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ABSTRACT 

This paper describes investigations into the structural behaviour of ferritic stainless steel 
floor decking in composite construction. Although commonly used in the automotive and 
industrial sectors, structural applications of ferritic stainless steels are rare owing to a relative 
lack of knowledge, performance data and design guidance. These materials display 
considerably better atmospheric corrosion resistance than carbon steels, as well as having 
good ductility, formability and excellent impact resistance.  As part of a wider investigation 
into the use of ferritic stainless steels in structural applications, an experimental study has 
been undertaken to assess the viability of using these materials for the profiled decking in 
composite floors. The shear connection behaviour between the steel beams and the 
composite slab is clearly critical and this is influenced by the through-deck welding process 
of the shear connectors. The practicality of this welding technique is assessed and described 
in this paper. Furthermore, the results of a series of push tests are presented. These enable 
the resistance of the shear connectors to be established and compared with the strengths 
specified in EN 1994-1-1 for composite slabs using galvanized steel decking.   

 

 

INTRODUCTION 

Ferritic stainless steels are low cost, price-stable, corrosion-resistant materials which are 
widely used in the automotive and domestic appliance sectors. They are a family of ‘utility’ 
stainless steels which display considerably better atmospheric corrosion resistance than 
carbon steels, as well as having good ductility, formability and excellent impact resistance. 
Nevertheless, structural applications are scarce owing to a lack of suitable information and 
design guidance. It is in this context that a major collaborative project is underway in Europe 
entitled Structural Applications of Ferritic Stainless Steels (or SAFSS). The principal aim of 
this study is to develop the information needed for comprehensive structural design 
guidance to be included in relevant parts of the Eurocodes and other accompanying 
standards/guidance. Although the research has general applicability to the use of ferritic 
stainless steel, there is a particular focus on trusses and space frame structures as well as 
exposed decking in composite floor systems, the latter of which is relevant to the current 
paper. 
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a composite beam. In particular, the vertical forces and negative bending in the slab at the 
line of the shear connectors are currently ignored. 

Nevertheless, a cost-effective and straight-forward alternative to the standard push test has 
yet to be developed and introduced in design guidance (although it is currently being 
investigated in a major European project entitled “Development of improved shear 
connection rules in composite beams” which is being coordinated by the Steel Construction 
Institute and funded by the Research Fund for Coal and Steel), and therefore the tests 
adopted in this programme are as specified in Eurocode 4.  It is acknowledged that the push 
tests may not give the full impression of the composite performance but they can still give a 
useful insight into the most salient parameters and provide a basis for comparison with other 
materials. A primary objective of this study is to gain an insight into the effect of different 
shear connection arrangements on the composite performance.  

This paper provides a background to the SAFSS project, followed by a brief description of 
ferritic stainless steel. Thereafter, a discussion on composite behaviour will be given as well 
as a description of the experimental investigation into the composite performance of ferritic 
stainless steel-concrete composite slabs. A series of 8 push composite tests has been 
completed at Brunel University in order to assess the shear connection behaviour and these 
will be discussed together with the findings from the through-deck welding trials. More 
detailed discussion is available elsewhere (Cashell and Baddoo, 2014).  

 

SAFSS PROJECT 

The SAFSS project is a 3-year collaborative project which commenced in mid-2010 with a 
view to increasing the structural use of ferritic stainless steels. The project is largely funded 
by the European Union Research Fund for Coal and Steel (RFCS) with additional support 
from Aperam, AcerInox and Outokumpu Stainless Oy and is being coordinated by the Steel 
Construction Institute. The project has been divided into eight separate work packages with 
various partners working on each.  The work packages (WP’s) include studies into:  (WP1) 
Mechanical properties; (WP2) Structural performance of light gauge members; (WP3) 
Structural performance of steel decking in composite floor systems; (WP4) Structural 
performance at high temperatures; (WP5) Structural performance of welded connections; 
(WP6) Structural performance of bolted and screwed connections; (WP7) Corrosion 
resistance; and (WP8) Design guidance and implementation into the Eurocodes. The study 
discussed in this paper is relevant to WP3.  

 

FERRITIC STAINLESS STEELS 

Ferritic stainless steels do not contain significant quantities of nickel and are therefore 
cheaper and relatively price-stable compared with austenitic stainless steels. Ferritics also 
differ from the more commonly-used austenitic stainless steels in that they have higher 
mechanical strengths (approximately 250-330 N/mm2 0.2% proof strength), are magnetic, 
have lower thermal expansion, higher thermal conductivity and are easier to cut and work.   

The mechanical and physical properties of ferritics make them suitable for use in composite 
floor slabs where an attractive metallic surface finish is desirable. Unlike galvanised steel, 
ferritic stainless steels have a naturally occurring corrosion resistant surface layer so there is 
no requirement for applying protective surface layers and no remedial work or corrosion risk 
at cut edges in most normal applications. Furthermore, ferritics are easy to recycle 
compared to galvanised steel where the zinc from the galvanised coating must be removed 
prior to re-melting the steel.  

Three of the ‘traditional’ ferritic grades are covered in the American SEI/AISI Specification for 
design of cold-formed stainless steel structural members (SEI/AISI, 2002) for thicknesses up 
to 3.8 mm. The South African (South African Bureau of Standards, 1997) and 



Australian/New Zealand (Standards Australia Standards New Zealand, 2001) structural 
stainless steel standards take similar approaches. The Eurocode for structural stainless 
steel, EN 1993-1-4 (2006) states it is applicable to three traditional ferritic grades (grades 
1.4003, 1.4016 and 1.4512), however, the guidance is almost exclusively derived from work 
on austenitic and duplex stainless steels and in many cases ferritic-specific guidance is 
missing. EN 1993-1-4 refers to a number of clauses in other parts of Eurocode 3 such as EN 
1993-1-2 (2005), 1-8 (2005), 1-9 (2005) and 1-10 (2005) which have not been validated for 
ferritic stainless steels. One exception is that EN 1993-1-2 (2005) includes data on one 
ferritic grade. 

 

COMPOSITE BEHAVIOUR 

In composite structures, the applied loads are transferred between the floor slab and the 
beams through shear connectors which are embedded in the concrete slab and welded to 
the steel beam. The capacity of these studs is typically established experimentally through 
push tests, although there are shortcomings to this approach, as presented earlier in this 
paper. International design standards such as Eurocode 4 (EN 1994-1-1, 2004) provide 
theoretical models for predicting the shear resistance of the shear studs.   

The Eurocode 4 theoretical model is presented in Sections 6.6.3.1 and 6.6.4.2 of the code.  
When stud connectors are welded within ribs of profiled steel decking, their resistance is 
reduced compared with their resistance in a solid slab. To account for this, Eurocode 4 
applies an empirically-derived reduction factor (kt) which is multiplied to the design 
resistance for a shear stud in a solid slab (PRd) to give the final shear stud resistance 
(referred to as PRd,rib hereafter). However, it is noteworthy that Eurocode 4 provides no 
guidance as to how the standard solid slab specimen should be adjusted when decking is 
present, which has given rise to a large degree of scatter in test results (Hicks, 2007).   

The reduction factor kt is defined as: 

kt = 
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  but kt  ≤ 0.85 for studs welded through profiled steel sheeting and kt  ≤ 

0.75 for profiled sheeting with holes.         (1) 

where: 

b0 = the width of a trapezoidal rib at mid-height of the profile; 

nr = is the number of stud connectors in one rib at a beam intersection, 

hp = the height of the steel sheeting measured to the shoulder of the profile; 

hsc = the as-welded height of the stud, but not greater than hp + 75 mm. 

 

PRd is defined as being the lesser of two values calculated using Equation (6.18) and (6.19) 
in Eurocode 4 for steel and concrete failure, respectively.  Equation (6.18) determines the 
resistance based on the strength of the steel, presented here as Equation (2): 
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where: 

fu the specified ultimate tensile strength of the material of the stud but not greater than 
450 N/mm2 for a profiled slab; 

d the diameter of the shear connectors; 



γV the partial factor. 
Equation (6.19) in Eurocode 4 determines the resistance based on the strength of the 
concrete, presented here as Equation (3): 
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where: 

α a function of the dimensions of the deck and shear connectors;  

fck the characteristic cylinder strength of the concrete;  

Ecm the secant modulus of elasticity of the concrete. 

 

Annex B in Eurocode 4 states that the characteristic slip capacity δuk should be taken as the 
maximum slip capacity of a specimen δu reduced by 10%, where δu is the slip corresponding 
to the characteristic load level (PRk).  In Clause 6.6.1.1(5) of that standard, a shear connector 
is defined as ductile if the characteristic slip capacity is at least 6 mm, and the minimum 
degree of shear connection rules in the standard are calibrated for this ductility.  

 

EXPERIMENTAL PROGRAMME 

The primary objective of the laboratory experiments is to gain a greater understanding of the 
composite performance of slab specimens using ferritic stainless steel decking by 
completing a series of standard push tests. A number of parameters can affect the load-slip 
characteristics between the steel and the concrete, such as the way that the stud is welded 
to the steel section, continuity of the decking and the strength of the concrete. The focus in 
these tests is to ensure that the composite performance of specimens using ferritic decking 
is, at least, as good as that when galvanised decking is used and also to investigate the 
effect of different construction arrangements.  

Prior to undertaking the main experimental programme, which consists of 8 push tests, it 
was important to conduct welding trials in order to verify the practicality of the through-deck 
welding technique commonly used in the UK.  The welding trials were completed at Hare 
Decking Ltd (formerly Richard Lees Steel Decking) in the UK, where 19 mm carbon steel 
shear studs were welded through ferritic stainless steel sheeting to the structural steel 
beams using the same technique as used for regular galvanised steel decking (Figure 2). 
Once welded into position, they were subjected to the standard tests performed on welded 
shear studs in construction, i.e. the ring and bend tests (Figure 3); all welds passed these 
tests. Importance was given to subjecting the ferritic specimens to the same standard of 
testing as is commonly used on-site for galvanised decking. 

 

 

Figure 2 - Through deck welding Figure 3 - Bend test and ‘left after weld 
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Whilst through-deck welding is popular in the UK, other parts of Europe typically use studs 
welded directly to the steel beam and decking with pre-punched holes. Both of these 
scenarios were examined in the current programme with three identical specimens of each 
category tested.  The decking was rolled with a central stiffener in the centre of the trough 
which had to be hammered flat local to the stud position in the through-deck welded 
specimens to ensure direct electrical contact through the components as well as the integrity 
of a homogeneous weld.  There was insufficient space to offset the shear stud. In order to 
ensure that this process did not affect the integrity of the weld, the two remaining tests in the 
programme had shear studs welded to the steel beam through a narrow strip (100 mm wide) 
of flat ferritic stainless steel sheeting with the same material properties as the profiled 
sheeting. A profiled sheet with pre-punched holes was then placed over the studs.  The test 
programme is summarised in Table 1. 

 

Table 1 - Push-out test programme 

Series: Number 
of tests: 

Details Shape of 
slab 

Continuity of 
deck beyond 

weld? 

Through-
deck 

welded? 

1 2 Studs welded through 
narrow flat sheet 

Profiled No Yes 

2 3 Studs welded through 
continuous profiled deck 

Profiled Yes Yes 

3 3 No through-deck welding  Profiled No No 

 

In each case the test specimens were loaded to failure by applying a hydraulic jack to a plate 
on top of the steel tees. Load was transferred to the concrete through the shear studs. In 
accordance with EN 1994-1-1, the load was first applied in increments up to 40% of the 
expected failure load and then cycled 25 times between 5% and 40% of the expected failure 
load. In each test, following the cycles, the load and displacement were gradually increased 
until failure occurred, typically by concrete pull-out, which was accompanied by a significant 
reduction in load capacity. The longitudinal slip between each composite slab and the steel 
section was measured continuously using displacement transducers, as was the lateral 
displacement of the slabs. 

Results 

Load-slip relationships for Series 1, 2 and 3 are presented in Figures 6-8 respectively whilst 
the Figure 9 is an image of a specimen after testing. A summary of all the experimental data 
is presented in Table 2, where fck refers to the compressive cylinder strength of the concrete 
on the day of testing (taken as the average of three cylinders), Pf is the failure load observed 
in the tests and PRk is the characteristic resistance per stud equal to 90% of Pf

 divided by the 
number studs (4 in this case), as defined in Eurocode 4 Annex B (EN 1994-1-1, 2004). δu is 
the slip corresponding to PRk whereas δuk is the characteristic slip equal to δu reduced by 
10%. PRd,rib is the design resistance as described previously. The yield (fy) and ultimate (fu) 
strengths of the ferritic decking were 326 N/mm2 and 480 N/mm2, respectively, based on 
taking the average of 4 tensile test coupons. On the other hand, the yield and ultimate 
strengths of the shear studs were 446 N/mm2 and 488 N/mm2, respectively. 
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All of the specimens demonstrated concrete pull-out failure around the shear connectors 
although one stud was found to have sheared off in Specimen 3-C.  It is impossible to know 
exactly when this happened although it is likely that it was after the concrete had failed as 
the displacement increased. After each test, the concrete slab was removed from the 
profiled sheeting, which was very easy as no bond remained. Figure 10 shows Specimen 3-
A without the steel deck where the evidence of concrete pull-out can be seen, whereas the 
steel deck from this test is presented in Figure 11, showing the remaining concrete around 
the shear stud.  

Concrete pull-out failure occurs when the concrete surface fails due to tension occurring 
across the failure surface. It has been shown that standard push-tests are dominated by 
failure of the concrete around the shear connectors, as was observed in these tests, rather 
than shearing of the shear connector itself (Smith, 2009). The typical failure surface for 
single shear connectors is a cone of concrete starting underneath the head of the shear 
connector and growing in diameter down the length of the shear connector, although the 
shape is restricted by the shape of the decking (see Figure 11). However, this type of failure 
would be less likely to occur in a real composite member which is loaded in bending and, for 
this reason, many researchers have added a lateral load to the test specimens (e.g. 
Easterling et al., 1993; Rambo-Roddenberry, 2002; Bradford et al., 2006; Smith, 2009; Smith 
and Couchman, 2010).  

 

  

Figure 10 - Failed specimen – concrete Figure 11 - Failed specimen - decking 

As stated previously, all of the slabs behaved very similarly, regardless of the construction 
form and all failed in an identical manner. As expected, the Series 2 specimens which were 
through-deck welded and offered continuity of the steel sheeting demonstrated higher load 
and slip capacities. Also, during the unloading stage of the load-slip response, these slabs 
were more ductile than the specimens with punched holes. The combination of the through-
deck welded shear studs and the continuous steel sheeting enhanced the bond strength and 
consequently the load and slip capacity of the slab. Previous studies have shown that 
composite specimens with pre-punched holes (i.e. Series 3) offer the advantage of 
producing more reliable and better stud welds with fewer failures (Ernst et al., 2009), but 
there was no issue with the through-deck welded studs in this test programme. 

It is noteworthy that the response of Specimen 1-A was quite different to the other slabs in 
that it had a considerably lower load resistance, much greater slip capacity and the shape of 
overall load-slip relationship was quite dissimilar to the other tests (refer to Figure 6). This is 
due to experimental error at the time of casting. This was the first specimen to be cast in this 
programme and the concrete mixture was quite ‘lumpy’ and inconsistent. Although it was of 
acceptable strength on test day (fck = 35.82 N/mm2), it is thought that the texture and 
consistency of the concrete affected the bond between the deck and the slab thereby 



causing this test to behave uncharacteristically. The concrete mixture probably added to the 
mechanical interlock between the slab and the decking allowing more slippage to occur 
without a loss in bond strength. 

 

COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS 

Using the equations presented earlier in this paper, the reduction factor (kt) for the Cofraplus 
60 decks used in these tests is found to equal 0.63. The design strength (PRd,rib) for each of 
the test specimens is presented in Table 2, together with the ratio of the test resistance to 
the design resistance. The ratio of PRk/PRd,rib varied between 0.91 for Specimens 3-A and 3-C 
and 1.06 for Specimen 2-C.  It is clear that this ratio is higher for Series 2 relative to Series 3 
showing that the through-deck welded shear connectors offer slightly greater shear 
resistance. In general, given that the design resistance PRd,rib values in Table 2 do not 
include safety (γ) factors, having a ‘test to design’ ratio of around 1 is as expected.  

The ductility of the specimens was reasonable with all of the δuk values being around the 
6 mm value required by the Eurocode in order to justify the assumption of ideal plastic 
behaviour of the shear connection. As stated before, it has been shown that these types of 
push tests give lower strength and slip resistances than composite beam specimens. Hicks 
(2007) showed that studs in beam tests out-performed those in push tests both in terms of 
resistance and ductility, by 46% and 269% respectively. In particular, it has been shown that 
push test specimens which fail by concrete pull-out as occurred in these tests give brittle 
failure and low strengths (Johnson and Yuan, 1998).   

There is no data in the literature for equivalent tests using galvanised steel decks. However, 
Bradford et al. (2006) reported some tests which were conducted in a similar manner (i.e. no 
lateral force applied) and used galvanized decking with a very similar profile shape to the 
Cofraplus 60. These tests appeared to show very limited ductility (δuk values significantly 
below 6 mm) which the authors attributed to the test arrangement causing premature failure. 
A new test procedure was proposed wherein a normal force is applied to the specimen in 
addition to the longitudinal force in order to prevent concrete pull-out failure and 
unrealistically low ductility.     

On this basis, it is reasonable to deduce that specimens with ferritic stainless steel decking 
behave at least as well as slabs with galvanised decking and therefore conform to the 
current requirements of the Eurocode specification. 

 

CONCLUSIONS  

This paper has described a series of push tests which were completed as part of a wider 
project looking at structural applications of ferritic stainless steels (SAFSS). An overview of 
the project was given followed by an introduction to ferritic stainless steel, including their 
relevant properties for structural use. One potential application for ferritics is for decking in 
composite construction and, towards this end, a series of push tests were conducted in order 
to determine the suitability of these materials for this application and the results presented 
herein.   

The methodology, results and analysis of the push tests were presented, and it was 
concluded that the resistance of shear connectors is comparable with the resistance given in 
Eurocode 4 (EN 1994-1-1, 2004) for galvanised decking both when through-deck welded 
and when directly welded to the steel section through pre-cut holes in the deck. All of the 
tests failed in the same manner which was through concrete pull-out, regardless of the 
construction form used. The results also showed that there is sufficient ductility to use the 
current minimum shear connection rules in Eurocode 4 for headed stud shear connectors.  



It is accepted that the method of testing is not ideal as it creates internal forces which are 
different to those that occur in composite members under bending forces.  However, as a 
starting point, it is important to complete the tests in accordance with the Eurocode so that 
comparisons with existing design equations can be made. Further work is required in order 
to numerically analyse the push test specimens so that the effect of the loading conditions 
can be quantified and further understood. Specific recommendations or modifications to the 
Eurocodes have not been proposed as further analysis is required, including a direct 
comparison with the performance of galvanised steel under identical conditions.   
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