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Abstract The flow of a rarefied gas in a square enclosure with a bottom wall at high temperature and the 

other three walls at the same low temperature is investigated. The flow configuration is simulated both 

deterministically, using the non-linear Shakhov kinetic model and stochastically, using the DSMC method. 

Excellent agreement between the two approaches is obtained. The flow is characterized by the reference 

Knudsen number and the temperature ratio. It is found that along the side walls the velocity of the gas is not 

necessarily from cold-to-hot regions due to thermal creep, but from hot-to-cold as well. The effect of the 

flow parameters to this configuration, including the not well theoretically defined flow from hot-to-cold, is 

investigated and results are provided in the whole range of the Knudsen number for small, moderate and 

large temperature differences.   
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1. Introduction 
 Rarefied flows in microcavities due to 

heated walls have received a lot of attention 

recently, due to their application in vacuum 

packed MEMS (Stone et al., 2004; Yang et al., 

2005; Liu et al., 2007), micropumps (Sone et 

al., 1996; Alexeenko et al., 2006), 

microactuators and microsensors (Ketsdever et 

el., 2012; Vargas et al., 2012). They are also 

commonly applied in benchmarking of novel 

numerical schemes (Masters, Ye, 2007; Rana 

et al., 2012; Huang et al., 2013) and in the 

investigation of non-equilibrium phenomena 

that arise in such flows (Cai, 2008; Sone, 

2009; Naris, Valougeorgis, 2006). 

 The main dimensionless parameter 

characterizing those flows is the Knudsen 

number, which is the ratio of the mean free 

path over a characteristic length of the flow. 

Flows characterized by small Knudsen 

numbers, that are in the slip or early transition 

regimes can be modeled by the conventional 

Navier-Stokes-Fourier (NSF) analysis with the 

appropriate slip and jump boundary conditions 

(Sone, 2002), or with higher order continuum 

models (Struchtrup, Taheri, 2011). At higher 

values of the Knudsen number, when the flow 

is in the transition and free molecular regimes 

the NSF approach fails and a kinetic approach 

must be applied. 

In the present work both the non-linear 

Shakhov kinetic model and the DSMC method are 

used to solve this microcavity flow configuration 

in the whole range of the Knudsen number for 

various temperature differences between the high 

temperature of the heated wall and the low 

temperature of the other three walls. 

 

2. Flow configuration  
 A monatomic rarefied gas is contained in a 

2D enclosure with square cross section of side 

W . The cross section of the enclosure and the 

origin of the coordinate system are shown in 

Fig. 1. The bottom wall is at temperature HT , 

while the other three walls are kept at a 

temperature CT , with C HT T . To avoid 

discontinuities at the two bottom corners, the 

temperature of the bottom plate close to the 

two corners ( 5%  of the total length) is 

linearly decreased to match the side walls 

temperature. 

 Due to thermal creep a flow is expected 

near the side walls directed from cold-to-hot 

regions and to ensure mass conservation a 
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flow near the symmetry axis ( 0x  ) is 

expected in the opposite direction. This would 

create two counter rotating vortices in the 

enclosure. It turns out that in addition to these 

vortices, even at small Knudsen numbers, two 

more vortices appear in the upper part of the 

enclosure, with a flow along the lateral walls 

from hot-to-cold regions. All four vortices are 

shown in Fig. 1, with the former ones denoted 

by the I and the latter unexpected ones by II. 

The detailed flow pattern depends on the 

Knudsen number and the temperature ratio. 

 
Fig. 1. View of the bottom heated square 

microcavity with the flow pattern of vortices I 

and II. 

 

 The 2D macroscopic quantities of interest 

are the number density N , the two component 

velocity vector x yU ,U   U , the shear stress 

tensor xyP , the temperature distribution T   

and the two component heat flux vector 

x yQ ,Q   Q , while the gas pressure is given 

by the ideal gas law BP Nk T , with Bk  

denoting the Boltzmann constant.  

 The problem is characterized by the 

reference Knudsen number defined as 

0 0
0

0

  
2

Kn
PW

 
                     (1) 

and the temperature ratio /C HT T . In Eq. (1) 

0P  is the reference pressure, W  is the side 

length of the square cavity, 0  is the gas 

viscosity at reference temperature 0T  and 

0 02 /Bk T m   is the most probable 

molecular speed ( m  denotes the molecular 

mass). The reference number density 
0N  is 

related to the reference pressure and 

temperature according to 0 0 0BP N k T . The 

following dimensionless quantities are 

introduced: 

x x / W , y y / W , 0n N / N  

0x xu U /  , 0y yu U /  , 0p P / P    (2) 

0T / T  ,  0 0x xq Q / P ,  0 0y yq Q / P   

The space variables are  0 5 0 5x . , .   and 

 0 1y , , while n ,  x yu ,u , p ,  , with 

p n    and  x yq ,q  are the distributions 

of the number density, the two components of 

the velocity vector, the gas pressure and 

temperature and the two components of the 

heat flux vector respectively. The Inverse 

Power Law (IPL) interaction (Naris, 

Valougeorgis, 2006) is applied yielding a 

viscosity of the form 0

   , with the 

parameter  1 2 1/ , . The two limiting cases 

of 1 2/   and 1   correspond to hard 

sphere and Maxwell molecules. 

  

3. Deterministic and stochastic kinetic 

modeling 
   The problem is solved both in a 

deterministic and stochastic manner. The 

deterministic modeling is based on the direct 

solution of the nonlinear Shakhov kinetic 

model (Shakhov, 1968) and the stochastic 

modeling on the DSMC method (Bird, 1994). 

In both cases purely diffuse gas-surface 

interaction is considered.  

 

3.1 Formulation of the kinetic model 
 The main unknown is the distribution 

function  f f x , y ,  ξ , with  x y z, ,  ξ  

denoting the molecular velocity vector, which 

obeys the nonlinear Shakhov equation given 

by 

 S

x y

f f P
f f

x y
 



 
  
  

        (3)        
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where P  is the local pressure and  T   

is the viscosity at local temperature T . The 

Shakhov relaxation function Sf  is given in 

(Shakhov, 1968; Sharipov, Seleznev, 1998). 

   Introducing the dimensionless quantities of 

Eq. (2) into Eq. (3) and following a well-

known projection procedure to eliminate the 

z component of the molecular velocity the 

following system of integro-differential 

equations is obtained: 

 1

0

1
  

2

S

x y n
x y Kn

  
     

  
 

 (4) 

 1

0

1
 

2

S

x y n
x y Kn

  
     

  
 

(5) 

Here, the main unknowns are the reduced 

distributions functions  , , ,x yx y     

and  , , ,x yx y    , with x  and y  

denoting the dimensionless components on the 

molecular velocity vector, while 

   2

4 1
1

15

S M

x x x y y yq u q u
n

   


         

   
22

/ 2x x y yu u              
       (6) 

and 

   2

4 1
1

15

S M

x x x y y yq u q u
n

   


         

   
22

/ 1x x y yu u              
       (7) 

with the reduced local Maxwellians given by 

   
22

exp /M

x x y y

n
u u   


      

    
(8) 

   
22

exp /
2

M

x x y y

n
u u   


      

    
(9) 

The macroscopic quantities can be expressed 

as moments of   and  : 

 ,      x yn x y d d  
 

 

            (10) 

 
1

,x x x yu x y d d
n

   
 

 

           (11) 

 
1

,y y x yu x y d d
n

   
 

 

           (12) 

   2 22
,

3
x y x yx y d d

n
      

 

 

    
    

 2 22
   

3
x yu u                  (13) 

    , 2xy x x y yp x y u u 
 

 

      

x yd d                      (14) 

     
22

,x x x y yq x y u u   
 

 

       
     

 x x x yu d d                  (15) 

     
22

,y x x y yq x y u u   
 

 

       
     

 y y x yu d d                  (16) 

 The outgoing distributions at the 

boundaries are denoted by   ,    and are 

expressed by the Maxwell purely diffuse 

reflection as (Pantazis, Valougeorgis, 2010) 

 2 2exp /  w
x y w

w

n
   



    
 

        (17) 

and 

 2 2exp /  
2

w
x y w

n
   



    
 

        (18) 

where w  is the dimensionless wall 

temperature and wn  is a parameter given in 

terms of the ingoing distributions satisfying 

the impermeability wall conditions. 

 The above set of integro-differential 

equations (4) and (5) coupled with the 

expressions (10-16) subject to boundary 

conditions (17) and (18) is numerically solved 

using the discrete velocity method (DVM). 

The implemented algorithm has been utilized 

to solve nonlinear flows and heat transfer 

problems with considerable success (Pantazis, 

Valougeorgis, 2010; Misdanitis et al., 2012; 

Pantazis at al., 2013). Thus, here only some 

limited information on the computational 

approach is provided. 

 The molecular velocities x  and y are 

transformed to polar coordinates, according to 

cosx    and siny   . Then, the 
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continuum velocity spectrum  ,   is 

replaced by a set of discrete velocities  ,m n  , 

with 1,2,...,m M  and 1,2,...,n N . The 

magnitudes m  are taken to be the roots of 

the Legendre polynomial of order M  

accordingly mapped from  1,1  to  0, , 

while the polar angles are  2 1 /n n N   . 

In the physical space the flow domain is 

divided into I J rectangular elements, with 

1,2,...,i I  and  1,2,...,j J . 

 Equations (9) and (10) are discretized in 

the molecular space and the deduced set of 

partial differential equations is solved by a 

typical second-order finite volume scheme. 

The moments (10-16) are numerically 

integrated applying the trapezoidal rule in the 

polar angle   and the Gauss-Legendre 

quadrature in the velocity magnitude  . The 

system of equations and their associated 

moments are solved in an iterative manner 

which is terminated when the convergence 

criteria 

( ) ( ) ( 1) ( ) ( 1)

, , , ,
,

maxk k k k k

i j i j xi j xi j
i j

n n u u        

( ) ( 1) ( ) ( 1) 13

, , , , 10k k k k

yi j yi j i j i ju u             (19) 

is fulfilled. Here, k  denotes the iteration 

index and ( )k  the error after k  iterations. 

Upon convergence all conservation principles 

are accordingly preserved. 

 A well-known problem in this method is 

the propagation of boundary induced 

discontinuities, especially at high Knudsen 

numbers, known as ray effects. A simple 

procedure was used to cope with the 

discontinuous boundary conditions at the two 

corners of the bottom wall. Along a small 

length at the two ends of the bottom wall, 

equal to 5% of the total side length of the 

square cavity, the temperature is taken to have 

a linear variation between CT  and HT . This 

way the ray effects were diminished.  

 

3.2 DSMC formulation 
 The DSMC method is based on splitting 

the real process of particle motion in two 

consecutive steps: a) the collision between the 

particles which is modeled in a stochastic 

manner within the particles at a given cell, and 

b) the ballistic motion of the particles over a 

distance proportional to their velocities, which 

is purely deterministic. 

Here, the space domain is discretized into 

100x100 squared cells with size smaller than 

the mean free path, while the gas is 

represented by a discrete number of model 

particles. A total number of 10
6
 model 

particles have been used and the time step was 

chosen to be about 1/3 of the cell traversal 

time  0CW n  , with Cn  being the number 

of cells in the x-direction. The sampling of the 

macroscopic quantities starts once the steady 

state flow has been achieved and is carried out 

by volume based time averaging of the 

corresponding microscopic values of the 

particles at a given cell. These moments are 

accumulated over 10
5
 time steps. This gives a 

sample size of approximately 10
7
 particles per 

cell which is sufficiently large to reduce the 

statistical scatter of the macroscopic results. 

The standard No Time Counter (NTC) 

scheme (Bird, 1994) together with the HS 

molecular interaction model, are used for 

computing the collision between the particles. 

The interaction of the gas molecules with the 

solid walls is assumed to be purely diffuse. 

 

 4. Results and discussion 
 The flow in the square cavity was 

simulated for 00.1 Kn  covering the 

transition and free molecular regimes and three 

temperature ratios / 0.1C HT T  , 0.5 and 0.9. 

In all cases the hard sphere molecular 

interaction model ( 1/ 2  ) has been applied. 

Simulations have been conducted both by the 

deterministic and stochastic methods, and a 

very good agreement between corresponding 

results has been obtained.  

 In Figs. 2 and 3 the streamlines and the 

temperature contours for / 0.1C HT T  and 

/ 0.9C HT T  are shown respectively for 

0 0.1Kn  , 1 and 10. At 0 0.1Kn  the largest 

part of the cavity is covered by the typical 

thermal creep type vortices I and vortices II 

are restricted near the side walls of the cavity. 

As the gas rarefaction is increased vortices II  
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Fig. 2. Streamlines and temperature contours 

for / 0.1C HT T  and various Knudsen 

numbers. 

 

 

 

 
Fig. 3. Streamlines and temperature contours 

for / 0.9C HT T  and various Knudsen 

numbers. 
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start to expand squeezing the vortices I 

towards the bottom part of the cavity. As it is 

seen at 0 1Kn  , vortices II are already well 

developed covering large areas of the square 

cavity. The flow configuration is similar at 

0 10Kn  , with vortices I further squeezed 

towards the bottom of the cavity.   

 The above observations are valid for the 

temperature ratios of / 0.1C HT T   and 0.9 

corresponding to large and small temperature 

differences respectively. In all the cases tested, 

the vertical velocity near the lateral walls is 

positive for the biggest part of the wall, 

leading to the unexpected flow directed from 

hot-to-cold regions. Of course as the Knudsen 

number tends to infinity the gas velocity 

vanishes. 

 In Fig. 4 the yu distribution along the 

lateral walls is shown. Due to symmetry these 

results correspond to 1 2x / . Results are 

provided / 0.1,0.5,0.9C HT T   corresponding 

to small, moderate and large temperature 

differences and in each case for 

0 0.1,1,10Kn  . The negative values of the 

velocity are related to the expected thermal 

creep flow from cold-to-hot, whereas the 

positive ones to the unexpected flow from hot-

to-cold. We observe that even for small 

Knudsen numbers, and for all temperature 

ratios, in the biggest part of the wall the 

velocity is positive, leading to a mass flow rate 

from hot-to-cold. This phenomena has been 

explained when the flow is in the slip regime 

in (Rana et al., 2012). In the whole range of 

the Knudsen number it may be explained by 

splitting the flow into a ballistic and collision 

part. The exact physical explanation is 

provided in (Vargas et al, 2014). 

Another quantity of practical interest is the 

average dimensionless heat flux aveq  

departing from the bottom plate, which may be 

estimated by integrating the heat flux 

 0yq x,  over  0.5,0.5x  . This quantity is 

plotted in Fig. 5 in terms of 0Kn  for various 

temperature ratios /C HT T . The DSMC results 

are also presented for comparison purposes.  

 

 
 
Fig. 4. Distribution of the tangential velocity 

yu along the lateral walls of the square 

enclosure for various Knudsen numbers and 

temperature ratios. 
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As it is seen the agreement is very good in all 

cases. The average dimensionless heat flux 

increases as 0Kn  increases and tends to an 

asymptotic value as we approach the limiting 

case of 0Kn  . A very interesting result is 

that for 0 0.5Kn  , aveq  is not steadily 

increased as the temperature difference 

becomes greater. As it is seen it turns out that 

for / 0.5C HT T  aveq is larger than that for 

/ 0.1C HT T  . This behavior has been captured 

by both modeling approaches. 

 

 
 

Fig. 5. Average heat flux aveq departing from 

the bottom plate of a square enclosure in terms 

of the Knudsen number for various 

temperature ratios. 

 

5. Concluding Remarks 
 A rarefied cavity flow with a single heated 

wall has been simulated. The two parameters 

characterizing the problem are the temperature 

ratio /C HT T  and the reference Knudsen 

number 0Kn .  Simulations have been 

conducted for / 0.1C HT T  , 0.5 and 0.9 and 

0 0.1Kn  , 1 and 10 using both the 

deterministic and DSMC methods.        

 A flow in the region of the lateral walls 

directed form hot-to-cold has been observed 

even for small temperature differences and 

small Knudsen numbers, confirming previous 

findings in similar set-ups (Rana et al., 2012). 

Another interesting finding was that the 

average heat flux departing from the bottom 

plate does not necessarily increase as the 

temperature difference increases. For 

relatively large Knudsen numbers, there is a 

maximum at / 0.5C HT T  .  

Overall, it is believed that this work has 

both scientific and technological interest since 

such flows are very common in micro/nano-

electromechanical systems. 
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