasoline engines, such as knocking, thermal and mechanical loads of the 

engine components, response time of turbocharging as well as reliability and 

durability of the engine. 
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On the other hand, the 2-stroke engine has double firing frequency of the 4-stroke, 

Thus the 2-stroke engine has much greater potential over the 4-stroke for aggressive 

downsizing without having to increase the boost to a degree that 4-stroke engine 

demands.  

One big issue of 2-stroke engine optimisation is the scavenging process. Several 

scavenging methods are available for 2-stroke operation, such as cross-flow, loop-

flow and uniflow. In comparison, uniflow has the best scavenging performance. By 

combining uniflow and direct injection in a 2-stroke operation, the fuel consumption 

can be improved through aggressive engine downsizing with the absence of typical 

ported 2-stroke engines.  

Optical diagnostic techniques are very helpful for providing engine in-cylinder 

information. Various types of optical diagnostic and their applications on IC engine 

studies have been discussed. The PIV technique is identified as the most suitable 

technique for the in-cylinder flow measurements of the uniflow 2-stroke engine. The 

PLIF technique is selected for the in-cylinder fuel distribution due to its suitability, 

strong signal and relatively simple setup. 
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Chapter 3  Analytical studies of flow and mixing in 

a uniflow 2-stroke engine  

3.1 Introduction 

Over the past decade, the numerical analysis has been extensively used for 

engineering design and optimisation. In the research and development of the IC 

engine, the Computational Fluid Dynamics (CFD) is increasingly used for the 

analysis of in-cylinder flow, mixture formation and combustion.  

In the current study, the CFD method was used to investigate the in-cylinder flow 

pattern, the fuel injection process and the air/fuel mixing process in the direct 

injection gasoline uniflow 2-stroke engine.  The results were also used to provide the 

initial and boundary conditions in the 1-D engine simulation for optimising the intake 

ports, the exhaust valve timing, and the prediction of the engine’s performance. 

As the computational hardware and techniques develop, the numerical analysis on 

IC engines play a more and more important role to research and hardware 

optimisation. The traditional methods of engine research and development is 

following the procedure as:  

 Building prototype engines 

 Running tests on the test bed to gain relevant information 

 Modifying the prototype according to the test results to optimise the engine 

The traditional way of engine research is a costly and highly time consuming process 

due to the large number of variables that have an effect on the design. Numerical 

engine study and analysis plays a very important role in the development of engines. 

It helps in analyzing the various engine configurations without actually building the 

engine. Thus, Engine Simulation helps in reducing the cost and time involved in 

developing a new engine [57]. 

The state-of-the-art of computational simulation has advanced on many fronts. 

Nowadays, computer hardware itself has improved dramatically over the last half 

century. As we close the 20th century, computers are 109 times faster and more cost 
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effective than they were in the days of World War II. The computational expense 

reduces by a factor 2 every 1.5–2 years, which fits well with this remarkable 

performance achievement. Furthermore, while state-of-the-art electronic chip 

manufacturing today uses 0.25μm feature size technology, the path to 0.05μm or 

smaller technology now seems apparent, thereby ensuring same speedup rate for 

the next 15 years or so [58]. The development of computational technology secures 

the numerical analysis method plays a role as important and experimental studies on 

IC engines. 

3.1.1 Introduction to CFD simulation  

CFD is the abbreviation of Computational Fluid Dynamics. It is computational 

method that uses numerical methods and algorithms to solve and analyze problems 

that involve fluid flows. Numerical simulations of CFD are normally used for two 

purposes. First, the applications of CFD are associated with fundamental research. 

This kind of studies requires very high accuracy of the numerical data; the physical 

models used to present the fluid behaviour must be pertinent and so are the 

algorithms used. Second, the CFD simulation is used to predict the flow 

characteristic. The goal here is to predict physical characteristic of the flow structure 

and its efforts on certain objects rather than providing data for flow dynamics itself. In 

this case, the introduction of CFD simulation is on purpose of reducing the cost and 

time required to develop a study subject [59]. This technique has been widely used 

for the studies of flow structure, fuel spray and distribution and combustion 

organisation on IC engines. The applications of CFD simulation on engine research 

is used mostly for the second purposed. Many commercial types of software have 

been developed for the purpose of CFD simulation, the software used for the study 

related to the work described in this article is the Ansys Fluent. 

3.1.2 Turbulence model 

It is an unfortunate fact that no single turbulence model is universally accepted as 

being superior for all classes of problems. The choice of turbulence model will 

depend on considerations such as the physics encompassed in the flow, the 

established practice for a specific class of problem, the level of accuracy required, 

the available computational resources, and the amount of time available for the 

simulation.  

http://en.wikipedia.org/wiki/Numerical_methods
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Fluid_dynamics
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For the turbulent simulation, also there are many models can be used to calculate 

the flow structure. The Reynolds-averaged Navier-Stokes (RANS) and Large-eddy 

simulation (LES) are two most popular modelling methods of IC engine applications. 

Both methods use similar equations and are based on same principle ground. 

However, in terms of physical meanings of parameters in the equations, the 

difference is identified.  

3.1.2.1 Reynolds-Averaged Approach 

Time-dependent solutions of the Navier-Stokes equations for high Reynolds-number 

turbulent flows in complex geometries which set out to resolve all the way down to 

the smallest scales of the motions are unlikely to be attainable for some time to 

come. One of the methods can be employed to render the Navier-Stokes equations 

tractable so that the small-scale turbulent fluctuations do not have to be directly 

simulated. It is the Reynolds-averaging approach. 

The Reynolds-Averaged Navier-Stokes (RANS) equations govern the transport of 

the averaged flow quantities, with the whole range of the scales of turbulence being 

modeled. The RANS-based modelling approach therefore greatly reduces the 

required computational effort and resources, and is widely adopted for practical 

engineering applications. 

The flow of a viscous incompressible fluid with constant properties is governed by 

the Navier–Stokes equations (Einstein summation convention applies to repeated 

indices) [60]. 

   

  
 

 

   
        

  

  
  

    

      
                  [E-3.1] 

   

   
                     [E-3.2] 

    – The fluid velocity 

    – The pressure 

    – The fluid kinematic viscosity 

The dependent variables of Equation 3.1 and 3.2 can be decomposed into mean and 

fluctuating parts as follow, 
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                   [E-3.3] 

By substituting Equation 3.3 into Equation 3.1 and 3.2, taking an ensemble average, 

the system of partial differential equations that governs the mean-velocity and 

pressure fields of incompressible turbulent flow can be derived as follows, 
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                     [E-3.5] 

With reference to the nonlinear term shown below, 

                                                [E-3.6] 

The RANS can be derived as follow, 

    

  
    

    

   
  

   

   
  

     

      
 

    

   
                  [E-3.7] 

                                    [E-3.8] 

     – The Reynolds-stress term that incorporates the effects of turbulent motions 

on the mean stresses 

3.1.2.2 Large-Eddy Simulation 

LES provides an alternative approach in which large eddies are explicitly computed 

in a time-dependent simulation using the filtered Navier-Stokes equations. The 

rationale behind LES is that by modelling less of turbulence, the error introduced by 

turbulence modelling can be reduced. It is also believed to be easier to find a 

universal model for the small scales, since they tend to be more isotropic and less 

affected by the macroscopic features like boundary conditions, than the large eddies. 

Filtering is essentially a mathematical manipulation of the exact Navier-Stokes 

equations to remove eddies that are smaller than the size of the filter, which is 

usually taken as the mesh size when spatial filtering is employed. Like Reynolds-

averaging, the filtering process creates additional unknown terms that must be 

modeled to achieve closure. Statistics of the time-varying flow-fields such as time-

averages values of the solution variables, which are generally of most engineering 

interest, can be collected during the time-dependent simulation. LES for high 
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Reynolds number industrial flows requires a significant amount of computational 

resources. This is mainly because of the need to accurately resolve the energy 

containing turbulent eddies in both space and time domains, which becomes most 

acute in near-wall regions where the scales to be resolved become much smaller. 

Wall functions in combination with a coarse near wall mesh can be employed, often 

with some success, to reduce the cost of LES for wall-bounded flows. However, one 

needs to carefully consider the ramification of using wall functions for the flow in 

question. For the same reason (to accurately resolve eddies), LES also requires 

highly accurate spatial and temporal discretizations. 

In general, the LES model shows advantages in details of flow structure, such as 

eddies and vortices. Furthermore, LES model has the potential to be more predictive. 

However, the assumption of potential of prediction is based on the solver calculation 

methods, but this assumption is hard to be validated, and the settings of boundary 

conditions will contribute to the result variations of LES to further extend than RANS.  

In contrast, the RANS shows advantages in resulting a time based average data, 

which is more compatible with experimental results, and the computational time 

expense is lower than LES with same grid conditions. 

Research Institute of Automotive Engineering and Vehicle Engines Stuttgart has 

carried out 3D CFD simulations in order to provide information for the intake system 

design on an 8-cylinder engine with external exhaust gas recirculation [61]. CFD 

simulation also has been used to investigate the evaluation of the effects of cycle by 

cycle variation on knock tendency of a high performance spark ignition engine [62], 

the simulation data provided qualitative information for the identification of best park 

plug location. The study of Cornolti et al [63] presents different methodologies of 

CFD analysis applied to the intake plenum of a turbocharged HSDI Diesel engine. 

The discharge and pressure loss coefficients representing the flow losses within the 

plenum have been calculated. The comparison with the steady flow bench 

experimental results confirmed the accuracy of the 3D model. 

3.2 CFD Model Set-Up 

ANSYS FLUENT was chosen for the simulation. Fluent has a powerful pre-processor 

to import geometry files from CAD and provides high quality mesh creating ability 
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with flexibility. It has advanced physical models for the description of turbulence, 

heat and energy transfer, multi-phase/species and etc. Two solver types of solver 

are available for both steady and transient flow calculations. They are pressure-

based and density-based. 

3.2.1 Principle of calculations 

ANSYS FLUENT uses the conservation equations of mass and momentum for all 

flow calculation, when heat transfer is involved, an additional energy conservation 

equation is introduced. The equations are shown below 

  

  
                   [E-3.9] 

 

  
                                                     [E-3.10] 

 

  
                                                           [E-3.11] 

   – Density 

   – Time 

     – Overall velocity vector 

    – Mass added to the continuous phase from the dispersed second phase (e.g., 

due to vaporization of liquid droplets) and any user-defined sources 

   – Pressure 

    – Stress tensor 

    – Gravitational acceleration 

    – Force vector 

  – Total energy 

     – The effective conductivity  

  – Temperature 

  – Enthalpy 
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    – The diffusion flux of species j 

   – The heat of chemical reaction, and any other volumetric heat sources 

defined by user 

Equation 3.9 and Equation 3.10 describe the conservation of mass and momentum 

respectively. The equation of energy conservation shows as Equation 3.11 [64]. 

One of the main targets for the study is to investigate and predict the in-cylinder 

turbulent flows and the swirl generating ability with corresponding intake port designs. 

There are different fluid flow-modelling techniques.  

The RANS calculation method was applied for the flow structure simulation in this 

study and the turbulence model used was Re-Normalisation Group (RNG)     

model. The RNG     model is derived using a rigorous statistical technique with 

following features:  

 The RNG model has an additional term in its   equation that significantly 

improves the accuracy for rapidly strained flows.  

 The effect of swirl on turbulence is included in the RNG model, enhancing 

accuracy for swirling flows.  

 The RNG theory provides an analytical formula for turbulent Prandtl numbers, 

while the standard     model uses user-specified, constant values.  

While the standard     model is a high-Reynolds-number model, the RNG theory 

provides an analytically-derived differential formula for effective viscosity that 

accounts for low-Reynolds-number effects. Effective use of this feature does, 

however, depend on an appropriate treatment of the near-wall region.  

These features make the RNG     model more accurate and reliable for a wider 

class of flows than the standard     model [64]. 

Transport Equations for the RNG     Model are shown below: 

 

  
     

 

   
       

 

   
       

  

   
                    [E-3.12] 

 

  
     

 

   
       

 

   
       

  

   
                    

  

 
            [E-3.13] 
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   – Turbulence kinetic energy 

    – Turbulence dissipation rate  

     – Generation of turbulence kinetic energy due to the mean velocity gradients 

     – Generation of turbulence kinetic energy due to buoyancy 

     – Contribution of the fluctuating dilatation in compressible turbulence to the 

overall dissipation rate 

              – Constants 

        – Inverse effective Prandtl numbers for   and , respectively 

      – User-define boundary 

By solving equation set combined by equation 3.12 and 3.13, the value of   and   

can be derived.  

3.2.2 Boundary Conditions 

To define the calculation, the boundary conditions are as important as the physical 

equations. The boundary conditions include mechanical structure codes, engine 

breathing inlet/outlet pressure and temperature, piston movement profile, valve lift 

profiles and etc. 

For the mechanical structure, the basic engine parameters are the bore and stroke, 

the intake port geometry configuration, exhaust valves dimensions and etc. The 

engine mechanical structure is defined by Pro Engineering, and then imported into 

the CFD tools. All engine mechanical structures were defined prior to the CFD 

calculations.  

The other boundary conditions can be generated after the mechanical code is 

imported into CFD tools and meshed. For the engine modelling system, in terms of 

mass flow transfer, inlet/outlet boundary conditions are required to describe the 

intake/exhaust conditions on the interface between the engine model and the global 

environment, including:  

 Pressure on the environment side of the inlet/outlet interface. 
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 Flow direction on the inlet/outlet interface. 

 Turbulent kinetic energy and dissipation rate. 

 Temperature of the flow at the boundary interface. 

 The components of the inlet species and exhaust species if backflow occurs 

at the exhaust outlet boundary 

The dynamic mesh boundaries for the engine structure are piston and exhaust 

valves. The piston movement is defined by the engine geometry configurations, 

including: 

 Crank shaft speed 

 Piston stroke 

 Connecting rod length 

In FLUENT, the piston location is calculated by 

     
 

 
              

   
 

 
         

  
 

                     [E-3.14] 

    – Piston location from TDC at specified crank angle 

   – Length of connecting rod 

   – Engine stroke 

   – Crank angle 

The exhaust valve lift profile is defined by a code contains the crank angle and 

corresponding valve lift, which is created separately and then imported into the CFD 

tool. During the simulation, the valve moving axis is defined and the valve position at 

a given crank angle is then governed by the valve lift profile. 

3.2.3 Grid and Mesh Types  

CFD calculations are based on the finite element method by discretizing the 

geometry into grids. By doing this, the formula to solve the problem related to the 

geometry is also discretized and integrated into a matrix which describes the 

physical problems. 
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The grids will have great impact on the convergence rate of calculation, the accuracy 

of the calculation and the calculation time consumption. 

The typical grid types of 2D and 3D are shown in Figure 3.1.  
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Triangle Quadrilateral 

2D Grid Types 

 
 

Tetrahedron Hexahedron 

 
 

Wedge Pyramid 

3D Grid Types 

Figure 3.1 Typical Grid Shapes 

The grid details of the CFD calculation in this study will be discussed in following 

chapters. 
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3.3 CFD Calculation with 2D Model 

The performance of the uniflow 2-stroke engine is largely determined by the 

scavenging process during the overlap period of intake and exhaust opening. In a 

uniflow 2-stroke engine, intake ports geometry and opening time determine the 

intake fresh charge mass flow rate, the scavenging performance, and the swirl 

generation of in-cylinder flow.  

At the start of the project, a single cylinder 2-dimensional uniflow 2-stroke engine 

base model was set up for the study of scavenging process and the optimisation of 

the intake ports. The engine model features intake ports at the bottom of the cylinder 

liner. Exhaust valves are included in the cylinder head and actuated by a camshaft. 

A set of parameters are introduced [22] to define the intake port configuration 

settings of the uniflow 2-stroke engine, as shown in Figure 3.2 and Table 3.1.  

  

(a) (b) 

Figure 3.2 The intake port geometry parameter 
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Table 3.1 The intake port geometry parameter 

Parameter Definition 

rcy engine bore 

rp radius of swirl circle 

θp port width angle 

N Number of ports 

Ai Axis inclination angle 

φp Swirl orientation angle 

                        

xp Effective port width 

                     

θb Port shoulder width angle               

xb Effective port shoulder width                    

 

3.3.1 2D Model Design 

In order to determine a baseline configuration of the uniflow 2-stroke engine, a 2D 

CFD model was first used to predict the effect of axis inclination angle, Ai, on in-

cylinder flow and the scavenging process during the overlap period of intake port 

opening and exhaust valve opening. The 2D model is shown in Figure 3.3.  
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Figure 3.3 The 2D CFD model 

At this stage, the engine bore is set to 80mm and stroke is set to 89mm, which will 

be used for the single cylinder engine experiments later. 

As shown in Figure 3.3, the engine geometry structure has been simplified and 

divided into 5 groups, which are shown below, 

 A1 and A2 – Exhaust valves 

 B1 and B2 – Valve dynamic zones 

 C – Clearance volume 

 D – Swept Volume 

 E1 and E2 – Intake port channels 

 The reason of simplification and the divisions of the geometry structure is that two 

moving groups were involved, exhaust valves and piston. So the dynamic mesh has 

to be assigned. To secure the transient calculation process, a structured grid is 

chosen. In this case, the quadrilateral grid type is chosen. The structured grid 

requires less time and achieves best transient calculation performance when 

dynamic mesh is applied. In addition, the performance of mesh regeneration and 

calculation convergence performance are better. 
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Figure 3.4 Boundary of exhaust valves 

Figure 3.4 shows the mesh structure and boundary setup of the exhaust valves. The 

top edge of exhaust valve meshes is set to be an outlet boundary which is the outlet 

of the entire system. The back-pressure is set to the ambient pressure. The backflow 

component can be also defined and are set to be burnt gas. The side walls of the 

exhaust valves meshes are set to as interfaces. The interface allows mass and 

energy transfer across and is mainly used with dynamic mesh and moving 

components. Because of the valves movement, the interface here is set to couple 

with the corresponding interface on the valve dynamic zones.  When the valves 

move down, the couple of interface sets overlaps and the in-cylinder components 

and the energy are allowed to travel from one side to the other freely.  As a result, 

when the exhaust valves are opened, the in-cylinder components are allowed to 

follow the flow towards the outlet boundary. All other edges are set to solid walls 

including those in the interior. The entire valve zone moves as a rigid body so the 

mesh and boundary edges posses exactly the same relative positions during the 

simulation. The valve movement is controlled by a user defined lift profile. 
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Figure 3.5 Boundary of valve dynamic zones and clearance volume zone 

The clearance volume zone and valve dynamic zones are shown in Figure 3.5. The 

grid type for these two zones is also structured quadrilateral. The clearance volume 

zone has two sets of interfaces and the other edges are walls. Two interface sets are 

coupled with the swept volume and the valve dynamic zones respectively, both 

allows the in-cylinder components to travel freely in the cylinder chamber. 

The top edge of valve dynamic zone adjacent to the exhaust valve is set to wall and 

the other edges are set to interface. When the exhaust valve is moving, the vertical 

length of valve dynamic zone changes. The interior mesh is squeezed when valves 

move down and expanded when valves move up. The quadrilateral grid is applied to 

the valve dynamic zone. When valves move during the simulation, the layers of 

mesh are recalculated and regenerated. The layers adjacent the moving side are 

removed when mesh is squeezed and added when mesh expands. The grids on the 

rest of zones remain the same. Different types of grid of mesh has been applied to 

the model, a set of preliminary simulation has been carried out under same boundary 

conditions. The results suggested this meshing method gives the best convergence 

ability and requires less computing time. 
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Figure 3.6 Boundary of swept volume 

The swept volume zone is shown in Figure 3.6. The dynamic mesh design is the 

same as the valve dynamic zone. The bottom edge of the swept volume zone is set 

to be the piston. The movement is defined by the pre-defined engine speed, piston 

stroke and connecting rod length. The interior mesh is also regenerated by removing 

and adding layers. Two sets of interfaces are defined, one set couples with the 

corresponding interface on clearance volume, the other couples with the intake port 

channels. 

 

Figure 3.7 Boundary of intake port channel 



39 
 

As shown in Figure 3.7, the far side of the intake port channel is set to the inlet 

boundary. The inlet pressure, temperature, species and initial flow direction is 

defined and assigned to the inlet boundary. On the edge adjacent to the swept 

volume zone, the edge is defined as interface coupling with the swept volume zone. 

3.3.2 2D Model simulation and results 

The intake ports opening time is governed by their relative location to the piston at 

BDC. When the piston position is higher than the port top edge, the ports are fully 

covered by the piston, and the intake ports are closed. When the piston location is 

lower than the top edge of intake ports, the intake ports are opened. The exhaust 

valves timing is governed by their lift profile.  

The calculation started from 120°ATDC, at which exhaust valves start to open, to 

250°ATDC, when the intake ports are fully covered by the piston and the exhaust 

valves are closed. Thus, simulation covers the range from the beginning to the end 

of the scavenging process of the 2-stroke operation.  

A 1.5bar absolute boost pressure was applied to the intake flow. The initial in-

cylinder pressure was set to 1.2bar @120°ATDC, and in-cylinder temperature was 

set to 500K. The initial in-cylinder charge was assumed to be stationary. The 

exhaust backpressure was set at the ambient pressure. 

The following parameters are used to characterise the quality of scavenging process 

[66]: 

 Delivery Ratio (DR): defined as the ratio of delivered fresh charge mass to 

reference mass. The reference mass is calculated by the displaced volume 

multiplied by ambient air density.  

 Trapping Efficiency (TE): defined as the ratio of mass of delivered fresh 

charge retained in the in-cylinder to the total mass of delivered fresh charge.  

 Scavenging Efficiency (SE):  defined as the ratio of mass of delivered fresh 

charge retained in the cylinder to the total trapped cylinder charge.  

 Charging Efficiency (CE): defined as the ratio of mass of delivered air retained 

in the cylinder to the reference mass. 

 Calculations were carried out for 5 intake port’s axis inclination angles, Ai, 

which are 30º, 45 º, 60 º, 90 º and 135 º as shown in Figure 3.8.  



40 
 

  

Ai - 30º Ai - 45º 

  

Ai - 60º Ai - 90º 

 

 

Ai - 135º  

Figure 3.8 In-cylinder components distribution contour 

The red area in Figure 3.8 represents the residual gas and the cyan area the fresh 

charge. With 30º axis inclination angle, the fresh charge flows into the cylinder 

chamber and then moves up along the cylinder wall. After reaching the top of 

chamber, flow on each side turns towards the exhaust valves and collides at the 

centre of the cylinder before flowing down towards the bottom of the cylinder along 

the central line of the cylinder. When the axis inclination angle increases to 45 º, the 

flow structure and pattern remains the similar to the one with 30 axis inclination 
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angle intake ports. However, the fresh charge occupies more area and flows further 

down at central line of the cylinder in a reversed vortex shape. With 60 º axis 

inclination angle, the flow structure of fresh charge is distributed in an area of the 

shape of an upside-down wine cup. The sides of fresh charge area are formed at the 

same angle as intake ports and converge towards each other before diverging 

upwards to the exhaust valves. With 90 º and 135 º intake port inclination angle, the 

fresh charge moves along the piston top and collides to form a vertical flow along the 

central line towards the top of the cylinder chamber. 

The cumulative results of delivery ratio, charging efficiency, scavenging efficiency 

and trapping efficiency over the scavenging period are shown in Figure 3.9. 

 
 

  

Figure 3.9 Engine  scavenging performance  as a function of axis inclination 

angle based on 2D models 

The delivery ratio reaches its peak at 90º intake port inclination angle. Either 

increase or decrease in the axis inclination angle will cause a drop of the delivery 

ratio. This is better explained by the effective area ratio of intake port, which is 

defined as 
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                                             [E-3.15] 

    – Effective ratio of area 

    – Effective area of intake port 

    – Intake port area along the cylinder wall 

   – Axis inclination angle 

And the definition of   ,   , and    is shown in Figure 3.10. 

When the intake port inclination angle is 90º, the effective area ratio of intake port 

reaches 1. 

 

Figure 3.10 Effective area ratio of intake port 

But 90º axis inclination angle intake ports resulted in the lowest trapping efficiency, 

because of the “short-circuiting” phenomenon [22], which involves the fresh charge 

going directly out of the cylinder through the exhaust valves during the scavenging 

period. As shown in Figure 3.8, with 90º axis inclination angle intake port, some of 

the fresh charge can flow to the exhaust valves and escape the cylinder chamber.  

The 30º axis inclination angle intake port has the highest trapping efficiency but the 

lowest delivery ratio. 

The charging efficiency, indicating the charging ability of the intake system, reaches 

its maximum value with 60º axis inclination angle intake port. The scavenging 
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efficiency shows the same trend as the charging efficiency and indicates the ability of 

fresh charge blowing the residual gas out of the cylinder chamber. Because the 

charging efficiency has most direct impact on the engine power output, the 2D 

calculation suggests that the 60 º axis inclination angle intake ports can be adopted 

for maximum engine output. 

3.4 3D CFD Calculations 

3.4.1 3D CFD engine model 

In order to carry on more realistic simulations, a 3D engine CFD model is set up as 

shown in Figure 3.11. The base engine is based on the engine geometry of the 

single cylinder engine to be used for experimental studies and it has an 80mm bore 

and 89mm stroke. The cylinder head includes a pent roof combustion chamber and 

four valves. 

 

Figure 3.11 3-D CFD base model 

Similar to the 2D model, the entire engine geometry is divided into 5 groups, exhaust 

valves, valve dynamic zones, clearance volume, swept volume and intake port 

channel. 



44 
 

 

Figure 3.12 Valve zone, valve dynamic zone and clearance volume 

As shown in Figure 3.12, valve zones with solid valve features are generated as rigid 

body and located on top of the valve dynamic zones. The top surface of valve body 

is assigned as outlet. The valve dynamic zones are seating in the clearance volume 

zone. When valves are closed, the real engine clearance volume is made up by 

valve dynamic zones and clearance volume zone. When valves open, the valve zone 

moves down along the valve zone central axis as a rigid body, squeezing the valve 

dynamic zone in the process. The side walls of valve zones, valve dynamic zones 

and corresponding surfaces on clearance volume are set to interfaces to allow the 

mass and energy transfer across the boundary freely. The dynamic mesh 

regeneration method is layering and the mesh type is structured quadrilateral grid to 

secure the calculation process and reduce the required time. 



45 
 

 

Figure 3.13 Intake port channel layout 

The outside boundary of each intake port channel is assigned to be the inlet, the 

inside surface is assigned to be the interface coupled with the interface of the swept 

volume. The bottom surface of the swept volume body is assigned as piston. The 

same set of parameters is used to describe the intake port geometry as mentioned at 

the beginning of this chapter and set to be adjustable. For the 3D CFD simulation, 

the baseline single cylinder engine model intake ports are set all around the cylinder 

liner. For the engine performance calculation of the multiple-cylinder configuration, 

ports between cylinders will be removed. 

3.4.2 3D CFD simulation results 

The 1st simulation carried out is investigation of the intake port axis inclination angle 

effect on the scavenging process. The chosen axis inclination angles are 30º, 45º, 

60º, 75º and 90º.  

The simulation boundary conditions are set the same as the 2D simulation. The 

calculations started from 120°ATDC, and end at 250°ATDC. A 1.5bar absolute boost 
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pressure was applied to the intake flow. The initial in-cylinder pressure was set to 

1.2bar @120°ATDC, and in-cylinder temperature was set to 500K. The initial in-

cylinder charge was assumed to be stationary. The exhaust backpressure was set at 

the ambient pressure.  The boundary conditions were imported from a 1D simulation 

model discussed later in Chapter 4, the engine model was operated at 4000rpm at 

full load.  

  

  

Figure 3.14 Engine breathing performance  as a function of axis inclination 

angle based on 3D models 

As shown in Figure 3.14, the same effect of the axis inclination angle of intake port 

on the delivery ratio level is predicted by the 3D CFD as the 2D simulation result. 

When axis inclination angle increasing from 30º to 90º, the effective area of the 

intake port increases, resulting in a decreasing delivery ratio. But the absolute values 

of delivery ratio are much lower than those predicted by the 2-D because of the 3D 

effect of the port geometry. 

The trapping efficiency drops as the axis inclination angle decrease, due to the 

“short-circuiting” effect. The charging efficiency and scavenging efficiency of 3D 

simulation exhibit different trends from the 2D calculation. The 90º axis inclination 
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angle intake port shows the best charging and scavenging performance. However, 

the results of 60º and 75º axis inclination angle are very close to the maximum value. 

Considering the negative effect of “short-circuiting” on engine emissions, 60º axis 

inclination angles is chosen for the subsequent simulations. 

In order to maximize intake flow through the intake ports, the number of intake ports 

and their geometry need to be designed to give the highest flow efficiency. For a 

given number of intake ports, N, the port width ratio Cpb can be used to describe the 

port’s geometry effect on flow as defined below,  

     
      

    
                                       [E-3.16] 

     – Port width ratio 

   – Port number 

    – Effective port width 

    – Engine bore 

For a given engine bore diameter of rcy and fixed value of Cpb, intake ports can be 

arranged with wider port width and less number of ports or narrower port width and 

more number of ports. 

Different combinations of N and xp were evaluated as given in Table 3.2 and the 

definition of each parameter can be found in Table 3.1. 
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Table 3.2 The setting of combination of N and xp 

Setting SET1 SET 2 SET 3 SET 4 SET 5 

rcy [mm] 80 80 80 80 80 

rp [mm] 40 45.7 51.4 55.5 61.2 

φp [°] 20 20 20 20 20 

θp [°] 20 30 40 48 60 

θb [°] 10 15 20 24 30 

xb [mm] 13.94 20.88 27.78 33.27 41.41 

xp [mm] 26.12 38.96 51.44 61.20 75.24 

N 12 8 6 5 4 

Ai [°] 60 60 60 60 60 

Cpb 1.9 1.9 1.9 1.9 1.9 

 

For all calculations, the swirl orientation angle was set to 20° according to the swirl 

orientation angle optimization simulation discussed later in this section. The port 

width ratio was fixed to 1.9. The number of ports decreased whilst the width of 

individual ports was enlarged from Set 1 to Set 5 design. The boundary condition is 

kept the same as before. 

To evaluate the results, the swirl ratio was introduced [67]. Assuming at one location 

in the cylinder, PNT4, with the velocity vector points from PNT4 to PNT5, as shown 

in Figure 3.15, the location vector can be represented as   

                                                       [E-3.17] 

and the velocity vector can be represented as  

                                                       [E-3.18] 
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then the angular momentum to axis   at this point is  

                                                     [E-3.19] 

the momentum inertia of axis   is  

      
                                                 [E-3.20] 

the swirl ratio can be calculated as follow 

   
      
 
 

       
 
   

                                             [E-3.21] 

where   is the corresponding crank shaft angular velocity  

    
   

  
                                                     [E-3.22] 

   – Engine speed in rpm 

 

Figure 3.15 In-cylinder velocity vector 

As shown in Figure 3.16, the air mass flow rate through the intake ports is 

independent of the number of intake ports when the port width ratio is kept constant. 

For a given swirl orientation angle, the swirl ratio decreases slightly as the number of 
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ports is reduced.  That is, a higher swirl ratio can be obtained with a larger number of 

narrower ports due to high flow velocity and better swirl quality as shown in Figure 

3.17.  

  

Figure 3.16 Mass flow rate of intake ports and swirl ratio 
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Figure 3.17  In-cylinder flow field 
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Set 5  

Figure 3.17 (cont.) In-cylinder flow field 

One of the advantages of uniflow scavenging method is its ability to generate strong 

swirling flow in the cylinder by optimising the intake ports swirl orientation angle φp.  

Table 3.3 shows the 6 different sets of intake configurations used to investigate the 

effect of intake ports swirl orientation angle φp.   

Table 3.3 Swirl orientation angles φp   

 

Setting SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 

rcy [mm] 80 80 80 80 80 80 

rp [mm] 20 30 40 50 60 70 

φp [°] 4.43 11.98 19.95 28.64 38.54 51.00 

θp [°] 20 20 20 20 20 20 

θb [°] 10 10 10 10 10 10 

xb [mm] 13.94 13.94 13.94 13.94 13.94 13.94 

xp [mm] 27.70 27.18 26.12 24.39 21.73 17.49 

N 12 12 12 12 12 12 

Ai [°] 60 60 60 60 60 60 

Cpb 1.73 1.70 1.63 1.52 1.36 1.09 
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As shown in Figure 3.18, when the swirl orientation angle is increased from 4.43º in 

Set 1 to 51 º in Set 6, the delivery ratio drops gradually from 2.4 to 1.9 whilst the port 

width ratio has to be reduced to achieve the increased swirl orientation angle. Figure 

3.19 shows that a larger swirl orientation angle produces a greater swirl ratio. 

 

Figure 3.18 Delivery ratio and port width ratio 

 

Figure 3.19 Swirl ratio vs. swirl orientation angle 

As shown in Figure 3.20, the best scavenging performance is obtained with a swirl 

orientation angle of 20°. Scavenging and trapping efficiency decreased when the 

swirl orientation angle being less than 20°. Although delivery ratio increases, 

however, due to the air short circuiting effect, the trapping efficiency still decreased. 

When the swirl orientation angle becomes greater than 20°, the scavenging 

performance also decline because of the reduction in the delivery ratio. 
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Figure 3.20 Scavenging performance vs. swirl orientation angle 

Therefore, the 60° axis inclination angle and 20° swirl orientation angle design has 

been adopted as the optimised angle for the subsequent 3D flow analysis. 

3.5 Fuel injection and in-cylinder mixing 

A series of 3D CFD simulations has been carried out to investigate the fuel injection 

and its effect on in-cylinder air/fuel mixture formation. The initial conditions of the in-

cylinder flow field are the same as the condition in previous gas-exchanging process 

simulations. The location of the injector is based on the setup in the experimental 

engine. A Siemens outward open piezo DI gasoline injector with a 90º spray cone 

angle was adopted and its details are shown in Figure 3.21. 

 

 

 

 

 

 

90% 

91% 

92% 

93% 

94% 

95% 

96% 

97% 

98% 

99% 

100% 

SE-set1 SE-set2 SE-set3 SE-set4 SE-set5 SE-set6 

Scavenging Efficiency 



54 
 

 

 

Figure 3.21 DI injector geometry 

The injection simulation starts after the gas-exchange process when all ports and 

valves are closed. An initial in-cylinder swirl is generated during the gas-exchanging 

process with a swirl ratio of 17.93. 

The Discrete Phase Model (DPM) is used to simulate the fuel injection process. The 

injected fuel is treated as particles and droplet breakup calculation is included to 

model the atomisation process. The injector tip has a 4.0mm protrusion. The fuel 

delivery mass flow rate is set to 0.035kg/s and initial injection velocity is 200m/s.   
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In order to consider the movement of the piston and exhaust valves, a layering 

dynamic mesh is applied.  The hex/wedge type grid with 1~2mm internal grid size is 

used in the CFD calculations. 

3.5.1 Single injection 

For single injection cases, the injection duration is set to 30° CA at 4000rpm. The in-

cylinder evaporated fuel mass is also recorded, as shown in Figure 3.22.  

 

Figure 3.22 Mass of Evaporated Fuel 

In all cases, the speed of fuel evaporation increases during the injection process. 

After the end of injection, the liquid fuel evaporating speed slows down. Faster fuel 

evaporation takes place at retarded injection due to higher charge temperature. 

The main cause for the less total fuel vapour from the early injection cases is the fuel 

film effect. Because of the in-cylinder swirl and lower charge density during the 

earlier injection, the fuel spray has more chance to reach the cylinder wall and form a 

liquid fuel film there, as shown in Figures 3.23 and 3.24. 
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Figure 3.23 The liquid fuel 

distribution 

Figure 3.24 Liquid fuel location against 

radial coordination of CFD model 

3.5.2 Split Injections 

To improve the fuel injection and mixing quality, split injection simulation was then 

carried out. 

First, a simulation was performed to investigate the difference in performance 

between single injection and split injection. The injection timing is shown in Figure 

3.25. When a single injection is used, the injection starts from 240°ATDC and lasts 

for 30°CA. During the split injection operation, fuel is delivered in two injections of 

15°CA duration each. The dwell angle between the two injections is set to 10°CA. 

The initial in-cylinder condition is the same as the single injection operation with an 

initial swirl ratio of 17.93.  
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Figure 3.25 Injection Timing Sequence 

As shown in Figure 3.26, the overall fuel evaporation is improved by the split 

injection. Due to reduced momentum of each injection of shorter duration, there is 

less chance for the liquid fuel to reach the piston, resulting in a more homogeneous 

mixture.  

 

Figure 3.26 Injection Timing Sequence 

Since early injection has more chance to produce the fuel film, the effect of first 

injection quantity has also been studied. As Figure 3.27 shows, the total fuel 

evaporation is improved as the percentage of the first injection is reduced from 50% 

to 20% despite the drop in fuel evaporation rate in the first injection. 
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Figure 3.27 Mass of Evaporated Fuel 

Figures 3.28 and 3.29 show that both the liquid fuel volume and droplet number 

increase as the 1st injection rate increases from 20% to 40%. As the first injection is 

increased to 50%, the liquid fuel volume is still increasing but the droplet number 

decreases sharply due to the presence of bigger droplets.  

  

Figure 3.28 Liquid Fuel Volume Figure 3.29 Liquid Droplet Number 

In conclusion, split fuel injection improves the air/fuel mixing performance by 

increasing the evaporated fuel quantity. However, the higher ratio of fuel delivered by 

the 1st injection may cause less fuel evaporated, when the ratio goes up to 50%, big 

size droplets may appear in the cylinder chamber, and there is higher chance to 

cause higher emission. 

3.6 Summary 

This chapter focuses the CFD simulation of the engine breathing and fuel injection 

process. A 2D base model was initially used to investigate the axis inclination angle 

of intake port. Then a 3D base model is set up and applied to the optimisation of 
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intake port swirl orientation angle and the port number. The injector feature was then 

applied to the model. Finally the fuel injection strategy was investigated and the split 

injection was shown to improve the fuel evaporation and mixture quality. 
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Chapter 4  Prediction of the Uniflow 2-Stroke 

Engine Performance 

4.1 Introduction 

Although 3D CFD simulation is able to provide a wide range of information on engine 

performance on a three-dimensional basis, 1D simulation is still used for engine 

performance prediction because of its advantages of fast computation, high flexibility, 

and adaptability of the model for the complete range of engine operation points. 

For most of the cases in engine research, the 1D simulation code is developed 

precisely for engine performance prediction. The code must be able to provide a fully 

integrated treatment of time-dependent fluid dynamics and thermodynamics by 

means of a one-dimensional formulation which enables performance simulations on 

dynamics of pressure waves, mass flows, and energy losses in ducts, plenums, and 

the manifolds of various systems. 

A 1D thermo-fluid dynamic numerical code has been applied to the modelling of a 

modern four-cylinder, turbocharged Diesel engine [63]. The results of average 

quantities and the pressure pulsations along the ducts, the transient response of the 

engine and the EGR system performance has been analyzed and resulted in 

satisfactory agreement with measured data for every operating point considered, 

showing the good quality of the 1D modelling. Research work has also been 

dedicated to the development and validation of an advanced 1D thermo-fluid 

dynamic model for the simulation of a single cylinder hydrogen SI engine [68]. The 

comparison between measurements and computations of this research work has 

pointed out a satisfactory agreement for most of the operating points considered, 

with a good reliability of the adopted models in the studied range of operating 

conditions and engine configurations. 

The comparison between measurements and computations of this research work 

has pointed out a satisfactory agreement for most of the operating points considered, 

with a good reliability of the adopted models in the studied range of operating 

conditions and engine configurations. 
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The model and simulation environment for the work described in this article is 

RICARDO WaveBuild 8.3.2.  WAVE is the 1D gas dynamics and engine simulation 

software package.  It is a computer-aided engineering code developed to carry out 

simulations based on virtually any intake, combustion and exhaust system 

configuration.  

4.2 1D Engine Model Setup 

WAVE is a 1D gas dynamics and engine simulation software package and is capable 

of analyzing the dynamics of pressure waves, mass flows, and energy losses in 

ducts, plenums, and the manifolds of various systems and machines. It provides a 

fully integrated treatment of time-dependent fluid dynamics and thermodynamics by 

means of a one-dimensional formulation which enables performance simulations to 

be carried out based on virtually any intake, combustion and exhaust system 

configuration [68]. 

Three baseline engine models were created, including a 1.6L naturally aspirated 4-

stroke engine, a 2-stroke 3-cylinder model and a 2-stroke 2-cylinder model 

respectively shown in Figure 4.1. The 4-stroke engine was chosen as the bench 

mark for the other uniflow 2-stroke engines.   
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1.6L 4 –stroke NA engine model 

 

2-stroke 3-cylinder engine model 

Figure 4.1 Baseline 1D engine models 
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2-stroke 2-cylinder engine model 

Figure 4.1 (cont.) Baseline 1D engine models 

Each engine model comprises  

 Inlet environment boundary 

 Intake system 

 Engine body 

 Boost system 

 Exhaust system  

 Outlet environment boundary 

In this case, both inlet and outlet environment is set to be ambient at 1bar pressure 

and temperature of 300K. The initial fluid composition is defined as fresh air. The 

solution type is set to fixed boundary pressure, temperature and composition during 

the simulation. 

For the intake system, a butterfly plate in an orifice is used to represent the throttle 

as shown in Figure 4.2. The orifice bore diameter is 50mm.Butterfly plate shaft 

diameter is 6mm. 
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Figure 4.2 Throttle element structure 

The intercooler system in the intake system is represented by a long pipe work at the 

upstream side of intake manifold. The pressure drop along the pipe work is 

calculated by Equation 4.1  

                                                [E-4.1] 

Where 

   – Pressure drop along the pipe 

   – Velocity at the cell centre 

   – Area at the cell centre 

   – Length of the cell 

  – Resistivity of the absorptive material 

And the heat transfer between the pipe wall and the inner gas is calculated by 

Equation 4.2. 

                                                              [E-4.2] 

Where 

  – Heat transfer between pipe wall and inner gas 

    – Heat transfer multiplier constant 

  – Heat transfer coefficient 
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       – Wall surface area 

      – Wall temperature 

     – Inner gas temperature 

The heat transfer coefficient is calculated by 

  
  

 
        

        
 
                                       [E-4.3] 

Where 

   – Conductivity of the wall 

  – Feature diameter of pipe wall 

   – Reynolds number 

   – Prandtl number 

Engine body element defines the main engine configurations, such as engine bore, 

stroke, cylinder number, firing sequence etc., and governs main calculations on 

performance, such as friction losses calculation, scavenge governing profile 

combustion model and etc. Also the valve lift profile and flow coefficient are defined 

in the engine body element. 

In the 4-stroke engine, the engine breathing model is defined and calculated by the 

flow through the valves.  In the case of  the uniflow 2-stroke model, the gas 

exchange and scavenging processes are defined by the flow coefficient of exhaust 

valves and a pseudo intake valve, and a scavenge profile model.  
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Figure 4.3 Base valve lift profile of uniflow 2-stroke engine model 

As shown in Figure 4.3, the lift profile and timing of the pseudo intake valve is 

specified according to the port geometry and its relative location to the piston. The 

flow coefficient of the gas flow through the valves is calculated as follows, 

 

   
    

                                              [E-4.4] 
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   – Flow coefficient 
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Figure 4.4 Valve flow coefficient of  uniflow 2-stroke model 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Fl
o

w
 C

o
e

ff
ic

ie
n

t 

Lift/Diameter 

Intake Valve Flow Coefficient 

Exhaust Valve Flow Coefficient 



67 
 

     – The effective area of the valve 

  – Valve reference diameter 

  – Valve lift 

By setting the engine and valve configuration to the same as the 3D CFD calculation 

model, the flow coefficient can be calibrated. The flow coefficient calibrated and 

applied in the uniflow 2-stroke engine model is shown in Figure 4.4. 

The scavenge model is based on tracking of residual and fresh mass in the 

cylinder.  At EVO, the entire contents are initialized to residual mass, and as fresh 

charge enters, the incoming mixture is counted as the fresh mass. The scavenge 

model contains a thermal mixing model that assumes that the fresh gas will gradually 

mix with the exhaust gas during the scavenging event.  It is set to heat up the fresh 

gas to the cylinder-average gas temperature as the mass in the fresh zone reaches 

100% of the cylinder contents. The scavenging curve represents the instantaneous 

composition flowing through the exhaust valve as a function of instantaneous in-

cylinder composition. The scavenge curve is shown below in Figure 4.5. BR 

(COMBUSTION CHAMBER) represents the burned mass fraction of the cylinder 

contents, it will be 1.0 after combustion (100% combustion products) and decreases 

toward zero as fresh air enters during the intake process.  BR (EXHAUST STREAM) 

is the instantaneous composition of the flow through the exhaust valve. When the 

composition of the cylinder is 100% combustion products, the exhaust stream must 

also be 100% products.  Likewise, if the cylinder contains 100% fresh air, the 

exhaust stream must also be 100% fresh air.  Therefore, any scavenging curve must 

move from the top right corner (1.0, 1.0) to the lower left corner (0.0, 0.0) of the 

profile.  Between these points, the curve can take any shape. When BR (EXHAUST 

STREAM) is 1.0 according to the scavenging curve, perfect displacement 

scavenging is occurring, fresh air entering the cylinder pushes out exhaust gases, 

while no fresh air leaks out of the cylinder.  When BR (EXHAUST STREAM) is 0.0, 

complete short-circuiting is occurring, any exhaust gas in the cylinder is trapped 

while fresh air blows out the exhaust valve.  When BR (EXHAUST STREAM) equals 

BR (COMBUSTION CHAMBER), a perfectly mixed scavenging is occurring:  the 

exhaust stream has the same composition as the combustion chamber’s average 

contents [68]. 
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Figure 4.5 Scavenge profile 

After the flow coefficient applied, a single cylinder model has been used for a 

simulation with same engine configuration as the 3D CFD model. The gas-exchange 

performance has been compared and validated between 1D and 3D mode. As 

shown in Figure 4.6, there is good agreement between 1D and 3D models. In most 

cases, the differences are less than 5%. The maximum difference of 8.93% appears 

with the trapping efficiency at 2000rpm but the absolute difference is rather small.  

Thus, 1D calculations of gas-exchange and scavenging performance are considered 

to be acceptable.  
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Engine Speed – 1000rpm 

 
Engine Speed – 2000rpm 

 
Engine Speed – 3000rpm 

 
Engine Speed – 4000rpm 

Figure 4.6 Gas-exchange performance of 3D and 1D models 
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The Wiebe function is used to describe the heat release process of 

combustion.  This relationship allows the independent input of function shape 

parameters and of burn duration.  It is based on calculation of the cumulative mass 

of burned fraction [68] 

                
 
   
                                                  [E-4.5] 

Where 

    – Internally calculated parameter to allow     covering the range of 10%-90% 

    – Combustion duration (10%-90%) 

  – Degrees past start of combustion 

    – The exponent in Wiebe function 

Since the calculation of the brake engine output needs to take into account of 

frictional losses, the engine friction model in the 1-D engine simulation model was 

set up and calibrated. Calculation of the frictional losses is based on Flynn-Chen 

model [70], 

         
 

    
                        

            
 
 

    
            [E-4.6] 

Where                     

     – Peak in-cylinder pressure 

                – Constant used to replicate the FMEP values determined by engine 

experiments and then used to calculate FMEP at different load 
and speeds 

The constants,                 in Equation 4.6 were determined based on the 

engine friction data of Mahle I3 DI gasoline engine, which represents one of the most 

advanced boosted DI gasoline engines, because this engine has similar 

configurations with the 2-stroke engine model. In order to determine the constants in 

Flynn-Chen model, a quadratic curve was created according to Equation 4.6, the 

experimental data of the Mahle I3 DI gasoline engine such as engine speed, peak in-

cylinder pressure and etc. were imported, by solving the quadratic functions with 
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experimental data, the constants in Flynn-Chen model were determined. The 

calibration results are shown in Figure 4.7 with values of                 is given in 

0.35bar, 0.005, 10pa.min/m and 6pa.min2/m2 respectively. 

 

Figure 4.7 FMEP calibration of 2-stroke engine model 

4.3 1D Engine Simulation Results 

The fuel mass flow rate of the 1D model was calculated according to the 

stoichiometric air to fuel ratio of 14.7:1. In the spark ignition Wiebe heat release 

model, the combustion duration (10% to 90% mass fraction burned) was set to 

31°CA according to previous simulations. The 50% mass fraction burned angle, 

CA50º, was varied to control the combustion phase. Figure 4.8 shows the timing 

sequence of the 2-stroke cycle operation. The intake port opening and closing are 

represented by IPO and IPC respectively and DIP is the duration of intake ports 

opening. The exhaust valves open at EVO and closes at EVC. DEV is the duration of 

exhaust valves opening period. The period between EVO and IPO defines the blow-

down duration, BDD. Fuel was injected directly into the cylinder after both the intake 

ports and exhaust valves were closed to avoid the fuel short-circuiting. 
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Figure 4.8 The timing sequence of 2-stroke operation 

4.3.1 Effect of Engine Geometry on Performance 

The previous 3D CFD simulation was focused on the engine breathing performance 

optimisation and in-cylinder charge flow structure generation in the single cylinder 

uniflow 2-stroke engine and to be compared with the experimental results.  In order 

to carry out a systematic evaluation of the boosted uniflow 2-stroke engine, 1D 

simulation has been used to optimise the bore and stroke ratio for maximum engine 

performance. 

The first series of 1D engine performance simulation studies were carried out on a 3-

cylinder uniflow 2-stroke engine. The absolute boost pressure was set to 2bar, 

engine speed at 4000rpm and CA50 at 15°ATDC. The intake port opening (IPO) was 

set at 90°ATDC and blow-down duration of 60°CA. 

The engine delivery ratio, trapping efficiency, and charging efficiency is shown in 

Figures 4.9 to 4.11. The long engine stroke results in reduced engine delivery ability 

but higher trapping efficiency because of the longer path of the fresh charge. The 

charging efficiency is a combination of delivery ratio and trapping efficiency. The 

higher the charging efficiency, the more power can be produced from the combustion 

of a larger amount of air/fuel mixture.  Thus, according to the charging efficiency 

results in Fig.4.11, the best performance can be obtained in the engine of a shorter 

stroke and bigger bore. 
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Figure 4.9 Delivery ratio  at IPO – 90°ATDC , BDD – 60°CA 

 

Figure 4.10 Trapping efficiency at IPO – 90°ATDC , BDD – 60°CA 
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Figure 4.11 Charging efficiency at IPO – 90°ATDC , BDD – 60°CA 

As shown in Figure 4.12, at a given stroke of 80mm the highest specific indicated 

power of the 3-cylinder uniflow 2-stroke engine can reach 78kW/L for larger 

bore/stroke ratios. 

 

Figure 4.12 Specific indicated power  at IPO – 90°ATDC , BDD – 60°CA, CA50 

- 15º ATDC 

The results in Figure 4.12 can be explained by the trade-off between the scavenging 

performance and expansion work. For a given bore/stroke ratio and IPO,  the shorter 

stroke results in a  reduced intake port opening period and  the fresh charge mass 
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flow rate is insufficient to scavenge the residual gas out of the cylinder, which leads 

to a relatively low charging efficiency and hence lower power. Conversely, a longer 

stroke extends the intake opening period and improves the gas-exchange 

performance. However, with a long intake port opening duration and blow-down 

duration, the effective expansion stroke is reduced, thus the output power is limited 

with longer stroke. Therefore, the highest power output is achieved at an 

intermediate stroke of 80mm.  

The combustion phase also has an effect on engine output power. The results 

shown in Fig.4.12 were obtained with   CA50 set to 15º ATDC. When the CA50 was 

advanced to 5º ATDC (Fig.4.13), the best performance zone was shifted up to an 

area of longer stroke around 80mm and the bore/stroke ratio of the best performance 

zone was extended. But the engine peak specific indicated power remained the 

same. 

 

Figure 4.13 Specific indicated power  at IPO – 90°ATDC , BDD – 60°CA, CA50 

- 5º ATDC 

In order to reach the same power output as the 1.6L 4-stroke baseline engine, a 

higher boost pressure than 2bar would be required. As shown in Fig.4.14, when 

the boost pressure was increased to 3bar, the peak specific indicated power could 

reach 121kW/L.
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Figure 4.14 Specific indicated power  at IPO – 90°ATDC , BDD – 60°CA, CA50 

- 5º ATDC 

4.3.2 Effect of the Blow-down Duration 

The intake port timing is determined by the intake port location in a uniflow 2-stroke 

engine.  For a given intake port design, the intake port timing is fixed. The exhaust 

valves are driven by a camshaft and can be altered through a variable valve timing 

device. The optimised exhaust valve timing is a compromise between the gas-

exchanging performance and output power. With a longer blow-down duration and 

hence less air short-circuiting, a higher trapping efficiency can be achieved. However, 

for a fixed IPO timing, longer blowdown duration means the exhaust valves need to 

be opened earlier, resulting in less expansion work and output power.  

Figures 4.15 to 4.17 show the specific indicated power maps with intake port 

openings at 110°ATDC, 120° ATDC, and 130° ATDC, respectively.   The CA50 was 

set to 5º ATDC and the intake pressure at 3bar. In light of the higher boost pressure 

applied, the blow-down duration was reduced from 60°CA to 40°CA for greater 

expansion work.  
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Figure 4.15 Intake port opening - 110°ATDC 

 

Figure 4.16 Intake port opening – 120°ATDC 
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Figure 4.17 Intake port opening - 130°ATDC 

It can be seen that the maximum specific indicated power can reach 170kW/L. In the 

case of IPO at 110°ATDC, the best output performance was achieved with a higher 

bore/stroke ratio and shorter stroke. As the IPO was retarded to 120°ATDC, the high 

performance range was extended further, because of the increased effective 

expansion stroke. When the IPO timing was retarded further to 130°ATDC, the 

specific indicated power became lower because of the shorter intake port opening 

duration and hence reduced intake charge mass flow rate.  

As the specific indicated power was increased, the corresponding in-cylinder peak 

pressure became very high. To reduce the peak pressure, the combustion phase 

was retarded by changing CA50 from 5°ATDC to 15°ATDC. IPO timing was kept at 

120°ATDC and blow-down duration of 40°CA. As shown in Figure 4.18, the peak 

pressure was reduced by 25% with the retarded combustion phasing. As shown in 

Figure 4.19, the peak cylinder pressure was below 120bar when the specific 

indicated power was over 160kW/L. 
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CA50 at 5°CA 

 

CA50 at 15°CA 

Figure 4.18 In-Cylinder Peak Pressure 
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Figure 4.19 Specific indicated  power output at 4000rpm, 3 bar boost, and 

CA50 at 15 CA ATDC 

Figure 4.20 shows the effect of the blow-down duration on the brake specific power 

output at different engine speeds.  

 

Figure 4.20 Effect of blowdown duration on specific brake power output with 

3 bar boost 

At lower engine speeds, as the blowdown duration decreased, the brake specific 

power increased. However, for engine speeds above 3000rpm, the brake specific 
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power increased initially with shorter blowdown duration and then decreased as the 

blowdown duration became less than 50º CAs. Maximum power output was reached 

when a balance between the trapping efficiency and charge efficiency was reached. 

Therefore, it would be desirable that a variable valve timing device can be used to 

alter the exhaust valve timing for different engine operating conditions.  

4.3.3 Engine Packaging 

The target of this research work is to evaluate the potential of the uniflow 2-stroke 

engine to replace a bigger 4-stroke engine in a passenger car. Therefore it is 

necessary to consider the dimension of the uniflow 2-stroke engine in the context of 

the vehicle packaging requirement. 

A typical practical engine packaging restriction in a VW Golf sized vehicle is shown 

in Figure 4.21. As shown in figure 4.21, another vertical length will be added to 

engine block, because of the valve driven system. And the above simulation shows 

the best engine output performance can be achieved with 80mm engine stroke. 

However, with 80mm engine stroke, the overall engine height including the valve 

driven system (198mm) will be 438mm, which will exceed the restriction by 36mm. 

By reducing the engine stroke down to 67mm, the engine overall height will be 

brought down to 406mm, which is only 4mm more than the engine restriction and is 

deemed acceptable. 
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Figure 4.21 Vehicle application packaging restrictions 

 

Figure 4.22 Engine size determination 

Taking into account of the engine packaging requirement and the cylinder head 

space required for centrally mounted injector and spark with 4 exhaust valves, it is 

decided that each cylinder will have a bore and stroke of 76mm x 67mm, giving a 

displacement volume of 0.3L, as indicated by the red dot. Therefore, a 3-cylinder 

uniflow 2-stroke engine of 0.9 litre capacity will be able to produce more than 150kW 
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indicated power at 4000rpm with the intake port opening set to 120°ATDC, much 

greater than the 1.6 litre 4-stroke engine. 

4.4 Summary 

3D CFD simulation has been used for the optimisation of the engine breathing 

process through the intake port design.   In addition, the 3D CFD flow results were 

used to provide the intake flow data for the subsequent 1D calculations. In order to 

determine the frictional losses, the Flynn-Chen model was adopted to calculate the 

engine FMEP and the coefficients in the model were determined from a state-of-art 

gasoline engine. 

Based on the 1D simulation result and engine packaging requirements, a 3-cylinder 

uniflow 2-stroke engine of 0.9 litre capacity and a 2-cylinder version of 0.6L capacity 

were selected for the subsequent vehicle simulations.  The engine has a bore of 

76mm and stroke of 67mm. The intake port opening time is set to 120ºATDC and the 

intake port closing time is set to 240ºATDC. The exhaust valve opening and closing 

time are 80ºATDC and 240ºATDC respectively.     
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Chapter 5  Optimisation of the Boost System for 

the Uniflow 2-Stroke Engine 

5.1 Introduction 

In Chapter 4, potential performance of the boosted uniflow scavenged direct injection 

gasoline (BUSDIG) 2-stroke engine was predicted for different stroke and bore 

combinations. The intake air was boosted to achieve the target torque and power 

output, limited by the maximum in-cylinder pressure of 120bar. In this chapter, the 

boost system and engine interactions were examined to determine the appropriate 

boosting arrangement for maximum performance and minimum fuel consumption. 

Then, the vehicle driving cycle analysis is carried out to determine the fuel economy 

benefit of the optimised BUSDIG engine system.  

5.2 Modelling of the Boosted Engine and Vehicle Simulation 

Model 

The boost system comprises a turbocharger and/or a supercharger. The 

supercharger is defined by a single performance map whilst the turbocharger 

performance is determined by both the turbine and compressor performance maps, 

which are characterised by the mass flow, pressure ratio, rotational speed and 

efficiency. The physic model assumes that the flow in the boost system elements  

behave in a quasi-steady manner and calculates the mass flow and enthalpy rise 

across the elements as well as the torque produced by the elements or used to 

driven the elements by interpolating a lookup map of steady state performance 

behaviour. 

Four basic parameters are required to define the maps: dimensionless speed, 

dimensionless mass flow, dimensionless torque coefficient and blade speed ratio. 

The parameters are defined as follow [71], 
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                                         [E-5.2] 

   
 

      
                                         [E-5.3] 

     
       

            
  

  
  

   
  
 

                                        [E-5.4] 

Where 

   – Dimensionless speed 

    – Dimensionless mass flow 

   – Dimensionless torque coefficient 

     – Blade speed ratio 

   – Rotational speed 

     – Reference diameter 

   – Gas constant 

  – Mass flow 

   – Inlet temperature 

   – Inlet pressure 

  – Shaft torque 

   – Specific heat of the gas 

  – Special heat capacity ratio 

During the calculation, the pressure ratio, dimensionless speed and blade speed 

ratio are calculated first and then used to interpolate the dimensionless mass flow 

and torque coefficients and efficiency from the maps.  The dimensionless mass flow 

and torque coefficients can then be used to calculate the instantaneous mass flow, 
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torque, and the enthalpy rise of the compressor.  The turbine power generated or 

compressor work consumed is calculated as follows, 

 

             
   

                                             [E-5.5] 

   
    

 
   

   
                                               [E-5.6] 

Where 

   – Power generated by the turbine 

   – Power consumed by the compressor 

  – Isentropic efficiency of an element 

   – Pressure Ratio 

When the operating point of the elements is beyond the boundaries of the map, 

extrapolation is applied, as shown in Figure 5.1. 

 

  

Figure 5.1 Boost elements map extrapolation 

The calculation results of boosted engine models were then exported to a vehicle 

model to carry out calculations based on new European driving cycle (NEDC). The 

baseline vehicle model parameters are shown in Table 5.1 based on a VW Golf. 

The vehicle drag force       in the vehicle model can be calculated as follows, 
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                                                 [E-5.7] 

Where 

       – Aerodynamic drag coefficient 

   – Air density 

   – Vehicle speed relative to air 

         – Vehicle frontal area 

Table 5.1 Baseline vehicle parameters 

Vehicle data 

 Units Value 

Vehicle mass kg 1157 

Passenger and cargo mass kg 100 

Frontal area m2 2.3 

Aerodynamic drag coefficient  0.3 

Tyre data 

 Units Value 

Tyre rolling resistance  0.015 

Tyre rolling radius m 0.3 
 

The tyre rolling resistance force is calculated as follows, 

                                                                  [E-5.8] 

Where 

       – Tyre rolling resistance factor 

      – Vehicle mass 

       – Passenger and cargo mass 

   – Gravitational 

The rotation inertia of the elements set up is shown in Table 5.2. 
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Table 5.2 Rotation elements inertia 

Tyre axle  0.13 kg•m2 

Differential input side 0.01 kg•m2 

Differential output side 0.01 kg•m2 

Drive shaft 0.01 kg•m2 

Gearbox input inertia 0.05 kg•m2 

Gearbox output inertia 0.05 kg•m2 

 

The results of power, torque and fuel consumption of the engine model then were 

transferred to the vehicle calculation model, the fuel consumption calculation based 

on the new Europe drive-cycle was carried out to investigate the in-vehicle engine 

fuel economy performance. The imposed vehicle speed and corresponding gear 

engaged is shown in Figure 5.2. 
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Imposed vehicle speed  

 

Imposed gear engaged 

Figure 5.2 The new Europe drive-cycle (NEDC) conditions 

5.3 Analysis of Boosted uniflow 2-stroke engine operations  

In order to set a reference to the optimisation calculation of boosted engine model, a 

baseline 4-stroke engine of 1.6L capacity was set up. The valve lift and timing are as 

shown in Figure 5.3. As shown in Figure 5.4, the CA50 was set to 5ºCA ATDC at this 

stage and the combustion duration was 30ºCA.  
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Figure 5.5 shows the predicted full load performance curves of the baseline 4-stroke 

engine model. The baseline 4-stroke engine delivers its maximum brake power of 

79kW at 6000rpm and maximum brake torque of 140Nm at 5000rpm engine speed.  

 

Figure 5.3 Valve timing and lift of 4-stroke baseline model 

 

Figure 5.4 Combustion phase of the 4-stroke engine model 
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Figure 5.5 Baseline engine model performance curve 

5.3.1 2-stroke engine model set up 

The first boosted 2-stroke engine modelled is a 0.9L 3-cylinder engine with a single 

supercharger. Subsequently, a turbocharged version of the 2-stroke engine is 

modelled. Figure 5.6 shows the 1D calculation base model layout with supercharger 

and turbocharger. Compared to the 4-stroke NA model, the engine’s capacity is 

downsized by 44%. The engine has a bore of 76mm and a stroke of 67mm as 

determined before. The air/fuel ratio was regulated by the injector element in the 

model and was set to 14.7/1 of mass for the trapped air/fuel ratio. The restriction of 

120bar peak in-cylinder pressure was applied. The ambient boundary was set at 

pressure of 1bar and temperature of 300K. 
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Model with supercharger 

 

Model with turbocharger 

Figure 5.6 2-stroke 1D calculation base model layout 
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The supercharger, Eaton R200GT or R410GT, and the turbocharger used to boost 

the Mahle I3 engine was chosen as the boost elements for engine models, it is 

because Mahle I3 engine has similar engine configuration and capacity to the 2-

stroke engine model. To fit the mass flow through the 2-stroke engine model, the 

performance maps of the turbocharger have been rescaled. The mass flow rate of 

the turbine TD04L4-F5 is expanded by 125% and the mass flow rate of the 

compressor TF035-13TK3S shrunk by 65%. The performance maps of those boost 

elements are shown in Figure 5.7 to Figure 5.10. 

 

Figure 5.7 Eaton R200GT performance map 
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Figure 5.8 Eaton R410GT performance map 

 

Figure 5.9 Rescaled turbine performance map 
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Figure 5.10 Rescaled compressor performance map 

5.3.2 Prediction of Boosted uniflow 2-stroke engine full-load performance 

In the case of supercharged engine operations, the supercharger is driven by the 

crankshaft directly under a specified gear ratio. Figure 5.11 shows the maximum 

brake power predicted of the 2-stroke engine boosted by R200GT with various gear 

ratios. The results reveal that as the gear ratio is increased from 4 to 7, the engine 

output reaches a maximum power of 56kW at 4000rpm. Further increase in the gear 

ratio leads to a drop in the brake power output. As shown in Figure 5.12, the flow 

rate of the supercharger R200GT reaches the high flow rate end boundary with gear 

ratio 7 and  cannot be increased further with higher gear ratios, limiting the amount 

of fuel to be burned and hence the resulting mechanical work that can be produced 

by combustion. In the meantime, the increase in the power used to drive the 

supercharger at a higher gear ratio will reduce the net power output of the engine. 

Thus, the combination of limited engine power output and increasing power required 

to drive the supercharger causes the brake power output to drop beyond a gear ratio 

of 7.  
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Figure 5.11 Full load brake power of engine model with R200GT 

supercharger at 4000rpm engine speed. 

 

Figure 5.12 R200GT supercharger working points at engine full load at 4000 

rpm engine speed 
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Figure 5.13 Power consumption by a R200GT supercharger and the 

proportion to the engine indicated power at 4000rpm full load 

operation 

In order to increase the target output engine power, R410GT is then used. The 

maximum mass flow rate of R410GT is 650kg/hr, nearly 300kg/hr higher than 

R200GT.  

 

Figure 5.14 Full load brake power of engine model with a R410GT 

supercharger at 4000rpm engine speed. 
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Figure 5.15 R410GT supercharger working points at engine full load at 4000 

rpm engine speed 

 

Figure 5.16 Power consumption by R410GT supercharger and the proportion 

to the engine indicated power at 4000rpm full load condition 
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As shown in Figure 5.14, the brake power reaches a maximum value of 84kW with a 

gear ratio 6. Figure 5.15 shows the working points of R410GT at 4000rpm engine 

speed and full engine load. Similar to the supercharger R200GT, when the gear ratio 

is increased higher than 7, the compressor is restricted by the maximum mass flow 

boundary and the power consumption by the supercharger can go up to nearly 40% 

of the engine indicated power, as shown in Figure 5.16. Therefore, gear ratio 6 

shows the best compromise between the engine power output and the power 

consumption by the supercharger. 

As shown above, the supercharger consumed a large proportion of indicated power, 

which leads to a poor engine overall efficiency. The turbocharger is driven by the 

exhaust gas, theoretically, no power drained directly from the engine output, thus the 

engine overall efficiency is higher, so is the engine brake power and torque. 

Figure 5.17 shows the working point of the rescaled supercharger and turbocharger. 

As described previously, the performance map of the turbine used was TD04L4-F5, 

to fit the engine condition, the mass flow range was expanded by 125% and the 

mass flow range of the compressor TF035-13TK3S shrunk by 65%. With the 

rescaled compressor and turbocharger, the engine flow fits the elements’ high 

efficiency range. 
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Working points of the compressor 

 

Working points of the turbine 

Figure 5.17 Working points of the compressor and turbine of the model 
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With the rescaled turbine and compressor, the maximum boost pressure was still not 

higher than 3bar. The full load power and torque curves are shown in Figure 5.18. 

The peak power reached 105kW at 4000rpm engine speed. Meanwhile the peak 

torque reached 296Nm at 2000rpm, and keeps higher than 250Nm from 2000rpm to 

4000 rpm. 

 

Figure 5.18 Full load power and torque curves of the turbocharged model 

Figure 5.19 shows the full load brake power and torque curves of the baseline 4-

stroke engine and boosted 2-stroke engine operations. The R200GT supercharged 

2-stroke engine can match the torque output of the baseline 4-stroke engine up to 

4000rpm but its maximum power is insufficient. With R410GT, the supercharged 

uniflow 2-stroke engine can produce the same maximum power at 4000rpm as the 

baseline 4-stroke engine at 6000rpm, and it is characterised with superior torque 

output across the whole speed range of the 2-stroke engine operations. With the 

rescaled turbocharger, both the engine power and torque target were substantially 

exceeded. Actually, when it is equipped with the rescaled turbocharger, the uniflow 

2-stroke engine exhibits extremely high torque and the target maximum power can 

be reached at 2500rpm, which suggests that further downsizing of the 2-stroke 

engine from 3-cylinder to 2-cylinder is a viable option.  
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Brake Power Brake Torque 

Figure 5.19 Full load brake power and torque curves of  all engines 

5.3.3 Analysis of boosted uniflow 2-stroke engine operations  

In order to compare the performance of all the engines modelled, some engine 

operating conditions were chosen. The first engine operation point is the high speed 

and high load operation of 4000rpm engine speed and 55kW brake power. As shown 

in Figure 5.20, the 4-stroke NA engine has the highest charging efficiency despite 

the boosted operation of all 2-stroke engines. Among the 2-stroke engine 

configurations, the turbocharged operation exhibits the lowest charging efficiency 

due to the higher back pressure in the exhaust manifold. 
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Figure 5.20 Charging efficiency of baseline 4-stroke and boosted 2-stroke 

engines 

Figure 5.21 shows the corresponding IMEP values of the baseline 4-stroke and 

boosted uniflow 2-stroke engines. For a given power and torque output at the same 

engine speed, the IMEP value of the 2-stroke engine operation is theoretically halved. 

But the results in Figure 5.21 are significantly different from the theoretical values 

because of the lower charging and trapping efficiency of the 2-stroke scavenging 

process than the 4-stroke gas exchange as well as their smaller displacement 

volume than the baseline engine. The higher power consumption by R410GT 

requires more IMEP to be produced for the same brake power and torque output, 

and hence the highest boost pressure as shown in Figure 5.22.  Since it is the 

pressure ratio between the intake and exhaust which determines the charging and 

trapping efficiencies, higher exhaust back pressure are shown by the turbocharger. 

As a consequence, the turbocharged operation leads to higher residual gas fraction 

as shown in Figure 5.23.  
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Figure 5.21 IMEP values at 4000rpm and 55kW 

 

Figure 5.22 Intake and exhaust pressures at 4000rpm and 55kW 
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Figure 5.23 Residual Gas Fraction at 4000rpm and 55kW 

Figure 5.24 shows the breakdown analysis of engine output and losses of work. For 

the 4-stroke baseline engine, 81.5% of indicated work is converted into the brake 

work at the crank shaft output.  The turbocharged 2-stroke operation has the highest 

mechanical efficiency of 84% much higher than the supercharged 2-stroke 

operations, due to the absence of power consumption by a supercharger.  

As shown in Figure 5.25, the turbocharged 2-stroke engine shows the same specific 

fuel consumption rate as the baseline 4-stroke engine. The 2-stroke engine with the 

larger supercharger has the highest fuel consumption.  
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Figure 5.24 Engine output breakdown analysis at 4000rpm and 55kW 

 

Figure 5.25 BSFC at 4000rpm and 55kW 

The high speed and medium load at 4000rpm and 35kW is the second operating 

point chosen for comparison. As shown in Figure 5.26 to Figure 5.29, the same 

relative performances at this operating condition are observed for the engine 

charging efficiency, IMEP, intake and exhaust pressure and BSFC results as the 

high load operation.   
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Figure 5.26 Charging efficiency at 4000rpm and 35kW 

 

 Figure 5.27 IMEP at 4000rpm and 35kW 
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Figure 5.28 Intake and exhaust pressures at 4000rpm and 35kW 

 

Figure 5.29 Residual Gas Fraction at 4000rpm and 35kW 

However, as shown in Figure 5.30, the percentage of supercharger power increased 

significantly as the load was decreased. In the case of R410GT, 61.8% indicated 

power is used to drive the supercharger, resulting in the highest fuel consumption. 

According to Figure 5.31, the baseline 4-stroke engine and the turbocharged 2-

stroke engine exhibit 10% increase in BSFC. In comparison, the two supercharged 
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Figure 5.30  Engine output breakdown analysis at 4000rpm and 35kW 

 

Figure 5.31 BSFC at 4000rpm and 35kW 

When the load is reduced to 10kW at 4000rpm, engine efficiencies drop further. As 

Figure 5.32 shows, about 40% work is lost to friction in both the baseline 4-stroke 

engine and the turbocharged 2-stroke engine as the indicated power becomes less. 

In addition, the baseline 4-stroke engine incurs an additional 13.2% pumping losses. 

In the case of supercharged engine operations, most of the engine work is used to 

drive the supercharger, up to 74% with R410GT. A direct result is the fuel 

consumption increases to a very high level as shown in Figure 5.33. 
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Figure 5.32 Engine output breakdown analysis at 4000rpm and 10kW 

 

Figure 5.33 BSFC at 4000rpm and 10kW 

Figure 5.34 to Figure 5.38 show the engine output breakdown analysis at 2000rpm 

and 1000rpm and various loads. Similar to the results at 4000rpm engine speed, the 

turbocharged 2-stroke engine shows similar mechanical efficiencies to the baseline 

4-stroke engine, whilst the supercharged engines have to take high proportion of   

engine output to drive the supercharger. In addition, it is noted that the baseline 4-

stroke engine is characterised with higher pumping losses at lower load than the 

turbocharged 2-stroke engine.  
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Figure 5.34 Engine output breakdown analysis at 2000rpm, 20kW 

 

Figure 5.35 Engine output breakdown analysis at 2000rpm, 10kW 
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Figure 5.36 Engine output breakdown analysis at 2000rpm, 6kW 

 

Figure 5.37 Engine output breakdown analysis at 1000rpm, 10kW 
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Figure 5.38 Engine output breakdown analysis at 1000rpm, 5kW 

At the same engine speed and load, as shown in Figure 5.39, supercharged 2-stroke 

engines incur much higher fuel consumption especially at part load and low load 

conditions. 

 

Figure 5.39 BSFC comparisons at the same speed and load conditions 

between 4-stroke engine and 2-stroke engines 
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downspeeding. Equation 5.9 shows the relationship between engine speed, power 

and torque,  

                                                [E-5.9] 

Where 

   – Engine power 

    – Engine speed 

    – Engine Torque 

Thus, for the same engine power required to drive a vehicle, the engine operating 

points can be shifted to higher torque and lower engine speed when the 2-stroke 

engines are used.  

 

Figure 5.40 BSFC at various engine speed and load. 

Figure 5.40 compares the BSFC values of the baseline 4-stroke engine operating at 

one and half times of the 2-stroke engines; i.e., 4-stroke 6000rpm vs. 2-stroke 

4000rpm, 4-stroke 3000rpm vs. 2-stroke 2000rpm, and 4-stroke 1500rpm vs. 2-

stroke 1000rpm. The results reveal that the lower fuel consumption can be obtained 

with the turbocharged 2-stroke engine operations than the baseline 4-stroke engine.  
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Furthermore, the 0.9litre turbocharged 3-cylinder 2-stroke engine model has been 

shown to produce excess power and torque than the targeted maximum 

performance of the baseline 4-stroke model. Thus, further downsizing of the 

turbocharged 2-stroke engine can be exploited to reduce the engine fuel 

consumption by reducing the engine to 0.6L capacity with two cylinders. The added 

benefit of the 2-cylinder vs. 3-cylinder is the removal of interference in the exhaust 

flows during the scavenging periods of adjacent cylinder when the exhaust duration 

has to be over 120ºCA.  

Figure 5.41 shows the full load brake power and torque curves of the baseline 4-

stroke engine, turbocharged 3-cylinder (0.9 litre) and 2-cylinder (0.6 litres) 2-stroke 

engines. Although the power and load delivered by the 0.6L 2-stroke engine are 

lower than the 0.9L 2-stroke engine, they are still higher than the baseline engine 

and meet the vehicle’s performance requirement. 

 
 

Brake Power Brake Torque 

Figure 5.41 Full load brake power and torque of turbocharged 2-stroke 

engines 

Figure 5.42 shows that  at the same engine speed and power, 0.6L turbocharged 2-

stroke engine shows better fuel consumption than the 0.9L 2-stroke model but is still 
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poorer than the 4-stroke baseline engine at most of the points. However, Figure 5.43 

shows that 0.6L 2-stroke engine shows the best fuel economy at most of the points 

when the downspeeding is employed. 

 

Figure 5.42 BSFC of the baseline 4-stroke and turbocharged 2-stroke 

engines at the same speed and power 

 

Figure 5.43 BSFC of the baseline 4-stroke and downspeeded 2-stroke 

engines  
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Figure 5.44 plots the corresponding BSFC maps of the three engines as a function of 

speed and load. In order to take into account of the downspeeding potential of the 2-

stroke operations, Figure 5.45 includes the revised BSFC map of the 4-stroke engine 

which is rescaled to the speed range up to 4000rpm according to Equation 5.9. For 

example, the 6000rpm and 75Nm point with 47.7kW brake power of the 4-stroke 

model in Figure 5.44 is now shown as 4000rpm and 107.5Nm with same brake 

power in Figure 5.45.  

 

Figure 5.44 BSFC contours of the 4-stroke and turbocharged 2-stroke 

engines 
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Figure 5.45 BSFC contours of the turbocharged 2-stroke engines and the 

rescaled BSFC map of the baseline 4-stroke engine   

According to Figure 5.44, without considering the downspeeding method, both 2-

stroke engines show poorer fuel economy than the baseline 4-stroke engine apart 

from the low load area. However, when considering the down speeding strategy, 

both 2-stroke engines’ fuel economy surpasses the baseline engine. The 0.6L 2-

cylinder turbocharged 2-stroke engine shows the lowest fuel consumption as shown 

in Figure 5.45. 

5.3.4 2 Vehicle simulation results based on New European Driving Cycle 

(NEDC) 

Data obtained from the engine simulation were imported to the vehicle calculation 

model mentioned in Section 5.2. The vehicle simulation was carried out with 3 sets 

of gear configurations as shown in Table 5.3. It should be mentioned that the engine 

weight has been assumed the same for all three engines. In practice, noticeable 
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weight reduction from the 4-cylinder 4-stroke engine to the 2-cylinder turbocharged 

2-stroke engine will be envisaged, which could benefit the vehicle’s fuel economy. 

Table 5.3  Transmission gear ratio 

Gear Ratio Setup Gear Mechanical Efficiency SET1 SET2 SET3 

Number of gears  5 5 5 

1st Gear ratio 0.95 5.4 3.6 2.4 

2nd Gear ratio 0.96 3 2 1.33 

3rd Gear ratio 0.97 2.025 1.35 0.9 

4th Gear ratio 0.98 1.5 1 0.67 

5th Gear ratio 0.97 1.2 0.8 0.53 
 

Figure 5.46 shows the engine operating points during the vehicle’s NEDC calculation, 

together with the full load torque curves of the baseline 1.6L 4-cylinder 4-stroke 

engine, 0.9L 3-cylinder and 0.6L 2-cylinder turbocharged 2-stroke engines. With gear 

set1, all engine operating points are covered for each of the three engines. 

 

Figure 5.46 Engine operating points with gear set1 during NEDC and engine 

full load torque curves 

Figure 5.47 and Figure 5.48 show the engine operating points and the full load 

curves of the engines with transmission gear set2 and set3, respectively. With down-

speeded gear set2, some of the high load engine points cannot be covered by the 4-
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stroke engine. This indicates that the gear set2 is beyond the down speeding 

boundary of the 4-stroke engine. With gear set3, the engine operating points are 

approaching the torque limit of the large 2-stroke engine whilst a significant 

proportion of engine working points is out of the area covered by the baseline 4-

stroke engine. 

 

Figure 5.47 Engine operating points with gear set2 during NEDC and engine 

full load torque curves 
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Figure 5.48 Engine operating points with gear set3 during NEDC and engine 

full load torque curves 

Figure 5.49 shows the average fuel consumptions of all three engines with the 3 

gear sets during NEDC. The downspeeding strategy improves the fuel consumption 

performance on all engines. However, because of their superior low speed torque, 

the turbocharged 2-stroke engines have wider torque margin than the 4-stroke 

engine and hence they can be down-speeded for better vehicle fuel economy. It can 

be seen that the 0.6L 2-cylinder turbocharged 2-stroke engine with gear set3 delivers 

6.91L/Km fuel consumption during NEDC, which improves the fuel consumption by 

23.6% over the baseline 4-stroke engine.  
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Figure 5.49 Average fuel consumption over NEDC 

5.4 Summary 

This chapter focuses on the 1D simulation of the engine performance and vehicle 

fuel consumption simulations of three engines. They are the 1.6L 4-cylinder 4-stroke 

NA engine as the baseline, a 0.9L 3-cylinder 2-stroke engine and a 0.6L 2-cylinder 2-

stroke engine with a supercharger or a turbocharger. 

All simulations are focused upon engine steady state, the transient performance has 

not been investigated. Because a high proportion of the engine output is used to 

drive the supercharger, supercharged engines cannot meet the output target without 

fuel economy penalties. Compare to a supercharger, a turbocharger is driven by the 

exhaust energy that would otherwise be lost. The turbocharged 2-stroke engines 

outperform the supercharged operations in both torque output and fuel consumptions, 

though it increases the exhaust back pressure and the residual gas fraction in the 

cylinder. 

Because of its superior low speed torque, the turbocharged 2-stroke engine can be 

operated at lower speeds with a lower gear ratio to maximize the downspeeding 

potential. Combining downsizing and downspeeding, the 0.6L  2-cylinder 

turbocharged 2-stroke engine delivers 23.6% less fuel consumption compared to the 

baseline model without penalizing the engine power and torque output.
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Chapter 6 Single Cylinder Uniflow 2-stroke 

Engine and Experimental Facility 

6.1 Introduction 

In order to verify the simulation results and carry out preliminary experimental 

investigation of the newly proposed Boosted Uniflow Scavenged Direct Injection 

Gasoline (BUSDIG) engine concept, a single cylinder engine was modified to 

operate as a uniflow 2-stroke direct injection gasoline engine. In this chapter, the 

design and implementation of the modified engine is described in detail.  

6.2 Uniflow 2-stroke engine setup 

Figure 6.1 shows the layout of the newly designed engine assembly for the uniflow 

2-stroke operation. A single cylinder Ricardo Hydra optical engine with a bespoke 

four-valve DI gasoline cylinder head is used as the base engine. The engine is 

mounted on a dedicated single cylinder engine test bed with integrated coolant and 

oil cooling modules. The engine is driven by a McClure DC dynamometer with a 

maximum speed of 6000rpm. The dynamometer is controlled by a separate control 

console with a < ±5 rpm accuracy. 

The original cylinder head is mounted above a glass ring.  Beneath the glass ring, 

there is a newly designed intake block assembly consisting of an intake channel 

block  (in Green) with embedded intake channels, an intake port block  (in Blue) with 

embedded intake ports on a specified orientation, and a new cylinder liner with holes 

cut and aligned to the intake ports. The original engine extension block (in Brown) 

and elongated piston with a crown window is designed to accommodate a 45º mirror 

for in-cylinder optical access. A new longer timing belt is installed to drive both 

camshafts with 2 tensioners. Details of the engine geometry are given in Table 6.1. 

Further CAD drawings can be found in Appendix. 
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Figure 6.1 Uniflow 2-Stroke Single Cylinder Engine assembly layout 
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Table 6.1 Engine configuration 

Combustion chamber Pent-roof 

Displaced volume 450 cc 

Bore 80 mm 

Stroke 89 mm 

Compression Ratio 8:1 to 12:1 

Inlet valves diameters 29.5mm 

Exhaust valves diameters 21mm 

Valve lift 9mm 

Valve opening duration 110ºCA 

 

6.2.1 Cylinder Head 

The cylinder head used for the experimental engine is a bespoke single cylinder 

head machined from a single aluminium block by Orbital Engine Corporation Ltd. It 

features a pentroof combustion chamber, a centrally located injector fitting hole and 

a spark plug, as shown in Figure 6.2. Two independent camshafts actuate the two 

intake valves and two exhaust valves. For the uniflow 2-stroke operation, all 4-valves 

are used as exhaust valves. Since each camshaft is designed to produce a valve 

opening period of 110ºCA, the exhaust period can be varied between 110ºCA to 

220ºCA by adjusting the relative cam phasing. A pressure transducer is installed on 

the cylinder head. In order to replace the air assisted injector with the piezo DI 

injector, an adaptor was designed for the injector to fit the injector mounting slot. This 

adaptor was designed for multiple injector usage. When another injector is required, 

no more modification was required in the cylinder head, but only fitting the adaptor to 

the injector. 
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Figure 6.2 Cylinder head layout 

6.2.2 Optical window ring 

The optical window ring is shown in Figure 6.3. The window ring is made of fused 

silica and can withstand up to 50bar pressure. The ring sits into a seat with 3mm 

depth grove. High temperature gaskets of 1.5mm are placed on both sides of the 

glass ring to protect it from direct contact with the metal surfaces and provide the 

sealing. The glass ring is mounted between the cylinder head and cylinder block by 

means of 4 ring spacers positioned by the long cylinder head bolts and matched in 

their height to that of the glass window plus the thickness of the gaskets below and 

above the glass ring. 
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Figure 6.3 Optical window ring 

6.2.3 Cylinder liner 

The baseline 4-stroke Ricardo Hydra optical engine was designed with an extension 

block to accommodate the elongated hollow piston for in-cylinder optical access 

through the piston crown window via a 45 degree mirror mounted in the block. This 

extension block was machined with an integrated cylinder liner. As shown in Figure 

6.1, a new intake block is to be mounted above this original extension block and the 

piston will need to travel inside both the new intake block and the original extension 

block. In order to prevent piston rings from damage when moving across the 

interface of these two blocks, a new longer liner was sourced from Mahler and 

installed through both blocks.  

As shown in Figure 6.4, the new one-piece cylinder liner was machined with six 

windows in the top part, with three on opposite sides, which are aligned to the intake 

ports in the intake port block.  
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Figure 6.4 New Cylinder Liner 

6.2.4 Intake port block and intake channel block 

The intake port block and intake channel block are required to allow the boosted air 

into the combustion chamber. By having separate blocks, the geometry of the intake 

ports can be altered with different intake port blocks in order to study the effect of 

intake port design on in-cylinder flow and scavenging process. The intake port block 

and intake channel block layout is shown in Figure 6.5. Along the interface between 

the cylinder liner and intake port block, and also along the interface between the 

intake channel block and intake port block, two O-ring groves are machined for high 

temperature O-rings on both top and bottom sides to seal the intake path. 
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Figure 6.5 Intake port block and intake channel block layout 

As shown in Figure 6.6, the intake port block is designed to provide the intake ports 

of appropriate geometry according to the 3D CFD simulation studies. As discussed 

in Chapter3, the intake ports affect the engine breathing performance directly, and 

the orientation of intake ports also affect the in-cylinder flow swirl generating ability. 

The 3D CFD simulation results suggested that the intake ports with 60º axis 

inclination angle and 20º swirl orientation angle gave the best performance. The exit 

of intake ports in the intake port block is aligned to the ports in the cylinder liner. 
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Figure 6.6 Intake port block configuration 

Figure 6.7 shows the design of the intake channel block which connects the boosted 

intake air to the intake ports. The block features two channels on each side of the 

block and each channel is aligned to the 3 ports on one side of the intake port block. 

 

Figure 6.7 Intake channel block configuration 

6.2.5 Piston assembly 

As shown in Figure 6.8, the piston assembly consists of a top piston part with a flat 

optical window, a piston spacer and a piston extension part. 
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Figure 6.8 Piston assembly 

The piston window is made of fused silica, same as the window ring. Along the side 

surface of the piston window, high temperature silicon paste was applied to fill the 

gap between the window and piston inner surface for sealing. High temperature 

gaskets were placed below and above the window. The top piston part was mounted 

onto the piston extension part, which is fixed to a standard piston in the engine block. 

Between the top piston and piston extension parts, a spacer is installed to adjust the 

compression ratio and intake port opening timing. For the current experiments, the 

engine compression ratio was set to 8:1 and the intake port opening timing period 

was set between 120ºATDC and 240ºATDC according to the simulation results. 

6.2.6 Timing belt mounting 

The base engine was designed to operate in the 4-stroke mode.  The original 

crankshaft pulley and the camshaft gear had a ratio 1:2 in diameter. To achieve 2-

stroke operation, a larger crankshaft pulley was installed to give a 1:1 ratio to the 

camshaft pulley, as shown in Figure 6.9, so that the camshaft will rotate as the same 

speed as the crankshaft. 
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Figure 6.9 Camshaft pulley and crankshaft pulley for 2-stroke operation 

The two original exhaust valves opening were set to 80ºATDC and the original intake 

valves opening time were set to 130ºATDC. As the opening duration was 110ºCA for 

all valves, so a combined exhaust period was between 80ºATDC to 240ºATDC. 

6.3 Boosted air intake system 

During the uniflow 2-stroke engine operation, the intake air has to be boosted to 

scavenge the in-cylinder burned gas from the previous cycle. Figure 6.10 presents 

the intake air system of the experimental engine. The 2-stage air compressor 

pressurizes air in the compressed air tank of about 3000L located outside the 

building. The pressure in the air tank can go up to 200psi. In between of the air 

compressor and the air tank, a shut-off valve is installed to stop charging the air tank 

during the engine operation. On the downstream side of the air tank, another shut-off 

valve and a pressure regulator are installed to open and regulate the compressed air 

supply and its pressure. The intake system to the single cylinder engine consists of 

an intake air heater, a throttle, a pressure gauge, and a particle seeding connector 

used to induce the flow seeding material for the Particle Image Velocimetry (PIV) 

measurements. A pressure relief valve along the intake airline is used to release the 

airline pressure. 
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Figure 6.10 The intake system layout 

Figure 6.11 shows pictures of the intake and exhaust airline layouts. Before the 

compressed air reach the engine, the intake airline splits into two ways in order to 

provide evenly distributed intake pressure on both sides of the cylinder intake block. 

The two exhaust pipes emerging from each side of the engine cylinder head are 

merged into one before the exhaust system. The reason of split exhaust lines is the 

cylinder head was designed for 4-stroke operation with two intake valves on one side 

and two exhaust valves on the other side. However, for the uniflow 2-stroke 

operation, both intake and exhaust valves are used as exhaust valves and hence the 

original intake port and exhaust port are connected together through a U-shaped 

tube to the exhaust system.  
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Figure 6.11 The intake(with blue pipes) and exhaust(wrapped by thermal 

isolation) layout in the single cylinder engine 

6.4 Fuel supply system 

The fuel supply system layout is shown schematically in Figure 6.12. The fuel from a 

fuel tank is pressurized by a pump driven by the compressed air. The outlet fuel 

pressure can be adjusted by the air pressure. The pressurised fuel is supplied to a 

common rail before the high pressure direct injection injector. A pressure gauge is 

installed to monitor and set the rail pressure. 
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Figure 6.12 Fuel supply system layout 

Figure 6.13 shows a picture of the fuel tank, fuel pump and the fuel rail. The pump is 

an air driven plunger pump (Powerstar 4 S64P4S64). The fuel output pressure is 

determined by the ratio between the area of the air drive piston, the area of the liquid 

drive piston and the applied driving air pressure. The relationship of the driven air 

pressure and the outlet fuel pressure, and the corresponding flow rate is shown in 

Figure 6.14.  

The compressed air used to drive the pump is delivered by the pressurized airline in 

the laboratory; the air pressure can go up to 8bar. The pressure of air was then 

regulated down to the required value to control the fuel outlet pressure.  
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Figure 6.13 Fuel tank, air driven pump and fuel rail 

 

Figure 6.14 Air Pump performance curve 

Fuel Tank 
Air Driven Pump 

Fuel Rail 



137 
 

The fuel injector for experimental test engine is a Mahle gasoline piezo injector NGM 

00084766. The injector was designed for high fuel injection pressure. The injection 

fuel spray is a 94º cone shape continuous surface.  

6.5 Spark ignition system and Timing Unit 

A separate spark ignition control system is built and used to control the spark ignition 

as shown in Figure 6.15. 

 

Figure 6.15 Spark ignition control system 

 The function of Lucas ‘Dial-A-Time’ unit is to pick up a reference signal and 

generates a spark ignition  trigger with adjustable time offset and signal width. To 

achieve the function, Lucas ‘Dial-A-Time’ unit requires a reference signal and a clock 

signal to set the timing and width of the spark ignition, which are provided by a shaft 

encoder mounted onto the end of the crank shaft. This encoder generates a TTL 

signal for each revolution of the crankshaft as well as crank angle based clock 

signals of a resolution of 1ºCA. 

The clock signal from the shaft encoder allows the spark timing to be set in crank 

angles rather than absolute time. The reference signal is generated by an “AND” 

gate logical unit which picks up signals from the crank shaft encoder and a signal 

generated by a cam sensor  on the exhaust valve cam shaft pulley wheel. This 

original spark ignition system was designed for the 4-stroke operation which takes 

two revolutions per engine cycle. For the 2-stroke operation, the cam shaft signal is 
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set to high at all time so that a spark ignition signal is generated at each engine 

revolution by the Lucas ‘Dial-A-Time’ unit to initiate the spark ignition.  

 

Figure 6.16 Timing sequence for fuel injection and image acquisition 

As shown in Figure 6.16, in addition to the spark timing, the reference signal 

generated at 80ºBTDC is also used via a multi-channel signal generator to initiate 

the fuel injection and the image acquisition process, as to be detailed in the next 

chapter.  

6.6 In-cylinder pressure and heat release analysis 

The in-cylinder pressure measurement is obtained by a Kistler type 6055B80 piezo-

electric pressure transducer, which is capable of measuring pressure up to 250bar 

with a sensitivity of 19.4 pC/bar and uncertainty of ± 0.1%.    The transducer output 

signal is then send to a charge amplifier Kistler type model 568 via a high impedance 

cable. The charge amplifier converts the charge signal from the transducer into a 

voltage signal. This voltage signal was calibrated using a dead weight test bed to 

assign the output voltage to correct pressure. This analogue pressure signal is sent 

to a National Instrument board type NI USB-6251 Data Acquisition (DAQ) card, the 

DAQ card is a multifunction data acquisition card with 16-bits resolution and a 

sampling rate of 1.25 MS/s. The DAQ card then converts the analogue signal into 

digital signal using the shaft encoder output as the clock with a resolution of 1ºCA 
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and can be displayed in real time. The heat release results can then be calculated 

using a bespoke LabView programme based on the first law thermodynamics.  

6.7 Summary 

This chapter describes the design and implementation of the modifications to a 

single cylinder optical engine in order to achieve uniflow 2-stroke engine operations 

and allow in-cylinder flow and mixture measurements by laser techniques.  By 

configuring the piston location relative to the intake ports and camshaft phase to the 

crankshaft, the engine breathing was set to intake ports opening duration from 

120ºATDC to 240ºATDC, and the exhaust valve opening duration was set to 

80ºATDC to 240ºATDC. The intake air boosting system and high pressure fuel 

supply system was also described. For the experiments, the intake pressure can go 

up to 3bar absolute pressure and the fuel pressure can go up to 250bar. 
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Chapter 7  In-Cylinder Flow Measurements with 

PIV 

7.1 Introduction 

This chapter presents the investigation of in-cylinder flow structure by means of the 

Particle Image Velocimetry (PIV) method. PIV is a non-intrusive optical technique for 

two-dimensional velocity measurements based on   the displacement of particle 

images over a known time interval, the displacement is calculated as follows, 

    
   

  
        [E-7.1] 

     – Velocity vector 

     – Element displacement 

    – Time interval 

In order to obtain particle images, a laser light sheet is used to illuminate the 

particles in the flow and the scattered light is captured by a camera, as shown in 

Figure 7.1. In order to calculate the flow velocity vectors, the laser unit and the 

camera are synchronized so that two images with a known time delay can be 

recorded onto two separate frames by employing the so-called frame straddling 

technique as shown in Figure 7.2. The pair of images is divided into a matrix of 

interrogation areas (IA) of (     pixels, in which the cross-correlation analysis is 

performed to determine the average particle displacement vector and then the 

velocity vector. 
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Figure 7.1 Typical PIV experimental setup 

 

Figure 7.2 Straddling technique 
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7.2 Experimental setup of PIV 

7.2.1 Flow seeding 

The seeding particles should be non-toxic, non-corrosive, non-abrasive, non-volatile 

and chemically inert, as well as being small enough to faithfully follow the flow 

changes [72]. The seeding material used in this experiment is vegetable oil. The 

seeding generator is a 10F03 seeding generator supplied by Dantec Dynamics. 

Figure 7.3 shows the diagram of the 10F03 seeding generator. 

 

Figure 7.3 Flow seeding generator 

 

Atomization of the seeding particles takes place according to Bernoulli’s principle as 

shown below, 

  
 

 
                         [E-7.2] 
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  – Pressure 

   – Density 

   – Velocity 

   – Gravity 

    – The elevation of the point above a reference plane 

The compressed air passes into the atomiser via the atomiser regulator to the air 

tube. The high flow velocity flow field at the exit of the compressed air tube causes a 

pressure drop near the tip of the other tube partially immersed in the liquid according 

to Bernoulli’s principle. This vacuum sucks out the liquid which is dispersed into 

small droplets by the high speed air flow. The liquid droplets are then blown to the 

outlet of the seeding generator by the air flow in the chamber. The seeding generator 

10F03 can continuously supply seeding flow with an average droplet size of Sauter 

Mean Diameter (SMD) 2μm to 5μm up to a pressure of 3bar.   

7.2.2 PIV Laser  

The Nd: YAG laser is the most commonly used laser for PIV measurements due to 

its high pulse energy. To achieve PIV measurements, two laser pulses within a short 

time interval are required. Two methods with Nd: YAG laser can satisfy the 

requirement, a single cavity Nd: YAG laser with double pulse option or a twin-

oscillator, twin-amplifier frequency doubled Nd: YAG laser [73]. The illumination of 

PIV with the single cavity Nd: YAG laser is achieved by gating a single flash lamp 

discharge from the single cavity laser to provide two laser shots. This method limits 

the time interval between the two laser pulses to a range of 20μs to 200μs, which will 

greatly reduce the laser light intensity and laser pulse width. In this study, a twin-

oscillator, twin-amplifier frequency doubled Nd: YAG laser has been used, which 

allows an infinite and independent control over the time interval, width and intensity 

of the laser pulses. 

The laser unit used for the PIV experiments is NANO L 135-15 PIV laser by Liton 

Lasers. The laser unit is powered by the LPU 450 power station configured to drive 2 

laser units with a 450W combined throughput. The laser head consists of two 

1064μm laser units, half wave plates, mixing and steering polarisers and a harmonic 

http://en.wikipedia.org/wiki/Elevation
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generator. The laser head supplies 532μm laser beams with up to 136mJ laser pulse 

energy under a 160μs optimised Q-switch delay. 

7.2.2 Camera and Optics  

The images of flow with seeding particles are captured with a Dantec Dynamic 

FLOWSENSE 4M Camera system with a CCD camera of 2048x2048 pixels, which 

has a minimum inter-frame time of 200ns. 

The lens used for the PIV test is an UV-Nikkor 105 mm lens. A 532nm narrow band 

filter is also used to remove background light. The configuration of the lens is shown 

in Table 7.1. 

Table 7.1 UV-Nikkor 105mm lens configuration 

Focal Length 105mm 

Aperture  f/32 to f/4 

Reproduction Ratio 1:10 to 1:2 

Lens Elements 6 

Lens Groups 6 

Maximum Angle of View 23º12’ 
 

7.2.3 PIV test setup  

The PIV test experimental setup is shown in Figure 7.4. The Nd: YAG laser sheet 

was guided to the cylinder window ring by a high power long mirror arm for 532nm 

light wavelength, as shown in Figure 7.5. A 45º mirror directs the scattering light of 

in-cylinder flow seeding particles to the camera, and the camera set at the horizontal 

level was used to capture the in-cylinder images. Both the laser unit and camera was 

triggered by a set of signals synchronised with the reference signal. 
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Figure 7.4 PIV test layout 

 

Figure 7.5 Laser lining setup 
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The laser sheet level is set to a horizontal level about 6mm to 8.5mm from the top 

edge of the cylinder window ring, which corresponds to the piston top surface 

location at 10ºATDC to 20 ºATDC with compression ratio of 8:1, as shown in Figure 

7.6. The highest position of the laser sheet was limited by the increased scattering 

from the cylinder head surface.  

 

Figure 7.6 Illumination laser level position 

The camera’s focus was set to the laser sheet by imaging a graph paper stuck to a 

ruler, which was placed to intersect with the laser sheet with the cylinder head 

removed, as illustrated in Figure 7.7. The camera was positioned to have its field of 

view filled with the flow field to be measured in order to use as many as pixels as 

possible to increase the resolution of the region of interest. In order to protect the 

camera, the laser energy level was reduced when it was being focused.  
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Figure 7.7 Adjusting camera focus with an assisting subject 

In the current experiments, the best particle images were obtained with a   low f-

number of 4 due to its shorter depth of view.  It was found that the maximum laser 

output of 136mJ was required to produce sufficient scattering light from the small oil 

droplets. The time interval of two laser pulses and camera actions were adjusted 

from 30μs to 200μs, depending on the measurement time, in order to minimize the 

dropout rate of the velocity vectors. 

7.3 Evaluation of the particle displacement vector 

The calculation of particle displacement vector evaluation was carried out by Dantec 

Dynamics software Dynamicstudio based on the cross-correlation method. With this 

method, the images recording the flow seeding particle position information is 

divided into a number of square interrogation areas. The velocity vector evaluation of 

each interrogation area is calculated by cross-correlation method. For this PIV 

experimental setup, a 32x32 pixels interrogation area was used combined with the 

Gaussian algorithm, which corresponds to a spatial resolution of 1.8mm x 1.8mm. 

The cross-correlation method can be explained as follows. There is a random 

distribution of particles in each interrogation area, which corresponds to certain 

pattern of N particles in the flow,  
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         [E-7.3] 

with     

  
  
  
  

  – The state of the particle ensemble at a given time t 

    – The position vector of the particle i at time t, in the interrogation area of the 

laser sheet 

For following analysis, capital letters refer to the coordinates in the image plane, so 

that 

   
 
 
  

Lower case letters are used to represent the coordinates in the object plane, so that  

   
   and       

where M is the magnification factor of the imaging system. 

The image intensity of a single exposure can therefore be written as [69] 

                     
 
           [E-7.4] 

Where         is the point spread function of the imaging lens and describes the 

impulse response of the imaging lens and       represents the system transfer 

function, giving the light energy of the image of an individual particle inside the 

interrogation area IV and its conversion into an electric signal. 

The next stage is to calculate the cross correlation of the interrogation areas for the 

pair of exposures. At this point it is advantageous to offset the two interrogation 

areas according to an estimated mean particle displacement [75]. This increases the 

fraction of matched to unmatched particle images, thereby increasing the signal to 

noise ratio at the correlation peak. The cross correlation function for each pair of 

interrogation areas is then calculated and the peak displacement vector is 

determined, which corresponds to the particle image displacement vector. 
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Assuming there is a constant displacement of all particles inside the interrogation 

area within the region of interest, the particle positions recorded in the second frame 

are given by: 

  
        

     
     
     

         [E-7.5] 

  – The constant displacement of particles in the interrogation area 

The corresponding particle image displacement can be given by: 

   
    
    

         [E-7.6] 

The intensity distribution of the interrogation area for the second exposure can 

therefore be described as: 

                           
 
           [E-7.7] 

For the first capture, it can be described as: 

                     
 
           [E-7.8] 

The cross-correlation function of the two interrogation areas can then be written as: 

                    
          

 

  
                                

 
   

                                                [E-7.9] 

where s is the separation plane in the correlation plane.  

By distinguishing the     terms, which represent the correlation of different particle 

images and therefore randomly distributed noise in the correlation plane, and the 

    terms which contain the desired displacement data, following expression can be 

derived: 

           
 

  
                                       
    

 

  
                                       
        

or 
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                                                                        [E-7.10] 

which can be divided into three parts: 

                                               [E-7.11] 

where the first two terms    and    contribute to the background noise in the 

correlation plane, both resulting from the     terms.           represents the 

component of the cross correlation function that corresponds to the correlation of 

images of particles obtained from the first exposure with images of identical particles 

obtained from the second exposure (    terms) i.e. 

                                        [E-7.12] 

Hence, this displacement correlation reached its peak at s=D, which means that the 

average particle image displacement vector D can be determined from the maximum 

of the displacement correlation distribution in the correlation plane, with the sign of D 

defining the direction of flow. 

Although correlation can be calculated by Equation 7.9, the most efficient way of 

calculating correlation in practice is carried out by fast Fourier transform (FFT) 

algorithms, which is used in this case and processed by the Dynamicstudio analyse 

software. 

The correlation theorem states that the cross-correlation of two functions is 

equivalent to a complex conjugate multiplication of their Fourier transforms: 

                                        [E-7.13] 

where    and     are the Fourier transforms of the functions I and I' respectively. The 

cross correlation function can therefore be calculated by computing two two-

dimensional FFT's on equal sized samples of the image, followed by a complex-

conjugate multiplication of the resulting Fourier coefficients. 
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7.4 Results of PIV test 

The PIV measurements were carried out at 90ºCA BTDC, 60ºCA BTDC and 30ºCA 

BTDC, which corresponds to 30ºCA, 60ºCA and 90ºCA after the intake ports were 

closed by the piston. Each measurement was repeated at three different intake 

pressures of 1.2bar, 1.4bar and 1.6bar. The engine speed was set to 600rpm, which 

equals to 1200 rpm engine speed for 4-stroke operation. PIV images of velocity 

vectors were recorded for each measurement point and then ensemble-averaged. 

7.4.1 In-cylinder flow structure on the horizontal plane @ 600rpm engine speed 

  

a) Boost pressure 1.2bar b) Boost pressure 1.4bar 

 

 

C) Boost pressure 1.6bar  

Figure 7.8 Averaged flow structure @90ºCABTDC 

 



152 
 

As shown in Figure 7.8, swirl flows are detected in the measurement plane.  

However, the swirl flow structure is relatively unstable, high flow speed occurs along 

the area adjacent to either top side or bottom side of the image, corresponding to the 

regions next to the two opposite intake ports banks. More than one vortex centres 

are present at higher boost pressures of 1.4bar and 1.6bar.This suggests that while 

intake pressure increases, the intake flow kinetic energy is higher, this higher flow 

kinetic energy creates small vortex in the swirl flow structure, especially at the stage 

right after the intake process. 

  

a) Boost pressure 1.2bar b) Boost pressure 1.4bar 

 

 

c) Boost pressure 1.6bar  

Figure 7.9 Averaged flow structure @60ºCABTDC 

Figure 7.9 shows the in-cylinder flow structure at 60ºCA BTDC. Compared with the 

flow field at the earlier crank angle, a more dominant swirl flow structure can be 

observed with one swirl flow centre as the other smaller vortices are merged into the 
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dominant one near the centre.  In addition to the dominant swirl flow structure, there 

are many areas of low velocities, such as the right side and top side of the image in 

Figure 7.9 (a), both left and right side of the image in Figure 7.9 (b) and the right side 

of the image shown in Figure 7.9 (c). In these areas, the vertical flow dominates the 

air flow during the scavenging process, the CFD simulation results showed this 

vertical flow structure as in Figure 7.10. As the piston moves up, the vertical flow 

movements are enhanced with little change in the flow field in the horizontal plane.  

 

Figure 7.10 CFD simulation results of in-cylinder flow structure on the 

horizontal (top) and vertical plane (bottom) @60ºCABTDC 
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a) Boost pressure 1.2bar b) Boost pressure 1.4bar 

 

 

c) Boost pressure 1.6bar  

Figure 7.11 Averaged flow structure @30ºCABTDC 

 

As Figure 7.11  shows, the swirl flow structure becomes much clearer than the two 

previous cases at  30ºCA BTDC when the vertical tumble flow collapses and 

horizontal swirling flow is enhanced by the ascending piston. And while piston moves 

close to TDC, the flow kinetic energy is dispersed and reduced so that the small 

vortexes cannot survive.  
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(a1) PIV results at 30ºCABTDC (a2) CFD results at 30ºCABTDC 

  

(b1) PIV results at 60ºCABTDC (b2) CFD results at 60ºCABTDC 

  

(c1) PIV results at 90ºCABTDC (c2) CFD results at 90ºCABTDC 

Figure 7.12 Measured  and  flow fields with 1.2bar pressure  
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As shown in Figure 7.12, the CFD results are very similar to the PIV results at the 

three crank angles in terms of both the global flow structures and their evolution 

during the compression process.  

Figure 7.13 shows the spatially averaged velocity values in the measurement plane. 

Both CFD and PIV results show that higher boost pressure leads to higher in-

cylinder flow velocity and the average velocity decrease as the piston moves to TDC. 

In general, the CFD results show higher velocities than the PIV measurements. 

However, as the piston moves up towards TDC, the difference becomes smaller.  
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a) Boost pressure 1.2bar 

 

b) Boost pressure 1.4bar 

 

c) Boost pressure 1.6bar 

Figure 7.13 Average velocity of the region of interest 
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7.4.2 In-cylinder flow structure on the horizontal plane @ 900rpm engine speed 

In order to investigate the effect of engine speed on in-cylinder flows ,  the engine 

speed was increased to 900rpm, beyond which the timing belt drive may not be 

sufficient robust.  

  

a) Boost pressure 1.2bar b) Boost pressure 1.4bar 

 

 

c) Boost pressure 1.6bar  

Figure 7.14 Averaged flow structure @90ºCABTDC 

Figure 7.14 shows the in-cylinder flow structure at 900rpm engine speed with 1.2bar, 

1.4bar and 1.6bar boost pressures. Compared with the 600rpm, the swirl flow pattern 

can be hardly observed because of the stronger upward flow with higher piston 

speed. While the piston speed increases, the piston movement input extra kinetic 
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energy to the flow vertical movement, which interrupting the horizontal swirl flow 

structure. 

  

a) Boost pressure 1.2bar b) Boost pressure 1.4bar 

 

 

c) Boost pressure 1.6bar  

Figure 7.15 Averaged flow structure @60ºCABTDC 

As the piston moves up to 60ºCA BTDC, as shown in Figure 7.15, the swirl flow 

structure pattern begins to appear. However, because higher boost pressure delivers 

higher flow kinetic energy, the swirl pattern is less clear at higher boost pressure for 

the same reason as 600rpm engine speed 
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a) Boost pressure 1.2bar b) Boost pressure 1.4bar 

 

 

c) Boost pressure 1.6bar  

Figure 7.16 Averaged flow structure @30ºCABTDC 

As shown in Figure 7.16, the piston moves to 30ºCA BTDC, the swirl flow structure is 

much clearer than the cases at 90ºCA BTDC and 60ºCA BTDC, following a similar 

trend to the results at 600rpm. 
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Figure 7.17 Average velocity across the region of interest on the horizontal 

plane 

 

Figure 7.18 Swirl ratio across the region of interest on the horizontal plane 

Figure 7.17 shows the average velocity across the region of interest on the 

horizontal plane. The results suggest that the increase in the engine speed from 

600rpm to 900rpm has fairly small effect on the averaged horizontal flow, which is 

dominated by the intake port orientation instead.   

Figure 7.18 shows the swirl ratios of the flows in the measurement plane calculated 

according to Equation 3.10.  As the boost pressure becomes higher, the swirl ratio is 

increased by stronger radial flow because of the swirl intake port design. When the 
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engine speed is increased from 600rpm to 900rpm, the swirl ratios dropped because 

of the enhanced vertical tumble flow and shorter time at the higher engine speed. 

In conclusion, at early stage of the flow structure creating process, the swirl flow 

structure is not stable and sensitive to the piston moving speed and intake boost 

pressure. However, as the piston moves towards TDC, as the flow kinetic energy 

disperses and reduces the small vortexes disappear and only the swirl flow structure 

can be obtained. 

7.5 Summary 

This chapter has discussed the experimental setup of a PIV system and its 

application to in-cylinder flow field measurements in the single cylinder 2-stroke 

uniflow engine with optical access. The in-cylinder flow fields and their evolution 

during the compression stroke were presented and the effects of intake pressure and 

engine speed were investigated.  In addition, the PIV results were compared with the 

CFD calculations.  It has been shown that strong swirl flows are formed just before 

TDC in all the cases and their swirl ratios increase with boost pressure and drops 

slightly at higher engine speeds.  
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Chapter 8  In-Cylinder Measurements of Fuel 

Distribution and Flame Propagation in 

the Uniflow 2-stroke Engine 

8.1 Introduction 

The fuel injection and distribution directly affect the air/fuel mixture quality and the 

subsequent combustion and pollutant formation process. This chapter focuses on 

the fuel distribution by the Planar Laser-Induced Fluorescence (PLIF) method and 

flame propagation imaging in the experimental uniflow 2-stroke engine. The principle 

of PLIF and the experimental setup are described. The experimental results of 

engine fuel distribution and flame propagation are discussed. 

8.2 Principle of the PLIF Technique 

Planar Laser Induced Fluorescence (PLIF) is a very popular optical measuring 

technique for the instantaneous measurement of whole-field concentration of a 

species. The process of laser induced fluorescence is depicted in Figure 8.1. Upon 

radiation by a laser beam, a molecule or atom is excited from its ground electronic 

state to a higher energy level. This is followed by the loss of energy to an 

intermediate energy state and then emission of photons to the ground electronic 

state.   
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Figure 8.1 Energy level diagram of LIF 

A two-energy level model is used for the LIF analysis. The rate equations for the 

lower and upper energy levels are described as follows: 

   
                                         [E-8.1] 

   
                                                 [E-8.2] 

where 

     – Einstein coefficient for stimulated absorption 

     – Einstein coefficient for stimulated emission 

     – Einstein coefficient for spontaneous emission 

    – Laser spectral intensity 

     – Coefficient for collisional excitation energy 

     – Coefficient for collisional energy loss 

      – Coefficient for Photo ionization energy 

      – Coefficient for Predissociative energy 
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       – Population of state 1 and 2 

The collisional excitation energy coefficient     can be omitted in most cases, most 

excited states are not predissociative and the photo ionization coefficient      can be 

ignored also. Thus, the Equation 8.1 and 8.2 can be simplified as follows: 

   
                                             [E-8.3] 

   
                                            [E-8.4] 

The upper energy level population can be negligible prior to the laser excitation, for 

the initial condition,         . In addition, the total population of molecules should 

be conserved because no chemical reaction occurs. So, 

                    
                   [E-8.5] 

where 

  
   – Total population of tracer atom prior to laser excitation 

The solution of two-energy-level system is given by 

     
           

  
                                 [E-8.6] 

                       
                 [E-8.7] 

For laser pulse longer than to  , the system reaches its steady value, presented as 

follows, 

        
   

       

 

  
  
  
    

                       [E-8.8] 

  
    

       

       
                        [E-8.9] 

where 

  
     – The saturation intensity 
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Assuming the fluorescence is emitted onto a full sphere evenly, the total number of 

photons     captured by the image sensor from a collection volume is given by 

    
 

  
  
        

   

       

 

  
  
  
    

                      [E-8.10] 

where 

   – Transmission efficiency of the collection optics 

   – The collection solid angle 

    – The spectral fluence of the laser 

    – The sampling volume 

8.3 PLIF experimental setup 

The engine configuration for the experimental setup of the PLIF test is the same as 

that used for the PIV tests described in Chapter 7. The major differences are the 

laser, the transmitting optics and imaging system. 

A Xenon Chloride (XeCl) Excimer laser with 308nm wavelength was used for the 

PLIF measurement, the laser specifications are shown in Table 8.1. 

Table 8.1 XeCl laser specifications 

Type XeCl 

Model COMPexPro 102 

Max Output Power 4 W 

Wavelength 308 nm 

Pulse Energy 200 mJ 

Pulse Length 20 ns 

Pulse Repetition Rate Max 20 Hz 

Beam Size (V×H) 24mm×10 mm 

Beam Divergence (FWHM) 
3 mrad Vertical 

1 mrad Horizontal 
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In order to illuminate a measurement plane in the cylinder, the laser sheet needs to 

be delivered through the optical window in the cylinder liner. Considering the relative 

locations of the engine and the laser unit, optical components are used to steer the 

laser beam to the precise position and focus on the measurement plane. 

The required optical elements include mirrors, cylindrical lens and their mechanical 

holders. All elements are set on two anti-vibration platforms. The laser beam delivery 

system is shown in Figure 8.2. 

 

Figure 8.2 Laser beam delivery system 

Mirror 1 and 2, which mounted on the lower platform, were set to the same horizontal 

level as the outlet of the laser unit, and steers the laser beam out of the laser unit to 

mirror 3. Mirror 3, mirror 4, the cylindrical lens were mounted on the higher platform 

and steers the laser beam to the cylinder window to illuminate the measurement 

plane. While lifting the laser beam level, the beam axis is flipped by mirror 4 so that a 

thinner laser sheet can be produced after the cylindrical lens because of the larger 

beam divergence on the vertical axis than on the horizontal axis 

In order to expand the laser beam into a sheet, a cylindrical lens of 76.2 mm by 38.1 

mm was used. The focal length of 1500mm was determined by the distance from the 

lens to the cylinder vertical axis, according to Equation 8.11. 

 

 
       

 

  
 

 

  
  

       

     
                      [E-8.11] 
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where 

   – Lens focal length 

   – The refractive index of the lens material 

       – The curvature radii on the two lens surfaces 

   – Required distance from lens to the subject to be focused on 

The lens used in this case is anti-reflection coated by CVI Melles Griot BBAR4 248-

355 coating, which provides both a very low reflection of 0.5% over a broad UV 

range from 248 nm to 355 nm and very high damage threshold. The resulting laser 

sheet thickness was about 1mm. 

The fluorescence images via the 45o mirror in the cylinder block were recorded by a 

Princeton Instrument PI-MAX III intensified CCD camera with the Nikon 105mm UV 

lens. A ST-133 controller with the Programmable Timing Generator (PTG) used to 

control the camera timing. A PC with an interface card and Princeton Instrument 

WinView/32 software was used to setup configurations and carry out data analysis. 

3-pentanone was used as the fluorescence tracer for the PLIF measurements due to 

its high fluorescence yield and its similar boiling point (102 °C) to the iso-octane 

(99 °C) which was used due to its absence of deposit formation on the optical 

window. In this study, a mixture of 90% of iso-octane and 10% of 3-pentanone was 

used. The properties of iso-octane and 3-pentanone was as described in table 2.1. 

8.4 Results of PLIF measurements 

The PLIF measurement was carried out at 900rpm with all other engine operating 

parameters kept the same as the PIV experiment in Chapter 7. The direct fuel 

injection timing was set to 60ºCA BTDC. The injector used in this test was a Siemens 

gasoline piezo injector (NGM 00084766) with a cone shaped spray structure. 

8.4.1 Fuel Injection characteristics  

Figure 8.3 shows the first appearance of fuel spray at 110μs after the start of the fuel 

injection trigger sent to the injector. The injection duration was set to 200 μs. This 
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110μs delay corresponds to the electro mechanical lag of the injector needle opening, 

which was found to be constant at different injection timings and durations. 

 

Figure 8.3 First spray image at 110μs after injector trigger signal (200μs 

duration) 

As shown in Figure 8.4, the last image of fuel spray leaving the injector was found at 

470μs after the start of the injection trigger. Taking into account of the injection 

duration (200 μs) and the injector opening delay (110 μs), there was a delay of 160 

μs for the injector needle to be fully seated after the end of the injection trigger. In 

addition, it is noted that there is an area of strong fluorescence emission on the 

injector side (right side of the image), indicating the occurrence of fuel spray 

impingement on the piston.  
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Figure 8.4 The end of Injection  image at 470μs after injector trigger signal 

(200μs duration) 

Figure 8.5 shows the fuel spray structure at 500μs after the start of injection trigger 

(30 μs after the closure of the injector needle). At this stage, a second fuel spray 

cloud was present around the injector although only one injection trigger was applied. 

This could be a result of the bounce of the needle valve when it was closed due to 

excessive force, which could be eliminated by optimising the injector drive signal. 
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Figure 8.5 In-cylinder image at 500μs after injector trigger signal (200μs 

duration) 

Figure 8.6 shows the fuel spray patterns at 600μs, 700μs, 1000μs and 2000μs after 

the start of injection trigger. At 600μs the second fuel injection was finished. At 

700μs, two fuel sprays mixed together and higher fuel concentration was present on 

the far side to the injector, due to the pent roof combustion chamber shape and the 

angle of injector. Because of its much higher velocity and momentum, the early fuel 

spray development was hardly affected by the strong in-cylinder swirl flow. 
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600μs 700μs 

  

1000μs 2000μs 

Figure 8.6 In-cylinder images of the fuel distribution 

8.4.2 Fuel distribution at 15°CA BTDC  

For the fuel distribution study, PLIF images of different conditions were taken at 

15ºCA BTDC when the spark ignition was to take place with the Start Of Injection 

(SOI) timing set to 60ºCA BTDC. The boost pressure was set to 1.2bar, 1.4bar and 

1.6bar. The fuel injection pressure was set to 100bar, 150bar and 200bar for each 

intake boost pressure and the injection duration set at 200μs, 300μs and 400μs. For 

each condition, twenty images were taken from consecutive engine cycles and the 

same process was repeated 5 times, so that an ensemble averaged image of 100 

frames was obtained and analysed. One background image was taken without fuel 

injection prior to the PLIF fuel images and used to remove the ambient light from the 

reflection and other light sources. 



173 
 

For the post-processing of the fuel distribution data, a mean light intensity of all 

pixels in the region of interest (Imean) was calculated. The region of interest was a 

round shape area with 50mm diameter, which is the visible in-cylinder area. This 

value can be used for the comparison of the in-cylinder fuel quantity. Then the 

deviation of the light intensity at each pixel from the mean light intensity was 

calculated as the CoV of each ensemble averaged frame (CoVf), this value can be 

used to indicate the homogeneity of fuel distributions. For all images taken at the 

same engine operating condition, an average value of the mean light intensity of 

each frame was calculated, and then the deviation of the mean light intensity to the 

ensemble average value was used to calculate the CoV of the images taken at same 

engine condition (CoVcyc). This value was used to present the cyclic variation. The 

calculations are shown as follows, 

      
   
  
   

  
                         [E-8.12] 

      
           

   
   

  
  

 
                        [E-8.13] 

          
        
  
 

  
                         [E-8.14] 

        
                    

   
   

  
  

 
                        [E-8.15] 

where 

    – The pixel number in the region of interest 

    – The frame number of each image batch taken at same condition 

    – The light intensity of each pixel 

       – The mean light intensity of all pixels in the region of interest of each frame 

           – The mean light intensity of all frames taken at same condition 
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a) Injection duration 200μs b) Injection duration 300μs 

 

 

c) Injection duration 400μs  

Figure 8.7 In-cylinder images of the fuel distribution with 1.2bar boost 

pressure and 100bar fuel injection pressure 

Figure 8.7 shows the in-cylinder fuel distribution images taken under 1.2bar intake 

boost pressure and 100bar fuel injection pressure, the fuel injection trigger pulse 

width was set to 200μs, 300μs and 400μs. 

As expected, the PLIF image is characterized with stronger light intensity and larger 

areas of the higher intensity as more fuel is injected. In addition, the fuel distribution 

appears more homogenous with more fuel injected. 
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a) Boost pressure 1.2bar 

 

b) Boost pressure 1.4bar 
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c) Boost pressure 1.6bar 

Figure 8.8 Averaged light intensity of the ensemble averaged image  

Figure 8.8 shows the mean light intensity of the ensemble averaged PLIF image 

taken at the same engine operating condition. The results indicate that the 

fluorescence intensity (quantity of fuel) increased with the injection duration at a 

faster rate than the injection pressure. When the intake boost was increased, the fuel 

delivery quantity dropped slightly due to the increase of fuel injection back pressure. 
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b) Boost pressure 1.4bar 

 

c) Boost pressure 1.6bar 

Figure 8.9 CoVf of the light intensity in the ensemble averaged image 

Figure 8.9 shows the spatial variation of light intensity, CoVf, in each ensemble 

averaged image. With either longer fuel injection duration or higher fuel injection 

pressure, the spatial variation of fluorescence light intensity became smaller, 

indicating a more uniform fuel distribution.  The intake boost pressure barely showed 

any effect on fuel distribution uniformity. Related research work has suggested that 

the introduction of swirl creates a velocity drop near the cylinder centre in the radial 

profiles of axial velocity, and as the swirl strength is increased, the drop gets wider 

and the centreline velocity decreases [76]. The reduction in flow is undesirable as it 

can result in not only a poorly scavenged central region but also a poor air/fuel 
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mixture area. With the swirl scale generated by the intake ports orientation and the 

intake boost pressure used, the results indicate that the fuel distribution was 

dominated by the fuel injection process due to much higher spray kinetic energy than 

the swirl flow. 
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c) Boost pressure 1.6bar 

Figure 8.10 CoVcyc of image batch at same condition 

As shown in Figure 8.10, the cyclic variation of the averaged light intensity, CoVcyc 

was low in all cases, an indication of excellent repeatability of the DI. In most of the 

cases, higher fuel delivery quantity resulted in the lowest cyclic variation. Figure 8.11 

shows individual images taken with 200μs fuel injection duration, 100bar fuel 

injection pressure and 1.2bar boost pressure. Although variation in terms of fuel 

distribution can be observed, in terms of overall light intensity, the variation is very 

small. 
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Figure 8.11 Fuel distribution - 200μs fuel injection trigger, 100bar fuel 

injection pressure and 1.2bar boost pressure 

8.4.3 Fuel distribution at 15°CA BTDC and SOI 120°CA BTDC 

Further PLIF measurements at 15ºCA BTDC were carried out with an earlier fuel 

injection timing of 120ºCA BTDC at the same engine operating condition. As shown 

in Figure 8.12, for all engine operating conditions, the advanced fuel injection timing 

reduced the CoVf of the fuel distribution and produced a more homogeneous charge. 

This suggests that for this particular case, advanced fuel injection timing is preferred 

considering the in-cylinder charge homogeneity. 
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100bar fuel injection pressure and SOI 

@ 60ºCA BTDC 

100bar fuel injection pressure and 

SOI @ 120ºCA BTDC 

 
 

150bar fuel injection pressure and SOI 

@ 60ºCA BTDC 

150bar fuel injection pressure and 

SOI @ 120ºCA BTDC 

  

200bar fuel injection pressure and SOI 

@ 60ºCA BTDC 

200bar fuel injection pressure and 

SOI @ 120ºCA BTDC 

Figure 8.12 CoVf of the fuel distribution 
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For the cyclic variation, although the injection timing was advanced, the improvement 

of cyclic variation was not realized. As discussed for the cases under 600rpm engine 

speed, the cyclic variation is actually very low, furthermore, the in-cylinder flow 

structure creating process was random to a certain extent which would affect the 

cyclic variation results. Advancing the fuel injection timing in this case would not 

improve the cyclic variation further. 

The results of in-cylinder fuel distribution measurements suggests that while 

considering the in-cylinder mixture quality, richer mixture is preferred, in this case, 

the lambda value of 1 is preferred. However, no direct results indicating the 

relationship between lean mixture and the combustion performance. Furthermore, for 

SI combustion, due to the narrow time window between the end of engine breathing 

process and the suitable combustion timing, the fuel injection timing is suggested to 

be as early as possible after all ports and valves are closed.   

8.5 Combustion Studies 

In order to obtain images of in-cylinder combustion, the window ring in cylinder liner 

was replaced by a metal ring with the same dimensions. The engine speed was 

600rpm and spark timing at 15ºCA BTDC. The fuel injection timing was set to 60ºCA 

BTDC. The boost pressure was 1.2bar and air/fuel ratio was 14.7. The intake port 

opening duration is from 120ºCA ATDC to 240ºCA ATDC and exhaust valve opening 

duration is 90ºCA ATDC to 240ºCA ATDC. The direct chemiluminescence of flame 

was recorded without laser illumination.  

The engine in-cylinder pressure and heat release rate data are shown in Figure 8.13 

and 8.14. The heat release calculation was shown below, 

  
  
  

 

   
 
  

  
 

 

   
 
  

  
                      [E-8.16] 

where 

  
     – Heat release rate 

    – Specific heat ratio 
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    – In-cylinder pressure 

    – In-cylinder volume 

The engine IMEP was 2bar. The CA10, CA50 and CA90 were at 9ºCA BTDC, 2ºCA 

ATDC and 31ºCA ATDC, respectively. The heat release result illustrated a relatively 

long and low heat release process at the late stage of the combustion. This heat 

release process can also be observed in the images taken at late flame propagation 

stage, a small flame core lasted about 5 ºCA to 10ºCA after the rapid burning 

process. This is probably because of the effect of the in-cylinder swirl flow structure, 

the flow structure kept mixing the unburned fuel and other in-cylinder components, 

diluting the unburned air/fuel mixture, thus the combustion speed was reduced.  

 

Figure 8.13 In-cylinder pressure curve 
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Figure 8.14 Heat release curve 

Two image acquisition systems were used for the flame propagation study on the 

uniflow 2-stroke engine. A NAC Memrecam fx 6000 high speed video camera 

coupled with a DRS Hadland Model ILS3-11 intensifier was used to record the high 

speed frame sequence continuously with 512x384 pixel resolution at 6000fps.  

Higher resolution snapshot images from different cycles were obtained by the 

Princeton ICCD camera. 
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6ºCA BTDC 3ºCA ATDC 

  

15ºCA ATDC 18ºCA ATDC 

Figure 8.15 Flame Propagation images sequence 

Figure 8.15 shows the high speed sequence of images of combustion taken by the 

high speed video camera. After the ignition, the flame kernel was forced to the 

bottom side of the image. Both the flame centre and the flame front moved in the 

clockwise direction due to the effect of in-cylinder swirl flow.  As it approached the 

cylinder wall, the flame front was quenched around TDC. The flame region seen at 

15ºCA ATDC and afterwards was most likely caused by the combustion of locally 

fuel rich mixture and after-burn of CO to CO2 in the burned gas region.   
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15ºCA BTDC 10ºCA BTDC (CA10) 

  

5ºCA BTDC TDC (CA50) 

  

5ºCA ATDC 10ºCA ATDC 
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15ºCA ATDC 20ºCA BTDC 

Figure 8.16 Flame Propagation images 

Figure 8.16 shows the higher resolution individual images from different cycles taken 

by the ICCD camera PI-MAX III. Although all images were taken from different cycles, 

the results still suggest that the flame was blown toward one side of the cylinder wall 

and then shrunk back to the flame core around the centre of the combustion 

chamber. The higher temperature core and after-burn near the spark plug are 

particularly visible.  

With the in-cylinder flow structure and strength organized by current engine 

configuration, the flow is not too strong to breach the flow propagation sequence, but 

also not too weak that will be broken by the expansion of the combustion. The flame 

propagation was dominated by the combustion expansion at early stage and 

dominated by the in-cylinder swirl flow when the kinetic energy of the combustion 

explosion getting lower. This feature could be helpful for improving the combustion 

efficiency especially at the late stage of the combustion and could be helpful for 

reducing engine emissions.     

8.6 Summary 

This chapter explained the engine configuration and experimental facilities for PLIF 

measurements on fuel distribution study and the flame propagation study in the 

uniflow 2-stroke engine. 

For the fuel distribution study, various intake boost pressures, fuel injection 

pressures, injection durations and fuel injection timings were used. The results were 
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compared in terms of the fuel delivery quantity indicated by the fluorescence 

intensity; the fuel distribution uniformity presented by the CoVf and the cyclic 

variation measured by CoVcyc. 

For the flame propagation study, two camera systems has been used in order to take 

continuous frame sequence and high resolution images taken cycle by cycle. The 

results from two systems were consistent.  
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Chapter 9 Conclusions and Recommendations 

for Future Work 

9.1 Introduction 

Research has been carried out on the feasibility and potential of a boosted uniflow 2-

stroke direct injection gasoline engine as a highly downsized powerplant for 

automotive applications. Both numerical calculations and engine experiments were 

carried out in the study.  

3D CFD calculation was used for in-cylinder flow structure and fuel distribution 

studies. In addition, the results of the 3D CFD calculations were used to set up the 

initial and boundary conditions for the 1D engine simulation, which significantly 

reduced the complexity and time spent in the engine simulation and predictions. The 

geometry of the boosted uniflow engine was then optimised for maximum 

performance. 

Following the simulation study, a uniflow 2-stroke single cylinder engine was 

commissioned with a newly designed intake engine block. The block features uniflow 

intake ports and incorporates optical access for in-cylinder measurements. The PIV 

technique was used for in-cylinder flow structure measurements and the PLIF 

technique for the in-cylinder fuel distribution measurements. Stable combustion was 

achieved and the combustion process was studied by means of high speed imaging.  

9.2 Design of intake ports  

Different intake port designs were analysed using CFD in order to evaluate their 

effects on in-cylinder flow characteristics. The main findings of the 3D CFD 

calculations are as follows: 

(i)  As the axis inclination angle is changed from 30º to 90º with an increment of 

15º, the delivery ratio increased due to enlarged effective area of the intake 

ports. Because of the air short circuiting effect, the trapping efficiency falls as 

the axis inclination angle increases. The charging and scavenging 
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performance of 60º and 75º axis inclination angle are slightly less than those 

of the 90º axis inclination angle ports. In light of the negative effect of air short 

circuiting of larger angles, 60º axis inclination angle was chosen in the 

subsequent analysis. 

(ii) For a given engine bore diameter and fixed value of the port width ratio, intake 

ports can be arranged with wider port width and less number of ports or 

narrower port width and more number of ports. The calculations has shown 

that with the same swirl orientation angle and port width ratio, air mass flow 

rate through intake ports is independent of the number of intake ports when 

the port width ratio is kept constant. For a given swirl orientation angle, the 

swirl ratio decreases slightly as the number of ports is reduced.  That is, a 

higher swirl ratio can be obtained with a larger number of narrower ports due 

to higher flow velocity and more organised swirl flow. 

(iii) When the swirl orientation angle is increased from 43º to 51º, the delivery 

ratio falls gradually from 2.4 to 1.9, which requires a reduced port width ratio. 

In addition, a larger swirl orientation angle produces a greater swirl ratio. The 

best scavenging performance is obtained with a swirl orientation angle of 20°. 

When the swirl orientation angle is less than 20°, the scavenging performance 

and the trapping efficiency decrease because of the air short circuiting effect, 

although the delivery ratio increases. When the swirl orientation angle 

becomes greater than 20°, the scavenging performance also declines 

because of the reduction in the delivery ratio. Therefore, the 60° axis 

inclination angle and 20° swirl orientation angle has been adopted in the 

uniflow 2-stroke engine design. 

9.3 In-cylinder fuel distribution  

The Discrete Phase Model is used to simulate the direct fuel injection process of an 

outward open piezo DI gasoline injector with a 90º cone spray angle. The injected 

fuel is treated as particles and droplet breakup calculation is included to model the 

atomisation process. The results of the CFD calculations can be summarised as 

follows: 

(i) The fuel evaporation rate increases during the high pressure fuel injection 

process and then slows down after the end of injection. Faster fuel 
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evaporation takes place at retarded injection timings due to higher charge 

temperature. The main cause for the less total fuel vapour from the early 

injection cases is the liquid fuel impingement because of the in-cylinder swirl 

flow and lower charge density during the earlier injection. 

(ii) Split injections were found to improve the fuel atomisation and mixture 

formation.  Because of the reduced momentum of each injection of shorter 

duration, the split injection reduces the liquid impingement of early injection.  

In addition, it is shown that the total fuel evaporation is improved as the 

percentage of the first injection is reduced from 50% to 20%. 

9.4 Uniflow engine geometry and scavenging timings  

The uniflow 2-stroke engine design has been analysed by the 1D engine model with 

calibrated Frictional Mean Effective Pressures (FMEP).  The effect of bore and 

stroke ratio on the engine performance was studied to determine the appropriate 

bore and stroke of the 2-stroke engine.  The impact of timings of the intake ports and 

exhaust valves on engine performance was investigated. The main conclusions 

include: 

(i) The bore to stroke ratio for maximum engine performance is 1.13. In order to 

accommodate the vehicle packaging, the stroke was fixed to 67mm. 

Therefore, for the targeted 0.3 litre displacement volume per cylinder, a bore 

of 76mm and stroke of 67mm were chosen 

 

(ii) The intake port/exhaust valve timing optimisation has been carried out for 

maximum performance. The intake port opening time is set to 120ºATDC, and 

closure at 240ºATDC. The exhaust valve opening duration was set to 

80ºATDC to 240ºATDC. 

9.5 The boosted uniflow 2-stroke powertrain and its application to 

a vehicle 

The full load performance of the boosted uniflow 2-stroke engine dictates the number 

of cylinders of such engines, which can ultimately help in selection of a suitable 
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boosting system according to its compressed air flow rate. In turn, the potential 

benefits from engine downsizing and downspeeding will depend on the performance 

of the boosted uniflow 2-stroke engine. The 1D engine simulation has been used to 

assess the maximum torque and power which can be obtained from different 

configurations of turbocharger and supercharger with the peak cylinder pressure 

below 120bar. A vehicle driving simulation program was developed and applied to 

analyse the fuel economy benefits over the NEDC. The main conclusions are as 

follows: 

(i) Among all the boost system configurations with various modes of 

supercharger and turbocharger considered, the turbocharger shows the best 

efficiency from a thermodynamic point of view. The low efficiency of the 

supercharger is mainly due to the mechanical losses especially at low load. 

(ii) Both the 3-cylinder 0.9 litre and the 2-cylinder 0.6 litre uniflow 2-stroke engine 

are capable of matching the performance of the NA 1.6 litre 4-stroke engine 

output with an optimised turbocharger.  

(iii) With the same transmission ratio, the 3-cylinder 0.9 litre 2-strok engine 

showed 8.6% increase in fuel consumption and the 2-cylinder 0.6 litre 2-

stroke engine improved the fuel economy by 8.2%. However, with 33.3% 

downspeeding, the fuel economy can be improved by 12.6% by the 3-cylinder 

engine and 18.1% respectively by the 2-cylinder engine, respectively. With 

44.4% downspeeding strategy, the fuel economy went up to 18.3% and 

23.6%. 

9.6 Single cylinder uniflow 2-stroke engine and its in-cylinder 

flow and fuel distributions 

A single cylinder DI gasoline engine was converted to operate as an uniflow 2-stroke 

engine by incorporating a new intake block, modified cylinder liner, a new timing belt 

and crank sprocket, as well as customised intake and exhaust systems. The intake 

block was designed with swirl intake ports based on the CFD calculations and 

provided the optical access for the in-cylinder flow and fuel measurements. The 

single cylinder engine was operated successfully up to 900rpm. 
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The in-cylinder flow measurements by PIV showed similar trend with the CFD 

calculation. It was found that the swirl flow structure was less well defined at the end 

of the intake process. The swirl flow structure became more apparent and the swirl 

ratio was significantly enhanced at the end of the compression stroke due to the 

piston movement and conservation of momentum. 

During the in-cylinder fuel injection measurements, a delay between the injection 

electrical drive signal and the start of injection was noted and it was measured as 

110μs. A similar delay was also detected between the electrical drive signal and the 

closure of the injector at the end of injection process. When the quantity of fuel 

injected was small, the in-cylinder fuel distribution exhibited high cycle to cycle 

variations. As the fuel injection was increased, the in-cylinder fuel distribution 

became more uniformly distributed and showed less cyclic variations. 

The uniflow 2-stroke engine was fired successfully by setting the intake port opening 

duration to 120ºATDC and exhaust valves opening from 80º to 240ºATDC. Both high 

resolution single shot images and crank angle resolved high speed flame 

propagation images were recorded and analysed. Following its formation around the 

spark plug, the flame was found to move towards one side of the combustion 

chamber due to the in-cylinder swirling flow. The after-burn of locally fuel rich 

mixtures was found after the flame front was extinguished. 

9.7 Recommendations for future work 

9.7.1 Engine simulations 

In the current research, the 3D CFD simulation was used to model the effect of 

intake port design and was able to show the general flow structure in the cylinder as 

measured via the PIV technique. In order to use the 3D CFD to guide the design and 

optimisation of the direct injection uniflow 2-stroke engine, further evaluation and 

calibration of the fuel injection and spray models will be required. In addition, the 

combustion model needs to be developed to predict the heat release process and 

engine performance. Both spark ignition flame propagation and autoignition models 

should be included in the combustion modelling so that the autoignition combustion 

at part-load operation can be analysed as a function of engine parameters. 
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9.7.2 In-cylinder flow and fuel distribution measurements 

The intake block in the single cylinder uniflow 2-stroke engine has the flexibility of 

varying the intake port orientation. Due to the time constraint, only one intake port 

design was implemented. It is recommended that additional experiments can be 

carried out with different intake port designs in order to optimise the in-cylinder flow 

and scavenging process. In addition to the in-cylinder flow and fuel distribution on a 

horizontal plane, the PIV and PLIF techniques can be used to obtain the flow and 

fuel distributions in a vertical plane through the optical liner. Although the in-cylinder 

flame propagation investigation has been carried out, the test was only in initial state. 

Further experimental tests and analysis work would be very helpful on understanding 

the combustion characteristic of a uniflow 2-stroke engine. 

9.7.3 Engine thermal and emission performance 

Although fired engine operation was realised in the single cylinder uniflow 2-stroke 

engine, it was difficult to carry out systematic thermodynamic engine experiments. In 

order to evaluate the full potential of the uniflow 2-stroke direct injection gasoline 

engine, it would be desirable to design and build such an engine that has the 

capability to operate at speeds up to 3500rpm and withstand cylinder pressure up to 

120bar. The engine should be equipped with variable cam timing devices on the 

exhaust valves so that the scavenging process can be adjusted according to the 

speed and load. The combustion system should include centrally mounted injector 

and spark plug for optimum mixture formation. In addition, variable boost pressure 

and exhaust back pressure should be provided to simulate the interactions between 

the engine and a turbocharger. 
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Figure. A1 Engine block extension modification 
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Figure. A2 Intake block 
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Figure. A3 Port block 
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Figure. A4 Ports structure in the port block 
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Figure. A5 Piston extension 
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Figure. A6 Piston head 

 


