
Mobile application platform heterogeneity:
Android vs Windows Phone vs iOS vs Firefox OS

Tor-Morten Grønli
Norwegian School of IT

0185 Oslo, Norway
tmg@nith.no

Jarle Hansen
Systek AS

Oslo, Norway.
jarle.hansen@systek.no

Gheorghita Ghinea
Brunel University

London, UK
george.ghinea@brunel.ac.uk

Muhammad Younas
Oxford Brooks University

Oxford, UK
m.younas@brookes.ac.uk

Abstract— Modern smartphones have a rich spectrum of
increasingly sophisticated features, opening opportunities for
software-led innovation. Of the large number of platforms to
develop new software on, in this paper we look closely at three
platforms identified as market leaders for the smartphone
market by Gartner Group in 2013 and one platform, Firefox
OS, representing a new paradigm for operating systems based
on web technologies. We compare the platforms in several
different categories, such as software architecture, application
development, platform capabilities and constraints, and,
finally, developer support. Using the implementation of a
mobile version of the tic-tac-toe game on all the four platforms,
we seek to investigate strengths, weaknesses and challenges of
mobile application development on these platforms. Big
differences are highlighted when inspecting community
environments, hardware abilities and platform maturity. These
inevitably impact upon developer choices when deciding on
mobile platform development strategies.

Keywords: Android, Windows Phone, iOS, Firefox OS,
Mobile Development Environment, Mobile Computing, Cross
Platform Development, Native Apps, Web Apps

I. INTRODUCTION
Mobile phone application development has taken a huge

step from its first days of development on monochrome
screens. Today, sophisticated features are available and there
are a large number of platforms to develop new software on.
In this paper, we look at three widely used development
platforms for pervasive applications: 1) Android, a Linux
based operating system from Google; 2) The Windows
Phone operating system from Microsoft; 3) The iOS
platform from Apple; and one platform representing a new
generation: 4) The new web based Firefox OS from Mozilla.
Three of these four platforms, 1,2 and 3, were in 2013
identified as market leaders for the smartphone market by
Gartner Group [35]. Firefox OS, 4, were recognized as the
chiefly representative for a new category of mobile operating
systems. We will compare the platforms in several different
categories through code examples, focusing on commonly
used features such as persistent storage and opening a
network connection. The different development tools used
for these platforms are also introduced since they are a
crucial part of modern software development.

 The work presented in this paper follows the research
performed by Huebscher et al [14], who back in 2006
remarked that an interesting future pursuit would be to look

at Windows Mobile or Linux devices and compare the issues
and limitations of the platforms. Accordingly, we focus on
how the four different platforms can be used to create
pervasive mobile device applications. Indeed, there are very
few contributions in this area and what papers have been
published target other languages. Although, the topic itself is
too wide to be investigated in a single paper alone, in this
paper we will start by investigating language central code
implementations, software architecture, application
development, and developer support – all of these have been
identified as key issues in mobile application development
[7].

The remainder of the paper is organized as follows.
Section II reviews related work and identifies related
challenges. In section III we will introduce the four different
mobile development platforms. Section IV contains the
comparison of the platforms, starting with architectural
aspects, then moving onto implementation concerns, and
ending with developer perspectives of the different
platforms. Finally, conclusions are drawn in section V.

II. RELATED WORK
Both hardware and software on mobile devices have

improved considerably in recent years. It is illustrative to
remark that when Sun conducted a customer survey in 2001
investigating the envisaged hardware profiles their software
platform had to run on [24], they came up with a CPU speed
of 50 to 200MHz and >600KB RAM as the typical figures
for the next-generation mobile phones. When compared to
the new smartphone devices released in 2013 we see an
enormous increase in computing power [18]. Typical figures
are now given by a CPU speed of 1.6 GHz Quad and 2GB
RAM. Moreover, screen sizes have also increased
significantly since touch screen devices have become
mainstream. For instance, Nokia E61, released in 2006, had a
2.9-inch display, considerably less than that of the Samsung
Galaxy S4, released in 2013, with a Full HD Super
AMOLED 5.0-inch touch screen display.

Such new smartphones are essentially small and powerful
computers and modern networking capabilities of the devices
also mean that people stay connected to the network. When
combined with the increase in screen sizes and networking
capabilities, many new and interesting research topics
surface, focusing on issues such as user interface design [25],
context-awareness in mobile devices applications [6][17] and
mobile service development [4][10][12][15][23].

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/29139571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In work closely related to ours, Harjula et al. [11]
highlight technical aspects in mobile phone application
programming. Aspects like limited bandwidth and small
screens have until recently been major obstacles for building
advanced and sophisticated mobile applications. However,
with the advent of touch screen technology and unlimited-
use subscriptions, such barriers belong increasingly to the
past. Moreover, software development kits (SDKs) are
becoming standard for all major mobile development
platforms as well and all of these factors create opportunities
for creating novel mobile and pervasive applications. In this
paper, we will focus on how it is possible to build one such
application – a tic-tac-toe game - and some of the main
differences in the development environments of the various
platforms

A. Platform heterogeneity
Java has a vision of supporting multiple platforms, “write

once, run everywhere”. To this end, in 2000 Sun
Microsystems reduced and adapted the standard Java
platform to fit on resource-constrained mobile devices [24].
The idea was that the same byte code created from the source
code should be able to run on all sorts of mobile device
models. Even though in principle this is a good idea, it has
caused severe problems and limitations, as we have
remarked in previous work [9].

However, according to Gartner [1] it was not Java ME
phones but iPhone (Apple) and Android (Google) phones
who were the winners in the smartphone market in 2010. In
contrast to the Java ME model – which strives to be
universal - both of these platforms have their own
programming API (Application Programming Interface) and
syntax. Although Android provides Java syntax, it uses its
own Google libraries and creates byte code that will not run
on the standard JVM (Java Virtual Machine). This means
that consumers are carrying devices that support different
programming languages and developers will usually need to
create multiple clients in this heterogeneous environment.
However, current research has usually focused on one or two
specific platforms [1][6][16]. For instance, Koller et al. [16]
look at two platforms, specifically Java ME and Adobe Flex.
They undertake a comparison in the context of developing a
new game for mobile phones and highlight important
challenges such as portability when developing in native
code, a factor which we have a closer look at in section 4.1.
Indeed, as acknowledged by Heikkinen and Still [12] and
Mukhtar et al. [18], developers must realize that the “write
once, use everywhere” idea is not possible due to hardware
and software platform heterogeneity

B. Mobile Application Development Challenges
There is relatively little published research on comparing

mobile development environments. One of the earliest is that
of Hall and Anderson [10], who compared the Android and
iPhone operating systems, as well as briefly touching on the
Symbian operating system, the erstwhile market leader in
smartphones. Their comparison is based on core issues for
software developers such as market base, ease of use,
developer support/tools and technology. In their opinion the

Android platform is the most exciting and best-positioned
mobile operating system to enable developers to produce
new applications.

One of the main inspirations for our work is the research
done by Huebscher et al. [2]. They focused on issues
surrounding ubiquitous computing development and, in
particular, problems relating to Symbian C++ and Java ME.
In so doing, they present an in-depth look at the possibilities
and limitations of the Symbian Series 60 platform. The main
advice they give is that developers should write their
application code in Java ME due to the lack of portability in
Symbian C++. However, they also point that in certain cases
the Java ME API will not have the desired functionality.
Moreover, when it comes to the emulator for Java ME they
find it both lacking in support of testing and debugging.
Nonetheless, tool support, including IDEs (Integrated
Development Environments) and emulators, has improved
constantly since 2006 when Huebscher et al. [14] published
their work. We will, through the description in section IV,
present a more up to date feature list and examine the state of
the tools and development environments.

More recently, Jobe [15] compares experiences of
developing the same mobile application/app (the app tracked
the runs of semi-professional Kenyan runners) either in
native mode or using a cross-platform development tool. His
conclusion was that native apps were preferred if there was
going to be interaction between the app and the hardware on
the specific device (such as the GPS unit or the camera);
otherwise, the app developed using the cross platform tool
was just as good as the native one.

In summary, the debate currently in the research and the
development community is whether to go down the native
application route (i.e. write mobile applications for a specific
operating system) or cross-platform (i.e. write applications
that in theory work across multiple platforms). Whilst in the
former approach the same app would have to be written once
for each of the mobile platforms it would want to target, the
latter approach usually entails applications running either on
the mobile Web browser of the particular platform and
mimicking the native app behavior, or using cross-platform
mobile development tools, usually employing languages
such as HTML5, Javascript and Cascading Style Sheets, to
create the apps [2][13][19][20][23]. The last approach, whilst
attractive in theory (‘write once, run everywhere’), has in
practice been beset by problems, made notorious by
Facebook’s dumping of HMT5 in favor of native apps [3].

Accordingly, in this paper, we focus on native apps and
compare our experiences of creating a native tic-tac-toe app
across four innovative mobile platforms.

III. PLATFORM PRESENTATION
Our research focuses on four of the main mobile

platforms: Android, Windows Phone, iOS and Firefox OS.
The next sections will give a short introduction to each of
these.

A. Android
Google released Android in November 2007, under the

framework of the Open Handset Alliance [21], with the goal
of being an open source arena for software development on
mobile platform. Android is an open source mobile
operating system based on the Linux kernel and facilitates
developers to write managed code in Java using Google
developed Java libraries [8]. The Android platform does not
only provide the mobile operating system itself including
the development environment, but also provides a custom
built virtual machine (Dalvik Virtual Machine) for the
applications to run on as well as acting as the middleware
between code and operating system [8]. For application
development, Android facilitates the use of 2D and 3D
graphic libraries, a customized, onboard SQL engine for
persistent storage and advanced network capabilities such as
3G, 4G and WLAN (Fig. 1). The API is constantly evolving
and the current release (4.4 KitKat) [26] is a huge increment
compared with number of available features from release
1.0. Since Android is an open source mobile operating
system, the community is welcomed to collaborate in the
evolvement of the programming environment, the operating
system and the API. Development tools for Android include
the Eclipse and IntelliJ IDEA.

Fig. 1. Android Architecture [26]

B. Windows Phone
Previously, the mobile operating system created by

Microsoft was called Windows Mobile. After the changes
introduced by Apple (iOS) and Google (Android) in 2007,
Microsoft decided to take a new direction and created
Windows Phone. Similar to other alternatives, such as iOS

and Android, Windows Phone is an operating system for
smartphones. It is usually used on touch screen devices, and
offers functionality such as networking, sensors and camera
integration.

Programs for Windows Phone 7 are written in .NET
managed code. Managed code is code written in languages
that are available for use with the Microsoft .NET
Framework, for example C#. One of the benefits is that
many of the error-prone and often complex tasks, such as
type safety checking, memory management and destruction
of unneeded objects, are taken care of [32].

Windows Phone 7 supports two popular programming
platforms, namely Silverlight and XNA. Silverlight is an
evolution of the Windows Presentation Foundation (WPF).
It provides developers with the ability to create
sophisticated user interfaces. The second platform, XNA, is
Microsoft’s game platform. It supports both 2D and 3D
graphics [22].

Development for Windows Phone is done in Visual
Studio [37]. There is a range of various editions of Visual
Studio, ranging from the free Visual Studio Express to the
Ultimate edition. Although the Express edition if enough to
get started, the limitations quickly get in the way of
productivity. For example, no support for plugins is one of
the main limitations. There are two languages that can be
used to write programs for Windows Phone, 1) Visual Basic
.NET and 2) C#. We will focus on the C# language in this
paper. We chose to use this language because we were more
familiar with it and also we found more resources, in books
and on the Internet, for Windows Phone development with
C#. Programs created for Windows Phone are packaged into
XAP files, which is the Silverlight application package [31].

According to Gartner [35], Microsoft currently occupies
the 3rd place in regards to market share (second quarter of
2013). For the first time Microsoft has a larger market share
compared to Blackberry. Even with the recent increase in
popularity, the Windows Phone platform is still a relatively
small player with a 3.3% market share. The step up of the
iOS (14.2%) and Android (79.0%) is considerable. However,
it will be interesting to see how the acquiring of Nokia [36]
will affect the further development of Windows Phone and
the mobile devices.

Fig. 2. Windows Phone Architecture [33]

C. iOS
iOS is the operating system for several Apple devices

(Fig. 3), one of the most important of which is the iPhone.
The iPhone was released in 2007 and changed the
smartphone market [34]. It included a large touch screen
and, at least for that time, impressive hardware
specifications [27].

Applications for iOS are written in Objective-C using
the Cocoa Touch library. Objective-C is an extension to the
C language, while Cocoa Touch is a collection of classes
[5]. While C# and Java (used for Android and Windows
Phone development) are fairly similar in syntax, the
Objective-C library provides a different alternative.

Objective-C, as the name implies, supports object-
oriented programming. The language and platform has
continuously improved over the years, and one especially
noteworthy change came with the introduction of ARC
(Automatic Reference Counting) [28]. This provided
automatic memory management and meant that the amount
of boilerplate code is reduced and in general memory leaks
are less common.

Development for iOS requires a computer running Mac
OS. The application usually used to write iOS applications
in is Xcode [29]. It includes a powerful editor, as well as an
analysis tool, iOS simulator and the SDK.

Fig. 3. iOS Architecture [27]

D. Firefox OS
Firefox OS (Fig. 4) represents a new generation of

mobile operating systems, namely a web based OS [38]. It is
designed based upon open standards and approaches from

HTML5 applications, JavaScript and web APIs. This
approach brings open web APIs communicating directly with
cellphone hardware and it also features a direct link to the
web-based application marketplace. Firefox OS was first
demonstrated public in early 2012, running on an Android
based phone. Later it has been demonstrated running on a
Raspberry Pie, and Mozilla launched commercial phones
together with ZTE in early 2013[39].

Fig. 4. Firefox Architecture [30]

IV. PLATFORM COMPARISON
In this section we described the actual comparison of the

four mobile application development platforms and show
how they relate through a common example implemented
across all environments. We start off by detailing the
implemented scenario, before we present our findings and
finally ending this section with a discussion.

A. Comparison Scenario
To investigate software architecture, application

development, and developer support, all of which have been
identified as key issues in mobile application development,
we needed a common scenario implemented across all
platforms. Following the results and practice by Gavalas and
Economou [7], we chose the implementation of a game as
scenario for comparison. The game chosen was tic-tac-toe,
which is suitable because it covers all major aspects of
application development. This implementation let us
compare all four platforms in terms of technical
functionality, APIs, development effort, development
support and deployment to live devices. Figures 5 to 8 show
the game running on the four platforms.

Fig.5. Windows Phone Client
(Nokia Lumia 800)

Fig. 6. iOS Client
(iPhone 5)

Fig. 7. Android Client
(Samsung Galaxy S4)

Fig. 8. Firefox Client
(Firefox Geeksphone)

B. Discussion

Our findings (Table 1) suggest that there are two main
platforms at the moment, with iOS and Android. Both have
mature development environments and communities.
Especially for the Android platform there is a large number
of open source libraries and frameworks.

For the other two alternatives, namely Firefox OS and
Windows Phone, there is more uncertainty about the future
[33]. While Firefox OS is a new Operating System,
Microsoft has a long history in the mobile space. Both
Firefox OS and Windows Phone are small compared to the
two main platforms, but they have potential. Firefox OS
focuses on a different market, targeting more affordable
devices. Windows phone, on the other hand, is more similar
in that it focuses on the mid to high-end smartphones.

Windows Phone takes advantage of the excellent
development support in Visual Studio. Combined with the
C# language, together they provide a good alternative for
developers. One of the main issues Microsoft has had with
its focus on mobile devices is low market share. After the
iPhone entered the market, they have conducted major
changes. This has entailed efforts such as going from
Windows Mobile to a completely redesigned OS with
Windows Phone, or, indeed, acquiring handset
manufacturers, as has happened with the recent acquisition
of Nokia.

Android is clearly the most popular platform of the
alternatives we have investigated. When developing for
Android devices, the potential customer base is very large.
However, the platform also has its challenges, mainly with
fragmentation and the lack of updates. Fragmentation is
simply the problem that there are so many different devices
supporting Android, and it is difficult to create an App that

works across all various sorts. The lack of updates is the
case that certain devices, even quite new, will not receive
updates of the OS. Additionally, there has previously been a
problem that many users simply do not update their device.
This means there are a considerable amount of devices with
very old versions of Android, which needs to be supported.
The development tools for Android have continuously
improved. One area we feel that both Windows Phone and
iOS provides a better experience is with the UI builders.
While this is also improving, the Android platform has some
major challenges due to fragmentation and backwards
compatibility.

Apple, with the iOS platform, has had a very clear focus
on high-end devices. The development language used is
Objective-C, which can cause a challenge for users that are
more familiar with Java/C# development. This can create a
steeper learning curve compared to the other platforms.

In contrast to Android, the iOS platform does not suffer
from the same issues with fragmentations. This is simply
because the number of devices are limited, with Apple being
the only manufacturer of device for iOS. This is very
different from Android, where there are many different
hardware manufacturers.

It is difficult to do an in-depth review of the newest
platform, Firefox OS. It is still early days when it comes to
the community and developer tools. This will probably
improve as the platform becomes more mature. It is also
particularly interesting to see the extensive use of HTML5
and Javascript. We feel that the development tools are
currently not good enough compare the other platforms.
This will improve with future releases. If the platform will
handle the common challenges, such as fragmentation,
remains to be seen. However, it is certainly an interesting
platform that is worth a closer look

TABLE 1: Platform Comparison Matrix

Issue iOS Android Firefox OS Windows Phone
Software architecture
Development
language

Objective-C Java Web (HTML5, CSS3,
Javascript)

.Net C#

Packaging Apple application
package (IPA) with a
distribution
provisioning file

Android package
(APK) file

Packaged as a web
application with an
associated manifest
file for properties

Windows Phone
package (XAP) with
manifest file for
properties

Persistent storage and
database support

Local SQL database
support and local file
access

Local SQL database
support and local file
access

Local IndexedDB
database support and
local key/value pair
storage

Local SQL database
support and local file
access

Application development
Debugger availability Very Good

Excellent

Good Excellent

Deployment speed
(packaging, installing,
testing)

Fast Relatively fast Fast Relatively fast

Default deployment
application size

Medium Large Very small Large

Developer support
Developer community
and support

Very large Very large Very small Average

Market penetration Very large Very large Minimal Limited
Integrated
development
environment (IDE)
availability

Very good support
through Apple Xcode
and Jetbrains
Appcode

Excellent – supported
by all major IDE’s

Very limited
specialized tools, but
regular web
development tools
can be applied

Very good, but
limited to Microsoft
Visual Studio

Development tools
cost

Free for emulator
Small fee for device
and App Store

Free
Small fee for Android
Play

Free Free (for emulator)
Small fee for
Marketplace

V. CONCLUSION

There is little doubt that mobile devices, and particularly
smartphones and tablets, will be the device of choice for
users in the very near future. In this context, mobile apps
become an essential part of any software development
project. It is therefore important to acknowledge and
investigate the strength and weaknesses of the various
devices and their associated mobile ecosystems – which we
have explored in this paper.

Developer support has been greatly improved in the current
development tools: performance is abstracted to new high-
level formats, and access to performance-critical code is
often wrapped through third party libraries. Indeed,
language development itself also shows proofs of
abstraction, such as in the Android platform, where a new
programming dialect has been built on top of the Java
language. Moreover, in the case of the iPhone, the higher
level of abstraction is especially apparent in UI design and

database integration. This is solved with specific tooling,
making the abstraction level higher. Indeed, in these areas
the iPhone/Xcode model stands out and provides the most
efficient and best development environment in our opinion.

Windows Phone, Android, and iPhone have the benefit of
being tightly integrated with the operating system on the
mobile phone. This results in a good integration between the
development environment and the actual devices. However,
Firefox OS struggles with the different implementations,
immature platform support, and a wide variety of mobile
phones and browsers.

Our work opens up possibilities for interesting future
research. Other areas of developer interest, such as
multithreading could be included. Table 1, could be further
expanded, to include code footprints and runtime issues,
such as CPU load, battery usage and network performance,
to name but a few. Apps generated by cross-platform
development tools are also of potential interest. All are
worthy future pursuits

REFERENCES

[1] A. Bottaro and A. Gérodolle, “Home SOA -: facing protocol
heterogeneity in pervasive applications,” Proceedings of the 5th
international conference on Pervasive services, Sorrento, Italy: ACM,
2008, pp. 73-80.

[2] A. Charland and B. Leroux, “Mobile Application Development: Web
vs. Native”, Communications of the ACM, vol. 54, no. 5, pp. 49-53,
2011.

[3] J.J. Colao, “Facebook’s HTML 5 Dilemma Explained”, Forbes,
http://www.forbes.com/sites/jjcolao/2012/09/19/facebooks-html5-
dilemma-explained/ [Accessed: 13 November 2013]

[4] ContextPhone: A Prototyping Platform for Context-Aware Mobile
Applications (2005)

[5] J. Conway and A. Hillegass, iPhone Programming: The Big Nerd
Ranch Guide (Big Nerd Ranch Guides), Addison-Wesley, 2010.

[6] W. Du and L. Wang, “Context-aware application programming for
mobile devices,” Proceedings 2008 Canadian Conference on
Computer Science & Software Engineering (C3S2E), Montreal,
Quebec, Canada: ACM, 2008, pp. 215- 227.

[7] D. Gavalas and D. Economou, “Development Platforms for Mobile
Applications: Status and Trends”, IEEE Software, vol. 28, no.1., pp.
77-86, 2011.

[8] Google, “What is Android?”
http://developer.android.com/guide/basics/what-is-android.html
[Accessed 10 July 2010]

[9] T-M. Grønli, J. Hansen, and G. Ghinea. “Android vs Windows
Mobile vs Java ME: a comparative study of mobile development
environments.” Proceedings of the 3rd International Conference on
PErvasive Technologies Related to Assistive Environments. ACM,
2010.

[10] S.P. Hall and E. Anderson, “Operating systems for mobile
computing,” Journal of Computing Sciences in Colleges., vol. 25,
no.2, 2009, pp. 64-71.

[11] E. Harjula, M. Ylianttila, J. Ala-Kurikka, J. Riekki, and J. Sauvola,
“Plug-and-play application platform: towards mobile peer-to-peer,”
Proceedings 3rd international conference on Mobile and ubiquitous
multimedia, College Park, Maryland: ACM, 2004, pp. 63-69.

[12] M.T. Heikkinen and J. Still, “Benefits and challenges of new mobile
service development in R&D network,” Personal Ubiquitous
Computing, vol. 12, 2008, pp. 85-94.

[13] A. Holzer and J. Ondrus, “Mobile application market: A developer’s
perpsective”, Telematics and Informatics, vol. 28, pp. 22-31, 2011.

[14] M. Huebscher, N. Pryce, N. Dulay, and P. Thompson, “Issues in
Developing Ubicomp Applications on Symbian Phones,”
Proceedings of the international workshop on System Support for
Future Mobile Computing Applications, IEEE, 2006, pp. 51-56.

[15] W. Jobe, “Native Apps vs. Mobile Web Apps”, International Journal
of Interactive Mobile Technologies (iJIM), vol. 7, no. 4, pp. 27-32,
2013.

[16] A. Koller, G. Foster, and M. Wright, “Java Micro Edition and Adobe
Flash Lite for arcade-style mobile phone game development: a
comparative study,” Proceedings SAICSIT 2008 Wilderness, South
Africa: ACM, 2008, pp. 131-138.

[17] N. Milic-Frayling, M. Hicks, R. Jones, and J. Costello, “On the
design and evaluation of web augmented mobile applications,” Proc.

9th Int. Conf. on Human computer interaction with mobile devices
and services, Singapore: ACM, 2007, pp. 226-233.

[18] H. Mukhtar, D. Belaïd, and G. Bernard, “A model for resource
specification in mobile services,” Proceedings of the 3rd
international workshop on Services integration in pervasive
environments, Sorrento, Italy: ACM, 2008, pp. 37-42.

[19] A. Nicolau, “Best Practices on the Move: Building Web Apps for
Mobile Devices”, Communications of the ACM, vol. 56 no. 8, pp. 45-
51, 2013.

[20] J. Ohrt and V. Torau, “Cross-Platform Development Tools for
Smartphone Applications”, IEEE Computer, vol. 45, no.9., pp. 72-79,
2012.

[21] Open Handset Alliance, “Open Handset Alliance”,
http://www.openhandsetalliance.com/ [Accessed: 7 October 2012]

[22] C. Petzold, “Programming Windows Phone 7”,
http://www.charlespetzold.com/phone/ [Accessed: 13 November
2013]

[23] I. Singh and M. Palmieri, “Comparison of Cross-Platform Mobile
Development Tools”, Proceedings 16th International Conference on
Intelligence in Next Generation Networks, Berlin, 2012.

[24] Sun Microsystems (2005) “CLDC HotSpotTM Implementation
Virtual Machine”

[25] T. Yamabe, K. Takahashi, and T. Nakajima, “Design issues and an
empirical study in mobility oriented service development,”
Proceedings 1st workshop on Mobile middleware: embracing the
personal communication device, Leuven, Belgium: ACM, 2008, pp.
1-6.

[26] http://developer.android.com/index.html [Accessed: 13 November
2013]

[27] https://developer.apple.com/ [Accessed: 13 November 2013]
[28] https://developer.apple.com/library/ios/releasenotes/ObjectiveC/RN-

TransitioningToARC/Introduction/Introduction.html [Accessed: 13
November 2013]

[29] https://developer.apple.com/xcode/.[Accessed: 13 November 2013]
[30] https://marketplace.firefox.com/developers/ [Accessed: 13 November

2013]
[31] http://msdn.microsoft.com/en-us/library/cc838164(v=vs.95).aspx

[Accessed: 13 November 2013]
[32] http://msdn.microsoft.com/en-

us/library/windows/desktop/bb318664(v=vs.85).aspx) [Accessed: 13
November 2013]

[33] http://technet.microsoft.com/en-us/ [Accessed: 13 November 2013]
[34] http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-

Phone-with-iPhone.html [Accessed: 13 November 2013]
[35] http://www.gartner.com/newsroom/id/2573415 [Accessed: 13

November 2013]
[36] http://www.microsoft.com/en-us/news/press/2013/sep13/09-

02announcementpr.aspx [Accessed: 13 November 2013]
[37] http://www.microsoft.com/visualstudio/eng/visual-studio-2013

[Accessed: 13 November 2013]
[38] http://www.mozilla.org/en-US/firefox/os/ [Accessed: 13 November

2013]
[39] http://www.ztedevices.com/product/smart_phone/index_1.html

[Accessed: 13 November 2013]

