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Abstract

We investigate the kinetics of systems in which particles of one species undergo

binary fragmentation and pair annihilation. In the latter, non-linear process, frag-

ments react at collision to produce an inert species, causing loss of mass. We analyse

these systems in the reaction-limited regime by solving a continuous model within

the mean-field approximation. The rate of fragmentation, for a particle of mass x

to break into fragments of masses y and x − y, has the form xλ−1 (λ > 0), and the

annihilation rate is constant and independent of the masses of the reactants. We

find that the asymptotic regime is characterized by the annihilation of small-mass

clusters, with the cluster-density decaying as in pure-annihilation and the average

cluster-mass as in pure-fragmentation. The results are compared with those for a

model with linear mass-loss (i.e. with a sink rather than a reaction).

We also study more complex models, in which the processes of fragmentation and

annihilation are controlled by mutually-reacting catalysts. Both pair- and linear-

annihilation are considered. Depending on the specific model and initial densities of

the catalysts, the time-decay of the cluster-density can now be very unconventional

and even non-universal. The interplay between the fragmentation and annihilation

processes and the existence of a scaling regime are determined by the asymptotic

behaviour of the average-mass and of the mass-density, which may either decay

indefinitely or tend to a constant value. We discuss further developments of this

class of models and their potential applications.
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1 Introduction

Irreversible reaction-diffusion processes, such as aggregation or annihilation of species,

occur in many physical, chemical and biological systems. In the past decade they

have been investigated extensively. This followed from the realization that spatial

fluctuations in the reactant densities slow down the kinetics and lead to an asymp-

totic behaviour at low-dimensions which disagrees with the classical reaction-rate

equations. (The upper critical dimension, dc, is defined as the spatial dimension be-

low which such disagreement occurs.) Recently, a combined process of aggregation-

annihilation of two species has been studied exactly in 1 dimension by Krapivsky

[2], and numerically in higher dimensions by Sokolov and Blumen [3]. A class of

related models, but with an arbitrary number of species, has also been investigated

at the mean-field level by Ben-Naim and Krapivsky [1]. The power-law decay of the

cluster-densities has been understood, and in many cases the cluster-mass distribu-

tions have been found to approach universal scaling forms.

Fragmentation is another irreversible kinetic process with important applications

in nature and technology. These include: polymer degradation, through shear action

[4], chemical attack [5], or exposure to radiation [6]; droplet breakup [7]; fibre-

length reduction [8]; fragmentation of colloidal aggregates [9]; and rock crushing

and grinding [8]. New insight into the statistical mechanics of fragmentation has

followed from the work of Ziff and McGrady [10, 11], who solved exactly a class of

models with different fragmentation kernels.

The aggregation-fragmentation (or reversible-aggregation) process has been con-

sidered by many authors. This has been applied to studying reversible polymer-

ization, for instance, by van Dongen and Ernst [12] and by Sintes, Toral and

Chakrabarti [13]. More generally, mean-field approaches have been used to study

the steady-state scaling properties of reversible-aggregation, for example, by Family,

Meakin and Deutch [14] and by Blackman and Marshall [15]. In both aggregation-

annihilation and aggregation-fragmentation processes, rich kinetic behaviours arise

due to the competing reaction mechanisms.

In this paper we focus on fragmentation processes with mass-loss. A number

of authors have considered models combining fragmentation and linear-annihilation

processes (i.e. a sink, where a species ‘evaporates’ at a constant rate in time) (see,

e.g., [16, 17, 18] and references therein). These models are relevant, for example,

to studying oxidation and dissolution of solid porous media [17, 18]. However, to

the best of our knowledge, the interplay between annihilation and fragmentation re-

mains unexplored in the case of binary-annihilation reactions. It is this subject with

which we are concerned. The kinetics of these phenomena are non-linear, and there-
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fore more complex and, in principle, more difficult to analyse. Fragmenting systems

where fragments react at collision (maybe in the presence of some agent) to produce

an inert species, would yield potential applications of these combined processes. We

investigate, at the mean-field level, a class of (non-linear) annihilation-fragmentation

models, aimed at elucidating the competition between these processes. For all mod-

els considered we include, for comparison, an analysis of the corresponding model

with linear-annihilation (a sink).

In the simplest situation of a single species, the cluster-density decays as in the

case of pure-annihilation, while the cluster-mass distribution approaches an expo-

nential scaling distribution. An exponential decay of the scaling distribution has also

been found in pure-fragmentation, aggregation-annihilation [1, 2] and reversible-

aggregation [14]. To allow for more interesting, and possibly more realistic be-

haviour, we introduce additional species which work as catalysts for annihilation

and/or fragmentation; reactions between the catalysts are also allowed for. We find

that the density-decay of the main-species can be surprisingly unconventional, de-

pending on the specific model and on the initial densities of the catalysts. The decay

may be universal but contain logarithmic factors, or it may contain a power-law in

time with a non-universal exponent which depends on the reaction rates. The inter-

play between annihilation and fragmentation and the existence of a scaling regime,

are determined by the asymptotic behaviour of the mass-density and typical cluster-

mass. These may either decay indefinitely or tend to a constant value, depending

on the relative amounts of annihilation and fragmentation catalysts.

This paper is organized as follows. In Sec. 2 we introduce and solve a model

with single-species fragmentation-annihilation where the fragmentation kernel has a

rather general form. The results for the corresponding model with linear annihilation

are stated for comparison. In Sec. 3 we include catalysts in our model and solve it for

general time-dependences of the catalysts. Specific asymptotic results are presented

in the case where the fragmentation and annihilation catalysts mutually annihilate.

The conclusions and further comments and suggestions are given in Sec. 4.

2 Single-species annihilation-fragmentation

2.1 non-linear annihilation (model 1)

The more elementary model combining the processes of pair-annihilation and frag-

mentation is that involving a single ‘molecular’ species. This is described by the

binary reaction scheme

Ai + Aj → inert , Ai+j → Ai + Aj , (1)
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where Ai denotes a cluster consisting of i monomers of species A. The following

calculations could be repeated for a discrete model, but for analytical convenience

we shall take the continuous limit, which is standard practice [11, 19].

Let a(x, t) be the density distribution of cluster-masses (or sizes) x at time t,

and

An(t) =
∫

∞

0
dxxna(x, t) (2)

its moments. In particular, the zeroth and first moments, A(t) ≡ A0(t) and A1(t),

denote the total number-density of clusters and the total mass-density, respectively.

For simplicity, we consider linear fragmentation (driven by a homogeneous external

agent [19]), neglect multiple breakup, and take the rate that a cluster of mass x

breaks into clusters of mass x − y and y, F (y, x − y), to be a constant (which we

set to be unity by a rescaling of time). Hence, the total rate of fragmentation of

any cluster,
∫ x
0 dyF (y, x− y), is equal to its mass, x. We also envisage the simplest

possible reaction, where two clusters of any mass mutually annihilate upon encounter

at a rate independent of their masses. Later, we shall see how to generalize our

results for a kernel of the form F (y, x− y) = xλ−1, independent of the masses of the

fragments.

Treating the annihilation term within the mean-field description, which is valid

in the reaction-controlled regime, the kinetic equation for a(x, t) reads

ȧ(x) = −xa(x) + 2
∫

∞

x
dya(y)− Ja(x)A , (3)

where J/2 is the relative rate of annihilation (equal rates of fragmentation and

annihilation correspond to J = 2). A set of non-linear equations for the moments

of a(x) follows immediately,

Ȧn =
1 − n

1 + n
An+1 − JAnA . (4)

A closed set of equations is found for the first two moments,

Ȧ = A1 − JA2 , (5)

Ȧ1 = −JAA1 , (6)

whilst the higher moments obey an infinite hierarchy of equations which are, ap-

parently, not soluble. The absence of a linear term in (6) is a reflection of the

conservation of mass in the fragmentation process. Adopting more general rates

of fragmentation and annihilation, say xλ and (xy)α, respectively, would yield the

following generalization of (4):

Ȧn =
1 − n

1 + n
An+λ − JAn+αAα . (7)
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Clearly, no closed set of equations can be obtained for A and A1, unless λ = 1 and

α = 0, which justifies our present choice.

To solve for A(t) and A1(t), we proceed as follows. From (5)-(6), the cluster

average-mass, L(t) ≡ A1(t)/A(t), obeys the equation

L̇ = −L2 , (8)

with solution

L(t) =
1

δ + t
≃

1

t
, (t → ∞) , (9)

where δ ≡ A0/A10 = 1/L(0) and A0 ≡ A(0) and A10 ≡ A1(0). Using this result,

Eqs. (5)-(6) can be solved to give

A(t) =
A0 + A10t

1 + J [A0t + A10t2/2]
≃

2

Jt
, (10)

A1(t) =
A(t)

δ + t
≃

2

Jt2
. (11)

The asymptotic behaviour in (10)-(11), and hereafter, hold at large t.

To determine the mass distribution a(x, t), we map the problem onto a pure-

fragmentation one using the auxiliary function

b(x, t) ≡ a(x, t) exp
[

J
∫ t

0
dt′A(t′)

]

. (12)

The exponential factor is known and from (10) we see immediately that

exp
[

J
∫ t

0
dt′A(t′)

]

= 1 + J [A0t + A10t
2/2] . (13)

The function b(x, t) obeys a standard fragmentation equation, i.e. it is the same as

(3) but without the non-linear annihilation term. Its general solution is well known

[10, 20], and can be written as

b(x, t) =
(

b(x, 0) +
∫

∞

x
dy b(y, 0)[2t + t2(y − x)]

)

exp(−tx) . (14)

We find it easier and more illustrative, however, to work from a particular initial

condition, and then to extract the asymptotic, universal behaviour from the special

solution obtained. We adopt the exponential initial distribution

a(x, 0) = b(x, 0) = β0 exp(−b0x) , (15)

where b0 = δ and β0 = A0δ. The corresponding solution is obtained by substituting

(15) in (14) or, equivalently, attempting the ansatz b(x, t) = β(t) exp[−b(t)x] in the

equation for b(x, t) [21]. This gives, after including the time-dependent factor (13),

a(x, t) =
A10(δ + t)2

1 + J [A0t + A10t2/2]
exp [−(δ + t)x] =

A(t)

L(t)
exp [−(δ + t)x] . (16)
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As t → ∞, a(x, t) ≃ (2/J) exp(−tx) becomes independent of the initial condition.

This universal asymptotic behaviour can also be obtained by looking for a scaling

solution of the form

a(x, t) = L−wφ(ζ) , ζ = x/L , (17)

which we expect to hold for general initial conditions, in the regime when t is large

and x is small, with xt an arbitrary constant. From (10)-(11) at large t, we find

w = 0. Replacing a by φ in Eq. (3) and taking the limit t → ∞, yields a linear

differential equation with solution

a(x, t) = φ(ζ) =
2

J
exp(−ζ) . (18)

One can calculate all the moments of a(x, t) given by the special solution (16).

This yields for A(t) and A1(t) exactly the same expressions as in (10)-(11), which

hold for general initial conditions (One can check that this is also true for modified

exponential initial conditions, e.g. xp exp[−b0x].). Since Eq. (4) for all moments is

recursive, we conclude that the special solution (16) must have the same moments

as the general solution. Hence, we did not need to solve for A(t) in the first place;

rather, we could have solved self-consistently for A(t) from this special distribution.

The rationale is: that one may be able to determine a particular mass distribution

even when A(t) is not known a priori, i.e. even when there is not a closed set of

equations as in the more general case of Eq. (7).

With this insight, we shall now solve the problem for a more general fragmenta-

tion kernel, F (y, x − y) = xλ−1, with λ > 0. There is no reason why the previous

statement should not hold here, i.e. we expect that for general λ a particular expo-

nential solution will have the same moments as the general solution. Eq. (3) now

becomes

ȧ(x) = −xλa(x) + 2
∫

∞

x
dyyλ−1a(y) − Ja(x)A . (19)

Once again we use the auxiliary function b(x, t), given by (12), although now the

exponential factor is not known. This gives a pure-fragmentation equation for b(x, t),

ḃ(x) = −xλb(x) + 2
∫

∞

x
dyyλ−1b(y) , (20)

which has a known, but complicated, general solution [10]. It has been proven that

λ > 0 is a necessary and sufficient condition for b(x, t) to have a scaling, universal

behaviour [19, 22]. We are allowed, therefore, to deduce this behaviour from a special

solution to (19). A simple solution with exponential form (whose initial condition

is an obvious generalization of (15)), is

b(x, t) =
A10λ

Γ(2/λ)
(b0 + t)2/λ exp[−(b0 + t)xλ] , (21)
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with moments

Bn(t) =
A10Λn+1,2

(b0 + t)(n−1)/λ
. (22)

In (21) and (22) appropriate normalization has been used. We now have

b
1/λ
0 = δΛ2,1 , β0 = b

2/λ
0

A10λ

Γ(2/λ)
, (23)

with the convenient notation

Λp,q = Λp,q(λ) ≡
Γ(p/λ)

Γ(q/λ)
. (24)

To find the explicit solution to the problem, we must determine the density of

clusters, A(t), self-consistently. From (22) and the transformation (12) we obtain

an integral equation. This can be recast as the following differential equation

Ȧ =
A

λ(b0 + t)
− JA2 , (25)

with solution

A(t) =
A0(1 + t/b0)

1/λ

1 + JA0b0
λ

1+λ
[(1 + t/b0)(1+λ)/λ − 1]

≃
1 + λ

λ

1

Jt
, (t → ∞) . (26)

It is easy to see that exp(J
∫ t
0 dt′A) is simply the denominator of A in (26). From

this, (12) and (22), we find

L(t) =
Λ2,1

(b0 + t)1/λ
∼

1

tλ
, (t → ∞) ,

An(t) = Λn+1,1
A(t)

(b0 + t)n/λ
∼

λ + 1

λ

1

J t1+n/λ
, (27)

a(x, t) =
λΛ2,1

Γ(1/λ)

A(t)

L(t)
exp[−(b0 + t)xλ] ∼

exp[−ζλ]

J t L(t)
,

with ζ = Λ2,1 x/L(t). All results reduce to the previous ones if we set λ = 1. Apart

from numerical factors, the essential modifications in the asymptotics can be alluded

to the time-dependence of the average cluster-size, L ∼ t−1/λ, and the dependence

of a(x, t) on the scaling variable ζ . We see that an increase in λ slows down the

decay of L. This follows from the resulting decrease in the rate of fragmentation of

small fragments.

The mass distribution in (27), or (18), is peaked around ζ = 0, showing that

the majority of the clusters have vanishingly-small mass at late times due to frag-

mentation. The factor 1/J indicates that if the annihilation rate increases the

mass and cluster densities should decrease. The cluster density A(t) is the only

moment whose decay is independent of λ. We recall that in pure-annihilation pro-

cesses A ≃ 1/Jt, while the cluster-mass distribution remains invariant in time,
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apart from an overall time-dependent factor. Our results indicate, therefore, that

the fragmentation-annihilation process at late-times consists essentially of the an-

nihilation of small-mass clusters. This leads us to conjecture that in this case the

upper critical dimension is 2, as in the pure-annihilating case. That is clearly true

for a discrete system, where there is a minimum cluster-mass and the fragmentation

process ends before all particles annihilate.

2.2 linear annihilation (model 2)

Here, we briefly discuss model 2: a model with the same fragmentation process as

model 1 but with linear annihilation. In this case there are no binary reactions

and single clusters annihilate at a constant rate in time. We introduce this model

for comparison with model 1 and because in Sec. 3 we shall make an interesting

generalization of it.

The kinetic equation for the cluster-mass distribution is similar to (19), but

with the annihilation term replaced by the linear term −Ja(x). This yields a trivial

modification of the pure-fragmentation model (20) for general λ: the transformation

(12) is replaced by b(x, t) = a(x, t) exp[Jt], leading to a simple extra exponential

factor in the results. Working once again with the special solution (21), which

corresponds to the initial condition a(x, 0) = b(x, 0) = β0 exp[−b0x
λ], we obtain

A(t) =
A10

L(t)
exp[−Jt] ∼ t1/λ exp[−Jt] , (t → ∞) ,

An(t) = Λn+1,1
A(t)

(b0 + t)n/λ
∼

exp[−Jt]

t(n−1)/λ
, (28)

a(x, t) =
λΛ2,1

Γ(1/λ)

A(t)

L(t)
exp[−(b0 + t)xλ] ∼

exp[−ζλ] exp[−Jt]

L(t)2
,

where L(t) is the same as in model 1 (Eq. (27)). Similar remarks about the depen-

dence on λ apply here.

3 Annihilation-fragmentation with catalysts

Model 1 has elucidated some of the features in the interplay between the fragmenta-

tion and annihilation processes. However, it appears to have a somewhat unrealistic

drawback: when two clusters of species A meet they react to produce a new, in-

ert species, rather than merging into a larger cluster. Such a reaction would seem

plausible, though, if another species, say C, was involved. In a reaction of the form

Ax + C → inert, or Ax + Ay + C → inert, the kinetic equations of A and C would

be coupled together. To be able to make progress, however, we envisage a situation

where the reactions are induced by the presence of C but C does not take part in
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the reactions, i.e. C is a catalyst. In Sec. 2, it was implicitly assumed that annihi-

lation was driven by a catalyst of constant concentration. Here we shall allow the

concentration of C to vary in time. Catalysts play a key role in chemical, biological

and ecological systems (see, e.g., [23, 24]), so the study of this class of models is

potentially of great interest.

With these insights, let us consider the following two models where the fragmen-

tation of A is controlled by a catalyst B,

Ax+y + B → Ax + Ay + B , (29)

and the annihilation of A is induced by a catalyst C. With a non-linear annihilation

reaction (model C1)

Ax + Ay + C → inert + C , (30)

while with a linear annihilation reaction (model C2)

Ax + C → inert + C . (31)

In addition, we allow the catalysts to undergo the following annihilation reaction,

at rate R:

B + C
R
→ inert . (32)

In the reaction-controlled regime B(t) and C(t), the concentrations of species B and

C, have the following time dependence (see, e.g., [25]):

B(t) = C(t) =
B0

1 + B0Rt
, (B0 = C0) ,

B(t) =
∆B0 exp(−∆Rt)

C0 − B0 exp(−∆Rt)
, C(t) = ∆ + B(t) , (C0 > B0) , (33)

with B0 ≡ B(0), C0 ≡ C(0) and ∆ ≡ |C0 − B0|. Note that if B(t) and C(t) were

constant in time, then, via a trivial rescaling, models C1 and C2 would reduce to

models 1 and 2 without catalysts.

3.1 method of solution

We shall solve the generalizations of models 1 and 2, with general values of λ,

following a similar procedure to that used in Sec. 2. The essential difference now, is

that a formal time variable has to be defined, τ(t), which plays the role of time t in

the previous models.

Model C1, for non-linear annihilation in the presence of catalysts, is defined

by the reaction schemes (29) and (30). The kinetic equation for the cluster-mass

distribution, which generalizes (19), is

ȧ(x) =
[

−xλa(x) + 2
∫

∞

x
dyyλ−1a(y)

]

B − Ja(x)AC , (34)
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while the equation for the moments of a(x, t) now reads (cf. (4) with α = 0)

Ȧn =
1 − n

1 + n
An+λ B − JAn A C . (35)

For λ = 1, a closed set of equations can be obtained once again, from which the

general solution for A(t) and A1(t) can be found. For general λ, we map (34) onto

a pure-fragmentation equation using the transformation (cf. (12))

b(x, t) ≡ a(x, t) exp
[

J
∫ t

0
dt′A(t′) C(t′)

]

, (36)

and redefining time as

τ(t) =
∫ t

0
dt′ B(t′) . (37)

Clearly, one only expects a scaling regime to occur if τ(t) → ∞ as t → ∞. Then

b(x, τ) obeys Eq. (20). As usual, we work with the special exponential solution (21)

(now with τ replacing t). Inserting this solution into (36) and differentiating once,

yields the self-consistent equation (cf. (25)-(26))

Ȧ =
AB

λ(b0 + τ)
− JA2C , (38)

with solution

A(t) =
A10Λ1,2(b0 + τ)1/λ

1 + JA10Λ1,2

∫ t
0 dt′C(t′)[b0 + τ(t′)]1/λ

. (39)

As in Sec. 2, exp(J
∫ t
0 dt′AC) is simply the denominator of A in (39). Hence, from

(21), (22) and (36) we find

L(t) =
Λ2,1

(b0 + τ)1/λ
,

An(t) = Λn+1,1
A(t)

(b0 + τ)n/λ
, (40)

a(x, t) =
λΛ21

Γ(1/λ)

A(t)

L(t)
exp[−(b0 + τ)xλ] .

The essential differences from (27) are due to the presence of τ(t).

We now turn to model C2, for linear annihilation in the presence of catalysts,

defined by the reaction schemes (29) and (31). The kinetic equation for a(x, t) is

similar to (34), but with the non-linear term replaced by −Ja(x)C. Defining

b(x, t) ≡ a(x, t) exp
[

J
∫ t

0
dt′C(t′)

]

, (41)

and using the same formal time variable τ(t), b(x, τ) obeys Eq. (20) once again,

and we work with the special exponential solution as before. The results, therefore,

follow from (21)-(22) (with τ replacing t) multiplied by exp[−J
∫ t
0 dt′C]. This gives

(cf. (28))

A(t) =
A10

L(t)
exp[−J

∫ t

0
dt′C(t′)] , (42)

with L(t), An(t) and a(x, t) still given by (40).
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3.2 asymptotic results for B + C → inert

The results derived in Sec. 3.1 for models C1 and C2 hold for any time dependence

of the catalysts. To obtain the asymptotic behaviours corresponding to catalysts B

and C mutually annihilating according to (32), we insert the mean-field expressions

(33) into the previous results and look for the dominant contributions in the limit

t → ∞. There are three qualitatively different cases, depending on the relative

values of the initial densities of the catalysts.

B0 = C0

With balanced amounts of the two catalysts, we have

τ = ln(1 + RB0t)
1/R ≃ ln(t1/R) , (t → ∞) . (43)

This gives,

L(t) ≃
Λ2,1 R1/λ

[ln(t)]1/λ
, (t → ∞) ,

An(t) ∼ L(t)n A(t) , (44)

a(x, t) ∼
A(t)

L(t)
exp[−ζλ] , ζ = Λ2,1x/L(t) ,

for models C1 and C2, and

A(t) ≃
1 + λ

λ

R

J ln(t)
∼

1

ln(tJ/R)
, model C1

≃
A10

L(t)

1

[B0Rt]J/R
∼

[ln(t)]1/λ

tJ/R
, model C2 . (45)

As in models 1 and 2 without catalysts, the late-time regime is dominated by the

annihilation of small-mass clusters and there is scaling. The cluster-number den-

sity, however, decays logarithmically in model C1 and with a non-universal power-

law in model C2: the non-universal exponent depends on the annihilation rates

J and R of species A and of the catalysts. We conclude that, although different

time-dependences emerge, the balance between the annihilation and fragmentation

processes in this symmetric case is analogous to that occurring in the absence of

catalysts.

B0 > C0

If there is a majority of the fragmentation catalyst the auxiliary time τ behaves

essentially like t,

τ = ∆t + ln{(B0 − C0 exp[−∆Rt])/∆}1/R ≃ ∆t , (t → ∞) . (46)
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The key point to notice when evaluating the integral in the denominator of (39) and

the exponential term in (42), is that
∫ t
0 dt′C(t′) → ln(B0/∆)1/R as t → ∞. This

yields, for models C1 and C2,

L(t) ≃
Λ2,1

(∆t)1/λ
, (t → ∞) ,

A(t) ≃ A10F (λ)Λ2,1 (∆t)1/λ , (47)

A1(t) → A10F (λ) ,

a(x, t) ∼
1

L(t)2
exp[−ζλ] , ζ = Λ2,1x/L(t) ,

where

F (λ) =
1

1 + JA10Λ2,1I∞
, model C1

=
(

∆

B0

)J/R

, model C2 (48)

I∞ ≡
∫ ln(B0/∆)1/R

0
dx

[

b0 + x + ln{C0/(B0 − ∆ exp[Rx])}1/R
]1/λ

. (49)

In this case the fragmentation process is much faster than the annihilation one,

which is suppressed as the mass-density tends to a fraction F (λ) of its initial value

A10. Once again there a scaling regime. In conclusion, the asymptotic behaviours of

models C1 and C2 are similar to that of a pure-fragmentation process with rescaled

initial mass-density A10F (λ) and rescaled time ∆t, where ∆ is the residue of cata-

lyst B. Hence, the smaller the value of ∆ the longer the time needed to reach this

regime. The value of F (λ) is determined not only by the kinetic parameters J , R

and λ, but also by the initial densities B0 and C0.

C0 > B0

With a majority of the annihilation catalyst τ tends to a finite value,

τ = ln{(C0 − B0 exp[−∆Rt])/∆}1/R → τ∞ = ln(C0/∆)1/R , (t → ∞) . (50)

Noticing that the integral in the denominator of (39),
∫ t
0 dt′C(t′)[b0 + τ(t′)]1/λ, is

dominated the large-t contribution, we obtain

L(t) → L∞ = Λ2,1/(b0 + τ∞)1/λ , (t → ∞) ,

An(t) ∼ A(t) , (51)

a(x, t) ∼ A(t) exp[−(b0 + τ∞)xλ] ,

for models C1 and C2, and (cf. (26) and (28))

A(t) ≃
1

J∆t
, model C1 ,

≃
A10

L∞

(

∆

C0

)J/R

exp[−J∆t] , model C2 . (52)

11



Here, the annihilation process dominates over fragmentation. The latter is sup-

pressed as the average cluster-mass tends to a non-zero value L∞ and the mass

distribution becomes stationary (up to an overall time-dependent factor) and iden-

tical to its initial form a(x, 0). This form of a(x, t) follows from all fragments being

equally-likely to annihilate, and the prefactor A(t) → 0 indicates the eventual loss

of all mass. This situation differs from B0 = C0, where annihilation occurs between

increasingly smaller clusters. As expected, there is no scaling regime since τ has a

finite limit. In addition, the behaviour of a(x, t) may not be universal in this case.

In conclusion, the asymptotic behaviour of models C1 and C2 is similar to that of

a pure-annihilation process with L = L∞ and rescaled time ∆t: the process being a

binary reaction for model C1, and linear with initial mass A10(∆/C0)
J/R for model

C2. The asymptotic average-mass, L∞, is determined by the kinetic parameters R

and λ, and by the initial values A0/A10, B0 and C0.

It should be stressed that the validity of the continuous-mass description used

throughout is subject to restrictions in the long-time regime. In the cases B0 = C0

and C0 > B0, where the cluster-number A(t) → 0 and the system eventually reaches

an empty state, the description holds while the system still contains a sufficiently

large number of particles. This condition ensures the smoothness of the cluster-mass

distribution. In the cases B0 = C0 and B0 > C0, where the average cluster-mass

L(t) → 0 and increasingly-smaller fragments are produced, the usual restrictions

to a pure-fragmentation process apply [11]. The essential difference within a dis-

crete description lays in the behaviour of the density of the smaller fragments, or

monomers.

4 Conclusions

We have solved a class of fragmentation models with non-linear mass-loss, at the

mean-field level, and elucidated the competition between fragmentation and annihi-

lation processes. Simultaneously, we have analysed the corresponding models with

linear mass-loss. Although the solutions for the cluster-mass distribution hold for

exponential initial conditions, we expect their moments to be identical to those of

the corresponding general solutions.

Models 1 and 2 (without catalysts) are characterized by the annihilation of small-

mass clusters at late times. We believe that in this case the upper critical dimension

is 2 (but see [14]).

Models C1 and C2, with fragmentation and annihilation catalysts, have been

solved for a general time-dependence of the catalyst densities. The linear annihila-

tion model, in particular, shows much more interesting and less trivial behaviours in

12



this case. When B and C undergo mutual annihilation, we have found that differ-

ent interplays arise between the two intervening processes depending on the initial

densities B0 and C0. As a result, unconventional and/or non-universal asymptotic

behaviours may occur (B0 = C0), or the scaling regime may be absent (C0 > B0).

In these models, the upper critical dimension is likely to be 4, as a consequence

of the spatial structure induced by the catalytic reactants at late times: in B-rich

regions fragmentation (annihilation) will be frequent (absent) producing a high con-

centration of A, whilst in C-rich regions the roles of these processes will be reversed

producing voids of A. With simultaneous fragmentation and annihilation it seems

difficult, however, to develop more quantitative arguments determining dc. In any

case, new, unusual behaviours should also appear at lower dimensions in the pres-

ence of catalysts. Even here, the mean-field description may prove adequate up to

moderate times, before significant spatial fluctuations set in.

Instead of the mean-field expressions (33) for the catalyst densities, one may

use the corresponding ones in the diffusion-controlled regime (d < 4), which can be

deduced, e.g., from [25]. In addition, other reactions, or time-dependences of the

catalysts may be investigated. One may even replace one of the catalysts by an

inhibitor. For these purposes one simply needs to use the results of Sec. 3.1. In

practice, it may be that both linear and non-linear mass-loss processes operate. In

such cases, models 1(C) and 2(C) would merge to yield a model with linear and

non-linear annihilation terms. It should be possible to solve such a model using

the methods of Secs. 2 and 3. It may also be that one has a source rather than a

sink term, in which case the previous terms will have opposite signs leading to a

competition between linear and non-linear contributions.

Further directions of work are possible, in addition to those just mentioned. One

may look for mass-dependent reaction-rates, the generic form for the annihilation

terms then being: −Ja(x)
∫

∞

0 dyf(x, y)a(y) for model 1, and −Ja(x)f(x) for model

2. (In Sec. 2.1 we mentioned the case f(x, y) = (xy)α.) Another research avenue

would be to investigate two species, say A and B, undergoing fragmentation and

mutual annihilation. When A0 = B0 this model is identical to the single-species

model of Sec. 2.1. With two species, a ‘charge’ conservation-law may also be present,

e.g., Ax +By → Ax−y for x > y (By−x for y > x) [2]. We have found [26] that in the

absence of such a constraint both cluster densities A(t) and B(t) decay as 2/(Jt)

(λ = 1), independently of the initial masses A10 and B10, i.e. there is no mass-

difference residue.

We expect the classes of models studied here, and their further developments,

to have applications in various subjects, such as physics, chemistry, biology and, to

some extent, population dynamics (see, e.g., [23, 24]). Model 1 (without catalysts) is
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suitable to describe fragmenting systems with non-linear, reaction mass-loss. Models

C1 and C2, on the other hand, have the potential to describe a broad range of phe-

nomena, with linear or non-linear mass-loss and with arbitrary time-dependences of

the catalysts. We describe one particularly important generalization to these mod-

els. In many processes of industry, heterogeneous chemistry, or biochemistry, such

as food processing or food digestion (where the catalysts are enzymes), the efficiency

of the reactions may depend on the available surface-area of the reacting fragments

(see, e.g., [27]). It would be of great interest, therefore, to develop fragmentation

models whose clusters are characterized not only by their volume (or mass), but

also by their surface-area. From these, one could then build up fragmentation-

annihilation models with surface-area dependent annihilation rates. An obvious

difficulty in constructing such models is the dependence of the surface-area on the

shape of the fragments. First steps towards this goal has been taken in very recent

work on multivariable fragmentation [28].

It is interesting to note that there is some resemblance between fragmentation-

annihilation processes and branching-annihilating random walks [29]. In the latter,

particles diffuse and annihilate upon encounter and each particle gives birth to n

offspring, at prescribed rates. A difference, though, is that the particles do not

have a mass distribution. Depending on the branching and annihilating rates, these

systems may evolve towards an empty state or an active steady-state. The existence

of phase transitions in the long-time behaviour has been investigated for different

values of n [29]. Depending on the densities of catalysts (which control the rates of

the two processes involved), we have found that models C1 and C2 can also exhibit

quite opposite asymptotic behaviours: A → 0 for C0 ≥ B0, and A → ∞ for B0 > C0.

Although we have not seen evidence for states characterized by steady values of the

cluster-number density A(t), steady-state values were obtained for the cluster-mass

density A1(t) (B0 > C0) and for the average cluster-mass L(t) (C0 > B0).

In conclusion, we hope that this paper will stimulate future work on fragmentation-

annihilation processes, and believe that fruitful applications of the present, or related

models (especially those with catalysts), can be found in various fields.
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