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Abstract

The forced constant acceleration exit of two-dimensional bodies through a free-surface is computed for various 2D
bodies (symmetric wedges, asymmetric wedges, truncated wedges and boxes). The calculations are based on the
fully non-linear time-stepping complex-variable method of Vinje and Brevig (1981). The model was formulated
as an initial boundary-value problem (IBVP) with boundary conditions specified on the boundaries (dynamic and
kinematic free-surface boundary conditions) and initial conditions at time zero (initial velocity and position of the
body and free-surface particles). The formulated problem was solved by means of a boundary-element method using
collocation points on the boundary of the domain and stepped forward in time using Runge–Kutta and Hamming
predictor–corrector methods. Numerical results for the deformed free-surface profile, pressure along the wetted region
of the bodies and force experienced by the bodies are given for the exit. The analytical added-mass force is presented
for the exit of symmetric wedges and boxes with constant acceleration using conformal mappings. To verify the
numerical results, the added-mass force and the numerical force are compared and give good agreement for the exit
of a symmetric wedge at a time zero (t = 0) as expected but only moderate agreement for the box.
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1. Introduction

The study of water entry has a wide range of ap-
plications in ocean engineering, especially in extreme
or survival situations such as ship slamming or the
ditching of aircraft. For such situations it is vital to
know the pressure distribution on the submerged part
of the body and the force acting on it. Because of
the nature of the free-surface conditions, the flow is,
in general, difficult to calculate. However, for the
above applications, at least in the early stages of entry,
the flow can be realistically treated as potential and
only in the vertical plane so that the problem is two-
dimensional. Moreover, for high-speed entry gravity is
usually ignored. In his seminal paper Wagner [16] also
assumed that the deadrise angle was small, allowing
the matching of an inner flow around an expanding flat
plate to be matched to a planing-plate flow representing
the spray jet. For a modern treatment see [7]. Another
approach for wedges moving with constant speed (more
generally with displacement being some power of time
t) is to exploit self-similarity, see [5,17].
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In this paper we focus our attention on the study
of water exit of surface-piercing bodies. Although
this problem is usually less violent than that of entry,
it has received far less attention in the literature.
Perhaps part of the reason here is that none of the
above approximations are valid. The initial draft of
the body introduces a length scale which precludes
self-similarity; equally gravity is essential to the filling
of the hole that would otherwise be left by the exiting
body. These two constraints imply that the problem is
essentially Froude-number dependent and this makes
analytical progress virtually impossible. This does not
explain the dearth of published experimental results
though; perhaps the exit problem is considered less im-
portant in engineering applications. Such a view is not
valid for ship slamming, where velocity of entry of the
ship’s bow is determined by the previous motion during
the exit phase. Another application is in marine crane
operations where one needs to keep control of a body
being lowered through the free surface in wave condi-
tions to avoid snatching of the cables. This involves
exit as well as entry relative to the moving wave surface.
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State-of-the-art engineering practice is reviewed in
DNV [4]. We exploit the complex potential method of
Longuet-Higgins and Cokelet [9] for extreme waves
and further developed by Vinje and Brevig [14,15] for
floating or submerged bodies. Greenhow [6] used this
method to study the exit of submerged cylinders and
presented initial results for wedge exit. We here present
interesting results for the exit of symmetric wedges,
asymmetric wedges, truncated wedges and a box body.
The acceleration of the exiting body is constant and
comparable to gravity, meaning that the effect of gravity
on the loads will be significant. Certainly some of
these bodies are likely to shed strong vortices from
their corners, but these are ignored in this study. We
hope that the present results will act as benchmarks and
stimulate further theoretical and experimental work to
assess the effects of vortices.

2. Mathematical methods

We can describe the motion of the system of fluid
particles and the moving body in a two-dimensional
complex Cartesian coordinate system. The particles on
the body surface and the free surface can be considered
by a mixed Eulerian and Lagrangian description,
respectively. We assume the fluid is incompressible
and the flow around the body irrotational so that the
potential flow theory is applicable. The mathematical
formulation and the solution of Vinje and Brevig’s
numerical technique are explained in the Appendices
A and B for the convenience of the reader (especially
given the age and relative obscurity of their publica-
tions).

The method is a boundary-integral method based
on Cauchy’s theorem, where the contour C comprises
the free surface, the body surface, the bottom and
distant vertical boundaries (see Fig. A.16). We let
a collocation point zk move onto the boundary from
outside C giving

πψ(zk) + Re
{∫

C0

φ + iψ
z − zk

dz
}

= 0, ∀ zk ∈ Cφ, (1)

or

πφ(zk) + Re
{

i
∫

C0

φ + iψ
z − zk

dz
}

= 0, ∀ zk ∈ Cψ, (2)

where Cφ is the part of C where the velocity potential φ
is known, Cψ that where the stream function ψ is known
and C0 is C minus a semi-circular indent into the fluid
at zk. As discussed by Greenhow [7] the intersection

points of the body and free surface require special treat-
ment. Here both φ and ψ are known from the bound-
ary conditions and so do not require calculation from
Eq. (1) or Eq. (2). To step forwards in time these
points are treated as ordinary free-surface particles and
their new positions are found, then corrected by moving
them horizontally back onto the body surface. Green-
how [6] showed that this essentially pragmatic approach
leads to sensible results that respect the criterion of arc
length constancy for zero gravity wedge entry (a conse-
quence of self-similarity). However, it is not known if
the predicted negative pressures that occur near the jet
tip are physical. These also occur near the intersection
points for wedge exit, see Figs. 5(b) and 8(b), espe-
cially at τ = 0, where the free-surface calculations pre-
sumably do not allow sufficiently rapid ventilation down
the wedge surface from the free surface. Note that the
predicted negative pressures that occur near sharp cor-
ners, see Fig. 12(c), arises not from the treatment of
the intersection points, but rather reflect the inability of
the present inviscid model to cope with the flow singu-
larity at sharp corners; in reality vortices will be shed
here. However, these low pressure regions do not sig-
nificantly affect global loads on the body in most of the
cases considered here.

3. Results and discussions

In this section, we present a set of selected results
for water exit of the two-dimensional bodies shown in
Fig. 1 exiting with constant acceleration. Results for an
extensive range of parameters given in Fig. 1 are docu-
mented in Rajavaheinthan [12]. This paper presents re-
sults for the symmetric wedge SW30 of half angle 30◦,
the asymmetric wedges AW1 of left angle βh = 0◦ and
right angle αh = 30◦ and AW2 of left angle βh = −20◦

and right angle αh = 30◦, the truncated wedge TW30
of nondimensional bottom width b̂ = 0.6 and left and
right angle of 30◦ and the box BX1 of nondimensional
bottom-half width b̂ = 0.67. The bodies are submerged
initially at a nondimensional depth of −1 and exiting
with a nondimensional constant acceleration Gτ of 1,
see Eqs. (5) and (8). To verify the computed results, we
carry out a set of tests such as convergence checks, time
effect on the fluid and body motion and the added mass
effect on the force for the symmetric wedges and boxes.

We give computed results for the physical quantities
(free-surface elevation, pressure distribution and force)
in non-dimensional form.
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Figure 1: Geometrical representation of the different shaped bodies
for water exit cases.

The dimensional characteristic time Ct is defined by

Ct =

√
Di

g
, (3)

where Di is the initial submergence depth of the body
below the free surface at rest and gravitational field is
denoted by g.
The dimensionless time τ is given by dividing time t by
the characteristic time Ct as follows

τ =
t

Ct
. (4)

Spatial coordinates are made dimensionless by dividing
by the initial submergence depth Di giving

ẑ =
z

Di
=

x + iy
Di

= Dx + iDy. (5)

The total pressure (static and dynamic) P computed by
the Bernoulli’s equation is divided by the initial hydro-
static pressure at y = −Di to get the non-dimensional
pressure P̂ as below

P̂ =
P

Diρwg
, (6)

where ρw is density of water. The vertical force F ex-
perienced by the body is computed using the fully non-
linear numerical method which is non-dimensionalised

by dividing the force by the initial buoyancy force and
can be expressed as

F̂ =
F

ρwg∀
, (7)

where ∀ is the initial submerged volume (per unit length
of the wedge prism). The dimensionless acceleration
parameter can be defined by dividing the original accel-
eration of the body a by the gravity g as

Gτ =
a
g
. (8)

In this paper the nondimensional water depth is large.
Extensive calculations for both entry and exit cases pre-
sented by Rajavaheinthan [12] show that there are no
significant depth effects until the nondimensional water
depth is less than 2. This will be reported on in a subse-
quent paper.

3.1. Convergence check

To check convergence of the numerical results,
we consider the wedge SW30 exiting with constant
acceleration. For the wedge, the free-surface profile
and pressure distribution are computed for different
non-dimensional time step sizes Dτ with all other
variables being the same. The results for the exit of
the wedge are plotted at a particular non-dimensional
time τ for different non-dimensional time step size Dτ.
For example, Fig. 2 shows the free-surface profile and
pressure distribution computed for the wedge SW30
exiting with nondimensional acceleration Gτ = 0.8
which is plotted for different non-dimensional time step
size Dτ of 0.1, 0.01 and 0.001 at a non-dimensional
time τ = 1.

We see in Fig. 2 that the results show a good agreement
in this convergence test. Results for the free surface
and pressure at different time step sizes coincide for
different time step sizes. From these convergence
results, we use the non-dimensional time step size of
0.1 to do the most of the calculations of all other shapes
exiting with constant acceleration. As we increase
non-dimensional time step size from 0.001 to 0.1, we
can see only a small deviation in the results.

Another aspect of convergence is the spatial dis-
tance between free-surface points and body points.
Initially the Lagrangian free-surface points are not
spaced equally, but in geometric ratio, R f , getting
closer as one approaches the intersection points. The
body points (not Lagrangian but fixed to the body) are
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also in a similar geometric ratio, Rb, getting closer
as one approaches the vertex. Both can be seen in
Figs. 3(a) and 4(a) for τ = 1. It is important to make
the free-surface and body point spacings near the
intersection points roughly the same, but otherwise
small variations in these spacing ratio or number of
points chosen on free and body surfaces do not have
a significant effect of the free surface profiles which
are relatively flat for the accelerating cases discussed
here. Barringer [2] carried out a series of test cases
for constant velocity wedge entry and exit. For entry,
self-similarity provides a stringent check on the time
and space resolutions. For exit some of his cases
showed wave-like motion causing jets to form at the
intersection and hence numerical breakdown. He
speculates that this may be partly physical, but needs
to be suppressed by coarser resolution of the free
surface to allow the calculations to proceed. In the
present and more physical constant acceleration cases
no such jets occur. Our calculations conform with
Barringer’s recommendations (see Figs. 3 and 4) and
we use Rb = 0.98, R f = 0.85, the number of body
points NBODY= 50 and the number of free-surface
points NF= 70 throughout for the wedges, whilst for
the truncated wedge and the box, Rb refers to the point
spacing ratio from the initial free surface to the corner,
with equal spacing along the flat bottom surfaces. This
ensures that with the recommended non-dimensional
time step of 0.1, the free-surface points move no more
that 10% of the distance between points. Note that the
modest number of free-surface points needed arises
because, away from the body, the flow is essentially
quiescent.
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Figure 2: Convergence of the symmetric wedge SW30 submerged at
a non-dimensional initial depth D̂i = −1 exiting with constant accel-
eration of Gτ = 0.8 and plotted at a non-dimensional time τ = 1.
αh = 30◦.
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Figure 3: Convergence of the symmetric wedge SW30 submerged at
a non-dimensional initial depth D̂i = −1 exiting with constant accel-
eration of Gτ = 0.8 and plotted at a non-dimensional time τ = 1.
αh = 30◦. Rb and R f are ratio of the body points and the free-surface
point spacings, respectively; NBODY = 50 and NF = 70 are the num-
ber of points on the body surface and the free surface, respectively.
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Figure 4: Convergence of the symmetric wedge SW30 submerged at
a non-dimensional initial depth D̂i = −1 exiting with constant ac-
celeration of Gτ = 0.8 and plotted at a non-dimensional time τ = 1.
αh = 30◦,Rb = 0.98 and R f = 0.85 are ratio of the body points and the
free-surface point spacings, respectively; NBODY and NF are number
of points on the body surface and the free-surface, respectively.
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3.2. Time effect

We compute the deformed free-surface profile, pres-
sure along the wetted part of the body and the upward
force experienced by the body using the non-linear the-
ory. The computed results showing the time effect on
free surface, pressure along the wetted surface of the
bodies (see Fig. 1) and force at different stages of exit
with constant acceleration are presented in this section.
Fig. 5 shows the time effect of the symmetric wedge
SW30 exiting with a nondimensional acceleration Gτ of
1. As for the symmetric wedge, Figs. 6 and 7 show the
time effect of the asymmetric wedges AW2 and AW1
exiting water with a constant acceleration Gτ of 0.6 and
1, respectively. Such a flow may be pertinent to the exit
of propeller blades for a ship in ballast. Fig. 8 shows
the computed results for the truncated wedge TW30 ex-
iting water with a constant acceleration (Gτ) of 1. Fig. 9
shows the computed results for the box body BX1 ex-
iting water with a constant acceleration Gτ = 0.5.
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Figure 5: Time effect of the symmetric wedge SW30 submerged at a
non-dimensional initial depth D̂i = −1 exiting with constant acceler-
ation Gτ = 1: αh = 30◦. A cartoon showing the physical situation
is given in the force graph (c), and in subsequent force graphs in this
section.
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Figure 6: Time effect of the asymmetric wedge AW2 submerged at a
non-dimensional initial depth D̂i = −1 exiting with constant acceler-
ation Gτ = 0.6: αh = 30◦ and βh = −20◦.
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Figure 7: Time effect of the asymmetric wedge AW1 submerged at a
non-dimensional initial depth D̂i = −1 exiting with constant acceler-
ation Gτ = 1: αh = 30◦ and βh = 0◦.
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Figure 8: Time effect of the truncated wedge TW30 submerged at a
non-dimensional initial depth D̂i = −1 exiting with constant acceler-
ation Gτ = 0.5: nondimensional bottom width b̂= 0.6.
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Despite the complexity of the flow, it is possible to
make the following comments on these calculations.
In all cases, the pressure and heave total force on the
various bodies are far from the hydrostatic even at
τ = 0. This arises from the ∂φ

∂t term in Bernoulli’s
equation (A.4). The total upwards force in Fig. 5
increases initially; this is confirmed in Appendix C,
where the simplified added-mass model includes a
velocity square term that is always positive. Appen-
dices C and D show that the added-mass model gives
a reasonable description of the force difference (the
total force minus the linearised hydrostatic force on
that part of the body below y = 0 rather than that on
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Figure 9: Time effect of the box BX1 submerged at a non-dimensional
initial depth D̂i = −1 exiting with constant acceleration Gτ = 0.5:
nondimensional bottom-half width b̂ = 0.67.

the wetted part of the body which is not known a priori).

For the asymmetric wedges AW2 and AW3 the
pressures near the vertices need to be treated with
caution; the velocity squared term ωω̄ of Bernoulli’s
equation (A.4) relies on the calculation of dβ

dz and this
has an integrable singularity here. Consequently we
cannot expect the pressures near the vertices or corners
to converge as one increases the body point resolution
here. It is therefore pertinent to examine how this might
affect the free surface profiles and overall body forces.
Tests at τ = 0.5 for AW1 and AW2 with NBODY
varying from 30 to 60 show virtually indistinguishable
free surface profiles in all cases (also for the box BX1
discussed below), and pressures on the wetted surfaces
within about 2% except at the vertex where there the
best resolution has pressures some 10% higher than the
worst resolution calculations. We do not claim conver-
gence at the vertex and in reality vortices will be shed
here; nevertheless the overall vertical force is largely
unaffected by the choice of body point resolution.

Note that for AW2, the force rapidly becomes negative
because the pressure on the left surfaces pushes the
body down, not up. Note also that the force on AW1 is
not half that on SW30, i.e. the non-dimensional forces
are different, because the flow is no longer symmetric.
On the vertical left surface, the pressure has no effect
on the upwards force. This force arises solely from the
pressures in the right hand (inclined) surface, and these
are affected by the flow asymmetry.

For the truncated wedge, the free surface is quali-
tatively similar to SW30. However, these calculations
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break down shortly after the last case shown when the
intersection point will have to move around the knuckle
and this is not possible using the current intersection
point algorithm. Note also that the pressure near the
knuckle becomes irregular again due to the singularity
there, see Fig. 8(b). The same effect can be seen for the
later stages of the box BX1, although negative pressures
are avoided except at the bottom-surface point next to
the corner at the end of the calculation when τ = 1.3,
see Fig. 9(c). Varying the number of body points
(NBODY = 30 − 50) shows no convergence in the
pressure here or at the corner (as expected) but only
modest agreement to within 20% for all points along
the bottom surface. This may explain the divergence of
the results for the force difference shown in Appendix
D.

3.3. Acceleration effect

For each shape considered, to study the time effect of
the constant acceleration exit, we present the computed
free-surface profile, pressure distribution along the wet-
ted part of the body and numerical total force experi-
enced by the body as it exits through the free surface
with different constant accelerations. The results are
obtained by running the program with different constant
accelerations while attaining the same distance travelled
by the bodies. Figs. 10-14 show the acceleration ef-
fect of the symmetric wedge SW30, asymmetric wedges
AW2 and AW1, truncated wedge TW30 and box BX1
exiting with different accelerations.
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Figure 10: Acceleration effect of the symmetric wedge SW30 sub-
merged at a non-dimensional initial depth D̂i = −1 exiting with dif-
ferent constant accelerations Gτ: αh = 30◦.
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Figure 11: Acceleration effect of the asymmetric wedge AW2 sub-
merged at a non-dimensional initial depth D̂i = −1 exiting with dif-
ferent constant accelerations Gτ: αh = 30◦ and βh = −20◦.
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Figure 12: Acceleration effect of the asymmetric wedge AW1 sub-
merged at a non-dimensional initial depth D̂i = −1 exiting with dif-
ferent constant accelerations Gτ: αh = 30◦ and βh = 0◦.

12



0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

Dx

D
y

Non-dimensional Free Surface Profile

 

 

Gr = 1

Gr = 0.25

Gr = 0.11

(a)

0 0.2 0.4 0.6 0.8 1 1.2

0.1

0.2

0.3

0.4

Non-dimensional distance Dx from the vertex along x axis

Non-dimensional Pressure Distribution Along Right Wetted Surface

 

 

Gr = 1

Gr = 0.25

Gr = 0.11

(b)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Non-dimensional time τ

Non-dimensional Force versus Time τ

 

 

Gr = 1

Gr = 0.25

Gr = 0.11

(c)

Figure 13: Acceleration effect of the truncated wedge TW30 sub-
merged at a non-dimensional initial depth D̂i = −1 exiting with dif-
ferent constant accelerations Gτ: nondimensional bottom width b̂=

0.6.
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Figure 14: Acceleration effect of the box BX1 submerged at a non-
dimensional initial depth D̂i = −1 exiting with different constant ac-
celerations Gτ: nondimensional bottom-half width b̂= 0.67.

In Rajavaheinthan [12] extensive results are also
given for the constant velocity case. As pointed out by
Korobkin ([18], private communication), this models an
impulsively-started body motion, which is not entirely
physical. In reality there must be some period of rapid
acceleration, before the constant velocity phase which
has zero acceleration. Referring to the right-hand side
of Eq. (C.10) we see the somewhat surprising result
that during this phase the force is always positive (i.e.
upwards) for constant velocity since the y−derivative of
the added mass is negative. Thus the body is effectively
being pushed upwards by the fluid. Our common
experience that it is difficult to accelerate bodies out
of a fluid (i.e. negative hydrodynamic force) arises
from the acceleration period only (according to this
simplified model). To compare with experiments both
phases of the motion would need to be calculated and
hence the constant velocity cases are omitted from this
paper.

Rajavaheinthan [12] also considers different wedge
angles, but none have a deadrise less than 35◦ because
of the fast motion of the Lagrangian points at the free
surface/body intersection. In contrast Korobkin [8] has
attempted to model the exit of a low-deadrise angle
wedge using a contracting flat plate, as in Wagner’s
model. This is not a fully-closed model and it is not yet
clear how any numerical method could cope with this
low-deadrise-angle regime to provide the contraction
parameter needed by Korobkin’s model. Even for the
case SW30 presented here, with the deadrise angle of
60◦, the negative pressures near the intersection points
at τ = 0 shown in Fig. 5(b), cast doubt on the initial
motion of the intersection points calculated here.

Rajavaheinthan [12] presents results for the speed
of the intersection points for a symmetric wedge of
half-angle of 30◦ (as in SW30) during entry and exit
at constant velocity. For entry/exit, the initial non-
dimensional speed is about 0.97/1.79 respectively, and
independent of the Froude number. We might expect
this since the numerics are attempting to solve essen-
tially the same problem for each Froude number i.e. that
of flow around the diamond discussed in appendix C.
For exit the speed then drops to about 0.6 at τ = 0.7
before rising again and becoming much more Froude-
number dependent, presumably due to wave-like flow
near the wedge. We do not understand these interesting
results in any analytical way and it is not clear how to
relate them to the present case of an accelerating exiting
wedge, but the results suggest that some sort of model
at τ = 0 might be possible.

4. Conclusion

The free-surface profile, pressures on the wetted body
surface and body force have been computed for constant
acceleration of exit for various wedge and box-shaped
bodies. Free-surface profiles for the symmetric wedge
were shown to converge to high accuracy and the ef-
fects of acceleration parameter were computed from ini-
tial submergence to almost complete exit. Correspond-
ing results for asymmetric or truncated wedges, and for
box-shaped bodies are less reliable, especially for the
pressure profile near the sharp corners where the spa-
tial derivative of the complex potential becomes large.
This is to be expected since in reality, vortices will be
shed at the corners. These would need to be included in
any future models. Nevertheless, the results for the free-
surface profiles may be accurate, since the free surface
is distant from any shed vortices and so may provide
valuable benchmark results for other numerical models
and/or experiments. What is clear, even for the box, is
that the numerical method agrees very well with the an-
alytical added-mass model for small times and this sim-
plified model indicates correct behaviour even for larger
times. Given this agreement and its relative simplicity,
the added mass model may therefore be of real use in
engineering contexts.

Appendix A. Mathematical formulation

We describe the motion of the system of fluid parti-
cles and the moving body in a two-dimensional com-
plex Cartesian coordinate system. The particles on the
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body surface and the free surface can be considered by
a mixed Eulerian and Lagrangian description.

Initial-boundary-value problem
The initial boundary-value problem (IBVP) is formu-

lated to study the motion executed by an object moving
into and out of a fluid. We can derive mathematical gov-
erning equation for the problem based on a system of
fluid and the object in the time-dependent domain Ω(t)
as shown in Fig. A.15.

αh

Free surface

Jet 

Fs
(l)

Vs
(l) Vs

(r)

Bs

Ws
(r)Ws

(l)

C(t)= FsUVsUBs

x

Fs
(r)

      Di

swl

∆ф=0

Fs  = Fs
(l) U Fs

(r)

Ws = Ws
(l) U Ws

(r)

Vs  = Vs
(l) U Vs

(r)

∂ф/ ∂n=0

∂ф/ ∂n=v.n

y

z=x+iy

Figure A.15: Definition sketch for the domain representation of the
fluid and the boundary.

Governing equation
Motion of the particles on the boundary of the

domain as shown in Fig. A.15 is described by a mixed
Lagrangian and Eulerian description. The domain of
the problem is varying as the body and free surface
moves. The particle position is represented with respect
to its origin in the still water level (swl). Euler’s field
representation of velocity of the particles is given by
the velocity field

−→
V z = u(x, y, t)̂i + v(x, y, t)̂ j where

u is the velocity component in x direction and v
is the velocity component in y direction and î and ĵ
are unit vectors along the directions x and y respectively.

Under the usual assumptions of incompressible
and irritational flow, the fluid is governed by Laplace’s
equation in the simply connected domain Ω(t) at time t

∇2φ(z, t) = 0, z = x + iy. (A.1)

We can compute the 2D stream function ψ, from the
scalar velocity potential φ, and vice versa using the
Cauchy-Riemann equations

u =
∂φ

∂x
=
∂ψ

∂y
,

v =
∂φ

∂y
= −

∂ψ

∂x
. (A.2)

Boundary conditions
The boundary of the domain Ω(t) is represented by

a simply-connected closed contour C(t) as shown in
Fig. A.16. The boundary C(t) and domain Ω(t) are de-
pendent on time due to the deformation of the free sur-
face and displacement of the body. The C(t) consists of
three kinds of boundaries. The first part represents the
boundary Cd(t) where the mixed boundary conditions
(dynamic and kinematic boundary conditions) are spec-
ified, while the other parts Cn(t) and Cp(t) describe the
boundaries where Neuman boundary conditions (body
and seabed boundary conditions) and distant periodic
boundary conditions apply.

Cd:Cф

      di
∂ф/ ∂n=0

∂ф/ ∂n=v.n

Cp:Cψф

Cn:Cψ

Cn:CψCn:Cψ Cd:Cф

C=CnUCdUCp

Cp:Cψф
∆ф=0

Figure A.16: Geometrical representation of the contour.

Free-surface boundary conditions
We impose the kinematic and dynamic boundary con-

ditions on the free surface Fs(t) which is a part of Cd(t),
see [10]. The kinematic free-surface boundary condi-
tion can be written in terms of material derivative as

D(y − η(x, t))
Dt

= 0. (A.3)

The dynamic boundary condition on the free surface
Fs(t) can be obtained from the Bernoulli’s equation by
assuming that the pressure varies continuously across
the free surface, i.e. there is no surface tension:

∂φ(z, t)
∂t

+
1
2
ωω + gy +

Pa

ρw
= 0, ∀z ∈ Fs(t), (A.4)

where Pa is the atmospheric pressure, ρw is the density
of the fluid, ω = u − iv is the complex velocity and
g is the gravitational acceleration. We can further as-
sume that the pressure along the free surface is atmo-
spheric which can be taken to be zero. We can rewrite
the boundary condition for the representation in the Eu-
lerian description as

∂φ(z, t)
∂t

+
1
2
ωω + gy = 0, z ∈ Fs(t). (A.5)
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Neumann boundary conditions
We assume that the fluid particles along the wetted

part Ws(t) of the body can not cross into the body or
move away from it, leaving a void. Thus the normal
velocity of the flow around the submerged body is equal
to the normal velocity of the body in contact with the
fluid, i.e.

∂φ(z, t)
∂n

= φn = Vz.n, ∀z ∈ Ws(t). (A.6)

Initial conditions
The free surface Fs(t) is a part of the contour Cd(t),

whereas the wetted surface Ws(t), and the bottom sur-
face Bs(t) are a part of the Cn(t). The position vector, ve-
locity and stream function are given along Ws(t), while
the initial position and velocity potential of the free sur-
face particles are assumed to be known along Fs(t) at a
time t = 0. The vertical surface Vs(t) is a part of the Cp

where the stream function and the velocity potential are
unknown, but these are computed using the periodic-
boundary condition (see [14,15]).

Solution technique for the IBVP

The formulated initial boundary-value problem
(IBVP) is the Laplace equation in the velocity poten-
tial φ(z, t) and the stream function ψ(z, t). The complex
coordinate z = x + iy and the region R(t) is defined as a
region comprising of both points on the boundary C(t)
and the domain Ω(t) at an instant time t. The analytical
complex potential β(z, t) can be defined as

β(z, t) = φ(z, t) + iψ(z, t), ∀z ∈ R(t). (A.7)

We compute the solutions for the problem by time-
stepping forward the kinematic and dynamic boundary
conditions. From the kinematic free-surface boundary
condition, we have

Dz
Dt

= u + iv ≡ ω. (A.8)

From the dynamic free-surface boundary condition, we
have the Lagrangian description of (A.5) as:

Dφ
Dt
−

1
2
ωω + gy = 0. (A.9)

The velocity can be computed by differentiating the
complex potential with respect to z. This gives

ω(z, t) =
dβ(z, t)

dz
= u(z, t) − iv(z, t). (A.10)

Cauchy’s integral theorem is valid for the analytic func-
tion β(z, t), so that for any z0 outside of any closed con-
tour C(t) lying within the fluid region R(t) we have∮

C(t)

β(z, t)
z − z0

dz = 0. (A.11)

Here the closed contour C(t) consists of the free surface
on which the velocity potential φ is assumed to be zero
initially and denoted by Cφ where φ is known, the wet-
ted part of the body on which the stream function ψ can
be computed using Eq. (A.4) and denoted by Cψ where
ψ is known and the vertical boundaries on which ve-
locity potential φ and stream function ψ are not known
and denoted by Cψφ, see Fig. A.16. We now explain
the techniques to compute the complex potential and its
time derivative by formulating Eq. (A.11) as Fredholm’s
integral equation of second kind which, in general, has
a solution.

Fig. A.17 shows a part of the contour C consisting of
two elements between zk and zk−1, where αk is an an-
gle between the lines connecting the point zk from both
sides of the points zk+1 and zk−1. Mathematically, but not
numerically, this is π for a smooth part of the surface.

Figure A.17: Geometrical representation of the angle αk for the nu-
merical computation.

The closed contour C includes the free surface (Fs),
the wetted surface of the body (Ws), the bottom surface
(Bs) and the vertical surfaces (Vs) of the domain. We
assume that the point z0 is initially outside the contour
approaching the point zk on the contour.

We can now divide the contour integral of Eq. (A.11)
into two parts Ck and Cε , see Fig. A.15. By letting z0 to
approach from the outside of the contour to the point zk,
Eq. (A.11) can be written as∮

C

β

z − z0
dz =

∮
Ck+Cε

β

z − zk
dz

=

∫
Ck

β

z − zk
dz +

∫
Cε

β

z − zk
dz = 0.

(A.12)

Using

lim
ε→0

∫
Cε

β

z − zk
dz = iαkβ(zk), (A.13)

16



gives

−i
∮

C

β(z)
z − zk

dz = αkβ(zk) − i
∫

Ck

β(z)
z − zk

eiθds. (A.14)

We note that real or imaginary part of Eq. (A.14) can be
equated to zero. However, this is chosen according to
the point lying on the contour Cφ or Cψ and the solution
of the integral equation formed by equating the real or
imaginary part of Eq. (A.14) to zero, see [14,15].

To compute the complex potential, we need to know
φ and ψ which are known along Cφ and Cψ respectively.
By considering that zk is on Cψ where φ is unknown and
equating the real part of Eq. (A.14) to be zero, we get

Re
{
− i

∮
C

β(z)
z − zk

dz
}

= αkφ(zk) − Re
{

i
∫

Ck

(φ(s) + iψ(s))
eiθ

z − zk
ds

}
= αkφ(zk) − Re

{∫
Ck

(φ(s) + iψ(s))
ieiθ

z − zk
ds

}
= αkφ(zk) −

∫
Ck

Re
{
φ(s)

ieiθ

z − zk
− iψ(s)

ieiθ

z − zk

}
ds

= αkφ(zk) +

∫
Ck

φ(s)Im
{

eiθ

z − zk

}
ds

+

∫
Ck

ψ(s)Re
{

eiθ

z − zk

}
ds

= 0,

which we can write in the form

−Re
{

i
∮

C

β(z)
z − zk

dz
}

= αkφ(zk) + h(zk)

+

∫
Ck

φ(s)g(zk, s)ds = 0.

(A.15)

Similarly, by assuming that zk is on Cφ where ψ is un-
known and equating the imaginary part of Eq. (A.14) to
be zero, we get

Im
{
− i

∮
C

β(z)
z − zk

dz
}

= αkψ(zk) + Im
{
− i

∫
Ck

β(zk)
z − zk

eiθds
}

= αkψ(zk) + Im
{∫

Ck

(φ(s) + iψ(s))
z − zk

− ieiθds
}

= αkψ(zk) + Im
{∫

Ck

φ(s)
z − zk

− ieiθds +

∫
Ck

ψ(s)
z − zk

eiθds
}

= αkψ(zk) −
∫

Ck

φ(s)Re
{

eiθ

z − zk

}
ds

+

∫
Ck

ψ(s)Im
{

eiθ

z − zk

}
ds

= 0,

which can be written as

Re
{∮

C

β(z)
z − zk

dz
}

= −αkψ(zk) + j(zk)

−

∫
Ck

ψ(s)l(zk, s)ds = 0,

(A.16)

where the functions g h, j and l are known. Eq. (A.15)
and (A.16) are inhomogeneous Fredholm integral equa-
tions of the second kind, see [11]. We can also take
the imaginary parts of Eq. (A.14) for the points on
Cψ and real part of Eq. (A.14) for the points on Cφ,
but it gives inhomogeneous Fredholm integral equations
of first kind which do not have unique solutions (see
[14,15]). Similarly for the time derivative we have∮

C

∂φ
∂t + i ∂ψ

∂t

z − z0
dz = 0, ∀ z ∈ Ω, (A.17)

giving

π
∂ψ(z0)
∂t

+ Re
{∫

C0

∂φ
∂t + i ∂ψ

∂t

z − z0
dz

}
= 0, ∀ zk ∈ Cφ,

(A.18)

π
∂φ(z0)
∂t

+ Re
{

i
∫

C0

∂φ
∂t + i ∂ψ

∂t

z − z0
dz

}
= 0, ∀ zk ∈ Cψ.

(A.19)

These equations are of the same form as Eqs. (1) and (2)
and hence lead to identical equations to Eqs. (A.15) and
(A.16) in the time derivative.

We now know the complex potential and its time
derivative on the closed contour C. However, it can also
be noted that we can compute the values for β(z) and
∂β(z)
∂t inside the domain using the Cauchy’s integral for-

mula. The derivation can be given by

β(z0, t) =
1

2πi

∮
C

β(z, t)
z − z0

dz, (A.20)
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and differentiating with respect to t, we get

∂β(z0, t)
∂t

=
1

2πi

∮
C

∂β(z,t)
∂t

z − z0
dz. (A.21)

Higher-order derivatives can also be computed by ex-
tending the Cauchy’s integral formula as

f (n)(z0) =
n!
2πi

∮
C

f (z)
(z − z0)(n+1) . (A.22)

This approach was taken by Cooker [3] and allows
larger time steps to be taken. However, this would be
very complicated to implement in the present case when
the number of body points, and sometimes free-surface
points, changes throughout time.

The complex velocity ω can be computed by differ-
entiating the complex potential with respect to z as

ω(z0, t) =
1

2πi

∮
C

β(z, t)
(z − z0)2 dz, (A.23)

∂ω(z0, t)
∂t

=
1

2πi

∮
C

∂β(z,t)
∂t

(z − z0)2 dz, (A.24)

dω(z0, t)
dz

=
1
πi

∮
C

β(z, t)
(z − z0)3 dz. (A.25)

The pressure at the free surface is assumed to be zero
and the pressure inside the contour can be found by a
rearrangement of Bernoulli’s equation as

−P(x, y, t)
ρ

=
∂φ

∂t
+

1
2
ωω + gy.

We can define the acceleration from the kinematic
boundary condition as

Dω(z, t)
Dt

= ax(rz, t) + iax(z, t), ∀z ∈ C(t). (A.26)

The acceleration inside the contour can be calculated
using

ax(x, y, t) + iay(x, y, t) =
∂ω

∂t
+ ω.

dω
dt
. (A.27)

Appendix B. Numerical formulation

Here we explain a numerical formulation to compute
the values based on the derivations given by Vinje and
Brevig [14,15], and Barringer [2]. The collocation
method is used to solve Eqs. (A.15), (A.16), (A.18) and
(A.19). The nodal points are generated by dividing the
contour C into finite number of elements as shown in
Fig. B.18. To generate points on the free surface and
the body surface, we choose appropriate point-spacing

      di

zN2 zN1

z1

zN

zN3

zN4 zN5

Figure B.18: Geometrical representation of the collocation points
along the contour C.

ratios by considering the fact that the points close to the
body in motion are affected much more than points far
from the body. We can also note that the point-spacing
ratios and the time-step size play a very important
role in the computation of the solution and need to
be chosen carefully to compute the numerical results
without breaking the computation and to achieve long
runs of the code.

We know either the real or imaginary part of the
complex potential β(z) and its time derivative ∂β

∂t on
every nodal point of the contour C. By assuming
that the complex potential and its time derivative vary
linearly in the complex variable z, we can write the
complex potential for all z on the contour C as follows

β(z) =


z − z j

z j−1 − z j
β j−1 +

z − z j−1

z j − z j−1
β j ∀z ∈ [z j−1, z j],

z − z j

z j+1 − z j
β j+1 +

z − z j+1

z j − z j+1
β j ∀z ∈ [z j, z j+1],

(B.1)

where z j−1, z j and z j+1 are three consecutive nodes on
the contour, and the complex potential β j−1, β j and β j+1
are known values on the points z j−1, z j and z j+1 re-
spectively. Hence, the complex potential and its time
derivative can be expressed as a linear combination of
the complex potential at all nodes along the contour as
follows

β(z) =
∑

j

∧ jβ j, (B.2)

∂β(z)
∂t

=
∑

j

∧ j
∂β j

∂t
, (B.3)
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where ∧ j(z) is the influence function at node z j which
can be computed by using

∧ j(z) =



z − z j+1

z j − z j+1
∀z ∈ [z j, z j+1],

z − z j−1

z j − z j−1
∀z ∈ [z j−1, z j],

0 otherwise.

(B.4)

Now, the contour integral can be numerically approxi-
mated by

∮
C

β(z)
z − zk

dz =

∮
C

∑
j
∧ jβ j

z − zk
dz

=
∑

j

(I1
k, j + I2

k, j)β j, (B.5)

where

I1
k, j =

z j∫
z j−1

z − z j−1

z j − z j−1
.

1
z − zk

dz

=
1

z j − z j−1

[
z + zk ln(z − zk) − z j−1 ln(z − zk)

]z j
z j−1

=
zk − z j−1

z j − z j−1
ln

[
z j−1 − zk

z j−1 − zk

]
+ 1, (B.6)

I2
k, j =

z j+1∫
z j

z − z j+1

z j − z j+1
.

1
z − zk

dz

=
1

z j − z j+1

[
z + zk ln(z − zk) − z j+1 ln(z − zk)

]z j+1
z j

=
zk − z j+1

z j − z j+1
ln

[
z j+1 − zk

z j − zk

]
− 1. (B.7)

The function Γk, j denotes the sum of the terms I1
k, j and

I2
k, j as

Γk, j = I1
k, j + I2

k, j

=
zk − z j−1

z j − z j−1
ln

[
z j − zk

z j−1 − zk

]
+

zk − z j+1

z j − z j+1
ln

[
z j+1 − zk

z j − zk

]
.

(B.8)

However, we note that the lim
z→0

(
z ln

1
z

)
goes to zero.

Thus to avoid the singularity, the function can be ex-

plicitly expressed as

Γk, j =



z j−1 − z j+1

z j − z j+1
ln

z j+1 − z j−1

z j − z j−1
f or k = j − 1,

z j+1 − z j−1

z j − z j−1
ln

z j − z j+1

z j−1 − z j+1
f or k = j + 1,

ln
z j+1 − z j

z j−1 − z j
f or k = j.

(B.9)

Finally, we note that the closed contour begins with the
node z1 and ends with the node zN . We need to choose
the values of z j−1 = z0 at j=1 and z j+1 = zN+1 at j=N+1
when we evaluate the function Γk, j which depends on
the values of z j−1, z j and z j+1. The values are given
by assuming a periodic domain and setting the index j
when j = 1⇒ j − 1 = N and when j = N ⇒ j + 1 = 1.
N is the number of collocation points on the contour.
Therefore, we can numerically compute the contour in-
tegral by expressing Eq. (A.11) as∮

C

β(z)
z − zk

dz ≈
∑

j

Γ j(z j−1, z j, z j+1, zk)β j, (B.10)

and similarly, the derivative of the contour integral can
be written as∮

C

∂β(z)
∂t

z − zk
dz ≈

∑
j

Γ j(z j−1, z j, z j+1, zk)
∂β j

∂t
. (B.11)

We know φ on the free surface which is the part of
Cφ and take the real and imaginary parts according to
Eqs.(A.15), (A.16), (A.21) and (A.22) while solving
Eqs.(B.10) and Eq. (B.11).

Previous publications using this method were coded
in Fortran. This has now been translated into Matlab
which allows the easy use of built-in functions and
better graphics.

Appendix C. Added mass force for wedge

In an unbounded fluid, particles near to a moving
body are accelerated due to the motion executed
by the body. The body experiences hydrostatic and
hydrodynamic forces. The hydrodynamic forces can
be thought of in terms of some amount of fluid mass
that moves with the body as an added mass (ma). More
correctly it characterises the kinetic energy in the fluid.
The motion of the system of the fluid and body can be
predicted using Lagrangian dynamics, see [2] for more
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details.

The model we use here takes advantage of the
fact that at t = 0, the flat free surface is a line of
equipotential φ = 0. Thus for heave motion, the
fluid flow is initially that in the lower half plane of a
double body i.e. a diamond shape of the wedge and
its reflection in the free surface, see [10]. This makes
it possible to deduce the added masses of the various
body shapes moving in heave. In the usual seakeeping
theories, this added mass is simply the high-frequency
limit of the radiation problem.

In this section, we derive the equation of the system of
the fluid and body, and the analytical added-mass force
for a symmetric wedge and a box body, as explained
by Barringer [2]. Then the analytical force is compared
with the force difference between the total numerical
force computed using the nonlinear theory of Vinje and
Bervig [14,15] and the buoyancy force, to verify that
the forces agree at initial time t = 0. The buoyancy
force is simply that of the body below the still water
line y = 0, not the instantaneous water line which is not
known a priori.

The equation for the motion of the system of wa-
ter and the body consists of the hydrostatic force (Fb,
buoyancy force) and the hydrodynamic force (Fa,
added mass force). The buoyancy force is given by

Fb = ρwg∀(t), (C.1)

where ρw is the fluid density, g is gravitational accelera-
tion, and ∀(t) is submerged volume of the instantaneous
portion of the body below the undisturbed free surface
level at y = 0 and a time t .

The added mass force can be defined from the en-
ergy of the system of the fluid and body. The kinetic
energy is written as

T =
1
2

(ma + mb)v2. (C.2)

The potential energy can be given as

V =

y∫
0

(mbg − ρwg∀)dy = (mbg − ρwg∀)y. (C.3)

Thus the Lagrangian is,

L = T − V =
1
2

(ma + mb)ẏ2 + (ρwg∀ − mbg)y. (C.4)

Now we can apply the Lagrange’s equation for the mo-
tion of the system in a single degree of freedom (vertical
motion of the body):

∂L
∂y
−

d
dt

(
∂L
∂ẏ

)
= 0. (C.5)

By using Eq.(C.4) and Eq.(C.5), we get

∂L
∂y
−

d
dt

(
∂L
∂ẏ

)
=

1
2

dma

dz
ẏ2 + (ρwg∀ − mbg)

−
d
dt

((ma + mb)ẏ) , (C.6)

and

d
dt

((ma + mb)ẏ) = (ma + mb)ÿ +
dma

dy
dy
dt

ẏ

= (ma + mb)ÿ +
dma

dy
ẏ2. (C.7)

We find

∂L
∂y
−

d
dt

(
∂L
∂y

)
= −

1
2

dma

dy
ẏ2 + (ρwg∀ − mbg)

− (ma + mb)ÿ = 0. (C.8)

Hence the equation for the motion of the system is

mbÿ + mbg − ρwg∀ = −maÿ −
1
2

dma

dy
ẏ2, (C.9)

where the left-hand side is the equation of motion and
the right-hand side is the added mass force Fa which
can be stated as

Fa = −
1
2

dma

dy
v2 − mav̇, (C.10)

where ma is the added mass, y is the vertical axis, and
ẏ and ÿ are replaced by v and v̇ (the heave velocity and
acceleration), respectively. This is exact, but one can not
calculate the energy in the fluid easily except at time t =

0. In general the added mass would depend on the entire
history of motion (i.e. memory), due to wave radiation.
In a footnote, Wagner [16] gives the added mass for a
symmetric wedge as

ma = ρb2G tanα, (C.11)

where the function G is given in terms of Gamma func-
tions by

G =
Γ
(
1 + α

π

)
Γ
(

1
2 −

α
π

)
Γ
(
1 − α

π

)
Γ
(

1
2 + α

π

) − 1, (C.12)
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and b = Di − y is the submerged depth of the wedge,
where Di is initial draft and y is change in draft. The
Γ(..) are Gamma functions, see [1]. Wagner offers no
explanation of this formula, so it is worthwhile giving a
derivation here using the Schwarz-Christoffel mapping
(Fig.C.19)

· · 

z - plane ς - plane

· · · 

A∞ A∞ E∞ E∞ B DBD

Flow past a wedge in the 
upper-half plane

Uniform flow in the upper-
half plane

C· 

C

Figure C.19: Definition sketch for the flow mapping in the plane.

z = K′
ζ∫

0

(ζ + 1)
π−α
π −1(ζ)

π+2α
π −1(ζ − 1)

π−α
π −1dζ + L

(C.13)

z = K

ζ∫
0

(ζ)
2α
π

(1 − ζ2)
α
π

dζ + L. (C.14)

At point C: ζ = 0, z = ai⇒ L = ai.

At point D: ζ = 1, z = b⇒ b = K

1∫
0

(ζ)
2α
π

(1 − ζ2)
α
π

dζ + ai.

Using the identity,

Γ(q)Γ(p)
Γ(q + p)

=

1∫
0

tq−1(1 − t)p−1dt. (C.15)

see [1], and the substitution ζ =
√

t, we can derive

b = K
Γ
(
α
π
− 1

2

)
Γ
(
1 − α

π

)
√
π

+ ai

so that K =
(b − ai)

√
π

Γ
(
α
π
− 1

2

)
Γ
(
1 − α

π

) . (C.16)

We now set K = |K|e−ia where

|K| =
b

cosα

√
π

Γ
(
α
π
− 1

2

)
Γ
(
1 − α

π

) . (C.17)

So we can express

z = |K|

ζ∫
0

(
1 −

1
ζ2

)− α
π

dζ + ai

= |K|

ζ∫
1

(
1 +

α

π

1
ζ2 + · · ·

)
dζ + b, (C.18)

since

|K|

1∫
0

(
1 −

1
ζ2

)− α
π

dζ = b − ai. (C.19)

Integrating gives

z = |K|
(
ζ −

α

π

1
ζ

+ · · ·

)
. (C.20)

Thus by series reversion,

ζ = z′ +
α

π

1
z′

+ · · · , (C.21)

where
z′ =

z
|K|

.

We require β(z) → z as z → ∞ for unit velocity
at infinity. So

β(z) = |K|ζ = z + |K|2
α

π

1
z

+ · · · . (C.22)

The added mass can be derived from the dipole coeffi-
cient as explained in [10]. So taking the coefficient of
1/z we can conclude(

ma

ρ
+ ∀

)
= |K|2α =

(a2 + b2)πα[
Γ
(
α
π
− 1

2

)
Γ
(
1 − α

π

)]2 , (C.23)

where ∀ = b2 tanα is the body volume. Using further
identities defined in [1] we obtain the equation(

ma

ρ
+ ∀

)
= b2 tanα

α
π
Γ
(
α
π

)
Γ
(

1
2 −

α
π

)
Γ
(
α
π

+ 1
2

)
Γ
(
α
π

+ 1
2

) . (C.24)
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With minor manipulation we finally obtain equations as
stated by Wagner [16]. Fig. C.20 shows the relationship
between the added mass, ma and the wedge half angle,
α. The added mass is non-dimensionalised in two dif-
ferent manners. On the left we non-dimensionalise with
respect to the submerged body depth, b. Now we get

ma

ρπb2 =
tanα
π

G. (C.25)

On the right we non-dimensionalise with respect to
body half width. Thus

ma

ρπa2 =
G

π tanα
. (C.26)

We note that the added mass for the wedge approaches
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Figure C.20: Non-dimensional added mass (with respect to the depth
b and half width a) vs vertical half-wedge angle α.

ρπa2/2 as α approaches 90◦. We expect this result since
it is the added mass for a flat plate of half width a (equiv-
alent to the displaced mass of a cylinder radius a).
Differentiating the added mass with respect to y and not-
ing that b is a function of y, we get

dma

dy
= −2ρbG tanα. (C.27)

Hence, by substitution in Eq.(C.10), we obtain the
added mass force in a form suitable for comparison
with the numerical calculations.

We compare the force difference (Fd = Fn − Fb)
with the analytic added mass force (Fa) because the
numerical force (Fn) which we compute using the
numerical method consists of the buoyant force (Fb)
and the force due to the pressure on the body (dynamic
force), but the computation of the added-mass force

does not include the buoyancy force. Figs. C.21 and
(C.22) show the comparison of the computed force dif-
ference and the analytical added mass force computed
for the symmetric wedge SW30 exiting with constant
accelerations of 1 and 0.5, respectively. It can be noted
that both forces are very close to each other at time
zero.
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Figure C.21: Computed numerical force difference and added mass
force showing added mass effect for the wedge SW30 exiting with
constant acceleration Gτ = 1.
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Figure C.22: Computed numerical force difference and added mass
force showing added mass effect for the wedge SW30 exiting with
constant acceleration Gτ = 0.5.

Appendix D. Added mass force for box

As for symmetric wedges, the added mass of the box
body can also be found by conformal mapping, see [2].
Barringer shows that the added mass can be given in a
similar way, but now involving complete elliptic inte-
grals, as stated by Riabouchinski [13] but again without
derivation. Thus for a box with corners (±b, ±a) moving
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in the x direcction we have

ma

ρπa2 =
m

[E(m) − (1 − m)K(m)]2 −
4
π

b
a
, (D.1)

where the parameter m is related to the box dimensions
by

b
a

=
E(1 − m) − mK(1 − m)
E(m) − (1 − m)K(m)

. (D.2)

In our case the line x = 0, |y| > a represents the line
of equipotential φ = 0. So the required added mass
is simply half of that given by Eq. (D.1). Since these
functions are less convenient that the gamma functions
needed for the wedge and here there is only an implicit
relation between the box aspect ratio and its added mass,
Barringer fitted the results to an empirical formula:

ma

ρπa2 = 0.50589 + 0.26405
√

y
a

−0.00104839
( y
a

) 3
2
− 0.000014487

( y
a

)2
(D.3)

where y = b is the draft of the box. The derivative of the
added mass with respect to the draft y is given by

1
ρπa2

dma

dy
= 0.132025

1
√

ay
+

0.0251687
a

+0.001572585
y
a
− 0.000028974

y
a2 (D.4)

These are compared for the box body with the force
difference computed numerically. Fig. D.23 shows the
comparison of the computed force difference and the an-
alytical added mass force computed for the box body
BX1. It can be noted that both forces are fairly close
to each other at time zero, but here we have resolution
problems at the box corners as well as the intersection
points.
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