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Abstract 

Alzheimer’s disease (AD) is a neurodegenerative disease which affects over 500,000 

people in the UK. Worldwide 44 million people are affected by AD and other 

dementias. Most cases occur over the age of 65 and is characterised by gradual and 

increasing loss of cognitive function and behavioural abnormalities. The main causes 

are a build-up of the toxic protein amyloid-β (Aβ) and hyperphosphorylation of the 

microtubule stabilising protein: tau, leading to neurofibrillary tangles (NFT). These 

two hallmarks of disease result in neuronal damage and cell death causing associated 

symptoms and eventually death.  

Orexins (OX) are neuropeptides which function to regulate the sleep-wake cycle and 

feeding behaviour. They are produced from a prepro-orexin (PPO) molecule and 

cleaved into two isoforms: orexin-A (OXA) and orexin-B (OXB). OXA and OXB 

are the ligands for two G-protein coupled receptors (GPCR): orexin receptor 1 

(OX1R) and orexin receptor 2 (OX2R). 50-80,000 OX producing neurons project to 

many areas of the brain including the lateral hypothalamus (LHA), locus coeruleus 

(LC), tuberomammillary nucleus (TMN), paraventricular nucleus (PVN)  and raphe 

nuclei and from these areas regulate feeding and appetite and the sleep wake cycle 

through their receptors.  QRFP is a newly discovered neuropeptide which exerts 

similar orexigenic activity including the control of feeding behaviour. It is the ligand 

for the GPCR GPR103, both of which are widely expressed in the brain and also in 

the retina, testes, thyroid, pituitary and prostate. GPR103 also shares 48 and 47% 

protein sequence homology with OX1R and OX2R respectively. It is in these tissues 

where it can exert other physiological functions including regulation of feeding, 

control of the gonadotropic axis and bone formation. The exact expression and 

signalling characteristics and physiological actions of QRFP/GPR103 are still poorly 

understood.  

It is through the physiological functions of the orexigenic system and the clinical 

symptoms observed in AD which suggests a possible link between the two. For 

example, in AD one of the main reasons for institutionalisation is the severely 

dysregulated sleep pattern that is experienced by sufferers. They experience 

increased nocturnal activity and early awakenings as well as hypersomnia and 

excessive daytime sleepiness; all of which is beyond what someone of the same age 
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experiences. As well as this AD patients suffer from significant weight loss and a 

significant negative correlation has been identified between progression of disease 

and appetite.  All of this points towards an involvement of the orexigenic system in 

AD. AD patients have been found to have a 40% loss of immunoreactive OX 

neurons and have severe reductions in circulating OXA. This led us to believe that 

the OX system is of vital importance in AD and could be targeted to ameliorate 

symptoms.  Studies have implicated OX and OXR in memory processes, appetite 

regulation, and severe disturbances of the sleep-wake cycle all of which are 

phenotypes of AD. Given that they play a key role in energy homeostasis and 

physiological behaviour, we hypothesise that OXs and their receptors are implicated 

in the pathophysiology of AD. Therefore, in this study we will investigate the 

detailed expression and signalling characteristics of OXR and GPR103 in vitro and 

in clinical samples 

In this study we neuronally differentiated two human neuroblastoma cell lines: 

IMR32 and SH-SY5Y. Neuronally acquired phenotype was confirmed through 

increased neurite length, increased expression of key neuronal proteins and increases 

in microtubule-associated protein tau (MAPT), neurogenin1 (NG1) and neuron-

specific enolase (NSE) as well as a reduction in the neuronal marker of immaturity; 

nestin (NES). OXR and GPR103 were confirmed in both cell lines after 

differentiation at mRNA and protein level and were shown to be fully functional 

through phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). We 

also identified possible cross talk of GPR103 with the OXR though addition of 

selective OXR antagonists, which blocked QRFP induced ERK1/2 phosphorylation. 

We show for the first time that addition of Aβ
42

 and zinc sulphate to mimic AD in 

vitro, results in a significant reduction of OX1R and GPR103 in the cell lines SH-

SY5Y and we have performed the first comprehensive study in clinical AD patients 

which demonstrate a loss of OX1R, OX2R and GPR103 at mRNA and protein level 

compared to age matched controls in the hippocampus. We performed microarray 

analysis which identified many genes and pathways regulated by the OXA, OXB and 

QRFP; including corticotropin-releasing hormone receptor (CRHR1), regulated in 

development and DNA damage responses 1 (REDD1), erythropoietin (EPO), Bcl-2-

like protein 1 (BCL2L11), myb proto-oncogene protein (c-myb), vasoactive intestinal 

peptide (VIP), endothelin 1 (EDN1) as well as the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-KB) and hypoxia-inducible factor-1α (HIF-1α) 
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pathways.  These genes are all implicated in neuroprotection, particularly in AD. 

This represents the first comprehensive gene expression data in a neuroblastoma cell 

line for these orexigenic proteins. 

Collectively these data suggest a potential role of the orexigenic system in 

neuroprotection and a functional loss of the receptors in AD patients which could 

confer a loss of neuroprotection through the orexigenic system. Pharmacological 

intervention directed at the orexigenic system may prove to be an attractive avenue 

towards the discovery of novel therapeutics for diseases such as AD and improving 

neuroprotective signalling pathways. 
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Chapter 1 

General introduction 

 

1.1 History of Alzheimer’s disease 

In 1901 Alois Alzheimer identified a patient Auguste Deter as having abnormal 

behavioural symptoms including; short-term memory loss, delusions, disorientation and 

disruptive behaviour (Ramirez-Bermudez 2012). Auguste died in 1906 and Alois 

identified amyloid β (Aβ) plaques and neurofibrillary tangles (NFT) in her brain and 

presented these findings later that year and termed the disease presenile dementia. In 

1910 the disease was reclassified as Alzheimer’s disease (AD) after the clinician who 

first identified and described the disease (Zilka, Novak 2006).  

1.2 Clinical and pathological features 

1.2.1 Epidemiology 

Currently over 800,000 people in the UK suffer from dementia with more than 60% of 

these cases attributable to AD and 44 million people are affected worldwide 

(Alzheimer's Disease International).  Two thirds of those afflicted with AD are female 

and it results in 60,000 deaths in the UK each year (Alzheimer's Disease International). 

Most cases of AD are sporadic and occur after the age of 65, however some occur at a 

much younger age of between 30-65 and can be familial. These patients have the same 

presentation, however familial AD has an earlier onset with symptoms and pathology 

which can be more severe (Bird 1993, Bird 2008).  

1.2.2 Pathology 

Diagnosis of the disease is dependent upon a neuropathological assessment. It is 

generally harder to diagnose a living patient; however upon death autopsy examination 
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allows the gold standard of AD diagnosis. Diagnosis includes observing clinical 

indicators, cerebral cortical atrophy, microscopy of Aβ plaques and NFTs. Death of a 

patient with AD is usually as a result of exhaustion, malnutrition or pneumonia, with 

duration of disease ranging from 1-25 years but averaging 8-10 years (Bird 2008). 

AD is characterized by gradual and increasing loss of cognitive function accompanied 

by behavioural abnormalities. Symptoms include progressive memory loss, personality 

changes, confusion, loss of language skills and motor ability, severe sleep disturbances, 

depression, delusions, hallucinations, aggressive behaviour, weight loss, impaired 

judgment and orientation and death (Blennow, de Leon & Zetterberg 2006). These 

symptoms correlate with the specific areas of brain degeneration and as the disease 

progresses so too does neurodegeneration and consequently symptoms. Post-mortem 

(PM) studies of AD brains show synaptic and neuronal loss, oxidative damage, active 

inflammatory cells, amyloid plaques, NFT accumulation and synaptic degeneration 

(Medeiros, Baglietto-Vargas & Laferla 2010).  

The two components; amyloid plaques and NFTs, are the primary characteristics of the 

disease. Aβ is a physiologically normal protein which under non-diseased circumstances 

works to control synaptic plasticity and performs a variety of other functions (Pearson, 

Peers 2006; Lesne et al. 2005). In a disease situation Aβ processing results in an extra 

two amino acids which culminates in depositions known as amyloid plaques and 

eventually neuronal cell death (Carrillo-Mora, Luna & Colin-Barenque 2014). NFTs are 

comprised mainly of the microtubule associated tau protein which becomes 

hyperphosphorylated. Phosphorylation of this protein results in inadequate binding of 

tau to microtubules, thus causing microtubule destabilisation and having detrimental 

ramifications for cellular transport and neuronal viability (Gendreau, Hall 2013; Sisodia 

1999). 

1.3 Genetics of AD 

1.3.1 Early onset AD (EOAD) 

The genetic background of AD is heterogeneous and complex. AD is generally divided 

into 2 categories, one with an onset below 65 years of age: early onset AD (EOAD) and 
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one with an onset after 65 years: late onset AD (LOAD) (Borovecki et al. 2010). Of the 

5-10% of AD cases which are EOAD, about 60% of these have multiple cases within 

their families and of these 13% are inherited by way of an autosomal dominant trait 

which affects at least 3 generations; however some cases of EOAD without any family 

history have been reported. Inherited instances of AD are known as early onset familial 

AD (EOFAD) (Bagyinszky et al. 2014; Brickell et al. 2006).  Those afflicted have 

Mendelian transmission and it is attributable to 3 possible gene mutations, all involved 

in the production of Aβ. Mutations affect either the amyloid precursor protein (APP) 

gene found on chromosome 21q21.3, the presenilin 1 (PSEN1) gene on chromosome 

14q24.3 or the presenilin 2 (PSEN2) gene on chromosome 1q31-42 (Sisodia 2007). 

Mutations in the APP gene contributes to 10-15% of EOFAD cases, PSEN2 gene 

mutations account for less than 5% of cases and PSEN1 for 70-80% of cases. Mutations 

in these genes result in aberrant production of Aβ leading to dementia (Table 1.1) (Bird 

1993; Cruts, Theuns & Van Broeckhoven 2012).  

Table 1.1: Overview of the candidate AD genes and their relevance to pathogenesis. 

Adapted from: (Sisodia 2007) 

Gene (Protein) 
Chromosomal 

location 

Mode of 

inheritance 

Relevance to AD 

pathogenesis 

APP (Aβ precursor 

protein) 
21q21.3 

Autosomal 

dominant 

Increase in Aβ (Aβ
42

/ Aβ
40

 

ratio); mutations close to γ-

secretase site 

PSEN1 (presenilin 1) 14q24.3 
Autosomal 

dominant 

Increase in Aβ (Aβ
42

/ Aβ
40

ratio); 

essential for γ-secretase activity 

PSEN2 (presenilin 2) 1q31-42 
Autosomal 

dominant 

Increase in Aβ (Aβ42/ 

Aβ
40

ratio); essential for γ-

secretase activity (?) 

APOE (apolipoprotein 

E, E4-allele) 
19q13.32 

Complex 

(risk 

increases) 

Increase in Aβ aggregation; 

decreased Aβ clearance (?); 

involved in γ-secretase activity 

(?) 



 

 

      

 

4 
 

1.3.2 Late onset AD (LOAD) 

The most prominent genetic risk factor for sporadic AD is the apolipoprotein E (ApoE4) 

allele. There are 3 isoforms of this allele: ApoE2, ApoE3 and ApoE4. Circa 20-25% of 

the population have one or two E4 alleles, however approximately 50-65% of those 

with AD have at least one ApoE4 allele (Meyer et al. 1998; Blacker et al. 1997). Those 

who are ApoE4 homozygous can develop AD up to 10 years earlier than those lacking 

the allele. On the other hand the much rarer E2 allele seems to confer a protective effect 

(Strittmatter, Roses 1996). Nevertheless E4 is an associated risk factor and not a cause; 

AD can still develop without this contributing factor being present. 

1.4 APP and Aβ  

1.4.1 APP 

APP is a protein, whose gene in humans is located on chromosome 21 and consists of 

18 exons spanning circa 300 kilo-base pair (kbp) (Bergsdorf et al. 2000). The APP 

family comprises of three homologues in vertebrates:  APP, APP-like protein 1(APLP1) 

and APP-like protein 2 (APLP2) (De Strooper, Annaert 2000). All three of these genes 

encode type 1 membrane proteins which pass once through the membrane, with their N-

terminus exposed to extracellular space, a large extracellular domain and short 

cytoplasmic regions all undergoing similar processing. However only APP contains the 

sequence for the Aβ protein (Sisodia 2007; Tharp, Sarkar 2013). APP is expressed in 

neuronal cells and extra neuronal tissues, depending on the isoform of APP (Nalivaeva, 

Turner 2013). APP is a membrane glycoprotein and alternative splicing of the 

messenger ribonucleic acid (mRNA) is known to give rise to three major isoforms 

encoding proteins of 695, 751 and 770 amino acids (Lamb et al. 1993). The 695 isoform 

is the predominant variant in the neurons and is the isoform which contributes to Aβ 

generation (Gralle, Ferreira 2007). APP
751 

and APP
770 

unlike APP
695

 contain exon 7 

which encodes a serine protease inhibitor or Kunitz protease inhibitor. Only small 

amounts of these isoforms are expressed in the brain and APP
751

 is the predominant 

APP isoform elsewhere. Aβ is encoded by exons 16 and 17 of the APP gene and can 

potentially be generated by any of these isoforms (Figure 1.1) (Ling, Morgan & 
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Kalsheker 2003). In the human brain the ratio of APP mRNA is approximately 

APP
770

/APP
751

/APP
695 

= 1:10:20 (Nalivaeva, Turner 2013).  

 

 

 

Figure 1.1: APP and its three main isoforms. Human APP has 18 exons and 

alternative splicing gives rise to three isoforms. Aβ is comprised of exons 16 and 17 

(Ling, Morgan & Kalsheker 2003). 

 

Full length APP undergoes proteolytic cleavage by either an amyloidogenic or non-

amyloidogenic pathway, depending on the secretase activity. α-secretase cleaves APP 

through the non-amyloidogenic pathway and β-secretase through the amyloidogenic 

pathway (Nalivaeva, Turner 2013). These secretases cleave the protein within the 

luminal domain, causing a large part of the ectodomain to be removed and thus 

generates membrane bound α or β, C terminal fragments (CTF). The main neuronal β-

secretase is a transmembrane aspartyl protease known as BACE1. This cleaves APP 
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within its ectodomain, leading to the N-terminus of Aβ. This creates a 99 amino acid 

CTF and cleavage by the γ-secretase leads to generation of a 50 amino acid cytoplasmic 

polypeptide known as APP intracellular domain (AICD) (Sisodia 2007; Edbauer et al. 

2003). The non-amyloidogenic pathway  accounts for 90% of APP processing and APP 

is cleaved within the Aβ region (at Lys16-Leu17) and not only does α-secretase stop the 

formation of the amyloidogenic protein but the large ectodomain released from APP has 

been shown to have a neuroprotective and memory enhancing function (Furukawa et al., 

1996; Nalivaeva, Turner 2013; Allinson et al. 2003). α-secretases include tumour 

necrosis factor-α-converting enzyme (TACE) and  a disintegrin and metalloproteinase 

domain-containing protein 10 (ADAM10) as well as other metalloproteases (Caescu, 

Jeschke & Turk 2009). Once the N terminal of the protein has been generated through α 

or β secretase activity, the remaining part of APP can now be cleaved. This is brought 

about by an intramembranous cleavage of α or β CTFs by γ-secretase activity, which 

liberates the p3 (3kDa) protein from the α CTF and Aβ (4kDa) is released into the 

extracellular space from the β CTF (Sisodia 2007; Edbauer et al. 2003). 

γ-secretase is composed of presenilin 1 and 2 (PS1 and PS2) nicastrin, anterior pharynx 

defective 1 (APH-1) and presenilin enhancer 2 (PEN2) proteins. PS are the catalytic 

subunits of the secretase, with a pair of conserved aspartic acid residues in the 6
th

 and 

7
th

 transmembrane domains being crucial for functionality. APH-1 and PEN2 stabilise 

the complex and nicastrin recruits APP CTFs to the secretase site (Figure 1.2) 

(Kawasumi et al. 2004; LaFerla 2002; Edbauer et al. 2003). The major catalytic sites of 

γ-secretase activity in Aβ are at amino acid positions 40 and 42, and thus can result in 

the production of two forms of Aβ. More than 90% of Aβ cleavage results in Aβ
40

 and 

Aβ
42

 accounts for less than 10%. Mutations of APP near the γ-secretase site result in a 

favourable cleavage at the 42
nd

 position rather than the 40
th

, increasing the ratio of Aβ
42

. 

This Aβ
42

 protein forms aggregates in the brain and contributes to amyloid plaques 

associated with AD (Sisodia 2007). 
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Figure 1.2: Cleavage of APP to generate Aβ. In non-amyloidogenic splicing, APPs 

extracellular domain is cleaved near to the transmembrane domain by an α-secretase, 

which is released into the extracellular space. The remaining part of the protein (c38) is 

cleaved by γ-secretase to form the peptide p3. In amyloidogenic processing, the APP is 

cleaved by a β-secretase, creating β-APP (C99). Cleavage by γ-secretase creates either a 

40 or 42 amino acid form. The 42 amino acid form is the main constituent of amyloid 

plaques (Kaether, Haass 2004). 

 

1.4.2 Normal physiological role of Aβ 

Although Aβ is implicated in disease it also exhibits normal physiological functions, 

although its exact role is still unclear. In rodent and human neuronal cell cultures 

inhibition of γ- or β-secretase as well as inhibition of Aβ with an antibody lead to 

neuronal toxicity and cell death, however introduction of Aβ restored cell viability 

suggesting a vital role of Aβ in maintaining neuronal viability (Plant et al. 2003). Aβ 

production increases with increased communication between neurons and interestingly 

the areas which have the highest metabolic activity within the brain are the most 

susceptible to Aβ accumulation in AD, increased Aβ then depresses excitatory synapses 

and leads to a reduction in neuronal activity (Cirrito et al. 2008; Ting et al. 2007). This 

neuronal activity dependent modulation of Aβ could function as a negative feedback 

mechanism to prevent over-activity of neurons and be beneficial in a non-diseased state 
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(Kamenetz et al. 2003). Aβ has also been implicated in memory formation and synaptic 

plasticity (Senechal, Larmet & Dev 2006; Doyle et al. 1990; Huber et al. 1993). In rats, 

Aβ antibodies injected before a learning exercise, severely disrupted memory formation 

and treatment with Aβ after learning exercises significantly enhanced retention of 

memories, suggesting an important role of Aβ in memory formation (Garcia-Osta, 

Alberini 2009).  In TgAPP mice, which over expresses APP there is enhanced plasticity 

compared to non-transgenic mice and in rat hippocampal slices APP was shown to 

modulate neuronal plasticity (Ma et al. 2007; Ishida et al. 1997). Hence Aβ may play a 

vital role in memory formation and neuroplasticity.  

1.4.3 Aβ in AD and the amyloid cascade hypothesis 

AD is complex and involves many disease mechanisms and there is no consensus on 

what the originating factor is. There are three main hypotheses as to what initiates AD: 

the amyloid cascade hypothesis, the tau hypothesis and the cholinergic hypothesis 

(Mudher, Lovestone 2002;  Francis et al. 1999). The amyloid cascade hypothesis is 

popular due to mutations in the APP, PS1 and PS2 genes leading to EOFAD (Sisodia 

2007). It is of note that in those with trisomy 21 by the age of 40 will all have developed 

AD neuropathology due to APPs location on chromosome 21 (Geller, Potter 1999). The 

amyloid cascade hypothesis postulates that it is the production of toxic Aβ which 

initiates AD and subsequently leads to NFTs and progression of AD (Mohandas, 

Rajmohan & Raghunath 2009; Mudher, Lovestone 2002). The mechanisms which lead 

to Aβ
42  

being fibrillogenic and resulting in aggregation are not clear. It is thought it may 

be as a result of Aβ
42

 having two extra amino acids: isoleucine and alanine, which make 

the protein more hydrophobic and transition from a monomeric form to β-sheets (Kim, 

Hecht 2006).  

Aβ mediated neuronal toxicity is arbitrated by several mechanisms. It is a very potent 

mediator of oxidative stress damage. Receptor for advanced glycation end products 

(RAGE) is a member of the immunoglobulin superfamily of cell surface markers which 

binds advance glycation end products and is highly expressed in the hippocampus and 

cerebellum (Yan et al. 1996). Aβ can bind to RAGE which results in oxidative stress 

and subsequently apoptosis (Yan et al. 1996; Daffu et al. 2013). Aβ can also cause 
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neuronal damage through generation of free radicals and reactive oxygen species 

(ROS). Production of free radicals and ROS in the brain during AD is increased in 

humans and contributes to neurotoxicity, with antioxidants having been shown to 

protect against this toxicity (Manczak et al. 2010; Zandi et al. 2004; Smith et al. 2010; 

Sonnen et al. 2008). This is of particular importance because the brain is susceptible to 

oxidative damage due to a low glutathione content which is an antioxidant, high 

polyunsaturated fat content of neuronal membranes (which have a propensity to form 

free radicals and causes membrane disintegration) and the substantial requirement of 

oxygen for the brain (Christen 2000; Hazel, Williams 1990). Free radicals cause cell 

death and are capable of modifying deoxyribonucleic acid (DNA) and are thought to 

modify up to 10,000 bases every day (Christen 2000). Mitochondrial dysfunction may 

also play an important role in the pathology of AD. Aβ has been found to accumulate in 

mitochondrial membranes of AD patients, which can interact with mitochondrial matrix 

proteins causing dysfunction, fragmentation and decreased mitochondrial fusion leading 

to cell death as well as the mitochondria being particularly susceptible to ROS 

(Lustbader et al. 2004; Reddy, Beal 2008; Caspersen et al. 2005; Murphy 2009).  

Aβ in the brain is regulated through a balance of production and clearance and chronic 

imbalance of this may propagate Aβ accumulation (Sommer 2002). An increase in Aβ 

production generally occurs in EOFAD where there are genetic mutations of the genes 

controlling Aβ production. However the majority of AD cases do not experience 

elevated Aβ production and AD may be as a result of inefficient clearance across the 

blood brain barrier (BBB) or selective processing of APP to form Aβ
42

 (Sommer 2002; 

Deane, Zlokovic 2007). The low density lipoprotein receptor-related protein-1 (LRP1) 

is the main receptor thought to be responsible for Aβ clearance through the BBB 

(Cirrito et al. 2005; Qosa et al. 2012). Anti-LRP1 antibodies significantly inhibit Aβ 

clearance from the brain and rifampicin (which induces LRP1) drastically increases Aβ 

clearance (Qosa et al. 2012). Another mechanism for clearing Aβ from the brain is the 

production and turnover of cerebrospinal fluid (CSF) to transport it from the brain 

interstitial fluid (ISF) (Silverberg et al. 2003). However it is thought this only accounts 

for a small amount of Aβ clearing and that the majority is cleared through transport of 

the BBB by LRP1 (Shibata et al. 2000). There are several mechanisms thought to 
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contribute to Aβ degradation including neprilysin, insulin-degrading enzyme (IDE), 

matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9) and 

angiotensin-converting enzyme (ACE). Neprilysin is a zinc metallopeptidase located on 

neuronal cells (Nalivaeva et al. 2012). Neprilysin knock out (KO) mice were shown to 

have increased Aβ levels and a neprilysin inhibitor led to increased Aβ in mice and was 

shown to degrade not only monomeric forms of the protein but also the toxic oligomers 

(Iwata et al. 2000; Iwata et al. 2001; Kanemitsu, Tomiyama & Mori 2003). Neprilysin 

levels are also shown to decrease with age in the hippocampus and are markedly 

decreased in AD (Caccamo et al. 2005; Carpentier et al. 2002). 

1.5 γ-Secretase and its components 

γ-secretase is an intramembranous cleaving protease comprised of APH1, PEN2, 

nicastrin and PS1/2. This protease cleaves within the transmembrane domain (TMD) of 

over 100 transmembrane 1 proteins and is important in not only APP processing but 

also cleaves and releases the cytoplasmic domains of other transmembrane proteins 

(Haapasalo, Kovacs 2011; Kopan, Ilagan 2004). In APP, γ-secretase cleaves the 

transmembrane protein which results in the cytoplasmic intracellular domain and a 

secreted peptide (Takami et al. 2009).  

1.5.1 Presenilin 

The presenilin proteins were first discovered through the genetic linkage identified in 

AD. The genes PSEN1 and PSEN2 encode the presenilin proteins: PS1 and PS2 

respectively. They are multi-pass transmembrane proteins that function as a part of the 

γ-secretase complex cleaving APP through the amyloidogenic pathway (Figure 1.3) 

(Parks, Curtis 2007). PS1 and PS2 share 62% homology and contain the active site of 

the γ-secretase, formed by 2 aspartic acid residues at TM6 and TM7 in the 

transmembrane domain. In PS1 they are D257 and D385 and for PS2: D263 and D366 

(Walker et al. 2005). 
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Figure 1.3: The γ-secretase complex. The core consists of 4 components: presenilin, 

nicastrin, APH1 and PEN2. Presenilin supplies the catalytic activity by encoding a nine-

pass transmembrane aspartyl protease. All four components are needed for adequate γ-

secretase activity. Although the contribution of the other components has not yet been 

fully elucidated, it is known that all parts are required for functioning of the complex 

(Parks, Curtis 2007).  

 

Mutations in the presenilin genes as well as APP enhance Aβ production and contribute 

to AD development. The PSEN1 gene which encodes the PS1 protein is located on 

chromosome 14q24.3 and the PSEN2 gene which encodes the PS2 protein is found on 

chromosome 1q42.2. They each have 10 coding exons which have tissue specific 

alternative splicing (Tandon, Fraser 2002). Currently PSEN1 has approximately 197 

known mutations identified in EOFAD which may contribute to pathology and there are 

31 identified mutations in the PSEN2 gene (Cruts, Theuns & Van Broeckhoven 2012; 

Walker et al. 2005; Lessard, Wagner & Koo 2010). Mutations in PSEN1 account for up 

to 80% of EOFAD cases (Cruts, Theuns & Van Broeckhoven 2012). The PSEN1 gene 

encodes the 42-43kDa PS1 protein and is cleaved between 260-319 amino acids, which 

in 58% of identified EOFAD cases is where the mutation occurs (Thinakaran et al. 

1996). In yeast which lacks endogenous γ-secretase; human γ-secretase was 

reconstituted and PS1 microsomes experience much higher activity than PS2 

microsomes and this also occurs in a blastocyst derived cell line (Lai et al. 2003; 

Yagishita, Futai & Ishiura 2008). However not all of the PS1 expressed was active in 



 

 

      

 

12 
 

APP processing and in fact PS1 and PS2 both produce similar levels of Aβ (Yagishita, 

Futai & Ishiura 2008; Yonemura et al. 2011). 

In mouse conditional knock out (cKO) models of PSEN1 and PSEN2 (PS
−/−

), 

hippocampal learning and memory is severely disrupted and leads to a reduction in long 

term potentiation and N-methyl-D-aspartic acid (NMDAR) synaptic responses. These 

responses all occur before neuropathology becomes detectable. This demonstrates the 

importance of PS in synaptic plasticity (Saura et al. 2004).  In AD Transgenic mice 

lacking the PSEN1 gene there was an increase in α and β secretase cleaved CFTs 

generated by APP cleavage, with no change in the actual secretion of APP (De Strooper 

et al. 1998). This advocates that with no apparent increase in APP production and 

absence of PS1 α and β secretase processing of APP continues, however production of 

Aβ is limited due to malfunctioning γ-secretase activity. With mutated PSEN1 there is a 

toxic gain of function and mutated PS leads to increased production of the 

amyloidogenic Aβ
42

; often at the expense of the non-toxic Aβ
40 

(Saura et al. 2004). Of 

the PSEN1 mutations, many occur throughout the sequence and not necessarily in 

functional domains, which explains why there is partial loss of function rather than total 

loss, confirmed by the finding that PS
−/−

 mice are not viable (De Strooper et al. 1998). 

PS
−/−

 mice develop an age dependent synaptic, dendritic and neuronal degeneration 

including astrogliosis and hyperphosphorylation of tau showing that PS is indeed 

critical for neuronal endurance (De Strooper et al. 1998). The PSEN1 KO mice cause a 

lethal phenotype, however PSEN2 KOs cause no obvious aberrant phenotype and 

experience normal Aβ secretion suggesting it is PS1 that is essential for catalytic 

activity (Walker et al. 2005). 

1.5.2 Other components of γ-secretase 

All well as PS, γ-secretase is also comprised of nicastrin, PEN2 and APH1. Nicastrin is 

a protease which is not catalytically active, but is thought to be essential in recruitment 

of proteins into the γ-secretase complex and thus acts as a receptor for γ-secretase 

substrates (Shah et al. 2005). Nicastrin also maintains stability of the other proteins in 

the complex and in an embryonic fibroblast cell line small interfering RNA (siRNA) 

targeted against nicastrin resulted in a significant reduction of APH-1, PEN-2, and PS1, 
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suggesting an important role in nicastrin maintaining γ-secretase complex integrity 

(Zhang et al. 2005). A more novel role for nicastrin has been suggested in its regulation 

of neprilysin; the protein responsible for Aβ degradation. In a nicastrin deficient 

fibroblast cell line neprilysin mRNA expression and activity was significantly reduced 

and when cells were transfected with nicastrin the neprilysin activity was restored, 

suggesting that nicastrin is responsible for neprilysin stability and subsequent Aβ 

clearing (Pardossi-Piquard et al. 2006).  PEN2 is a protein which forms one of the 

regulatory components of the γ-secretase complex. PEN2 down regulation by siRNA 

causes a reduction in PSEN1 expression, impairs nicastrin maturation and consequently 

results in defunct γ-secretase formation (Luo et al. 2003). Its main function appears to 

be in γ-secretase stability and subsequent protein processing (Francis et al. 2002). APH1 

also forms part of the γ-secretase complex and a transmembrane GXXXG motif in 

APH1 is essential for assembly and maturation of the whole γ-secretase complex (Hu, 

Fortini 2003).  

1.6 Tau protein  

Tau is a protein produced by the microtubule associated protein tau gene (MAPT) 

located on chromosome 17q21 (Medeiros, Baglietto-Vargas & Laferla 2010). Tau is 

highly soluble and exists as an unfolded protein. Its primary function is to associate with 

tubulin and encourage its congregation into microtubules in the axons, thus stabilising 

the structure and allowing axonal transport (Conde, Caceres 2009). Microtubules form 

part of the cytoskeleton and are linear filaments, comprised of α and β tubulin 

heterodimers (Desai, Mitchison 1997). One microtubule consists of 10-15 filaments that 

form a 24nm wide hollow cylinder (Conde, Caceres 2009; Tucker et al. 1985). 

Microtubules form bundles in axons and dendrites and are important for their growth 

and maintenance which provides structural integrity to these regions (Conde, Caceres 

2009). Tau co-polymerises with microtubules through cycles of assembly and 

disassembly of microtubule bundles and this association increases microtubule rigidity 

in the axons (Felgner et al. 1997). In the neurons the microtubules provide structure for 

the axonal shaft and allow extension and elongation (Stiess, Bradke 2010). Tau is not 

thought to be essential for axonal stability as KO models in mice showed no major 

defects in brain morphology, however the microtubule density in axons was reduced 
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and it is thought that other microtubule stabilising proteins compensate for absence of 

tau (Harada et al. 1994). Several other mechanisms for tau have been identified, but 

they seem to play a much lesser role, including phosphorylated tau which can stabilise 

β-catenin (Medeiros, Baglietto-Vargas & Laferla 2010).  

The tau gene is over 100kbp and has 16 exons. It has a guanine-cytosine (GC) rich 5’ 

region, followed by a single untranslated exon. Upstream of this exon are many 

sequences which contain binding sites for transcription factors. Expression of tau is 

largely confined to neurons, with 6 isoforms of tau in the human adult brain as a result 

of differential splicing (Figure 1.4) (Avila et al. 2004; Ballatore, Lee & Trojanowski 

2007). 

 

Figure 1.4: The six main isoforms of tau. The different isoforms are created through 

differential splicing of exons 2, 3 and 10. Exon 10 dictates whether tau will have a 

second microtubule binding repeat, allowing an extra microtubule binding domain. In 

the fetal brain only the 352 amino acid version is present. In AD the proline rich region 

becomes hyperphosphorylated (Johnson, Stoothoff 2004). 

 

Tau can be divided into domains. Firstly 2 domains: one known as the projection 

domain containing the amino terminal and the other is known as the microtubule 



 

 

      

 

15 
 

binding domain containing the carboxyl terminal (Hirokawa, Shiomura & Okabe 1988). 

This projection domain can be further sub-divided into 2 regions: the amino terminal 

with many of the acidic residues and the proline rich region (Ballatore, Lee & 

Trojanowski 2007). The microtubule binding domain has 3 (R3) or 4 (R4) sequences of 

31-32 amino acid residue repeats and the 6 isoforms differ in how many repeats they 

have and by the presence or absence of one or two 29 or 58 amino acid repeats in the N-

terminal region (Ballatore, Lee & Trojanowski 2007; Kar et al. 2003; Gong, Iqbal 

2008). The isoforms range from 352 to 441 amino acids  and differ in these repeats as a 

result of differential splicing (Kolarova et al. 2012). These R3/R4 sequences have an 18 

amino acid portion which contains the tubulin binding ability and the other 13/14 amino 

acid sequences allows binding to microtubules to promote assembly (Avila et al. 2004). 

In developing neurons, tau phosphorylation can influence its cellular distribution. When 

the proline rich region of tau is phosphorylated, it can be found mainly at the 

somatodendritic compartment, but when dephosphorylated it can be found in the distal 

part of the axon (Avila et al. 2004). In many instances phosphorylation of tau regulates 

its binding to microtubules or the membrane (Avila et al. 2004). The phosphorylation of 

tau at serine/threonine residues detaches it from microtubules and dephosphorylation of 

tau by phosphatases restores its affinity to bind to microtubules (Ballatore, Lee & 

Trojanowski 2007).  

1.6.1 Tau in AD and the tau hypothesis 

Another hypothesis for the initiation of AD is the tau hypothesis. This theory suggests 

that AD is initiated through hyperphosphorylated tau and subsequent aggregation of 

these proteins into NFTs which then leads to other AD associated pathologies including 

Aβ plaques (Mudher, Lovestone 2002). Support for this theory was strengthened due to 

NFTs occupying neurons and resulting in cell death and also due to NFT accumulation 

correlating with symptom progression, which was not seen with Aβ plaques (Nagy et al. 

1995; Lace et al. 2009). However it has also been shown that circulating Aβ is elevated 

in early AD which does positively correlate with cognitive decline in early disease and 

this elevation occurred before any increases in tau pathology which suggests that tau 

pathology is not the initiating factor for AD (Naslund et al. 2000). The most compelling 

argument against the tau hypothesis is the discovery that mutations in MAPT in patients 
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with frontotemporal dementia (FTD) have tau pathology but no Aβ aggregation, 

whereas mutations in APP result in AD and tau pathology (Heutink 2000; Engler et al. 

2008).  

In normal tau, several serine and threonine residues are phosphorylated and in the 

normal brain tau has 2-3 moles of phosphate per mole of tau; however in the AD brain 

phosphate is 3 fold higher (Kopke et al. 1993). The phosphorylation state of tau is due 

to the regulation of the kinases and phosphatases that can act upon it. The main tau 

kinases and phosphatases include glycogen-synthase kinase-3β (GSK-3β), cyclin-

dependent protein kinase 5 (cdk5), protein kinase A (PKA) and protein phosphatase 2 

(PP2A) (Gong, Iqbal 2008; Kopke et al. 1993). The reasons for abnormal tau 

hyperphosphorylation in AD are not fully understood. PP2A has been shown to be 

reduced in expression and activity in AD resulting in an inability to correctly 

dephosphorylate tau (Liu et al. 2005; Gong et al. 1995; Gong et al. 1993). PP2A 

demonstrates broad substrate specificity and also dephosphorylates β-tubulin and β-

catenin which are also shown to be hyperphosphorylated in AD and down-regulation of 

PP2A may have an important part to play in tau pathology in AD (Gong, Iqbal 2008; 

Vijayan et al. 2001). 

In AD, the main pathology that arrives from tau dysfunction is NFTs. NFTs are 

comprised of hyperphosphorylated tau, which become misfolded and form aggregates 

(Figure 1.5). In AD there are over 40 potential hyperphosphorylation sites which have 

been shown to occur (Hanger et al. 2007). Tau in NFTs form paired helical filaments 

(PHF) and straight filaments (Armstrong 2009; Crowther 1991). PHF and straight 

filaments are comprised of tau, with PHF consisting of two strands twisted around each 

other and straight filaments not observing this contortion and accounting for only 5% of 

NFT composition (Crowther 1991; Friedhoff et al. 2000). All six of the tau isoforms 

have been reported to be present in PHF (Alonso et al. 2001). This loss of tau leads to 

microtubule instability and reduced axonal transport which may lead to neuronal 

damage (Brunden, Trojanowski & Lee 2009). Early tau deposits are pretangles and do 

not in fact exhibit the pleated β sheets that aggregates do and are therefore intermediate. 

These early pretangles may cause axonal defects, synapse loss and neuroinflammation 

(Ballatore, Lee & Trojanowski 2007). The loss of tau and NFT deposition leads to 
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disruption of the cytoskeleton and neurite extension, further leading to disturbance of 

axonal transport and synaptic dysfunction and thus neurodegeneration. Mice 

administered with paclitaxel (a microtubule stabilising protein) had reduced 

degeneration as a result of their tauopathies (Zhang et al. 2005). Due to the large area 

occupied by the tangles there may be physical disruption to surrounding cells which 

also affects axonal transport. Tangles may also appropriate other major proteins and 

aggravate the aggregates (Ballatore, Lee & Trojanowski 2007). 

 

Figure 1.5: Tau hyperphosphorylation. A) Tau normally stabilises microtubules in 

neurons.  B) In AD tau becomes hyperphosphorylated, which reduces binding of tau to 

microtubules and allows tau to be sequestered into NFTs. This reduction in tau leads to 

microtubule instability and reduced axonal transport (Brunden, Trojanowski & Lee 

2009). 

1.7 The cholinergic hypothesis 

The cholinergic hypothesis is the third main theory of the origin of AD. It proposes that 

the degeneration of cholinergic neurons in the basal forebrain and subsequent reduction 
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in cholinergic signalling significantly contributes to degeneration of cognitive function 

observed in AD (Francis et al. 1999). The development of this theory was as a result of 

significant reductions in AD patients of choline acetyltransferase (ChAT); the enzyme 

responsible for the synthesis of the neurotransmitter acetylcholine (ACh) (Perry et al. 

1977; Bowen et al. 1976). The discovery that in AD there was reduced ACh release and 

loss of cholinergic neurons further supported the idea that it is a loss of cholinergic 

activity which contributes to AD (Rylett, Ball & Colhoun 1983; Whitehouse et al. 

1982). However this theory is perhaps the least popular of the three. Recent studies have 

found that in clinical trials using acetylcholinesterase inhibitors (AChEI), which prevent 

the breakdown of ACh, there is limited efficacy in treating AD with any observed 

effects being transient and patients still experienced cognitive decline over time as well 

as studies in rats showing that reductions in ACh do not contribute to memory deficits 

(Doody et al. 2001; Mohs et al. 2001; Winblad et al. 2001; Parent, Baxter 2004). 

However cholinergic loss is an early occurrence in AD and may not be causative but 

may affect the brains ability to compensate for an accrual of risk factors associated with 

increasing age (Geula et al. 2008; Craig, Hong & McDonald 2011).  

1.8 GPCRs 

GPCRs also known as seven-transmembrane domain receptors are the largest 

superfamily of membrane receptors. GPCRs include receptors for neuropeptides, 

chemokines and calcium ions as well as a plethora of other targets. GPCRs have been 

extensively studied and as such constitute around 50% of therapeutic drug targets even 

though only 10% of GPCRs are used as targets (Pierce, Premont & Lefkowitz 2002; 

Lundstrom 2009; Kroeze, Sheffler & Roth 2003). 

1.8.1 GPCR structure 

GPCRs exhibit seven hydrophobic transmembrane (TM) helices which are linked 

though intra and extracellular loops and are serpentine like. They are ordered as a 

cylinder with TM1 neighbouring TM7 and the complex is stabilised by hydrogen bonds. 

They possess an extracellular amino terminus and an intracellular carboxyl terminus. 

The most variable part of the GPCR is the carboxyl terminus, the intracellular loop 

spanning TM5 and TM6 and the amino terminus, all of which gives each GPCR 
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specificity (Kobilka 2007; Fredriksson et al. 2003). There are over 800 GPCRs classed 

into five groups: rhodopsin, adhesion, frizzled/taste, glutamate and secretin families 

(Fredriksson et al. 2003).  

1.8.2 G protein cycle 

GPCRs function through activation of a guanine nucleotide-binding protein (G-protein). 

G-proteins are heterotrimeric and comprised of α, β, and γ subunits. When the receptor 

is not active the Gα protein is bound to guanosine diphosphate (GDP) and upon receptor 

activation this GDP is substituted for a guanosine triphosphate (GTP) instigating 

dissociation of the G-protein from the GPCR. The Gα now has a low affinity for the 

Gβγ complex due to a conformational change and Gβγ is released and dissociates from 

the Gα subunit and downstream effects can now commence (Smrcka 2008; Wess 1997). 

Gα also exhibits guanosine triphosphatase (GTPase) activity and this acts to hydrolyse 

GTP to GDP to allow increased affinity of Gα to Gβγ and allow re-association of the 

whole G-protein complex (Figure 1.6) (Smrcka 2008; Wess 1997). 

1.8.3 Types of G-protein 

G-proteins are categorised into four main families according to the Gα protein: Gαs 

(Gαs, Gαolf), Gαi (Gαt, Gαi1, Gαi2, Gαi3, Gαo1, Gαo2, Gαζ), Gαq/11 (Gαq, Gα11, Gα14, Gα15, 

Gα16), and Gα12/13, (Gα12, Gα13). Each G-protein signals through a distinct pathway 

(Moreira 2014). 

1.8.3.1 Gαs 

Gαs stimulates adenylyl cyclase (AC) which leads to the catalysis of adenosine 

triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). cAMP can then 

phosphorylate and subsequently activate the cAMP dependent protein: protein kinase A 

(PKA) and other downstream effectors which then initiates a number of downstream 

effects (Pierce, Premont & Lefkowitz 2002). 

1.8.3.2 Gαq 

Gαq subunits are capable of activating phospholipase C (PLC). Once active PLC can 

cleave phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and 
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inositol 1,4,5-triphosphate (IP3) (Jalili, Takeishi & Walsh 1999). As well as being a 

precursor for IP3 and DAG, PIP2 also regulates ion channels, actin cytoskeleton 

remodelling and vesicle trafficking (Thapa, Anderson 2012). DAG can activate protein 

kinase C (PKC) which has many effects including contributing to cellular proliferation 

and differentiation and protein translocation to membranes (van Blitterswijk, Houssa 

2000). IP3 causes increases in intracellular calcium through binding to its receptors in 

the endoplasmic reticulum (ER) and allows intracellular calcium stores to be released 

which then facilitates activation of calcium channels in the plasma membrane leading to 

calcium influx (Neves, Ram & Iyengar 2002). 

1.8.3.3 Gαi 

Gαi functions to inhibit AC and thus cAMP (Taussig, Iniguez-Lluhi & Gilman 1993).  It 

can however also activate PLC through cross talk with Gαq which can lead to cellular 

regulation through the secondary messengers IP3 and DAG (Jalili, Takeishi & Walsh 

1999; Chan et al. 2000). Gαi is abundantly expressed in the brain and plays a 

particularly important role in activation of G protein-coupled inwardly-rectifying 

potassium channels (GIRK). These GIRKs allow potassium efflux causing membrane 

hyperpolarisation which results in neuronal excitation (Wettschureck, Offermanns 

2005). 

1.8.3.4 Gα12/13 

Gα12/13 only contains two members: G12 and G13. These proteins can activate guanine 

nucleotide exchange factors (GEF) which subsequently activate GTPases (Aittaleb, 

Boguth & Tesmer 2010). GEFs activate GTPases by facilitating the transfer of GDP to 

GTP. Receptors for ACh, serotonin, somatostatin and dopamine are known to couple to 

these G-proteins (Siehler 2009).  
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Figure 1.6: GPCR structure and cycle. Activation of GPCRs through agonists causes 

conformational change and allows the exchange of GDP for GTP in the Gα subunit. 

GTP binding causes dissociation of the G protein complex and GTP-bound Gα then 

interacts with downstream signalling effectors to activate secondary messengers 

deepening on the type of Gα subunit (George, Hannan & Thomas 2013).  

 

1.9 Orexin 

1.9.1. Prepro-orexin 

Orexin (OX) or hypocretin are neuropeptides which function largely to regulate the 

sleep-wake cycle and feeding behaviour (Johren et al. 2001). OXs are produced from 

the cleavage of a 130 amino acid precursor protein also known as prepro-orexin (PPO) 

to form two distinct proteins from one precursor molecule. Initially the 33 amino acid 

N-terminal is cleaved, forming pro-orexin; this is then cleaved by prohormone 
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convertases giving rise to one molecule each of orexin-A (OXA) and orexin-B (OXB) 

(Figure 1.7) (Spinazzi et al. 2006). The first 33 amino acids of the sequence have the 

characteristics of a secretory signal; a hydrophobic core with residues attached to small 

polar side chains (von Heijne 1986; Sakurai et al. 1999). Ala33-Gln34 form the residues 

for cleavage to produce OXA. The Gln33 is possibly enzymatically cyclised into the N-

terminal pyroglutamyl residue by transamidation (Sakurai et al. 1999). The last residue 

of OXA is followed by Gly67, which is believed to act as a donor for C-terminal 

amidation (von Heijne 1986). Subsequent to this donor site is a pair of basic residues 

Lys68-Arg69 which form a recognition site for prohormone convertases which cleave 

here to generate OXB and allow separation of the two proteins and Met96 is followed 

by Gly-Arg-Arg, constituting the C-terminal amidation of OXB (Sakurai et al. 1998). 

PPO shares 83% homology between rats and humans. It is located at chromosome 

17q21 and contains two exons and one intron (Sakurai et al. 1998).  

 

Figure 1.7: Prepro-orexin cleavage. First the signal peptide is cleaved, followed by 

cleavage by prohormone convertases at sites with basic amino acid residues to produce 

OXA (33 amino acids) and OXB (28 amino acids) (Spinazzi et al. 2006). 

 

It is thought that due to its position at 17q21, the PPO gene may be involved in a group 

of diseases known as chromosome 17 linked dementia. This includes disinhibition-

dementia-parkinsonism-amyotrophy complex which was mapped to position 17q21-22 
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(Wilhelmsen et al. 1994). People with this disease normally exhibit symptoms of 

behavioural disturbances, frontal lobe dementia and parkinsonism. Interestingly those 

afflicted by the disease exhibit increased feeding and crave and horde sweets; symptoms 

suggestive of OX involvement (Sakurai et al. 1998; Wilhelmsen et al. 1994). Because 

OXs mechanism of action is to regulate feeding behaviour and the sleep wake cycle; the 

expression of PPO is largely limited to the lateral hypothalamus (LHA), but has also 

been found to be expressed in the epididymis, penis and adrenal gland (Sakurai et al. 

1998; Karteris, Chen & Randeva 2004; Peyron et al. 1998). However 50-80,000 orexin 

producing neurons project throughout the brain but are concentrated in areas such as the 

LHA, locus coeruleus (LC), tuberomammillary nucleus (TMN) and raphe nuclei and 

from these areas result in regulation of feeding, appetite and the sleep wake cycle 

(Sakurai 2007). 

1.9.2 OXA and OXB 

OXs were first discovered in 1998, simultaneously by Sakurai and deLecea (Sakurai et 

al. 1998; de Lecea et al. 1998). They were initially identified as neuropeptides which 

were similar to secretin and were isolated from a rat lateral hypothalamus using PCR 

subtraction cloning and identified as OXs or hypocretins (Sakurai et al. 1998; de Lecea 

et al. 1998; Ebrahim et al. 2002; Gautvik et al. 1996). 

OXs as previously described are cleaved from PPO to yield the 33 amino acid OXA and 

28 amino acid OXB. OXA is circa 3.5kDa and has a pyroglutamyl residue at the N-

terminus and a C-terminal amidation (Spinazzi et al. 2006). The pyroglutamyl residue 

functions as a protective mechanism to prevent cleavage by aminopeptidases.  There are 

two intrachain disulfide bridges between adjacent cysteines at positions 6 and 12 and 

also 7 and 14 (Lee et al. 1999). Its sequence is well persevered amongst mammals, with 

OXA being identical in humans, pigs, rats and mice (Spinazzi et al. 2006). OXB is 

roughly 2.9kDa with a C-terminal amidation and is highly preserved in mammals with 

only 2 amino acid substitutions at positions 2 and 18, causing it to differ in humans 

compared to pigs, rats and mice. OXB is linear peptide that possibly forms two alpha 

helices (Lee et al. 1999). The C-terminals of OXA and OXB are very similar (Figure 

1.8) (Spinazzi et al. 2006). The two proteins show 46% primary structure homology, 
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which is not surprising considering one prepro-protein is cleaved to produce two 

molecules as opposed to differential splicing (Zawilska, Urbanska & Sokolowska 

2013). The OXs are packaged into dense core vesicles and are thought to be 

synaptically released and function as neurotransmitters (de Lecea et al. 1998). OXA 

induces longer lasting effects than OXB and this is most likely due to the post 

translational modifications experienced by OXA including N-terminal pyroglutamyl 

cyclisation (Sakurai et al. 1998; Scammell, Winrow 2011). OXA has a markedly higher 

liposolubility than OXB which allows it to penetrate the BBB with greater ease by 

simple diffusion, giving it potential as a therapeutic target (Kastin, Akerstrom 1999). 

OXA was also shown to be much more stable in the blood than OXB, perhaps 

explaining the longer lasting effects of OXA as opposed to OXB (Kastin, Akerstrom 

1999).  

 

 

 

Figure 1.8: Structure of OXA and OXB. The amino acid sequence of human OXs. 

Arrows indicate the amino acid substitutions at positions 2 and 18 in OXB that differ 

between humans and rats, pigs and mice. Identical amino acids between the two 

proteins are shaded (Spinazzi et al. 2006).  
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OXs were initially found to be involved in appetite, due to the discovery of their 

production in the LHA which is known to be a regulatory area of feeding, supported by 

the fact that lesions occurring in this area dramatically reduce food intake (Bernardis, 

Bellinger 1996). Further study showed that neurons positive for OX were projected 

throughout the brain suggesting a more widespread and complex role (Figure 1.9) 

(Hungs, Mignot 2001). 

 

 

Figure 1.9: Orexinergic neuron projections in the brain. This image demonstrates 

the predicted orexinergic projections throughout the human brain. Circles represent 

dense receptor expression and projections. OX neurons starting at the LHA and 

posterior hypothalamus regulate the sleep wake cycle and maintain arousal by sending 

excitatory signals projecting to the central nervous system (CNS). There are particularly 

dense projections to the monoaminergic and cholinergic nuclei in the brain stem and 

hypothalamic regions, LC, TMN, raphe nuclei and laterodorsal/pedunculopontine 

tegmental nuclei. The ventral tegmental area (VTA) is linked to the reward system 

(Sakurai 2007). 
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1.9.3 Orexin receptors 

OXA and OXB bind to two different receptors: orexin receptor 1 (OX1R) and orexin 

receptor 2 (OX2R); both of which are GPCRs. OX1R is 425 amino acids and OX2R is 

444 amino acids, sharing 64% sequence identity. Both receptors are strongly conserved 

amongst mammals and have 94% homology between human and rats (Sakurai et al. 

1998). OXs have different affinities for the receptors; OX1R binds OXA with very high 

affinity (IC50 20nM in a competitive binding assay) but it exhibits a much lower 

affinity for OXB of 420nM (Sakurai et al. 1998). OX2R shows less discrimination 

between the OXs and they both have similarly high affinities of IC50 38nM (OXA) and 

36nM (OXB) (Sakurai et al. 1998; Scammell, Winrow 2011).   

1.9.3.1 Expression and distribution of orexin receptors 

The most intense areas of OX producing neurons are around the paraventricular nucleus 

(PVN), arcuate nucleus and TMN. OX2R is predominantly expressed in the PVN, 

cerebral cortex and nucleus accumbens. OX1R is highly expressed in the hippocampal 

formation, dorsal raphe and LC (Figure 1.10) (Trivedi et al. 1998). They are co-

expressed in the ventromedial hypothalamic nucleus (VMH), posterior hypothalamus 

(PH), dorsomedial nucleus, hippocampal formation, thalamic nuclei and subthalamic 

nuclei (Lu et al. 2000). These areas of dense orexinergic neurons fire rapidly during 

wakefulness, at a much slower rate during non-rapid eye movement (REM) and not at 

all in REM (Lee, Hassani & Jones 2005). It is believed that OX exerts its effects on 

wakefulness by acting upon histaminergic neurons through OX2R. When injected with 

OX rats experience prolonged periods of wakefulness and this is less pronounced when 

the histamine H1 receptor antagonist pyrilamine is also administered (Sakurai 2007; 

Yamanaka et al. 2002).  Other areas of OXR expression include the testes and adrenal 

glands, however only small amounts of OXR expression are found here (Karteris, Chen 

& Randeva 2004; Scammell, Winrow 2011; Blanco et al. 2002). Due to the low level 

expression of these receptors outside of the brain any antagonists are not likely to cause 

any obvious effects outside of the brain.  
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1.9.3.2 Orexin receptor signalling 

OXs cause neurons in the brain to experience changes in membrane potential which 

causes slow and long-lasting depolarisation resulting in either firing of the neurons or an 

increased firing rate, making them excitatory. This membrane depolarisation is as a 

result of closure of potassium channels which are normally active in a resting state, 

activation of a sodium-calcium exchanger and the activation of cation channels (Ivanov, 

Aston-Jones 2000; Brown et al. 2001; Eriksson et al. 2001; Burdakov, Liss & Ashcroft 

2003; Hwang, Chen & Dun 2001; Yang, Ferguson 2002). OX1R and OX2R both result 

in the release of calcium from intracellular stores and chelation of calcium prevents OX 

depolarisations (Burdakov, Liss & Ashcroft 2003). This depolarisation can be mediated 

through activation of voltage-gated calcium channels (VGCC) (Kohlmeier et al. 2008; 

Van Den Pol et al. 2001).  

As OXRs are GPCRs they use G-proteins to mediate signal transduction. Both receptors 

have been shown to be promiscuous in their signalling characteristics and have been 

shown to couple to three of the four available G-proteins; Gq, Gi/o and Gs. Coupling 

can vary based on cell type for example in the rat brain stem OXRs couple to Gi/o and 

in the rat hypothalamus to Gs and Gq (Kukkonen 2013; Kukkonen, Leonard 2014; 

Bernard, Lydic & Baghdoyan 2002; Bernard, Lydic & Baghdoyan 2003). Due to the 

difficulty for direct measurement of G-protein activation and selective G protein 

inhibition, conclusive data on OXR G-protein coupling is still unclear (Kukkonen, 

Leonard 2004; Kukkonen 2014). GTP-azidoaniline binds to G proteins when a receptor 

is activated which can then be identified using antibodies. Using this technique OX2R 

has been shown to differentially couple to Gq, Gi/o and Gs proteins in the adrenal gland 

(Karteris et al. 2001; Karteris et al. 2005).  

AC is a common downstream effector of GPCR signalling and OXRs have been shown 

to regulate this effector molecule (Kukkonen, Leonard 2014; Karteris et al. 2005; 

Randeva et al. 2001; Tang et al. 2008).  OX1R can couple to Gs which stimulates AC 

and cAMP production or Gq to activate PKC (Holmqvist et al. 2005; Kawabe et al. 

1994). However OXRs have also been shown to inhibit AC potentially due to coupling 

to Gi as this inhibition is ablated by pertussis toxin and some other reports suggest that 
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there are no changes in cAMP after OX addition (Holmqvist et al. 2005; Magga et al. 

2006). It is likely that the differences in G-protein coupling are dependent on cell type 

as these different G-protein coupling mechanisms were observed in different cell lines: 

Chinese hamster ovary (CHO) and human embryonic kidney (HEK) respectively.  

OXRs initiate increases in intracellular calcium in many cell types including CHO, 

HEK and neuro-2a (Sakurai et al. 1998; Magga et al. 2006; Holmqvist, Akerman & 

Kukkonen 2002). This activation occurs through activation of PLC potentially through 

Gq coupling.  PLC is a family of cytosolic phosphoinositide specific enzymes whose 

main target is PIP2. Cleavage by PLC generates DAG and IP3, IP3 then binds ER IP3 

receptors and facilitates the release of calcium into the cytosol (Kukkonen, Leonard 

2014; Konieczny, Keebler & Taylor 2012). This depletion of calcium causes the 

membrane to allow a calcium influx to replace the diminished stores and this can 

regulate calcium responsive ion channels, enzymes and proteins. This depolarisation 

also activates VGCCs. OX1R and OX2R strongly activate PLC in several different cell 

types including CHO, HEK and the neuronal neuro-2a cell line (Holmqvist, Akerman & 

Kukkonen 2002; Lund et al. 2000; Putula, Kukkonen 2012).  However it is not known 

whether the downstream effects of this elevated PLC is to increase calcium or to elevate 

DAG for potential PKC elevation (Kukkonen, Leonard 2014). 

1.9.4 Physiological effects of orexins 

Due to the wide reaching nature of OXs not only in the brain but also in peripheral 

tissues, it has a wide range of physiological functions (Karteris, Chen & Randeva 2004; 

Sakurai 2007; Kukkonen, Leonard 2014; Karteris et al. 2005). 

1.9.4.1 Energy homeostasis 

When Sakurai first identified OX its involvement in feeding was noted; particularly that 

OXA administration increased food intake in rats (Sakurai et al. 1998). This was 

confirmed by the administration of an OX1R antagonist which blocked OXA simulated 

increases in feeding in genetically obese mice (Haynes et al. 2002). This may be due to 

the dense projections of OX neurons in the arcuate nucleus, which when activated 

release neuropeptide Y (NPY) and the inhibitor of food intake: pro-opiomelanocortin 
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(POMC) is inhibited (Muroya et al. 2004; Yamanaka et al. 2003). This ability of OX to 

activate NPY and inhibit POMC may cause feeding stimulation. OX is also linked to 

glucose regulation. When blood glucose is decreased OX expression increases, 

potentially to stimulate appetite and when blood glucose is high OX production is 

decreased to reduce feeding behaviour (Tsuneki, Wada & Sasaoka 2012; Sakurai 2006). 

1.9.4.2 Sleep-wake cycle and arousal 

Many OX neurons are found in areas of the brain which regulate the sleep-wake cycle, 

indicating an important role of OX in its regulation.  Narcolepsy is a fairly common 

disorder affecting 1 in 2000 adults with an onset between 15-30 years of age (Ebrahim 

et al. 2003). It is a disorder of sleep which manifests itself with four main symptoms; 

excessive daytime sleepiness, uncontrollable bouts of sleep during the day, cataplexy 

and sleep paralysis during wakefulness accompanied by hypnagogic hallucinations 

which would otherwise normally occur at the onset of sleep (Scammell, Winrow 2011; 

Ebrahim et al. 2003). All of these attributing symptoms make it difficult for an 

individual to stay awake during the day and the extent of this disability is dependent 

upon the severity of the condition.  

The link between sleep and OX was initially discovered after Chemelli produced PPO 

KO mice to observe its effect on appetite, as it was believed this was its primary 

function. To which it was later discovered that the mice were experiencing severe 

sleepiness and cataplexy (Chemelli et al. 1999). This lead to OX2R KO mice, which 

experienced narcolepsy like symptoms and although OX1R KO mice did experience 

disrupted sleep, the effects were less severe than in OX2R KO mice (Chemelli et al. 

1999; De la Herran-Arita et al. 2011; Willie et al. 2003).  Estabrooke discovered in rats 

that OX neurons had more Fos reactivity during periods of wakefulness which became 

reduced during periods of non-REM or REM sleep. This was supported by staining of 

brain sections for OX, which showed intense staining of sections from rats who 

experienced induced wakefulness compared to those who had induced sleep 

(Estabrooke et al. 2001). OX infusion in mice increased wakefulness and a dual OXR 

antagonist promoted sleep, thus supporting this mechanism (Kang et al. 2009). Mignot 

showed that in those with narcolepsy there were vastly reduced levels of circulating 

CSF OX, possibly as a result of autoimmune destruction of OX producing neurons 
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which were also vastly reduced, indeed one study showed that 7 out of 9 individuals 

with narcolepsy had undetectable levels of OX (Hungs, Mignot 2001; Nishino et al. 

2000; Mahlios, De la Herran-Arita & Mignot 2013). However, narcolepsy which was 

first identified in dogs is as a result of mutation of OX2R not autoimmune destruction of 

OX producing neurons (Lin et al. 1999). 

1.9.4.3 Reward system 

OX neurons project to the VTA and nucleus accumbens, both areas which have been 

implicated in the reward system and drug addiction (Sharf, Sarhan & Dileone 2010). 

Fos activation of OX neurons in mice was higher in those given food and drug rewards as 

well as activation of hypothalamic OX neurons increasing drug-seeking behaviour in these 

mice; this effect was blocked with an OXA antagonist (Harris, Wimmer & Aston-Jones 

2005). An OX1R antagonist administered to rats with an alcohol-preference ablated an 

olfactory cue-induced reinstatement of alcohol seeking behaviour and they also exhibited 

increased expression of PPO mRNA (Lawrence et al. 2006; Anderson et al. 2014). In 

addition an OX1R antagonist reduced the relapse of alcohol-preferring rats (Dhaher et al. 

2010). This suggests that OX can increase reward seeking behaviour.  

1.9.4.4 Other physiological function of OXs 

Brown adipose tissue (BAT) plays a vital role in regulating body temperature as it is found 

in hibernating mammals and infant humans and functions to generate body heat (Gilsanz, 

Hu & Kajimura 2013; Cannon, Nedergaard 2004). OXR KO mice experience obesity even 

though they show less feeding behaviour and it is thought this occurs as a result of impaired 

thermogenesis in BAT due to inability of brown preadipocytes to differentiate in the 

absence of OX. Inactivation of BAT as a consequence of OX absence does not allow energy 

dissipation in response to a high calorie diet and reduces energy expenditure resulting in 

obesity (Sellayah, Bharaj & Sikder 2011). OX administration in rats has also been shown 

to increase blood pressure and heart rate (Shirasaka et al. 1999; Smith, Connolly & 

Ferguson 2002).   

1.9.5 Orexin and AD 

Several studies have demonstrated abhorrent circadian rhythms as well as disrupted 

sleep-wake cycles in patients with AD (van Someren et al. 1996). In fact behavioural 
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and sleep disturbance are one of the most common reasons for institutionalisation of AD 

patients (Bianchetti et al. 1995; Pollak, Perlick 1991; Harper et al. 2001). This 

dysregulated sleep-wake cycle is also marked by increased nocturnal activity and early 

awakenings as well as hypersomnia or excessive daytime sleepiness and exceeds what 

is seen in elderly patient controls regarding frequency and duration (Harper et al. 2001). 

Patients who experienced these symptoms to a greater extent also had increased severity 

of AD, including greater memory problems and impaired cognition (McCurry et al. 

1999; Moe et al. 1995). These symptoms appear to be specific to AD and are not 

observed in other dementias (Harper et al. 2001). A strong link between AD and OX 

was first shown in 2007 when a group identified that in those with AD there was lower 

circulating OXA (Friedman et al. 2007). In 2009 Kang examined the effects of OX on 

Aβ accumulation in mice brains under different circumstances.  They used Tg2576 

human APP transgenic mice and wild-type mice. Using these models they found that 

ISF Aβ levels had diurnal variation, with higher levels during periods of dark compared 

to light. Upon further investigation it was revealed that Aβ levels corresponded to the 

time spent awake rather than the time of day (Kang et al. 2009). Mice who were sleep 

deprived through an OXA infusion exhibited increased Aβ levels which were higher 

than during normal sleep patterns (Kang et al. 2009). After this sleep deprivation mice 

slept for a longer period and had an instant reduction in ISF Aβ. Following this, a dual 

OXR antagonist was administered and this abolished the diurnal variation of Aβ and 

reduced time spent awake by circa 10% and removal of the antagonist restored it (Kang 

et al. 2009). In mice that underwent chronic sleep deprivation, Aβ plaque formation 

compared to age matched controls was considerably more pronounced and treatment 

with the antagonist vastly reduced plaque formation compared to age matched controls 

(Kang et al. 2009). This study however did not examine receptor levels in the AD mice 

and as this is an artificial system with regards to chronic OX infusion it may not be an 

appropriate model. The mouse models used only exhibit the Aβ pathology of AD, so 

results do not take into account when all the dynamics of AD are present. This study 

was performed over a very short time frame so any effects could have been transient 

and were not long lasting; this makes it difficult to draw any reasonable conclusions as 

to whether the OX system is actually neurodegenerative. One recent study did not find 

any correlation between OX levels or tau and Aβ
42

 in the CSF suggesting that OXs do 
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not directly regulate burden of disease (Schmidt et al. 2013). Other evidence also 

suggests a link between OX and AD. In one study which monitored behavioural 

symptoms in AD there was a significant negative correlation with appetite and 

dementia; with disease progression, appetite decreased suggesting a reduction in OX 

signalling (Fernandez et al. 2010). AD patients also exhibit a 40% reduction in 

orexigenic neurons and severe reductions in circulating OX levels (Fronczek et al. 

2011). However a reduction in the OX signalling system is also observed with 

increasing age. In rats with increased age there is a reduction in responsiveness to OXA 

and they experience a reduction of innervation to cholinergic neurons as well as 

reductions in PPO expression and circulating OXs (Stanley, Fadel 2012; Kessler et al. 

2011). Aged rats also display fewer OX immunoreactive neurons than younger controls 

(Sawai et al. 2010). 

There is increasing evidence of an important role of OX in learning and memory 

processes. OXB infusion in rats improved accuracy and attention processes and OX1R 

antagonists impaired performance in an attention task, combined this suggests an 

important role of OXs in cognition (Lambe et al. 2005; Boschen, Fadel & Burk 2009). 

OXA administration in sleep deprived rhesus monkeys improved their performance in 

tasks but did not have any effect on non-sleep deprived monkeys suggesting OX is 

capable of improving symptoms as opposed to improvement of basal performance 

(Deadwyler et al. 2007). OX1R antagonist infusion of the cornu ammonis 1 (CA1) of 

the hippocampus impaired spatial learning and memory (Akbari et al. 2008; Akbari, 

Naghdi & Motamedi 2006).  

This data suggests that the OX system can improve cognitive function in a sub-optimal 

system especially with regards to memory and learning, so the implication that 

augmentation of the OX system worsens the burden of AD in mice is contradictory. The 

reduction of OX in AD in humans may partially contribute to cognitive and behavioural 

symptoms of AD. 

1.10 GPR103 

RFamide peptides are a family of peptides that contain an Arg-Phe-NH2 motif at their 

C-terminal. Five groups of RFamide have been identified: neuropeptide FF (NPFF), 
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prolactin-releasing peptide (PrRP), gonadotropin-inhibitory hormone (GnIH), kisspeptin 

and the 26RFa group or GPR103 receptor with its ligand QRFP (Ukena et al. 2011). 

The 26RFa group was originally identified in a frog brain (Chartrel et al. 2003). The 

peptide in its longest form is a 43 amino acid termed QRFP, but due to several 

processing sites of the peptide a 26 (26RFa), 6 (26RFa20-26)  and 9 (9RFa) amino acid 

form can also be generated (Figure 1.10) (Bruzzone et al. 2006; Takayasu et al. 2006; 

Chartrel et al. 2011).  The 9RFa appears to be a very poor agonist of the receptor and 

may not be biologically important (Jiang et al. 2003; do Rego et al. 2006).  Fragments 

of the N-terminal and central region of the peptide result in no physiological changes in 

mice, suggesting it is the C-terminal domain which is of physiological importance (do 

Rego et al. 2006). 26RFa is strongly conserved between species with a similarity that 

varies between 77-85% between mammals and amphibians (Chartrel et al. 2011). The 

previously identified orphan GPCR: GPR103 was identified as being the receptor for 

this ligand (Jiang et al. 2003; Fukusumi et al. 2003). GPR103 is a GPCR that shares 

38% TM homology with the receptor NPFF2, initially suggesting that the ligand for 

GPR103 may be an RFamide peptide making 26RFa and QRFP good candidates as 

GPR103 ligands (Chartrel et al. 2011; Lee et al. 2001). GPR103 also shares 48, and 

47% protein sequence homology with OX1R and OX2R respectively (Jiang et al. 2003). 

It was later revealed that 26RFa binds to GPR103 with high affinity and that upon 

26RFa stimulation flag-tagged GPR103 in CHO was internalised (Jiang et al. 2003; 

Chartrel et al. 2011; Fukusumi et al. 2003). 26RFa and QRFP were both found to 

increase intracellular calcium concentration as a result of cAMP reduction in CHO and 

HEK cells suggesting a  coupling to the Gi/o G-proteins and  QRFP has been found to 

have a higher affinity for GPR103 than 26RFa (Chartrel et al. 2011; Fukusumi et al. 

2003). 

In humans the QRFP gene has been found to be expressed in the VMH and PVN 

(Bruzzone et al. 2006). Outside of the human brain QRFP is expressed in the highest 

quantities in the retina, bones, heart, kidney, testes, thyroid, pituitary and prostate (Jiang 

et al. 2003; Baribault et al. 2006).  
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Figure 1.10: 26RFa precursor. R and K represent arginine and lysine cleavage sites 

which produce 9RFa, 43RFa, 26RFa or 26RFa20-26 fragments from the precursor 

protein. [Adapted from (Chartrel et al. 2011)] 

1.10.1 Physiological function of QRFP 

1.10.1.1 Feeding behaviour 

Due to intense expression of QRFP expressing neurons in the hypothalamus including 

the VMH, hypothalamic area and arcuate nucleus, it was suggested that it was involved 

in feeding behaviour. QRFP administration in mice resulted in a dose dependent 

increase in feeding and QRFP was increased in the hypothalamus of starved mice with 

the 43 amino acid version being more potent than 26RFa (Chartrel et al. 2003; Takayasu 

et al. 2006; do Rego et al. 2006; Moriya et al. 2006). In mice which received injections 

of QRFP for 13 days there was increased body weight, fat mass, plasma glucose, insulin 

and cholesterol and in genetically obese mice QRFP mRNA is increased (Takayasu et 

al. 2006; Moriya et al. 2006). QRFP administration leads to increased NPY and 

decreased POMC in the arcuate nucleus and leads to an increase in food intake in mice; 

which is very similar to the effects exerted by OX (Muroya et al. 2004; Lectez et al. 

2009). GPR103 is also expressed by the NPY neurons of the arcuate nucleus but not of 

the POMC neurons. This suggests that QRFP indirectly decreases POMC though 

stimulation of NPY neurons, which was confirmed by NPY antagonists abolishing the 

inhibitory effect of QRFP on the POMC neurons and thus resulting in decreased feeding 

(Lectez et al. 2009).  

1.10.1.2 Control of the gonadotropic axis 

The administration of QRFP results in an increase in the gonadotropins; luteinising 

hormone (LH) and follicle stimulating hormone (FSH) (Navarro et al. 2006; Patel et al. 
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2008). QRFP also increases gonadotropin releasing hormone (GnRH) and it is thought 

that QRFP regulates the hypothalamic-pituitary-gonadal axis by activating GnRH 

secreting neurons (Chartrel et al. 2011; Patel et al. 2008). As QRFP is expressed in the 

testes it is possible that it also directly regulates the hypothalamic-pituitary-gonadal axis 

at the gonadal level (Jiang et al. 2003). 

1.10.1.3 Bone formation 

GPR103 deficient mice are viable but suffer from osteopenia (Baribault et al. 2006). 

They endure a reduction in bone density as well as thinning of the osteochondral growth 

plate, thickening of trabecular branches and a reduction in osteoclasts; all of which is 

suggestive of inhibition of osteochondral bone formation (Baribault et al. 2006). The 

hypothalamic nuclei which GPR103 uses to control feeding are also important in bone 

formation and modelling with obesity having been shown to protect from osteoporosis 

(Chartrel et al. 2011; Ducy et al. 2000). The osteoporosis-prone mouse strain; SAMP6, 

was sequenced and four single-nucleotide polymorphisms (SNPs) in QRFP were found 

which were not found in the controls. One of these SNPs is located in the promoter 

region of QRFP which produces a neuron-restrictive silencing factor binding site. This 

acts as a repressor which decreases gene expression in tissues outside of the brain and 

these mice exhibit lower expression of the QRFP transcript (Zhang et al. 2007). 

1.10.1.4 Other functions of QRFP 

In rats there is high GPR103 expression in the adrenal cortex (Fukusumi et al. 2003). 

However administration of QRFP does not appear to exert any effects on corticosteroids 

but may regulate adrenal steroidogenesis (Chartrel et al. 2011; Fukusumi et al. 2003; 

Ramanjaneya et al. 2013). QRFP has also been implicated in nociception. 

Administration of QRFP reduced agitation behaviours caused by paw formalin injection 

which may suggest an analgesic effect of QRFP (Yamamoto, Miyazaki & Yamada 

2009). Central administration of QRFP resulted in increased arterial blood pressure and 

heart rates in mice and increased stress levels based on grooming behaviour (Takayasu 

et al. 2006).  
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Chapter 2 

Methods and materials 

 

2.1 Cell lines and culture 

Two neuroblastoma cell lines used were; IMR32, obtained from the Health 

Protection Agency and SH-SY5Y, a gift from Dr. Mattia Calissano, UCL. The 

Holten LaminAir Class II Haeraus Instrument hood was thoroughly cleaned with 

trigene and 70% industrial methylated spirit (IMS) before usage, where all work 

requiring sterile conditions was performed. All equipment used was sterile and 

cleaned with 70% IMS before use in the flow hood.  

IMR32 cells were cultured in Eagles minimum essential media (EMEM) (Sigma-

Aldrich) supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich), 1% 

non-essential amino acids (Gibco), 1% 200mM L-glutamine (Gibco) and 1% 

penicillin/streptomycin (Gibco). SH-SY5Y cells were cultured in a ratio of 1:1 of 

EMEM and Hams F12 media (Sigma-Aldrich), supplemented with 10% FBS, 1% 

non-essential amino acids, 1% 200mM L-glutamine and 1% penicillin/streptomycin. 

Both cell lines were maintained in 75cm
2
 non treated culture flasks (Nunc) under 

standard tissue culture conditions at 37ºC and 5% carbon dioxide (CO2). Cells 

reached confluence after 48-72 hours and were subcultured by splitting the cells in a 

1:6 ratio. Seeding densities were not performed for general tissue culture, but were 

seeded at specific densities for experiments. Cells were washed with 1x phosphate 

buffered saline (PBS) (Gibco) and were detached with 2.5ml TrypleExpress (Life 

Technologies) through incubation for several minutes. 2.5ml of media was added to 

the flask once cells were visibly detached and this suspension was centrifuged for 5 
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minutes at 1,500 revolutions per minute (RPM) in a Heraeus 1.0 centrifuge. The 

supernatant was removed and the pellet was resuspended in a known volume of 

media and distributed evenly among new flasks containing 19ml of fresh pre-warmed 

media. The flasks were then placed in the incubator and not disturbed for at least 4 

hours to allow cell adherement.  

2.2 Thawing of cryopreserved cells 

To thaw cells for culturing complete media was warmed in a 37°C water bath for 30 

minutes prior to thawing. 19ml of media was then aliquoted into a 75cm
2
 flask and 

placed in a 37°C, 5% CO2 incubator. Vials were taken from liquid nitrogen on dry 

ice and cells were thawed in a 37ºC water bath. When the vials had defrosted, they 

were resuspended in the pre-warmed flask and placed in the incubator. Cells were 

left for at least 4 hours without being disturbed in the incubator. 

2.3 Cryopreservation of cell lines 

Cryopreservation of cells was performed to maintain the cell lines. This was 

achieved by aspirating the culture medium from the flask of confluent cells and 

washing with 1x PBS warmed to 37°C. Cells were then detached for several minutes 

at 37°C with TrypleExpress after which 2.5ml of media was added. This suspension 

was placed into a 50ml centrifuge tube and spun for 5 minutes at 1,500 RPM, after 

which the supernatant was removed leaving the pellet. Freezing media was made up 

with dimethyl sulfoxide (DMSO) (Sigma-Aldrich), FBS and complete media; as 

described in table 2.1. This was then added to the pellet of cells, resuspended and 

placed into a 1.6ml cryovial (Fisher Scientific). Cells were placed into a Nalgene Mr. 

Frosty (Sigma-Aldrich), containing isopropanol to allow slow cooling and avoid 

crystal formation. This was stored at -80°C overnight then transferred to liquid 

nitrogen.  
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Reagent Volume/75cm
2
 flask 

DMSO 100μl 

FBS 400μl 

Media 500μl 

 

Table 2.1: Requirements for freezing down one confluent 75cm
2
 flask of cells  

2.4 Cell counts 

Cell counts were performed to enable consistency of experiments. Detachment of 

cells as previously described was completed. Cells were centrifuged for 5 minutes at 

1,500 RPM and resuspended in 5ml of 37°C warmed media. 5µl of this suspension 

was pipetted under the coverslip of a haemocytometer to fill the chamber. The 

number of cells within one large square of the haemocytometer were counted and the 

number of cells in the total suspension was calculated using the formula below.  

 

 

 

To calculate how many cells were in the total suspension the following calculation 

was used: 

Number of cells in suspension   =   Number of cells/µl 

                                          5000µl 

 

This was then used to decide how much of the suspension was needed to obtain the 

required cell seeding density: 

Seeding density required    =    Volume of cell suspension to add to new flask (µl) 

                    Number of cells / µl 

     Number of cells counted 

Number of large squares counted 
X media added (ml) =    Number of cells in suspension X 10

4
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2.5 Cell differentiation 

Both cells lines were differentiated to acquire a more neuronal phenotype. This was 

achieved by using two different agents. IMR32 cells were treated for 20 days with 

10µM 5-bromo-2'-deoxyuridine (BrdU) (Sigma-Aldrich). Due to the time needed to 

differentiate these cells and their fast growing nature, they were subcultured on the 

following days: 0, 2, 4, 6, 8, 12, 16 and 20 and cell counts and microscopy images 

were performed. SH-SY5Y cells were differentiated for 6 days with 10µM retinoic 

acid (RA) (Sigma-Aldrich). Differentiation was more rapid and cells were 

subcultured on days 0, 2, 4 and 6, with cell counts and microscopy images taken on 

these days. Both cell lines were seeded at 1x10
6
 cells. 

2.6 RNA extraction from cells 

RNA was extracted so as to observe changes in gene transcript levels under different 

experimental situations. RNA was extracted using the Sigma GenElute mRNA 

Miniprep Kit according to manufacturer’s instructions. Briefly, all equipment and 

work surfaces were cleaned with 70% IMS and RNAse AWAY (Sigma-Aldrich). 

RNA extraction was performed on cells attached to a 75cm
2
 flask or a 6 well plate. 

Firstly cells were briefly washed with 1x PBS. For a 75cm
2
 flask 2ml of a lysis 

solution with 20μl of β-mercaptoethanol was added to the cells and for a 6 well plate 

250μl of lysis solution and 2.5μl β-mercaptoethanol. The flask was gently rocked 

then left for 2 minutes to ensure lysis of all cells. 700µl of the cell lysate was 

transferred to a GenElute filtration column at a time and the column was centrifuged 

at 12,000 RPM for 2 minutes to allow removal of cellular debris. An equal volume of 

70% ethanol was added to the cell lysate and vortexed.  700µl of the lysate/ethanol 

mixture was added to a GenElute binding column at a time. Columns were then 

centrifuged for 15 seconds at 12,000 RPM. The column binds RNA, so the column 

was kept but flow through was discarded. 500µl of wash solution 1 was added to the 

column and centrifuged at 12,000 RPM for 15 seconds. After placing the binding 

column into a fresh collection tube, 500µl of wash solution 2 was added and spun at 

12,000 RPM for 15 seconds and flow through was discarded and the column kept. 

This wash step was repeated. To ensure no ethanol remained the columns were put 
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through a further drying stage and centrifuged for 2 minutes and flow through was 

discarded. Binding columns were transferred to fresh collection tubes. 50µl of 

elution solution was added and centrifuged at 12,000 RPM for 1 minute.  0.5µl of the 

RNAse inhibitor: SUPERase In (Ambion) was added to each sample to prevent RNA 

degradation. To remove residual DNA the RNA was treated with DNase I (Sigma-

Aldrich). Samples were treated with 5µl of 10x reaction buffer and 5µl of DNase I 

and gently mixed and incubated for 15 minutes at room temperature. 5µl of stop 

solution was added to inactivate DNase I and the samples were incubated at 70ºC for 

10 minutes. 

RNA concentration was read at 230, 260 and 280nm using the NanoDrop 

spectrophotometer (NanoDrop 2000C, Thermo scientific), using 1µl per sample. 

Optical density readings of A260/A280 and A260/A230 were used to measure 

protein and carbohydrate contamination respectively and were expected to be 

between 1.8-2.0. 

2.7 RNA extraction from human hippocampal samples 

Before performing RNA extraction, human hippocampal samples which were snap 

frozen, were thawed on ice and transferred to sterile eppendorf tubes containing lysis 

buffer. Samples were then homogenised using the TissueLyser II (Qiagen). 

Proteinase K (Sigma-Aldrich) was added to each sample after homogenisation and 

incubated at 55ºC for 10 minutes. The previously mentioned RNA extraction steps 

were then followed. 

2.8 cDNA synthesis 

Complimentary DNA (cDNA) synthesis was performed to create a double stranded 

copy of the extracted mRNA to observe gene transcript levels in a given sample. 

The amount of RNA needed was calculated using the following equation: 

 

 

       Total cDNA required 

        RNA concentration 
=  RNA required 
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A SuperScript II reverse transcriptase kit (Sigma-Aldrich) was used according to the 

manufacturers’ protocol. Briefly the required amount of RNA was made up to 10 µl 

with nuclease free water. Then a mastermix (Table 2.2) was made of 

deoxyribonucleotide triphosphate (dNTP) and random primers for the total number 

of samples and 2µl was added to each sample. This was heated at 65°C for 5 minutes 

on a heat block followed by quick chilling on ice. Another mastermix (Table 2.2) 

was made comprising the 5x first strand buffer, dithiothreitol (DTT) and nuclease 

free water; 7 µl was added to each sample and left at room temperature for 2 

minutes. 1 µl of superscript II was subsequently added to each sample and incubated 

for 50 minutes at 42°C, after which the temperature was increased to 72°C for 15 

minutes. Samples were then stored at -20°C.  

Reagent Quantity per reaction (20μl) 

Random Primers (Sigma-Aldrich) 1µl 

dNTP (Sigma-Aldrich) 1µl 

5x First strand buffer (Sigma-Aldrich) 4µl 

DTT (Sigma-Aldrich) 2µl 

Nuclease-free water (Ambion) 1µl 

Superscript II (Sigma-Aldrich) 1µl 

 

Table 2.2: Requirements for one 20μl reaction of cDNA synthesis. 

 

2.9 Real-time polymerase chain reaction (qPCR) 

qPCR was performed to observe changes in gene transcript levels in mRNA 

extracted from cells or tissue. Mastermixes were made up for each primer set (Table 

2.3) using Precision 2x real-time PCR Mastermix with SYBR green (PrimerDesign). 

Mastermixes were vortexed and 19 µl was pipetted into each corresponding well of a 
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96 well MicroAmp fast optical qPCR plate (Applied Biosystems). 1 µl of cDNA was 

added to the appropriate wells and for non-template controls (NTC) cDNA was 

replaced with water. The plate was then sealed using MicroAmp optical adhesive 

film (Applied Biosystems). Each sample for each gene was performed in triplicate. 

The plate was briefly centrifuged at 1,000 RPM to ensure thorough mixing and the 

plate was run on the ABI 7900HT fast real time PCR system (Applied Biosystems) 

using the illustrated program (Figure 2.1) 

 

Figure 2.1: Schematic representation of qPCR program and cycles 

 

Reagent Quantity per reaction (20μl) 

Mastermix with SYBR green (PrimerDesign) 10 µl 

Nuclease-free water (Ambion) 8 µl 

Forward and reverse primer mix (PrimerDesign) 1µl 

cDNA 1µl 

 

Table 2.3: Requirements for one 20μl qPCR reaction. 

Time 
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qPCR is measured by either relative or absolute quantification. Absolute 

quantification determines expression levels by comparing results to a known quantity 

using a standard curve, whereas relative quantification provides a comparison of the 

gene of interest with a selected housekeeping gene. An amplification curve is 

generated which is a graph plotted with the number of cycles against the fluorescence 

intensity (Figure 2.2). As the cycle number increases the amount of double stranded 

DNA also increases and fluoresces as the SYBR green molecule binds to the minor 

groove of DNA. A cycle threshold (Ct) is produced on the basis of the amplification 

range with a lower Ct indicating increased amplification. SYBR green can result in 

non-specific binding to primer dimer complexes. Therefore a dissociation curve is 

produced and provides a graph of the melting temperature (Tm) of the DNA versus 

the fluorescence intensity (Figure 2.2). This allows analysis of whether it is indeed 

only one product which has been amplified indicating specificity or multiple 

products due to primer-dimers (User Bulletin #2, ABI PRISM 7700 Sequence 

Detection System). A list of all primers used are indicated in table 2.4, however as 

primers for housekeeping genes were used in commercial kits by PrimerDesign, the 

sequences were not available to us.  

 

Figure 2.2: Representations of data produced by qPCR. A. Amplification plot and B. 

Dissociation curve. 
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Gene Primer sequence 5’3’ Forward/Reverse 
Amplicon 

size (bp) 

OX1R 

CACACGGCTCTTCTCAGTCT 

 

GCCAGGTAGGTGACAATAAAGA 

F 

 

R 

 

204 

OX2R 

GCTAAAGAGAGTATTTGGGATGTTT 

 

TATAAATAATTGGATTCGCAGCACTA 

F 

 

R 

 

261 

GPR103 

CGCCTCCCTTCCTCTACTCT 

 

GAGATCGAGTCTCCCAGTGC 

F 

 

R 

 

141 

NSE 

 

ATGCGACTAGGTGCAGAGGT 

 

GCTCCAAGGCTTCACTGTTC 

F 

 

R 

 

133 

NES 

AACAGCGACGGAGGTCTCTA 

 

TTCTCTTGTCCGCAGACTT 

F 

 

R 

 

220 

NG1 

ACGCCCTGTTTCATTCCTTAC 

 

CCATCTATTGCCTGCTGACTAG 

F 

 

R 

 

81 

MAPT 

TTTGGTGGTGGTTAGAGATATGC 

 

CCGAGGTGCGTGAAGAAATG 

F 

 

R 

 

72 

CSTF2T 

 

GCACAACCGGAATCATGTCG 

 

TTCACTGGCAGCATTGTCCA 

F 

 

R 

 

299 

DAB2IP 

AAAAGGAGGAACCCAGACGC 

 

TTTCTTGAGGCGACTCGTAGG 

F 

 

R 

 

135 

GPR148 

GCTCCCATACCTGTACCTGC 

 

GTAAAGATGGCCTGGTGCCT 

F 

 

R 

 

90 

KRT23 

CTCCCACAGCAAAGGCCATA 

 

GAAGCTGTGTCCGGAGTTCA 

F 

 

R 

 

130 

OSBPL7 

GAGCCAGGCTATGGGAACAT 

 

AGATGGGCAGAAGGGCAGTG 

F 

 

R 

 

154 

PYCRL 

TATGTCACTTTCAAGCTCTGGGT 

 
ATCACTATGGCCCCTTCCTGG 

F 

 

R 

 

271 

ZFP42 

TTACGTTTGGGAGGAGGTGG 

 
ACATTTGTTTCAGCTCAGCGAT 

F 

 

R 

 

229 

ZP1 

CTGGAGAAGGATGGGCGTTT 

 
CAGAGTAGCGTCTTGTGCCA 

F 

 

R 

 

90 

 

Table 2.4: Primers with forward and reverse sequences used in qPCR. 
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The following equations (User Bulletin #2, ABI PRISM 7700 Sequence Detection 

System) were used to analyse the data obtained from performing qPCR: 

For cells:    ΔCt = Ct (gene of interest) – Ct (housekeeping gene) 

         ΔΔCt = ΔCt (sample) – ΔCt (calibrator) 

        Relative quantity (RQ) = 2
- ΔΔCt 

For clinical samples:     ΔCt = Ct (gene of interest) – Ct (housekeeping gene) 

     Arbitrary value: 2
- ΔCt

 

2.10 Gel electrophoresis 

Gel electrophoresis was performed to check the validity of qPCR results. Samples 

were run on a 1.5% agarose gel. To make the gel; 1.5g of agarose (Fisher-Scientific) 

was added to 100ml of 1x tris/borate/EDTA (TBE) (89mM Tris-borate, 2mM EDTA, 

pH 8.3) buffer. This was heated in the microwave for about 2 minutes or until the 

mixture became clear. Once cooled to circa 55°C, 5µl of ethidium bromide (Sigma-

Aldrich) was added and the agarose was then poured into a casting tray and left to 

cool for 30 minutes. The gel was placed into an electrophoretic tank and submerged 

in TBE buffer. 3µl of loading dye (Invitrogen) was added to each sample. 7µl of 

1kbp DNA ladder (Invitrogen) was added to the first well and 15µl of sample to each 

well, with a negative control in the last well. The gel was run at 80V and 400mA for 

approximately 30-45 minutes depending on migration. The gels were imaged using a 

UVP GDAS 1200 (Gel Documentation Analysis System) under ultraviolet light. 

2.11 Cell treatments and protein lysate extraction 

Differentiated cells were seeded into 6 well plates and seeded at 1x10
5
. They were 

starved for 4 hours prior to treatment using media without any FBS. Cells were 

treated with; 100nM OXA (Tocris Bioscience), 100nM OXB (Tocris Bioscience), 

100nM QRFP (Phoenix pharmaceuticals) 10µM SB-334867 (Tocris Bioscience), 

10µM TCS-OX229 (Tocris Bioscience), 100nM zinc sulphate (Sigma-Aldrich) or 

5ng/ml Aβ
1-42 

(GL Biochem). Cells were incubated with these compounds for the 
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specified time. Laemmli buffer (Table 2.5) was premade and 200 µl was added to 

each well. The surface of the plate was scratched with a pipette tip to disrupt cells 

and heated at 100°C for 10 minutes. This was then aliquoted into tubes and stored at 

-80°C until ready for use.  

Reagent Quantity 

Glycerol 2ml 

1M Tris HCL pH 6.7 1ml 

β-Mercaptoethanol 0.5ml 

10% SDS 4ml 

Water 2.5ml 

Bromophenol blue Add for colour 

 

Table 2.5: Recipe for laemmli buffer 

 

2.12 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

and western blotting  

All recipes were made up according to the list at the bottom of this section. 10% 

resolving gels were poured between two glass plates, with 1ml of isopropanol on top 

of the gel to ensure even gels and was left for 30 minutes at room temperature to set. 

The isopropanol was washed out with double distilled water (ddH2O) and the 

stacking gel was poured on top of the resolving gel, with a 12 well comb inserted 

into the gel. This was left at room temperature for 30 minutes. Gels were placed into 

a cassette and loaded into a running tank. 1L of 1x SDS-PAGE running buffer was 

poured into the tank. Samples were boiled on a heat block for 5 minutes at 100ºC. 

Protein lysates were then loaded into the wells along with 5µl of PageRuler Plus 
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Prestained Protein Ladder (Thermo Scientific). The gels were run at 300V and 40mA 

per gel for 1 hour.   

Nitrocellulose membrane (Hybond-C, GE Healthcare) was cut to match the size of 

the gel and placed in transfer buffer for 5 minutes. The gel was removed from the 

glass plates and transfer cassettes were set up with the gel, membrane and filter paper 

either side. The transfer cassettes were then placed in a Biorad Transblot tank, filled 

with wet-transfer buffer and an ice pack in the tank. Gels were then run at 300V and 

400mA for 1 hour. After transfer, membranes were placed in a plastic tray and 

covered with 20ml blocking buffer and incubated at room temperature for 1 hour. 

Membranes were then briefly washed in 1x TBS-tween20 (50 mM Tris-Cl, 150 mM 

NaCl, pH 7.6). Appropriate antibodies were then diluted (Table 2.6) and each 

membrane was sealed in a plastic pouch with 2.5ml of antibody. These were then 

incubated at 4°C overnight.  

The following day membranes were washed in 1x TBS-tween20, three times for 10 

minutes. The secondary antibody was made up in antibody diluent accordingly 

(Table 2.6). The membranes were placed into plastic pouches and sealed with 3.5ml 

of secondary antibody and incubated for 1 hour at room temperature. 

The enhanced chemiluminescence (ECL) development method was used to visualise 

the protein bands. Solution A and solution B were prepared and protected from light. 

In a dark room, solutions A and B were mixed together and applied to the 

membranes (with a total of 10ml per membrane) and left for 5 minutes. The 

membranes were inserted into a plastic pocket in a developing cassette with a sheet 

of Hyperfilm ECL (GE healthcare) and exposed for varying periods of time. These 

films were then passed through the Curix 60 AGFA developing machine and proteins 

were visualised on the films.  
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Primary 

antibody 
Dilution Details Secondary antibody Dilution 

Phospho 

p44/42 MAPK 
1:1000 

Polyclonal  anti-rabbit, 

Cell Signalling 

(4377B) 

Anti-Goat, peroxidase 

produced in rabbit, 

Sigma (A5420) 

1:2000 

Total 44/42 

MAPK 
1:1000 

Polyclonal  anti-rabbit, 

NEB (9102) 

Anti-Goat, peroxidase 

produced in rabbit, 

Sigma (A5420) 

1:2000 

Aβ
1-42

 1:1000 

Monoclonal anti-

rabbit, Cell Signalling 

(8243p) 

Anti-rabbit IgG 

peroxidase produced in 

goat, Sigma (A0545) 

1:2000 

Phosphorylated 

Tau (S214) 
1:500 

Monoclonal anti-

rabbit, Abcam 

(ab10891) 

Anti-rabbit IgG 

peroxidase produced in 

goat, Sigma (A0545) 

1:2000 

Tau 1:1000 

Monoclonal anti-

mouse, Cell Signalling 

(4019p) 

Anti-mouse IgG 

peroxidase produced in 

rabbit, Dako (P0260) 

1:2000 

 

Table 2.6: Primary and secondary antibodies used in Western blot. 

 

A list of reagents recipes used in SDS-PAGE- western blotting: 

 10% Resolving gel 

7.9ml ddh2O, 6.7ml 30% acrylamide/bis-acrylamide solution (National Diagnostics), 

5ml 1.5M tris base (pH8.8), 200µl 10% SDS , 200µl 10% ammonium persulfate 

(APS), 8µl tetramethylethylenediamine (TEMED)  

 5% stacking gel 

6.8ml ddh2O, 1.7ml 30% acrylamide/bis-acrylamide solution, 1.25ml 1M tris base 

(pH6.8), 100µl 10% SDS, 100µl 10% APS, 10µl TEMED 
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 1x SDS PAGE running buffer 

14.4g glycine, 3.02g tris base, 1g SDS, 1L ddH2O 

 Wet-Transfer buffer 

2.41g tris base, 11.25g glycine, 800ml ddH2O, 200ml methanol 

 1x TBS tween 20 

1L 1x TBS, 1ml tween20 

 5% Blocking buffer 

5g non-fat milk powder (Marvel), 100ml 1x TBS-tween 20 

 Antibody diluent 

1g BSA (Fisher Scientific), 20ml 1xTBS-tween20  

 ECL solutions: 

Solution A 

5ml tris pH 8.0, 22μl coumaric acid (Fisher scientific), 50μl luminol (Fisher 

scientific) 

 Solution B 

5ml tris pH 8.0, 3μl 30% hydrogen peroxide 

 

2.13 Indirect immunofluorescence 

Immunofluorescence was used to observe the location and intensity of proteins 

within a cell. Antibodies were used which targeted specific proteins of interest.  

Cells were grown on coverslips with a seeding density of 1x10
5
. When ready they 

were washed with 2ml of PBS to remove cellular debris, which was then aspirated. 

They were fixed for 10 minutes in 2ml 4% paraformaldehyde (PFA). Cells were 

rinsed three times for 5 minutes in PBS. 0.2% tween20 in PBS (Sigma-Aldrich) was 

used to permeabilise the cells, after which they were rinsed again for 5 minutes, three 

times in PBS. Using forceps, coverslips were blotted on paper towels and placed on 

damp filter paper. Cells were blocked in 75µl of 10% donkey serum (Sigma-

Aldrich), diluted in PBS and left for an hour at room temperature to block. 

Antibodies were made up according to table 2.7 and diluted in 1.5% donkey serum in 

PBS. 75µl of primary antibody was added to corresponding coverslips and incubated 
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at room temperature for 1 hour. Secondary antibodies were made up according to 

table 2.7 with 1.5% donkey serum and 75µl of antibody was added to each coverslip 

and incubated at room temperature for a further 1 hour. Coverslips were washed for 5 

minutes, three times with PBS and then washed in a beaker of water. One drop of 

VectaShield with 4',6-diamidino-2-phenylindole (DAPI) (Vectorlabs) was added to 

each Superfrost slide (Fisher Scientific) and coverslips were blotted dry and mounted 

on slides upside down and placed in the fridge protected from light until microscopic 

analysis.  

Primary 

antibody 
Dilution Details 

Secondary 

antibody 
Dilution 

 

OX1R 

 

1:75 

Polyclonal anti-goat, 

SantaCruz 

Biosciences (sc-8073) 

Alexa Fluor 488, 

Chicken anti-Goat, 

Invitrogen 

(A21467) 

 

1:2000 

 

OX2R 

 

1:75 

Polyclonal anti-goat, 

SantaCruz 

Biosciences (sc-8074) 

Alexa Fluor 488, 

Chicken anti-Goat, 

Invitrogen 

(A21467) 

 

1:2000 

GPR103 1:75 

Polyclonal anti-rabbit, 

SantaCruz 

Biosciences (sc-

48187) 

Alexa Fluor 568, 

donkey anti-rabbit,  

Invitrogen 

(A10042) 

1:2000 

Pan Neuronal 

Marker 
1:75 

Monoclonal anti-

mouse, Millipore 

(MAB2300) 

Alexa Fluor 488, 

rabbit anti-mouse, 

Invitrogen 

(P36930) 

1:2000 

 

Table 2.7: Primary and secondary antibodies used in immunofluorescence 
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2.14 Immunohistochemistry (IHC) using 3,3'-diaminobenzidine (DAB) staining 

Paraffin embedded slides were deparaffinised in Histoclear (National Diagnostics) 

for three, 5 minute washes. Slides were then rehydrated in ethanol for 3 minutes each 

using the following gradients; Histoclear: ethanol (1:1), 100%, 95%, 70%, 50% and 

ddH2O. For antigen retrieval, sodium citrate (2.94g sodium citrate tribasic dehydrate, 

0.5ml tween20, 1L ddH2O, pH6) was heated to boiling point in the microwave, slides 

were then incubated with this heated buffer in the microwave for 20 minutes, just 

below boiling point. Slides were cooled in water for 5 minutes and washed twice for 

5 minutes in 1xTBS-0.25% triton X (Fisher Scientific). Slides were blocked for 1 

hour at room temperature in 1% donkey serum. After blocking, slides were drained 

and 100µl of appropriate primary antibody was diluted in TBS and added to the 

slides (Table 2.8). Parafilm (Sigma-Aldrich) was placed on top of the slides to 

prevent dehydration and these were incubated at 4°C overnight. The following day 

slides were washed three times for 5 minutes in TBS and then incubated with 0.3% 

hydrogen peroxide (Fisher Scientific) in TBS for 30 minutes to prevent any 

endogenous hydrogen peroxide activity. Slides underwent a further three, 5 minute 

washes, after which the appropriate secondary antibody was diluted in TBS and 

100µl added to each slide and incubated for 1 hour at room temperature. After 

secondary antibody incubation, slides were washed in TBS for three, 5 minute 

washes. DAB (VectorLabs) reagent was made up by adding 2 drops of buffer 

solution to 5ml ddH2O, 4 drops of  DAB solution and 2 drops of hydrogen peroxide. 

Slides were incubated for 2-10 minutes, whilst colour change was observed. After 

the reaction had occurred slides were washed for 5 minutes in ddH2O. Slides were 

then counterstained with Mayers’ hematoxylin (Fisher Scientific) for 30 seconds, 

which was washed off and slides were then stained with 0.1% sodium bicarbonate 

for 30 seconds to achieve a blue stain. Slides were then dehydrated in gradients of 

ethanol using: 50%, 70%, 95%, 100%, Histoclear: ethanol (1:1) and Histoclear. 

100µl of di-N-butyl phthalate in xylene (DPX) mounting medium (Fisher Scientific) 

was added to each slide then mounted onto a coverslip. These were allowed to dry 

for at least 1 hour before observation.  
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Primary 

antibody 
Dilution Details Secondary antibody Dilution 

 

OX1R 

 

1:75 

Polyclonalsanti-goat, 

SantaCruzsBiosciences 

(sc-8073) 

Anti-goat, peroxidase 

produced in rabbit, 

Sigma (A5420) 

 

1:200 

 

OX2R 

 

1:75 

Polyclonalsanti-goat, 

SantaCruzsBiosciences 

(sc-8074) 

Anti-goat, peroxidase 

produced in rabbit, 

Sigma (A5420) 

 

1:200 

GPR103 1:75 

Polyclonalsanti-rabbit, 

SantaCruzsBiosciences 

(sc-48187) 

Anti-rabbit IgG 

peroxidase produced 

in goat, Sigma 

(A0545) 

1:200 

Pan Neuronal 

Marker 

 

1:75 

Monoclonalsanti-mouse, 

Millipore (MAB2300) 

Anti-mouse IgG 

peroxidase produced 

in rabbit, Dako 

(P0260) 

 

1:200 

Aβ
1-40

 1:75 
Monoclonalsanti-rabbit, 

Cell Signalling (7672s) 

Anti-rabbit IgG 

peroxidase produced 

in goat, Sigma 

(A0545) 

1:200 

Aβ
1-42

 1:75 
Monoclonalsanti-rabbit, 

Cell Signalling (8243p) 

Anti-rabbit IgG 

peroxidase produced 

in goat, Sigma 

(A0545) 

1:200 

Phosphorylated 

Tau (S214) 
1:75 

Monoclonalsanti-rabbit, 

Abcam (ab10891) 

Anti-rabbit IgG 

peroxidase produced 

in goat, Sigma 

(A0545) 

1:200 

Tau 1:75 
Monoclonal anti-mouse, 

Cell Signalling (4019p) 

Anti-mouse IgG 

peroxidase produced 

in rabbit, Dako 

(P0260) 

1:200 

 

Table 2.8: Primary and secondary antibodies used in IHC 
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2.15 Microarray 

RNA was extracted using an RNeasy mini kit (Qiagen) according to manufacturer’s 

instructions. Briefly, 350µl of the RLT buffer was added to each sample and 

vortexed. This was then pipetted into a QIAshredder spin column and centrifuged for 

2 minutes at 12,000 RPM. 600µl of 100% ethanol was added to the cell lysate and 

mixed by vigorous pipetting. 700µl of each sample was added to an RNeasy mini 

spin column in a 2ml collection tube and centrifuged for 15 seconds at 10,000 RPM 

and flow through was discarded. This step was repeated until all the sample had been 

run through the column. 700µl of RW1 buffer was added to the column and 

centrifuged for 15 seconds at 12,000 RPM and flow through was discarded. 500µl of 

RPE buffer was added to each spin column and centrifuged again for 15 seconds at 

10,000 RPM. Flow though was discarded and this step was repeated again and 

centrifuged for 2 minutes. The RNeasy column was placed into a new collection tube 

and centrifuged for 2 minutes at 10,000 RPM to further dry the column. The column 

was then placed in a new 2ml collection tube and 50µl of RNase free water was 

added and the column and spun for 1 minute at 10,000 RPM. RNA was then 

analysed on a 2100 expert Agilent bioanalyser, to confirm that all samples had an 

RNA yield greater than 30µg and RNA integrity number (RIN) values above 9. 

Whole transcriptome amplification was performed using a WTA2-transplex 

complete whole transcriptome amplification kit (Sigma-Aldrich) according to 

manufacturer’s instructions with optimised volumes. Briefly, 100ng of each sample 

was added to 0.5µl of library synthesis solution and nuclease free water up to 3.32µl 

was added. Samples were mixed and incubated in a PTC-225 Pelter Thermal Cycler 

for 5 minutes at 70°C. For each sample the following was added: 0.5µl library 

synthesis buffer, 0.78µl nuclease free water and 0.4µl library synthesis enzyme. 

These samples were incubated in the thermocycler using the following incubations:  

 18°C for 10 minutes  

 25°C for 10 minutes 

 37°C for 30 minutes  

 42°C for 10 minutes  

 70°C for 20 minutes 

 4°C hold 
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Samples were briefly centrifuged at 5,000 RPM to consolidate samples. To each of 

these samples; 60.2µl of nuclease free water, 7.5µl of amplification mix, 1.5µl WTA 

dNTP mix and 0.975µl of amplification enzyme was added. This was then incubated 

in a thermocycler using the following incubations: 

 94°C for 2 minutes  

 94°C for 30 seconds 

 70°C for 5 minutes  

 4°C hold 

An RNaseA clean-up was then performed to remove any residual RNA from the 

newly formed cDNA (Qiagen). 1µl of 4mg/ml RNase A solution was added to each 

sample and gently mixed. Samples were incubated at 37°C for 10 minutes. 163µl of 

phenol:chloroform:isoamyl alcohol at pH8 was added to each sample and vortexed. 

This was then added to phase lock tubes (5 Prime) and centrifuged at 12,000 RPM 

for 5 minutes, after which the upper aqueous phase was transferred to a new 1.5ml 

tube. cDNA precipitation was then performed. 0.1 volumes of the sample in 

ammonium acetate was added to each sample and mixed by inversion. 3.5µl of 

5mg/ml glycogen was added and again mixed by inversion. 200µl of ice cold ethanol 

was added and centrifuged at 12,000 RPM for 20 minutes. The supernatant was 

removed and 500µl of ice cold 80% ethanol was used to dissolve the pellet which 

was then centrifuged again at 12,000 RPM for 5 minutes, after which the supernatant 

was removed. This step was repeated once more. The pellet was dried in a DNA 

vacuum concentrator: CentriVap DNA Centrifugal Concentrator System 220V 

(Labconco), and the samples were rehydrated in 20µl of nuclease free water. 

Samples were analysed on the NanoDrop to confirm that 260/280 and 260/230 

absorbance readings were above 1.8 and that concentration was more than 100ng/µl. 

Samples were then analysed on the bioanalyser to check fragment size.  

Samples were labelled with Cy3 dye, using a Cy3 labelling kit (Nimblegen). Into a 

0.2ml PCR tube; 0.5µg of cDNA, 20µl of Cy3 random nonamers and water up to 

40µl was added. The samples were denatured in a thermocycler for 10 minutes at 

98°C then quick chilled for 2 minutes on ice. 5µl dNTP mix, 4µl nuclease free water 

and 1µl of klenow fragment was added to each sample and pipetted up and down 

20 cycles 
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thoroughly. This was then incubated in the thermocycler at 37°C for 2 hours. Once 

finished 10.75µl of stop solution was added. To elute the samples 55µl of 

isopropanol was added at room temperature and protected from sunlight for 10 

minutes. This was centrifuged at 12,000 RPM for 10 minutes at 4°C and then the 

supernatant was discarded. The pellet was rinsed with 500µl of 80% ice cold ethanol 

and centrifuged at 12,000 RPM for 10 minutes, after which the supernatant was 

removed. Samples were dried in a DNA vacuum concentrator on a low heat until dry. 

Pellets were then rehydrated in 25µl of water and vortexed for 30 seconds or until the 

pellet was rehydrated. Samples were again analysed on the NanoDrop to check 

concentration and quality. Samples were aliquoted into 4µg total concentration and 

contents were dried in a DNA vacuum concentrator.  

The next step was to hybridise the cDNA to the array and wash the array. The Roche 

Nimblegen Hybridization System 4 was set to 42°C and left for 3 hours to stabilise. 

Samples were resuspended in 3.3µl of sample tracking control solution to confirm 

the sample identity. Samples were vortexed and to each sample the following was 

added; 6.1µl 2x hybridisation buffer, 2.42µl hybridisation component A and 0.2µl 

alignment oligo. Samples were vortexed and incubated at 95°C for 5 minutes in the 

thermocycler, then at 42°C for 5 minutes. Using a precision mixer alignment tool 

slides were combined with a HX12 mixer. The mixer-slide assembly was heated at 

42°C for 5 minutes, and then placed in the slide bay of the hybridisation system. 6µl 

of sample was added to each appropriate port for the 12 samples. The slides were 

then mixed in the hybridisation system for 10 minutes and samples were hybridised 

at 42°C for 16 hours. Following this the slide was washed using a wash buffer kit 

(Nimblegen). Wash I was made up of 243ml ddH2O, 27ml of 10x wash buffer I and 

27µl 1M DTT. Then another wash I, II and III was made up using 24.3ml ddh2O, 

2.7ml 10x wash buffer I, II or III and 2.7µl of 1M DTT. The first wash I solution was 

heated to 42°C and the mixer-slide was placed into a mixer disassembly tool in the 

wash solution and the mixer was removed from the slide. The slide was then washed 

for 2 minutes in new wash I solution with gentle agitation. The slide was drained and 

blotted and added to wash solution II for 1 minute with vigorous constant agitation, 

then transferred to wash solution III for 15 seconds with vigorous constant agitation. 
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The slide was then spin dried in a Nimblegen microarray dryer for 30 seconds. The 

array was now ready for scanning.  

Dr. Ryan Pink from Oxford Brookes University then scanned the Nimblegen array 

slide at 3µM on an InnoScan 700 microarray scanner using Mapix version 5.1 

software. The TIFF images were then aligned to their Nimblegen design files and 

converted into probe intensity values using the Nimblegen DEVA software. The data 

was Loess normalised for array variation of Cy3 using R statistical program. This 

was quintile normalised across array variation using DNAstar (ArrayStar). The log2 

intensity values were formatted using excel.  

2.16 Statistical analysis 

All data sets were analysed using the Levene’s test to test for equal or unequal 

variance. If the variance was deemed to be unequal and the data was unpaired the 

Mann-Whitney-U test was performed. If variance was equal and the data was 

unpaired, then the unpaired students T test was performed. For paired data, if there 

was equal variance the paired students T test was used. For unequal variance with 

paired data, the Wilcoxon signed-rank test was performed.  
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Chapter 3 

Differentiation and validation of two human neuroblastoma 

cell lines 

 

3.1 Introduction 

IMR32 and SH-SY5Y are human neuroblastoma cell lines which resemble immature 

neuroblasts in cell culture. IMR32 is a cell line established from an abdominal mass 

of brain tissue origin in a 13 month old male. The adherent culture is a mixture of 

two morphologically distinct cell types. The predominant cell is neuroblastic (N-

type) and is a small neuroblast like cell which grows in dense collections. The other 

cell type is a large fibroblast like cell which grows in small quantities in comparison 

to the N-type cell (Tumilowicz et al. 1970). 

SH-SY5Y is a clone of SK-N-SH cells derived from a bone marrow biopsy of 

neuroepithelial origin from a 4 year old female with neuroblastoma. The SH-SY5Y 

cell line contains 2 distinct phenotypes: N-type and substrate adherent (S-type) cells. 

The majority of the culture comprises N-type cells and there are only a small number 

of S-type cells (Encinas et al. 2000; Biedler, Helson & Spengler 1973). IMR32 and 

SH-SY5Y have been extensively used as neuronal models and appear to express 

numerous functional GPCRs including OXRs (Nasman et al. 2006; Chen, Randeva 

2010).  

These cell lines are at an early differentiation stage and consequently do not display 

the morphology, inhibited cell division and neuronal markers that are seen with 

mature neurons (Xie, Hu & Li 2010). As a consequence these cell lines are limited in 
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studying the mechanisms which occur in mature neurons. It was therefore necessary 

to differentiate these cell lines using specific differentiating agents to create a 

neuronal model that exhibits more in vivo like characteristics. Differentiation is 

required to encourage the expression of phenotypic properties characteristic of a 

mature neuron in vivo. This process is irreversible and results in termination of DNA 

synthesis (Scheibe, Ginty & Wagner 1991). After differentiation it is necessary to 

validate this model using a wide array of techniques to corroborate differentiation.  

3.2 Objectives 

Due to extensive work previously performed in IMR32 and SH-SY5Y combined 

with comprehensive use of these cell lines in previous AD and OXR research it was 

decided these would be the most appropriate cell lines to use (Nasman et al. 2006; 

Chen, Randeva 2010; Esmaeili-Mahani et al. 2013). Differentiation using BrdU for 

IMR32 and RA for SH-SY5Y is necessary to initiate cellular differentiation (Kurata 

et al. 1993; Korecka et al. 2013). RA causes upregulation of key genes known to be 

involved in differentiation and neuronal development including; neural cell adhesion 

molecule 2 (NCAM2), tropomyosin receptor kinase B (TrkB) as well as transcription 

factors required for differentiation including: nuclear receptor coactivator 7 (NCOA7) 

and aristaless-like homeobox 3 (ALX3) (Korecka et al. 2013; Encinas et al. 2000). 

During differentiation the N-type cells develop long processes, however the S-type 

cells do not undergo morphological change and the proportion of N-type cells to S-

type cells increases during differentiation (Encinas et al. 2000). IMR32 

differentiation is induced by BrdU, through mechanisms which are less clear. 

Validation of the models was achieved by monitoring cellular proliferation and 

neurite extension, a Pan Neuronal marker antibody to assess the expression of key 

neuronal proteins and qPCR to confirm the presence of crucial neuronal genes. 
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3.3 Results 

3.3.1 Morphological changes and cell counts to monitor growth of differentiated 

cell lines 

10µM BrdU was used to differentiate IMR32 for 20 days to acquire a neuronal 

phenotype (Nasman et al. 2006). SH-SY5Y cells were treated with 10µM RA for 6 

days (Encinas et al. 2000; Cheung et al. 2009). Morphological changes and cell 

numbers for both cell lines were monitored during the differentiation process using 

microscopy and cell counts. 

IMR32 cells were passaged at days: 0, 2, 4, 6, 8, 12, 16 and 20 to prevent over-

confluence and were seeded at 1x10
6 

cells. Cell counts were performed as 3 

independent experiments. 

   

Figure 3.1: Representative images of IMR32 differentiation achieved through 

treatment with 10μM BrdU, which induces a more neuronal phenotype with neurite 

extensions and reduced confluence. x20 maginifcation. Bars = 100μm. 

A) undifferentiated cells.  B) 6 days 10µM BrdU. C) 20 days 10µM BrdU. 
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Figure 3.2: IMR32 cell numbers when seeded at 1x10

6 
at specific time intervals. 

Results were obtained from 3 independent experiments ±S.D.  Statistically 

significant differences of differentiated cells compared to undifferentiated cells were 

calculated using the unpaired T-test (p<0.05*, p<0.01**, p<0.001***) 

 
Figure 3.3:  Average neurite length  calculated as a percentage change compared to 

undifferentiated cells of the longest neurite extension of 19 IMR32 cells over 20 days 

of 10µM BrdU differentiation measured by ImageJ ±S.D. Statistically significant 

differences of differentiated cells compared to undifferentiated cells were calculated 

using the paired students T-test (p<0.01**, p<0.0001****). 
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IMR32 cells have a fibroblast like morphology with short cytoplasmic processes 

called neurites. Morphological changes instigated by differentiation included cells 

becoming less rounded, increased neurite extension and the cessation of 

proliferation. This was supported not only by morphological changes (Figure 3.1) but 

cell counts (Figure 3.2) and measurement of neurite length (Figure 3.3). Neurite 

length was measured using the NeuriteJ plug-in for ImageJ. The longest neurite of 19 

different cells was measured and an average for each day was taken. This was then 

normalised to the undifferentiated control to calculate the percentage increase at each 

measurement compared to a control. This indicated an overall increase in neurite 

length of nearly 500% over the differentiation process.  Both cell growth and neurite 

extension plateaued from day 16 suggesting that maximal differentiation had been 

reached. 

   

Figure 3.4: Representative images of SH-SY5Y differentiation achieved through 

treatment with 10μM retinoic acid, which induces a more neuronal phenotype with 

neurite extensions and reduced confluency. x10 maginifcation. Bars = 200μm. 

A) undifferentiated cells. B) 2 days 10µM RA. C) 6 days 10µM RA. 

 

A                     B                         C 
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Figure 3.5: SH-SY5Y cell numbers when seeded at 1x10
6 

at specific time intervals. 

Results were obtained from 3 independent experiments ±S.D. Statistically significant 

differences of differentiated cells compared to undifferentiated cells were calculated 

using the unpaired T-test (p<0.01**). 

 

Figure 3.6: Average neurite length  calculated as a percentage change compared to 

undifferentiated cells of the longest neurite extension of 24 SH-SY5Y cells over 6 

days of 10µM RA differentiation, measured by ImageJ ±S.D. Statistically significant 

differences of differentiated cells compared to undifferentiated cells were calculated 

using the paired students T-test (p<0.0001****). 
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SH-SY5Y cells were seeded at 1x10
6
 at days 0, 2 and 4. Cell counts were performed 

as 3 independent experiments. Undifferentiated SH-SY5Y cells were fast growing 

and without extensions. After differentiation cells did not reach confluence and 

neurite extensions were prominent. Changes are evident from as early as day 2, 

where cells are fewer in number and significantly lower compared to the control as 

well as the formation of neurite extensions. By day 6 neurite extensions are obvious 

and cells remain sparse compared to day 0 (Figure 3.4) Cell numbers decreased 

significantly during differentiation and remained fairly constant between day 4 and 

day 6 (Figure 3.5). 

Neurite length was also measured using the NeuriteJ plug-in for ImageJ. The longest 

neurite of 24 individual cells was measured and an average for each day was taken. 

This was then normalised to the undifferentiated control to calculate the percentage 

increase at each measurement compared to a control. Neurite extension in SH-SY5Y 

saw a steady and gradual significant increase until day 4 after which it began to 

plateau and by day 6 cells demonstrate nearly 500% increased neurite length 

compared to the control, indicative of widespread cellular differentiation (Figure 

3.6). 

3.3.2 Immunofluorescence of differentiated and undifferentiated cells using a 

Pan Neuronal marker antibody 

A Pan Neuronal marker was used in differentiated and undifferentiated cells in order 

to study changes in fundamental somatic, nuclear, dendritic and axonal proteins.  

Many of these proteins are expressed throughout the cells including in the neurites. 

Figures 3.7 and 3.8 demonstrate that in undifferentiated cells, there are very low 

amounts of key neuronal proteins, however after differentiation both cell lines show 

an increase in antibody signal with increased intensity of staining and also increased 

neurite length. This change is observed in both IMR32 and SH-SY5Y.  
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Figure 3.7: Immunostaining using a Pan Neuronal marker in undifferentiated IMR32 

cells and after 20 days of 10µM BrdU differentiation. x40 magnification.  Bars = 50 

μm. 
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Control 10µM Retinoic acid at 6 days 
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Figure 3.8: Immunostaining using a Pan Neuronal marker in undifferentiated 

SH-SY5Y cells and after 6 days of 10µM RA differentiation. x40 magnification.  

Bars = 50 μm. 
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3.3.3 GeNorm analysis of differentiated and undifferentiated cell lines 

It is imperative that analysis of gene expression data be normalised to a fixed 

reference gene which exhibits consistent expression under experimental conditions as 

well as this being compliant with the Minimum Information for Publication of 

Quantitative Real-Time PCR Experiments (MIQE) guidelines (Bustin et al. 2009). 

The GeNorm array from PrimerDesign provides 12 human housekeeping genes to 

discern their expression under different experimental procedures. Data is then 

analysed using the qBASE software to identify which genes are the most stable and 

the optimum number of housekeeping genes to be used for the experimental model. 

This analysis issues an M value for each gene. The M value signifies the variance 

between given samples, and the lower a value the more stable the gene. It is 

recommended that anything below 1.5 is a stable gene. This is also used in 

accordance with a generated V value, which takes into account the M values and 

recommends the optimal number of genes to be used. IMR32 and SH-SY5Y 

GeNorm data was concurrently analysed so that the same housekeeping genes could 

be used for all qPCR to provide more consistency.  
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Figure 3.9: Representation of the most stable housekeeping genes through GeNorm 

analysis in undifferentiated and differentiated IMR32 and SH-SY5Y using GeNorm 

M values. GeNorm M values indicate gene instability between samples; therefore 

higher values indicate more variation. Using the qBase software we were able to 

identify GAPDH, EIF4A2, UBC and 18s as being the most stable genes.  
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Figure 3.10: Recommended number of housekeeping genes using GeNorm for 

IMR32 and SH-SY5Y. Higher GeNorm V values indicate optimum number of 

housekeeping genes. The qBase software recommended the use of 2-4 reference 

genes when using these samples for qPCR. 

 

Analysis of GeNorm performed on these samples suggested that 2/3 housekeeping 

genes should be used with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (M 

value = 0.52) and eukaryotic initiation factor 4A-II (EIF4A2) (M value = 0.62) being 

the most stable genes (Figure 3.9 and 3.10). However 18S was also indicated as 

being stable with an M value of 0.75 which was very similar to the recommended 

EIF4A2 and as we had already successfully used and validated 18S in our lab this 

was decided to be an acceptable gene to use. Using 3 housekeeping genes is 

excessive so the lower end of the suggestion of 2 was used. 
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3.3.4 qPCR of undifferentiated and differentiated cDNA to display changes in 

neuronal marker gene expression 

Nestin (NES), neuron specific enolase (NSE), microtubule-associated protein tau 

(MAPT) and neurogenin 1 (NG1) were used as neuronal markers. They have 

previously been used to confirm changes in neuron specific markers during 

neuroblastoma differentiation (Cheung et al. 2009; Constantinescu et al. 2007). 
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Figure 3.11: Graph representing gene expression changes of neuronal markers after 

20 days of IMR32 differentiation compared to undifferentiated samples. Results 

were obtained from 2 independent experiments ±S.D. Statistically significant 

differences of differentiated cells compared to undifferentiated cells were calculated 

using the paired students T-test (p<0.05*, p<0.001***). 
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Figure 3.12: Graph representing gene expression changes of neuronal markers after 

6 days of SH-SY5Y differentiation compared to undifferentiated sample. Results 

were obtained from 2 independent experiments ±S.D. Statistically significant 

differences of differentiated cells compared to undifferentiated cells were calculated 

using the paired students T-test (p<0.05*, p<0.001***). 

 

qPCR analysis showed a significant decrease in NES gene expression in both cell 

lines, suggestive of a reduction in dividing neuronal cells. NSE, MAPT and NG1 

were all increased, with all being significantly increased in SH-SY5Y and NSE and 

MAPT being significantly increased in IMR32. Combined with reduced NES this 

expression profile suggests neuronal differentiation. 

3.4 Results and Discussion 

Many disease mechanisms involved in AD affect the structure as well as signalling 

pathways in neurons, thus it is essential to achieve a model that best represents the in 
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vivo environment in order to acquire meaningful data from a human cell line. 

Immortalised cell lines are an appropriate solution to study this, but they do however 

lack some of the key characteristics of human neurons such as morphology, cessation 

of mitosis and expression of neuronal markers. The transition to a more neuronal 

phenotype is vital for mimicking disease or a signalling milieu in vitro.  

IMR32 cells grow as a predominantly N type cell, which is a small neuroblast like 

cell. It displays neuronal characteristics and exhibits adrenergic and cholinergic 

phenotypes and over expresses N-myc proto-oncogene protein (MYCN) (Koutsilieri 

et al. 1996). It has been shown to secrete APP including Aβ
1-42

, but expresses Aβ
1-40 

as its predominantly secreted Aβ peptide as would be expected in a non-disease 

situation. It secretes Aβ in large quantities compared to other Aβ secreting cell lines 

such as the human neuroblastoma cell line: SK-N-SH (Asami-Odaka et al. 1995).  

SH-SY5Y cells display some neuronal characteristics in their native form and are 

small and triangular shaped with short neurite extensions. They express a cholinergic 

and adrenergic phenotype, monoamine transporters and express tyrosine hydroxylase 

(Korecka et al. 2013; Biedler et al. 1978; Dwane, Durack & Kiely 2013; Agholme et 

al. 2010). These hallmarks make both cell lines a realistic model to be used in our in 

vitro studies. 

Differentiation of both cell lines resulted in termination of mitosis which is reflected 

in the cell counts performed. IMR32 experienced a steady decline in cell number 

over time and a plateau at day 16 until day 20 which suggests terminal 

differentiation. SH-SY5Y also experienced the same trend but over a much shorter 

time span with a plateau of cells at day 4. Another indicator of differentiation is 

neurite extension. For both cell lines there was a significant increase in length over 

time when normalised to the undifferentiated control. IMR32 neurite length 

increased by 493% when compared to the control with SH-SY5Y experiencing much 

the same increase in neurite length with a 479% increase in extension by day 6. 

Although the starting neurite lengths were different between cell lines they both 

achieved a nearly 5 fold increase in length compared to undifferentiated cells. This 

neurite extension is particularly important when observing tau hyperphosphorylation 

as it resides in these extensions. 
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A Pan Neuronal marker targeted against key somatic, nuclear, dendritic and axonal 

proteins present in a mature neuron was also used to confirm differentiation. Some of 

these proteins would be present in an undifferentiated cell as they are of neuronal 

origin. However assuming differentiation confers a more neuronal phenotype, 

expression of these proteins will become increased upon differentiation. 

Undifferentiated cells displayed low levels of the Pan Neuronal maker which was 

localised to the nucleus and cytoplasm. After differentiation was completed, 

expression was markedly higher and expressed in vaster quantities in the nucleus, 

cytoplasm and newly formed neurites, confirming that differentiation using this 

protocol causes upregulation of key neuronal proteins.  

qPCR was then performed to observe the expression of 4 genes implicated in 

neuronal differentiation. These were; NES, NSE, MAPT and NG1. NES is a class VI 

intermediate filament protein which is important in cellular migration, cell cycle 

regulation and is a neural stem cell marker. NES has been shown to be down 

regulated when neuroepithelial stem cells differentiate into neurons and is expressed 

transiently in nerve cells as they undergo mitosis (Thomas et al. 2004). As cells 

differentiate NES expression decreases as it is replaced with tissue specific 

intermediate filaments such as glial fibrillary acidic protein (Thomas et al. 2004). In 

neuroblastoma elevated NES levels correlate with tumour aggressiveness and in 

antisense NES transfected cells; population doubling time is increased by 60% 

(Dahlstrand, Collins & Lendahl 1992; Thomas et al. 2004).  NES is known to be 

expressed in undifferentiated IMR32 and SH-SY5Y cell lines (Thomas et al. 2004; 

Mahller et al. 2009). Both cell lines experienced a reduction in NES expression that 

was significant compared to undifferentiated cells suggesting these intermediate 

filaments were replaced with other neurofilaments indicative of a termination of 

proliferation. NG1 encodes the protein Neurogenin1 which is a transcription factor 

which contributes to the initiation of neuronal differentiation and neurogenesis and as 

a consequence is highly expressed in the mature neuron and upon cellular 

differentiation (Constantinescu et al. 2007; McCormick et al. 1996). In both cell lines 

NG1 expression was increased compared to undifferentiated cells and was 

significantly increased in SH-SY5Y, further suggesting these cells had progressed to 
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mature neurons. NSE was also used as a marker of differentiation, which encodes the 

neuron specific enolase protein, an enzyme involved in glycolysis and it is the 

predominant enolase found in neural tissue and is only expressed in differentiated 

neurons (Constantinescu et al. 2007).  It has previously been shown to be upregulated 

in IMR32 and SH-SY5Y which have undergone differentiation (Cheung et al. 2009; 

Thomas, Hartley & Mason 1991). This was significantly increased in both cell lines 

after differentiation treatment suggesting differentiation had indeed occurred. The 

fourth marker of differentiation used was MAPT, which encodes the protein tau 

which is expressed in the distal portion of axons. Tau is a microtubule associated 

protein which acts to stabilise microtubules within axons, aid in axonal development 

and in transportation (Munoz-Montano et al. 1999). Due to the limited length of 

neurites in undifferentiated cells and the neurite growth that occurs with 

differentiation, tau expression has been shown to increase after differentiation in both 

cell lines (Munoz-Montano et al. 1999; Jamsa et al. 2004). It has also been reported 

that neuroblastoma cell lines lack mature isoforms of tau, however when they are 

differentiated tau expression increases significantly compared to undifferentiated 

cells reaching levels comparable to the human brain (Agholme et al. 2010). Both cell 

lines displayed a significant increase in MAPT expression, with over a 20 fold 

increase for IMR32 and 145 fold increase for SH-SY5Y. This amplification is 

explained by the observed increase in neurite length for both cell lines and tau being 

expressed in the distal portion of neurite extensions.  

Differentiation was accomplished to ensure accurate representation of an in vivo 

phenotype for future experimental procedures. To ensure validation cell morphology 

was observed and neurite extension was measured, which displayed a significant 

increase in differentiated cells. Using a Pan Neuronal marker and performing qPCR 

of 4 neuronal markers we confirmed that differentiation of these cells had occurred 

and that they were exhibiting a more neuronal phenotype whilst expressing increased 

neuronal proteins and could therefore be used as a more realistic neuronal model.  
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Chapter 4 

Expression and signalling characteristics of OXR and 

GPR103 in differentiated and undifferentiated IMR32 and 

SH-SY5Y cell lines 

 

4.1 Introduction 

Mitogen activated protein kinases (MAPK) are a superfamily consisting of three 

major groups, notably: extracellular-receptor kinases (ERK), p38 and stress-activated 

protein kinase/c-Jun kinase (SAPK/JNK). ERK is composed of two proteins: ERK1 

and ERK2, which share 83% sequence homology and are expressed in all tissues 

(Cruz, Cruz 2007). Activation of the ERK or ERK1/2 pathway is involved in 

proliferation, survival and metabolism (Roux, Blenis 2004). Ligand binding causes 

the small GTPase Ras to exchange a GDP for a GTP which leads to binding to Raf 

kinase resulting in its activation which can now phosphorylate proteins. Raf kinase 

phosphorylates MAP kinase kinases (MEK) 1 and 2. Upon ligand binding MEK 1 

and 2 become phosphorylated which then results in phosphorylation of ERK at two 

tyrosine and threonine residues and both must be phosphorylated for full activation 

of MEK and ERK (Cruz, Cruz 2007). ERK1/2 can then initiate its downstream 

effects. ERK is associated with cellular survival through activation of the cAMP 

response element binding protein (CREB) and the mammalian target of rapamycin 

(mTOR). CREB is important in activation of cell survival genes and also mTOR 

through translational control (Guo, Feng 2012). In a suprachiasmatic nucleus rat cell 

line which is resistant to the toxic effects of glutamate, treatment with an ERK 

inhibitor rendered them susceptible to toxicity of glutamate and thus shows that ERK 
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activation can negate neurotoxic effects (Karmarkar et al. 2011). This is of particular 

relevance as glutamate toxicity is an important hallmark of AD (Butterfield, 

Pocernich 2003; Greenamyre et al. 1988). ERK is also implicated in AD, as 

activation of CREB regulates genes involved in memory and synaptic plasticity (Liu 

et al. 2013). Deregulation of MAPK can be a contributing factor to brain 

degeneration as evidenced in mice with Aβ induced amnesia that experienced a 

reduction in ERK1/2 activation (Liu et al. 2013). 

ERK1/2 activation through OXRs has been most extensively studied in CHO cell 

lines over expressing OXR. However signalling mechanisms for OXR can vary by 

cell type and as OXs function mainly within the brain these systems may not be the 

best representation (Ammoun et al. 2006a; Hilairet et al. 2003). To our knowledge 

ERK1/2 signalling through OXRs and GPR103 has not been mapped in these human 

neuroblastoma cell lines.  

4.2 Objectives 

As previously shown, treating IMR32 and SH-SY5Y with differentiating agents 

induced changes in gene expression.  It was therefore necessary to confirm that the 

receptors of interest were still being expressed after differentiation had occurred 

using immunofluorescence and qPCR. Differentiated cells were then treated with 

100nM of OXA, OXB or QRFP to determine whether they activated ERK1/2 to 

assess the functionality of these receptors and thus potential roles in neuroprotection. 

Cells were also treated with these peptides in the presence of their receptor inhibitors 

to establish that any possible changes in ERK1/2 activation were indeed caused as a 

direct result of addition of the peptides and their specificity to the receptors. Changes 

in ERK1/2 were determined using western blot analysis. 

4.3 Results 

4.3.1 Immunofluorescence of differentiated and undifferentiated cells with 

OX1R, OX2R and GPR103 antibodies observe changes in their expression 

Differentiated and undifferentiated cells were seeded at 1x10
5
 on glass coverslips and 

were allowed to proliferate for 1 day. Immunofluorescence was then performed as 
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previously described. DAPI is a fluorescent dye which strongly binds to areas of 

DNA rich in adenine-thymine (A-T) regions allowing identification of the nucleus 

(Zink, Sadoni & Stelzer 2003). Tetramethylrhodamine (TRITC) and fluorescein 

isothiocyanate (FITC) are dyes capable of binding to a primary antibody and 

producing a fluorescent signal for detection using fluorescent microscopy (Johnson, 

Cushman & Malekzadeh 1990).  
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Figure 4.1: Immunostaining using an OX1R antibody in undifferentiated IMR32 and 

SH-SY5Y cells before and after differentiation. x40 magnification. Scale bar = 50μm. 
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Figure 4.2: Immunostaining using an OX2R antibody in undifferentiated IMR32 and 

SH-SY5Y cells before and after differentiation. x40 magnification. Scale bar = 50μm. 
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Figure 4.3: Immunostaining using a GPR103 antibody in undifferentiated IMR32 and 

SH-SY5Y cells before and after differentiation. x40 magnification. Scale bar = 50μm. 

 

 

Immunoflourescent analysis of IMR32 and SH-SY5Y revealed that before 

differentiation OX1R, OX2R and GPR103 were expressed throughout the cells. 

Following differentiation, immunostaining for OX1R and OX2R remained similar 

without any obvious changes in cellular distribution or intesnity. GPR103 however 

appeared to show an increase in immunoflourescent staining and appeared more 

widely distirbuted after differentiation. ImageJ was then used to quantify the 

flourescence intensity in a given area. 50 cells were quantified for each cell line and 

each antibody, before and after differentiation. The background flourescence was 

compensated for and the fold change between undifferentiated and diferentiated cells 

was calculated (Figure 4.4). This revealed an increase in all of the receptors in both 
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cell lines. Although IMR32 experienced an increase in receptors, it was not as 

pronounced as in SH-SY5Y but was significantly increased for OX2R and GPR103. 

SH-SY5Y cells revealed a significant increase in expression of all of the receptors 

compared to the undifferentiated control.  
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Figure 4.4: Immunoflourescent intensity was measured using ImageJ before and 

after differentiation and the fold change was calculated compared to the 

undifferentiated cells ±S.D. N=50 cells. Statistically significant differences of 

differentiated cells compared to undifferentiated cells were calculated by performing 

the paired students T- Test (p<0.01**, p<0.001***, p<0.0001****). 
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4.3.2 qPCR of differentiated and undifferentiated cell lines to observe gene 

expression changes in OX1R, OX2R and GPR103. 

qPCR was performed on the receptors of interest to confirm the previous 

immunofluorescence results and obtain a better quantitative representation at mRNA 

level. Primers as previously described were used for OX1R, OX2R and GPR103.  
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Figure 4.5: Graph representing gene expression changes of OX1R, OX2R and 

GPR103 after 20 days of IMR32 differentiation compared to undifferentiated 

samples. Results were obtained from 3 independent experiments ±S.D. Statistically 

significant differences of differentiated cells compared to undifferentiated cells were 

calculated using the paired students T test (p<0.05*). 
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Figure 4.6: Graph representing gene expression changes of OX1R, OX2R and 

GPR103 after 6 days of SH-SY5Y differentiation compared to undifferentiated 

samples. Results were obtained from 3 independent experiments ±S.D. Statistically 

significant differences of differentiated cells compared to undifferentiated cells were 

calculated using the paired students T test (p<0.05*, p<0.01**). 

 

The data revealed that in both cell lines expression of OX1R, OX2R and GPR103 

increased compared to undifferentiated cells (Figure 4.5 and 4.6). However in 

IMR32 for OX1R and OX2R, the changes were not significant indicating steady 

expression of receptors before and after differentiation. This is somewhat consistent 

with the immunofluorescence data which revealed minimal changes in OX1R, 

however showed a significant increase for OX2R. GPR103 was significantly 
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increased upon differentiation when measured by immunofluorescence at nearly a 2 

fold increase and qPCR with a 3 fold increase. Conversely SH-SY5Y cells 

experienced a significant increase in all receptors compared to undifferentiated cells 

in agreement with the immunofluorescence data. 

4.3.3 ERK1/2 activation in IMR32 and SH-SY5Y cells after OXA, OXB and 

QRFP treatment. 

To verify receptor functionality and confirm the activation of ERK1/2 in OXR and 

GPR103 signalling in mature neurons fully differentiated cell lines were treated with 

100nM OXA, OXB or QRFP for time points of up to an hour. Cells were also treated 

with antagonists to ensure that any changes in ERK1/2 were specific to the receptor. 

The antagonists used were: SB-334867 (SB) and TCS OX229 (TCS). SB is a 

selective OX1R antagonist and binds with 50x higher affinity compared to OX2R. 

The antagonist TCS has a selectivity for OX2R 250x that of OX1R. In CHO cells 

OXA has an IC50 of 20nM for OX1R and 38nM for OX2R. It is therefore necessary 

to inhibit the activity of both of these receptors to prevent the action of OXA though 

binding to OX2R when it is unable to bind to OX1R. OXB has an IC50 of 420nM for 

OX1R and 36nM for OX2R. So although it has a low affinity for OX1R, in the 

absence of OXA and presence of an OX2R antagonist it may bind in small quantities 

to OX1R which could exert an effect (Sakurai et al. 1998). Given that both receptors 

are highly expressed in these cell lines and because OXs can potentially activate both 

receptors it was decided to use a combination of both OXR inhibitors in an attempt to 

block the action of both GPCRs and thus demonstrate receptor specificity. These 

concentrations were deemed appropriate as they have already been demonstrated to 

inhibit OXRs at this concentration (Huang et al. 2010). Given that GPR103 exerts 

orexigenic activities and shows 48 and 47% amino acid homology with OX1R and 

OX2R respectively, cells were treated with QRFP and each of the antagonists 

individually (Jiang et al. 2003).  

For each treatment western blot analysis was performed using a phosphorylated 

ERK1/2 (p-ERK1/2) antibody and normalised to a total-ERK1/2 (t-ERK1/2) 

antibody. Blots were then analysed using ImageJ to quantify the optical densitometry 

(OD) of each band. Representative images of the blots are shown in figure 4.7. 
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Figure 4.8: Densitometric analysis of differentiated IMR32 cells using ImageJ, of p-

ERK1/2 protein normalised to t-ERK1/2 protein and displayed as OD units. Cells 

were treated with 100nM of OXA, OXB or QRFP for time points of up to an hour. 

Results were obtained from 3 independent experiments ±S.E.M. Statistically 

significant differences of treated cells compared to untreated cells were calculated 

using the paired student T test (p<0.05*). 
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Figure 4.7: Representation of western blots probed with p-ERK1/2 and t-

ERK1/2 antibodies.  
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IMR32 treatment of cells with OXA and OXB separately, revealed an increase in p-

ERK1/2 from 5 to 10 minutes (Figure 4.8) and from 20 minutes there was an 

increase compared to control but it was less substantial than at 10 minutes. QRFP 

revealed a steady increase in p-ERK1/2 over the hour.  OXA and OXB induced a 

similar degree of p-ERK1/2 activation; however QRFP induced much higher and 

sustained levels of activation than OX. 
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Figure 4.9: Densitometric analysis of differentiated SH-SY5Y cells using ImageJ, 

of p-ERK1/2 protein normalised to t-ERK1/2 protein and displayed as OD units. 

Cells were treated with 100nM of OXA, OXB or QRFP for time points of up to an 

hour. Results were obtained from 3 independent experiments ±S.E.M. Statistically 

significant differences of treated cells compared to untreated cells were calculated 

using the paired student T test (p<0.05*, p<0.01**). 

 

For SH-SY5Y the pattern was slightly different compared to IMR32, as all three 

agonists induced a steady increase in p-ERK1/2 over the 60 minutes. However after 

20 minutes, OXB induced more activation than OXA and this continued until 60 

minutes (Figure 4.9). QRFP exhibited a steady increase in p-ERK1/2 over 60 
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minutes, however after 20 minutes the activation plateaued and remained steady until 

60 minutes. The increase in activation was significant compared to the basal levels at 

30 and 60 minutes.  
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Figure 4.10: Densitometric analysis of differentiated IMR32 cells using ImageJ, of 

p-ERK1/2 protein normalised to t-ERK1/2 protein and displayed as OD units. Cells 

were treated with 100nM of OXA, OXB or QRFP in the presence of the OXR 

antagonists SB and TCS, for time points of up to an hour.  Results were obtained 

from 2 independent experiments ±S.E.M. 
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Figure 4.11: Densitometric analysis of differentiated SH-SY5Y cells using ImageJ, 

of p-ERK1/2 protein normalised to t-ERK1/2 protein and displayed as OD units. 

Cells were treated with 100nM of OXA, OXB or QRFP in the presence of the OXR 

antagonists SB and TCS, for time points of up to an hour. Results were obtained 

from 2 independent experiments ±S.E.M. 

 

The use of OXR antagonists in these experiments revealed specificity for the 

receptors and that OXA and OXB induced p-ERK1/2 increases were blocked by the 

use of both of the antagonists together. This inhibition of the receptors was 

maintained across all of the time points. QRFP treatment of the cells with the 

antagonists individually revealed an inhibition of QRFP signaling across all of the 

time points. The same was true in both cell lines, although slight deviation from the 

basal control, the changes were negligible for all treatments (Figure 4.10 and 4.11). 

4.5 Results and discussion 

As previously described the differentiation process used in both IMR32 and SH-

SY5Y results in genotype changes and OXR and GPR103 signalling has not yet been 

mapped in these cell lines at this stage. It was therefore necessary to confirm that 

OXR and GPR103 were still being expressed and thus the effects of these receptors 

could be monitored. Confirmation was achieved by examining expression at gene 

and protein level through immunofluorescence and qPCR. IMR32 OX1R 



 

 

      

 

87 
 

immunofluorescent expression appeared to remain consistent after differentiation and 

this was confirmed with ImageJ analysis of cells revealing that fluorescence in 

differentiated cells was 1.09 fold higher than in undifferentiated cells. qPCR analysis 

revealed a 1.5 fold increase in expression corroborating a slight increase. OX1R 

expression in SH-SY5Y cells appeared more intense upon differentiation and 

fluorescent analysis revealed a 1.89 fold significant increase after differentiation, 

although qPCR revealed a 5 fold significant increase compared to undifferentiated 

cells. Importantly, both analyses where in agreement with an increase in expression 

at gene and protein level. OX2R expression by immunofluorescence increased 

significantly after differentiation and fluorescence analysis revealed a 1.3 fold 

increase in differentiated cells, which corroborates with the qPCR data which 

revealed no change in expression. However for SH-SY5Y fluorescence intensity of 

OX2R showed a significant increase of 1.8 fold compared to undifferentiated cells 

and qPCR suggested there was a 3 fold significant increase. GPR103 fluorescence 

for both cell lines was noticeably upregulated from their undifferentiated 

counterparts. IMR32 revealed a 1.7 fold increase and SH-SY5Y a 2.5 fold increase in 

fluorescence intensity which correlates with the increase in expression as evidenced 

by qPCR of significant increases of 3 fold in IMR32 and 6 fold in SH-SY5Y. This 

discrepancy in data may be explained by qPCR examining a larger body of cells and 

being far less subjective than measuring fluorescent intensity. It must also be noted 

that changes at gene level do not necessarily manifest themselves as an exact 

representation at protein level and gene changes may take longer to become apparent 

at protein level as mRNA is translated into protein. GPCRs are synthesised at the 

endoplasmic reticulum (ER). Assembled receptors are then transported in ER-

derived vesicles to the ER-golgi intermediate complex, the golgi apparatus and then 

the trans-golgi network (Duvernay, Filipeanu & Wu 2005). It is during this process 

where post-translation modification occurs. Receptors finally migrate to the plasma 

membrane where they can become fully functional. GPCRs can be internalised and 

recycled back to the membrane or degraded by lysosomes. This balance of export, 

endocytosis and degradation dictates the amount of receptor expressed at the 

membrane and the effect ligand binding will elicit (Duvernay, Filipeanu & Wu 

2005). This GPCR trafficking may explain the vast distribution seen in the 
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fluorescence intensities of the OXRs and GPR103. As some of the expression will be 

on the plasma membrane as receptors are functional, but some may be cytoplasmic 

as receptors are being transported to the membrane or being recycled. It was 

previously shown that differentiation treatment of these cells caused changes in a 

plethora of genes it stands to reason that the genes of interest may also be subject to 

the same variations. Immunofluorescence and qPCR indicated stable expression of 

OXRs and GPR103 in both cell lines after differentiation and thus suitability for in 

vitro experiments examining the effects of OX and GPR103. 

The majority of OXR G protein studies have been performed in CHO cells, which 

may be limited in its elucidation as the mechanisms do not necessarily translate to 

neuronal OX signalling. OXR activation causes activation of PLC through its 

coupling to the G protein Gq. This leads to catalysis of the breakdown of PIP2 to IP3 

and DAG. IP3 causes calcium release from intracellular stores which activates PKC 

(Willie et al. 2001; Smart et al. 1999). Calcium and PKC allow the opening of 

voltage gated calcium channels which stimulates a calcium influx and results in 

membrane depolarisation (Yan et al. 2008, Ozcan et al. 2010) . Studies have shown 

that OX1R in BIM cells (a nerve like cell line) did not couple to pertussis toxin 

sensitive G proteins, however OX2R did couple to them and thus means that it can 

also couple to the inhibitory G proteins Gi/o. This Gi/o coupling will result in a 

potassium efflux and cell membrane hyperpolarisation, contradictory to the 

depolarisation incurred by coupling to Gq (Zhu et al. 2003; Beuckmann, Yanagisawa 

2002; Spinazzi et al. 2006).  Although OXR signalling has been studied extensively 

in some cell lines there is much less data regarding the brain. In a rat brain stem 

OXRs couple to Gi/o and in the rat hypothalamus to Gs and Gq. However it has been 

shown that OXRs are very promiscuous and differentially couple to G proteins in 

different tissues (Karteris et al. 2005). It has also been shown in CHO overexpressing 

OXR that the ERK pathway is activated upon agonist stimulation (Ammoun et al. 

2006a; Guo, Feng 2012). In H295R (a human adrenocortical cell line) the ERK 

pathway was partially activated through AC when treated with OXA and OXB 

possibly through coupling to Gs and also through Gq coupling to hydrolyse PIP2 into 

DAG and IP3 leading to PKC activation and thus ERK activation (Ramanjaneya et al. 
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2009). PKC inhibition in the cell line prevents any OXA mediated ERK 

phosphorylation (Wenzel et al. 2009). In cultured rat astrocytes PKC inhibitors 

prevented ERK1/2 phosphorylation suggesting that in a neuronal model ERK1/2 

phosphorylation is achieved through the PLC-PKC pathway (Shu et al. 2014). Here 

we reveal that activation of OXRs through agonists induce ERK phosphorylation.  

For all 3 peptides in both cell lines, p-ERK1/2 increased compared to the control 

over the 60 minutes. In IMR32 OXA and OXB elicited an increase in ERK activation 

with a peak at 10 minutes and a decrease until 60 minutes, whilst still remaining 

above basal levels. In H295R cells OXA and OXB activation of the ERK pathway 

displayed a significant increase at 10 minutes with a continual reduction until 60 

minutes; this is in line with what has been observed in CHO stably overexpressing 

OXR and with what we observed in IMR32 (Ammoun et al. 2006a; Ramanjaneya et 

al. 2009). SH-SY5Y cells demonstrated the same increase in p-ERK1/2 as IMR32; 

however for all 3 peptides the effect was prolonged and did not peak and fall as in 

IMR32. After 20 minutes OXB elicited a stronger response than OXA which is 

concurrent with what was seen in IMR32. The continual increase in ERK activation 

in SH-SY5Y cells compared to the decrease after 10 minutes in IMR32 may be as a 

result of cell line differences. One possible mechanism for reduced ERK activation 

after 10 minutes in IMR32 is β-arrestin association and subsequent internalisation, in 

SH-SY5Y cells there may not be the same mechanism. At a concentration of 100nM 

OXA would bind to both OX1R (IC50 20nM) and OX2R (IC50 38nM) (Sakurai et 

al. 1998). It has been shown that in COS-7 or HEK293 cells stably transfected with 

OXRs, following OXA treatment after 20 minutes there was only 80% surface 

expression of OX1R and 40% expression of OX2R compared to no treatment 

(Dalrymple et al. 2011). β-arrestins are proteins which interact with most GPCRs  

and result in the desensitisation of the GPCRs, as this association causes 

internalisation of the receptor complex. After internalisation the receptor may 

become re-sensitised through dephosphorylation of the receptor complex so that it is 

recycled back to the membrane or alternatively it is targeted by late endosomes for 

degradation (Dalrymple et al. 2011; Evans et al. 2001). OXRs have been shown 

through GFP-tagging and bioluminescence resonance energy transfer (BRET) 
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analysis to strongly associate with β-arrestins; which facilitate its internalisation 

(Dalrymple et al. 2011; Evans et al. 2001). Due to ligand binding and subsequent 

internalisation by β-arrestins, there may be lower cell surface expression of receptors 

and this may result in reduced ERK activation due to lack of functional receptors. 

This could account for the effects of both OXA and OXB eliciting a strong response 

up to 10 minutes and after this prompting a lesser response in IMR32. β-arrestin and 

OXR associations have not been determined in these neuronal models and thus 

association of it between the 2 different cell lines is not known. It may also be as a 

result of differences in receptor expression between the 2 cell lines. If receptor 

expression is high enough as a result of increased starting expression or differences 

in β-arrestin mediated internalisation there will be an abundance of other receptors 

for the peptide to bind to and initiate an effect and hence increased p-ERK1/2 over 

60 minutes. Another explanation for the differences observed in the cell lines could 

be sex related. IMR32 is a male cell line and SH-SY5Y a female cell line. It has been 

reported that OX elicits stronger effects in female mice as opposed to male mice 

because female mice experience increased obesity in transgenic models of 

narcolepsy as well as increased immunoreactivity of OX neurons during fasting 

(Fujiki et al. 2006; Funabashi et al. 2009). Female rats express higher quantities of 

OXA and OX1R in the hypothalamus than male rats, but in the adrenal gland OXR 

expression is higher in male rats (Johren et al. 2001; Taheri et al. 1999). Although 

some data in female cell lines suggests a trend of rapid ERK1/2 activation followed 

by a prolonged decrease upon OXA and OXB addition, like we demonstrate in 

IMR32 but these studies have not been performed in human cell lines or even 

neuronal cell lines (Guo, Feng 2012; Ramanjaneya et al. 2009). Thus receptor and 

peptide expression may have different signalling characteristics and may not be 

subject to the same sex differences that have been shown to occur in the brain.  

QRFP treatment however showed a large increase in ERK activation, higher than that 

induced by OXA and OXB and it was sustained over the 60 minute time period in 

both cell lines. This may be as a result of increased availability of receptors which 

allows for increased ERK activation. The sustained activation induced by QRFP is 

difficult to dissect as there is no data on β-arrestin association. It is possible that if 
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there is any internalisation it occurs later than 60 minutes, is less pronounced than for 

the OXRs or GPR103 does not associate with β-arrestins. High receptor expression 

may also explain the prolonged increase in ERK activation allowing a continual 

increase in p-ERK1/2 over 60 minutes in both cell lines regardless of any β-arrestin 

association. If the receptor expression is high enough when receptors become 

internalised, QRFP may bind to the other receptors which have not yet been 

internalised resulting in the gradual increase in p-ERK1/2. 

Treatment with OXR and GPR103 peptides with their respective antagonists was 

performed to determine that it was the agonists which caused increased p-ERK1/2. 

Indeed IMR32 and SH-SY5Y p-ERK1/2 showed insignificant fluctuations across all 

time points. This shows that previous increases of p-ERK1/2 due to treatment of 

OXA and OXB is negated by addition of selective OX1R and OX2R antagonists and 

thus p-ERK1/2 increases can be attributed to an activation of the receptors by OXA 

and OXB binding. QRFP interestingly, was inhibited in both cell lines by both 

antagonists individually. There is no data published on the use of OXR antagonists 

and its action on GPR103, however GPR103 is 47 and 48% similar to OX1R and 

OX2R respectively and we show here that both antagonists are capable of blocking 

ERK1/2 activation (Jiang et al. 2003). OXRs can function as homo or hetero-dimers 

(Xu et al. 2011; Wang et al. 2013). Although the dimerisation status of GPR103 is 

not known, GPCRs are known to form dimers and due to its involvement in the 

orexigenic system it is possible that it forms a cross-talk with the OXRs, hence 

antagonistic activity on the OXRs could lead to a halting of any activity incurred 

through its potential to cross-talk with GPR103 (Milligan et al. 2003). 

We demonstrate here that neuronal differentiation of IMR32 and SH-SY5Y results in 

increased expression of OX1R, OX2R and GPR103 as evidenced through 

immunofluorescence and qPCR and that they are functional receptors which increase 

p-ERK1/2 levels within each cell line. Antagonists for the receptors prevented 

activation of OX1R and OX2R by the OXA and OXB peptides but also GPR103 

through the QRFP peptide suggesting potential cross-talk mechanisms between 

GPR103 and OXRs. 
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Chapter 5 

Microarray analysis of differentiated SH-SY5Y cells treated 

with 100nM OXA, OXB and QRFP 

 

5.1 Introduction 

A gene microarray is capable of observing transcript expression in a sample on a 

mass scale. It involves RNA extraction and cDNA production, which is then labelled 

with a fluorescent dye and hybridised to an array containing primer sequences for 

potentially thousands of genes. The intensity of the fluorescent dye is then measured 

to determine relative abundance when compared to a control sample (Kogenaru et al. 

2012). We used a 12x 135k Nimblegen array which consists of 60mer 

oligonucleotide probes, 135,000 features on each array and includes multiple probes 

per target and is capable of running 12 independent samples on each slide. This array 

targets 44,049 genes and uses 3 probes for each target gene.   

To date the effect of OX/QRFP on the entire human genome is not known. It is for 

this reason we performed a non-biased screen to examine the effects of OXA, OXB 

and QRFP on the human genome. This will allow identification of genes and 

pathways important in OXA, OXB and QRFP signalling.  

5.2 Objectives 

To the best of our knowledge, a microarray has not been performed on 

neuroblastoma cell lines treated with the OX or QRFP peptides. Little is known 

about the effects on gene expression incurred by these peptides, especially for QRFP. 

Using a fully differentiated neuronal cell line: SH-SY5Y, we determined the effects 
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at gene level of the neuronal peptides: OXA, OXB and QRFP and identified the most 

important pathways involved.  

5.3 Results 

SH-SY5Y cells were used for this microarray as it has been extensively studied with 

regards to both AD and OX. SH-SY5Y cells that were neuronally differentiated and 

treated with 10µM of RA for 6 days followed by 24 hour treatments with 100nM of 

OXA, OXB or QRFP. Experiments were performed as 3 independent experiments 

and RNA was extracted using a Qiagen RNeasy miniprep kit. The extracted RNA 

was quality verified on a 2100 expert Agilent bioanalyzer to confirm that all samples 

had an RNA yield greater than 30µg and RIN values above 9. This RNA was then 

hybridised to a 12x 135k Nimblegen array. The array slide was scanned at 3µM on 

an InnoScan 700 microarray scanner and converted into TIFF images using MAPIX 

version 5.1 software. The TIFF images were then aligned to their Nimblegen design 

files and converted into probe intensity values using the Nimblegen DEVA software. 

This data was then Loess normalised using R statistical program and then quintile 

normalised for array variation using DNAstar with the assistance of Dr. Ryan Pink 

(Oxford Brookes University). Values which had a p-value derived from the unpaired 

student T test of less than 0.05 compared to the control and with a fold change 

compared to the control more than 1.5 or less than 0.5 were included, all others were 

discounted as displaying no significance. qPCR was performed to validate the data 

obtained by microarray using 8 genes , the primer sequences of which are in table 

2.4. 
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Figure 5.1: Heat map of neuronally differentiated SH-SY5Y cells treated with 

100nM OXA, OXB or QRFP for 24 hours. Intensities of expression are shown in this 

heat map with red indicating more intense expression than blue. A dendrogram is 

displayed to the left of the map which shows hierarchical clustering based upon the 

similarity of genes. 

 

Figure 5.1 demonstrates the heat map generated by this microarray experiment. Each 

spot represents a gene and the colour represents the expression within that sample. 

The intensity of each spot is measured and assigned a value and compared to the 

control value. This allows a relative expression compared to the control.  
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Figure 5.2: Venn diagram demonstrating the number of genes with over 1.5 or 

below 0.5 fold expression compared to a control. RNA was obtained from 3 

independent experiments and only genes with a p value less than 0.05 when 

compared to the control were included. 

 

Figure 5.2 represents the number of gene changes for each peptide individually and 

the commonalities of the different treatments in a Venn diagram.  OXA had the 

smallest number of gene changes at only 346, OXB had more at 715 and QRFP had 

over 2000. Between all three treatments there were 69 genes that were regulated in a 

similar fashion. 

Microarray data was analysed though Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) pathways and Gene Ontology (GO) terms. The KEGG database allows 

amalgamation of genes to assign pathways involving multiple gene associations. This 

allows identification of the most likely pathways involved with a given gene list. 
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Based on the gene list GO terms were assigned to each peptide treatment using the 

ToppGene software. GO terms provide an ontology of distinct terms representative 

of a collection of gene properties. GO terms are assigned according to three domains: 

cellular component, molecular function or biological process. Cellular component 

ontology involves the location of subcellular structures and macromolecule 

complexes. The molecular function GO terms designates functions like catalytic or 

binding sites at molecular level. Molecular function GO terms can include more 

specific genes and functions that may involve only a few genes or larger more 

complex functions encompassing several genes. The biological process GO terms are 

the series of events achieved by ordered assemblies of molecular functions. These 

can include specific functions or broader processes including signal transduction 

(Gene Ontology Consortium 2008, Anonymous).  

OXA treatment resulted in the change of 346 genes using the KEGG pathway. Table 

5.1 highlights the pathways involved including more than 3 genes affected. 
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KEGG pathway 
Number of 

genes involved 
Genes involved 

Metabolic pathways 8 PTGES, NAGLU, LALBA, GCDH, 

FTCD, DLST, ALOX12B 

Neuroactive ligand-receptor 

interaction 
7 GALR3, GRIN1, HRH4, HTR4, 

PTGER1, SSTR3, VIPR1 

MAPK signalling pathway 5 FGFR4, IL1B, MAP3K14, MAPT, 

RASGRP1 

NF-KB signalling pathway 5 BTK, IL1B, MAP3K14, SYK, 

TNFAIP3 

TNF signalling pathway 4 EDN1, IL1B, MAP3K14, TNFAIP3 

Osteoclast differentiation 4 BTK, IL1B, MAP3K14, SYK 

PI3K-Akt signalling pathway 4 FGFR4, GNG13, SYK, TSC1 

Cytokine-cytokine receptor 

interaction 
4 

CCR8, IL1B, IL8RA, TNFRSF19 

 

Ras signalling pathway 4 FGFR4, GNG13, GRIN1, 

RASGRP1 

Glutamatergic synapse 3 DLGAP1, GNG13, GRIN1 

Chemokine signalling pathway 3 CCR8, GNG13, IL8RA 

Calcium signalling pathway 3 GRIN1, HTR4, PTGER1 

Alzheimer's disease 3 GRIN1, IL1B, MAPT 

Serotonergic synapse 3 ALOX12B, GNG13, HTR4 

 

Table 5.1: KEGG pathways associated with OXA treatment in SH-SY5Y 

 

OXA only involved molecular function GO terms, represented in figure 5.3. 

 

Figure 5.3: GO terms for OXA treatment in SH-SY5Y 

 

715 genes changed regulation upon OXB addition. Only KEGG pathways involving 

4 or more genes are illustrated in table 5.2 
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KEGG pathway Number of genes involved Genes involved 

Metabolic pathways 16 

THTPA, SDS, PTGES2, 

PPOX, PLCG2, PIGO, IVD, 

GPT, FUK, CSAD, 

B3GAT3, AUH, ALG10, 

AKR1A1, AGXT, ACAA1 

PI3K-Akt signalling pathway 10 
CCND3, CSF3R, DDIT4, 

EPO, FGFR4, GNG13, 
ITGA3, JAK2, LAMB2, SYK 

Neuroactive ligand-receptor 

interaction 
10 

AVPR1B, CHRND, 

CRHR1, DRD3, GRM4, 

HTR4, NMUR1, P2RY6, 

PTGER1, SSTR3 

Pathways in cancer 8 
CSF3R, HHIP, ITGA3, 

KLK3, LAMB2, PLCG2, 

STAT5A, WNT11 

Jak-STAT signalling pathway 7 
CCND3, CSF2RB, CSF3R, 

EPO, IL22RA1, JAK2, 

STAT5A 

Biosynthesis of secondary 

metabolites 
6 ACAA1, AGXT, AKR1A1, 

DHDDS, PPOX, SDS 

Cytokine-cytokine receptor 

interaction 
6 CCR10, CSF2RB, CSF3R, 

EPO, IL22RA1, TNFSF14 

Calcium signalling pathway 5 AVPR1B, CACNA1C,  

HTR4, PLCG2, PTGER1 

Vascular smooth muscle 

contraction 
5 

ADCY6, AVPR1B, 

CACNA1C, PPP1R12C, 

PRKCD 

Glutamatergic synapse 5 ADCY6, CACNA1C, 

GNG13, GRM4, SLC1A6 

Peroxisome 5 ABCD4, ACAA1, AGXT, 

PECR, SLC27A2 

Cholinergic synapse 5 ADCY6, CACNA1C, 

GNG13, JAK2, KCNQ2 

Ras signaling pathway 4 FGFR4, GNG13, PLCG2, 

RASA4 

Chemokine signalling 

pathway 
4 ADCY6, CCR10, GNG13, 

JAK2 

Focal adhesion 4 CCND3, ITGA3, LAMB2, 

PPP1R12C 

Cell adhesion molecules 4 CD2, CD8B, LRRC4, 

PTPRF 

HIF-1 signalling pathway 3 EPO, PLCG2,TF 

Alzheimer’s disease 1 CACNA1C 

 

Table 5.2: KEGG pathways associated with OXB treatment in SH-SY5Y 

http://www.genome.jp/kegg-bin/show_pathway?139670630215745/ko04066.args
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OXB involved molecular function and biological process GO terms. Figure 5.4 

illustrates the molecular function and biological process GO terms assigned to OXB 

addition.  

 

 

 

Figure 5.4: GO terms for OXB treatment in SH-SY5Y 
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Treatment of SH-SY5Y cells incurred changes in 2056 genes upon QRFP treatment. 

Table 5.3 demonstrate KEGG pathways involving 6 or more genes. 

KEGG pathway Number of genes involved Genes involved 

Neuroactive ligand-receptor 

interaction 

26 

 

ADRA1A, ADRA1B, 

AVPR2, CHRM5, CHRND, 

DRD3, GALR3, GCGR, 

GHRHR, GHSR, GLRA1, 

GRM4, GZMA, HCRTR1, 

HRH1, HRH3, MC3R, 

OPRM1, P2RX1, P2RX3, 

P2RX7, P2RY11, SSTR3, 

SSTR4, TBXA2R, TSHR 

Metabolic pathways 24 

ABO, ACAA1, ALG10, 

ALOX12, 

ALOX12B, ALOX15, 

ALOX15B, CYP4A11, 

CYP4F8, DPYS, EHHADH, 

FAHD1,  FLAD1, FUK, 

IDUA, LTC4S, MVD, 

NDUFS7, 

NNMT, PCYT2, PKLR, 

PLCG2, PRODH, SDS 

Cytokine-cytokine receptor 

interaction 
21 

CCL20, CCL3, CCL4, CCL5, 

CCR4, CSF2, CSF2RB, 

CSF3, CSF3R, EPO, IL11, 

IL17E, IL21, IL22, IL3RA, 

IL6, PDGFB, TNFSF14, 

TNFSF15, TNFSF18, XCR1 

Calcium signalling pathway 19 

ADRA1A, ADRA1B, 

CACNA1A, CACNA1B, 

CACNA1I, CACNA1H, 

CHRM5, ERBB2, ERBB3, 

GNA14, HRH1, ITPR1, 

P2RX1, P2RX3, P2RX7, 

PLCG2, PLN, RYR3, 

TBXA2R 

PI3K-Akt signalling pathway 16 

BCL2L11, CCND3, CHAD, 

CSF3, CSF3R, EPO, FGFR4, 

IL3RA, IL6, INS, ITGA11, 

ITGB4, JAK3, LAMC3, 

MYB, PDGFB 

Jak-STAT signalling 

pathway 
14 

CCND3, CSF2, CSF2RB 

CSF3, CSF3R, EPO, IL11, 

IL21, IL22, IL3RA, IL6, 

JAK3, SOCS5, STAT5A 

Hematopoietic cell lineage 
 

14 

CD2, CD34, CD37, CD4, 

CD8A, CD8B, CSF2, CSF3, 

CSF3R, EPO, GP9, IL11, 

IL3RA, IL6 
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HTLV-I infection 14 

ATF3, CCND3, CSF2, E2F1, 

FZD3, IL6, JAK3, MYB, 

NRP1, PCAF, PDGFB, 

STAT5A, TERT, XBP1 

Pathways in cancer 13 

ARNT, CSF3R, E2F1, 

ERBB2, FZD3, IL6, KLK3, 

LAMC3, PAX8, PDGFB, 

PLCG2,STAT5A, STK4 

MAPK signalling pathway 13 

CACNA1A, CACNA1B, 

CACNA1H, CACNA1I, 

CACNA2D3, CACNB2, 

CACNG5, FGFR4, MAP3K5, 

MEF2C, PDGFB, STK3, 

STK4 

Regulation of actin 

cytoskeleton 
11 

CHRM5, FGD3, FGFR4, 

GRLF1, INS, ITGA11, 

ITGB4, MYL2, 

MYL5, MYL9, PDGFB 

Proteoglycans in cancer 11 

ERBB2, ERBB3, FZD3, 

GAB1, GPC3, HSPB2, 

HSPG2, ITPR1, NUDT16L1, 

PLCG2, TIMP3 

Focal adhesion 11 

CCND3, CHAD, ERBB2, 

GRLF1, ITGA11, ITGB4, 

LAMC3, MYL2, MYL5, 

MYL9, PDGFB 

Ras signalling pathway 9 
FGFR4, GAB1, INS, PDGFB, 

PLCG2, RASA4, RASAL2, 

REL, STK4 

Chemokine signalling 

pathway 
9 

CCL20, CCL3, CCL4, CCL5, 

CCR4, FGR, HCK, JAK3, 

XCR1 

Maturity onset diabetes of the 

young 
8 

FOXA2, INS, NKX2, 

NR5A2, PAX4, PAX6, 

PKLR, TCF1 

MicroRNAs in cancer 8 
BCL2L11,E2F1, ERBB2, 

ERBB3, FZD3, PDGFB, 

PLCG2, TIMP3 

Serotonergic synapse 8 

ALOX12, ALOX12B, 

ALOX15, 

LOX15B, CACNA1A, 

CACNA1B, ITPR1, KCNJ5 

Transcriptional misregulation 

in cancer 
8 CEBPE, CSF2, GZMB, IL6, 

MEF2C, MPO, PAX8, REL 

ECM-receptor interaction 8 
CD47, CHAD, GP6, GP9, 

HSPG2, ITGA11, ITGB4, 

LAMC3 

Salivary secretion 7 
ADRA1A, ADRA1B, AQP5, 

CAMP, FXYD2, ITPR1, 

RYR3 
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Non-alcoholic fatty liver 

disease 
7 

BCL2L11, IL6, INS, 

MAP3K5, NDUFS7, PKLR, 

XBP1 

Biosynthesis of secondary 

metabolites 
7 

ACAA1, ACOT7, MVD, 

NAGK, PDSS2, PRODH, 

SDS 

Arachidonic acid metabolism 7 
ALOX12,ALOX12B, 

ALOX15, ALOX15B, 

CYP4A11, CYP4F8, LTC4S 

Primary immunodeficiency 7 AIRE, BLNK, BTK, CD4, 

CD79A, CD8A, CD8B 

Cell adhesion molecules 7 CD2, CD34, CD4, CD8A, 

CD8B, MAG, SDC3 

Natural killer cell mediated 

cytotoxicity 
6 

CSF2, GZMB, NCR2, NCR3, 

PLCG2, SH3BP2 

 

Arrhythmogenic right 

ventricular cardiomyopathy 
6 

CACNA2D3, CACNB2, 

CACNG5, ITGA11, ITGB4, 

LMNA 

HIF-1 signalling pathway 6 ARNT, EPO, ERBB2, IL6, 

INS, PLCG2 

Protein processing in 

endoplasmic reticulum 
6 

DNAJC1, MAP3K5, 

MBTPS2, PPP1R15A, SSR1, 

XBP1 

Complement and coagulation 

cascades 
6 

C1QA, C2, F3, PROC, 

SERPINF2, 

THBD 

Dopaminergic synapse 6 
CACNA1A, CACNA1B, 

DRD3, ITPR1, KCNJ5, 

PPP1R1B 

Inflammatory mediator 

regulation of TRP channels 
6 

ALOX12,HRH1, ITPR1, 

PLCG2, PRKCD, TRPV4 

 

Glutamatergic synapse 6 CACNA1A, GRM4, ITPR1, 

SLC1A1, SLC1A6, SLC1A7 

TNF signalling pathway 6 CCL20, CCL5, CSF2, IL6, 

MAP3K5, MMP14 

Rheumatoid arthritis 6 CCL20, CCL3, CCL5, CSF2, 

IL11, IL6 

ABC transporters 6 ABCA1, ABCA5, ABCB9, 

ABCD4, ABCG1, ABCG2 

Cardiac muscle contraction 6 
CACNA2D3, CACNB2, 

CACNG5, FXYD2, MYL2, 

MYL3 

Cholinergic synapse 6 
CACNA1A, CACNA1B, 

CHRM5, ITPR1, KCNQ4, 

KCNJ4 

NF-kappa B signalling 

pathway 
5 BLNK, BTK,CCL4,PLCG2, 

TNFSF14 

http://www.genome.jp/kegg-bin/show_pathway?139670700827848/ko04064.args
http://www.genome.jp/kegg-bin/show_pathway?139670700827848/ko04064.args
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Alzheimer’s disease 3 ITPR1, NDUFS7, RYR3 

 

Table 5.3: KEGG pathways associated with QRFP treatment in SH-SY5Y 

 

QRFP treatment involved molecular function, biological process and cellular 

component GO terms. These are demonstrated in figure 5.5. 
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Figure 5.5: GO terms for QRFP treatment in SH-SY5Y 

Representations of the genes involved upon OXA, OXB and QRFP addition in the 

specific KEGG pathways of: Alzheimer’s disease, NF-KB and MAPK are illustrated 

in figures 5.9-11.
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Figure 5.6: KEGG pathway illustration demonstrating genes involved in the Alzheimer’s disease pathway as a result of OXA, OXB or QRFP 

treatment. Genes involved with OXA are shown in purple, OXB in red and QRFP in yellow. 
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Figure 5.7: KEGG pathway illustration demonstrating genes involved in the NF-KB pathway as a result of OXA, OXB or QRFP treatment. 

Genes involved with OXA are shown in purple, QRFP in yellowand OXA & QRFP in green. 
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Figure 5.8: KEGG pathway illustration demonstrating genes involved in the MAPK signalling pathway as a result of OXA, OXB or QRFP 

treatment. Genes involved with OXA are shown in purple, QRFP in yellow, OXB and QRFP in pink and OXA, OXB & QRFP in blue. 
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The microarray was validated using qPCR to confirm changes in expression for 8 genes. 

These genes were picked at random from the list of genes that were common between all 3 

peptide treatments. These included: CSTF2T, DAB2IP, GPR148, KRT23, OSBPL7, PYCRL, 

ZFP4 and ZP1. CSTF2T is a cleavage stimulation factor and although its function is 

ambiguous it is thought to be involved in meiosis (Dass et al. 2002). DAB2IP is a GTPase-

Activating Protein (GAP) that functions as a tumour suppressor gene and is methylated and 

subsequently inactivated in prostate and breast cancers (Yano et al. 2005). GPR148 encodes a 

GPCR expressed in the brain and testes although its exact function is not yet known 

(Dharmadhikari et al. 2012). KRT23 encodes a keratin protein which is highly expressed in 

colon adenocarcinomas and may be associated with reduced cell viability (Birkenkamp-

Demtroder et al. 2013). OSBPL7 is a cytosolic high affinity receptor for oxysterols which are 

oxygenated derivatives of cholesterol and thought to be involved in breast cancer metastasis 

but its functions remain unclear (Silva, Beckedorf & Bieberich 2003; Loilome et al. 2012).  

PYCRL is a pyrroline-5-carboxylate reductase which is involved in proline synthesis from the 

conversion of ornithine to proline (De Ingeniis et al. 2012). ZFP42 encodes a zinc finger 

protein which functions as a DNA-binding transcription factor and is a marker for 

pluripotency and maintains a pluripotent state (Kim et al. 2011; Shi et al. 2006). ZP1 encodes 

a glycoprotein which comprises the zona pellucid in the human egg and facilitates sperm 

binding (Ganguly et al. 2010). Table 5.4 illustrates the fold change compared to the control 

obtained in the microarray and the results obtained by qPCR for the same genes. The qPCR 

data correlated with the microarray data and all genes that observed a decrease or an increase 

compared to the control in the microarray showed the same change by qPCR. 
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Treatment OXA OXB QRFP 

Gene 
Microarray 

value 

qPCR 

value 

Microarray 

value 

qPCR 

value 

Microarray 

value 

qPCR 

value 

CSTF2T 2.41 
1.42 

±0.25 
2.07 

1.64 

±0.05 
2.58 

1.48 

±0.17 

DAB2IP 1.60 
1.38 

±0.42 
2.06 

4.32 

±0.51 
2.15 

2.24 

±0.30 

GPR148 0.48 
0.97 

±0.52 
0.43 

0.39 

±0.11 
0.47 

0.66 

±0.12 

KRT23 0.39 
0.49 

±0.09 
0.33 

0.80 

±0.02 
0.41 

0.63 

±0.17 

OSBPL7 1.50 
1.81 

±0.15 
1.58 

2.02 

±1.01 
1.75 

2.01 

±0.73 

PYCRL 2.02 
1.39 

±0.16 
1.86 

1.59 

±0.48 
2.30 

3.03 

±0.30 

ZFP42 0.46 
0.82 

±0.04 
0.48 

0.77± 

0.20 
0.48 

0.83 

±0.05 

ZP1 2.20 
1.47 

±0.19 
1.76 

3.24 

±0.33 
3.43 

3.36 

±0.69 

 

Table 5.4: Values for 8 genes obtained by microarray and qPCR  validation upon 24 hour 

treatment with 100nM OXA, OXB or QRFP ±S.D. 

5.4 Results and discussion 

We sought to perform a non-biased study to examine the effects exerted on the human 

genome by OXA, OXB and QRFP. The qPCR data corroborated the microarray, with the 

genes: CSTF2T, DAB2IP, OSBPL7, PYCRL and ZP1 all increasing in both experiments. And 

the genes: GPR148, KRT23 and ZFP42 decreasing. Data sets treated with peptides were 

compared to the control and any results which had p-values less than 0.05 and above 1.5 or 
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less than 0.5 fold changes were considered significant. The genes generated from these 

stipulations were then analysed using KEGG pathway software and ToppGene software for 

GO terms.  

OXA treatment of SH-SY5Y cells revealed changes in 346 genes. The most significant 

KEGG pathway was metabolic pathways involving 8 genes. Neuroactive ligand-receptor 

binding included 7 genes. Genes pinpointed in this pathway included ones involved in 

histamine, 5-hydroxytryptamine, galanin, prostaglandin E receptor type 1 (PTGER1), 

somatostatin, glutamate and vasoactive intestinal peptide (VIP) receptor binding. Previous 

studies have led to the assumption that OXs can exert their effects upon histaminergic 

neurons. Rats injected with a histamine receptor antagonist: pyrilamine, experienced shorter 

periods of wakefulness and in histamine receptor deficient mice, OXA administration did not 

have any effects on wakefulness (Yamanaka et al. 2002). However OXA resulted in a 0.5 

fold reduction of the histamine receptor: HRH4. As OXs have already been shown to work 

synergistically with histamine, this reduction may be as a result of overstimulation of the 

receptor resulting in a negative feedback loop to reduce the impact of prolonged OX 

stimulation.  5-hyroxytryptamine or serotonin has been shown to reach a peak during periods 

of wakefulness with the highest firing rate of serotonin neurons occurring during alert 

wakeful periods and a reduction during sleep (Liu, van den Pol & Aghajanian 2002). OX 

neurons have been shown to input to serotonin neurons and exhibit a direct excitatory effect 

on them, however at high OX concentrations they can actually have an indirect inhibitory 

effect on serotonin by causing excitation of GABAergic interneurons (Liu, van den Pol & 

Aghajanian 2002). At a concentration of 100nM OXA the serotonin receptor: HTR4 is 

reduced by 0.35 fold. This may be due to a high concentration of OXA over a prolonged 

period of 24 hours, leading to excitation of GABAergic neurons, which impose their 

inhibitory effect on serotonin neurons.  Serotonin has also been shown to be decreased in AD 

(Bierer et al. 1995). The gene encoding the galanin receptor is increased upon OXA treatment 

and it is a neuropeptide which has been shown to be involved in modulation of feeding with 

OXs being capable of innervating galanin producing cells (Volkoff, Peter 2001). Interestingly 

galanin has been implicated in AD. Galanin and its receptors are overexpressed in AD and 

results in inhibition of cholinergic transmission in the hippocampus and impaired memory 

function in rats suggesting that overexpression in AD leads to increased deterioration 
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(Gabriel et al. 1994).  However there is some conflict as to whether galanin overexpression is 

neurodegenerative or neuroprotective. Galanin can inhibit ACh release in the hippocampus 

and impair memory, but has also been shown to protect against Aβ induced toxicity through 

increasing survival signalling pathways such as Akt and reducing apoptotic signalling for 

example caspase 3 cleavage (Ding et al. 2006; Dutar, Lamour & Nicoll 1989). So OXA 

increasing this receptor could be to increase feeding behaviour in a non-disease situation, 

however in AD could lead to an increase or decrease in the severity of disease. Prostaglandins 

are important for mediating inflammatory responses and PTGER1 is a receptor for 

prostaglandins. We found that OXA increases the receptor expression which is intriguing as 

increased expression of this receptor and prostaglandins have been implicated in 

neurotoxicity of AD. In PTGER1 KO mice with an APP/PS1 mutation, neuronal cell death 

and neurobehavioral deficits were decreased compared to the mice with only APP/PS1 

mutations (Zhen et al. 2012). This suggests a neurotoxic effect exerted by OXA through 

increase of PTGER1. OXA also increased glutamate receptor subunit zeta-1 (GRIN1). 

GRIN1 is a subunit, which combines with other glutamate receptor subunits to form N-

methyl-D-aspartate receptor (NMDA). Increased glutamate in AD causes neurotoxicity by 

acting through NMDA receptors, in fact one treatment regime: memantine acts by blocking 

NMDA receptors to reduce glutamate toxicity (van Marum 2009). Somatostatin is a 

regulatory protein involved in modulation of neurotransmission and cellular proliferation. 

OXA increased somatostatin receptor expression and has also previously been shown to 

increase somatostatin in rat brains (Russell et al. 2000) However in AD there is a loss of 

somatostatin and its receptors and somatostatin increases neprilysin production Neprilysin is 

an enzyme capable of degrading Aβ plaques; hence in AD a reduction in somatostatin will 

lead to a reduction of neprilysin and consequently less degradation of plaques (Hama, Saido 

2005). OXA may exert neuroprotective effects by increasing somatostatin, however a 

reduction in OXA signalling will hamper its ability to exert neuroprotective effects through 

this mechanism.  The receptor for VIP is also increased upon OXA administration and has 

also been implicated in neuroprotection in AD. VIP inhibits Aβ induced microglia activation 

and the consequent release of toxic factors such as tumour necrosis factor-α (TNF-α) and 

nitric oxide (NO) and also inhibits nicotinamide adenine dinucleotide phosphate-oxidase 

(NADPH-oxidase) which produces ROS (Song et al. 2012; Fujimori et al. 2011). The 
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activation of neuroactive ligands by OXA causes the increase of VIP and somatostatin which 

have neuroprotective effects in AD.  

OXA also regulates 5 genes involved in the MAPK signalling pathway.  This includes the 

genes: fibroblast growth factor receptor 4 (FGFR4), interleukin-1 β (IL-1β), mitogen-

activated protein kinase 14 (MAP3K14), MAPT and RAS guanyl-releasing protein 1 

(RASGRP1). We have already demonstrated the OXA induces the MAPK pathway so this is 

not unexpected. However OXA also activates the P13K-Akt signalling pathways through: 

FGFR4, guanine nucleotide-binding protein subunit gamma-13 (GNG13), spleen tyrosine 

kinase (SYK) and tuberous sclerosis 1 (TSC1). All of the genes involved in these pathways are 

increased upon OXA treatment. Both MAPK and PI3K-Akt pathways have been implicated 

in neuroprotection (Karmarkar et al. 2011, Maher et al. 2011, Sokolowska et al. 2014). 

5 genes regulated by OXA are implicated in the NF-KB signalling pathway including: 

bruton's tyrosine kinase (BTK), IL-1β, MAP3K14, SYK and TNF-α induced protein 3 

(TNFAIP3). All of these genes are responsible for inducing NF-KB and OXA treatment 

caused their upregulation. This suggests that OXA treatment induces NF-KB, which can then 

regulate cell survival, growth, repair, neurogenesis, learning and memory (Crampton, 

O'Keeffe 2013). IL-1β is a proinflammatory cytokine involved in inflammatory responses 

through activation of T and B cells and other inflammatory related proteins. It is also thought 

to be involved in leptin regulation, which supresses’ appetite (Mrak, Griffin 2001). The 

increased expression of IL-1β when cells are exposed to OXA may be a counteracting 

mechanism through leptin regulation for the increased feeding that OXA stimulates. IL-1β 

has also been found to be over expressed in AD and is associated with Aβ plaques and can 

cause a neuroinflammatory response which was reduced along with plaque deposition when 

AD transgenic mice were given ibuprofen to reduce IL-1 (Lim et al. 2000). So although OXA 

treatment may increase IL-1β to combat its pro-feeding response, it may exacerbate 

symptoms of AD. MAP3K14 is also known as NF-KB-inducing kinase (NIK) and becomes 

increased during periods of oxidative stress and induces NF-KB (Sheng et al. 2012). The SYK 

gene encodes a tyrosine kinase protein which is involved in immune signalling pathways as 

well as being an activator of NF-KB (Mocsai, Ruland & Tybulewicz 2010). It has also been 

shown to phosphorylate tau at tyrosine 18 (Lebouvier et al. 2008). However this is not 
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thought to be a pathologically important phosphorylation site for tau in AD, as it does not 

affect tau microtubule binding and phosphorylation here does not increases susceptibility to 

multiple serine/threonine phosphorylations as it does for other sites (Lebouvier et al. 2008; 

Scales et al. 2011; Lee et al. 2004). Contrary to the other genes involved in NF-KB which 

result in positive regulation, TNFAIP3 is a negative regulator of NF-KB. Upon NF-KB 

activation, TNFAIP3 increases and inhibits NF-KB to control regulation (Kolodziej et al. 

2011). It is increased upon OXA administration and although it is a negative regulator of NF-

KB, it is the only gene involved with OXA which has a negative effect. It has been shown to 

be an important gene in regulation of the NF-KB pathway and acts as a negative feedback 

regulator of NF-KB in response to multiple stimuli (Vereecke, Beyaert & van Loo 2009).So 

in periods of OXA addition, it is possible that NF-KB becomes increased and concurrently 

TNFAIP3 potentially increases to negatively regulate NF-KB signalling. Chronic sleep 

deprivation has also been shown to increase NF-KB, suggesting a possible involvement of 

OXA for increasing NF-KB during periods of wake (Brandt et al. 2004). In conclusion OXA 

appears to act as a switch: it exerts positive regulatory effects on NF-KB to potentially reduce 

oxidative stress, however it also results in upregulation of TNFAIP3 which functions as a 

negative feedback mechanism to reduce NF-KB activity.  

The TNF pathway was found to be involved in OXA treatment. The genes implicated in this 

pathway were: EDN1, IL-1β, MAP3K14 and TNFAIP3. EDN1 encodes the endothelin-1 

protein which is involved in vasoconstriction and has also been associated with AD. 

Endothelin-1 is increased in AD and decreased cerebral blood flow is a common symptom in 

AD which can contribute to pathology and it is thought that elevated endothelin-1 may 

contribute to this due to its vasoconstrictive effects (Palmer, Love 2011). Nevertheless it has 

also been shown to prevent cell death, when cells were treated with hydrogen peroxide to 

induce oxidative stress which is a common occurrence in AD (Luo, Grammas 2010). So 

although there may be involvement of endothelin-1 in AD, its exact role is not fully 

elucidated. IL-1β, MAP3K14 and TNFAIP3 have previously been mentioned as being 

involved in the NF-KB pathway, but can also be responsible for induction and regulation on 

the TNF pathway. TNF has previously been shown to be highly expressed during periods of 

wakefulness in mice and it has also been demonstrated that during sleep deprivation IL-1β 

and TNF accumulate in the CSF which help to induce sleep and IL-1β levels are highest at 
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the onset of sleep (Moldofsky et al. 1986; Kapas et al. 2008). So these genes may be 

increased during periods of chronic OX activation (for example 24 hours as in this study) to 

combat sleep deprivation and to try and induce sleep. Consequently TNF and IL-1β are 

extremely important in inducing sleep and preventing the sleep depriving actions of orexin 

(Krueger, Majde 1994). This may be of importance in AD where the sleep-wake cycle is 

disturbed. 

AD was also highlighted as a KEGG pathway regulated by OXA. 3 genes were identified; 

GRIN1, IL-1β and MAPT. However there are other genes previously mentioned that are 

linked to AD, so the involvement of OXA in AD is not necessarily confined to these 3 genes. 

GRIN1 encodes a subunit of the NMDA receptor, in AD excess glutamate binds to these 

receptors and allows calcium influx leading to excitotoxic cell death (Kotermanski, Johnson 

2009). Therefore OXAs upregulation of GRIN1 could lead to increased NMDA receptor 

expression, which in periods of glutamate toxicity could result in neurodegeneration. 

However the functional NMDA receptor is comprised of 4 subunits, only two of which are 

encoded by GRIN1, the other two by GRIN2A-D which did not change expression upon OXA 

treatment (Dingledine et al. 1999). So this is not entirely indicative of a negative involvement 

in AD since it requires 2 other subunits to be a fully functional receptor.  IL-1β as previously 

discussed is involved in the TNF pathway, NF-KB and the MAPK pathway as well as 

encouraging the onset of sleep after chronic sleep deprivation. However it is also involved in 

AD as it leads to the induction of inflammatory cytokines and causes neuroinflammation; one 

of the hallmarks of AD (Shaftel, Griffin & O'Banion 2008). MAPT encodes the tau 

microtubule binding protein, one of the main proteins involved in the pathology of AD. OXA 

increases the expression of this protein, which in itself does not lend to either way as to 

whether it has a positive or negative influence regarding AD, as it is the post translational 

hyperphosphorylation of tau which causes pathology.  

Treatment of SH-SY5Y with 100nM OXB for 24 hours resulted in the change of expression 

of 715 genes. Of the KEGG pathways identified within this gene list some of the more 

interesting ones included: PI3K-Akt signalling, neuroactive ligand receptor interaction, Jak-

STAT signalling, cytokine-cytokine receptor interaction and 1 gene involved in AD.  
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OXB regulates neuroactive-ligand receptor interaction including the genes which regulate 

receptors for the following proteins: dopamine, serotonin, somatostatin, vasopressin, 

prostaglandin, corticotropin releasing hormone (CRH), metatropic glutamate and ACh. 

HTR4, SSTR and PTGER1 are implicated, as they are with OXA treatment and as previously 

mentioned PTGER1 can confer neurotoxicity and leads to increased neuronal cell death in 

transgenic AD mice (Zhen et al. 2012). SSTR which encodes the receptor for somatostatin, is 

decreased in AD which prevents its Aβ clearing ability and confers neurotoxicity and OXB 

increased its expression suggesting a beneficial role (Hama, Saido 2005; Thilakawardhana et 

al. 2005). CRHR1 is also increased with OXB treatment, which encodes the CRH receptor. 

CRH has been implicated in neuroprotection in AD and CRHR1 is expressed in areas 

important in AD including the hippocampus (Elliott-Hunt et al. 2002). When Aβ was added 

to a primary neuronal culture, CRH protected against cell death instigated by lipid 

peroxidation and glutamate toxicity and an antagonist for the CRHR ablated this effect 

(Pedersen et al. 2001; Koutmani et al. 2013). OXBs increase of CRH receptors means more 

receptor availability for the CRH response towards neuroprotection mediated through the 

MAPK and cAMP pathways suggesting a protective function in AD (Elliott-Hunt et al. 

2002). OXB also increases the neuroactive-ligand receptor interaction involving the 

dopamine receptor: DRD3. DRD3 has been implicated in drug addiction, which is interesting 

as OX is also involved in drug addiction and reward processes (Calipari, Espana 2012). 

Dopamine receptors have been shown to protect against free radical damage, a common 

occurrence in AD (Cassarino et al. 1998; Joyce, Millan 2007).    

The P13K-Akt signalling pathway involved 10 genes including; EPO, SYK, FGFR4, LAMB1, 

CSF3R, ITGA3 and GNG13. These genes were upregulated and are implicated in part of the 

P13K-Akt pathway responsible for cell cycle progression and cell survival. So activation by 

OXB of this pathway could indicate a neuroprotective function. OXB caused upregulation of 

DDIT4 also known as REDD1, a gene involved in inhibition of mTOR and which is induced 

by hypoxia and ROS (Katiyar et al. 2009). mTOR coordinates cell growth in periods of 

growth factor and nutrient availability, however during times of stress REDD1 is increased 

which consequently inhibits mTOR to preserve the existing cell and limit growth with 

already potentially limited resources. mTOR has also been implicated in AD as it is increased 

in AD patients and there is an association of active mTOR and accumulation of 
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hyperphosphorylated tau and NFTs (Li et al. 2005). It is thought that mTOR can in fact not 

only mediate tau phosphorylation but also decrease autophagy and allow accumulation of tau 

and Aβ in AD, with the inhibitor of mTOR; rapamycin, having been shown to ameliorate 

symptoms in an AD model (Caccamo et al. 2010; Spilman et al. 2010). OXBs positive 

regulation of REDD1 will result in inhibition of mTOR and could be implicated in reduction 

of NFT accumulation and increasing autophagy to allow toxic protein clearance in AD. The 

erythropoietin gene or EPO is also upregulated with OXB treatment. EPO is involved not 

only in erythropoiesis but also in cell survival and neuroprotection (Rabie, Marti 2008). EPO 

is expressed in the brain, particularly in the hippocampus which is an area sensitive to 

hypoxia where EPO may act as a protective agent as well as protecting against free radicals 

and glutamate toxicity (Rabie, Marti 2008; Zhong et al. 2007). EPO has been shown to not 

only protect against AD toxicity in a transgenic mouse model, but in SH-SY5Y to protect 

against tau phosphorylation, oxidative stress and apoptotic activation induced by Aβ (Lee et 

al. 2012). OXB induced upregulation of this gene indicates a neuroprotective effect 

particularly in the context of AD. JAK2 and STAT5 expression are also increased upon OXB 

treatment. This is of particular importance as not only are they involved in activation of genes 

important for survival but have also been implicated in AD through the promotion of cell 

survival after Aβ insult. EPO also promotes cell survival in these circumstances through 

activation of JAK2 (Digicaylioglu, Lipton 2001; Shaw, Bencherif & Marrero 2003; Ma et al. 

2014).   

The most significant molecular function GO term for OXB treatment was pyridoxal 

phosphate (PLP) binding. PLP is the catalytically active form of vitamin B6 and is a cofactor 

for an abundance of enzymes (Hashim et al. 2011). PLP reduces plasma homocysteine levels 

and administration of vitamin B6 has been shown to slow cortical shrinkage and atrophy in 

AD human patients and in AD transgenic mice with a B6 deficiency there was increased 

cognitive impairment and neurodegeneration (Hasegawa et al. 2010; Douaud et al. 2013).  In 

AD, homocysteine levels are elevated and this can lead to neurodegeneration by oxidative 

stress and increased phosphorylated tau (Douaud et al. 2013). OXB could confer 

neuroprotection through increasing PLP binding and reduction of circulating homocysteine in 

AD. 
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6 genes altered by OXB are involved with the transition metal ion transmembrane transporter 

activity GO term. Transition metals include iron, zinc and copper; which have been shown to 

be involved in Aβ aggregation. All these metals play important roles in the functioning of the 

brain and are found in high concentrations in areas afflicted by AD. They have been found to 

propagate the aggregation of Aβ and are found at high concentrations in the plaques 

deposited in AD (Bush 2003). Of the genes involved in this GO term upon OXB treatment 

one is for the protein copper chaperone for superoxide dismutase (CCS). CCS not only binds 

to BACE1 to affect processing of APP but also to the neuronal adapter protein X11α, which 

when overexpressed inhibits Aβ production (McLoughlin et al. 2001; Angeletti et al. 2005). 

In a mouse model CSS KO neurons increased Aβ production and in SH-SY5Y CCS siRNA 

treated cells Aβ was also increased, possibly as a result of its inability to bind and activate 

X11α (Gray et al. 2010).  OXB upregulates CSS and hence may be involved in reducing 

aggregation of Aβ. 

QRFP treatment of SH-SY5Y cells affects 2056 genes, far more than for OXA or OXB 

treatment. The main KEGG pathways include; neuroactive-ligand receptor interaction, 

metabolic pathways, cytokine-cytokine receptor interaction, PI3K-Akt, Jak-STAT, MAPK, 

TNF, NF-KB and AD. The neuroactive-ligand receptor interaction pathway includes genes 

involved in the receptors for dopamine, serotonin, somatostatin and ACh. QRFP induces 

expression of the dopamine receptor DRD3 and the somatostatin receptors: SSTR3 and 

SSTR4, which as previously explained have been implicated in neuroprotection and the 

somatostatin receptors specifically in reduction of Aβ plaques (Hama, Saido 2005; Joyce, 

Millan 2007).  QRFP also stimulates ghrelin receptor expression (GHSR). Ghrelin is a protein 

which stimulates feeding much like the OXs and has been shown to play a neuroprotective 

effect upon ischemic and AD assault. Ghrelin reduced neuronal cell death and apoptosis in 

the hippocampus of rats with cerebral ischemia and rescued memory deficits in transgenic 

AD mice as well as reducing neuronal loss and synaptic degeneration (Liu et al. 2006; Moon 

et al. 2011). An age related decline of ghrelin has been demonstrated, but levels do not seem 

to vary in AD patients compared to age matched controls. Although it may not have a direct 

effect in AD, if QRFP increases ghrelin signalling it may induce neuroprotection against the 

hallmarks of AD that have been shown in previous studies.  QRFP also increases OX1R 
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expression, which is significant as it could indicate possible cross-talk of the two receptors, 

and QRFP causing upregulation of OX1R to manage with the increase in QRFP.  

QRFP regulates 16 genes involved in the PI3K-Akt signalling pathway, many of which are 

involved in cell survival. EPO increases by 3.5 fold when treated with QRFP and as 

previously discussed is not only highly important in cell survival but is also neuroprotective 

in AD. The gene BCL2L11 encodes the protein Bcl2-interacting mediator of cell death (BIM) 

and with QRFP treatment is down-regulated. BIM is induced by Aβ in AD brains and is 

highly expressed compared to controls and has also been shown to be essential for Aβ 

dependent neuronal death through activation of CDK4 and c-MYB (Biswas et al. 2007). 

Interestingly c-MYB is also down-regulated with QRFP addition. c-MYB binds to the 

promoter region of BIM and induces its expression, so the reduction seen in c-MYB will mean 

the protein cannot bind to the BIM promoter resulting in its observed reduction and thus 

increasing cell survival (Deng, Ishii & Sarai 1996; Biswas, Liu & Greene 2005). Therefore 

QRFP may evoke neuroprotective mechanisms by reducing c-MYB and BCL2L11 and 

consequently promoting cellular survival.  The gene PDGFB was upregulated upon QRFP 

treatment and is also involved in the PI3K-Akt pathway. It encodes the protein platelet-

derived growth factor-β (PDGF-β) which binds to its receptor on pericytes and regulates 

proliferation, migration and recruitment of pericytes to the vascular wall (Bell et al. 2010a). 

Pericytes are cells embedded within the vessels of the brain and are situated between 

endothelial cells of capillaries, astrocytes and neurons (Armulik et al. 2010). They have been 

shown to regulate clearance of toxic products from the brain and pericyte loss in mice leads 

to brain vascular damage by breakdown of the BBB due to an inability to remove toxic 

products leading to hypoxia and degeneration (Sagare et al. 2013; Bell et al. 2010). Inability 

of PDGF-β to bind to pericytes leads to degeneration of these cells meaning that Aβ cannot 

be cleared and consequently accumulates. In mouse models with a PDGFR-β deficiency, Aβ 

is significantly higher than in APP mutation only mice as well as experiencing a significant 

increase in tau hyperphosphorylation (Sagare et al. 2013). Therefore PDGF-β is essential for 

functionality of pericytes which are then able to clear Aβ accumulation and loss of pericytes 

can worsen the burden of disease. QRFP treatment increases the expression of the gene 

encoding this protein, suggesting a neuroprotective role in increasing pericyte functionality to 

clear toxic protein accumulation.  
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QRFP treatment also regulated 14 genes involved in the JAK-STAT pathway. This pathway 

is important as it regulates cell survival, proliferation and differentiation as well as being 

involved in the brain and its neuroprotection (Nicolas et al. 2012). QRFP increased 

expression of JAK2 and STAT5 with the JAK2/STAT5 pathway being essential in EPO 

mediated neuroprotection and cell survival (Digicaylioglu, Lipton 2001; Ma et al. 2014).  

We also show that QRFP regulates 13 genes involved in the MAPK pathway. This includes 7 

voltage dependent calcium channel genes which are involved in MAPK signalling including: 

CaV2.1, CaV2.2 and Cav3.2. Voltage-dependent calcium channels (VDCC) when activated 

allow an influx of calcium into the cells and mediates neurotransmitter release.  CaV2.1 KO 

mice result in a neurologically defective phenotype with deficits in learning, memory and 

circadian rhythm with survival being limited to 4 weeks (Mallmann et al. 2013).  Loss of 

circadian rhythm in these KO mice, might suggest a possible OX/QRFP involvement and loss 

of CaV2.1 results in increased accumulation of Aβ plaques with Aβ suppressing the proper 

functioning of these channels (Mallmann et al. 2013).  So QRFP mediated increase of VDCC 

could play an important role in AD. The gene MAP3K5/ASK1 is also implicated in the 

MAPK pathway and upon QRFP treatment experiences a significant reduction in expression. 

This is of particular importance as activation of ASK1 through ROS is essential for the Aβ 

mediated death of neurons and hence a reduction in ASK1, as seen in QRFP treatment, will 

reduce Aβ mediated cell death through the JNK pathway which induces apoptosis (Kadowaki 

et al. 2005).  Myocyte-specific enhancer factor 2C (MEF2C) was also implicated in MAPK 

and experienced a reduction. MEF2C functions to prevent excessive synapse formation and 

facilitates hippocampal-dependent learning and memory (Barbosa et al. 2008). Although its 

exact role in AD is not known, in a genome-wide association study (GWAS) mutations in this 

gene were found to be associated with AD (European Alzheimer's Disease Initiative (EADI) 

et al. 2013).  

QRFP also regulated 3 genes involved in AD; ITPR1, NDUFS7 and RYR3. ITPR1 encodes 

the inositol 1,4,5trisphosphate receptor (IP3R) and with QRFP treatment was found to be 

upregulated. The evidence of this genes involvement is contradictory as some studies suggest 

a protective effect and others suggest a degenerative effect. IP3R can be upregulated upon 

excitotoxicity and can enhance calcium activated potassium channels. This can halt the 
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progression of excitotoxic damage and prevent increased cell death (Park, Yule & Bowers 

2010). However IP3R has also been shown to be linked to PS mutations in EOFAD and 

increased interaction of IP3R-PS leads to a gain of function of the receptor and increased 

calcium signalling which may be detrimental to the cell (Cheung et al. 2010). So the increase 

in ITPR1caused by QRFP treatment could potentially be protective or damaging. NDUFS7 

encodes NADH dehydrogenase iron-sulphur protein 7 mitochondrial, which forms part of the 

mitochondrial respiratory chain and transfers electrons from nicotinamide adenine 

dinucleotide (NADH) to the respiratory chain. It is found to be increased in vulnerable 

neurons like pyramidal neurons in the hippocampus of AD brains and siRNA targeted to 

NDUFS7 reduced Aβ levels in HEK cells overexpressing human APP (Frykman et al. 2012). 

RYR3 encodes ryanodine receptor type 3, which is important in calcium regulation in the 

brain (Liu et al. 2014). In a transgenic mouse model of AD, deletion of RYR3 resulted in 

accelerated AD pathology and using siRNA against RYR3 in another transgenic AD mouse 

model there was enhanced neuronal cell death (Liu et al. 2014; Supnet et al. 2010). However 

other studies have suggested that increased RYR3 is detrimental in AD and increases Aβ 

deposition and memory deficits (Oules et al. 2012). This study however was performed in 

SH-SY5Y as opposed to transgenic mouse models so may not be as accurate of a 

representation.  

Microarray analysis revealed many genes important in AD to be regulated upon OXA, OXB 

and QRFP addition. And not all of the genes identified follow the same pattern of 

neuroprotection or neurodegeneration. For example genes implicated in neuroprotection in 

AD such as; SSTR3, VIP, MAP3K14, CRH, DRD3, REDD1, EPO, BCL2L11, c-MYB and 

PDGF-β are all regulated by OXA, OXB or QRFP suggesting that these peptides under AD 

circumstances can induce neuroprotection. However other genes such as PTGER1 and GRIN1 

which exacerbated AD are also regulated upon peptide addition. Based on what we have 

described here more genes regulated by OXA, OXB and QRFP favour a neuroprotective role. 

Of note is that both OXA and QRFP regulate many genes involved in the increasing the NF-

KB pathway, which could be of great importance due to the substantial effect of RNA 

oxidation implicated in AD and the cell surviving effects it exerts. Collectively, some data 

point towards a common regulation of certain genes by all 3 peptides. This microarray 

demonstrates that QRFP is capable of eliciting a response above and beyond what OXA and 



 

 

      

 

121 
 

OXB are capable of, suggesting that QRFP may be more integral than previously thought. 

Given that QRFP also increases the expression of OX1R and our previous data which shows 

OXR antagonists are capable of preventing QRFP signalling; it is attractive to speculate that 

there is a higher order of complexity in OXR/GPR103 signalling involving potential cross-

talk mechanisms. 
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Chapter 6 

Treatment of differentiated IMR32 and SH-SY5Y cell lines 

with Aβ
42 

and zinc sulphate to mimic an Alzheimer’s disease 

milieu 

 

6.1 Introduction 

Around 82% of AD sufferers experience dysregulated sleep patterns. This includes 

excessive sleepiness, REM dysregulation and circadian rhythm disturbances bearing a 

resemblance to narcolepsy (Fronczek et al. 2011).  Increased nocturnal activity 

differentiates AD from other forms of dementia (Harper et al. 2001a). In a Tg2576 

mouse model of AD with an APP mutation which were given an OXA infusion, Aβ 

levels were markedly increased compared to the control. This increase in Aβ was 

ablated by OX antagonist addition (Kang et al. 2009). These transgenic mice were also 

chronically sleep deprived and Aβ plaque formation increased compared to an age 

matched control, with OX antagonist treatment vastly reducing plaque formation (Kang 

et al. 2009). Another recent study showed that in AD patients there was a loss of up to 

40% of orexigenic neurons and patients experienced stark reductions in circulating OX 

levels (Fronczek et al. 2011). However to date there have been no comprehensive 

studies observing or mapping of OXRs and GPR103 in human AD. 

Aβ
42

 in AD patients has been shown to reach concentrations lower than 100nM but can 

reach µM ranges (Kuo et al. 1996; Steinerman et al. 2008; Wang et al. 1999). 1 µM was 

deemed an appropriate representation of in vivo circumstances. Zinc sulphate has 

previously been shown to initiate tau hyperphosphorylation at a concentration of 

100nM, resulting in NFTs and zinc has also been found to be associated with cells in 

AD which are NFT containing (An et al. 2005; Suh et al. 2000). 

6 



 

 

      

 

123 
 

6.2 Objectives 

Our aim was to treat fully differentiated IMR32 and SH-SY5Y cells with Aβ
42

 and zinc 

sulphate to induce amyloid deposition and tau hyperphosphorylation respectively. This 

allows the mimicking of an AD milieu to examine their effects on the OXRs and 

GPR103 and the subsequent downstream effects on ERK1/2 signalling, which we have 

already shown is phosphorylated by OXA, OXB and QRFP. 

6.3 Results 

6.3.1 Conformation of tau hyperphosphorylation and Aβ
42

 deposition 
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Figure 6.1: Western blot representations of A. phosphorylated tau after control and 100nM 

zinc sulphate treatments with or without 1µM Aβ
42

 at 24 and 48 hours. B. GAPDH loading 

control of panel A. C. Aβ
42

 deposition in control, 100nM zinc sulphate and 1µM Aβ
42

 

treatment and both together at 24 and 48 hours. D. GAPDH loading control of panel C.  
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Western blots were performed to ensure tau hyperphosphorylation after zinc treatment 

and Aβ
42 

deposition after Aβ
42

 treatment. Figure 6.1A shows there is more tau 

hyperphosphorylation after zinc sulphate treatment. Tau has 6 isoforms which are 

expressed in the brain, varying in range from 352 amino acids to 441(Avila et al. 2004; 

Deshpande, Win & Busciglio 2008). Phosphorylation of tau at its serine 214 site is 

particularly important as it causes powerful microtubule binding disruption (Illenberger 

et al. 1998). An antibody which detects the tau protein when phosphorylated at serine 

214 was used. Phosphorylation at this site has also been found in AD as well as 79 other 

serine/threonine phosphorylation sites (Hanger et al. 2007). After zinc sulphate 

treatment in all samples, there was increased tau phosphorylation at ser214 and there 

were no detectable bands in the control samples at this molecular weight. Figure 6.1C 

shows that in samples treated with Aβ
42 

there was protein deposition which was 

detected at 4kDa, but no discernable deposition in control samples. 

6.3.2. qPCR of Aβ
42

 and zinc sulphate treated cells after 24 and 48 hours to observe 

changes in OXRs and GPR103 expression. 

Fully differentiated IMR32 and SH-SY5Y cell lines were seeded at 1x10
5 

in 6 well 

plates overnight. Cells were then serum starved for 6 hours to ensure all cells were at 

the same stage of the cell cycle and treatments of ; 1µM  Aβ
42

, 100nM zinc sulphate or 

both together were added to appropriate wells. 24 and 48 hour post treatment, RNA was 

extracted, cDNA synthesis performed and qPCR was completed on these samples as 

previously described.  

In IMR32 cells, Aβ
42

 treatment resulted in an increase in expression for all 3 genes 

(Figure 6.2-6.4). For OX1R, all treatments resulted in an increase in expression however 

these changes were all below a 2 fold increase and were not significant. For OX2R there 

were very small increases in expression, which were also not significant. GPR103 

displayed an increase in expression for both time points; however the change was only 

significant for 48 hour zinc sulphate treatment. 
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Figure 6.2: IMR32 gene expression changes of OX1R after 24 and 48 hours of 1µM 

Aβ
42

, 100nM zinc sulphate or both together compared to the equivalent time points 

with no treatment ±S.D. Results were obtained from 3 independent experiments.  
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Figure 6.3: IMR32 gene expression changes of OX2R after 24 and 48 hours of 1µM 

Aβ
42

, 100nM zinc sulphate or both together compared to the equivalent time points 

with no treatment. Results were obtained from 3 independent experiments ±S.D. 
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Figure 6.4: IMR32 gene expression changes of GPR103 after 24 and 48 hours of 1µM 

Aβ
42

, 100nM zinc sulphate or both together compared to the equivalent time point with 

no treatment. Results were obtained from 3 independent experiments ±S.D. Statistically 

significant differences of treated cells to corresponding control time points were 

calculated using the paired students T-test (p<0.05*). 

 

Aβ
42

 and zinc sulphate treatment in SH-SY5Y cells yielded very different results from 

IMR32. OX1R revealed a significant decrease in expression upon 24 hours of Aβ
42 

treatment which increased slightly after 48 hours but was still lower than the control. 

After 24 hours Aβ
42

, OX2R remained stable but after 48 hours was decreased. GPR103 

decreased significantly after 24 and 48 hours, but was slightly increased at 48 hours 

compared to 24 hours. Zinc sulphate induced significant decreases in OX1R expression 

after 24 and 48 hours treatment, but for OX2R there was an increase in the receptor 

expression after 48 hours, however this was only marginally higher than the control 

expression. GPR103 was significantly decreased after 24 hours zinc treatment and was 
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decreased after 48 hours but not as pronounced as was seen at 24 hours. Aβ
42

 and zinc 

sulphate treatment yielded decreases in OX1R expression after 24 hours which was 

significantly reduced after 48 hours. For OX2R there was a slight increase after 24 hours 

followed by a significant reduction after 48 hours. GPR103 was significantly reduced at 

24 and 48 hours after Aβ
42

 and zinc sulphate treatment. 
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Figure 6.5: SH-SY5Y gene expression changes of OX1R after 24 and 48 hours of 1µM 

Aβ
42

, 100nM zinc sulphate or both together compared to the equivalent time point with 

no treatment. Results were obtained from 3 independent experiments ±S.D. Statistically 

significant differences of treated cells to corresponding control time points were 

calculated using the paired students T-test (p<0.05*, p<0.01**). 
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Figure 6.6: SH-SY5Y gene expression changes of OX2R after 24 and 48 hours of 1µM 

Aβ
42

, 100nM zinc sulphate or both together compared to the equivalent time point with 

no treatment. Results were obtained from 3 independent experiments ±S.D. Statistically 

significant differences of treated cells to corresponding control time points were 

calculated using the paired students T-test (p<0.01**). 
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Figure 6.7: SH-SY5Y gene expression changes of GPR103 after 24 and 48 hours of 

1µM Aβ
42

, 100nM zinc sulphate or both together compared to the equivalent time point 

with no treatment. Results were obtained from 3 independent experiments ±S.D. 

Statistically significant differences of treated cells to corresponding control time point 

were calculated using the paired students T-test (p<0.05*). 

 

 

6.3.3. p-ERK1/2 activation in cells treated with Aβ
42

, zinc sulphate or both upon 

treatment with 100nM OXA, OXB or QRFP. 

We examined p-ERK1/2 in treated cells to investigate whether OX or QRFP 

differentially affect ERK1/2 phosphorylation in the presence of Aβ
42 

or tau 

hyperphosphorylation. Before doing so, we studied basal p-ERK1/2 levels to use as a 

reference point to observe any changes caused by peptide addition. After 24 and 48 

hours of treatments with 1µM Aβ
42

, 100nM zinc sulphate or both together; 100nM 
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OXA, OXB or QRFP was added for 20 minutes. This duration was used, as previous 

studies demonstrated a good activation of ERK1/2 at this time point when we treated 

cells with OXA, OXB or QRFP. Protein was then harvested and samples were analysed 

by western blot, using t-ERK1/2 to normalise the amount of p-ERK1/2. All samples 

treated with the peptides, were normalised to the basal levels of p-ERK1/2 when there 

was no peptide present at the same time points to account for any increases in p-ERK1/2 

induced by Aβ
42

 or zinc sulphate treatment. Figure 6.8 shows a representative view of 

ERK1/2 western blots performed on these samples. 
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Figure 6.8: Representations of western blots probed with p-ERK1/2 and total-ERK 1/2 

antibody in SH-SY5Y upon addition of Aβ
42 

or zinc sulphate or Aβ
42

 +zinc sulphate at 

48 hours. 
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Figure 6.9: Densitometric analysis of basal p-ERK1/2 in IMR32 and SH-SY5Y cells 

using ImageJ. p-ERK1/2 protein was normalised to t-ERK1/2 protein and displayed as 

OD units. Results were obtained from 3 independent experiments ±S.D. Statistically 

significant differences of treated cells to corresponding control time points were 

calculated using the paired students T-test (p<0.05*,p<0.01**). 

 

Figure 6.9 shows that at basal levels p-ERK1/2 expressed by both cell lines in all 

treatments was increased compared to the control. Aβ
42 

induced an increase in p-

ERK1/2 expression which was more apparent in both cell lines at 24 hours compared to 

48 . However, p-ERK1/2 was consistently higher in IMR32 than in SH-SY5Y. Zinc 

treatment caused large increases in p-ERK1/2 in IMR32 which were even more elevated 

at 24 hours but at 48 hours still showed a large increase compared to the control. In SH-

SY5Y although the increases in p-ERK1/2 were higher at 24 hours, the difference 

between the two time points was less than what was observed in IMR32 and they were 

not as increased as seen in IMR32. Aβ
42 

+ zinc treatment resulted in an increase in p-

ERK1/2 in both cell lines, which is again higher at 24 hours than 48 and consistently 

higher in IMR32. 
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Figure 6.10: Densitometric analysis of IMR32 cells using ImageJ. Cell treatments of 

control, 1µM Aβ
42

, 100nM zinc sulphate or 1µM Aβ
42

+100nM zinc sulphate were 

treated with 100nM of OXA for 20 minutes. p-ERK1/2 protein was normalised to t-

ERK1/2 protein and displayed as OD units when treated with OXA, and for each  

treatment this was normalised to corresponding basal ERK1/2 values. Results were 

obtained from 3 independent experiments ±S.D. Statistically significant differences of 

treated cells to corresponding control time point were calculated using the Wilcoxon 

signed-rank test (p<0.05*). 
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Figure 6.11: Densitometric analysis of IMR32 cells using ImageJ.  Cell treatments of 

control, 1µM Aβ
42

, 100nM zinc sulphate or 1µM Aβ
42

+100nM zinc sulphate were 

treated with 100nM of OXB for 20 minutes. p-ERK1/2 protein was normalised to t-

ERK1/2 protein and displayed as OD units when treated with OXB, and for each  

treatment this was normalized to corresponding basal ERK1/2 values. Results were 

obtained from 3 independent experiments ±S.D. Statistically significant differences of 

treated cells to corresponding control time point were calculated using the Wilcoxon 

signed-rank test (p<0.05*). 
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Figure 6.12: Densitometric analysis of IMR32 cells using ImageJ.  Cell treatments of 

control, 1µM Aβ
42

, 100nM zinc sulphate or 1µM Aβ
42

+100nM zinc sulphate were 

treated with 100nM of QRFP for 20 minutes. p-ERK1/2 protein was normalised to t-

ERK1/2 protein and displayed as OD units when treated with QRFP, and for each  

treatment this was normalised to corresponding basal ERK1/2 values. Results were 

obtained from 3 independent experiments  ±S.D. Statistically significant differences of 

treated cells to corresponding control time point were calculated using the Wilcoxon 

signed-rank test (p<0.05*). 

 

Western blot analysis of p-ERK1/2 in IMR32 upon treatment with OXA, OXB and 

QRFP revealed that after 24 hours of treatment with Aβ
42

, zinc and Aβ
42 

+ zinc; p-

ERK1/2 was reduced compared to the control treated with all peptides. After 48 hours 

of treatment with OXA and QRFP however the p-ERK1/2 levels for each treatment had 

increased compared not only to the same treatment at 24 hours but also to the control at 

48 hours. For OXB, p-ERK increased in zinc and Aβ
42 

+ zinc treated cells after 48 

hours, but was still lower than corresponding control values. However for the Aβ
42
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treatment, p-ERK1/2 levels were significantly reduced after 48 hours compared to the 

control and were lower than the 24 hour Aβ
42

 time point. 

 

 

Figure 6.13: Densitometric analysis of SH-SY5Y cells using ImageJ.  Cell treatments 

of control, 1µM Aβ
42

, 100nM zinc sulphate or 1µM Aβ
42

+100nM zinc sulphate were 

treated with 100nM of OXA for 20 minutes. p-ERK1/2 protein was normalised to t- 

ERK1/2 protein and displayed as OD units when treated with OXA, and for each  

treatment, this was normalised to corresponding basal ERK1/2 values. Results were 

obtained from 3 independent experiments ±S.D. 
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Figure 6.14: Densitometric analysis of SH-SY5Y cells using ImageJ.  Cell treatments 

of control, 1µM Aβ
42

, 100nM zinc sulphate or 1µM Aβ
42

+100nM zinc sulphatewere 

treated with 100nM of OXB for 20 minutes.p-ERK1/2 protein was normalised to t-

ERK1/2 protein and displayed as OD units when treated with OXB, and for each  

treatment, this was normalised to corresponding basal ERK1/2 values. Results were 

obtained from 3 independent experiments ±S.D. Statistically significant differences of 

treated cells to corresponding control time point were calculated using the Wilcoxon 

signed-rank test (p<0.05*). 
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Figure 6.15: Densitometric analysis of SH-SY5Y cells using ImageJ.  Cell treatments 

of control, 1µM Aβ
42

, 100nM zinc sulphate or 1µM Aβ
42

+100nM zinc sulphate were 

treated with 100nM of QRFP for 20 minutes.p-ERK1/2 protein was normalised to t-

ERK1/2 protein and displayed as OD units when treated with QRFP, and for each  

treatment, this was normalized to corresponding basal ERK1/2 values. Results were 

obtained from 2 independent experiments S.D. Statistically significant differences of 

treated cells to corresponding control time point were calculated using the Wilcoxon 

signed-rank test (p<0.05*). 

 

In SH-SY5Y, OXA treatment exhibited a reduction in p-ERK1/2 levels compared to the 

control for all treatments bar Aβ
42

 + zinc at 24 hours. Expression remained fairly 

consistent between 24 and 48 hours for Aβ
42

 and zinc, with a slight increase after 48 

hours of Aβ
42

 and a slight decrease at 48 hours with zinc treatment. Aβ
42

 + zinc 

however expressed higher p-ERK1/2 after 24 hours, which reduced after 48 hours to 

levels lower than seen in the control. For OXB and QRFP however, p-ERK1/2 was 

higher at 24 hours than at 48 hours and for OXB the 24 hour treatments expressed more 
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p-ERK1/2 than in the control and by 48 hours they were relatively similar to the control 

levels. For QRFP Aβ
42

 treatment resulted in much less p-ERK1/2 at both time points 

compared to the control, but zinc and Aβ
42

 + zinc were higher at 24 hours, but then 

experienced a reduction at 48 hours.  

6.4 Results and discussion 

The two most important hallmarks of AD are the accumulation of Aβ
42

 causing 

formation of Aβ plaques and hyperphosphorylation of tau resulting in NFTs and Aβ
42

 

and zinc sulphate can be used to mimic each of these effects respectively in vitro (An et 

al. 2005; He et al. 2013). Previous data suggests that in AD there is a ~40% loss of 

orexigenic neurons and a 14% reduction in circulating OXA in CSF (Fronczek et al. 

2011). This implies that a mimicking of AD through Aβ and zinc could potentially lead 

to a loss of orexigenic neurons as seen in these previously mentioned clinical samples; 

however IMR32 did not experience a reduction in receptor expression. On the other 

hand, Aβ and zinc treatment led to a significant reduction in OX1R and GPR103 in SH-

SY5Y. OX and Aβ have been shown to be linked, as an OXA infusion was shown to 

increase the burden of Aβ in a transgenic mouse model of AD and a dual OX receptor 

antagonist was shown to reduce the deposition of Aβ (Kang et al. 2009). This suggests 

that the orexigenic system can be manipulated to control the burden of disease. 

IMR32 revealed minimal changes for all receptors apart from GPR103 at 48 hours of 

zinc treatment, which showed a significant increase compared to the control. SH-SY5Y 

produced much the opposite effect seen in IMR32, with OX1R and GPR103 

experiencing a significant reduction in most of the treatments and some reduction in 

OX2R. At least 51 genes have been identified which are differentially expressed 

between female and male mice (Dewing et al. 2003). Sexual dimorphism is also 

particularly apparent in the brain with dopamine neurons having a different morphology 

depending on the sex of the rat and female diencephalic neurons have increased tyrosine 

hydroxylase compared to males (Carruth, Reisert & Arnold 2002; Beyer, Pilgrim & 

Reisert 1991). It has also been found that the male colon carcinoma cell line T-84 has 

lost the Y chromosome and when compared to the female equivalent: Ht-29 there are 

very few differences in biological properties. This could be because they are 
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functionally equivalent or because of loss of the Y chromosome. The X chromosome 

encodes up to 900 genes, but the Y chromosome still encodes 78 and thus determines 

more than just the sex which is evidenced by X-linked diseases such as haemophilia and 

red-green colour blindness (Fuller, Insel 2014). Severity and incidence of disease in AD 

has been shown to exhibit sexual dimorphism. More women are affected by AD than 

men; in the UK 222,000 men are thought to be affected compared with 445,000 women 

(Source: Dementia UK: The full report). In Tg2576 mice with an APP mutation 

comparisons of the area of the brain occupied by plaque formation at 15 months of age, 

revealed that female mice had nearly 3 times more plaque deposition than in males as 

well as females experiencing increased circulating Aβ
40 

and Aβ
42 

levels (Callahan et al. 

2001; Wang et al. 2003). It is thought this could be a result of the loss of estrogen 

protection in post-menopausal women. Estrogen has been shown to protect against 

toxicity induced by Aβ as well as inhibiting lipid peroxidation in AD (Fitzpatrick et al. 

2002; Perez et al. 2005). Female mice were also found to have increased β-secretase 

activity and reduced neprilysin which could result in increased Aβ production and 

decreased degradation contributing to an overall increase in the burden of disease 

(Hirata-Fukae et al. 2008). Differences in tau hyperphosphorylation have also been 

described. In TgP301L mice which are a strain noted for development of NFTs, there 

was increased NFT formation in female mice compared to male mice (Asuni et al. 

2007). In human patients women have been shown to have more NFTs and more Aβ 

plaques than in men (Barnes et al. 2005). This reduction seen in the female cell line: 

SH-SY5Y compared to the male cell line: IMR32, of OXR/GPR103 may contribute to 

selective neurodegeneration and increased burden of disease in females. This evidence 

suggests that there could be a sexual dimorphic factor accounting for the differences we 

observed in these cell lines and any potential beneficial effect exerted by the orexigenic 

system could be negated in females who are potentially more susceptible to a loss of 

OXR/GPR103 than males.  

At basal levels treatment with Aβ
42 

and zinc increased p-ERK1/2 levels. These data 

corroborate other similar findings, as it has been previously demonstrated that Aβ
42 and 

zinc addition in rat hippocampal or renal cortical cultures respectively cause increases 

in p-ERK1/2 (Kohda et al. 2006; Dineley et al. 2001). Aβ42 and zinc may cause this 
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increase through the alpha 7 nicotinic acetylcholine receptor (α7nAChR) which has 

been shown to increase p-ERK1/2 through PI3K (Dineley et al. 2001). It is possible that 

increases in the basal p-ERK1/2 are as a direct result of Aβ
42 

or zinc stimulation. 

Although transient increases in p-ERK1/2 are linked to cell survival and 

neuroprotection, prolonged phosphorylation has been associated with neuronal death 

through glutamate induced oxidative toxicity (Stanciu et al. 2000). Glutamate causes 

toxicity by inhibiting cystine uptake through a glutamate /cystine antiporter and as 

cystine is a glutathione precursor (an anti-oxidant), it cannot be produced and ROS and 

NO accumulate (Inutsuka, Yamanaka 2013). NO has previously been demonstrated to 

cause selective degeneration of OX neurons (Togo, Katsuse & Iseki 2004). SH-SY5Y 

experiences a generally significant decrease in OX1R, OX2R and GPR103 throughout 

the Aβ and zinc treatments and time points. It is possible that Aβ
42 and zinc lead to a 

chronic increase in p-ERK1/2 phosphorylation which leads to an increase in glutamate 

toxicity resulting in a reduction in OXR/GPR103. The net result could be compromised 

OXR/GPR103 signalling leading to loss of neuroprotection. There is a reduction of 

basal p-ERK1/2 in all samples after 48 hours and this may be due to adjustment of the 

cells to the toxic insult and an attempt to restore cellular normality.  

Data was analysed taking into account the basal levels of p-ERK1/2 expression, so 

changes upon peptide treatment are entirely as a result of that specific treatment. In 

IMR32 upon addition of OXA and QRFP, most Aβ or zinc treatments follow the same 

trend: a reduction at 24 hours of p-ERK1/2 compared to the control and an increase 

after 48 hours. OXB however displays less drastic changes between 24 and 48 hours. 

OXA binds to both OX1R and OX2R with similar affinities, and OX1R expression is 

increased upon Aβ or zinc treatment. OX2R however remains relatively constant and 

does not experience the same changes as seen with OX1R. So OXA will be able to 

induce a response by binding to OX1R and OX2R and exhibit a response above and 

beyond that which OXB is capable off, which will bind selectively to OX2R and not 

OX1R. In SH-SY5Y p-ERK1/2 levels upon OXA treatment followed a general decrease 

in all treatments compared to the control. The reductions however are not significant 

and with the significant reduction of OX1R the difference in p-ERK1/2 between treated 

samples and the control aren’t reflected in p-ERK1/2 levels; for example with a 0.2 fold 
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reduction in OX1R, upon addition of its peptide you might expect a significantly 

reduced amount of p-ERK activation. When SH-SY5Y cells were treated with OXB, the 

p-ERK1/2 levels were very similar to what was experienced in the control also treated 

with OXB, even though there was some reduction in OX2R expression. GPR103 

expression was decreased in SH-SY5Y for all treatments and this is reflected in the 

QRFP treatments, where p-ERK1/2 expression was much lower compared to the 

control. This is presumably as a result of decreased receptor expression and hence less 

availability for with which the peptide to bind to. However as we have already 

implicated the possibility of a cross-talk of GPR103 and OXR, the combined reduction 

of OX1R and OX2R may seriously impair GPR103 functioning if they are required for 

its signalling; which is suggested with the previous antagonist study.  

ERK is heavily implicated in neuroprotection.  In a model of Huntington’s disease 

inhibition of ERK increased cell death and increases in p-ERK1/2 lead to protection 

against cell death (Maher et al. 2011). It has also been shown to protect rat cortical 

neurons through BDNF induced ERK1/2 activation against apoptosis induced by DNA 

damage (Hetman et al. 1999). BDNF also protects through ERK1/2 activation in a rat 

exposed to hypoxic brain injury (Han, Holtzman 2000). Nicotine induces ERK in 

hippocampal slice cultures exposed to an excitotoxic insult, leading to neuroprotection 

(Ferchmin et al. 2003). ERK also leads to neuroprotection through estrogen receptor 

signalling when exposed to glutamate toxicity (Singer et al. 1999). Therefore ERK 

demonstrates a neuroprotective effect following a plethora of neuronally toxic insults. 

OXA has been shown to induce a neuroprotective effect via ERK1/2 in CHO stably 

expressing OX1R (Ammoun et al. 2006b). OX has also been implicated in 

neuroprotection through mechanisms other than p-ERK1/2 including protection against 

hydrogen peroxide induced hypoxia through decreasing lipid peroxidative stress and 

caspase dependent apoptosis (Butterick et al. 2012). It is thought that the main 

mechanisms through which OX mediates neuroprotection are through anti-apoptotic 

pathways. This may include the involvement of Akt, as OX induced neuroprotection of 

cultured cortical cells treated with cobalt chloride was completely ablated when treated 

with an Akt inhibitor (Sokolowska et al. 2014). Activation of Akt phosphorylates a 

number of transcription factors including the forkhead box transcription factor and 
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inhibits their ability to induce apoptotic gene expression. Akt also inhibits p53 and 

induces the CREB protein and NF-KB, which promote cellular survival (Sokolowska et 

al. 2014).  

Our microarray data has shown that OXs and QRFP regulate HIF-1α as well as OXs 

having already been shown to regulate this pathway (Yuan et al. 2011; Sikder, Kodadek 

2007).  This is important in neuroprotection as it targets genes involved in fighting 

oxidative stress, improving blood oxygen and glucose supply, promoting glucose 

metabolism and blocking cell death signal pathways (Zhang et al. 2011). The HIF-1α 

inducer M30, attenuated tau hyperphosphorylation and protected against Aβ mediated 

toxicity in cortical neurons (Zhang et al. 2011; Avramovich-Tirosh et al. 2010). Over 

expression of HIF-1α in a rat nerve like cell line and cortical neurons also protected 

against Aβ induced toxicity (Soucek et al. 2003). In human patients with AD, treatment 

with the HIF-1α inducer; deferoxamine, experienced slowed cognitive decline (Zhang et 

al. 2011; Crapper McLachlan et al. 1991). This body of evidence suggest that HIF-1α 

can protect against AD, which could be important in OX mediated neuroprotection. So 

OX may act through a combination of pathways including ERK1/2, HIF-1α and Akt to 

promote cell survival.  

Patients with AD have been shown to exhibit disrupted sleep-wake patterns, reduced 

circulating OX and a loss of orexigenic neurons (Kang et al. 2009; Fronczek et al. 

2011). In SH-SY5Y cells we show that treatment with Aβ and zinc sulphate causes a 

reduction in OXRs and GPR103 through as yet unelucidated mechanisms. This 

mimicking of AD in vitro also shows that there is an increase in p-ERK1/2 which may 

be to induce neuroprotective effects. However Aβ
42 

and zinc treatment of cells has been 

shown to cause increases in p-ERK1/2 activation, and chronic activation can lead to cell 

death. So although the toxic effects exerted by Aβ and zinc may cause chronic 

activation of p-ERK1/2 potentially leading to cell death, OX/GPR103 also increase p-

ERK1/2, but may function in a neuroprotective fashion.  OXs have also been shown to 

mediate an abundance of other signalling pathways including Akt and HIF-1α which 

protect against toxic insult and may be important regulators of cell survival in AD. This 

study raises the question of whether if in early AD when Aβ and tau deposition are low, 

could OXR/GPR103 mediate neuroprotection through its plethora of beneficial 
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pathways. And whether during late disease an accumulation of Aβ and tau can cause 

sustained p-ERK1/2 insult and degradation of OXR/GPR103 expression leading to a 

loss of neuroprotection and additional neurodegeneration.  

We demonstrate here that addition of Aβ
42

 and zinc sulfate specifically target OX1R 

and OX2R in SH-SY5Y and mediate their down-regulation and although OXA can 

compensate through activation of OX2R, QRFP is unable to do so and as such 

experiences a reduction in p-ERK1/2 activation upon peptide addition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

      

 

145 
 

 

 

 

Chapter 7 

Detailed analysis of RNA and protein levels of OXR and 

GPR103 in the hippocampal formation of patients with 

Alzheimer’s disease 

 

7.1 Introduction 

The hippocampal formation is located in the medial temporal lobe beneath the cerebral 

cortex. Its main function is the formation of new memories and spatial awareness 

(Squire 2009). It comprises the dentate gyrus (DG), CA3, CA2, CA1 and subiculum 

(SUB) (Figure 7.1). The entorhinal cortex (EC) provides the main input to the 

hippocampus through projections to the DG. These inputs then travel to the CA3 and 

CA1 with the CA1 subsequently projecting to the SUB and sending the output back to 

the EC (Schuff et al. 2009). The DG contains a subgranular zone, one of the few areas 

of the brain to be capable of adult neurogenesis and is involved in formation of 

memories and spatial awareness (Saab et al. 2009; Xavier, Costa 2009). The earliest 

symptoms of AD are short term memory loss and this is due to hippocampal 

destruction. In AD the hippocampal formation is one of the earliest areas of the brain to 

be affected with significant damage when the first clinical symptoms become apparent 

and significant volume loss of the hippocampus compared to age matched healthy 

controls (Schuff et al. 2009; Frisoni et al. 2008). GPR103 has been shown to be 

expressed in the human and rat hippocampus (Baribault et al. 2006; Bruzzone et al. 

2007). OXRs are expressed throughout the hippocampal formation in rat brains but to 
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date detailed expression profiles have not been explored in the human brain particularly 

with regards to neurodegenerative disease (Trivedi et al. 1998; Hervieu et al. 2001). 

 

Figure 7.1: Anatomy of the hippocampal formation [adapted from (Conrad et al. 2012)] 

7.2 Objectives 

Using clinical patient samples from EOFAD, LOAD and a control group of both young 

and old patients, we studied the expression of OX1R, OX2R and GPR103 at mRNA and 

protein level. GeNorm was used to validate the patient samples and find the most stable 

housekeeping genes across all samples. qPCR was then performed to monitor any 

differences in receptor expression for all samples. These receptors were then mapped at 

protein level, using antibodies specific for each receptor and using an 

immunohistochemical DAB staining method to identify receptor expression in each 

sample. Correlation between receptors within each patient at RNA and protein level was 

ascertained as well as the correlation between Aβ/tau deposition and protein expression 

within specific areas of the hippocampal formation. 
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7.3 Results 

7.3.1 GeNorm of clinical samples to identify the most stable housekeeping genes to be used 

for qPCR normalisation 

Clinical samples were provided by the Brains for Dementia Research bank (Table 7.1).  

 Hippocampal patient samples 

 EOFAD LOAD 
Control 

(young) 
Control (old) 

RNA samples 7 6 3 3 

Table 7.1: Sample distribution of RNA human hippocampal samples. 

GeNorm analysis was performed on the clinical samples to identify the most stable 

housekeeping genes out of a panel of 6 genes. EIF4A2 and succinate dehydrogenase complex, 

subunit A (SDHA) were identified as the most stable across the different clinical samples, so 

both genes were used (Figure 7.2).  

 

Figure 7.2: GeNorm analysis of clinical samples. The 2 most stable genes were EIF4A2 and 

SDHA due to their low GeNorm M values indicating more stability between different samples.  
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7.3.2 qPCR analysis of clinical samples observing changes in OX1R, OX2R and GPR103 

expression 

qPCR was performed on the clinical samples observing changes in OX1R, OX2R and GPR103 

expression. Values for each sample were normalised to a housekeeping gene to calculate the 

ΔCT and the equation 2
- ΔCT

 was calculated to expresses the values as an RQ value or fold 

change compared to the housekeeping gene. 
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Figure 7.3: qPCR analysis of OX1R expression of patient samples from EOFAD, LOAD and young 

and old controls. Data is represented as an RQ value (2
-∆CT

) ± S.D. 
 



 

 

      

 

149 
 

E
O

F
A

D

L
O

A
D

C
O

N
T

R
O

L
 Y

O
U

N
G

C
O

N
T

R
O

L
 O

L
D

0 .0 0 0 1

0 .0 0 1

0 .0 1

0 .1

1

1 0
O X 1 R  .

R
Q

 V
a

lu
e

(L
o

g
1

0
)

  E O F A D          L O A D        C O N T R O L   C O N T R O L  

       Y O U N G         O L D

 
Figure 7.4: qPCR analysis of 7 EOFAD, 6 LOAD and 3 young controls and 3 old controls of 

OX1R represented in a box plot. Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, Median: 2

nd
 

quartile/50
th

 percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile. Statistical 

significance was performed using the Mann-Whitney U test (p<0.05*). 
 

 EOFAD LOAD CONTROL 

YOUNG 

CONTROL  

OLD 

Q1 0.000255 0.001048 0.4668 0.01282 

Min 0.000142 0.000203 0.4668 0.01282 

Median 0.009192 0.01268 3.799 0.1616 

Max 0.3247 0.1782 5.269 0.1783 

Q3 0.03132 0.06208 5.269 0.1783 

 

Table 7.2: Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, Median: 2

nd
 

quartile/50
th

 percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile values 

for EOFAD, LOAD and control samples upon qPCR analysis of OX1R. 

 

* 
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Changes in OX1R gene expression between individual samples are displayed on a log10 graph 

for each sub-set of patients (Figure 7.3).  Results showed an interpatient variation between each 

sub-set of patients; however EOFAD and LOAD display markedly lower expression than the 

control samples; with old control samples exhibiting lower expression than the young control 

samples. Figure 7.4 and table 7.2 indicate the variation for OX1R between patient samples, with 

EOFAD and LOAD having much lower median values than the control, but also exhibiting 

more variation. OX1R expression was significantly lower in EOFAD and LOAD compared to 

the young control. 
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Figure 7.5: qPCR analysis of OX2R expression of patient samples from EOFAD, LOAD and 

young and old controls. Data is represented as an RQ value (2
-∆CT

) ± S.D. 
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Figure 7.6: qPCR analysis of 7 EOFAD, 6 LOAD and 3 young controls and 3 old controls 

of OX2R represented in a box plot. Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, 

Median: 2
nd

 quartile/50
th

 percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile. 

Statistical significance was performed using the Mann-Whitney U test (p<0.05*). 

 

 EOFAD LOAD CONTROL 

YOUNG 

CONTROL  

OLD 

Q1 0.000607 0.000223 0.4509 0.03928 

Min 0.000532 0.00006 0.4509 0.03928 

Median 0.03013 0.01405 0.9233 0.07624 

Max 1.196 0.3342 4.199 0.3197 

Q3 0.04592 0.1356 4.199 0.3197 

 

Table 7.3: Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, Median: 2

nd
 quartile/50

th
 

percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile values for EOFAD, 

LOAD and control samples upon qPCR analysis of OX2R. 
 

* * 
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For OX2R, individual data for each patient displayed fluctuations between each subset of 

patients, however the EOFAD and LOAD patients demonstrated lower expression than the 

control groups (Figure 7.5) Figure 7.6 and table 7.3 show the variation in each sub-set of patient 

samples for OX2R gene expression. The medians for the AD groups were lower than in the 

control samples; however there was much variation between the AD patients which was not 

seen in the control samples. EOFAD and LOAD were significantly lower than the young 

control. Interestingly the old control was also significantly lower than the young control. 
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Figure 7.7: qPCR analysis of GPR103 expression of patient samples from EOFAD, LOAD 

and young and old controls. Data is represented as an RQ value (2
-∆CT

) ± S.D. 
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Figure 7.8: qPCR analysis of 7 EOFAD, 6 LOAD and 3 young controls and 3 old controls of 

GPR103 represented in a box plot. Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, 

Median: 2
nd

 quartile/50
th

 percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile. 

Statistical significance was performed using the Mann-Whitney U test (p<0.05*). 

 

 EOFAD LOAD CONTROL 

YOUNG 

CONTROL  OLD 

Q1 0.002051 0.000573 0.2702 0.05136 

Min 0.000452 0.000123 0.2702 0.05136 

Median 0.0105 0.006658 0.4351 0.08051 

Max 1.836 0.198 2.359 0.156 

Q3 0.04198 0.1 2.359 0.156 

 

Table 7.4: Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, Median: 2

nd
 quartile/50

th
 

percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile values for EOFAD, 

LOAD and control samples upon qPCR analysis of GPR103. 
 

* 
* 
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Figure 7.8 and table 7.4 demonstrate the variation between sub-sets of patients for GPR103 

gene expression. EOFAD and LOAD exhibited lower expression than both the young and old 

control. However there was vastly more variation observed between the AD patients. GPR103 

gene expression in EOFAD and LOAD followed the same pattern as OX1R and OX2R and 

exhibited reduced expression compared to the control samples and when compared to the young 

control was significantly lower (Figure 7.7). The young control demonstrated significantly 

higher GPR103 expression than the old control as is seen with OX2R. 

Pearson correlation was used to determine whether gene expression was correlated amongst the 

receptors to determine if expression of genes occurred in tandem and followed the same pattern. 

It is thought that in basal conditions OX1R exists as a homodimer and for OX2R the data is 

unclear (Xu et al. 2011). Correlation may give an indication as to whether receptors are co-

expressed to enable hetero-dimerisation. The dimerisation status of GPR103 is unknown, but as 

we have already demonstrated a potential cross-talk with OXRs, correlation with OXR could 

reveal potential co-expression to facilitate dimerisation.  

 

 

OX1R 

EOFAD 

OX2R 

EOFAD 

GPR103 

EOFAD 

OX1R EOFAD Pearson correlation 
 

0.9949 0.9959 

 
Significance 

 

< 0.0001 

**** 
< 0.0001 **** 

OX2R EOFAD Pearson correlation 0.9949 
 

0.9996 

 
Significance 

< 0.0001 

****  
< 0.0001 **** 

GPR103 EOFAD Pearson correlation 0.9959 0.9996 
 

 
Significance 

< 0.0001 

**** 

< 0.0001 

****  

 

Table 7.5: Correlation between different genes for each EOFAD patient sample using 

Pearson correlation between each of the genes in EOFAD. (p<0.0001****). (N=7) 

 



 

 

      

 

155 
 

  

OX1R 

LOAD 

OX2R 

LOAD 

GPR103 

LOAD 

OX1R LOAD Pearson correlation 
 

-0.1336 -0.1528 

 
Significance 

 
0.8008 0.7727 

OX2R LOAD Pearson correlation -0.1336 
 

0.9899 

 
Significance 0.8008 

 
0.0002 *** 

GPR103 LOAD Pearson correlation -0.1528 0.9899 
 

 
Significance 0.7727 0.0002 *** 

  

 

Table 7.6: Correlation between different genes for each LOAD patient sample using 

Pearson correlation between each of the genes in LOAD. (p<0.001***). (N=6) 

 

  

OX1R 

CONTROL 

OX2R 

CONTROL 

GPR103 

CONTROL 

OX1R 

CONTROL 
Pearson correlation 

 
-0.07094 -0.1041 

 
Significance 

 
0.8938 0.8444 

OX2R 

CONTROL 
Pearson correlation -0.07094 

 
0.9988 

 
Significance 0.8938 

 
< 0.0001 **** 

GPR103 

CONTROL 
Pearson correlation -0.1041 0.9988 

 

 
Significance 0.8444 < 0.0001 **** 

  

 

Table 7.7: Correlation between different genes for each control patient sample using 

Pearson correlation between each of the genes in control. (p<0.0001****). (N=6) 

 

In EOFAD there was significant positive correlation between OX1R, OX2R and GPR103 (Table 

7.5). So all of the genes followed the same pattern of reduced expression and they all 

experienced correlation between the reductions of the genes within this group.  However for 

LOAD and the control samples (Table 7.6 and 7.7) there was only positive correlation between 

OX2R and GPR103. This shows a distinct pattern of regulation depending on the onset of the 

disease.  
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7.3.3 Immunohistochemistry performed on clinical samples observing changes in OX1R, 

OX2R and GPR103 protein expression in different areas of the hippocampus 

 Hippocampal patient samples 

 EOFAD LOAD 
Control 

(young) 
Control (old) 

Paraffin embedded 

samples 
6 6 3 3 

 

Table 7.8 Sample distribution paraffin embedded human hippocampal samples. 

Immunohistochemistry was performed on paraffin embedded slides for each patient using the 

DAB method with OX1R, OX2R and GPR103 antibodies. The paraffin embedded samples used 

are displayed in table 7.8. Within the hippocampus 5 different areas: DG, CA3, CA2, CA1 and 

the SUB were observed. Scoring was performed by observing each specific area of the 

hippocampus and counting the number of nuclei and the amount of positively DAB stained cells 

within 5 areas of each part of the hippocampus. This was used to calculate the percentage of 

positive cells.  Figure 7.9 shows a representation of staining with different antibodies.
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Figure 7.9: Representative images of IHC using DAB staining in EOFAD, LOAD and control patients with OX1R, OX2R or a GPR103 antibody. X40 magnification, 

bar = 50µm. 
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Figure 7.10: Immunohistochemical analysis of paraffin embedded hippocampal slides of 

patients stained with an OX1R antibody. Scoring was performed by counting the amount of 

nuclei and the amount of positive cells within an area and a percentage of positive cells was 

calculated. 5 areas of the dentate gyrus, CA3, CA2, CA1 and subiculum were counted for each 

patient and an average was calculated ± S.D. 

EOFAD LOAD 

Control 
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Figure 7.10 demonstrates the spread of OX1R expression within 5 different areas of the 

hippocampus in EOFAD, LOAD and control samples. There is some fluctuation between 

different areas for each patient however EOFAD and LOAD stay generally below 40% of cells 

positively stained with the antibody whereas most of the control samples stay above 40%. 
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Figure 7.11: Immunohistochemical analysis of paraffin embedded hippocampal slides of 

patients stained with an OX1R antibody. Scoring was performed by counting the amount 

of nuclei and the amount of positive cells within an area and a percentage of positive cells 

was calculated. 5 areas of the dentate gyrus, CA3, CA2, CA1 and subiculum were counted 

for each patient and an average was calculated ± S.D. Statistical significance was 

calculated using the Mann-Whitney U test (p<0.01**, p<0.001***). 

 

 

 

 

** 
** 

*** 
** 
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 EOFAD LOAD 

 DG CA3 CA2 CA1 SUB DG CA3 CA2 CA1 SUB 

Q1 34.24 30.16 28.49 30 27.34 20.16 34.94 35.36 29.08 29.23 

Min 28.14 26.07 26.02 29.16 23.68 9.253 30.3 34.72 23.76 25.77 

Median 37.45 39.98 35.12 32.64 37.81 28.04 40.37 39.21 32.02 30.78 

Max 38.64 47.84 42.99 40.92 56.5 34.92 45.78 49.48 44.33 40.76 

Q3 38.63 46.16 42.5 40.25 49.81 33.64 45 43.92 40.9 38.99 

 Control young Control  old 

 DG CA3 CA2 CA1 SUB DG CA3 CA2 CA1 SUB 

Q1 37.31 26.62 25.58 25.48 11.79 51.45 40.43 47.81 39.98 42.82 

Min 37.31 26.62 25.58 25.48 11.79 51.45 40.43 47.81 39.98 42.82 

Median 37.44 32.96 50.18 46.3 14.12 53.32 51.56 52.45 41.36 56.5 

Max 42.64 53.56 56.13 49.61 53.51 53.93 55.72 59.14 62.27 57.52 

Q3 42.64 53.56 56.13 49.61 53.51 53.93 55.72 59.14 62.27 57.52 

 

Table 7.9: Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, Median: 2

nd
 quartile/50

th
 

percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile values for EOFAD, 

LOAD and control samples upon immunohistochemical staining with OX1R. 
 

The distribution within each sub-set of patients is presented in figure 7.11 and table 7.9, which 

show that EOFAD and LOAD have median values lower than the control. In the CA3 and SUB 

the young control have less expression than seen in the AD patients; however there is 

substantial interpatient variation between the controls, with the old control staying consistently 

higher than the AD patient and displays less variation.  
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Figure 7.12: Immunohistochemical analysis of paraffin embedded hippocampal slides of patients 

stained with an OX2R antibody. Scoring was performed by counting the amount of nuclei and the 

amount of positive cells within an area and a percentage of positive cells was calculated. 5 areas of the 

dentate gyrus, CA3, CA2, CA1 and subiculum were counted for each patient and an average was 

calculated ± S.D. 
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Expression of OX2R in EOFAD and LOAD showed a general trend of expression less than 40% 

of positively stained cells (Figure 7.12). Although there was variation between different areas of 

the brain within each patient, expression remained fairly consistent with a decrease in 

expression in the DG compared to other areas for most of the AD patients. The control samples 

showed more variation. The young control had slightly lower expression of OX2R compared to 

the old control, but was markedly reduced in the CA1 and SUB.  
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Figure 7.13: Immunohistochemical analysis of 7 EOFAD, 6 LOAD and 6 age matched 

controls stained with OX2R represented in a box plot. Scoring was performed by 

counting the amount of nuclei and the amount of positive cells within an area and a 

percentage of positive cells was calculated. 5 areas of the dentate gyrus, CA3, CA2, 

CA1 and subiculum were counted for each patient and an average calculated. Q1: 1st 

quartile/25th percentile, Min: minimum value, Median: 2nd quartile/50th percentile, 

Max: maximum value, Q3: 3rd quartile/75th percentile. Statistical significance was 

calculated using the Mann-Whitney U test (p<0.05*, p<0.01**). 

 

 

 

* 
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 EOFAD LOAD 

 DG CA3 CA2 CA1 SUB DG CA3 CA2 CA1 SUB 

Q1 19.22 27.19 29.36 28.41 25.27 21.9 28.74 32.05 26.47 25.79 

Min 17.44 17.57 23.63 27.93 16.6 21.72 28.36 26.26 23.36 24.62 

Median 31.4 36.61 34.56 33.38 40.04 27.07 36.24 39.58 37.77 37.53 

Max 45.58 51.38 51.21 57.86 45.37 36.44 45.8 44.94 44.54 48.96 

Q3 38.88 45.16 45.94 49.73 44.42 32.48 42.83 43.13 41.21 45.02 

 Control young Control  old 

 DG CA3 CA2 CA1 SUB DG CA3 CA2 CA1 SUB 

Q1 24.22 28.9 34.16 8.02 12.24 20.68 40.44 57.7 50.76 8.64 

Min 24.22 28.9 34.16 8.02 12.24 20.68 40.44 57.7 50.76 8.64 

Median 41.56 46.46 36.56 16.28 13.02 38.66 49.94 57.96 55.26 38.86 

Max 75.92 71.5 71.8 33.62 44.9 61.18 77.54 80.28 85.7 61.32 

Q3 75.92 71.5 71.8 33.62 44.9 61.18 77.54 80.28 85.7 61.32 

 

Table 7.10: Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, Median: 2

nd
 

quartile/50
th

 percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile 

values for EOFAD, LOAD and control samples upon immunohistochemical 

staining with OX2R. 

 

Figure 7.13 and table 7.10 showss the distribution of OX2R between the different 

patients and different hippocampal regions. The controls showed more variation 

between different patients, although the old control was consistently higher than the 

median values for EOFAD and LOAD. The young control however showed more 

expression in the DG and CA3, but showed reduced expression compared to the AD 

samples in the CA2, CA2 and SUB. 
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Figure 7.14: Immunohistochemical analysis of paraffin embedded hippocampal slides of 

patients stained with a GPR103 antibody. Scoring was performed by counting the amount of 

nuclei and the amount of positive cells within an area and a percentage of positive cells was 

calculated. 5 areas of the dentate gyrus, CA3, CA2, CA1 and subiculum were counted for 

each patient and an average was calculated ± S.D. 
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GPR103 staining generally remained below 50% in EOFAD and below 40% in LOAD 

for all of the patients and hippocampal regions as seen in figure 7.14. One young 

control, showed no GPR103 expression and there was large variation between the other 

two young controls.  The old controls also display reduced expression in two patients 

but in patient 19 there is higher expression in all areas.  
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Figure 7.15: Immunohistochemical analysis of 7 EOFAD, 6 LOAD and 6 age 

matched controls stained with GPR103 represented in a box plot. Scoring was 

performed by counting the amount of nuclei and the amount of positive cells within 

an area and a percentage of positive cells was calculated. 5 areas of the dentate gyrus, 

CA3, CA2, CA1 and subiculum were counted for each patient and an average 

calculated. Q1: 1st quartile/25th percentile, Min: minimum value, Median: 2nd 

quartile/50th percentile, Max: maximum value, Q3: 3rd quartile/75th percentile. 
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 EOFAD LOAD 

 DG CA3 CA2 CA1 SUB DG CA3 CA2 CA1 SUB 

Q1 27.77 33.19 37.56 27.23 29.28 19.6 31 31.81 28.25 19.62 

Min 21.34 29.47 30.27 27.19 25.95 18.81 30.55 22.4 22.14 16.78 

Median 40.84 41.54 41.95 43.49 33.04 28.18 39.14 36.72 34.86 26.93 

Max 62.05 50.51 54.04 53.65 57.36 41.84 42.35 40.15 40.83 49.88 

Q3 52.27 48.1 50.57 47.59 49.11 34.98 41.18 37.8 40.09 46.06 

 Control young Control  old 

 DG CA3 CA2 CA1 SUB DG CA3 CA2 CA1 SUB 

Q1 22.06 13.95 34.96 19.14 22.63 24.99 20.19 16.36 9.108 2.967 

Min 22.06 13.95 34.96 19.14 22.63 24.99 20.19 16.36 9.108 2.967 

Median 59.26 49.52 60.03 43.78 37.9 26.5 24 31.91 27.63 44.5 

Max 96.47 85.1 85.11 68.42 53.18 54.46 38.81 42.86 45.18 54.35 

Q3 96.47 85.1 85.11 68.42 53.18 54.46 38.81 42.86 45.18 54.35 

 

Table: 7.11: Q1: 1
st
 quartile/25

th
 percentile, Min: minimum value, Median: 2

nd
 

quartile/50
th

 percentile, Max: maximum value, Q3: 3
rd

 quartile/75
th

 percentile values for 

EOFAD, LOAD and control samples upon immunohistochemical staining with 

GPR103. 

 

Figure 7.15 and table 7.11 show the spread of staining across all samples for GPR103. 

The controls reveal much variation and the EOFAD remains higher that what is seen in 

LOAD.  Both EOFAD and LOAD stay consistently lower than the old controls and 

apart from in the SUB also remain lower than the young control. 

7.4: Correlation between OX1R, OX2R, GPR103 and Aβ
42 or tau staining within 5 

different regions of the hippocampal formation 

In AD one of the first symptoms are memory deficits which are correlated with disease 

progression. This can be as a result of Aβ deposition in areas of the hippocampal 

formation with denser depositions with progressing disease (Biron et al. 2013; Reilly et 

al. 2003). NFTs are also shown to be deposited within areas of the hippocampus in AD 

which has been shown to increase with disease advancement (Lace et al. 2009; Lund et 
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al. 2014). An Aβ
42

 and tau antibody was used to stain paraffin embedded hippocampal 

slides of the patients to observe protein deposition and distribution and identify any 

correlation with toxic protein accumulation and receptors (Figure 7.16). Scoring was 

performed by assessing each of 5 areas of the hippocampus: DG, CA3, CA2, CA1 and 

SUB and assigning values between 1-10; with 10 being the most dense protein 

expression.  

  

  

Figure 7.16: Representative images of immunohistochemistry using DAB staining in patient 

hippocampal slides with A. Aβ
42 

in an EOFAD patient. B. Aβ
42 

in a control patient. C. Tau in 

an EOFAD patient. D. Tau in a control patient. A and B x10 magnification, Bar = 200µm. C 

and D x20 magnification, Bar = 100µm. 

 

Pearson correlation was used to correlate deposition of Aβ
42 

or tau with receptor 

expression in EOFAD and LOAD within specific areas of the hippocampus. Most 

patient samples did not display any significant correlation between receptor expression 

and protein deposition. Patient 7 however had a significant positive correlation between 

 A             B  

  

 C                       D  
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OX2R and deposition of Aβ
42

 and tau (Table 7.12). Patient 6 also exhibited significant 

positive correlation between OX2R and tau deposition.  LOAD samples only showed 

correlation for patient 11 between OX1R and Aβ
42 

(Table 7.13).  

EOFAD  Patient 

2 

Patient 

3 

Patient 

4 

Patient 

5 

Patient 

6 

Patient  

7 

  OX1R OX1R OX1R OX1R OX1R OX1R 

Aβ
42

 Pearson 

correlation 

-0.6329 -0.6047 -0.3618 0.7091 

 
-0.59 0.7634 

 Significance 0.2517 0.28 0.5496 0.1799 0.295 0.1332 

  OX2R OX2R OX2R OX2R OX2R OX2R 

Aβ
42

 Pearson 

correlation 

0.7156 0.504 0.7534 0.4098 

 
-0.5469 0.9034 

 Significance 0.1741 0.3866 0.1414 0.4932 0.3401 0.0355 * 

  GPR103 GPR103 GPR103 GPR103 GPR103 GPR103 

Aβ
42

 Pearson 

correlation 

-0.9538 -0.3291 -0.05687 -0.3247 

 
0.1368 -0.1856 

 Significance 0.0118 0.5886 0.9276 0.5940 

 
0.8263 0.7651 

  OX1R OX1R OX1R OX1R OX1R OX1R 

Tau Pearson 

correlation 

-0.2509 0.6061 -0.5923 0.3183 

 
-0.8324 0.6827 

 Significance 0.684 0.2785 0.2926 0.1013 

 
0.0803 0.2041 

  OX2R OX2R OX2R OX2R OX2R OX2R 

Tau Pearson 

correlation 

0.3036 0.3927 0.8342 -0.3772 

 

 

-0.8937 0.9857 

 Significance 0.6195 0.5131 0.079 0.5313 0.041 * 0.0021 ** 

  GPR103 GPR103 GPR103 GPR103 GPR103 GPR103 

Tau Pearson 

correlation 

-0.822 -0.02661 -0.1634 -0.8530 

 
-0.1706 -0.04441 

 Significance 0.0877 0.9661 0.7929 0.0662 0.7839 0.9435 

 

Table 7.12: Correlation between Aβ or tau deposition and OX1R, OX2R and GPR103 

expression in paraffin embedded slides of EOFAD patients using Pearson correlation 

(p<0.05*,p<0.01**), (N=6). 
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LOAD 

 

Patient 

8 

Patient 

9 

Patient 

10 

Patient 

11 

Patient 

12 

Patient 

13 

  

OX1R OX1R OX1R OX1R OX1R OX1R 

Aβ
42

 
Pearson 

correlation 
0.6396 0.04563 0.7623 0.5819 0.546 0.1712 

 

Significance 0.2452 0.9419 0.134 0.3033 0.3411 0.7831 

  

OX2R OX2R OX2R OX2R OX2R OX2R 

Aβ
42

 
Pearson 

correlation 
0.9553 -0.8522 0.7422 0.9821 0.6755 0.1099 

 

Significance 0.0113 0.0667 0.1509 0.0029** 0.2107 0.8603 

  
GPR103 GPR103 GPR103 GPR103 GPR103 GPR103 

Aβ
42

 
Pearson 

correlation 
0.6302 -0.3634 0.8758 0.654 0.9523 0.07475 

 

Significance 0.2545 0.5477 0.0515 0.2312 0.0124 0.9049 

  
OX1R OX1R OX1R OX1R OX1R OX1R 

Tau 
Pearson 

correlation 
0.5783 -0.1683 0.6346 -0.2426 -0.1498 0.1712 

 

Significance 0.3071 0.7867 0.2501 0.6941 0.81 0.7831 

  
OX2R OX2R OX2R OX2R OX2R OX2R 

Tau 
Pearson 

correlation 
0.5528 -0.7787 0.2899 0.1712 0.3792 0.1099 

 

Significance 0.3339 0.1207 0.6361 0.7831 0.5291 0.8603 

  
GPR103 GPR103 GPR103 GPR103 GPR103 GPR103 

Tau 
Pearson 

correlation 
0.1841 -0.4938 0.7012 -0.1141 0.6478 0.07475 

 

Significance 0.7669 0.3978 0.187 0.8550 0.2372 0.9049 

 

Table 7.13: Correlation between Aβ or tau deposition and OX1R, OX2R and GPR103 

expression in paraffin embedded slides of LOAD patients using Pearson correlation, 

(p<0.01**),  (N=6). 
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Pearson correlation was then used to identify correlation between immunohistochemistry 

scoring of each receptor to one another. EOFAD revealed a significant negative correlation 

between OX1R and OX2R in patient 2 whilst LOAD showed significant positive correlation in 

patient 10 between OX1R and GPR103. Patient 13 also displayed significant positive 

correlation between OX2R and GPR103. There was no correlation between any receptors for 

the control samples (summarised in Table 7.14) 

 

Patient 2 (EOFAD) Patient 10 (LOAD) Patient 13 (LOAD)  

 

OX1R vs OX2R OX1R vs GPR103 OX2R vs GPR103  

Pearson correlation -0.9747 0.9586 0.9318  

Significance 0.0048 ** 0.01 * 0.0212 *  

 

Table 7.14: Significant correlation between OX1R, OX2R and GPR103 expression in 

paraffin embedded slides of EOFAD, LOAD and control patients using Pearson correlation 

(p<0.05*, p<0.01**). 

 

7.5 Results and discussion 

It has long been thought that there may be some involvement of the orexigenic system 

in AD. This is due to symptoms of AD encompassing sleep-wake cycle dysregulation 

and decreased feeding; both of which could be attributable to OX signalling as well as a 

loss of 40% of immunoreactive OX neurons in AD and lower circulating OXA 

(Fronczek et al. 2011). We sought to investigate OXR and GPR103 expression profiles 

in AD and control patients at RNA and protein level. This is the first time such a study 

has been performed to the best of our knowledge. 

qPCR analysis revealed that there was much lower expression of OX1R, OX2R and 

GPR103 in EOFAD and LOAD  when compared to the control.  With age matching it 

may be more appropriate to compare the EOFAD (median age 64) to the young controls 

(median age 58) and the LOAD (median age 88) to the old controls (median age 85), to 

account for any age related changes in receptor expression. Between EOFAD and 
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LOAD the medians and variation were fairly similar, with there being much more 

variation than seen in the control.  The old controls had consistently lower expression 

than seen in the young controls; however it still remained higher than the AD samples. 

OXR levels have been shown to decrease with age in rats with a reduction ranging from 

33-44%, so the reduction observed in old controls compared to the young controls is 

anticipated (Terao et al. 2002). EOFAD revealed a significant positive correlation 

between all of the genes, suggesting that receptor reduction is occurring in tandem 

between all the genes. In LOAD however, there is only a significant positive correlation 

between OX2R and GPR103. So OX1R only correlates with OX2R and GPR103 when 

there is genetic involvement in AD.  The same correlation is seen in the control 

samples, with positive correlation between OX2R and GPR103. OXRs have been shown 

to form homo or hetero–dimers. For example OX1R is capable of forming a dimer with 

the cannabinoid receptor (CB1) (Hilairet et al. 2003). Although it is known OXRs can 

form dimers, the dimerisation capabilities of GPR103 are not known.  In the human 

brain OXRs can be co-expressed or differentially expressed, for example only OX1R is 

expressed in the VTA and LC and only OX2R is expressed in the amygdala and LHA 

(Tsujino, Sakurai 2009). Therefore it is possible the correlation observed is as a result of 

dimerisation of the receptors and co-expression to allow full functioning of the 

receptors, or that both receptors play an important role in the hippocampus and 

expression of both is required. 

RNA oxidation has been shown to occur in up to 70% of mRNA isolated from the 

frontal cortex of an AD patient through immunoprecipitation and separation of oxidised 

and non-oxidised RNA (Shan, Lin 2006). 8-hydroxyguanosine (8-OHG) is an indicator 

of hydroxyl radical damage to RNA and accumulates upon reactive oxygen or nitrogen 

species assault. In the CSF of AD patients levels of 8-OHG were increased 5 fold 

compared to control samples (Abe et al. 2002). Although RNA oxidation has been well 

documented in AD the focus has been on identifying levels of oxidation and not the 

effect on specific genes. NO causes neurotoxicity through several mechanisms 

including: forming the destructive radical peroxynitrite, lipid peroxidation, 

DNA/RNA/protein damage as well as nitrosylation of proteins including protein kinase 

C (Law, Gauthier & Quirion 2001). This is of particular importance in AD where Aβ is 
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capable of exerting a synergistic action with glutamate causing the induction of the NO 

pathway and hence neuronal damage (Yang et al. 1998). NO has been demonstrated to 

selectively cause degeneration of OX neurons (Togo, Katsuse & Iseki 2004). Therefore 

OXR/GPR103 in AD may be selectively targeted through mechanisms of RNA 

oxidation or targeted NO degeneration leading to the observed reduction in RNA levels 

that are exhibited in EOFAD and LOAD patient samples. The microarray data that we 

previously performed revealed that upon OXA treatment 5 genes involved in the NF-

KB signalling pathway changed regulation compared to the control leading to induction 

of the pathway and with QRFP treatment 6 genes involved with the HIF-1α signalling 

pathway changed expression causing induction of the pathway.  The NF-KB signalling 

pathway is activated in response to many factors including oxidative stress (Li, Karin 

1999). The HIF-1α pathway is activated in response to low oxygen and incurs 

protection against hypoxic conditions (Ziello, Jovin & Huang 2007). The NF-KB 

pathway has been shown to play a role in neuroprotection of oxidative stress caused by 

Aβ
42

 in cultured rat hippocampal neurons (Mattson et al. 1997). Although it is not 

known whether OXR/GPR103 are directly affected by oxidation of RNA in AD, up to 

70% of RNA is affected by oxidation and it is possible that they too are affected. It is 

attractive to speculate that the reduction of receptors observed in patient samples is as a 

result of oxidative stress, with damage possibly being exacerbated by inability of 

OXR/GPR103 signalling leading to a loss of oxidative protection. 

Immunohistochemistry was then performed on paraffin embedded slides for each of the 

patients studying the protein expression for OX1R, OX2R and GPR103 in 5 

hippocampal regions: DG, CA3, CA2, CA1 and SUB. Within each area, 5 areas were 

scored by counting the amount of nuclei and the amount of positively stained cells and 

thus calculating the percentage of cells expressing the protein.  For OX1R the amount of 

protein was similar between EOFAD and LOAD and in all areas was lower than that 

seen in the old controls and lower than in the young controls in the DG, CA2 and SUB.  

There was a similar pattern for OX2R with comparable expression between EOFAD 

and LOAD which maintained lower levels than the old control across all hippocampal 

regions. The young controls however exhibited lower expression in the CA1 and SUB.  

GPR103 expression again remained accordant between EOFAD and LOAD, this time 
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however the expression in the old controls was consistently lower than the AD patients 

and the young controls were consistently higher. Although there was variation seen in 

the qPCR data, it was far less than seen with protein expression and illustrated a clear 

difference in expression between diseased and control samples.  At protein level 

however there was more variation between each group of samples. It is very important 

to remember that DAB staining is not quantitative and can only be viewed as a 

percentage of cells expressing the protein and not the extent to which they express a 

protein. So a collection of cells may all be scored as positive, but in actual fact some 

cells may be expressing vast quantities of the proteins and others low amounts. This 

difference in protein expression may also be attributable to RNA being extracted from 

an area containing the hippocampus and hence encompassing a larger area, whereas 

protein staining was performed on a clearly defined area. It is possible that differences 

in receptor expression are noticeable over a large area of brain and not within specific 

areas. Small losses in receptors in definitive areas may not be noticeable through DAB 

staining, but over a larger area may present a physiologically relevant loss. The 

reduction seen in the qPCR data is in agreement with previous studies where a 40% loss 

of orexigenic neurons in AD was observed (Fronczek et al. 2011). It should also be 

noted that OXR mRNA in rat brains has been documented and OX1R immunoreactivity 

was found in all areas of the hippocampal formation, but mRNA was not found in the 

CA3. OX2R immunoreactivity was not studied, but its mRNA was not found to be 

expressed in the CA1 or CA2 of the rat hippocampus (Trivedi et al. 1998). We however 

found protein expressed in all areas of the human hippocampal formation for the 

patients. These discrepancies may arise from the fact that this study was performed on 

human samples, whereas OXR expression studies were previously performed in the rat. 

Although the OXR are generally highly conserved between species there are also 

differences in homology between species (Jiang et al. 2003). So the OX system between 

the two species may not be identical, therefore mRNA expression profiling in the rat is 

not necessarily an exact indicator of what transpires in the human brain. In the human 

adrenal OX1R and OX2R expression is found in the zona fasciculata (ZF), zona 

reticularis (ZR) and the medulla and OX1R is also found in the zona glomerulosa (ZG) 

(Mazzocchi et al. 2001; Nanmoku et al. 2000). In the rat adrenal however, there is very 

low expression of OX1R and OX2R is expressed only in the ZG and ZR and there is no 
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expression in the ZF. As OXR expression has not been as extensively mapped in the 

brain as it has in the rat (particularly the hippocampus) it is possible that differences in 

expression that occur in the adrenal also occur in the human brain. 

The discrepancy in expression seen at protein level compared to RNA level may not 

directly reflect a state of functional receptor expression. Non-functional receptors 

include receptors with post-translational modifications and receptors undergoing 

trafficking. These receptors may still be detected even if they are not fully functional. 

OXRs have been shown to tightly associate with β-arrestin which can result in 

internalisation into recycling endosomes (Evans et al. 2001). This results in their 

eventual degradation or they can be recycled to the membrane, so they may be 

recognised by an antibody but in actual fact not be fully functional receptors. DAB 

staining is not specific and cannot localise expression to within certain areas of the cell, 

consequently the location and therefore possible functionality of the receptors cannot be 

ascertained through this technique. DAB also only stains cells as positive or negative it 

cannot be used to quantify the amount of receptor expression within each cell. A 

decrease in expression of all cells in AD could still produce the same amount of DAB 

staining as control samples. So this may explain discrepancies between receptor 

expression at RNA level and positive staining of protein. 

Data is unclear on any post-translational modifications involved in OXR or GPR103 

production, but this can affect the expression at protein level and may explain 

differences seen in RNA and protein level (Baribault et al. 2006). Post-translational 

modifications of GPCRs include the glycosylation of the amino terminus, extracellular 

loops and carboxy-terminal phosphorylation (Goddard, Watts 2012). So although there 

is a smaller decrease at protein level in AD samples compared to the controls than what 

is observed at RNA level, these receptors may not be functional and DAB protein 

expression is only semi-quantitative and observes only a small area. 

Slides were then stained with Aβ
42

 and a tau antibody to discern if any changes in 

OXR/GPR103 receptors were correlated with Aβ
42 

deposition or tau 

hyperphosphorylation. These slides were scored from 1-10 with 10 being the most 

dense staining. EOFAD patient 7 exhibited positive correlation between OX2R and 
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Aβ
42

 and also between OX2R and tau. Patient 6 revealed negative correlation between 

OX2R and tau. In LOAD there was no correlation with Aβ
42

 or tau and protein 

expression. This suggests that within the hippocampal formation reduction observed at 

protein level does not correlate with damage caused by Aβ
42

 or tau in AD.   

In the control samples there was no observed correlation between receptors at protein 

level. For EOFAD only patient 2 had significant negative correlation between OX1R 

and OX2R. In LOAD samples, patient 10 had significant positive correlation between 

OX1R and GPR103 and in patient 13 for OX2R and GPR103. However this was not 

observed across multiple samples and neither the same gene correlations nor the same 

direction of correlation was seen, so this is an individual patient occurrence and not a 

trend. Therefore at the protein level there is no significant correlation between OX1R, 

OX2R or GPR103 expression. Although there is no correlation in the 

immunohistochemistry samples and differences are more variable than seen in the 

qPCR, immunohistochemistry is only semi-quantitative and observes very small, 

distinct regions. Expression and correlation seen in qPCR was statistically significant as 

well as focusing on a larger area of the hippocampus and surrounding tissue. 

To summarise; there is a reduction in OX1R, OX2R and GPR103 mRNA expression in 

EOFAD and LOAD when compared to control samples, and although there is a similar 

reduction at protein level it is not entirely reflective of what occurs at RNA level. We 

demonstrate in AD that there is a reduction at RNA and protein level of OX1R, OX2R 

and GPR103 which may lead to compromised OXR/GPR103 signalling in AD resulting 

in the symptoms observed in AD including sleep-wake dysregulation and weight loss.  
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Chapter 8 

General discussion  

 

8.1 Validation of neuronal model and ERK signalling with OX and QRFP 

IMR32 and SH-SY5Y cell lines were differentiated and this was confirmed through 

increasing neurite length, increased expression of key neuronal proteins and increases in 

MAPT, NG1 and NSE  as well as a reduction in the neuronal marker of immaturity NES. 

OXR and GPR103 were found to be expressed in both cell lines once they had become 

differentiated and were shown to be fully functional and capable of phosphorylating 

ERK1/2. ERK1/2, when phosphorylated can directly regulate the expression of BDNF 

through the CREB protein, insulin-like growth factor 1 (IGF-I) and many anti-apoptotic 

genes as well as increasing ROS detoxification though antioxidants like heme 

oxygenase 1 and manganese superoxide dismutase; all of which contribute to neuronal 

survival (Tabuchi et al. 2002; Lambert, Weiss & Lauder 2001; Gong et al. 2002; 

Sakamoto, Karelina & Obrietan 2011). CREB also regulates genes involved in memory 

and synaptic plasticity and in mice with Aβ induced amnesia there was reduced ERK1/2 

phosphorylation (Liu et al. 2013). ERK induced neuroprotection has also been 

demonstrated in the rat suprachiasmatic nucleus cell line: SCN2.2 which is resistant to 

glutamate toxicity; an important mediator of neurodegeneration in AD. ERK1/2 

inhibition in this cell line prevented any glutamate resistance and resulted in 

neurotoxicity (Karmarkar et al. 2011). ERK inhibition in a Huntington’s model resulted 

in increased cell death and ERK1/2 can also directly protect cells from DNA damage 

and hypoxia (Maher et al. 2011; Hetman et al. 1999; Han, Holtzman 2000). 

We showed that in our hands we could create a differentiated human neuronal model 

and induce p-ERK1/2 through addition of OXA, OXB and QRFP. We demonstrate for 
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the first time signalling through ERK1/2 of OXA, OXB and QRFP in a neuronally 

differentiated model and thus indicative of potential neuroprotective effects. 

8.2 Reduction in OXR/GPR103 in AD models; in vitro and in clinical samples 

Our clinical sample studies using Aβ
42

 and zinc sulphate to induce an AD phenotype by 

Aβ
42

 deposition and tau hyperphosphorylation respectively resulted in significant down 

regulation of OX1R and GPR103 at mRNA level in SH-SY5Y with minimal changes in 

OX2R, however this was not reflected in IMR32. This suggests a preferential targeting 

and thus down regulation of OX1R and GPR103 over OX2R in SH-SY5Y. The 

significant reduction observed in OX1R is not reflected in its activation of p-ERK1/2 

and this may be due to OXAs ability to signal through OX2R which is minimally 

affected by the treatment. The fact that GPR103 experiences significant down 

regulation in all treatments and yet has vastly reduced levels of p-ERK1/2 compared to 

OXA and OXB treatment supports this. Although this might suggest that OX signalling 

can be compensated for through OX2R, addition of the peptide was exogenous and 

circulating levels of OXs cannot be accounted for in an in vivo system and how they 

may be affected in AD.  

In EOFAD and LOAD all the 3 receptors mRNA were also significantly reduced 

compared to healthy controls. There were significant differences compared to the young 

control but not to the old control; although the average for AD samples was consistently 

lower than the old control for all receptors.  The mean age for EOFAD samples was 61 

years old and for the young controls 57; this makes it an appropriate control and 

signifies that there is significant down regulation of OXR and GPR103 in EOFAD when 

compared to an age matched control. The mean age in LOAD samples is 84 years old 

and for old controls 85. This seems a more appropriate control for these samples and 

although there was no significant reduction there was certainly a trend for reduced 

expression of all receptors in LOAD samples. One of the main mechanisms though 

which AD can exert a damaging effect on cells is through oxidation of the RNA (Shan, 

Lin 2006; Nunomura et al. 1999). Increased ageing has also been demonstrated to lead 

to increased oxidative damage which can result in defects in memory (Liu et al. 2002; 

Marchal et al. 2013). So although RNA oxidation is amplified in AD due to toxic insult 
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it also occurs as a consequence of ageing and OXRs have been shown to be decreased 

with normal ageing (Terao et al. 2002a; Porkka-Heiskanen et al. 2004). This may 

explain why there is reduced expression in the old control compared to the young 

control. However it must be noted that in LOAD there is still a trend of reduced receptor 

expression compared to the old control.  

We have demonstrate that Aβ
42

 and zinc sulphate in vitro to mimic AD results in a 

significant reduction of OX1R and GPR103 in SH-SY5Y and in AD patients there is a 

loss of OX1R, OX2R and GPR103 at mRNA and protein level compared to a healthy 

control.  

8.3 The loss of OXR/QRFP and potential loss of neuroprotection 

Acute p-ERK increases have been shown to confer neuroprotection and OX and QRFP 

signalling through this pathway may provide protection (Karmarkar et al. 2011; Maher 

et al. 2011; Xia et al. 1995). Indeed OXs have already been shown to exert a 

neuroprotective role through activation of Akt, NF-KB, HIF-1α and ERK1/2 

(Sokolowska et al. 2014; Yuan et al. 2011; Yuan et al. 2011; Harada, Yamazaki & 

Tokuyama 2013; Yamada et al. 2009). Our microarray data highlighted key genes 

involved in neurodegeneration for example; GRIN1 and PTGER1. However there are 

an overwhelming number of KEGG pathways and individual genes regulated by OXA, 

OXB and QRFP which confer neuroprotection. Of note with OXA treatment is the 

induced upregulation of somatostatin receptors, VIP, EDN1 and the NF-KB KEGG 

pathway, all of which contribute to neuroprotection (Hama, Saido 2005; Song et al. 

2012; Palmer, Love 2011; Mattson et al. 1997). OXB increases CRHR1, REDD1 and 

EPO which have all been heavily implicated in AD and protection (Pedersen et al. 

2001; Li et al. 2005; Rabie, Marti 2008; Lee et al. 2012). QRFP treatment led to a 

decrease of c-myb and BIM and up regulation of many neuroprotective genes including 

PDGF-β and EPO, all of which are suggestive of a neuroprotective function (Deng, 

Ishii & Sarai 1996; Sagare et al. 2013). 

Neurodegeneration is also a normal process of ageing. For example the widely accepted 

free radical theory of ageing proposed by Harman in 1956, postulated that free radicals 

from oxygen accumulate over time and cause the damage associated with ageing and 
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the antioxidant systems are incapable of counteracting this damage over a lifespan 

(Harman 1956; Vina, Borras & Miquel 2007; Edrey, Salmon 2014).  In normal ageing 

there is thought to be a reduction of approximately 5% of brain mass for each decade 

after the age of 40, with rate of decline increasing after 70 (Svennerholm, Bostrom & 

Jungbjer 1997; Scahill et al. 2003) . This appears to particularly affect the hippocampus 

and the frontal lobes, and between the ages of 30-90 there is a 14% cerebral cortex loss, 

35% in the hippocampus and 26% in cerebral white matter (Jernigan et al. 2001). And 

as such there are many cognitive related declines associated with normal ageing, which 

becomes more apparent with increasing age but are not pathological (Zamzow et al. 

2013; Verhaeghen, Cerella 2002). Loss of the orexigenic system associated with normal 

ageing is also associated with poor sleep quality and increased sleep fragmentation 

(Porkka-Heiskanen, Zitting & Wigren 2013). This raises the importance of two factors 

associated with ageing: loss of the OX system and increased oxidative damage. This 

could imply that that loss of the OX system causes a loss of neuroprotection particularly 

with regards to protection against oxidative damage and could contribute to age related 

cognitive decline.  

It has been suggested that in transgenic AD mouse models that OX infusion can 

exacerbate the burden of disease (Kang et al. 2009). Based on this assumption it could 

be expected that in narcoleptic patients which experience a loss of orexigenic signalling 

systems that they would have a lower incidence of disease due to the predicted 

neurotoxic effects of AD in these mouse models. However a recent study which 

examined rates of AD in human narcoleptics found that 1 in 3 narcoleptic patients had 

AD (Scammell, Matheson et al. 2012). This suggests that OX does not exacerbate the 

chances of AD and in fact these narcoleptic patients have a higher incidence of disease 

than would be expected in a group of this age range further suggesting protective effects 

of OX in AD. 

Calorie restriction has been shown to extend life span through its antioxidant effects, 

anti-inflammatory effects and enhanced neurogenesis (Maalouf, Rho & Mattson 

2009).This can occur through regulation of sirtuin1 (SIRT1) (Satoh et al. 2010). Calorie 

restriction has been shown to cause up regulation of SIRT1 which then results in an 

increase in OX2R (Satoh et al. 2010). However the data on calorie restriction effects on 
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OXR and PPO expression are conflicting, but there seems to be more data suggesting an 

upregulation during restricted feeding, with increased OX mediating an anti-depressant 

like effect upon calorie restriction (Lutter et al. 2008; Cai et al. 1999; Lopez et al. 2000; 

Mondal et al. 1999). It is thought that SIRT1 is one of the primary mechanisms which 

results in increased life span, through regulation of metabolic pathways and promotion 

of cell survival (Satoh et al. 2010). It has also been implicated in AD and shown to 

reduce Aβ deposition in a transgenic mouse model of AD through upregulation of 

ADAM10 and subsequent APP processing by α-secretase in a non-amyloidegenic 

fashion (Satoh et al. 2010; Qin et al. 2006). Circulating SIRT1 is significantly reduced 

in human AD patients and is directly correlated with AD progression (Julien et al. 

2009). And it is calorie restriction which is an incredibly important regulator of SIRT1. 

Calorie restriction has been shown to have specific effects on neuroprotection and can 

limit neuronal damage in response to neuronal injury and in transgenic mouse models of 

AD calorie restriction significantly reduced neuronal damage (Bruce-Keller et al. 1999; 

Anson et al. 2003). This indicates the potential for up regulation of OX or OXR which 

has been previously shown to occur during calorie restriction, to confer neuroprotection. 

Collectively, based on our in vitro findings and clinical data; there is a loss of OXR and 

GPR103 which could worsen not only symptoms of weight loss and dysregulation of 

the sleep wake cycle but also confer a loss of neuroprotection through these signalling 

pathways including ERK1/2; exacerbating the symptoms of the disease. This raises the 

question of potential therapeutic targets to improve the symptoms of dysregulated sleep-

wake and weight loss which are major contributors to institutionalisation and 

malnutrition, but also improve neuroprotection which could slow progression of the 

disease (Bird 2008; Bianchetti et al. 1995).  

8.4 Function of GPR103 and its potential cross-talk with OXR 

This study has also highlighted the novel roles of the peptide QRFP and its receptor 

GPR103. A multitude of studies provide evidence that there is an interaction and 

subsequent cross-talk of GPCRs and for the existence of homodimeric and 

heterodimeric structures upon agonist stimulation, which can form new receptor 

complexes or provide distinctive characteristics which exhibit functional properties 
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separate from the monomeric GPCR form (Angers, Salahpour & Bouvier 2002; Szafran 

et al. 2013). There is limited data on GPR103/QRFP and we demonstrate for the first 

time the genes which it regulates in a neuronal cell line. In our model it regulates many 

more genes that OXA or OXB and as it has previously been demonstrated to have 

orexigenic activity it may be more pivotal in regulation of the systems attributed to OXs 

than previously thought (Takayasu et al. 2006). It regulates many genes involved in 

neuroactive ligand-receptor interaction, metabolic pathways, calcium signalling, HIF-

1α, PI3K-Akt, Jak-STAT, MAPK, regulation of the actin cytoskeleton and the TNF 

pathway as well as cardiac muscle contraction and cytokine interactions. This suggests 

it has many physiological functions which are far reaching and extend beyond the brain 

and a merely orexigenic like activity.  

We show that that QRFP can induce phosphorylation of ERK1/2 to initiate its 

downstream effects. Both IMR32 and SH-SY5Y showed increasing activation over 60 

minutes, which may suggest a lack of receptor internalisation or desensitisation that is 

seen with OXA and OXB. Antagonists for OX1R and OX2R can individually block 

QRFP induced phosphorylation of ERK1/2. This suggests a possible cross-talk between 

GPR103 and the OXRs. Because each antagonist used has a higher selectivity for one of 

the receptors this suggests possible coupling to both of the OXR and indicates that to 

activate ERK1/2 GPR103 must couple to at least one of these receptors. OXRs are not 

always co-expressed in the brain so GPR103 may have a proclivity for promiscuously 

coupling to whichever OXR is available to initiate its action when only one of the 

receptors is available (Trivedi et al. 1998; Bruzzone et al. 2007). Indeed, in the clinical 

samples there was a positive correlation between expression of GPR103 and OX2R for 

all of the patient samples at mRNA level. In the microarray QRFP also resulted in 

increased expression of OX1R, suggesting that QRFP stimulation of neuronal cells 

could selectively increase OX1R to enable a cross-talk and further signalling. It is 

attractive to speculate that co-expression of GPR103/OXRs in the hippocampus is 

needed to allow GPR103 to become fully functional. 
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8.5 Limitations of study 

We would like to acknowledge that our study has a number of limitations. With regards 

to the clinical samples one of the problems was inability to sufficiently quantify protein 

levels. Although DAB staining was performed this does not give an accurate enough 

representation at protein level. This could be studied in the future, by performing a 

western blot on extracted protein, which unfortunately in this study was not possible 

due to ethical restrictions. The PM delay for the patients was incredibly variable and 

this may have had an effect on degradation of RNA/protein, in the future collection of 

samples with early PM delays or from roughly the same time would make for more 

representative data. However this may not be feasible as there are so many constraints 

to this, which are out of our control. As there are not many cases of EOFAD it would 

indeed be highly unlikely to obtain further samples from Brains for Dementia Research 

bank. Although we observed receptor expression in patient samples at mRNA level, we 

did not correlate this with circulating ISF levels of the peptides within each patient, 

which could have provided interesting insights. Due to the limitations in obtaining 

samples, we were only able to study one area of the brain. Many other areas of the brain 

are affected by the orexigenic system and are targeted in AD which could elucidate the 

mechanisms behind this interaction further.  

In addition we only measure one end point of receptor activation: p-ERK1/2 and so 

other signalling pathways in a neuronal model which were affected through 

OXR/GPR103 signalling were not identified. Furthermore the microarray we performed 

was only on one of the two cell lines we successfully differentiated and we did not 

perform a proteomic screen on the treated samples. We also treated cells for 24 hours 

and in vivo exposure to OX/QRFP for this extended period of time may have effects 

which are physiologically abnormal.  

8.6 Future work 

Due to certain constraints regarding feasibility the microarray was only performed on 

one cell line which we perceived as being more valuable to the study. However to get a 

wider view of peptide effects on neuronal cells, multiple cell lines could be used to get a 

more consistent view on OX and QRFP signalling as well as observing different 
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exposure times to the peptides. Measurement of receptor expression in AD patients 

through western blot would provide more quantitative results at protein level and 

measuring circulating OX and QRFP in the same patients could further dissect any 

correlations between circulating peptide levels and receptors. This could identify if it is 

not only a loss of the receptors but also of the ligands which lead to the characteristic 

symptoms associated with the orexigenic system. If possible, to obtain the clinical 

history of the patients would allow us to correlate the extent of the loss of 

OXR/GPR103 with the severity of sleep related disorder or weight loss to examine if 

there is indeed a direct correlation between symptoms and loss of receptors. We 

observed more variation in receptor expression in AD samples than in control samples, 

and if we could correlate symptoms with reductions in receptor expression it may 

explain the variations. That is, patients which experience more of a reduction in 

receptors may have worse symptoms. Because there can be sexual dimorphism in AD a 

larger cohort from each female and male groups could identify any sexual dimorphisms 

in OXR and GPR103. A larger cross section of the brain and surrounding neuronal 

structures would provide an interesting insight as to whether OXR/GPR103 loss is 

confined to hippocampal areas or is more widespread. It would also be very interesting 

to investigate how addition of Aβ
42

 and zinc sulphate affects HIF-1α and Akt; already 

identified as being important in OX signalling and neuroprotection, and whether 

treatment with OXA, OXB and QRFP could confer neuroprotection using these 

pathways. Also observing cell viability upon peptide addition could reveal any cell pro-

survival effects of the peptides. Moreover it would be interesting to examine OX and 

QRFP neuroprotective effects in a non-AD situation for example by addition of 

hydrogen peroxide to see if the peptides are capable of protecting against oxidative 

insult and whether there is any HIF-1α involvement.  

Performing the studies we have demonstrated in human primary neurons would remove 

the necessity of differentiating the immortalised cell lines and could provide data which 

is more representative of an in vivo system than what we have already observed. It 

would also be of great interest to further dissect the possible dimerisation of GPR103 

with the OXRs, by performing co-localisation studies to determine upon peptide 

addition whether they co-localise and this could be performed using BRET analysis. 
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Due to the failure of IMR32 to produce any significant data when treated with Aβ
42

 or 

zinc sulphate it would be ideal to use another neuronal cell line to observe the effects 

across a wider spectrum of cell lines and dissect whether there is a sexual dimorphism 

in neuronal cell lines. Although SH-SY5Y confirmed what was seen in the patient 

samples a broader spectrum would allow clearer identification of possible gene changes. 
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