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Abstract. We study completeness properties of Sobolev metrics on the space

of immersed curves and on the shape space of unparametrized curves. We
show that Sobolev metrics of order n ≥ 2 are metrically complete on the

space In(S1,Rd) of Sobolev immersions of the same regularity and that any

two curves in the same connected component can be joined by a minimizing
geodesic. These results then imply that the shape space of unparametrized

curves has the structure of a complete length space.

1. Introduction. The purpose of this paper is to continue the study of complete-
ness properties of Sobolev metrics on the space of closed curves, which was initi-
ated in [11]. Sobolev metrics on spaces of curves were introduced independently in
[16, 46, 34] and applied to problems in computer vision and shape analysis. They
were generalized to immersed higher-dimensional manifolds in [9]. See [7] for an
overview of their properties and how they relate to other metrics used in shape
analysis.

The arguably simplest Riemannian metric on the space Imm(S1,Rd) of smooth
closed curves is the L2 metric given by

Gc(h1, h2) =

∫
S1

〈h1, h2〉ds ;

here c is a curve and h1, h2 ∈ Tc Imm(S1,Rd) are tangent vectors. We integrate
with respect to arc length, ds = |c′|dθ, in order for the metric to be invariant under
the reparametrisation action (ϕ, c) 7→ c◦ϕ. It was shown in [33, 4] that the geodesic
distance induced by the L2-metric vanishes identically, rendering it unsuitable for
applications. The quest for stronger metrics has led to the class of almost-local
metrics [42, 34] as well as the class of Sobolev metrics, which are the object of this
work. Sobolev metrics are metrics of the form

Gc(h1, h2) =

∫
S1

a0〈h1, h2〉+ a1〈Dsh1, Dsh2〉+ · · ·+ an〈Dn
s h1, D

n
s h2〉ds ,

with aj ≥ 0 and Dsh = h′/|c′| denoting differentiation with respect to arc length.
For the purposes of this article we will assume that the coefficients aj are constant.
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Sobolev metrics of order n possess various nice properties: the geodesic equation
is locally (n ≥ 1) and globally well-posed (n ≥ 2); the geodesic distance is nonvan-
ishing (n ≥ 1) and for some particular metrics geodesics can be computed explicitely.
Of particular interest for applications are first order metrics, because they permit
geodesics to be computed effectively. The geodesic equation of a Sobolev metric of
order n is given by

∂t

 n∑
j=0

(−1)jaj |c′|D2j
s ct

 =

= −a0

2
|c′|Ds (〈ct, ct〉v) +

n∑
k=1

2k−1∑
j=1

(−1)k+j ak
2
|c′|Ds

(
〈D2k−j

s ct, D
j
sct〉v

)
,

and one can see that it is a nonlinear PDE of order 2n; see [11, 35] for a derivation.
First order metrics without an L2-term admit a remarkable transformation that
maps immersions modulo translations isometrically to a codimension 2 submani-
fold of a flat space. This transformations was exploited in [48, 5, 45] to construct
efficient numerical methods for computing geodesic distances between curves. Some
attempts have been made in [6] to generalize these transformations to higher order
Sobolev metrics.

A drawback of first order metrics is that they are not complete. Geodesics can
cease to exist after finite time and numerical computations show that geodesics need
not exist between two curves. This motivates the study of higher order metrics as
was done in [34, 32, 11].

In particular we focus our attention on completeness properties of Sobolev metrics
of order two and higher. For a Riemannian manifold (M, g) there are three notions
of completeness.

(A) (M,dist) with the geodesic distance is a complete metric space;
(B) All geodesics can be extended for all time;
(C) Any two points can be joined by a minimizing geodesic.

Property (A) is called metric completeness and (B) is geodesic completeness. In
finite dimensions the theorem of Hopf–Rinow asserts that metric and geodesic com-
pleteness are equivalent and that either of them implies (C). In infinite dimensions
for strong Riemannian manifolds1 one only has that metric completeness implies
geodesic completeness.

It was shown in [11] that Imm(S1,R2) and In(S1,R2), the space of Sobolev
immersions of order n, are geodesically complete for a Sobolev metric with constant
coefficients of order n ≥ 2. In [8] it is remarked that the same method also implies
metric completion of In(S1,R2) and [36] shows the existence of minimizing geodesics
in In(S1,R2). Similar results weere obtained in [12] for diffeomorphism groups of
Rd and compact manifolds.

We extend the completeness results from plane curves to curves in space and
provide a different proof for the existence of minimizing geodesics. We also study
the completeness of the quotient space of unparametrized curves.

1An infinite-dimensional Riemannian manifold (M, g) is called strong, if g induces the natural
topology on each tangent space or equivalently, if the map g : TM → (TM)′ is an isomorphism.
If g is merely a smoothly varying nondegenerate bilinear form on TM we call (M, g) a weak

Riemannian manifold, indicating that the topology induced by g can be weaker than the natural
topology on TM or equivalently g : TM → (TM)′ is only injective.
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1.1. Contributions. This paper provides a discussion of completeness properties
of the spaces of parametrized and unparametrized curves in Rd, equipped with
Sobolev metrics. In Sect. 3 we show the main estimate for Sobolev metrics of order
n ≥ 2 with constant coefficients. If G is such a metric on the space In(S1,Rd)
of Sobolev immersions and B(c0, r) is a metric ball with respect to the induced
geodesic distance, then there exists a constant C = C(c0, r), such that

C−1‖h‖Hn(dθ) ≤
√
Gc(h, h) ≤ C‖h‖Hn(dθ)

holds for all c ∈ B(c0, r). Here ‖ · ‖Hn(dθ) is the inner product defining the topology

of In(S1,Rd). In other words, the inner product defined by G is equivalent to the
ambient inner product with a constant that is uniform on metric balls. This is the
content of Prop. 3.5, which is a generalization of [11, Lem. 5.1] from plane curves
to curves in Rd. Equivalence is clear for strong Riemannian metrics, the important
part is the uniformity of the constant.

The uniform equivalence is used in Sect. 4 to show that the inequality

‖c1 − c2‖Hn(dθ) ≤ C dist(c1, c2)

holds on metric balls with respect to the geodesic distance. Thus, on metric balls,
the natural vector space distance on Hn(S1,Rd) is Lipschitz with respect to the
geodesic distance. This allows us to show that In(S1,Rd) is metrically and hence
geodesically complete, thus extending the result of [11] on geodesic completeness
from plane curves to curves in Rd. With an approximation argument we then
show in Thm. 4.5 that the metric completion of the space Imm(S1,Rd) of smooth
immersions is equal to In(S1,Rd). However, since a geodesic with smooth initial
conditions remains smooth, the space Imm(S1,Rd) is geodesically complete. This
provides a family of geodesically, but not metrically complete (weak) Riemannian
manifolds.

In Sect. 5 we show that any two curves in the same connected component can
be connected by a minimizing geodesic. The proof exploits the structure of the arc
length differentiation operator Ds to prove a statement about its continuity under
weak convergence. The method of proof is different from [36], which relied instead
on reparametrizing curves to constant speed. We also discuss possible extensions of
the proof to Sobolev metrics with non-constant coefficients. The question whether
the minimizing geodesic joining smooth curves is itself smooth remains open.

We transfer in Sect. 6 the results from the space of parametrized curves to the
shape space of unparametrized curves. Denote by

Bn(S1,Rd) = In(S1,Rd)/Dn(S1) ,

the shape space of unparametrized Sobolev curves. Then Bn(S1,Rd) is not a man-
ifold any more, but, equipped with the projection of the geodesic distance, it is a
complete metric space. It is also the metric completion of the shape space of smooth
immersions,

Bi(S
1,Rd) = Imm(S1,Rd)/Diff(S1) .

The distance in Bn(S1,Rd) is always realized by geodesics in In(S1,Rd) in the
following sense: given c1, c2 ∈ In(S1,Rd), there exists ψ ∈ Dn(S1), such that

distB(π(c1), π(c2)) = inf
ϕ∈Dn(S1)

distI(c1, c2 ◦ ϕ) = distI(c1, c2 ◦ ψ)

and c1 and c2 ◦ ψ can be joined by a minimizing geodesic. Furthermore (Bn,distB)
carries the structure of a complete length space.
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2. Background Material and Notation.

2.1. The Space of Curves. Let d ≥ 1. The space

Imm(S1,Rd) =
{
c ∈ C∞(S1,Rd) : c′(θ) 6= 0

}
of immersions or regular, parametrized curves is an open set in the Fréchet space
C∞(S1,Rd) with respect to the C∞-topology and thus itself a smooth Fréchet
manifold. For s ∈ R and s > 3/2 the space

Is(S1,Rd) =
{
c ∈ Hs(S1,Rd) : c′(θ) 6= 0

}
of Sobolev curves of order s is similarly an open subset of Hs(S1,Rd) and hence
a Hilbert manifold. Because of the Sobolev embedding theorem [1], Is(S1,Rd) is
well-defined and each curve in Is(S1,Rd) is a C1-immersion. To simplify notation
we will sometimes omit the domain and image of the function spaces and write Imm
and Is for the spaces Imm(S1,Rd) and Is(S1,Rd) respectively.

As open subsets of vector spaces the tangent bundles of the spaces Imm(S1,Rd)
and Is(S1,Rd) are trivial,

T Imm(S1,Rd) ∼= Imm(S1,Rd)× C∞(S1,Rd)

TIs(S1,Rd) ∼= Is(S1,Rd)×Hs(S1,Rd) .

From a geometric perspective the tangent space at a curve c consists of vector
fields along it, i.e., Tc Imm = Γ(c∗TRd). In the Sobolev case, where c ∈ Is, the
pullback bundle c∗TRd is not a C∞-manifold and the tangent space consists of
fibre-preserving Hs-maps,

TcIs(S1,R2) =

h ∈ Hs(S1, TRd) :

TRd

π
��

S1 c //

h

==

Rd

 .

See [30, 22] for details in the smooth case and [19, 39] for spaces of Sobolev maps.
For a curve c ∈ Is(S1,Rd) or c ∈ Imm(S1,Rd) we denote the parameter by

θ ∈ S1 and differentiation ∂θ by ′, i.e., h′ = ∂θh. Since c is a C1-immersion, the
unit-length tangent vector v = c′/|c′| is well-defined. We will denote by Ds = ∂θ/|c′|
the derivative with respect to arc length and by ds = |c′|dθ the integration with
respect to arc length. To summarize, we have

v = Dsc , Ds =
1

|c′|
∂θ , ds = |c′|dθ .

We will write Dc for Ds in Sect. 5 to emphasize the dependence of the arc length
derivative on the underlying curve. The length of c is denoted by `c =

∫
S1 1 ds.

2.2. Sobolev Norms. In this paper we will only consider Sobolev metrics of inte-
ger order. Sometimes it will be necessary to work with Sobolev spaces of fractional
order and some of the results, which involve only the topology, are true also for
fractional orders. We will denote by n ∈ N the order of the metric and we will use
s ∈ R, whenever fractional Sobolev orders are allowed or needed.

For n ≥ 1 we fix the following norm on Hn(S1,Rd),

‖h‖2Hnθ = ‖h‖2Hn(dθ) =

∫
S1

|h(θ)|2 + |∂nθ h(θ)|2 dθ .
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Its counterpart is the Hn(ds)-norm

‖h‖2Hn(ds) =

∫
S1

|h(s)|2 + |Dn
s h(s)|2 ds ,

which depends on the curve c ∈ In(S1,Rd). The norms Hn(dθ) and Hn(ds) are
equivalent, but the constant in the inequalities

C−1‖h‖Hn(dθ) ≤ ‖h‖Hn(ds) ≤ C‖h‖Hn(dθ)

depends on c. We will show in Prop. 3.5 that if c remains within a certain bounded
set, then the constant can be chosen independently of the curve.

The L2(dθ)- and L2(ds)-norms are defined similarly,

‖u‖2L2(dθ) =

∫
S1

|u|2 dθ , ‖u‖2L2(ds) =

∫
S1

|u|2 ds ,

and they are related via
∥∥∥u√|c′|∥∥∥

L2(dθ)
= ‖u‖L2(ds).

2.3. Poincaré Inequalities. The first part of the following lemma is a Sobolev
embedding theorem with explicit constants and can be found in [32]. The impor-
tance of the last part is that it contains no constant depending on c, even though it
is a statement about arc length derivatives and the L2(ds)-norms. The proofs can
be found in [11, Lem. 2.14] and [11, Lem. 2.15].

Lemma 2.4. Let c ∈ I2(S1,Rd) and h ∈ H1(S1,R). Then

‖h‖2L∞ ≤
2

`c
‖h‖2L2(ds) +

`c
2
‖Dsh‖2L2(ds) ,

and if h ∈ H2(S1,R), then

‖Dsh‖2L∞ ≤
`c
4
‖D2

sh‖2L2(ds) .

If n ≥ 2, c ∈ In(S1,Rd) and h ∈ Hn(S1,R), then for 0 ≤ k ≤ n,

‖Dk
sh‖2L2(ds) ≤ ‖h‖

2
L2(ds) + ‖Dn

s h‖2L2(ds) .

2.5. Gronwall Inequalities. The following version of Gronwall’s inequality can
be found in [38, Thm. 1.3.2] and [25].

Theorem 2.6. Let A, Φ, Ψ be real continuous functions defined on [a, b] and Φ ≥ 0.
We suppose that on [a, b] we have the following inequality

A(t) ≤ Ψ(t) +

∫ t

a

A(s)Φ(s) ds .

Then

A(t) ≤ Ψ(t) +

∫ t

a

Ψ(s)Φ(s) exp

(∫ t

s

Φ(u) du

)
ds

holds on [a, b].

We will make use of the following corollary.

Corollary 2.7. Let A, G be real, continuous functions on [0, T ] with G ≥ 0 and
α, β nonnegative constants. We suppose that on [0, T ] we have the inequality

A(t) ≤ A(0) +

∫ t

0

(α+ βA(s))G(s) ds .
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Then

A(t) ≤ A(0) +
(
α+ (A(0) + αN)βeβN

) ∫ t

0

G(s) ds

holds in [0, T ] with N =
∫ T

0
G(t) dt.

Proof. Apply the Gronwall inequality with [a, b] = [0, T ], Ψ(t) = A(0)+α
∫ t

0
G(s) ds

and Φ(s) = βG(s), and note that G(s) ≥ 0 implies
∫ t
s
G(u) du ≤ N .

2.8. Continuous Riemannian Metrics. A Riemannian metric on an (infinite-
dimensional) manifold M is a smooth, symmetric, bilinear, non-degenerate map

g : TM ×M TM → R .

The induced geodesic distance is defined as

dist(x, y) = inf {Lg(γ) : γ(0) = x, γ(1) = y, γ piecewise smooth} ,

where, using |v|x =
√
gx(v, v) to denote the induced norm,

Lg(γ) =

∫ 1

0

|γ̇(t)|γ(t) dt

is the length of a path. We shall denote by B(x, r) the open metric ball with respect
to the geodesic distance,

B(x, r) = {y : dist(x, y) < r}
= {γ(1) : γ(0) = x, Lg(γ) < r} .

For some statements about the geodesic distance it is only necessary for g to be
a continuous Riemnannian metric; smoothness is not required. To be precise, we
call g weakly continuous, if the map

g : TM ×M TM → R

is continuous. This is to be contrasted with strong continuity, which requires

g : M → L2
sym(TM)

to be a continuous section. Continuous Riemannian metrics and their induced geo-
desic distance have been studied in finite dimensions in [14].

2.9. Notation. We will write

f .A g

if there exists a constant C > 0, possibly depending on A, such that the inequality
f ≤ Cg holds.

For a smooth map F from In(S1,Rd) or Imm(S1,Rd) to any convenient vector
space we denote by

Dc,hF =
d

dt

∣∣∣∣
t=0

F (c+ th)

the variation in the direction h.



COMPLETENESS FOR SOBOLEV METRICS 7

3. Estimates for the Geodesic Distance. In this section we prove estimates
relating to the geodesic distance of Riemnnian metrics that are sufficiently strong.
The main result will be Prop. 3.5 showing that the ambient Hn(dθ)-norm and a
Sobolev metric of order n are equivalent with uniform constants on metric balls.
This section extends the results of [11] from plane curves to curves in Rd.

We will make the following assumption on the Riemannian metric G on the space
Imm(S1,Rd) for the rest of the section.

Given a metric ball B(c0, r) in Imm(S1,Rd), there exists a constant C, such
that

‖h‖2Hn(ds) =

∫
S1

|h|2 + |Dn
s h|2 ds ≤ CGc(h, h)

holds for all c ∈ B(c0, r) and all h ∈ Tc Imm(S1,Rd).

(Hn)

Note in particular that the class of metrics satisfying (Hn) includes Sobolev
metrics with constant coefficients. Furthermore, Lem. 2.4 shows that if the metric
G satisfies (Hn), then it also satisfies (Hk) with k ≤ n. To simplify the exposition we
will work with smooth curves for now and extend the results to Sobolev immersions
in Rem. 3.6. First we collect some results from [11].

Proposition 3.1. Let n ≥ 2 and G be a weakly continuous Riemannian metric
on Imm(S1,Rd) satisfying (Hn). Then the following functions are continuous and
Lipschitz continuous on every metric ball,

log |c′| :
(

Imm(S1,Rd),distG
)
→ L∞(S1,R) ,

`1/2c , `−1/2
c :

(
Imm(S1,Rd),distG

)
→ R>0 .

In particular the following expressions are bounded on every metric ball

‖c′‖L∞ ,
∥∥|c′|−1

∥∥
L∞

, `c, `
−1
c .

Furthermore, the norms L2(dθ) and L2(ds) are uniformly equivalent on every metric
ball, i.e., given a metric ball B(c0, r) in Imm(S1,Rd), there exists a constant C, such
that

C−1‖h‖L2(dθ) ≤ ‖h‖L2(ds) ≤ C‖h‖L2(dθ)

holds for all c ∈ B(c0, r) and all h ∈ L2(S1).

Proof. The Lipschitz continuity of `
1/2
c and `

−1/2
c is shown in [11, Cor. 4.2] and [11,

Lem. 4.4] and the Lipschitz continuity of log |c′| in [11, Lem. 4.10]. The results
there are formulated under slightly more restrictive hypotheses: it is assumed that
G is globally stronger than the Hn(ds)-norm with a constant, that does not depend
on the choice of a metric ball and that d = 2, i.e., for plane curves. Since all the
arguments only consider paths, that lie in some metric ball, the constant C in (Hn)
can also depend on the ball and the variational formulae in these proofs are valid
for curves in Rd without a change. The equivalence of the norms L2(dθ) and L2(ds)
follows from (

min
θ∈S1

|c′(θ)|
)
‖h‖2L2(dθ) ≤ ‖h‖

2
L2(ds) ≤ ‖c

′‖L∞‖h‖2L2(dθ) ,

and the boundedness of |c′(θ)| from above and below on a metric ball.

The following lemma encapsulates a general principle for proving the Lipschitz
continuity of functions with respect to the geodesic distance.
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Lemma 3.2. Let (M, g) be a Riemannian manifold with a weakly continuous metric
and f : M → F a C1-function into a normed space F . Assume that for each metric
ball B(y, r) in M there exists a constant C, such that

|Txf.v|F ≤ C (1 + |f(x)|F ) |v|x (1)

holds for all x ∈ B(y, r) and all v ∈ TxM . Then the function

f : (M,d)→ (F, | · |F )

is continuous and Lipschitz continuous on every metric ball. In particular f is
bounded on every metric ball.

If the constant C can be chosen such that (1) holds globally for x ∈ M , then f
is globally Lipschitz continuous.

By carefully following the proof, it is possible to find explicit values for the
Lipschitz constant. We will not need the explicit values and so we only note that
the Lipschitz constant of f on the ball B(y, r) will depend on the constant C for
the ball B(y, 3r).

Proof. Fix a metric ball B(y, r) and two points x1, x2 ∈ B(y, r). Then d(x1, x2) <
2r and we can choose a piecewise smooth path x(t) connecting x1 and x2 with
Lg(x) < 2r. Then d(y, x(t)) < 3r and thus the path x remains within a metric ball
of radius 3r around y.

Starting from

f(x(t))− f(x1) =

∫ t

0

Tx(τ)f.ẋ(τ) dτ ,

we obtain

|f(x(t))− f(x1)|F ≤
∫ t

0

∣∣Tx(τ)f.ẋ(τ)
∣∣
F

dτ .y,r

∫ t

0

(
1 + |f(x(τ))|F

)
|ẋ(τ)|x(τ) dτ ,

and by setting

A(t) = |f(x(t))− f(x1)|F ,

we can rewrite the above inequality as

A(t) .y,r

∫ t

0

(
1 + |f(x1)|F +A(t)

)
|ẋ(τ)|x(τ) dτ .

Using Gronwall’s inequality Cor. 2.7 this leads to

A(t) .y,r
(
1 + |f(x1)|F

) ∫ t

0

|ẋ(τ)|x(τ) dτ ≤
(
1 + |f(x1)|F

)
Lg(x) .

Taking the infimum over all paths x between x1 and x2 we obtain almost the required
inequality,

|f(x1)− f(x2)|F .y,r (1 + |f(x1)|F ) d(x1, x2) .

To remove the dependence on |f(x1)|F on the right hand side, we use the inequality
with x2 = y as follows,

|f(x1)|F ≤ |f(y)|F + |f(x1)− f(y)|F .y,r (1 + r)|f(y)|F + r .

This concludes the proof.

The next lemma is a preparation to prove Prop. 3.4. We need to calculate the
variations of Dk

s c and Dk
s |c′|. In fact we are only interested in the terms of highest

order and collect the rest in the polynomials P and Q.
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Lemma 3.3. Let c ∈ Imm(S1,Rd), h ∈ Tc Imm(S1,Rd) and k ≥ 0. Then

Dc,h

(
Dk
s c
)

= Dk
sh− 〈Dk

sh, v〉v − k〈Dsh, v〉Dk
s c− 〈Dsh,D

k
s c〉v +

+ P (Dsc, . . . ,D
k−1
s c;Dsh, . . . ,D

k−1
s h)

Dc,h

(
Dk
s |c′|

)
= 〈Dk+1

s h, v〉|c′| − (k − 1)〈Dsh, v〉Dk
s |c′|+ 〈Dsh,D

k+1
s c〉|c′|+

+Q(|c′|, . . . , Dk−1
s |c′|, Dsc, . . . ,D

k
s c;Dsh, . . .D

k
sh)

and P (. . . ) and Q(. . . ) are polynomials in the respective variables and linear in the
components of Dsh, . . . ,D

k
sh.

Proof. We have

Dc,h(Dk
s ) = −

k−1∑
j=0

Dj
s ◦ 〈Dsh, v〉 ◦Dk−j

s ,

and thus

Dc,h

(
Dk
s c
)

= Dk
sh−

k−1∑
j=0

Dj
s

(
〈Dsh, v〉Dk−j

s c
)
.

Next we use the identity [37, (26.3.7)],

k−1∑
j=i

(
j

i

)
=

(
k

i+ 1

)
,

and the product rule for differentiation to obtain

Dc,h

(
Dk
s c
)

= Dk
sh−

k−1∑
j=0

j∑
i=0

(
j

i

)
Di
s〈Dsh, v〉Dk−j+j−i

s c

= Dk
sh−

k−1∑
i=0

k−1∑
j=i

(
j

i

)
Di
s〈Dsh, v〉Dk−i

s c

= Dk
sh−

k−1∑
i=0

(
k

i+ 1

)
Di
s〈Dsh, v〉Dk−i

s c .

It is clear that the expression is linear in h. It remains to isolate the terms involving
derivatives of order k. These are

Dk
sh−

(
k

1

)
〈Dsh, v〉Dk

s c−
(
k

k

)
〈Dk

sh, v〉Dsc−
(
k

k

)
〈Dsh,D

k−1
s v〉Dsc =

= Dk
sh− 〈Dk

sh, v〉v − k〈Dsh, v〉Dk
s c− 〈Dsh,D

k
s c〉Dsc ,

thus proving the first formula. For the second one we have

Dc,h

(
Dk
s |c′|

)
= Dk

s (〈Dsh, v〉|c′|)−
k−1∑
j=0

Dj
s

(
〈Dsh, v〉Dk−j

s |c′|
)

= Dk
s (〈Dsh, v〉|c′|)−

k−1∑
i=0

(
k

i+ 1

)
Di
s〈Dsh, v〉Dk−i

s |c′| .

The terms involving k + 1 derivatives are

〈Dk+1
s h, v〉|c′|+ 〈Dsh,D

k+1
s c〉|c′|+ 〈Dsh, v〉Dk

s |c′| − k〈Dsh, v〉Dk
s |c′|

and the remaining terms can be collected in the polynomial Q(. . . ).
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This result can be seen as the generalization of [11, Thm. 4.7] to curves in Rd.
It is the main tool to prove Prop. 3.5.

Proposition 3.4. Let n ≥ 2 and G be a weakly continuous Riemannian metric on
Imm(S1,Rd) satisfying (Hn).

Then the following functions are continuous and Lipschitz continuous on every
metric ball,

Dk
s c :

(
Imm(S1,Rd),distG

)
→ L2(S1,Rd) , 0 ≤ k ≤ n ,

Dk
s c :

(
Imm(S1,Rd),distG

)
→ L∞(S1,Rd) , 0 ≤ k ≤ n− 1 ,

Dk
s |c′| :

(
Imm(S1,Rd),distG

)
→ L2(S1,R) , 0 ≤ k ≤ n− 1 ,

Dk
s |c′| :

(
Imm(S1,Rd),distG

)
→ L∞(S1,R) , 0 ≤ k ≤ n− 2 .

In particular the following expressions

‖c‖L∞ , . . . , ‖Dn−1
s c‖L∞ ,

∥∥|c′|∥∥
L∞

, . . . ,
∥∥Dn−2

s |c′|
∥∥
L∞

‖Dn
s c‖L2(dθ), ‖Dn

s c‖L2(ds), ‖c‖Hn(ds),
∥∥Dn−1

s |c′|
∥∥
L2(dθ)

are bounded on every metric ball.

Proof. Fix a metric ball B(c0, r). We will use Lem. 3.2 to establish the proposition.
Let us start with the Lipschitz continuity of Dk

s c in the L∞-norm. We fix n and
proceed via induction on k. For k = 0 we have Dc,hc = h and via

‖h‖L∞ .d,R ‖h‖L2(ds) + ‖Dsh‖L2(ds) .d,R
√
Gc(h, h) ,

we are done. For k = 1 we similarly have

Dc,h(Dsc) = Dsh− 〈Dsh, v〉v ,
and

‖Dsh− 〈Dsh, v〉v‖L∞ ≤ ‖Dsh‖L∞ .d,r ‖D2
sh‖L2(ds) .d,R

√
Gc(h, h) .

For the induction step assume 2 ≤ k ≤ n−1 and that the result has been established
for k − 1. Then ‖Dj

sh‖L∞ is bounded on metric balls for 0 ≤ j ≤ k − 1 and we can
estimate using Lem. 3.3,∥∥Dc,h

(
Dk
s c
)∥∥
L∞
≤
∥∥Dk

sh
∥∥
L∞

+ (k + 1) ‖Dsh‖L∞
∥∥Dk

s c
∥∥
L∞

+

+
∥∥P (Dsc, . . . , D

k−1
s c;Dsh, . . . ,D

k−1
s h)

∥∥
L∞

.d,R
(
1 + ‖Dk

s c‖L∞
)√

Gc(h, h) ,

since P is linear in h. Via Lem. 3.2 this concludes the proof of the L∞-continuity
of Dk

s c.
Next we show the L2(dθ)-continuity of Dk

s c for 0 ≤ k ≤ n. Again via Lem. 3.3
we have∥∥Dc,h

(
Dk
s c
)∥∥
L2(dθ)

≤
∥∥Dk

sh
∥∥
L2(dθ)

+ (k + 1) ‖Dsh‖L∞
∥∥Dk

s c
∥∥
L2(dθ)

+

+
∥∥P (Dsc, . . . ,D

k−1
s c;Dsh, . . . ,D

k−1
s h)

∥∥
L2(dθ)

Since c,Dsc, . . . ,D
n−1
s c are bounded in the L∞-norm, we can bound P (. . . ) in the

L∞-norm by∥∥P (Dsc, . . . ,D
k−1
s c;Dsh, . . . ,D

k−1
s h)

∥∥
L∞

.d,R
√
Gc(h, h) ,

and thus ∥∥Dc,h

(
Dk
s c
)∥∥
L2(dθ)

.d,R
(
1 + ‖Dk

s c‖L2(dθ)

)√
Gc(h, h) .
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Now apply Lem. 3.2.
The Lipschitz continuity of Dk

s |c′| in the L∞- and L2(dθ)-norms can be shown in
exactly the same way, using the second part of Lem. 3.3; note that since k ≤ n− 1,
all the terms involving Dsc, . . .D

k
s c in Q(. . . ) are bounded on metric balls in the

L∞-norm and thus can be effectively ignored.

This is the main result of the section and it will be essential to show metric
completeness of Sobolev metrics.

Proposition 3.5. Let n ≥ 2 and G be a weakly continuous Riemannian metric on
Imm(S1,Rd) satisfying (Hn).

Then, given a metric ball B(c0, r) in Imm(S1,Rd), there exists a constant C,
such that

C−1‖h‖Hn(dθ) ≤ ‖h‖Hn(ds) ≤ C‖h‖Hn(dθ)

holds for all c ∈ B(c0, r) and all h ∈ Hn(S1,R).

The proof of this proposition can be found in [11, Lem. 5.1] for plane curves.
The proof can be reused without change for curves in Rd, if we refer to Prop. 3.4
to obtain boundedness of Dk

s |c′| on metric balls, where necessary.
If G is a Sobolev metric of order n ≥ 2 with constant coefficients, then Lem. 2.4

shows that the norm induced by Gc(·, ·) is equivalent to the Hn(ds)-norm with a
uniform constant, i.e., there exists C1, such that

C−1
1 ‖h‖Hn(ds) ≤

√
Gc(h, h) ≤ C1‖h‖Hn(ds)

holds for all c ∈ Imm(S1,Rd) and all h ∈ Hn(S1,R). Hence the the norm induced
by Gc(·, ·) is also equivalent to the ambient Hn(dθ)-norm with uniform constants
on every metric ball.

Remark 3.6. Let n ≥ 2 and G be a weakly continuous metric on Imm(S1,Rd). If
G can be extended to a weakly continuous Riemannian metric on In(S1,Rd), then
the statements of this section can also be extended from Imm(S1,Rd) to In(S1,Rd).
This is true for Prop. 3.1, the calculations in Lem. 3.3, Prop. 3.4 and Prop. 3.5.
Consider for example the inequality

‖Dn
c1c1 −D

n
c2c2‖L2(dθ) ≤ C dist(c1, c2) ,

from Prop. 3.4, valid for c1, c2 ∈ Imm(S1,Rd) in a bounded metric ball. Here dist
is the geodesic distance on (Imm(S1,Rd), G). Proposition A.2 and Rem. A.3 show
that the geodesic distance on In(S1,Rd) restricted to Imm(S1,Rd) coincides with
the geodesic distance on Imm(S1,Rd). Given c1, c2 ∈ In(S1,Rd), choose sequences

of smooth immersions cj1, c
j
2 ∈ Imm(S1,Rd) with cji → ci in In(S1,Rd). Then

dist(cj1, c
j
2)→ dist(c1, c2), because the metric topology is weaker than the manifold

topology. The left hand side also converges, because c 7→ Dn
s c is a continuous map

In(S1,Rd)→ L2(S1,Rd). Thus the inequality continues to hold on metric balls in
In(S1,Rd).

4. Metric and Geodesic Completeness.

4.1. Space of Sobolev Immersions. The estimates of the previous section allow
us to find upper and lower bounds for the geodesic distance on In(S1,Rd).

Lemma 4.2. Let n ≥ 2 and G be a Sobolev metric of order n with constant coeffi-
cients. Then
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1. Given a metric ball B(c0, r) in In(S1,Rd), there exists C, such that

‖c1 − c2‖Hn(dθ) ≤ C dist(c1, c2) ,

holds for all c1, c2 ∈ B(c0, r).
2. Given c0 ∈ In(S1,Rm), there exist r > 0 and C, such that

dist(c1, c2) ≤ C‖c1 − c2‖Hn(dθ) ,

holds for all c1, c2 ∈ B(c0, r).

Proof. Given c1, c2 ∈ B(c0, r), let c(t, θ) be a piecewise smooth path of length
L(c) < r connecting them. Then,

‖c1 − c2‖Hn(dθ) ≤
∫ 1

0

‖ċ(t)‖Hn(dθ) dt ≤ C
∫ 1

0

√
Gc(ċ, ċ) dt ≤ CL(c) ,

where C is given by Prop. 3.5 and depends only on c0 and r. By taking the infimum
over all paths we obtain the first part of the statement.

Given c0 ∈ In(S1,Rd), let U be a convex, open neighborhood of c0 in In(S1,Rd)
and r > 0, such that B(c0, r) ⊆ U . Such an r exists, because G is a smooth, strong
Riemannian metric and hence the geodesic distance induces the manifold topology,
see [31, Prop. 6.1]. Given c1, c2 ∈ B(c0, r), define the path c(t) = c1 + t(c2 − c1) to
be the linear interpolation between c1 and c2. Then,

dist(c1, c2) ≤ L(c) =

∫ 1

0

√
Gc(c2 − c1, c2 − c1) dt ≤ C‖c2 − c1‖Hn(dθ) ,

with C again given by Prop. 3.5. This proves the second part.

The lemma shows that the identity map

Id : (In(S1,Rd),dist)→ (In(S1,Rd), ‖ · ‖Hn(dθ))

is locally bi-Lipschitz. This is sufficient to show the metric completeness of the
space (In(S1,Rd), G).

Theorem 4.3. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. Then

1.
(
In(S1,Rd),dist

)
is a complete metric space;

2.
(
In(S1,Rd), G

)
is geodesically complete.

Proof. Let (cj)j∈N be a Cauchy sequence with respect to the geodesic distance.
Then the sequence remains within a bounded metric ball in In(S1,Rd) and by
Lem. 4.2 it is also a Cauchy sequence with respect to ‖ · ‖Hn(dθ). As Hn(S1,Rd)
is complete, there exists a limit c∗ ∈ Hn(S1,Rd) and ‖cj − c∗‖Hn(dθ) → 0. From

Prop. 3.1 we see that ‖∂θcj(θ)‖ ≥ C > 0 is bounded from below, away from 0, on
metric balls and thus, so is the limit; in particular c∗ ∈ In(S1,Rd). Finally, the
second part of Lem. 4.2 shows that dist(cj , c∗) → 0. Hence (In(S1,Rd),dist) is
complete.

It is shown in [11, Sect. 3] that Sobolev metrics of order n ≥ 2 are smooth on
In(S1,Rd) and [31, Prop. 6.5] shows that on a strong Riemannian manifold metric
completeness implies geodesic completeness.

A direct proof of geodesic completeness for plane curves can be found in [11]. In
the next section we will prove the third completeness statement, the existence of
minimizing geodesics between any two curves.
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4.4. Space of Smooth Immersions. Of course one can also consider Sobolev
metrics on the space Imm(S1,Rd) of smooth immersions. In this case we do not
have metric completeness, but interestingly enough the space (Imm(S1,Rd), G) is
geodesically complete. We are nevertheless able to identify the metric completion
of Imm(S1,Rd). That the metric completion of Imm(S1,Rd) equals In(S1,Rd) for
plane curves was remarked in [8] using the same method as below.

Theorem 4.5. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. For m > n we have:

1. The geodesic distance on (Im, G) coincides with the restriction of the geodesic
distance on (In, G) to Im. In particular the metric completion of (Im,distn)
is (In,distn).

2. (Im, G) is geodesically complete.

The same holds for m =∞, i.e., the space Imm of smooth immersions.

Proof. Let m > n or m = ∞. Then Im is a dense, weak submanifold of In and
thus by Prop. A.2 the restriction of the geodesic distance on In coincides with the
geodesic distance on Im. In particular the notation (Im,dist) is unambiguous. The
metric space (In,dist) is complete by Thm. 4.3 and thus it is the metric completion
of (Im,dist). For m =∞ we need to use Rem. A.3 and one can choose the sequence
of operators Pj : Hn → C∞, for example, to be convolution with mollifiers, see,
e.g., [1, Sect. 2.28].

Geodesic completeness of (Im, G) follows from the property of the geodesic equa-
tion to preserve the smoothness of the initial conditions. Thus, given (c0, u0) ∈
TIm, the corresponding geodesic c(t) exists for all time in In and by [11, Thm.
3.7], which remains valid for curves in Rd, we have (c(t), ċ(t)) ∈ TIm for all t > 0.
See also [17, Thm. 12.1] and [6, App. A] for more details on why the geodesic
equation preserves the smoothness of initial conditions.

5. Existence of Minimizing Geodesics.

5.1. Space of Sobolev Immersions. In this section we will show that any two
curves in the same connected component of In(S1,Rd) can be joined by a min-
imizing geodesic with respect to a Sobolev metric of order n ≥ 2 with constant
coefficients. See Sect. 6.3 for a discussion of the connectivity of In(S1,Rd).

We will denote in this section the unit interval by I = [0, 1]. To shorten notaion
we set

H1
tH

n
θ = H1

tH
n
θ ([0, 1]× S1,Rd) ∼= H1(I,Hn(S1,Rd)) ,

and similarly for CtH
n
θ , L2

tL
2
θ, etc.

Theorem 5.2. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. Given c0 ∈ In(S1,Rd) and a closed set A ⊆ In(S1,Rd), such that at
least one curve in A belongs to the same connected component as c0, there exists a
geodesic realizing the minimal distance between c0 and A.

To restate the theorem, given c0 and A, there exists c1 ∈ A and a geodesic c(t)
with c(0) = c0 and c(1) = c1, such that

L(c) = dist(c0, c1) = dist(c0, A) = inf
c̃∈A

dist(c0, c̃) ,

and the same holds for the energy E(c) and the squared distance.
Before we proceed with the proof of the theorem, which will be a bit technical,

we would like comment on possible generalizations of the result.
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5.3. Metrics with Non-Constant Coefficients. Sobolev metrics with non-con-
stant coefficients have been of interest; for example [43, 6] looks at second order
metrics and [32] at metrics of higher order. Similarly length-weighted metrics are
studied in [3].

Remark 5.4. The proof of Thm. 5.2 continues to work in a slightly more general
setting. We need that G is a continuous Riemannian metric on In(S1,Rd), which is
uniformly bounded and uniformly coercive with respect to the background Hn(dθ)-
norm on every metric ball. This is necessary to show that a minimizing sequence is
bounded in the Hilbert space H1(I,Hn(dθ)). The condition n ≥ 2 is necessary to
show that weak limits still satisfy |c′(t, θ)| > 0. In fact n > 3/2 would be sufficient
here.

Finally, to show that the energy E is sequentially weakly lower semicontinuous
we used special properties of the arc length derivative, established in Lem. 5.9. The
same argument works, if the metric G is of the form

Gc(h, h) =

N∑
i=1

‖Ai(c)h‖2Fi

with some Hilbert spaces Fi and smooth maps Ai : In → L(Hn, Fi), and the maps
Ai have the following property:

cj → c weakly in H1
t Inθ

(cj)j∈N bounded in H1
tH

n
θ
⇒ Ai(c

j)ċj ⇀ Ai(c)ċ weakly in L2(I, Fi) . (2)

The proof can then be reused without change.

This remark allows us to consider Sobolev metrics with non-constant coefficients,
for example the curvature weighted metric of order 3,

Gc(h, h) =

∫
S1

(1 + κ2)(|h|2 + |D3
sh|2) ds ,

or the length weighted metric of order 2

Gc(h, h) =

∫
S1

2π

`c
|h|2 +

(
`c
2π

)3

|D2
sh|2 ds .

The latter metric has the property, that it is constant on curves, which are para-
metrized by constant speed; that is, if c ∈ I2 with |c′| ≡ const., then |c′| = `c/2π
and

Gc(h, h) =

∫
S1

|h|2 + |h′′|2 dθ .

We see that the right hand side is independent of c. However the uniform bound-
edness and uniform coercivity for this metric do not follow immediately from the
results in Sect. 3, since it is not clear that G satisfies hypothesis (Hn).

Remark 5.5. A related existence result is presented in [41]. There the authors
assume that g : U → L2

sym(E) is a continuous Riemannian metric, with U being an
open subset of a Hilbert space E, uniformly bounded and coercive with respect to
the background metric. With regard to continuity they make the following stronger
assumption: let F be another Hilbert space and the embedding E ↪→ F compact;
then g should be continuous with respect to the topology of F .

While we cannot use this result by itself, since the functional
∫
S1 |Dn

s h|2 ds is
not continuous in a weaker topology than the Hn(dθ) topology, the above result
permits us to add lower order terms to the metric. The embedding Hn ↪→ Hn−1
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is compact and so we are free to add metrics, that are continuous on In−1 to G,
without having to worry, whether they are of the specific form to satisfy (2).

5.6. Weak Convergence of Arc Length Derivatives. To prove Thm. 5.2 we
will need a result about the behaviour of arc length derivatives. This will be
Lem. 5.9. We start with two facts about smoothness of operations in Sobolev
spaces. The first is a simple generalization of [24, Prop. 2.20].

Lemma 5.7 (Prop. 2.20, [24]). Let M be a closed manifold, s > dimM/2 and
g ∈ C∞b (Rd,Rm). Then left-translation

Lg : Hs(M,Rd)→ Hs(M,Rm) , f 7→ g ◦ f

is a C∞-map.

We now apply this lemma to show that the term |c′|−1, that appears in the arc-
length derivative is well-behaved. We will need to apply the lemma with Sobolev
spaces of non-integer order. To emphasize this we will use s instead of n for the
Sobolev order.

Lemma 5.8. Let s ∈ R and s > 3/2. The map

Is(S1,Rd)→ Hs−1(S1,Rd), c 7→ 1

|c′|

is smooth and bounded on sets with ‖c‖Hsθ bounded from above and infθ∈S1 |c′| > M
for some M > 0.

Proof. Let U ⊂ Is(S1,Rd) be an open subset with ‖c‖Hsθ bounded from above
and inf |c′| from below. Then we can extend the function g(x) = 1/|x| to g ∈
C∞b (Rd,R), such that g ◦ c′(θ) = 1/|c′(θ)| for all c ∈ U . The lemma now follows
from Lem. 5.7.

And now the main lemma.

Lemma 5.9. Let s ∈ R, s > 3/2 and 0 ≤ k ≤ s. If cj , c ∈ H1
t Isθ and hj , h ∈ L2

tH
k
θ ,

then
cj ⇀ c weakly in H1

t Isθ
hj ⇀ h weakly in L2

tH
k
θ

(hj)j∈N bounded in L2
tH

k
θ

⇒ Dk
cjh

j ⇀ Dk
ch weakly in L2

tL
2
θ .

Proof. We will show that the above hypotheses imply

Dcjh
j ⇀ Dch weakly in L2

tH
k−1
θ and

(Dcjh
j)j∈N is bounded in L2

tH
k−1
θ .

The result then follows by induction. Let ε be such that 0 < ε < 1 and s− ε > 3/2.
Since a sequence converges against a limit, if every subsequence has a subsequence
converging against that same limit, we are free to work with subsequences in our
argument. The embedding H1

tH
s
θ ↪→ CtH

s−ε
θ is compact, and so we can choose a

subsequence of (cj)j∈N, such that cj → c in CtH
s−ε
θ .

The sequence (hj)j∈N is bounded, L2
tH

2k−2
θ is dense in L2

tH
k
θ and so by [47, Thm.

V.1.3] it is enough show that

〈Dcjh
j −Dch, u〉L2

θH
k−1
θ
→ 0
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for every u ∈ L2
tH

2k−2
θ . Setting w = u+ (−1)k−1∂2k−2

θ u we have w ∈ L2
tL

2
θ and∣∣∣〈Dcjh

j −Dch, u〉L2
tH

k−1
θ

∣∣∣ =
∣∣∣〈Dcjh

j −Dch,w〉L2
tL

2
θ

∣∣∣ ≤
≤
∣∣∣∣∫ 1

0

∫
S1

〈(
|∂θcj |−1 − |∂θc|−1

)
∂θh

j + |∂θc|−1
(
∂θh

j − ∂θh
)
, w
〉

dθ dt

∣∣∣∣
≤
∥∥|∂θcj |−1 − |∂θc|−1

∥∥
CtCθ

‖∂θhj‖L2
tL

2
θ
‖w‖L2

tL
2
θ

+
∣∣∣〈∂θhj − ∂θh, |∂θc|−1w

〉
L2
tL

2
θ

∣∣∣.
Using Lem. 5.8 with s− ε, since I = [0, 1] is compact, we obtain |∂θcj |−1 → |∂θc|−1

not only pointwise in t, but uniformly, that is in CtH
s−ε−1
θ , and with the help of the

Sobolev embedding Hs−ε−1
θ ↪→ Cθ also in CtCθ. The term ‖∂θhj‖L2

tL
2
θ

is bounded

because weakly convergent sequences are bounded. Since ∂θh
j ⇀ ∂θh weakly in

L2
tH

k−1
θ , we obtain 〈

∂θh
j − ∂θh, |∂θc|−1w

〉
L2
tL

2
θ

→ 0 .

This shows the required weak convergence.
The boundedness of (Dcjh

j)j∈N follows from the inequality∥∥|∂θcj |−1∂θh
j
∥∥
L2
tH

k−1
θ

≤ C
∥∥|∂θcj |−1

∥∥
CtH

n−ε
θ

∥∥∂θhj∥∥L2
tH

k−1
θ

.

Because c(t) ∈ Is and cj → c in CtH
s−ε
θ , the set {cj(t) : (t, j) ∈ I ×N} clearly has

|c′| bounded from below and thus by Lem. 5.8 the first term on the right hand side
is bounded. This concludes the proof.

Now we have all the tools together to prove the main theorem about the existence
of minimizers.

Poof of Theorem 5.2. Define the energy

E(c) =

∫ 1

0

Gc(ċ, ċ) dt ,

and the set

Ωc0,AH
1 =

{
c ∈ H1(I, In) : c(0) = c0, c(1) ∈ A

}
,

of curves starting at c0 and ending in A. It is enough to show that E attains
a minimum on the set Ωc0,AH

1, since it is shown in [27, Lem. 2.4.3], that the
minimum is a minimizing geodesic between c0 and c(1) ∈ A.

Let (cj)j∈N be a minimizing sequence. Then E(cj) is bounded and we let r2 > 0
be an upper bound. We have the inequality

dist(c0, c
j(t)) ≤

√
E(cj) ≤ r ∀(t, j) ∈ I × N ,

and we see that all curves cj(t) lie in a metric ball around c0 of radius r. This
implies via Prop 3.5 the existence of a constant C > 0, s.t.

C−1‖h‖Hnθ ≤
√
Gcj(t)(h, h) ≤ C‖h‖Hnθ (3)

holds for all h ∈ Hn and all curves cj(t).
As E(cj) is bounded for j ∈ N and cj(0) = c0, it follows from

‖cj(t)‖Hnθ ≤ ‖c0‖Hnθ +‖cj(t)−c0‖Hnθ ≤ ‖c0‖Hnθ +C1 dist(c0, c
j(t)) ≤ ‖c0‖Hnθ +C1R ,

with the constant C1 given by Lem. 4.2, together with

‖cj‖2H1
tH

n
θ

=

∫ 1

0

‖cj‖2Hnθ + ‖ċj‖2Hnθ dt ≤
(
‖c0‖2Hnθ + C1R

)2

+ C2E(cj) ,
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that ‖cj‖H1
tH

n
θ

is bounded as well. Thus there exists a weakly convergent subse-

quence, again denoted by (cj)j∈N, converging to c∗ ∈ H1
tH

n
θ . Let ε be chosen such

that n−ε > 3/2 and 0 < ε < 1. Since the embedding H1
tH

n
θ ↪→ CtH

n−ε
θ is compact,

by the Aubin–Dubinskii lemma—see, e.g., [2]—we can further assume that cj → c∗

strongly in CtH
n−ε
θ .

From Prop. 3.1 we obtain another constant C2 = C2(c0, r), such that∣∣∂θcj(t, θ)∣∣ ≥ C2 ∀θ ∈ S1, ∀t ∈ I, ∀j ∈ N , (4)

and because of the strong convergence in CtH
n−ε
θ the bound remains valid for the

limit as well. In particular this shows c∗(t) ∈ In for all t ∈ I. Weak convergence in
H1
tH

n
θ also shows c∗(0) = c0 and c∗(1) ∈ A and thus c∗ ∈ Ωc0,AH

1.
It remains to show that c∗ is a minimizer for E. Because G is a Sobolev metric

with constant coefficients, we can write E as

E(c) =

n∑
k=0

ak

∥∥∥Dk
c ċ
√
|c′|
∥∥∥2

L2
tL

2
θ

with constants ak > 0. Here we write Dc for Ds to emphasize the dependence of
the arc length derivative on the curve c. As cj is bounded in H1

tH
n
θ and cj ⇀ c∗

weakly in H1
tH

n
θ , it follows from Lem. 5.9 that Dk

cj ċ
j ⇀ Dk

c∗ ċ
∗ weakly in L2

tL
2
θ.

Furthermore cj → c∗ in CtH
n−ε
θ and hence

√
|∂θcj | →

√
|∂θc∗| in CtH

n−1−ε
θ .

Since n− 1− ε > 1/2, the pointwise product converges weakly,

Dk
cj ċ

j
√
|∂θcj |⇀ Dk

c∗ ċ
∗
√
|∂θc∗| in L2

tL
2
θ ,

and since the norm-squared function h 7→ ‖h‖2 is weakly sequentially lower semi-
continuous, it follows that

E(c∗) =

n∑
k=0

ak

∥∥∥Dk
c∗ ċ
∗
√
|∂θc∗|

∥∥∥2

L2
2L

2
θ

≤

≤ lim inf
j→∞

n∑
k=0

ak

∥∥∥Dk
cj ċ

j
√
|∂θcj |

∥∥∥2

L2
2L

2
θ

≤ lim inf
j→∞

E(cj) .

Thus c∗ is a minimizer.

5.10. Space of Smooth Immersions. We can also consider the question whether
minimizing geodesics exist in the space Imm(S1,Rd) of smooth curves. It is a
characteristic property of geodesic equations on function spaces to preserve the
smoothness of initial conditions. Let G be a Sobolev metric of order n and (c0, u0)
an initial position and velocity, that lie in Hm with m > n or even in C∞. Then
the geodesic with the given initial conditions will also lie in Hm or C∞ respectively.
This behaviour is shared by the Euler equation [18], the Camassa-Holm equation
[29, 21], geodesic equations of general Sobolev metrics on the diffeomorphism group
[44] as well as on the space of curves [35], immersions [9] or Riemannian metrics
[10] to name but a few examples [7].

It is then tempting to argue as follows: given two smooth curves c0, c1, there exists
a minimizing geodesic c(t) ∈ In(S1,Rd) connecting them. The geodesic cannot lose
or gain smoothness and since the endpoints are smooth, so is the whole geodesic.
Unfortunately this argument is flawed. To use the preservation of smoothness along
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the geodesic, we need to know about the smoothness of both the initial position c0
and the initial velocity u0. The map

(c0, u0) 7→
(
Expc0(u0), ∂t|t=1 Expc0(tu0)

)
preserves smoothness. Whether the map

(c0, c1) 7→ Logc0(c1)

does the same is a different—and a more difficult—question.
A positive answer is given in [26] for right-invariant Sobolev metrics in a neigh-

borhood around the identity on the diffeomorphism group of the torus and one
suspects that the proof can be generalized without too much difficulty to arbitrary
compact manifolds. On the space of curves the problem remains open.

Open Question. Let G be a Sobolev metric with constant coefficients of order
n ≥ 2. If c(t) is a minimizing geodesic in In(S1,Rd) between c0 and c1 as given
by Thm. 5.2 and c0, c1 ∈ Imm(S1,Rd), does it follow that c(t) ∈ Imm(S1,Rd) for
all t ∈ I? In other words, can any two curves in the same connected component of
Imm(S1,Rd) be joined by a minimizing geodesic?

6. Shape Space.

6.1. Quotient Spaces. In this section we want to transfer the completeness results
from In(S1,Rd) and Imm(S1,Rd) to the shape space of unparametrized curves,

Bi(S
1,Rd) = Imm(S1,Rd)/Diff(S1) .

This space is a manifold, if we restrict ourselves to the regular orbits of the Diff(S1)-
action. Denote by Immf (S1,Rd) the set of immersions upon which Diff(S1) acts
freely. We have

c ∈ Immf (S1,Rd) iff
(
c ◦ ϕ = c ⇒ ϕ = IdS1

)
.

The set Immf is the open and dense set of regular points for the Diff(S1)-action
and we denote the quotient space by

Bi,f (S1,Rd) = Immf (S1,Rd)/Diff(S1) .

It is shown in [15, Sect. 1.5] that Bi,f is a smooth Fréchet manifold and the
projection π : Immf → Bi,f is a smooth prinicpal fibration with structure group
Diff(S1). The space Bi is almost a manifold; for plane curves its singularities are
described in [34, Sect. 2.5]. Since Immf is open and dense in Imm, so is Bi,f in Bi.

We will also need the shape space of Sobolev immersions,

Bn(S1,Rd) = In(S1,Rd)/Dn(S1) .

The space Bn does not appear to carry the structure of a manifold. To see this,
note that for a plane curve c ∈ Immf , a chart arout π(c) ∈ Bi,f is given by

Φ : {a : ‖a‖C1 < ε} ⊂ C∞ → Bi,f , a 7→ π(c+ anc) ,

with ε sufficiently small. However, if c ∈ In, then the normal field nc lies only in
Hn−1. Similarly the action of Dn(S1) on In is only continuous and not smooth.
We will show that the space Bn is the metric completion of Bi and Bi,f .

While Bn may not be a manifold, it is a Hausdorff topological space. This can
be shown more generally for the quotient of Is(M,N), where M is a compact
and N a finite-dimensional manifold, both without boundary. The following is a
generalization of the results in [15] to the Sobolev category.
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Proposition 6.2. Let M,N be finite-dimensional manifolds without boundary, M
compact and s ∈ R with s > dimM/2 + 1. Then Ds(M) acts continuously on
Is(M,N) and the quotient space Is(M,N)/Ds(M) is Hausdorff.

Proof. The continuity of the action is shown in [24, Prop. 3.10]. To show that
the quotient space is Hausdorff, the proof of [15, Thm. 2.1]—showing the same
statement for the quotient space Immprop(M,N)/Diff(M) in the smooth category—
can be reused without changes. Lemmas 2.2, 2.3, 2.5 and 2.8, Claim 2.6 as well as
Construction 2.7 in [15] are valid more generally for C1-immersions.

6.3. Connectivity. The connectivity of the space of immersions and of the shape
space depends on the dimension d of the ambient space. For d = 2 the spaces
Immf , Imm and In decompose into connected components according to the de-
gree of the curve [34, Sect. 2.9]. The groups Diff(S1) and Dn(S1) also have two
connected components, the set of orientation-preserving and orientation-reversing
diffeomorphisms. Orientation-preserving diffeomorphisms respect the degree of the
curve while orientation-reversing diffeomorphisms map curves of degree p to curves
of degree −p. Denote by Immp curves of degree p and by Diff+(S1) the orientation-
preserving subgroup. Then the connected components Bi,p of Bi correspond to the
non-negative degrees in the sense that Bi =

⋃
p≥0Bi,p and

π−1(Bi,p) = Immp ∪ Imm−p .

For p 6= 0 we have

Bi,p = (Immp ∪ Imm−p) /Diff(S1) ∼= Immp /Diff+(S1) ,

and the latter is a quotient of a connected space. For degree p = 0 one simply has
Bi,0 = Imm0 /Diff(S1). Similar statements hold for the spaces Immf and In. See
[34, 28] for details.

For d > 2 the situation is simpler, since then Immf , Imm and In are connected
and path-connected and thus so are Bi,f , Bi and Bn.

6.4. Completeness. Now let us equip In with a Sobolev metric G of order n ≥ 2
with constant coefficients. Then (In,dist) with the induced geodesic distance is a
complete metric space and we can project the metric to a metric on Bn using the
following general lemma.

Lemma 6.5. Let (X, d) be a metric space upon which the group G acts by isome-
tries. If the quotient space X/G is Hausdorff, then

d(G.x,G.y) := inf
g,h∈G

d(g.x, h.y) = inf
h∈G

d(x, h.y)

defines a metric on X/G, that is compatible with the quotient topology on X/G.
If (X, d) is complete, then so is (X/G, d).

Proof. Since G acts on X by isometries, we have d(g.x, h.y) = d(x, g−1h.y). Then

d(G.x,G.z) = inf
g∈G

d(x, g.z) ≤ d(x, h.y) + inf
g∈G

d(h.y, g.z) = d(x, h.y) + d(G.y,G.z) .

As h ∈ G is arbitrary taking the infimum shows the triangle inequality. Symmetry
is obvious, as is the property d(G.x,G.x) = 0.
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To see that the topologies coincide, denote by BX(x, ε) and BX/G(G.x, ε) the
open balls in X and X/G respectively and by π : X → X/G the canonical projec-
tion. Then

π−1
(
BX/G(G.x, ε)

)
=

{
y : inf

h∈G
d(x, h.y) < ε

}
= {g.y : g ∈ G, y ∈ BX(x, ε)} = G.BX(x, ε)

and since G.BX(x, ε) is open in X, it follows that BX/G(x, ε) is open in X/G.

Now let U ⊆ X/G be open, G.x ∈ U and ε be such that BX(x, ε) ⊆ π−1(U). If
d(G.x,G.y) < ε for some y, then d(x, g.y) < ε for some g and hence g.y ∈ BX(x, ε),
implying G.y = π(g.y) ∈ U . Thus BX/G(G.x, ε) ⊆ U and the topology induced
by d coincides with the quotient topology. As X/G is assumed to be Hausdorff, it
follows that d(G.x,G.y) = 0 implies G.x = G.y.

Now let (X, d) be complete and (G.xn)n∈N a Cauchy sequence. We can choose a
subsequence, such that d(G.xn, G.xn+1) < 2−n holds for all n ∈ N. Next we choose
representatives of the orbit with d(xn, xn+1) < d(G.xn, G.xn+1) + 2−n. Then

d(xn, xn+k) ≤
n+k−1∑
i=n

d(xi, xi+1) ≤
n+k−1∑
i=n

d(G.xi, G.xi+1) + 2−i ≤ 22−n(1− 2−k) ,

showing that (xn)n∈N is a Cauchy sequence in X. Let x be the limit. Then
limG.xn = limπ(xn) = G.x and thus (X/G, d) is complete.

With the help of Lem. 6.5 we can show that (Bn,dist) is a complete metric space
and furthermore the infimum in the definition of the quotient metric is attained.

Theorem 6.6. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. Then (Bn(S1,Rd),dist) with the quotient metric induced by the geodesic
distance on (In(S1,Rd), G) is a complete metric space.

Given C1, C2 ∈ Bn(S1,Rd) in the same connected component, there exist c1, c2 ∈
In(S1,Rd) with c1 ∈ π−1(C1) and c2 ∈ π−1(C2), such that

distB(C1, C2) = distI(c1, c2) ;

equivalently, the infimum in

distB(π(c1), π(c2)) = inf
ϕ∈Dn(S1)

distI(c1, c2 ◦ ϕ)

is attained.

Proof. It is shown in Prop. 6.2 that Bn(S1,Rd) is Hausdorff and in Thm. 4.3, that
(In(S1,Rd),distI) is complete. Then by Lem. 6.5 it follows that (Bn(S1,Rd),distB)
is a complete metric space.

Fix c1, c2 ∈ In(S1,Rd). By Prop. 6.2 the orbit c2 ◦ Dn(S1) is closed and so
by Thm. 5.2 there exists a geodesic realizing the minimal distance between c1 and
the orbit c2 ◦ Dn(S1). The endpoint of the geodesic is of the form c2 ◦ ϕ for
some ϕ ∈ Dn(S1) and this ϕ realizes the infimum in the definition of the distance
distB(π(c1), π(c2)).

6.7. Length Space. The Sobolev shape space (Bn(S1,Rd),dist) is also a length
space.

Theorem 6.8. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. Then (Bn(S1,Rd),distB) with the induced metric is a length space and
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any two shapes in the same connected component can be joined by a minimizing
geodesic.

Here a minimizing geodesic is to be understood in the sense of metric spaces, i.e.,
a curve γ : I → X into a metric space (X, d) is a minimizing geodesic, if

d(γ(t), γ(s)) = λ|t− s|
holds for some λ > 0 and all t, s ∈ I; see [13].

Proof. Since (Bn(S1,Rd),distB) is a complete metric space, using [13, Thm. 2.4.16],
it is enough to show that for every C0, C1 ∈ Bn(S1,Rd) in the same connected
component there exists a midpoint, that is a point D with

distB(C0, D) = distB(D,C1) =
1

2
distB(C0, C1) .

Using Thm. 6.8 we can lift C0, C1 to c1, c2 ∈ In(S1,Rd) lying in the same connected
component, such that Ci = π(ci) and

distB(C0, C1) = distI(c0, c1) .

Furthermore by Thm. 5.2 there exists a minimizing geodesic c(t) connecting c0, c1.
We claim that π

(
c
(

1
2

))
is a midpoint between C0, C1. Set C(t) = π(c(t)). If

distB
(
C0, C

(
1
2

))
= distI

(
c0, c

(
1
2

))
and distB

(
C
(

1
2

)
, C1

)
= distI

(
c
(

1
2

)
, c1
)
,

then we are done. So assume that at least one of

distB
(
C0, C

(
1
2

))
< distI

(
c0, c

(
1
2

))
or distB

(
C
(

1
2

)
, C1

)
< distI

(
c
(

1
2

)
, c1
)
,

holds with a strict inequality. Then using the triangle inequality we calculate

distB(C0, C1) ≤ distB
(
C0, C

(
1
2

))
+ distB

(
C
(

1
2

)
, C1

)
< distI

(
c0, c

(
1
2

))
+ distI

(
c
(

1
2

)
, c1
)

= distI(c0, c1) ,

and thus arrive at a contradiction. Hence C
(

1
2

)
is a midpoint between C0 and C1

and (Bn(S1,Rd),distB) is a complete length space.

6.9. Smooth Shape Spaces. The dense inclusions Immf ⊂ Imm ⊂ In imply that
the inclusions

Bi,f (S1,Rd) ⊂ Bi(S1,Rd) ⊂ In(S1,Rd)/Diff(S1) (5)

are also dense. As Diff(S1) ⊂ Dn(S1), there is a natural continuous projection

In(S1,Rd)/Diff(S1)→ In(S1,Rd)/Dn(S1) = Bn(S1,Rd) . (6)

While this map is not injective, we claim that the composition

Bi(S
1,Rd) = Imm(S1,Rd)/Diff(S1)→ In(S1,Rd)/Dn(S1) = Bn(S1,Rd)

is injective. Indeed, let c1, c2 ∈ Imm(S1,Rd) and c2 = c1 ◦ ϕ with ϕ ∈ Dn(S1).

By reparametrizing we can assume that |c′1| =
`c1
2π is constant. Then we obtain

by differentiating, |c′2| =
`c1
2π ϕ

′, and thus ϕ ∈ Diff(S1) showing that π(c1) = π(c2)

already in Bi(S
1,Rd). Since the inclusions in (5) are dense and the projection (6) is

surjective, it follows that Bi(S
1,Rd) as well as Bi,f (S1,Rd) are dense in Bn(S1,Rd).

Let G be a Sobolev metric of order n ≥ 2 with constant coefficients. We have
seen in Thm. 4.5 that the induced geodesic distance on Imm(S1,Rd) coincides with
the restriction of the induced geodesic distance on In(S1,Rd). We claim that the
quotient metric on Bi(S

1,Rd) also coincides with the restriction of the quotient
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metric on Bn(S1,Rd). To see that, let C1, C2 ∈ Bi and C1 = π(c1), C2 = π(c2).
Then

distBi(C1, C2) = inf
ϕ∈Diff(S1)

distImm(c1, c2 ◦ ϕ)

= inf
ϕ∈Diff(S1)

distI(c1, c2 ◦ ϕ)

= inf
ϕ∈Dn(S1)

distI(c1, c2 ◦ ϕ) = distB(C1, C2) .

We are allowed to pass from Diff(S1) to Dn(S1) in the infimum, because Dn(S1)
acts continuously on In(S1,Rd) and distI induces the manifold topology.

The Riemannian metric G on Immf (S1,Rd) induces a smooth Riemannian metric
on Bi,f (S1,Rd)—and if one wants to consider Riemannian metrics on orbifolds, it
also induces a Riemannian metric on Bi(S

1,Rd). The geodesic distance of this
metric coincides with the quotient distance from Thm. 6.5; see [35]. This leads to
the following result.

Theorem 6.10. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. Then the metric completion of Bi(S

1,Rd) with the induced geodesic
distance is Bn(S1,Rd). The same holds for Bi,f (S1,Rd).

Proof. It was shown in Thm. 6.8 that (Bn,distB) is a complete metric space and
we argued above that the inclusion Bi,f ⊂ Bn is isometric and dense. Hence Bn is
the metric completion of Bi,f and also of Bi.

Appendix A. Geodesic distance on weak submanifolds. We often encounter
the following situation: let G be a Sobolev metric of order n ≥ 2 with constant
coefficients and m > n. We can consider the Riemannian manifold (Im(S1,Rd), G)
and denote by distIm the induced geodesic distance or we can look at the larger
manifold (In(S1,Rd), G) with the geodesic distance distIn and then restrict it to
Im(S1,Rd). Denote this restricted distance by distIn |Im . What is the relationship
between distIm and distIn |Im? It turns out that because Im(S1,Rd) is dense in
In(S1,Rd), they are the same. This allows us to talk of the geodesic distance of a
given Sobolev metric, without having to constantly reference the underlying space.

This is a more general phenomenon, that is best phrased using the notion of a
weak submanifold, introduced in [20].

Definition A.1. Let M , M0 be manifolds modelled on convenient vector spaces.
We call M a weak submanifold of M0, if around any point x0 in the closure of M in
M0, there exists a neighborhood U0 in M0 together with a chart ϕ0 : U0 → ϕ0(U0) ⊆
E0 for M0 and a convenient vector space E, with a continuous inclusion E ⊆ E0,
such that the restriction of ϕ0 to U = M ∩E0 is a chart ϕ : U → ϕ(U) = ϕ0(U0)∩E
for M .

We can show that for dense, weak submanifolds the restriction of the ambient
geodesic distance coincides with the intrinsic one.

Proposition A.2. Let M0 be a separable Hilbert manifold, containing M as a
weak Hilbert submanifold, and M be dense in M0. Let g0 be a weakly continuous
Riemannian metric on M0, i.e., the map g0 : TM0 ×M0 TM0 → R is continuous,
denote by g its restriction to M and by d0 and d the induced geodesic distances on
M0 and M respectively. Then

d0|M = d ,
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i.e., the geodesic distance on M0 restricted to M coincides with the geodesic distance
on M .

Proof. Let x, y ∈ M . Since d(x, y) is defined by taking the infimum over paths in
M and d0 by taking the infimum over paths in M0, we have the inequality

d0(x, y) ≤ d(x, y) .

To show the other inequality, denote by E and E0 the separable Hilbert spaces upon
which M and M0 are modelled. Then E ⊆ E0 is dense and by Lem. A.4 we can
choose a family Pn of linear operators Pn : E0 → E with the property that

lim
n→∞

‖Pnv − v‖E0
= 0 (7)

and the convergence is uniform on compact subsets.
Let γ be a piecewise smooth curve in M0 connecting x and y. Assume w.l.o.g.

that x and y can both be covered by a weak chart for M ; otherwise we split the
curve into a finite number of segments and apply the argument to each one.

So we can assume that M0 ⊆ E0 is an open subset and M = M0 ∩ E. Then

Lg(Pnγ) = Lg0(Pnγ) =

∫ 1

0

|Pnγ̇|Pnγ dt .

Since g0 is weakly continuous, the integrand converges uniformly to |γ̇|γ and thus

Lg(Pnγ)→ Lg0(γ) for n→∞ .

We want to note the following: if xn → x in M0 and both x, xn ∈ M , then also
d(xn, x)→ 0. This is related to the fact that the topology induced by a Riemannian
metric is weaker than the manifold topology and thus convergence in the manifold
topology implies convergence in the metric; however in this case we start with
convergence in the topology of the ambient manifold M0, but want to obtain a
statement about the metric d on M . To show this we use linear interpolation in a
weak chart around x,

d(xn, x) ≤
∫ 1

0

|xn − x|txn+(1−t)x dt ≤
∫ 1

0

|xn − x|x dt+ ε ,

and ε comes from the continuity of g0 on M0.
Starting from

d(x, y) ≤ d(x, Pnγ(0)) + Lg(Pnγ) + d(Pnγ(1), γ) ,

the convergence Pnγ(0)→ x in M0 implies d(x, Pnγ(0))→ 0 and hence in the limit

d(x, y) ≤ Lg0(γ) .

As γ was arbitrary, this implies d(x, y) ≤ d0(x, y) as required.

Remark A.3. If in Prop. A.2 the manifold M is not a Hilbert manifold, but
modelled only on a convenient vector space, then the statement still holds, provided
we have a family of linear operators Pn : E0 → E with the property (7), i.e.,

lim
n→∞

‖Pnv − v‖E0 = 0 ,

and uniform convergence on compact subsets. For Hilbert manifolds such an ap-
proximating family always exists, as shown below in Lem. A.4. If we want to relax
the assumptions, the family has to be constructed by hand.
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Lemma A.4. Let E,E0 be two separable Hilbert spaces, E continuously and densly
embedded in E0. Then there exists a sequence of bounded operators Pn : E0 → E,
such that

∀x ∈ E0 : Pnx→ x in E0 ;

in other words, Pn ∈ L(E0, E0) converges in the strong operator topology to IdE0

and imPn ⊆ E.
Furthermore the convergence is uniform on compact subsets of E0.

Proof. Given the two separable Hilbert spaces E and E0, the former continuously
and densly embedded into the latter, [23, Thm. 2.9] shows the existance of an
unbounded, self-adjoint operator A : D(A)→ E0 with D(A) = E, representing the
inner product,

〈v, w〉E = 〈Av,Aw〉E0
for v, w ∈ E .

Let {PΩ} be the projection-valued measure associated to A. Then we have

lim
n→∞

‖P[−n,n]v − v‖E0
= 0 ,

and P[−n,n]v ∈ D(A) = E. See, e.g., [40, Sect. VIII.3] for details.
To see that the convergence is uniform on compact subsets one uses that the

operator norm of P[−n,n] is uniformly bounded.
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