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Abstract The present work uses the continuum description of nanofluid flow to study the flow, heat and 
mass transfer in the entrance and developing region of channels or tubes, where the viscous and heat 
conduction layers are thin and the heat transfer is much more intense than fully developed flow. Instead of 
supplementing the formulation with thermodynamic properties based on mixture calculations, use is made of 
recent molecular dynamical computations of such properties, specifically, the density and heat capacity of 
gold-water nanofluids. The more general formulation results, within the Rayleigh-Stokes (plug flow) 
approximation and perturbation for small volume fraction, show that the nanofluid density-heat capacity has 
an enormous effect in the inertia mechanism in causing the nanofluid temperature profile to steepen. The 
nanofluid thermal conductivity though has an explicit enhancement of the surface heat transfer rate has the 
almost hidden effect of stretching the nanofluid temperature profile thus giving the opposite effect of 
enhancement.  
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1. Introduction 
 
   The purpose of the present contribution is 
to incorporate the recent results molecular 
dynamics computations of nanofluid 
thermodynamic properties, Puliti, et al. [1], in 
the continuum formulation of the dynamics 
and thermodynamics of nanofluid flow. The 
formulation is applied to the entrance region of 
channels and tubes where the transport layers 
are thin and where unusual high heat transfer 
rates have been observed (Wen & Ding 2004; 
Jung, et al., 2009) even for small volume 
fractions of the nanoparticles. The physical 
mechanisms of nanofluid contribution to heat 
transfer are elucidated from the analytical 
solutions obtained from the approximate 
continuum description in this paper. 
 
2. Description of the formulation  

 
   Buongirno (2006) gave significant impetus 
to the continuum description of nanofluid flow 
by generalizing the multiphase flow 
description (Bird, et al. 1960). This is applied 
by Pfautsch (2008) to the numerical solution 

of nanofluid boundary layer flow over a flat 
plate. Recently the author (Liu 2012) studied 
the leading edge flow in the channel or tube 
entrance region approximately. The nonlinear 
effects of momentum, heat and mass transport 
owing to fluid advection are replaced by the 
advection effect of a uniform  entrance 
velocity (the plug flow approximation).  
   The viscous, heat conduction and mass 
transfer layers are simplified into the 
Rayleigh-Stokes form of coupled “heat 
equations”. The problem is further simplified 
by noticing that the experimentally observed 
heat transfer enhancement occurs even at very 
low nanoparticle volume concentrations of a 
few percent, which allows a perturbation 
procedure about a pure fluid, in ascending 
powers of the volume fraction. In this case, the 
nanofluid problem becomes first order in the 
volume fraction, while “forced” by the 
solutions of the zeroeth order which are the 
Rayleigh-Stokes solutions in terms error 
functions for the momentum, heat and mass 
transfer problems. Analytical solutions for the 
first order problems result.  
   Relative to a clean fluid, it is known that 
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the nanofluid thermal conductivity would 
enhance the surface heat transfer rate as 
coefficient of the temperature gradient at the 
wall. On the other hand, the enhanced thermal 
conductivity also has the implicit effect of 
stretching the modified temperature profile 
through more efficient thermal conduction and 
is, at the same time, detrimental to enhanced 
heat transfer. The nanofluid thermodynamic 
property in terms of the density-heat capacity 
product has the competing effect on the 
structure of the temperature profile: the 
product is an inertial effect and contributes to 
the steepening of the temperature profile.  
   The continuum descriptions in the 
literature have used the mixture theory to 
obtain the nanofluid density and heat capacity, 
with all the shortcomings discussed by Puliti, 
et al. (2012). Since it is recognized (Liu 2012) 
that the density-heat capacity product give rise 
to the mechanism of steepening of the 
modified temperature profile, the recent work 
on molecular dynamics computation of the 
nanofluid properties could provide a most 
welcomed alternative to that obtained through 
mixtures. 
   In this paper, we explore the possibilities 
of incorporating the molecular dynamics 
results in terms of analytical solutions 
obtainable (Liu 2012) for the leading edge 
plug flow approximation and the perturbation 
scheme in terms of small nanofluid volume 
fraction. 
 
3. Thermodynamic properties of Au-H2O 
nanofluid according to molecular dynamics 
computations (Puliti, et al. 2012) 
 
   The thermodynamic properties of pure 
gold and of water are computed as well as 
gold-water nanofluid at nanoparticle volume 
fractions of 1%, 10% and 15%. The heat 
capacity result (Puliti, et al. 2012) is obtained 
in terms of J/mol K and would thus need to be 
converted to units of J/kg K for use in the 
continuum conservation equations. To this 
end, the effective nanofluid molecular weight 
would be obtained according to procedures in 
mixtures and that an effective ideal volume 
fraction is obtained from the mixture relation 

for the density to be consistent with that 
computed from molecular dynamics. This 
means that the effective volume fraction thus 
obtained would differ slightly from that used 
in the molecular dynamics computation. 
   The result obtained by Puliti, et al. (2012) 
is for a nanofluid consisting of gold 
nanoparticles and water and is shown in the 
Table 1 that follows. The dimensionless 
density-heat capacity product is normalized by 
that for the pure fluid (which is water in this 
case, for which f fcρ =1.42 kJ/gK at 
�� Subscript f denotes that of the pure 
fluid, ρ  is the nanofluid density, c  is the 
nanofluid heat capacity at constant pressure 
and φ  is the volume fraction of the 
nanoparticles, subscript ∞  denotes the free 
stream, entrance region values, asterisks 
denote  quantities normalized by that of the 
pure fluid: 
 

φ∞  0.017 0.109 0.168 1.0 
* *cρ  1.62 7.29 16.36 69.42 

 

Table 1. Density-heat capacity product vs. volume fraction, 
gold-water nanofluid (adapted from Puliti, et al. 2012) 
 
   In anticipation of the perturbation scheme 
for  , nanofluid properties are expanded 
in ascending powers of  φ∞  

(1) 2
0* * 1 ( * * / ) ( ),c d c dρ φ ρ φ ϑ φ∞ ∞= + Φ +  

(3.1) 
where (1)Φ =φ /φ∞  is the normalized volume 
fraction in the nanofluid diffusion layer. An 
approximate estimate from Table 1 gives the 
value of the slope 0( * * / ) 36.5d c dρ φ ≅  in 
regions of smallφ∞ . In view of the relatively 
large values of the initial slope in this specific 
case of gold-water nanofluid, the allowable 
free stream volume fraction would have to be 
limited to about 0.1% or less for the 
perturbation scheme to be valid. Experiments 
in metal oxide nanofluids are normally carried 
out in nanoparticle volume fraction ranges of 
the order of 0.1%. 
   From ideal mixture considerations, the 
density-heat capacity product is an “exact” 
relation to first order of the volume fraction: 
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  (1)* *] 1 ( 1)mixture p pc cρ φ ρ∗ ∗
∞= + Φ − ,    (3.2) 

where p pcρ∗ ∗  is the dimensionless particle 
phase density-heat capacity, normalized by 
that of the fluid phase f fcρ . Molecular 
dynamics computations (Puliti, et al. 2012) of 
the nanoparticle density and heat capacity, 
after normalization, give 1 68.42p pcρ∗ ∗ − = . In 
the analyses where mixture theory is used (Liu 
2012) to obtain the density-heat capacity 
product, wherever the factor 1p pcρ∗ ∗ −  occurs, 
it would be replaced by 0( * * / )d c dρ φ  for 
an extension to the molecular dynamics 
computation (Puliti, et al. 2012) of the density-
heat capacity product. 
 
3.1 Other thermophysical properties 
 
   Other thermophysical properties of the 
composite nanofluid are expressed tentatively, 
pending possible further molecular dynamics 
contributions. On the basis of correlations, the 
nanofluid viscosity is expressed as  

(1) 2 (2)
1 21 ....f a aµ µ µ φ φ∗

∞ ∞= = + Φ + Φ +  
The nanofluid thermal conductivity is 
similarly expressed as 

(1) 2 (2)
1 21 ....fk k k b bφ φ∗

∞ ∞= = + Φ + Φ +  

where a1,..,b1,..  are nanoparticle material 
dependent correlation constants. For Brownian 
diffusion, the Stokes-Einstein relation is  

DB =σ BT / 3πµdp , 

where σ B  is the Boltzmann constant, dp  is 
the (average) nanoparticle diameter. 
 
4. The Rayleigh-Stokes (plug flow) 
approximation for the entrance region 

 
   The nonlinear continuum description of the 
dynamics and thermodynamics of nanofluid 
flow is given in Buongiorno (2006), that for 
boundary layer flows in Pfautsch (2008). Here, 
we follow the discussion in Liu (2012) and 
state the boundary layer form of the 
conservation equations after subjecting them 
to the Rayleigh-Stokes approximation, where 
the nonlinear advective effects are replaced by 

that of the known entrance velocity U , 

u ∂
∂x
+ v ∂

∂y
≡U ∂

∂x
 

where u,v  are the streamwise and normal 
velocity components in the x, y  directions, 
respectively; y  is measured from the wall 
surface and x measured from the leading edge 
of the entrance region. In this case, the 
momentum equation becomes 

         u uU
x y y

ρ µ
⎛ ⎞∂ ∂ ∂

= ⎜ ⎟∂ ∂ ∂⎝ ⎠
,       (4.1)      

where ρ , already defined, is the density and 
µ  the viscosity of the nanofluid. In the 
leading edge of the entrance region, 
approximated by parallel plates, the upper and 
lower wall transport layers are not yet 
intersecting so that the streamwise pressure 
gradient can still be set to zero. The energy 
transport equation in terms of the static 
enthalpy for low Mach numbers is 

,p y p
T T TcU k j c
x y y y

ρ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
,   (4.2) 

Where cp∂T / ∂y = ∂hp / ∂y , hp and cp are the 
enthalpy and heat capacity of the nanoparticle 
phase. The nanoparticle phase is assumed to be 
in thermal equilibrium with the base fluid at 
the local temperature T  of the nanofluid. The 
diffusion flux jp,y  consists of Brownian 
diffusion and thermal diffusion (Buongirno 
2006). The latter is estimated to be a weak 
effect compared to the former mechanism so 
that at the outset, the diffusion flux is written 
simply as 

,p y p Bj D
y
φ

ρ
∂

= −
∂

. 

   The continuity equation for the 
nanoparticle phase in the nanofluid leads to the 
diffusion equation. 

           ρ pU
∂φ
∂x

= −
∂jp,y
∂y

.        (4.3) 
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The boundary conditions are 

     
y = 0 : u = 0, T = Tw, jp,y = 0
y =∞ : u =U. T = T∞, φ = φ∞

,    (4.4) 

where the subscript w denotes condition at the 
wall and ∞  that in the free stream far away 
from the wall. The zero flux wall-boundary 
condition , 0 0p yj = =  is suggested by 
Buongirno (2006) as the natural one to impose 
for non-porous, inert solid walls. 
   The global continuity equation, under the 
 Rayleigh-Stokes approximation, is 

        U ∂lnρ
∂x

+
∂u
∂x

+
∂v
∂y

"

#
$

%

&
'= 0 .      (4.5) 

Although the individual phases are 
“incompressible”, the composite nanofluid 
does not necessarily behave like an 
incompressible fluid unless the volume 
fraction is identically zero as indicated by the 
mixture calculation  
       (1 ) ,mix p fρ φρ φ ρ= + −        (4.6) 

or indicated by the only available molecular 
dynamics computation (Puliti, et al. 2012) 
which gives the density ratio in the form 

2
0/ 1 ( / ) ( ),MD fρ ρ ρ φ φ ϑ φ= + ∂ ∂ +    (4.7)

 
In the present simplified leading edge 
formulation, the global continuity equation 
serves as a means to calculate the normal 
velocity v, if desired, from the u velocity and 
the nanofluid density (which can be cast in 
terms of the volume fraction φ ). 
   The characteristic flow quantities of the 
entrance region are used to render the 
simplified conservation equations and 
nanofluid properties dimensionless 

      ρ∗ ∂u∗

∂y∗
=
1
ReD

∂
∂y∗

µ∗ ∂u∗

∂y∗
#

$
%

&

'
( ,     (4.8) 

 

     

ρ∗c∗ ∂θ
∂y∗

=
1

Pr fReD

∂

∂y∗
k∗ ∂θ
∂y∗

#

$
%

&

'
(

+
φ
∞

Pr fReD Le
DB

∗ ∂Φ

∂y∗
∂θ
∂y∗
,

  (4.9) 

 

   ∂Φ
∂x∗

=
1

Scf ReD
∂
∂y∗

DB
∗ ∂Φ
∂y∗

$

%
&

'

(
),      (4.10) 

and the global continuity equation becomes,  

 v∗ − v∗(0) = − ∂
∂x∗0

y∗

∫ u∗ + lnρ∗( )dy∗ , (4.11) 

once integrated, becomes an independent 
calculation of the normal velocity. 
   The boundary conditions in dimensionless 
form are 

 
0 : 0, 0, / 0,

: 1, 1, 1.

y u y
y u

θ

θ

∗ ∗ ∗

∗ ∗

= = = ∂Φ ∂ =

= ∞ = = Φ =
 (4.12) 

The dimensionless quantities above that have 
not been defined are: 

,

, ,

, / , / , ( ) /( ),

/ , / ,

, / , / , Re / , Pr / ,

/ , / ,

w w

f B B B ref

D f f f f

f p p B ref f f B ref

u v u U v U T T T T
c c c D D D

x y x D y D UD
Le k c D Sc D

θ

ν ν α

ρ ν

∗ ∗
∞

∗ ∗

∗ ∗

= = − −

= =

= = =

= =

 

The reference diffusion coefficient is 
, / 3 ,B ref B pD T dσ πµ∞ ∞= D  is the channel 

width, Re , Pr , ,D f fLe Sc  are the 
Reynolds, Prandtl, Lewis and Schmidt 
numbers, respectively. The Lewis number 
definition differs from that in Buongiorno 
(2006) in that the parameter φ∞  has been 
taken out of the denominator here as it will 
serve as an explicit perturbation parameter that 
follows.  
 
5. The perturbation problem for 1φ∞ <<  
   The thermodynamic properties discussed 
are already cast into the form of ascending 
powers of .φ∞  The simplified conservation 
equations, however, are still nonlinear through 
the dependence on the volume fraction. In 
general, experiments on nanofluid heat transfer 
(e.g., Jung, et al. 2009, Wen & Ding 2004) are 
performed with 2(10 )φ ϑ −

∞ = . In this case, it 
seems opportune to apply a perturbation 
procedure to the conservation equations and 
the thermodynamic properties for small .φ∞  
Thus for 1φ∞ <<  
        (0) (1) 2( ),u u uφ ϑ φ∞ ∞= + +  
       (0) (1) 2( ),θ θ φ θ ϑ φ∞ ∞= + +       (5.1) 
       (1) 2( ).φ φ ϑ φ∞ ∞= Φ +  
The zeroeth order solution is that of a clean 
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fluid. Similarly, the thermodynamic properties 
are expressed as 
  (1) 2

0* 1 ( * / ) ( )d dρ φ ρ φ ϑ φ∞ ∞= + Φ +    (5.2) 
(1) 2

0* 1 ( * / ) ( ).c d c dρ φ ρ φ ϑ φ∗ ∗
∞ ∞= + Φ + (5.3)    

where the derivatives 0( *)ρ ʹ′ , 0( * )cρ ∗ ʹ′  are 
obtained from the molecular dynamics 
computations of Puliti, et al. (2012). Other 
properties, which are not obtained from 
molecular dynamics computations, would be 
obtained from the literature: 

     

(1) 2
1
(1) 2

1
(1) 2

1 ( ),

1 ( ),

1 ( ),B B

a
k b
D D

µ φ ϑ φ

φ ϑ φ

φ ϑ φ

∗
∞ ∞

∗
∞ ∞

∗
∞ ∞

= + Φ +

= + Φ +

= + +

     (5.4)    

the dimensionless perturbation diffusion 
coefficient (1)

BD  does not enter into problems 
of interest in the approximations to follow. 
    
5.1 The zeroeth order problem 
   The zeroeth order effects, though not of 
primary interest, are nevertheless inputs to the 
( )ϑ φ∞  effects which is sought here. It suffices 

to summarize the zeroeth order solutions, 
which are for (0)u  and (0)θ , satisfying the 
zeroeth order boundary conditions from (4.12),  

        
(0)

(0)

( ) ( ),

( ) ( ),
u u

T T

u erf
erf

η η

θ η η

=

=
         (5.5)  

where ( )uerf η  and ( )Terf η  are the error 
functions in terms of the respective velocity 
and temperature similarity variables 

      
/ 2 / Re ,

/ 2 / Re Pr .

u D

T D f

y x

y x

η

η

∗ ∗

∗ ∗

=

=
      (5.6) 

The respective momentum and thermal 
diffusion layers are thus estimated to grow 
like / Re ,u Dxδ ∗≈ / Re PrT D fxδ ∗≈ . For 

water, Pr 7.01, 0.98f = at 0 20, 180,T C =  
respectively; it is thus expected 
that / (1)u Tδ δ ϑ≥ . 
   The first order effects are obtained by 
substitution of (5.1)-(5.4) into (4.8)-4.10) and 
equating effects to ( )ϑ φ∞ . The perturbation 
expansions are carried out in the dimensionless 
physical coordinates and, as was performed for 

the zeroeth order problem, are subsequently 
transformed to the respective similarity 
variables, ,u Tη η  and the volume fraction 
(nanoparticle concentration) diffusion variable  

/ 2 / ReD fy x Scφη
∗ ∗= , 

for the coupled problems of momentum, heat 
and mass transfer (4.8)-(4.11). 
 
5.2 The first order problems 
   The first order momentum equation 
becomes 

( ) ( ) ( )

( ) ( )

2 (1) (1)

2

(0)
(1)

0

(0)
(1)

1

2

/ 2

u
uu

u
u

u

u

u u

d u du
dd

du
d d

d

duda
d d

φ

φ

η
ηη

η
ρ φ η η

η

η
η

η η

∗

+ =

⎡ ⎤
Φ⎢ ⎥

⎢ ⎥− ⎢ ⎥⎛ ⎞
⎢ ⎥+ Φ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (5.8)                             

The left side differential operator is identical 
to that for (0) ( )uu η which satisfied the 
boundary conditions of (4.12). Eq. (5.8) is an 
inhomogeneous heat equation in similarity 
variables and satisfies homogeneous boundary 
conditions (1) (0) 0,u =  (1) ( ) 0u ∞ = .  
   The energy conservation equation to first 
order in similarity form is 

( ) ( ) ( )

( ) ( )

( )

(1) (1)

2

(0)
(1)

0

(0)
(1)

1

(1) (0)

2

/ 2

( )1 ,

T
TT

T
T

T

T

T T

T

T T

d d
dd

d
d c d

d

ddb
d d

d d
Le d d

φ

φ

φ

θ θ
η

ηη

θ η
ρ φ η η

η

θ η
η

η η

η θ η

η η

∗ ∗

+ =

⎡ ⎤
Φ⎢ ⎥

⎢ ⎥− ⎢ ⎥⎛ ⎞
⎢ ⎥+ Φ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤Φ
+ ⎢ ⎥

⎢ ⎥⎣ ⎦

     (5.9) 

Eq. (5.9), which is indeed an inhomogeneous 
heat equation, which satisfies homogeneous 
boundary conditions (1) (1)(0) ( ) 0.θ θ= ∞ =  
The definition of similarity variables in the 
different diffusive regions will be used to 
evaluate, for instance, /T fd d Leφη η = , 

where / Prf f fLe Sc= , (which differs from the 
definition of Le  defined earlier by a factor of  
cρ∗ ∗).    
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   It is recognized earlier that thermal 
diffusion is weak compared to Brownian 
diffusion in arriving at (4.10), thus in 
similarity form, the diffusion equation is 

     
2 (1) (1)

2 2 0d d
dd φ

φφ

η
ηη

Φ Φ
+ = ,        (5.10) 

The boundary conditions are zero flux at the 
wall, which, in the absence of thermal 
diffusion, is (1)

0
( ) 0d d

φ
φ η
η

=
Φ = , 

and (1) ( ) 1Φ ∞ = . With the zero-flux wall 
boundary condition, a solution of (5.10) is 
simply uniform volume fraction throughout 
the concentration diffusion layer (1) ( ) 1φηΦ = . 
In addition, Brownian diffusion coefficients 
are estimated to be much small than the 
kinematic viscosity and thermal diffusivity of 
water so that  

1u fScφδ δ ≈ >> , 1T fLeφδ δ ≈ >> . 
These observations will bring enormous 
simplification to the uncoupling of the first 
order momentum and temperature problems. 
   Under these simplifications, the first order 
momentum problem becomes 

( )

2 (1) (1)

2

(0) 2 (0)

1 20

2

/ 2 ,

u
uu

u
u u

d u du
dd

du d ud d a
d d

η
ηη

ρ φ η
η η

∗

+ =

⎡ ⎤
− +⎢ ⎥
⎣ ⎦

  (5.11) 

and the energy equation becomes 

( )

2 (1) (1)

2

(0) 2 (0)

1 20

2

/ 2 .

T
TT

T
T T

d d
dd

d dd c d b
d d

θ θ
η

ηη

θ θ
ρ φ η

η η
∗ ∗

+ =

⎡ ⎤
− +⎢ ⎥
⎣ ⎦

(5.12) 

We shall concentrate on the thermal problem 
(5.12), while the momentum problem (5.11) is 
now of peripheral interest to the heat transfer 
problem and can always be similarly solved. 
 
6. The temperature distribution 
   The right side of (5.12), upon 
differentiation of the error function profile 
from (5.5), (5.12) become explicit functions of 
Tη  and the coefficients ( )

0
/d c dρ φ∗ ∗ , 1b : 

( ) ( )

2 (1) (1)

2

2
10

2

4
/ exp ,

T
TT

T
T

d d
dd

d c d b

θ θ
η

ηη

η
ρ φ η

π
∗ ∗

+ =

⎡ ⎤− − −⎣ ⎦

   (6.1) 

Subjected to the homogeneous boundary 
conditions ( ) ( )(1) (1)0 0θ θ= ∞ = . Eq. (6.1) is 
a first order inhomogeneous differential 
equation for dθ (1) dηT  which has the 
solution (Murphy 1960, p. 14) 
 
dθ (1) dηT =

− 2 π( ) dρ∗c∗ / dφ( )
0
−b1( )ηT2 +C1!

"#
$
%&
exp −ηT

2( ),
 

 
where 1C  is an integration constant. Upon a 
straight forward integration, the first order 
temperature profile becomes 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

(1)
1

10

2
2

2

1

2 exp .

T T

T T T

C erf

d c d b

erf C

θ η π η

π ρ φ

π η η η

∗ ∗

=

⎡ ⎤− −⎣ ⎦

⎡ ⎤× − − +
⎣ ⎦

 

The condition at the wall gives 2 0.C =  The 
condition far from the wall gives 
   ( ) ( )1 10

1 ,C d c d bπ ρ φ∗ ∗⎡ ⎤= −⎣ ⎦    (6.2) 

which is the important first order temperature 
gradient at the wall                 

( )( )
(1)

1 10

(0) , .
T

d C d c d b
d
θ

ρ φ
η

∗ ∗=       (6.3) 

The first order temperature profile thus 
becomes 

( ) ( ) ( ) ( )(1) 2
10

1 exp .T T Td c d bθ η π ρ φ η η∗ ∗⎡ ⎤= − −⎣ ⎦ (6.4) 
The overall temperature profile to first order is 
       ( ) ( )(1) .T Terfθ η φ θ η∞= +      (6.5) 
 
7. Heat transfer at the wall 
   For the zero concentration diffusion flux 
condition at the wall, the surface heat transfer 
rate is accomplished by conduction alone, 

           0
0

Tq
y

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

.           (7.1) 

In terms of the similarity results, (7.1) 
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becomes 

( )

( )

0 1

10

Re Pr
1

2 /
2 1 ,

D fw
f

T T
q k b

D x D

d c d b

φ

φ ρ φ
π π

∞
∞

∗ ∗
∞

−
= + ×

⎡ ⎤⎡ ⎤+ −⎢ ⎥⎣ ⎦⎣ ⎦

 

(7.2) 
where we have used ( )(0)

0
2Td dθ η π=  

and (6.2) and (6.3). The pure fluid heat 
transfer rate is obtainable from (7.2) by setting 

0φ∞ = , 

   0,

Re Pr 2
2 /

D fw
f f

T T
q k

D x D π
∞ −= .  (7.3) 

The normalized nanofluid surface heat transfer 
rate becomes 

( )
( ) 10 0

1
0,

1 1 ,
2f

d c d bq
b

q

ρ φ
φ φ

∗ ∗

∞ ∞

⎡ ⎤−
⎢ ⎥= + +
⎢ ⎥⎣ ⎦

 

(7.3) 
where the first bracket ( )11 bφ∞+  is the heat 
transfer enhancement owing to the enhanced 
thermal conductivity; the second bracket 
reflects the nanofluid effect on the temperature 
profile at the wall, or temperature profile in 
general (6.4). The inertial effect of 
( )

0
0d c dρ φ∗ ∗ >  steepens the temperature 

profile (6.4) and the temperature gradient at 
the wall (6.2), (6.3), hence it contributes heat 
transfer enhancement. The negative 1b−  
indicates that the enhanced nanofluid thermal 
conductivity actually has the opposite effect: it 
stretches the temperature profile and renders it 
less steep. With these clear indications of 
nanofluid effects, we could now combine the 
explicit thermal conductivity effect and the 
effects of inertia and conductivity on the 
temperature profile for smallφ∞ : 

0 01 ( )q dq dφ φ∗ ∗
∞= + ,   (7.4) 

where 

( )0 10

0 0 0,

( ) 2

f

dq d d c d b

q q q

φ ρ φ∗ ∗ ∗

∗

⎡ ⎤= +⎣ ⎦

=
 

 
8. Numerical applications of the results 
   Adapted from Puliti, et al. (2012), from 

Table 1: 0( * * / ) 36.5d c dρ φ ≅  for gold-
water nanofluid. The constant 1b  for gold 
nanofluid is more difficult to estimate from the 
literature. From Buongiorno, et al. (2009), 
Table VI, Set 2, Sample 1 is for gold 
nanpoparticles (10nm) in water plus stabilizer 
at a very low volume fraction of 0.001%, the 
measured ratio is / 1.004 1.010fk k ≈ −  for 
sample average including standard error of the 
mean, thus giving a very large range 
for 1 700 1000b ≈ − . The calculated 
conductivity ratio, using the assumptions 
described in Buongiorno, et al. (2009), 
Appendix B in the model of Nan, et al. (1997) 
gave, unfortunately, an upper and lower bound 
of unity for this ratio so that 1 0b = . Thus the 

1b deduced is too wide a range to be 
acceptable. On the other hand, Maxwell’s 
(1881) model gives, for very large 
nanoparticle conductivity ratio and very small 
volume ratio, the coefficient 1 3b = . 
   Pending on further experimental and 
theoretical results on the conductivity of gold-
water nanofluids, we use Maxwell (1881) 
conductivity and the density-heat capacity 
from Puliti, et al. (2012) to estimate 
          0 1 20

gold water
q φ∗

∞−
− ≈ .      (8.1) 

In this case, for a 1% volume fraction, the heat 
transfer enhancement would be about 20%.  
   Though the numerical estimates appear to 
be somewhat optimistic, the fluid dynamics 
and thermodynamics rationale have gone into 
such estimate. 
 
9. Concluding remarks 
   Further molecular dynamics computations 
of thermodynamic properties and transport 
properties, including applications to other 
nanofluids, would be of significant interest in 
uncovering the role of nanofluids in heat 
transfer. Simultaneously, improving the 
continuum description to include the nonlinear 
effects of fluid advection while still retaining 
the perturbation scheme for small volume 
fraction, would go a long way not only in the 
“prediction” of nanofluid heat transfer but also 
to understand the underlying role of inertia and 
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of transport by diffusive actions. 
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