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Abstract: Microfluidic bifurcating networks of rectangular cross-sectional channels are de-
signed using a novel biomimetic rule, based on Murray’s law. Murray’s principle is extended to
consider the flow of power-law fluids in planar geometries (i.e. of constant depth rectangular
cross-section) typical of lab-on-a-chip applications. The proposed design offers the ability to
control precisely the shear-stress distributions and to predict the flow resistance along the net-
work. We use an in-house code to perform computational fluid dynamics simulations in order
to assess the extent of the validity of the proposed design for Newtonian, shear-thinning and
shear-thickening fluids under different flow conditions.
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1 Introduction

Nature has long served as a source of inspi-
ration to mankind’s technological develop-
ments, turning biomimetics into an increas-
ingly active area of research. Microfluidics
offers the possibility of mimicking the nat-
ural environment at the dimensional scale of
many biological processes (Domachuk et al.,
2010). Branching networks are numerous
in natural systems and can be found in
many processes, like the vascular system
that drives blood and other vital substances
throughout the body, the oxygen transfer
system in human lungs, or the water trans-
port network in plants (McCulloh et al.,
2003). Microfluidic bifurcating devices may
find applications in many processes, such us
blood-plasma separation (Li et al., 2012; Tri-
pathi et al., 2013; Yang et al., 2006), by
exploiting the plasma skimming concept in
which red blood cells concentrate in the high

flow rate region away from walls (Faivre
et al., 2006). Recently, Zhang and Austin
(2012) have shown the usefulness of microflu-
idic platforms for stem cell research, with
their ability to provide adequate and con-
trolled flow conditions. Other authors have
used microfluidic bifurcating networks in bi-
ological and chemical applications to create
precise concentration gradients (Dertinger
et al., 2001; Jeon et al., 2000; Hu et al., 2011)
as they offer better control than standard
techniques (Weibel and Whitesides, 2006).
Most of the scientific fields of interest re-

ferred to previously require the handling of
non-Newtonian fluids that exhibit a shear-
dependent viscosity. Hence, it is of great in-
terest to develop intelligent designs that of-
fer the ability to control the flow in lab-on-
a-chip networks by generating precise shear-
stress distributions at the walls and specific
flow resistances along the microfluidic net-
works to suit a particular application. We
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propose a novel biomimetic rule based on the
optimum relationship expressed by Murray
(1926), for designing microfluidic manifolds
that can produce desired flow characteristics
for non-Newtonian, power-law fluids and val-
idate it using numerical simulations.

2 Theoretical basis

In bifurcating networks, the optimum rela-
tionship between the diameter of the par-
ent and daughter vessels with circular cross-
section was expressed by Murray (1926) us-
ing the principle of minimum work, which
states that the cube of the parent vessel di-
ameter (d0) is equal to the sum of the cubes
of the daughter vessel diameters (d1,d2).
Murray’s original relationship was derived
for fully-developed flow of Newtonian fluids
in circular ducts to match the basic shape of
most biological systems, such as the vascular
system, and can be considered as a particular
case of constructal theory (Bejan, 2005).
Emerson et al. (2006) adapted the under-

lying biomimetic principle to extend this re-
lationship to rectangular- and trapezoidal-
shaped symmetric bifurcations with constant
depth. The biomimetic rule proposed by
Emerson et al. (2006) is particularly useful
for designing microfluidic manifolds, which
are typically fabricated using techniques like
soft- or photo-lithography, and wet and dry
etching that generate networks with non-
circular cross-sections. Here we extend the
biomimetic principle for use with power-law
fluids in planar networks.
Flows of power-law fluids differ from New-

tonian fluids in many ways, often because
the viscosity can no longer be considered
constant and independent of the shear rate.
In this work, we consider power-law fluids
which are described by the Ostwald-de Waele
model, in which the viscosity, η, is a function
of shear-rate, γ̇

η(γ̇) = kγ̇n−1 (1)

where k is the consistency index and n is the
power-law index. When n= 1, the Newtonian

behaviour is recovered. For n< 1, the fluid is
described as shear-thinning, with the shear
stress decreasing with increasing shear rate
while for n > 1, the fluid is shear-thickening,
with the fluid becoming more viscous as the
deformation rate is increased.
For a symmetric bifurcating system, the

volumetric flow rate Q halves at each bifur-
cation, and therefore, for the ith generation,
we can write

Qi = 2−iQ0 (2)

In this case it can be shown that (Emerson
and Barber, 2012) when
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n
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the wall-averaged shear-stresses, τ̄ , obey the
following relationship

τ̄i = τ̄0X
i (4)

where X is a branching parameter that con-
trols the gradient of wall shear-stress along
the network, αi is the aspect ratio defined
as the ratio of depth to the width for each
channel generation, and the variables a∗ and
b∗ are constants that depend on the geom-
etry examined. For rectangular channels of
constant depth, these geometrical variables
are evaluated by solving the following set of
equations (Kozicki et al., 1966):
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It should be noted that when αi ≥ 1 the frac-
tion should be inverted, hence

α∗i =
{
d/wi if d≤ wi
wi/d if d > wi

(7)

When X = 1, Murray’s law is obeyed and
the manifolds will produce identical average
wall stresses in each segment of the network
where the flow is fully-developed. By chang-
ing the branching parameter to values dif-
ferent from unity, the principle of minimum
work is no longer valid, but we have the abil-
ity to design manifolds with different stress
distributions depending on the needs of the
specific application. Our analysis assumes
microfluidic networks where the length Li of
each segment is proportional to its hydraulic
diameter Dh,i, consistent with other research
on transport networks (Liu et al., 2010; Shan
et al., 2011).

3 Numerical simulations

3.1 Numerical method and problem set-
up

Computational fluid dynamics simulations
are used to validate the biomimetic princi-
ple proposed in the previous section (Eq. 3).
We consider the flow to be laminar, incom-

pressible and isothermal, and solve numer-
ically the continuity and momentum equa-
tions together with the power-law stress-
strain constitutive equation:

∇·u = 0 (8)

ρ

(
∂u
∂t

+ u ·∇u
)

=−∇p−∇·τ (9)

τ = kγ̇n−1γ̇ (10)
where p is the pressure, τ is the extra stress
tensor, γ̇ is the shear rate tensor and γ̇ is the
magnitude of the shear rate tensor.
An in-house numerical code has been em-

ployed to solve the previous set of equa-
tions, based on a fully implicit finite volume
method, using collocated meshes (Oliveira
et al., 1998). Pressure-velocity coupling is

achieved using the SIMPLEC algorithm. The
convective terms are discretised using the
CUBISTA high resolution scheme (Alves
et al., 2003), while the diffusive terms em-
ploy a central difference scheme. The time-
dependent terms in the momentum equation
are discretised using a first-order implicit Eu-
ler scheme.
Creeping flow conditions (Re→ 0) are con-

sidered and a uniform velocity is applied at
the entrance to the inlet channel. The walls
are treated with no-slip conditions, while
zero streamwise gradients are assumed at the
outlets of the network. Symmetry boundary
conditions are considered along the y = 0
plane and the central plane (z = 0), as shown
in Fig. 1, in order to reduce the computa-
tional demands.

Fig. 1. Microfluidic bifurcating network of constant
depth with 4 generations designed for a Newtonian
fluid with an inlet aspect ratio α0 = 0.5 and X = 1.
The dashed-dotted line illustrates the symmetry con-
ditions about y = 0.

In this paper, we consider a network
with four consecutive generations of constant
depth. The inlet of the rectangular cross-
section channel for all cases examined was
taken to be 250µm × 125µm, resulting in
an inlet aspect ratio of α0 = 0.5. The length
of each segment is set to be proportional
to its hydraulic diameter (Li = 20Dh,i). The
meshes used to discretise the physical do-
main consist of approximately 2.2 to 2.4 mil-
lion grid cells depending on the flow geome-
try with the minimum cell size δx

Dh,0
= δy

Dh,0
=

δz
Dh,0

= 0.02.
Numerical computations are performed for

power-law indices, n, ranging from shear-
thinning to shear-thickening behaviour (n =
0.6, 1, 1.6) and various branching parame-
ters, X. For all the cases examined, a consis-
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tency index of k = 10−3 N sn m-2 is consid-
ered in the simulations.

3.2 Networks with uniform shear-stress
distribution (X = 1)

In this section, we report our results when
the branching parameter is set to unity (X =
1), obeying the principle of minimum work.
We solve the biomimetic design set (Eqs. (5),
(6) and (3)) for Newtonian and power-law
fluids.
The geometrical characteristics for each

consecutive generation for a Newtonian fluid
(n= 1) are given in Table 1 and are in agree-
ment with those presented by Barber and
Emerson (2008).

Table 1
Geometrical parameters and dimensions of a planar
bifurcating network with inlet aspect ratio α0 = 0.5
obtained for n= 1.

i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 143.3 125.0 0.872 133.6 0.2134 0.6794
2 91.8 125.0 1.361 105.9 0.2186 0.6884
3 62.5 125.0 2.000 83.3 0.2439 0.7278

For the particular case of X = 1 and
α0 = 0.5, comparing the geometrical values
for the Newtonian fluid (Table 1) with the
parameters computed for the power-law flu-
ids, presented in Table 2, it is clear that the
differences between the proposed geometries
are small and the widths do not exhibit sig-
nificant variations.

Table 2
Geometrical parameters and dimensions of planar bi-
furcating networks with inlet aspect ratio α0 = 0.5
obtained for power-law indices of n= 0.6 and n= 1.6.

n= 0.6
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 142.6 125.0 0.876 133.2 0.2133 0.6792
2 91.5 125.0 1.366 105.7 0.2187 0.6886
3 62.5 125.0 2.000 83.3 0.2439 0.7278

n= 1.6
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 143.8 125.0 0.869 133.8 0.2134 0.6795
2 92.1 125.0 1.358 106.0 0.2185 0.6882
3 62.5 125.0 2.000 83.3 0.2439 0.7278

This universality is very interesting for ex-
perimental studies, since the same microflu-
idic network can be used for a range of fluids.
Based on this observation, we have examined
how different fluids (with different power-law
index n) behave when the same geometry ob-
tained for Newtonian fluids (n= 1) is used
(Fig. 1). Computations were performed for
power-law indices n= 0.6 (shear-thinning)
and n= 1.6 (shear-thickening). In Fig. 2a we
show a comparison between theory and com-
putational predictions for the normalised av-
erage wall shear-stress distribution along the
bifurcating network.
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Fig. 2. Normalised wall shear-stress distribution
(a) and flow resistance for various fluids (computed
from Eq. (11)) (b) along the bifurcating network de-
signed for a Newtonian fluid for α0 = 0.5 and X = 1
(Table 1).

For the Newtonian case, agreement be-
tween theoretical and numerical predictions
is found as reported by Emerson et al. (2006)
and Barber and Emerson (2008). The rela-
tive error between the CFD calculations for
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n = 1 and theory is less than 0.4%. Fur-
thermore, it can be seen that although the
geometry was designed for Newtonian flu-
ids, it also works well for power-law flu-
ids with both shear-thinning and shear-
thickening behaviour, producing a homoge-
neous wall shear-stress distribution along the
network. The ratios of wall shear-stresses are
therefore equivalent to the Newtonian re-
sponse, with a maximum error of 0.8% oc-
curring for the shear-thinning (n= 0.6) fluid.
Fig. 2b shows the total flow resistance (Eq.
11) calculated numerically at each consecu-
tive generation and compares it to the theo-
retically derived expression:

Rtot,i =R0
N∑
i=0

Xi =R0
XN+1−1
X−1 (11)

where R0 refers to the resistance at the in-
let channel and Rtot,i refers to the total re-
sistance between the inlet and the end of the
channel in generation, i. For X = 1, the resis-
tance ratio determined numerically increases
linearly along the network in good agreement
with the theory for both the power-law fluids
as well as for the Newtonian fluid.

3.3 Networks with non-uniform shear-
stress distribution (X 6= 1)

The examination of the proposed design rule
is extended with numerical simulations of
the flow field in networks created for val-
ues of the branching parameter different from
unity (X 6= 1). Here we consider the cases of
X = 1.25 and X = 0.75, corresponding to a
positive or negative gradient of shear-stress
along the network.
The characteristics of the geometries

generated for Newtonian fluid flow with
X = 1.25 and X = 0.75 are given in Table 3.
Comparing with values for X = 1 (Table 1),
it is clear that these geometries exhibit large
differences in the widths of each generation.
Consequently, differences are also observed in
the length of each generation and thus in the
total length of the microfluidic network.
For X 6= 1, the geometries generated us-

ing Eq. (3) produce manifolds with different

and known shear-stress gradients and this is
one of the main advantages of the proposed
biomimetic design.

Table 3
Geometrical parameters and dimensions of planar bi-
furcating networks with initial aspect ratio α0 = 0.5
and branching parameters X = 1.25 and X = 0.75,
designed for a Newtonian fluid.

X = 1.25
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 123.0 125.0 1.016 124.0 0.2121 0.6771
2 71.4 125.0 1.751 90.9 0.2332 0.7120
3 44.2 125.0 2.828 65.3 0.2796 0.7736

X = 0.75
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 177.7 125.0 0.704 146.8 0.2205 0.6917
2 132.0 125.0 0.947 128.4 0.2123 0.6775
3 101.7 125.0 1.230 112.1 0.2150 0.6823

Using a similar approach to that used in
Section 3.2, for X = 1, first we analyse the
flow of power-law fluids using the geometry
obtained for a Newtonian fluid. In Fig. 3,
the normalised shear-stress distribution for
each consecutive generation in the network
designed for a Newtonian fluid is shown for
X = 1.25 and X = 0.75.
For the case of Newtonian fluids (n = 1),

the CFD results are in very good agreement
with theory. When X = 1.25, the average
wall shear-stresses are increasing at each con-
secutive generation, while for X = 0.75 they
are decreasing as imposed by the biomimetic
rule. However, unlike in the case of X = 1,
the use of the Newtonian geometry produces
very different shear-stress distributions along
the network for each power-law fluid (Figs.
3a and 3b). It is clear that for branching pa-
rameters different from unity, the power-law
fluids will not display the desired behaviour
when flowing in the Newtonian-designed ge-
ometry.
Individual geometries were therefore de-

signed for each specific power-law fluid
(n= 0.6 and n= 1.6) using Eq. (3) and their
parameters are given in Table 4 (X = 1.25)
and Table 5 (X = 0.75). Comparing the geo-
metrical parameters for n= 0.6 and n= 1.6
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with the corresponding cases for the Newto-
nian fluid (Table 3), it is clear there are large
differences in the widths of the bifurcating
networks. These differences are also reflected
in the lengths of each generation (unlike the
case of X = 1 where the variations were neg-
ligible), affecting directly the total resistance
of the microfluidic network.
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i 

Fig. 3. Normalised wall shear-stress distribution
along the bifurcating network with α0 = 0.5, designed
for a Newtonian fluid for X = 1.25 (a) and X = 0.75
(b).

When the shear-thinning fluid is flowing in
the Newtonian geometry for X = 1.25 (Fig.
3a), it is consistently exposed to lower aver-
age velocities in each consecutive generation
when compared to the customised geometry.
The fluid is thus subjected to lower defor-
mation rates than the ones demanded by the
biomimetic rule for obeying Eq. (4). On the
other hand, the shear-thickening fluid is ex-
posed to higher shear rates when the Newto-
nian geometry is used, leading to high shear-
stress ratios where the fluid thickens.
Considering the case ofX = 0.75 (Fig. 3b),

the opposite behaviour to the Newtonian
case is exhibited. Examining the customised
parameters for each power-law index shown
in Table 5, it is clear that the flow in the New-
tonian geometry will produce higher shear
rates than desired for shear-thinning fluids,
while on the contrary will produce lower
shear rates than desired for shear-thickening
fluids.

Table 4
Geometrical parameters and dimensions of planar
networks with initial aspect ratio α0 = 0.5 and
branching parameter X = 1.25, for power-law fluids
n= 0.6 and n= 1.6.

n= 0.6
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 111.2 125.0 1.124 117.7 0.2130 0.6788
2 60.9 125.0 2.054 81.9 0.2463 0.7312
3 35.6 125.0 3.511 55.4 0.3055 0.8021

n= 1.6
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 130.6 125.0 0.957 127.7 0.2122 0.6773
2 78.4 125.0 1.594 96.4 0.2268 0.7020
3 50.2 125.0 2.492 71.6 0.2655 0.7566

For both cases, since the channel’s length
is taken to be proportional to the hydraulic
diameter, the flow of a power-law fluid in a
geometry designed for Newtonian fluids will
display different characteristics in terms of
flow resistance.

Table 5
Geometrical parameters and dimensions of planar
networks with initial aspect ratio α0 = 0.5 and
branching parameter X = 0.75, for power-law fluids
n= 0.6 and n= 1.6.

n= 0.6
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 207.1 125.0 0.604 155.9 0.2293 0.7059
2 173.9 125.0 0.719 145.5 0.2195 0.6900
3 148.1 125.0 0.844 135.6 0.2141 0.6806

n= 1.6
i wi(µm) di(µm) di/wi Dh,i(µm) a∗ b∗

0 250.0 125.0 0.500 166.7 0.2439 0.7278
1 164.1 125.0 0.762 141.9 0.2172 0.6859
2 114.8 125.0 1.088 119.7 0.2126 0.6780
3 84.2 125.0 1.485 100.6 0.2227 0.6953

Fig. 4a shows that when the customised
geometries are designed using Eq. (3) both
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Fig. 4. Normalised wall shear-stress distribution (a) and flow resistance (computed from Eq. (11)) (b) along
the customised bifurcating networks (α0 = 0.5), designed using the biomimetic principle (Eq. 3) for n= 0.6 and
n= 1.6 with X = 1.25 and X = 0.75.

shear-thinning and shear-thickening fluids
obey the biomimetic principle, by yielding
the predicted tangential stress distributions.
At the same time, the flow resistance along
the network shown in Fig. 4b also verifies the
biomimetic rule is in good agreement with
theory for both fluids, where a maximum de-
viation of 2% is reported for both X = 1.25
and X = 0.75 for the shear-thickening fluid
at the outlet channels of the networks.

4 Conclusions

A biomimetic design rule has been proposed
for constructing bifurcating manifolds with
rectangular cross-sectional areas that gener-
ate desirable flow characteristics for power-
law fluids. The design is based on Murray’s
law originally derived for Newtonian fluids
in circular ducts under laminar and fully-
developed flow conditions. Murray’s law has
been extended here for use with power-law
fluids in non-circular networks typical of mi-
crofluidic applications. For a given applica-
tion, the proposed design will provide con-
trol over the flow field and in particular over
the wall shear-stress distribution along the
network.
When the value of the branching parame-

ter is equal to unity and α0 = 0.5, the geome-
tries for power-law fluids generated using our
biomimetic design are very similar to those
designed for Newtonian fluids. In this case,

Murray’s law is obeyed and the Newtonian
and the power-law fluids exhibit similar re-
sponses even when the Newtonian geometry
is used. This is important especially for ex-
perimental purposes, since the same geome-
try can be used effectively for various fluids.
However, we should note that although the
ratios of the average wall shear-stresses are
the same for Newtonian and power-law flu-
ids, the magnitude of the wall shear-stresses
depends on the particular fluid flow condi-
tions.
Furthermore, the design approach con-

siders creeping flow conditions where fully-
developed flow is achieved in each genera-
tion of the network, which is a good approxi-
mation for most microfluidic flows. However,
it should be noted that for effective con-
trol, the choice of using channels with 90o

bends imposes a limitation in terms of the
Reynolds number that can be used (in this
case Re∗0 . 30). This could be surpassed
with the use of Y-junction shaped bifurca-
tions where the friction losses would be re-
duced or by using smoother corners.
When applications require an increase or

decrease on the wall shear-stresses along the
bifurcating network (X 6= 1), different geome-
tries must be used for each power-law fluid,
in order to achieve the desired flow charac-
teristics. In this case, theoretical predictions
are only obtained when customised geome-
tries created by the biomimetic design rule
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are used.
We believe that our proposed approach

for designing microfluidic networks using the
biomimetic rule will benefit research areas
that require devices capable of controling the
shear-stress flow field. Areas such as stem cell
research, where there is a need for tuning the
microenviroment around stem cells in vari-
ous ways, and applications requiring blood-
plasma separation, which is highly influenced
by the properties of the flow field, may ben-
efit from using customised geometries.
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