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Abstract We present a new hybrid method for dilute gas flows that heterogeneously couples a continuum-
fluid description to the direct simulation Monte Carlo (DSMC) method. A continuum-fluid model is applied 
across the entire domain, while DSMC is applied in spatially-distributed micro regions. Using a field-wise 
coupling approach, DSMC sub-domains of any size can be placed at any location. The sub-domain 
arrangement can therefore be adjusted for each problem to capture non-equilibrium behaviour both close to 
bounding walls and in the bulk. We demonstrate our method on a test case of high-speed micro Couette flow. 
With large differences in wall velocity, significant viscous heating is present, and so our coupling considers 
the transfer of both momentum and heat. Our hybrid results are validated against a pure DSMC simulation, 
and the results show that the method can deal with missing boundary and constitutive information.  
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1. Introduction 
 The conventional hydrodynamic model is 
excellent for the majority of fluid flows, but in 
some cases, the presence of localised regions 
of thermodynamic non-equilibrium can result 
in inaccuracy. Molecular simulation tools can 
provide an accurate alternative, but are usually 
much too computationally expensive for 
resolving typical engineering spatial and 
temporal scales. Multiscale methodologies 
have therefore been developed over the past 
decade. Often referred to as ‘hybrids’, these 
multiscale methods integrate continuum and 
molecular descriptions within the same solver, 
effectively combining the computational 
efficiency of continuum methods with the 
detail and accuracy of molecular techniques. 
 In the literature, two hybrid frameworks 
have emerged for fluids: a) the domain-
decomposition technique, and b) the 
Heterogeneous Multiscale Method (HMM). 
For liquids, molecular dynamics (MD) is the 
appropriate molecular tool. This is, however, 
inefficient for dilute gases. The direct 
simulation Monte Carlo (DSMC) method 
developed by Bird (1998) can instead provide 
a coarse-grained molecular description. 
 Domain-decomposition is currently the 

most popular hybrid framework for liquids 
(O’Connell et al., 1995; Hadjiconstantinou and 
Patera, 1997; Flekkøy et al., 2000) and dilute 
gases (Hash and Hassan, 1996; Aktas and 
Aluru, 2002; Sun et al., 2004; Wijesinghe et 
al., 2004; Schwartzentruber et al., 2007). With 
the simulation domain partitioned, a molecular 
solver is typically applied in micro regions 
close to bounding interfaces while a 
conventional continuum solver is implemented 
in the remainder. These solvers are then 
coupled through an overlap region. A problem 
with this approach is that computational 
efficiency can be increased above that of a full 
molecular simulation only when non-
equilibrium is confined to ‘near-wall’ regions. 
 The less-common HMM framework 
overcomes this limitation by adopting a micro-
resolution approach: a continuum model is 
applied across the entire flowfield, and the 
molecular solver is applied in spatially-
distributed micro regions (near bounding 
surfaces, and in the bulk). These micro regions 
provide missing data that is required for 
closure of the local continuum model, either in 
the form of unknown boundary conditions, or 
unknown constitutive information. Existing 
HMM studies are based mainly on liquid 
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flows, with MD as the molecular solver (see 
Ren and E, 2005; Yasuda and Yamamoto, 
2008; Borg et al., 2013a). 
 Despite the advantages of HMM over 
domain-decomposition, there has been little 
development of HMM hybrids that incorporate 
DSMC. The Coupled Multiscale Multiphysics 
Method (CM3) of Kessler et al. (2010) retains 
fully-coupled length scales, as the continuum 
description and DSMC are applied over the 
same flow domain. Recently, Patronis et al. 
(2013) adapted the Internal-flow Multiscale 
Method (IMM) to simulate dilute gas flows in 
high-aspect ratio channels with DSMC as the 
molecular solver. 
 In this paper we propose a new form of the 
HMM technique that is designed to deal with 
inaccuracy in traditional boundary conditions 
and/or constitutive relations. We adopt DSMC 
as the molecular description, which is linked to 
the continuum fluid solver using a field-wise 
coupling (HMM-FWC) approach (see Borg et 
al., 2013b). Rather than supplying a correction 
to a node on the continuum mesh, each micro 
region corrects a continuum sub-region, the 
spatial dimensions of which are identical to 
those of the micro region itself. This means 
that the position and size of our micro regions 
can be optimised for each problem, making 
HMM-FWC suitable for problems with 
varying degrees of spatial scale separation. 
 The form of the method we present in this 
paper is general and is suitable for modeling 
both momentum and heat transfer in gases at 
the microscale. To validate our method, we 
consider a one-dimensional test case of high-
speed Couette flow.  
 
2. Simulation Methodology 
 In our method, the continuum description 
is applied across the full macro domain and is 
corrected using dispersed DSMC sub-domains. 
In turn, these sub-domains are constrained by 
the local continuum description. We present a 
new strategy to achieve this two-way coupling. 
 
2.1 Correcting the Continuum Description 
   For steady-state fluid flows, the governing 
equations for the conservation of mass, 
momentum, and energy can be written, 

∇⋅ρu = 0 ,     (1) 
ρu ⋅ ∇u( ) = −∇⋅ pI+∇⋅σ + F ,     (2) 
∇⋅ ρEu( ) =
−∇⋅ pI ⋅u( ) +∇⋅ σ ⋅u( )−∇⋅q,

    (3) 

where, ρ is the mass density, u is velocity, p is 
the pressure, σ is the stress tensor, F is a body 
force, E is the total energy, and q is the heat-
flux vector. Typically, these expressions are 
closed using the traditional Navier-Stokes-
Fourier (NSF) constitutive relations for σ and 
q. These relations are, however, known to fail 
in certain conditions, e.g. in conditions of 
thermodynamic non-equilibrium, or in flows 
of complex fluids. We can therefore obtain 
‘corrections’ to these constitutive relations 
from our cluster of DSMC sub-domains. We 
obtain a ‘stress correction’ field Ω, i.e. 

σ = µ ∇u( ) + µ ∇u( )T − 2
3
µ ∇⋅u( )I+Ω ,   (4) 

and a ‘heat-flux correction’ field Φ, i.e. 
q = −κ∇T +Φ .    (5) 

Note that these correction fields automatically 
incorporate any error in the assumed dynamic 
viscosity µ and thermal conductivity κ. The 
momentum equation then reads, 

ρu ⋅ ∇u( ) = −∇⋅ pI

+∇⋅µ ∇u( ) +∇⋅µ ∇u( )T

− 2
3
∇⋅ µ ∇⋅u( )I⎡⎣ ⎤⎦ +∇⋅Ω + F,

  (6) 

while the energy equation becomes, 
∇⋅ ρEu( ) = −∇⋅ pI ⋅u( )
+∇⋅ µ ∇u( ) ⋅u⎡⎣ ⎤⎦ +∇⋅ µ ∇u( )T ⋅u⎡⎣ ⎤⎦

− 2
3
∇⋅ µ ∇⋅u( )I ⋅u⎡⎣ ⎤⎦ +∇⋅ Ω ⋅u( )

+∇⋅ κ∇T( )−∇⋅Φ.

    (7) 

 The general strategy of our heterogeneous 
hybrid approach can be summarized as 
follows. Based on the local continuum 
description, constraints are applied to each 
micro sub-domain. Performing DSMC, the 
velocity and temperature, along with the stress 
and the heat-flux, are measured across each 
sub-domain. The stress and heat-flux 
correction fields across each sub-domain are 
then computed using Eqs. 4 and 5. By 
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interpolating between all micro sub-domains, 
the correction fields across the entire flowfield 
are approximated. With boundary conditions 
obtained from near-wall micro simulations, 
solving Eqs. 1, 6, and 7 results in new 
‘corrected’ velocity, temperature, and pressure 
fields across the domain. With successive 
iterations, the hybrid simulation stops once 
these property fields converge.  
 
2.2 Constraining the DSMC Sub-domains 
 The open-source C++ toolbox OpenFOAM 
incorporates a DSMC solver, dsmcFoam, 
which we use to perform all the micro and 
full-scale DSMC simulations in this paper.  
 It is important that the gas state in the 
DSMC sub-domains (from which we extract 
the correction fields) is properly representative 
of the local conditions in the macro domain. 
However, the particle distribution required at 
the boundaries of each sub-domain cannot be 
extracted directly from the continuum 
flowfield. We circumvent this problem by 
establishing an artificial ‘relaxation’ region 
around each sub-domain that enables the 
particle distribution to naturally evolve to its 
correct form at the sub-domain boundaries. 
Sampling of property fields is then performed 
only in the core of the sub-domain, i.e. the 
‘sampling zone’. A schematic of a 3D bulk 
sub-domain is shown in Fig. 1.  

 
Fig. 1. 3D bulk micro sub-domain. 
  
 Note that, to capture regions of non-
equilibrium that appear at bounding walls, the 
sampling zone in a ‘near-wall’ micro element 
must be adjacent to the wall itself. 

 The sole purpose of the ‘relaxation zone’ is 
to generate the proper boundary conditions to 
the sampling zone. We achieve this by using 
particle controllers (see Borg et al. 2010) to 
enforce the local continuum state throughout 
the relaxation zone, while a Maxwellian 
particle distribution (for simplicity) is imposed 
at the outer boundaries of the relaxation zone. 
The relaxation zone must then be large enough 
that complete relaxation of the particle 
distribution occurs before reaching the inner 
sampling zone.  
 
2.3 Iterative algorithm 
 The general coupling procedure is:  

0. Initially, Ω = Φ = 0. Assuming no 
velocity slip or temperature jump, 
solve Eqs. 1, 6, and 7, to obtain an 
initial estimate for the continuum 
velocity, temperature, and pressure 
fields: uNSF, TNSF, and pNSF.  

Compute the initial density field from 
the ideal gas law, ρNSF = pNSF/RTNSF.  

1. Constrain each micro sub-domain by 
applying boundary conditions:  

a. Enforce the local continuum 
velocity, temperature, and density 
fields (computed in the previous 
step) throughout each relaxation 
zone using particle controllers.  

b. At the outer boundaries of each 
relaxation zone, impose a 
Maxwellian particle distribution at 
the local continuum velocity and 
temperature.  

2. Perform DSMC in each sub-domain. 
From each sampling zone, extract the 
time-averaged property fields. Also, 
from near-wall sampling zones, 
extract the velocity and temperature 
of the gas at the wall surface. 

3. Using the extracted velocity and 
stress fields in Eq. 4, compute the 
stress correction across each sampling 
zone. Similarly, compute the heat-
flux correction across each sampling 
zone using the extracted temperature 
and heat-flux fields in Eq. 5.  
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4. Carry out appropriate interpolations 
between the sampling zones to 
approximate the correction fields, Ω 
and Φ, across the full domain.  
Similarly, interpolate between near-
wall sampling zones to obtain gas 
velocity and temperature information 
at all bounding walls.  

5. Using this boundary information, and 
Ω and Φ, solve Eqs. 1, 6, and 7, to 
obtain new corrected velocity, 
temperature, and pressure fields: unew, 
Tnew, and pnew.  

Compute the new corrected density 
field, ρnew = pnew/RTnew. 

6. Replace the initial NSF property 
fields with the new corrected property 
fields and repeat from Step 1. 
Continue until the solution converges. 

 
3. High-speed Couette Flow  
 We require a simple test case that can 
easily be validated against a full-scale DSMC 
simulation. We therefore choose a steady-state 
case with one-dimensional momentum and 
heat transfer, i.e. high-speed Couette flow. 
This consists of a gas confined between two 
infinite parallel walls that are maintained at the 
same temperature Twall, and are moving in their 
own plane at different velocities, ulower and 
uupper. If these velocities are large (such that 
the gas has a Mach number Ma > 0.2), 
significant viscous heating occurs in the gas.  
  
3.1 Numerical Implementation 
 In reality, µ and κ will vary with the 
hydrodynamic properties of the gas. However, 
with the exact variations unknown, we assume 
constant reference values µr and κr in this 
work. The correction fields automatically 
adjust for any resulting error.  
 When following the hybrid procedure of 
section 2.3, simplifications can be made due to 
the one-dimensional nature of this problem.  
Mass conservation (Eq. 1) is automatically 
satisfied. The conservation of momentum (Eq. 
6) takes the form of two separate expressions 
for the x- and y-directions, 

µr
d2u
dy2

⎡

⎣
⎢

⎤

⎦
⎥ +
dΩxy

dy
= 0,      (8) 

dp
dy

−
dΩyy

dy
= 0,      (9) 

while the conservation of energy (Eq. 7) is 
reduced to, 

κ r
d2T
dy2

⎡

⎣
⎢

⎤

⎦
⎥ −
dΦy

dy

+µr
du
dy

⎡
⎣⎢

⎤
⎦⎥

2

+ du
dy

Ωxy = 0.

     (10) 

From Eq. 4, the shear and normal stress 
corrections are given by, 

xyΩ = xyσ − rµ
du
dy
#

$
%

&

'
(,      (11) 

Ωyy =σ yy,      (12) 
and, from Eq. 5, the heat-flux correction is 
given by, 

yΦ = yq + rκ
dT
dy
"

#
$

%

&
'.      (13) 

 Discretizing in one-dimensional space, the 
macroscopic mesh consists of N macro nodes, 
including a node at each wall. The governing 
equations 8, 9, and 10, along with the 
correction fields given by Eqs. 11, 12, and 13, 
can therefore be approximated using finite 
difference representations.  
 An example computational domain for this 
case is shown in Fig. 2, with a micro sub-
domain at each wall, and one in the bulk. This 
sub-domain arrangement is an example only – 
the appropriate arrangement depends on the 
case itself. For this 1D problem, each near-
wall sub-domain comprises a single sampling 
zone and a single relaxation zone, while each 
bulk sub-domain consists of a single sampling 
zone with a relaxation zone on either side, as 
indicated in Fig. 2. To measure and control the 
variation of the property fields, each sampling 
zone is divided into a number of 1D 
measurement bins, while each relaxation zone 
is divided into a number of 1D control bins. To 
keep the transfer of data between the solvers as 
simple as possible, the bin arrangement is set 
such that the centre of each bin coincides 
exactly with a macro node. This is, however, 
merely for convenience and is not essential. 



4th Micro and Nano Flows Conference 
UCL, London, UK, 7-10 September 2014 

- 5 - 

 
Fig. 2. A schematic of the computational set-
up for a planar Couette flow problem. 
 
 The application of the general hybrid 
algorithm to this 1D system is as follows: 

0. Assuming no correction (Ωxy = Ωyy= 
Φy = 0) and traditional no slip/jump 
boundary conditions, solving Eqs. 8, 
9, and 10 produces the initial NSF 
property fields, uNSF, TNSF, pNSF, and 
ρNSF = pNSF/RTNSF. 

1. Each sub-domain is then constrained:  
a. The local continuum velocity, 

temperature, and density fields are 
enforced across the relaxation 
zones using particle controllers in 
each control bin.  

b. A Maxwellian particle distribution 
is imposed at the outer boundaries 
of each relaxation zone via a 

diffuse wall at the local continuum 
velocity and temperature.  

2. DSMC is performed in each sub-
domain. From each measurement bin, 
the time-averaged property fields are 
extracted. Also, from both near-wall 
micro elements, the velocity and 
temperature of the gas at the wall 
surface is extracted.    

3. With the extracted velocity and stress 
fields, we can compute the shear and 
normal stress corrections across each 
sampling zone using Eqs. 11 and 12. 
Similarly, using the extracted heat-
flux and temperature, we can compute 
the heat-flux correction across each 
sampling zone from Eq. 13.  

4. For simplicity, linear interpolation is 
used between the sampling zones to 
obtain the full correction fields across 
the entire flowfield. Note that, for this 
1D geometry, interpolation of the 
boundary information is not required.  

5. With the full correction fields and 
updated boundary conditions, solving 
Eqs. 8, 9, and 10 gives new corrected 
property fields, unew, Tnew, pnew, and, 
ρnew = pnew/R Tnew. 

6. Replacing the old property fields with 
the new corrected property fields, we 
repeat from Step 1 until we get 
convergence. 

 
3.2 Test Case: Results 
 Maintaining simplicity, we consider a test 
case where the confined gas is monatomic 
argon. The separation between the walls H = 1 
µm, and we use N = 201 macro nodes across 
the domain (giving a constant node spacing ∆y 
= 5 nm). Both walls are maintained at a 
constant temperature Twall = 273 K. The lower 
wall moves at ulower = -1550 m/s, while the 
upper wall moves at uupper = +1550 m/s. With 
Ma ≈ 5, viscous heating will be significant and 
so the temperature of the gas is expected to be 
considerably greater than the wall temperature. 
The initial NSF solution for this problem 
indicates that the average temperature of the 
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gas will be 1294 K. Based on this, we assume 
a reference viscosity µr = 6.25×10-5 kg/ms, and 
a reference conductivity κr = 0.049 W/mK (see 
Younglove, 1986). Assuming a Variable Hard 
Sphere (VHS) molecular collision model, we 
set the gas density to obtain a gas mean free 
path λ of 0.01 µm, and hence a global 
Knudsen number Kn =λ / H = 0.01.  
 The accuracy of our hybrid approach 
depends on the configuration (i.e. the position 
and size) of our DSMC sub-domains, as this 
will determine the ability to capture the true 
form of the correction fields across the 
flowfield. These ‘true’ correction fields are 
those that can be computed from a full-scale 
DSMC solution, using the measured property 
fields in Eqs. 11, 12, and 13. To validate our 
coupling method, we consider an example 
configuration where we have two near-wall 
sub-domains, and four bulk sub-domains. As 
non-equilibrium is more prominent close to the 
walls, we position the bulk sub-domains such 
that they are centered at y = 0.1H, 0.3H, 0.7H, 
and 0.9H. We select an extent of 5 local mean 
free paths λl for each relaxation zone, as this 
should be sufficient to allow for full relaxation 
of the particle state. We also approximate that 
an extent of 5 λl for each sampling zone 
should enable us to construct a reasonable 
approximation of the three correction fields. 
Therefore, our near-wall sub-domains have an 
extent of 10 λl while our bulk sub-domains 
have an extent of 15 λl.  
 We use the same cell-size and time-step for 
the DSMC sub-domains and the full 
simulation. With a time-step ∆t = 1×10-12 s, an 
initial start-up run of 3 million time-steps 
allowed all simulations to reach steady state. 
All simulations were run for a further 20 
million time-steps to minimize the statistical 
scatter in the averaging of the property fields.  
 Convergence of the solution occurs within 
5 iterations here. Along with the initial NSF 
and full DSMC solutions, the final converged 
property profiles are shown in Fig. 3. 
Presented in Fig. 4, the mean percentage error 
ε  of these hybrid property profiles (in 
comparison with the full DSMC solution) 
provides a more visible measure of the 
hybrid’s accuracy. For a property b, 

bε = 1
N

bFull (i)− bnew(i)
bref

×100%
⎡

⎣
⎢

⎤

⎦
⎥

i

N
∑ ,   (14) 

where i = 0, 1, 2,…N-1, and bref is a constant 
reference value. For the velocity, temperature, 
and density (which vary considerably across 
the flowfield), bref is the property range of the 
full-scale solution, i.e. bref = bFull,max −	
 bFull,min. 
For the pressure (which remains almost 
constant across the flowfield), bref is the 
average of the full-scale solution, i.e. bref = 
pFull,av. Note that iteration l = 0 corresponds to 
the initial NSF solution. 

 
Fig. 3. NSF, Full DSMC, and final new hybrid 
solutions for (a) velocity, (b) temperature, (c) 
pressure, and (d) mass density.  
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Fig. 4. Mean error in the hybrid velocity, 
temperature, pressure, and density solutions.  
 
 For all properties, this hybrid configuration 
provides a significant improvement over the 
initial NSF solution. The hybrid velocity field 
matches well to the full-scale solution, with a 
final error of 0.11%. The temperature and 
pressure profiles are less accurate, with final 
errors of 6.94% and 4.66%, respectively. This 
accuracy is a result of the approximated 
correction fields shown in Fig. 5.  

Fig. 5. The NSF, full-scale and hybrid (a) 
shear stress Ωxy, (b) normal stress Ωyy, and (c) 
heat-flux Φy correction fields. Note that the 
NSF solution provides no correction.  

 The accuracy of the temperature and 
pressure fields would likely be improved by 
increasing the molecular resolution close to the 
walls. This could be done by enlarging the 
sub-domains, by adding more bulk sub-
domains, or both.  
 
3.3 Computational Effort 
 A measure of the computational speed-up S 
is obtained here as the ratio of the total 
processing time of the full DSMC approach, to 
the total processing time of our hybrid 
approach. For each simulation, the total 
processing time is the total number of DSMC 
time-steps M × the average clock time per 
DSMC time-step tc, i.e. 

S = FullM c,Fullt
HybridM c,Hybridt

.     (14) 

The total number of DSMC time-steps is the 
same for the full-scale and the hybrid sub-
domain simulations, i.e. MFull = MHybrid = 
23×106. The total average clock time per time-
step for the hybrid approach tc,Hybrid is 
calculated as the sum of tc for all micro sub-
domains, over all iterations.  
 For this validation case, the degree of 
length scale separation is fairly small and so 
the required micro sub-domains occupy a 
significant portion of the domain. So, with five 
iterations, we see no computational speed-up 
at all for this one-dimensional test case, and S 
< 1. It is important to note, however, that this 
test case has been chosen simply to test and 
validate the hybrid methodology. Future 
simulations of larger, more realistic, 2D and 
3D problems will highlight any computational 
advantages of our multiscale approach. The 
use of time scale separation may also increase 
computational savings. 
 
4. Conclusions 
 Based on an HMM-FWC approach, we 
have proposed a hybrid method for microscale 
gas flows that couples a continuum-fluid 
solver with a DSMC particle method. The key 
advantage of this hybrid is that DSMC sub-
domains of any size can be placed at any 
location, i.e. close to walls or in the bulk of the 
domain. The micro resolution can therefore be 
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adjusted for each problem to obtain the desired 
balance between accuracy and computational 
cost.  
 We have demonstrated our new method on 
a high-speed micro Couette flow problem, 
with coupling performed through momentum 
and energy. We have shown the hybrid 
method’s ability to compensate for inaccurate 
boundary and constitutive information, and 
good agreement with the equivalent full-scale 
DSMC simulation was observed (with the 
exact level of accuracy determined by the 
micro sub-domain arrangement). Due to the 
small degree of scale separation in this test 
case, no computational speed-up was 
observed. However, significant speed-ups 
could be expected on larger, more realistic 
problems. Work is now focusing on 
application to complex 2D and 3D problems.  
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