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Abstract We sketch main results of our recent work on the transfer of a thin liquid film onto a flat plate
that is extracted from a bath of pure non-volatile liquid. Employing a long-wave hydrodynamic model, that
incorporates wettability via a Derjaguin (disjoining) pressure, we analyse steady-state meniscus profiles as the
plate velocity is changed. We identify four qualitatively different dynamic transitions between microscopic
and macroscopic coatings that are out-of-equilibrium equivalents of equilibrium unbinding transitions. The
conclusion briefly discusses how the gradient dynamics formulation of the problem allows one to systematically
extend the employed one-component model into thermodynamically consistent two-component models as used
to describe, e.g., the formation of line patterns during the Langmuir-Blodgett transfer of a surfactant layer.

1. Introduction

The study of the transfer of a film or patterned
deposit onto a flat plate that is extracted from
a bath of pure liquid or solution/suspension is
of significant interest due to numerous indus-
trial applications. The understanding of the var-
ious interfacial effects on small scales becomes
increasingly important because of the intense
drive towards a further miniaturisation of fluidic
systems.

On the one hand, it is a classical hydro-
dynamic problem to study how droplets slide
down an incline [1, 2, 3, 4], how moving contact
lines (where solid, gas and liquid meet) develop
sawtooth shapes at high speeds [4, 5, 6], or how
the free surface of a bath is deformed when
a plate is drawn out, as sketched in Fig. 1(a).
On the other hand, the equilibrium behaviour
of films, drops and menisci is studied by means
of statistical physics using energy functionals,
and various phase transitions, e.g., wetting and
emptying transitions have been analysed in the
literature, see [7].

Here, we focus on the case of a pure non-

volatile liquid employing a long-wave hydro-
dynamic model in gradient dynamics formu-
lation, that incorporates wettability via a Der-
jaguin (disjoining) pressure. We use this model
to investigate the nonequilibrium transitions be-
tween meniscus and film solutions and identify
four qualitatively different dynamic unbinding
transitions – continuous and discontinuous dy-
namic wetting and emptying transitions.

2. Drawn film flow

We consider a flat plate that forms a constant
angle with the horizontal direction and that is
being withdrawn from a pool of liquid at a con-
stant speed. A schematic representation of the
system is shown in Fig. 1. A Cartesian co-
ordinate system (x, z) is introduced where the
x-axis points along the plate in downwards di-
rection and the z-axis is perpendicular to the
plate and points into the liquid. We assume that
the system is two-dimensional, i.e., there are
no variations in the transverse direction. The
position of the free surface is then given by
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Figure 1: Sketches of (a) the considered two-
dimensional geometry and (b-d) of the qualita-
tively different steady shapes h(x) of the free
liquid surface as found in experiments: (b)
Landau-Levich film, (c) foot or extended menis-
cus, and (d) simple meniscus. In panel (c) we
indicate the typical foot length Lfoot (see main
text for details).

z = h(x, t), where t denotes time. The scales
employed in the non-dimensionalisation are `=√

3/5heq/θeq, heq and τ = (3ηheq)/(25γθ 4
eq)

for the x-coordinate, film height and time, re-
spectively, where γ is the surface tension, η is
the viscosity of the liquid and heq and θeq are the
equilibrium precursor height and contact angle,
respectively.

We formulate the non-dimensional evolution
equation for a conserved film thickness of a
simple non-volatile liquid using a gradient dy-
namic model based on an interface Hamiltonian
F [h] (aka free energy) that additionally includes
potential energy, i.e.,

∂th = ∂x

[
Q(h)∂x

δF [h]
δh

]
+U∂xh. (1)

For this particular problem, Q(h) = h3/3 is the
mobility and

F [h]≈
∫

A

[
1
2
|∂xh|2 + f (h)

+G
(

h2

2
−αhx

)]
dA, (2)

where f (h) is the wetting or adhesion energy
and the final terms represent the potential en-
ergy in long-wave scaling. Here U , G and

α are the dimensionless parameters that repre-
sent plate velocity (Capillary number), gravity
(Bond number), and the scaled O(1) inclination
angle of the plate, respectively (see note [8]).
Due to the boundary conditions on the bath
side (discussed below) the model is not invari-
ant with respect to translations in x, i.e., the ex-
istence of the bath selects the physical labora-
tory system as a particular frame of reference.
Therefore the advection term U∂xh can not be
removed by a Galilean transformation.

Note that this gradient dynamics model cor-
responds exactly to the hydrodynamic long-
wave or lubrication equation

∂th = −∂x
{

Q(h)∂x[∂
2
x h+Π(h)−Gh]

}
−∂xQ(h)Gα +U∂xh, (3)

that can be derived from the Navier-Stokes
equations and the corresponding boundary con-
ditions under the assumptions that the physical
plate inclination angle and equilibrium contact
angle are small.

The partial wettability of the liquid on the
chosen substrate is described via the Derjaguin
(or disjoining) pressure [9]

Π =− 1
h3

(
1− 1

h3

)
, (4)

derived in Ref. [10] from a modified Lennard-
Jones potential with hard-core repulsion. The
disjoining pressure is related to a wetting or ad-
hesion energy f (h) via Π =−d f/dh, cf. [8].

To calculate steady film and meniscus pro-
files one sets ∂th = 0, then integrates Eq. (3)
once and solves the resulting three-dimensional
dynamical system in (h,∂xh,∂xxh) with appro-
priate boundary conditions: (i) far from the bath
one imposes that the film profile approaches a
flat film of unknown height h∞ while (ii) the ap-
proach towards the bath for x→ ∞ is described
by an asymptotic series rigorously derived via a
centre manifold reduction [11]. To do so, we in-
troduce a change of variables y1 = 1/h, y2 = h′

and y3 = h′′ following a proposal of Ref. [12],
and convert the steady-state equation into the
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three-dimensional dynamical system

y′1 = −y2
1y2, (5)

y′2 = y3, (6)
y′3 = (6y7

1−3y4
1)y2 +Gy2 +Uy2

1

−C0y3
1−Gα. (7)

This is used to obtain a new fixed point cor-
responding to the bath, namely the point yb =
(0, α, 0), beside other fixed points, two of
which, y f = (1/h f , 0, 0) and yp = (1/hp, 0, 0),
correspond to the foot and the precursor film,
respectively. The centre manifold analysis then
yields the asymptotic sequence [11]

h∼ αx+D1x−1 +D2x−2 +D3x−3 + · · · , (8)

where

D1 =
U

α2G
, D2 =−

C0

2α3G
,

D3 =−
1
3

(
2U2

α5G
+

3
α3G

− 6U
α2G2

)
, . . . . (9)

The steady profiles and bifurcation diagrams
are numerically obtained employing pseudo-
arclength continuation [13]. The main solution
measure is the dynamic excess volume ∆V =
V −V0 with V =

∫
(h(x)−h∞)dx, where V0 is V

at U = 0.

2.1 Results

In the following we sketch main results pre-
sented in Ref. [14] and further analysed in
Ref. [11]. Ref. [14] analyses the changes that
steady menisci undergo with increasing plate
speed U that can be presented in the form of
bifurcation diagrams where, e.g., the solution
measure ∆V is given in dependence of U . De-
pending on the plate inclination angle α four
qualitatively different bifurcation diagrams are
found as illustrated in Fig. 2 together with
steady height profiles for selected values of U .
Each of these cases is related to a distinguished
nonequilibrium unbinding transition.

(a) At small inclination angles α , e.g., α =
0.1, the volume ∆V monotonically increases:
first slowly, then faster until it diverges at about
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Figure 2: Four qualitatively differrent bifurca-
tion curves at different plate inclination angles
in increasing order: (a) α = 0.1, (b) α = 1, (c)
α = 3, and (d) α = 10. The main panels shown
the excess volume ∆V (scaled for convenience
by 103) in dependence on the plate velocity U ,
the insets give Log-normal representations of
steady film profiles as indicated by correspond-
ing labels. The domain size is L = 1000. Cor-
responds to amended Fig. 2 of [14].

U∞ ≈ 0.04, see Fig. 2(a). The correspond-
ing simple meniscus profiles first deform only
slightly due to viscous bending before a dis-
tinguished foot-like protrusion of a height hf ≈
10 develops whose length Lfoot

1 diverges ∝

ln [(U∞−U)/U∞]
−1. This corresponds to a con-

tinuous dynamic emptying transition, that may
be seen as a non-equilibrium analogue of the
equilibrium transition analysed in Ref. [7]. One
could say that at U∞ the tip of the foot unbinds
from the meniscus and ultimately the bath is
emptied. For U > U∞ the foot advances with a
constant velocity VF≈ (U−U∞), what in a finite
system will result in a transition to a Landau-
Levich film. Far away from the bath such a
Landau-Levich coating layer has a thickness
h∞ ∝ U2/3 [15]. The transition looks similar to
the one presented for a larger α in Fig. 3(b).

1We define the measure for the foot length Lfoot ∝

∆V/(hf−h∞), where hf is the foot height and h∞ the coat-
ing film height.
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(b) Above a first critical angle α = α1 ≈
0.103, the transition changes its character and
becomes a discontinuous dynamic emptying
transition without an equilibrium analogue. As
shown in Fig. 2(b), ∆V increases first mono-
tonically with U until the first saddle-node bi-
furcation occurs at U1 where the curve folds
back. Following the curve further, one finds
that it folds again at U2. The folding back and
forth infinitely continues at loci that exponen-
tially approach U∞ from both sides and that
separate linearly stable and unstable foot so-
lutions. It can be shown that this exponential
(or collapsed) snaking [16] results from the ex-
istence of a heteroclinic chain connecting the
fixed points of the system (5)–(7) correspond-
ing to the precursor film, the foot and the bath
height under the condition that the fixed point
corresponding to the foot is a saddle-focus with
two-dimensional unstable manifold. This re-
sults in foot length with [(U∞−U)/U∞]

−1
∝

exp(Re[ν ]Lfoot)sin(Im[ν ]Lfoot) where ν is a lin-
ear eigenvalue whose real and imaginary part
determine the exponential approach and the pe-
riod of the snaking, respectively [11]. Note
that for U > U∞ one can always find a criti-
cal foot length beyond which the foot advances.
In contrast, for U < U∞ there is always a crit-
ical length above which a foot recedes. The
receding and advancing case are illustrated for
α = 0.5 in the space-time plots of Figs. 3(a) and
3 (b), respectively. The advancing and reced-
ing foot-like structures can be characterised by
the constant velocity VF of their tip. It is found
that VF is always equal to the velocity differ-
ence U −Uα

∞ where Uα
∞ depends on the plate

inclination α , that is a direct consequence of
the Galilean invariance of the system in the ab-
sence of the bath as the moving tip can be seen
as being detached from the bath. It should also
be noted that Uα

∞ corresponds to the velocity a
large flat (pancake-like) drop selects that freely
slides down a resting plate inclined at an angle
α (see [14] and cf. [2]).

(c) At a second critical angle α = α2 ≈ 2.42,
the bifurcation diagram dramatically changes.
Above α2 the family of steady meniscii that
one follows when starting at the meniscus so-
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Figure 3: Panels (a) and (b) give for α = 0.5
space-time plots representing the time evolution
of a receding and an advancing foot, respec-
tively, at values of U as indicated indicated in
the figures. The evolution in (a) converges to a
steady simple meniscus (receding), while in (b)
the foot advances with constant speed until its
tip reaches the domain boundary, then at τ ≈ 4
the foot transforms into a Landau-Levich film.
Corresponds to inset of Fig. 3 of [14].

lution at U = 0 does not anymore diverge at
a limiting velocity U∞. No foot of increasing
length emerges that unbinds from the menis-
cus. Instead one finds a hysteretic transition [in
Fig. 2(c) between U = 0.1 and 0.3] towards a
coating layer whose thickness homogeneously
increases with increasing U , i.e., the layer sur-
face unbinds from the substrate in a discontinu-
ous dynamic wetting transition.

(d) With increasing angle α the hysteresis
of the discontinuous transition becomes smaller
until at a third critical angle α = α3 ≈ 5.92
the two saddle-node bifurcations annihilate in a
hysteresis bifurcation. For all α > α3 one finds
a continuous dynamic wetting transition.

In cases (c) and (d) the coating layer thick-
ness at large U follows the power law h∞ ∝

U2/3. This allows one to identify these unbind-
ing film states as Landau-Levich films [15]. The
critical velocity where the transition between
the microscopic and macroscopic layer occurs,
scales as α3/2.

3. Conclusions

We have sketched some main results of our
recent work [11, 14] on the transfer of a thin
liquid film onto a flat plate. In particular, we
have used a long-wave mesoscopic hydrody-
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namic description of a coating problem (in-
clined plate drawn from a bath) incorporating
wettability via a Derjaguin pressure to iden-
tify and analyse several qualitatively different
transitions with increasing plate speed. We
have distinguished four ranges of inclination
angles where different dynamic unbinding tran-
sitions occur, namely continuous and discontin-
uous dynamic emptying transitions and discon-
tinuous and continuous dynamic wetting tran-
sitions. These dynamic transitions are out-of-
equilibrium equivalents of known equilibrium
emptying and wetting transitions and have im-
portant features without equilibrium equivalent.

We refer the reader to Ref. [14] for more
information on the various non-equilibrium
unbinding transitions, while we recommend
Ref. [11] for (i) the centre manifold reduction
that allowed us to rigorously derive the asymp-
totic series that describes the approach towards
the bath (including for films drawn by a temper-
ature gradient), and for (ii) the Shilnikov-type
analysis that shows the relation of exponential
(or collapsed) snaking and the existence of a
heteroclinic chain. The latter is complemented
by a detailed numerical analysis of the transi-
tion between continuous and discontinuous dy-
namic emptying transitions.

We finally point out that in many practically
important cases the transferred liquid is not a
simple non-volatile one. Often suspensions or
solutions with volatile solvents are used result-
ing, e.g., in dip coating processes in the pro-
duction of homogeneous or patterned functional
coatings. An example is the Langmuir-Blodgett
transfer of a surfactant layer from a bath onto a
moving plate as experimentally studied in [17,
18] and modelled with a two-component thin
film model in Ref. [19] and a Cahn-Hilliard-
type model in [20]. Many other examples of
pattern formation at externally driven contact
lines are listed in the review on deposition pat-
terns [21], there categorised as deposition in
active geometries. In such systems film de-
position, evaporation and various phase transi-
tions may conspire to produce a variety of pat-
terns as, e.g., regular line patterns. In the case
of Langmuir-Blodgett transfer emerging stripe

patterns can be related to a first order struc-
tural phase transition in the surfactant layer that
results from a substrate-mediated condensation
effect [17]. However, hydrodynamic long-wave
models for suspensions and solutions are of-
ten rather restricted concerning the spectrum of
physical effects that can be included in a sys-
tematic and consistent way. For instance, the
models used in [22] to study line deposition
do not take effects like solvent-solute interac-
tions or solute-dependent wettability into ac-
count. Attempts to add such effects to the long-
wave model in an ad-hoc manner have in the
past sometimes resulted in inconsistent or even
unphysical models.

A systematic way for such extensions of
hydrodynamic long-wave models has recently
been proposed for non-surface active solutes
[23] and insoluble surfactants [24] based on a
gradient dynamics form as Eq. (1) above. An
extension of Eq. (1) towards two fields (e.g.,
local film height h and local solute/surfactant
amount ψ) for a suspension or solution trans-
ferred from a bath onto a moving plate has the
form (written in the 2d case)

∂th = ∂x

[
Qhh∂x

δF
δh

+ Qhψ∂x
δF
δψ

]
+U∂xh,

∂tψ = ∂x

[
Qψh∂x

δF
δh

+ Qψψ∂x
δF
δψ

]
+U∂xψ

(10)

where

Q =

(
Qhh Qhψ

Qψh Qψψ

)
(11)

is a symmetric and positive definite mobility
matrix and F [h,ψ] is an appropriate free en-
ergy functional. For details see [23, 24] and also
the conclusion of [21] where limitations and al-
ternative approaches are discussed as well. A
volatile solvent can be accounted for by adding
a term proportional to µ−δF/δh, i.e., an evap-
oration flux, to the first equation of (10); here µ

is the chemical potential of the surrounding gas
phase. This will be further explored in the fu-
ture.
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