PHYSICAL REVIEW D 90, 032008 (2014)

Search for *WW* γ and *WZ* γ production and constraints on anomalous quartic gauge couplings in *pp* collisions at $\sqrt{s} = 8$ TeV

S. Chatrchyan *et al.**

(CMS Collaboration) (Received 17 April 2014; published 25 August 2014)

A search for $WV\gamma$ triple vector boson production is presented based on events containing a W boson decaying to a muon or an electron and a neutrino, a second V (W or Z) boson, and a photon. The data correspond to an integrated luminosity of 19.3 fb⁻¹ collected in 2012 with the CMS detector at the LHC in pp collisions at $\sqrt{s} = 8$ TeV. An upper limit of 311 fb on the cross section for the $WV\gamma$ production process is obtained at 95% confidence level for photons with a transverse energy above 30 GeV and with an absolute value of pseudorapidity of less than 1.44. This limit is approximately a factor of 3.4 larger than the standard model predictions that are based on next-to-leading order QCD calculations. Since no evidence of anomalous $WW\gamma\gamma$ or $WWZ\gamma$ quartic gauge boson couplings is found, this paper presents the first experimental limits on the dimension-eight parameter $f_{T,0}$ and the *CP*-conserving $WWZ\gamma$ parameters κ_0^W and κ_c^W . Limits are also obtained for the $WW\gamma\gamma$ parameters a_0^W and a_C^W .

DOI: 10.1103/PhysRevD.90.032008

PACS numbers: 14.70.-e, 12.60.Cn, 13.38.Be

I. INTRODUCTION

The standard model (SM) of particle physics provides a good description of the existing high-energy data [1]. The diboson WW and WZ production cross sections have been precisely measured at the Large Hadron Collider (LHC) and are in agreement with SM expectations [2–6]. This paper presents a search for the production of three gauge bosons $WW\gamma$ and $WZ\gamma$, together denoted as $WV\gamma$. It represents an extension of the measurement of diboson production presented in Ref. [3], with the additional requirement of an energetic photon in the final state. Previous searches for triple vector boson production, when at least two bosons are massive, were performed at LEP [7–11].

The structure of gauge boson self-interactions emerges naturally in the SM from the non-Abelian $SU(2)_L \otimes U(1)_Y$ gauge symmetry. Together with the triple $WV\gamma$ gauge boson vertices, the SM also predicts the existence of the quartic WWWW, WWZZ, WWZ γ , and WW $\gamma\gamma$ vertices. The direct investigation of gauge boson self-interactions provides a crucial test of the gauge structure of the SM and one that is all the more significant at LHC energies [12].

The study of gauge boson self-interactions may also provide evidence for the existence of new phenomena at a higher energy scale [13–16]. Possible new physics beyond the SM, expressed in a model independent way by higher-dimensional effective operators [17–22], can be implemented with anomalous triple gauge and quartic gauge couplings (AQGC), both of which contribute in triple gauge boson production. A deviation of one of the couplings from the SM prediction could manifest itself in an enhanced production cross section, as well as a change in the shape of the kinematic distributions of the $WV\gamma$ system. CMS recently obtained a stringent limit on the anomalous $WW\gamma\gamma$ quartic coupling via the exclusive two-photon production of W^+W^- [23].

This paper presents a search for $WV\gamma$ production in the single lepton final state, which includes $W(\rightarrow \ell\nu)W(\rightarrow jj)\gamma$ and $W(\rightarrow \ell\nu)Z(\rightarrow jj)\gamma$ processes, with $\ell = e, \mu$. The data used in this analysis correspond to a total integrated luminosity of 19.3 ± 0.5 (19.2 ± 0.5) fb⁻¹ [24] collected with the CMS detector in the muon (electron) channel in pp collisions at $\sqrt{s} = 8$ TeV in 2012. The hadronic decay mode is chosen because the branching fraction is substantially higher than that of the leptonic mode. However, the two production processes $WW\gamma$ and $WZ\gamma$ cannot be clearly differentiated since the detector dijet mass resolution ($\sigma \sim 10\%$) [25] is comparable to the mass difference between the *W* and *Z* bosons. Therefore, $WW\gamma$ and $WZ\gamma$ processes are treated as a single combined signal.

II. THEORETICAL FRAMEWORK

An effective field theory approach is adopted in which higher-dimensional operators supplement the SM Lagrangian to include anomalous gauge couplings. Within this framework, anomalous boson interactions can be parametrized using two possible representations. The first is a nonlinear realization of the $SU(2) \otimes U(1)$ gauge symmetry that is broken by means other than the conventional Higgs scalar doublet [18,19]. The quartic boson interactions involving photons appear as dimensionsix operators. The second is a linear realization of the symmetry that is broken by the conventional Higgs scalar

^{*} Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.

S. CHATRCHYAN et al.

doublet [18,20]. The quartic interactions involving photons appear as dimension-eight operators.

Some of the operators within one realization share similar Lorentz structures with operators from the other, so that their parameters can be expressed simply in terms of each other, whereas others cannot. While the discovery of the SM Higgs boson makes the linear realization more appropriate for AQGC searches [13,20], it contains 14 such operators that can contribute to the anomalous coupling signal. In addition, all published AQGC limits to date are expressed in terms of dimension-six parameters. To bridge this divide, we select four dimension-six parameters, two of which have not been previously measured, and the other two are used to compare with previous results [8,18]. These parameters also have dimension-eight analogues. Finally, we include a representative parameter from the linear realization, $f_{T,0}$, which has no dimension-six analogue.

The Feynman diagrams for the quartic vertices are shown in Fig. 1, and the CP-conserving, anomalous interaction Lagrangian terms chosen for this analysis are written in Eq. (1).

$$\mathcal{L}_{AQGC} = -\frac{e^2}{8} \frac{a_0^W}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W^{-}_{\alpha} - \frac{e^2}{16} \frac{a_C^W}{\Lambda^2} F_{\mu\nu} F^{\mu\alpha} (W^{+\nu} W^{-}_{\alpha} + W^{-\nu} W^{+}_{\alpha}) - e^2 g^2 \frac{\kappa_0^W}{\Lambda^2} F_{\mu\nu} Z^{\mu\nu} W^{+\alpha} W^{-}_{\alpha} - \frac{e^2 g^2}{2} \frac{\kappa_C^W}{\Lambda^2} F_{\mu\nu} Z^{\mu\alpha} (W^{+\nu} W^{-}_{\alpha} + W^{-\nu} W^{+}_{\alpha}) + \frac{f_{T,0}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}] \times \operatorname{Tr}[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta}].$$
(1)

The energy scale of possible new physics is represented by Λ , $g = e/\sin(\theta_W)$, θ_W is the Weinberg angle, e is the unit of electric charge, and the usual field tensors are defined in Refs. [18–20]. The dimension-six parameters a_0^W/Λ^2 and a_C^W/Λ^2 are associated with the $WW\gamma\gamma$ vertex and the κ_0^W/Λ^2 and κ_C^W/Λ^2 parameters are associated with the $WWZ\gamma$ vertex. The dimension-eight parameter $f_{T,0}/\Lambda^4$ contributes to both vertices. The $a_{0,C}^W/\Lambda^2$ coupling parameters have dimension-eight analogues, the $f_{M,i}/\Lambda^4$ coupling parameters. The relationship between the two is as follows [18] [Eq. (3.35)],

FIG. 1. Feynman diagrams that involve a quartic vector boson vertex. Both diagrams are present in the SM.

$$\frac{a_0^W}{\Lambda^2} = -\frac{4M_W^2 f_{M,0}}{g^2} \frac{f_{M,0}}{\Lambda^4} - \frac{8M_W^2 f_{M,2}}{g^2} \frac{f_{M,2}}{\Lambda^4},$$
$$\frac{a_C^W}{\Lambda^2} = \frac{4M_W^2 f_{M,1}}{g^2} \frac{f_{M,1}}{\Lambda^4} + \frac{8M_W^2 f_{M,3}}{g^2} \frac{f_{M,3}}{\Lambda^4},$$
(2)

where $g' = e/\cos(\theta_W)$ and M_W is the invariant mass of the *W* boson. The expressions listed in Eq. (2) are used to translate the AQGC limits obtained for $a_{0,C}^W/\Lambda^2$, into limits on $f_{M,i}/\Lambda^4$. It is also required that $f_{M,0} = 2 \times f_{M,2}$ and $f_{M,1} = 2 \times f_{M,3}$, which results in the suppression of the contributions to the *WWZ* vertex in Eq. (2), as can be seen from [19] Eq. (22) and Eq. (23).

Any nonzero value of the AQGCs will lead to tree-level unitarity violation at sufficiently high energy. We find that the unitarity condition [26] cannot be generally satisfied by the addition of a dipole form factor; however, unitarity conserving new physics with a structure more complex than that represented by a dipole form factor is possible. Since the structure of new physics is not known *a priori*, the choice is made to set limits without using a form factor.

III. THE CMS DETECTOR

The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting solenoid of 6 m internal diameter and 13 m length, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL). Muons are reconstructed in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the brass and scintillator section of the hadronic calorimeter.

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the *x* axis pointing to the center of the LHC ring, the *y* axis pointing up (perpendicular to the LHC plane), and the *z* axis along the counterclockwise beam direction. The polar angle θ is measured from the positive *z* axis and the azimuthal angle ϕ is measured in radians in the *x*-*y* plane. The pseudorapidity η is defined as $\eta = -\ln[\tan(\theta/2)]$.

The energy resolution for photons with transverse energy $(E_{\rm T})$ of 60 GeV varies between 1.1% and 2.6% in the ECAL barrel, and from 2.2% to 5% in the end caps [27]. The HCAL, when combined with the ECAL, measures jets with a resolution $\Delta E/E \approx 100\%/\sqrt{E[{\rm GeV}]} \oplus 5\%$ [28]. To improve the reconstruction of jets, the tracking and calorimeter information is combined using a particle flow (PF) reconstruction technique [29]. The jet energy resolution typically amounts to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV.

A more detailed description of the CMS detector can be found in Ref. [30].

IV. EVENT SIMULATION

All Monte Carlo (MC) simulation samples, except for the single-top-quark samples, are generated with the MADGRAPH 5.1.3.22 [31] event generator using the CTEQ6L1 parton distribution functions (PDF). Singletop-quark samples are generated with POWHEG (v1.0, r1380) [32–36] with the CTEO6M PDF set [37,38]. The matrix element calculation is used, and outgoing partons are matched to parton showers from PYTHIA 6.426 [39] tune $Z2^*$ [40] with a matching threshold of 20 GeV and a dynamic factorization (μ_F) and renormalization (μ_R) scale given by $\sqrt{m_{W/Z}^2 + p_{T,W/Z}^2}$. The next-to-leading-order/ leading-order (NLO/LO) QCD cross section correction factors (K factors) for $WV\gamma$ and AQGC diagrams are derived using the NLO cross sections calculated with aMC@NLO [41]. The MSTW2008nlo68cl [42] PDF set is used to calculate the PDF uncertainty following the prescription of Ref. [43]. The K factor obtained for $WV\gamma$ is consistent with a constant value of 2.1 for photons with $E_{\rm T} > 30$ GeV and $|\eta^{\gamma}| < 2.5$. The K factor for AQGC diagrams is found to be close to 1.2. A summary of the contributing processes and their cross section is given in Table I.

To simulate the signal events for a given AQGC parameter set, several samples are generated with a range of parameter values and the other AQGC parameters are set to zero.

A GEANT4-based simulation [44] of the CMS detector is used in the production of all MC samples. All simulated events are reconstructed and analyzed with the same algorithms that are used for the LHC collision events. Additional corrections (scale factors) are applied to take into account the difference in lepton reconstruction and identification efficiencies observed between data and simulated events. For all simulated samples, the hard-interaction collision is overlaid with the appropriate number of simulated minimum bias collisions. The resulting events are weighted to reproduce the distribution of the number of inelastic collisions per bunch crossing (pileup) inferred from data.

TABLE I. Cross sections used to normalize the simulated samples. All cross sections are given for a photon $E_{\rm T} > 10$ GeV, $|\eta^{\gamma}| < 2.5$. The order of the cross section calculation is also indicated. The normalization for the $W\gamma$ + jets sample is derived from data.

Process		Cross section [pb]
SM WWγ SM WZγ	(NLO) (NLO)	$\begin{array}{c} 0.090 \pm 0.021 \\ 0.012 \pm 0.003 \end{array}$
$W\gamma + \text{jets}$ $Z\gamma + \text{jets}$ $t\bar{t}\gamma$	(Data) (LO) (LO)	$\begin{array}{c} 10.9 \pm 0.8 \\ 0.63 \pm 0.13 \\ 0.62 \pm 0.12 \end{array}$
Single $t + \gamma$ (inclusive)	(NLO)	0.31 ± 0.01

V. EVENT RECONSTRUCTION AND SELECTION

The data used in this analysis corresponds to a total integrated luminosity of 19.3 ± 0.5 (19.2 ± 0.5) fb⁻¹ [24] collected with the CMS detector in the muon (electron) channel in pp collisions at $\sqrt{s} = 8$ TeV in 2012. The data were recorded with single-lepton triggers using $p_{\rm T}$ thresholds of 24 GeV for muons and 27 GeV for electrons. The overall trigger efficiency is about 94% (90%) for muon (electron) data, with a small dependence (a few percent) on $p_{\rm T}$ and η . Simulated events are corrected for the trigger efficiency as a function of lepton $p_{\rm T}$ and η .

The events used in this analysis are characterized by the production of a photon plus a pair of massive gauge bosons (WW or WZ), where one W boson decays to leptons and the other boson (W or Z) decays to quarks. To select leptonic Wboson decays, we require either one muon $(p_{\rm T} > 25 \text{ GeV},$ $|\eta| < 2.1$) or one electron ($p_{\rm T} > 30$ GeV, $|\eta| < 2.5$, excluding the transition region between the ECAL barrel and end caps $1.44 < |\eta| < 1.57$ because the reconstruction of an electron in this region is not optimal). The off-line lepton $p_{\rm T}$ thresholds is set in the stable, high-efficiency region above the corresponding trigger thresholds. Events with additional leptons with $p_{\rm T} > 10(20)$ GeV for muons(electrons) are vetoed in order to reduce backgrounds. The escaping neutrino results in missing transverse energy $(E_{\rm T})$ in the reconstructed event. Therefore a selection requirement of $E_{\rm T} > 35$ GeV is applied to reject the multijet backgrounds. The reconstructed transverse mass of the leptonically decaying W, defined as $\sqrt{p_T^{\ell} E_T [1 - \cos(\Delta \phi_{\ell, E_T})]}$, where $\Delta \phi_{\ell,E_{\mathrm{T}}}$ is the azimuthal angle between the lepton and the E_{T} directions, is then required to exceed 30 GeV [45]. At least two jet candidates are required to satisfy $p_{\rm T} > 30$ GeV and $|\eta| < 2.4$. The highest $p_{\rm T}$ jet candidates are chosen to form the hadronically decaying boson with mass m_{ii} . The photon candidate must satisfy $E_{\rm T} > 30 \text{ GeV}$ and $|\eta| < 1.44$. Events with the photon candidate in one of the end caps $(|\eta| > 1.57)$ are excluded from the selection because their signal purity is lower and systematic uncertainties are larger.

Jets and E_T [45,46] are formed from particles reconstructed using the PF algorithm. Jets are formed with the anti- k_T clustering algorithm [47] with a distance parameter of 0.5. Charged particles with tracks not originating from the primary vertex are not considered for jet clustering [48,49]. The primary vertex of the event is chosen to be the vertex with the highest $\sum p_T^2$ of its associated tracks. Jets are required to satisfy identification criteria that eliminate candidates originating from noisy channels in the hadron calorimeter [50]. Jet energy corrections [25] are applied to account for the jet energy response as a function of η and p_T , and to correct for contributions from event pileup. Jets from pileup are identified and removed using the trajectories of tracks associated with the jets, the topology of the jet shape and the constituent multiplicities [48,49].

The azimuthal separation between the highest $p_{\rm T}$ jet and the $E_{\rm T}$ direction is required to be larger than 0.4 radians. This criterion reduces the QCD multijet background where the $E_{\rm T}$ can arise from a mismeasurement of the leading jet energy. To reduce the background from $W\gamma$ + jets events, requirements on the dijet invariant mass $70 < m_{ii} < 10$ 100 GeV, and on the separation between the jets of $|\Delta \eta_{ii}| < 1.4$, are imposed. In order to reject top-quark backgrounds, the two jets are also required to fail a b quark jet tagging requirement. The combined secondary vertex algorithm [51] is used, with a discriminator based on the displaced vertex expected from b hadron decays. This algorithm selects b hadrons with about 70% efficiency, and has a 1% misidentification probability. The anti-b tag requirement suppresses approximately 7% of the $WW\gamma$ and 10% of the WZ y signal via the $W \to c\bar{s}, Z \to b\bar{b}$ and $Z \to c\bar{c}$ decays. These effects are taken into account in the analysis.

Muon candidates are reconstructed by combining information from the silicon tracker and from the muon detector by means of a global track fit. The muon candidates are required to pass the standard CMS muon identification and the track quality criteria [52]. The isolation variables used in the muon selection are based on the PF algorithm and are corrected for the contribution from pileup. The muon candidates have a selection efficiency of approximately 96%.

Electrons are reconstructed from clusters [27,53–55] of ECAL energy deposits matched to tracks in the silicon tracker within the ECAL fiducial volume, with the exclusion of the transition region between the barrel and the end caps previously defined. The electron candidates are required to be consistent with a particle originating from the primary vertex in the event. The isolation variables used in the electron selection are based on the PF algorithm and are corrected for the contribution from pileup. The electron selection efficiency is approximately 80%. To suppress the

TABLE II. Expected number of events for each process. The predicted number of events for the $W\gamma$ + jets and WV + jet processes, where the jet is reconstructed as a photon, are derived from data. The "Total prediction" item represents the sum of all the individual contributions.

Process	Muon channel number of events	Electron channel number of events
SM <i>WWγ</i> SM <i>WZγ</i>	$6.6 \pm 1.5 \\ 0.6 \pm 0.1$	5.0 ± 1.1 0.5 ± 0.1
$W\gamma$ + jets WV + jets, jet $\rightarrow \gamma$ MC $t\bar{t}\gamma$ MC single top quark MC $Z\gamma$ + jets Multijets	$\begin{array}{c} 136.9 \pm 10.5 \\ 33.1 \pm 4.8 \\ 12.5 \pm 3.0 \\ 2.8 \pm 0.8 \\ 1.7 \pm 0.1 \\ \end{array}$	$101.6 \pm 8.5 \\ 21.3 \pm 3.3 \\ 9.1 \pm 2.2 \\ 1.7 \pm 0.6 \\ 1.5 \pm 0.1 \\ 7.2 \pm 5.1$
Total prediction	194.2 ± 11.5	147.9 ± 10.7
Data	183	139

 $Z \rightarrow e^+e^-$ background in the electron channel, where one electron is misidentified as a photon, a Z boson mass veto of $|M_Z - m_{e\gamma}| > 10$ GeV is applied. The impact on the signal efficiency from applying such a suppression is negligible.

Photon candidates are reconstructed from clusters of cells with significant energy deposition in the ECAL. The candidates are required to be within the ECAL barrel fiducial region ($|\eta| < 1.44$). The observables used in the photon selection are isolation variables based on the PF algorithm and they are corrected for the contribution due to pileup, the ratio of hadronic energy in the HCAL that is

FIG. 2 (color online). Comparison of predicted and observed photon $E_{\rm T}$ distributions in the (left) muon and (right) electron channels. The rightmost bin includes the integral of events above 450 GeV for each process. The solid black line depicts a representative signal distribution with anomalous coupling parameter $a_0^W/\Lambda^2 = 50 \text{ TeV}^{-2}$.

SEARCH FOR WWY AND WZY PRODUCTION ...

matched in (η, ϕ) to the electromagnetic energy in the ECAL, the transverse width of the electromagnetic shower, and an electron track veto.

VI. BACKGROUND MODELING

The main background contribution arises from $W\gamma$ + jets production. After imposing the requirements described above, a binned maximum likelihood fit to the dijet invariant mass distribution m_{jj} of the two leading jets is performed. The signal region corresponding to the W and Z mass windows, $70 < m_{jj} < 100$ GeV, is excluded from the fit. The contamination from $WV\gamma$ processes outside of the signal region is less than 1%. The shape of the $W\gamma$ + jets m_{jj} distribution is obtained from simulation, and the normalization of this background component is unconstrained in the fit. The normalization of the contribution from misidentified photons is allowed to float within a Gaussian constraint of 14% (Sec. VII). The post-fit ratio $K = \sigma_{fit}/\sigma_{LO}$ for the $W\gamma$ + jets background is 1.10 ± 0.07 (1.07 ± 0.09) in the muon (electron) channel.

FIG. 3 (color online). 95% C.L. exclusion limits for (upper left) a_0^W/Λ^2 , (upper right) a_C^W/Λ^2 , (middle left) $f_{T,0}/\Lambda^4$, (middle right) κ_0^W/Λ^2 , and (bottom) κ_C^W/Λ^2 .

S. CHATRCHYAN et al.

The background from misidentified photons arises mainly from the W + 3 jets process, where one jet passes the photon identification criteria. The total contribution from misidentified photons is estimated using a data control sample, where all selection criteria except for the isolation requirement are applied. The shower shape distribution is then used to estimate the total rate of misidentified photons. Details on the method can be found in Ref. [56]. The fraction of the total background from misidentified photons decreases with photon $E_{\rm T}$ from a maximum of 23% ($p_{\rm T} = 30$ GeV) to 8% ($p_{\rm T} > 135$ GeV).

The multijet background is due to misidentified leptons from jets that satisfy the muon or electron selection requirements. It is estimated by using a two component fit to the $E_{\rm T}$ distribution in data. The procedure is described in [3], and was repeated for the 8 TeV data. The multijet contribution is estimated to be 6.2% for the electron channel, with a 50% uncertainty, and is negligible for the muon channel.

Other background contributions arise from top-quark pair production, single-top-quark production, and $Z\gamma$ + jets. These are taken from simulation and are fixed to their SM expectations, with the central values and uncertainties listed in Table I. The top-quark pair process contribution comes from the presence of two W bosons in the decays. The $Z\gamma$ + jets background can mimic the signal when the Z decays leptonically and one of the leptons is lost, resulting in $E_{\rm T}$. The sum of the top-quark pair, singletop-quark, and $Z\gamma$ + jets backgrounds represent about 8% of the expected SM background rate.

VII. SYSTEMATIC UNCERTAINTIES

The uncertainties contributing to the measured rate of misidentified photons arise from two sources. First, the statistical uncertainty is taken from pseudo experiments drawn from the data control sample described in Sec. VI and is estimated to be 5.6% rising to 37% with increasing photon $E_{\rm T}$. The second arises from a bias in the shower shape of W + 3 jets simulation due to the inverted isolation requirements. This uncertainty is estimated to be less than 11%. The combined uncertainty on the photon misidentification rate, integrated over the $E_{\rm T}$ spectrum, is 14%.

TABLE III. The 95% C.L. exclusion limits for each AQGC parameter from the combination of the muon and electron channels.

Observed limits	Expected limits
$\begin{array}{l} -21 < a_0^W/\Lambda^2 < 20 \ {\rm TeV^{-2}} \\ -34 < a_C^W/\Lambda^2 < 32 \ {\rm TeV^{-2}} \\ -25 < f_{T,0}/\Lambda^4 < 24 \ {\rm TeV^{-4}} \\ -12 < \kappa_0^W/\Lambda^2 < 10 \ {\rm TeV^{-2}} \\ -18 < \kappa_C^W/\Lambda^2 < 17 \ {\rm TeV^{-2}} \end{array}$	$\begin{array}{c c} -24 < a_0^W/\Lambda^2 < 23 \ {\rm TeV^{-2}} \\ -37 < a_C^W/\Lambda^2 < 34 \ {\rm TeV^{-2}} \\ -27 < f_{T,0}/\Lambda^4 < 27 \ {\rm TeV^{-4}} \\ -12 < \kappa_0^W/\Lambda^2 < 12 \ {\rm TeV^{-2}} \\ -19 < \kappa_C^W/\Lambda^2 < 18 \ {\rm TeV^{-2}} \end{array}$

TABLE IV. The 95% C.L. exclusion limits for each dimensioneight AQGC parameter from the combination of the muon and electron channels.

Observed limits (TeV ⁻⁴)	Expected limits (TeV ⁻⁴)
$-77 < f_{M,0}/\Lambda^4 < 81$	$-89 < f_{M,0}/\Lambda^4 < 93$
$-131 < f_{M,1}/\Lambda^4 < 123$	$-143 < f_{M,1}/\Lambda^4 < 131$
$-39 < f_{M,2}/\Lambda^4 < 40$	$-44 < f_{M,2}/\Lambda^4 < 46$
$-66 < f_{M,3} / \Lambda^4 < 62$	$-71 < f_{M,3}/\Lambda^4 < 66$

The uncertainty in the measured value of the luminosity [24] is 2.6% and it contributes to the signal and those backgrounds that are taken from the MC prediction. Jet energy scale uncertainties contribute via selection thresholds on the jet $p_{\rm T}$ and dijet invariant mass by 4.3%. The small difference in $E_{\rm T}$ resolution [46] between data and simulation affects the signal selection efficiency by less than 1%. Systematic uncertainties due to the trigger efficiency in the data (1%) and lepton reconstruction and selection efficiencies (2%) are also accounted for. Photon reconstruction efficiency and energy scale uncertainties contribute to the signal selection efficiency at the 1% level. The uncertainty from the b jet tagging procedure is 2% on the data/simulation efficiency correction factor [51]. This has an effect of 11% on the $t\bar{t}\gamma$ background, 5% on the single-top-quark background, and a negligible effect on the signal. The theoretical uncertainty in the $t\bar{t}\gamma$ and $Z\gamma$ + jets production is 20%.

The theoretical uncertainties in the $WW\gamma$, $WZ\gamma$, and AQGC signal cross sections are evaluated using AMC@NLO samples. We vary the renormalization and factorization scales each by factors of 1/2 and 2, and require $\mu_R = \mu_F$, as described in Ref. [43]. We find that the scale-related uncertainties are 23%, and that the uncertainty due to the choice of PDF is 3.6%.

FIG. 4 (color online). Expected photon $E_{\rm T}$ distributions after the selection for the muon channel is applied: SM prediction, SM plus AQGC prediction for a_0^W/Λ^2 , a_C^W/Λ^2 , $f_{T,0}/\Lambda^4$, κ_0^W/Λ^2 , and κ_C^W/Λ^2 . Systematic and statistic uncertainties are shown. The last bin includes the overflow.

VIII. UPPER LIMIT ON THE STANDARD MODEL WVγ CROSS SECTION

The SM $WV\gamma$ search is formulated as a simple counting experiment. The selected numbers of candidate events in the data are 183 (139) in the muon (electron) channel. The predicted number of background plus signal events is 194.2 ± 11.5 (147.9 ± 10.7) in the muon (electron) channel, where the uncertainty includes statistical, systematic and luminosity related uncertainties. The event yield per process is summarized in Table II.

Since there is no sign of an excess above the total background predictions, it is possible to set only an upper limit on $WW\gamma$ and $WZ\gamma$ cross sections, given the size of the current event sample. The limit is calculated from the event yields in Table II using a profile likelihood asymptotic approximation method (Appendix A.1.3 in Refs. [57,58]). An observed upper limit of 311 fb is calculated for the inclusive cross section at 95% confidence level (C.L.), which is about 3.4 times larger than the standard model prediction of 91.6 ± 21.7 fb (with photon $E_{\rm T} > 30$ GeV and $|\eta| < 1.44$), calculated with AMC@NLO. The expected limit is 403 fb (4.4 times the SM).

IX. LIMITS ON ANOMALOUS QUARTIC COUPLINGS

The photon $E_{\rm T}$ distribution is sensitive to AQGCs and is therefore used to set limits on the anomalous coupling parameters. Following the application of all selection criteria, the photon $E_{\rm T}$ distributions for data, the total background, and the individual signal models for the muon and electron channels are binned over the range 30–450 GeV. The photon $E_{\rm T}$ distributions for muon and electron channels are shown in Fig. 2, along with the predicted signal from $WW\gamma\gamma$ AQGC for $a_0^W/\Lambda^2 = 50 \text{ TeV}^{-2}$. The last bin includes the overflow.

The upper limits are set utilizing a profile likelihood asymptotic approximation method (Appendix A.1.3 in Refs. [57,58]), which takes the distributions from the two channels as independent inputs to be combined statistically into a single result. Each coupling parameter is varied over a set of discrete values, keeping the other parameters fixed to zero; this causes the signal distribution to be altered accordingly. The expected and observed signal strengths $\sigma_{\text{excluded}}/\sigma_{\text{AQGC}}$ are then calculated and plotted against the corresponding coupling parameter values.

Figure 3 shows the observed and expected exclusion limits for the combination of muon and electron channels. Some positive/negative asymmetry is noticeable in the plots because of SM/AQGC interference terms in the Lagrangian. Exclusion limits for a_0^W/Λ^2 , a_C^W/Λ^2 , $f_{T,0}/\Lambda^4$, κ_0^W/Λ^2 , and κ_C^W/Λ^2 are computed at 95% C.L. and are listed in Table III. Table IV reports the transformed dimension-eight limits from the limits on the a_0^W and a_C^W parameters.

Figure 4 shows the photon $E_{\rm T}$ distributions for a signal in the muon channel corresponding to AQGC parameters that are set to the limits we have obtained. The distributions for

FIG. 5 (color online). Comparison of the limits on the $WW\gamma\gamma$ AQGC parameter obtained from this study, together with results from exclusive $\gamma\gamma \rightarrow WW$ production at CMS [23] and results from the L3 [8] and the D0 [59] Collaborations. All limits on AQGC are calculated without a form factor.

the various AQGC values are similar. The contribution from AQGC is prominent in the region $E_{\rm T} > 240$ GeV, where the expected number of signal events is approximately 1.4. The corresponding distributions for the electron channel are similar.

A comparison of several existing limits on the $WW\gamma\gamma$ AQGC parameter is shown in Fig. 5. Existing limits include the result from exclusive $\gamma\gamma \rightarrow WW$ production at CMS [23], in addition to results from the L3 [8] and the D0 [59] Collaborations. All of the limits shown on AQGC are calculated without a form factor.

X. SUMMARY

A search for $WV\gamma$ triple vector boson production that results in constraints on anomalous quartic gauge boson couplings has been presented using events containing a Wboson decaying to leptons, a second boson V (V = W or Z) boson, and a photon. The data analyzed correspond to an integrated luminosity of 19.3 fb⁻¹ collected in pp collisions at $\sqrt{s} = 8$ TeV in 2012 with the CMS detector at the LHC. An upper limit of 311 fb at 95% C.L. is obtained for the production of $WV\gamma$ with photon $E_T > 30$ GeV and $|\eta| < 1.44$. No evidence for anomalous $WW\gamma\gamma$ and $WWZ\gamma$ quartic gauge couplings is found. The following constraints are obtained for these couplings at 95% C.L.:

$$\begin{split} -21 &< a_0^W / \Lambda^2 < 20 \ {\rm TeV^{-2}}, \\ -34 &< a_C^W / \Lambda^2 < 32 \ {\rm TeV^{-2}}, \\ -25 &< f_{T,0} / \Lambda^4 < 24 \ {\rm TeV^{-4}}, \\ -12 &< \kappa_0^W / \Lambda^2 < 10 \ {\rm TeV^{-2}}, \\ -18 &< \kappa_C^W / \Lambda^2 < 17 \ {\rm TeV^{-2}}. \end{split}$$

These are the first experimental limits reported on $f_{T,0}$ and the *CP*-conserving couplings κ_0^W and κ_C^W . Figure 5 compares the constraints on the *WW* $\gamma\gamma$ AQGC parameter obtained from this study with those obtained in previous analyses.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Agencies (Switzerland); MST Funding (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS program of Foundation for Polish Science, cofinanced by the EU, Regional Development Fund; and the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF.

- [1] J. Beringer *et al.* (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
- [2] CMS Collaboration, Phys. Lett. B 721, 190 (2013).
- [3] CMS Collaboration, Eur. Phys. J. C 73, 2283 (2013).
- [4] CMS Collaboration, Eur. Phys. J. C 73, 2610 (2013).
- [5] ATLAS Collaboration, Phys. Rev. D 87, 112001 (2013).
- [6] ATLAS Collaboration, Eur. Phys. J. C 72, 2173 (2012).
- [7] G. Abbiendi *et al.* (OPAL Collaboration), Phys. Lett. B **471**, 293 (1999).
- [8] P. Achard *et al.* (L3 Collaboration), Phys. Lett. B 527, 29 (2002).
- [9] J. Abdallah *et al.* (DELPHI Collaboration), Eur. Phys. J. C 31, 139 (2003).

SEARCH FOR WWY AND WZY PRODUCTION ...

- [10] A. Heister *et al.* (ALEPH Collaboration), Phys. Lett. B 602, 31 (2004).
- [11] S. Schael *et al.* (ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaborations), Phys. Rep. **532**, 119 (2013).
- [12] A. S. Belyaev, O. J. P. Éboli, M. C. Gonzalez-Garcia, J. K. Mizukoshi, S. F. Novaes, and I. Zacharov, Phys. Rev. D 59, 015022 (1998).
- [13] H. Aihara, T. Barklow, U. Baur, J. Busenitz, S. Errede, T. A. Fuess, T. Han, D. London, J. Ohnemus, R. Szalapski, C. Wendt, and D. Zeppenfeld, in *Electroweak Symmetry Breaking and New Physics at the TeV Scale* (World Scientific, Singapore, 1996), p. 488.
- [14] C. Du, H.-J. He, Y.-P. Kuang, B. Zhang, N. D. Christensen, R. S. Chivukula, and E. H. Simmons, Phys. Rev. D 86, 095011 (2012).
- [15] S. Fichet and G. von Gersdorff, J. High Energy Phys. 03 (2014) 102.
- [16] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, J. High Energy Phys. 06 (2007) 045.
- [17] G. Belanger and F. Boudjema, Phys. Lett. B 288, 201 (1992).
- [18] G. Belanger, F. Boudjema, Y. Kurihara, D. Perret-Gallix, and A. Semenov, Eur. Phys. J. C 13, 283 (2000).
- [19] O. J. P. Éboli, M. C. Gonzalez-Garcia, and S. M. Lietti, Phys. Rev. D 69, 095005 (2004).
- [20] O. J. P. Éboli, M. C. Gonzalez-Garcia, and J. K. Mizukoshi, Phys. Rev. D 74, 073005 (2006).
- [21] D. Yang, Y. Mao, Q. Li, S. Liu, Z. Xu, and K. Ye, J. High Energy Phys. 04 (2013) 108.
- [22] K. Ye, D. Yang, and Q. Li, Phys. Rev. D 88, 015023 (2013).
- [23] CMS Collaboration, J. High Energy Phys. 07 (2013) 116.
- [24] CMS Collaboration, Report No. CMS-PAS-LUM-13-001, 2013, http://cdsweb.cern.ch/record/1598864.
- [25] CMS Collaboration, J. Inst. 6, P11002 (2011).
- [26] O. J. P. Eboli, M. C. Gonzalez-Garcia, S. M. Lietti, and S. F. Novaes, Phys. Rev. D 63, 075008 (2001).
- [27] CMS Collaboration, J. Inst. 8, P09009 (2013).
- [28] CMS Collaboration, Report No. CMS-PAS-JME-10-014, 2010, http://cdsweb.cern.ch/record/1339945.
- [29] CMS Collaboration, Report No. CMS-PAS-PFT-09-001, 2009, http://cdsweb.cern.ch/record/1194487.
- [30] CMS Collaboration, J. Inst. 3, S08004 (2008).
- [31] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, J. High Energy Phys. 06 (2011) 128.
- [32] P. Nason, J. High Energy Phys. 11 (2004) 040.
- [33] S. Frixione, P. Nason, and C. Oleari, J. High Energy Phys. 11 (2007) 070.

- [34] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.
- [35] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 09 (2009) 111; arXiv:0907.4076.
- [36] E. Re, Eur. Phys. J. C 71, 1547 (2011).
- [37] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky1, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.
- [38] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan, Phys. Rev. D 78, 013004 (2008).
- [39] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
- [40] CMS Collaboration, Eur. Phys. J. C 72, 2080 (2012).
- [41] S. Frixione and B. R. Webber, J. High Energy Phys. 06 (2002) 029.
- [42] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).
- [43] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau, and P. Torrielli, J. High Energy Phys. 02 (2012) 099.
- [44] S. Agostinelli *et al.* (GEANT4), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [45] CMS Collaboration, J. High Energy Phys. 10 (2011) 132.
- [46] CMS Collaboration, J. Inst. 6, P09001 (2011).
- [47] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
- [48] M. Cacciari and G. P. Salam, Phys. Lett. B 659, 119 (2008).
- [49] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 005.
- [50] CMS Collaboration, J. Inst. 5, T03014 (2010).
- [51] CMS Collaboration, J. Inst. 8, P04013 (2013).
- [52] CMS Collaboration, J. Inst. 7, P10002 (2012).
- [53] S. Baffioni, C. Charlot, F. Ferri, D. Futyan, P. Meridiani, I. Puljak, C. Rovelli, R. Salerno, and Y. Sirois, Eur. Phys. J. C 49, 1099 (2007).
- [54] CMS Collaboration, Report No. CMS-DP-2011-003, 2011, http://cds.cern.ch/record/1360227.
- [55] CMS Collaboration, Report No. CMS-DP-2013-003, 2013, http://cds.cern.ch/record/1523273.
- [56] CMS Collaboration, Phys. Lett. B 701, 535 (2011).
- [57] ATLAS and CMS Collaborations, LHC Higgs Combination Group, Tech. Rep. ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, 2011, http://cds.cern.ch/record/1379837.
- [58] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Eur. Phys. J. C 71, 1 (2011).
- [59] V. M. Abazov et al. (D0), Phys. Rev. D 88, 012005 (2013).

S. Chatrchyan,¹ V. Khachatryan,¹ A. M. Sirunyan,¹ A. Tumasyan,¹ W. Adam,² T. Bergauer,² M. Dragicevic,² J. Erö,²

C. Fabjan,^{2,b} M. Friedl,² R. Frühwirth,^{2,b} V. M. Ghete,² C. Hartl,² N. Hörmann,² J. Hrubec,² M. Jeitler,^{2,b} W. Kiesenhofer,²

V. Knünz,² M. Krammer,^{2,b} I. Krätschmer,² D. Liko,² I. Mikulec,² D. Rabady,^{2,c} B. Rahbaran,² H. Rohringer,²

R. Schöfbeck,² J. Strauss,² A. Taurok,² W. Treberer-Treberspurg,² W. Waltenberger,² C.-E. Wulz,^{2,b} V. Mossolov,³

N. Shumeiko,³ J. Suarez Gonzalez,³ S. Alderweireldt,⁴ M. Bansal,⁴ S. Bansal,⁴ T. Cornelis,⁴ E. A. De Wolf,⁴ X. Janssen,⁴ A. Knutsson,⁴ S. Luyckx,⁴ S. Ochesanu,⁴ B. Roland,⁴ R. Rougny,⁴ H. Van Haevermaet,⁴ P. Van Mechelen,⁴

N. Van Remortel,⁴ A. Van Spilbeeck,⁴ F. Blekman,⁵ S. Blyweert,⁵ J. D'Hondt,⁵ N. Heracleous,⁵ A. Kalogeropoulos,⁵ J. Keaveney,⁵ T. J. Kim,⁵ S. Lowette,⁵ M. Maes,⁵ A. Olbrechts,⁵ O. Python,⁵ D. Strom,⁵ S. Tavernier,⁵ W. Van Doninck,⁵

P. Van Mulders,⁵ G. P. Van Onsem,⁵ I. Villella,⁵ C. Caillol,⁶ B. Clerbaux,⁶ G. De Lentdecker,⁶ L. Favart,⁶ A. P. R. Gay,⁶ A. Léonard,⁶ P. E. Marage,⁶ A. Mohammadi,⁶ L. Perniè,⁶ T. Reis,⁶ T. Seva,⁶ L. Thomas,⁶ C. Vander Velde,⁶ P. Vanlaer,⁶ J. Wang,⁶ V. Adler,⁷ K. Beernaert,⁷ L. Benucci,⁷ A. Cimmino,⁷ S. Costantini,⁷ S. Crucy,⁷ S. Dildick,⁷ G. Garcia,⁷ B. Klein,⁷ J. Lellouch,⁷ J. Mccartin,⁷ A. A. Ocampo Rios,⁷ D. Ryckbosch,⁷ S. Salva Diblen,⁷ M. Sigamani,⁷ N. Strobbe,⁷ F. Thyssen,⁷ M. Tytgat,⁷ S. Walsh,⁷ E. Yazgan,⁷ N. Zaganidis,⁷ S. Basegmez,⁸ C. Beluffi,^{8,d} G. Bruno,⁸ R. Castello,⁸ A. Caudron,⁸ L. Ceard,⁸ G. G. Da Silveira,⁸ C. Delaere,⁸ T. du Pree,⁸ D. Favart,⁸ L. Forthomme,⁸ A. Giammanco,^{8,e} J. Hollar,⁸ P. Jez,⁸ M. Komm,⁸ V. Lemaitre,⁸ J. Liao,⁸ O. Militaru,⁸ C. Nuttens,⁸ D. Pagano,⁸ A. Pin,⁸ K. Piotrzkowski,⁸ A. Popov,^{8,f} L. Quertenmont,⁸ M. Selvaggi,⁸ M. Vidal Marono,⁸ J. M. Vizan Garcia,⁸ N. Beliy,⁹ T. Caebergs,⁹ E. Daubie,⁹ G. H. Hammad,⁹ G. A. Alves,¹⁰ L. Brito,¹⁰ M. Correa Martins Junior,¹⁰ M. E. Pol,¹⁰ P. Rebello Teles,¹⁰ W. L. Aldá Júnior,¹¹ W. Carvalho,¹¹ J. Chinellato,^{11,g} A. Custódio,¹¹ E. M. Da Costa,¹¹ D. De Jesus Damiao,¹¹ C. De Oliveira Martins,¹¹ S. Fonseca De Souza,¹¹ H. Malbouisson,¹¹ M. Malek,¹¹ D. Matos Figueiredo,¹¹ L. Mundim,¹¹ H. Nogima,¹¹ W. L. Prado Da Silva,¹¹ J. Santaolalla,¹¹ A. Santoro,¹¹ A. Sznajder,¹¹ E. J. Tonelli Manganote,^{11,g} A. Vilela Pereira,¹¹ C. A. Bernardes,^{12b} F. A. Dias,^{12a,h} T. R. Fernandez Perez Tomei,^{12a} E. M. Gregores,^{12b} P. G. Mercadante,^{12b} S. F. Novaes,^{12a} S. S. Padula,^{12a} V. Genchev,^{13,c} P. Iaydjiev,^{13,c} A. Marinov,¹³ S. Piperov,¹³ M. Rodozov,¹³ G. Sultanov,¹³ M. Vutova,¹³ A. Dimitrov,¹⁴ I. Glushkov,¹⁴ R. Hadjiiska,¹⁴ V. Kozhuharov,¹⁴ L. Litov,¹⁴ B. Pavlov,¹⁴ P. Petkov,¹⁴ J. G. Bian,¹⁵ G. M. Chen,¹⁵ H. S. Chen,¹⁵ M. Chen,¹⁵ R. Du,¹⁵ C. H. Jiang,¹⁵ D. Liang,¹⁵ S. Liang,¹⁵ X. Meng,¹⁵ R. Plestina,^{15,i} J. Tao,¹⁵ X. Wang,¹⁵ Z. Wang,¹⁵ C. Asawatangtrakuldee,¹⁶ Y. Ban,¹⁶ Y. Guo,¹⁶ Q. Li,¹⁶ W. Li,¹⁶ S. Liu,¹⁶ Y. Mao,¹⁶ S. J. Qian,¹⁶ D. Wang,¹⁶ D. Yang,¹⁶ L. Zhang,¹⁶ W. Zou,¹⁶ C. Avila,¹⁷ L. F. Chaparro Sierra,¹⁷ C. Florez,¹⁷ J. P. Gomez,¹⁷ B. Gomez Moreno,¹⁷ J. C. Sanabria,¹⁷ N. Godinovic,¹⁸ D. Lelas,¹⁸ D. Polic,¹⁸ I. Puljak,¹⁸ Z. Antunovic,¹⁹ M. Kovac,¹⁹ V. Brigljevic,²⁰ K. Kadija,²⁰ J. Luetic,²⁰ D. Mekterovic,²⁰ S. Morovic,²⁰ L. Tikvica,²⁰ A. Attikis,²¹ G. Mavromanolakis,²¹ J. Mousa,²¹ C. Nicolaou,²¹ F. Ptochos,²¹ P. A. Razis,²¹ M. Bodlak,²² M. Finger,²² M. Finger Jr.,²² Y. Assran,^{23,j} S. Elgammal,^{23,k} A. Ellithi Kamel,^{23,1} M. A. Mahmoud,^{23,m} A. Mahrous,^{23,n} A. Radi,^{23,o,p} M. Kadastik,²⁴ M. Müntel,²⁴ M. Murumaa,²⁴ M. Raidal,²⁴ A. Tiko,²⁴ P. Eerola,²⁵ G. Fedi,²⁵ M. Voutilainen,²⁵ J. Härkönen,²⁶ V. Karimäki,²⁶ R. Kinnunen,²⁶ M. J. Kortelainen,²⁶ T. Lampén,²⁶ K. Lassila-Perini,²⁶ S. Lehti,²⁶ T. Lindén,²⁶ P. Luukka,²⁶ T. Mäenpää,²⁶ T. Peltola,²⁶ E. Tuominen,²⁶ J. Tuominiemi,²⁶ E. Tuovinen,²⁶ L. Wendland,²⁶ T. Tuuva,²⁷ M. Besancon,²⁸ F. Couderc,²⁸ M. Dejardin,²⁸ D. Denegri,²⁸ B. Fabbro,²⁸ J. L. Faure,²⁸ C. Favaro,²⁸ F. Ferri,²⁸ S. Ganjour,²⁸ A. Givernaud,²⁸ P. Gras,²⁸ G. Hamel de Monchenault,²⁸ P. Jarry,²⁸ E. Locci,²⁸ J. Malcles,²⁸ A. Nayak,²⁸ J. Rander,²⁸ A. Rosowsky,²⁸ M. Titov,²⁸ S. Baffioni,²⁹ F. Beaudette,²⁹ P. Busson,²⁹ C. Charlot,²⁹ N. Daci,²⁹ T. Dahms,²⁹ M. Dalchenko,²⁹ L. Dobrzynski,²⁹ N. Filipovic,²⁹ A. Florent,²⁹ R. Granier de Cassagnac,²⁹ L. Mastrolorenzo,²⁹ P. Miné,²⁹ C. Mironov,²⁹ I. N. Naranjo,²⁹ M. Nguyen,²⁹ C. Ochando,²⁹ P. Paganini,²⁹ D. Sabes,²⁹ R. Salerno,²⁹ J. Sauvan,²⁹ Y. Sirois,²⁹ C. Veelken,²⁹ Y. Yilmaz,²⁹ A. Zabi,²⁹ J.-L. Agram,^{30,q} J. Andrea,³⁰ D. Bloch,³⁰ J.-M. Brom,³⁰ E. C. Chabert,³⁰ C. Collard,³⁰ E. Conte,^{30,q} F. Drouhin,^{30,q} J.-C. Fontaine,^{30,q} D. Gelé,³⁰ U. Goerlach,³⁰ C. Goetzmann,³⁰ P. Juillot,³⁰ A.-C. Le Bihan,³⁰ P. Van Hove,³⁰ S. Gadrat,³¹ S. Beauceron, ³² N. Beaupere, ³² G. Boudoul, ³² S. Brochet, ³² C. A. Carrillo Montoya, ³² J. Chasserat, ³² R. Chierici, ³² D. Contardo,^{32,c} P. Depasse,³² H. El Mamouni,³² J. Fan,³² J. Fay,³² S. Gascon,³² M. Gouzevitch,³² B. Ille,³² T. Kurca,³² M. Lethuillier,³² L. Mirabito,³² S. Perries,³² J. D. Ruiz Alvarez,³² L. Sgandurra,³² V. Sordini,³² M. Vander Donckt,³² P. Verdier, ³² S. Viret, ³² H. Xiao, ³² L. Rurua, ³³ C. Autermann, ³⁴ S. Beranek, ³⁴ M. Bontenackels, ³⁴ B. Calpas, ³⁴ M. Edelhoff, ³⁴ L. Feld, ³⁴ O. Hindrichs, ³⁴ K. Klein, ³⁴ A. Ostapchuk, ³⁴ A. Perieanu, ³⁴ F. Raupach, ³⁴ J. Sammet, ³⁴ S. Schael, ³⁴ D. Sprenger, ³⁴ H. Weber,³⁴ B. Wittmer,³⁴ V. Zhukov,^{34,f} M. Ata,³⁵ J. Caudron,³⁵ E. Dietz-Laursonn,³⁵ D. Duchardt,³⁵ M. Erdmann,³⁵ R. Fischer,³⁵ A. Güth,³⁵ T. Hebbeker,³⁵ C. Heidemann,³⁵ K. Hoepfner,³⁵ D. Klingebiel,³⁵ S. Knutzen,³⁵ P. Kreuzer,³⁵ M. Merschmeyer,³⁵ A. Meyer,³⁵ M. Olschewski,³⁵ K. Padeken,³⁵ P. Papacz,³⁵ H. Reithler,³⁵ S. A. Schmitz,³⁵ L. Sonnenschein,³⁵ D. Teyssier,³⁵ S. Thüer,³⁵ M. Weber,³⁵ V. Cherepanov,³⁶ Y. Erdogan,³⁶ G. Flügge,³⁶ H. Geenen,³⁶ M. Geisler,³⁶ W. Haj Ahmad,³⁶ F. Hoehle,³⁶ B. Kargoll,³⁶ T. Kress,³⁶ Y. Kuessel,³⁶ J. Lingemann,^{36,c} A. Nowack,³⁶ I. M. Nugent,³⁶ L. Perchalla,³⁶ O. Pooth,³⁶ A. Stahl,³⁶ I. Asin,³⁷ N. Bartosik,³⁷ J. Behr,³⁷ W. Behrenhoff,³⁷ U. Behrens,³⁷ A. J. Bell,³⁷ M. Bergholz,^{37,r} A. Bethani,³⁷ K. Borras,³⁷ A. Burgmeier,³⁷ A. Cakir,³⁷ L. Calligaris,³⁷ A. Campbell,³⁷ S. Choudhury,³⁷ F. Costanza,³⁷ C. Diez Pardos,³⁷ S. Dooling,³⁷ T. Dorland,³⁷ G. Eckerlin,³⁷ D. Eckstein,³⁷ T. Eichhorn,³⁷ G. Flucke,³⁷ J. Garay Garcia,³⁷ A. Geiser,³⁷ A. Grebenyuk,³⁷ P. Gunnellini,³⁷ S. Habib,³⁷ J. Hauk,³⁷ G. Hellwig,³⁷ M. Hempel, ³⁷ D. Horton, ³⁷ H. Jung, ³⁷ M. Kasemann, ³⁷ P. Katsas, ³⁷ J. Kieseler, ³⁷ C. Kleinwort, ³⁷ M. Krämer, ³⁷ D. Krücker, ³⁷ W. Lange,³⁷ J. Leonard,³⁷ K. Lipka,³⁷ W. Lohmann,^{37,r} B. Lutz,³⁷ R. Mankel,³⁷ I. Marfin,³⁷ I.-A. Melzer-Pellmann,³⁷ A. B. Meyer,³⁷ J. Mnich,³⁷ A. Mussgiller,³⁷ S. Naumann-Emme,³⁷ O. Novgorodova,³⁷ F. Nowak,³⁷ E. Ntomari,³⁷

H. Perrey,³⁷ A. Petrukhin,³⁷ D. Pitzl,³⁷ R. Placakyte,³⁷ A. Raspereza,³⁷ P. M. Ribeiro Cipriano,³⁷ C. Riedl,³⁷ E. Ron,³⁷ M; Sahin,³⁷ J. Salfeld-Nebgen,³⁷ P. Saxena,³⁷ R. Schmidt,^{37,r} T. Schoerner-Sadenius,³⁷ M. Schröder,³⁷ M. Stein,³⁷ A. D. R. Vargas Trevino,³⁷ R. Walsh,³⁷ C. Wissing,³⁷ M. Aldaya Martin,³⁸ V. Blobel,³⁸ M. Centis Vignali,³⁸ H. Enderle,³⁸ J. Erfle,³⁸ E. Garutti,³⁸ K. Goebel,³⁸ M. Görner,³⁸ M. Gosselink,³⁸ J. Haller,³⁸ R. S. Höing,³⁸ H. Kirschenmann,³⁸ R. Klanner,³⁸ R. Kogler,³⁸ J. Lange,³⁸ T. Lapsien,³⁸ T. Lenz,³⁸ I. Marchesini,³⁸ J. Ott,³⁸ T. Peiffer,³⁸ N. Pietsch,³⁸ D. Rathjens, ³⁸ C. Sander, ³⁸ H. Schettler, ³⁸ P. Schleper, ³⁸ E. Schlieckau, ³⁸ A. Schmidt, ³⁸ M. Seidel, ³⁸ J. Sibille, ^{38,s} V. Sola, ³⁸ H. Stadie, ³⁸ G. Steinbrück, ³⁸ D. Troendle, ³⁸ E. Usai, ³⁸ L. Vanelderen, ³⁸ C. Barth, ³⁹ C. Baus, ³⁹ J. Berger, ³⁹ C. Böser, ³⁹ E. Butz,³⁹ T. Chwalek,³⁹ W. De Boer,³⁹ A. Descroix,³⁹ A. Dierlamm,³⁹ M. Feindt,³⁹ M. Guthoff,^{39,c} F. Hartmann,^{39,c} T. Hauth,^{39,c} H. Held,³⁹ K. H. Hoffmann,³⁹ U. Husemann,³⁹ I. Katkov,^{39,f} A. Kornmayer,^{39,c} E. Kuznetsova,³⁹ P. Lobelle Pardo,³⁹ D. Martschei,³⁹ M. U. Mozer,³⁹ T. Müller,³⁹ M. Niegel,³⁹ A. Nürnberg,³⁹ O. Oberst,³⁹ G. Quast,³⁹ K. Rabbertz,³⁹ F. Ratnikov,³⁹ S. Röcker,³⁹ F.-P. Schilling,³⁹ G. Schott,³⁹ H. J. Simonis,³⁹ F. M. Stober,³⁹ R. Ulrich,³⁹ J. Wagner-Kuhr,³⁹ S. Wayand,³⁹ T. Weiler,³⁹ R. Wolf,³⁹ M. Zeise,³⁹ G. Anagnostou,⁴⁰ G. Daskalakis,⁴⁰ T. Geralis,⁴⁰ V. A. Giakoumopoulou,⁴⁰ S. Kesisoglou,⁴⁰ A. Kyriakis,⁴⁰ D. Loukas,⁴⁰ A. Markou,⁴⁰ C. Markou,⁴⁰ A. Psallidas,⁴⁰ I. Topsis-Giotis,⁴⁰ L. Gouskos,⁴¹ A. Panagiotou,⁴¹ N. Saoulidou,⁴¹ E. Stiliaris,⁴¹ X. Aslanoglou,⁴² I. Evangelou,^{42,c} G. Flouris,⁴² C. Foudas,^{42,c} J. Jones,⁴² P. Kokkas,⁴² N. Manthos,⁴² I. Papadopoulos,⁴² E. Paradas,⁴² G. Bencze,^{43,c} C. Hajdu,⁴³ P. Hidas,⁴³ D. Horvath,^{43,t} F. Sikler,⁴³ V. Veszpremi,⁴³ G. Vesztergombi,^{43,u} A. J. Zsigmond,⁴³ N. Beni,⁴⁴ S. Czellar,⁴⁴ J. Karancsi,^{44,v} J. Molnar,⁴⁴ J. Palinkas,⁴⁴ Z. Szillasi,⁴⁴ P. Raics,⁴⁵ Z. L. Trocsanyi,⁴⁵ B. Ujvari,⁴⁵ S. K. Swain,⁴⁶ S. B. Beri,⁴⁷ V. Bhatnagar,⁴⁷ N. Dhingra,⁴⁷ R. Gupta,⁴⁷ A. K. Kalsi,⁴⁷ M. Kaur,⁴⁷ M. Mittal,⁴⁷ N. Nishu,⁴⁷ A. Sharma,⁴⁷ J. B. Singh,⁴⁷ A. Kumar,⁴⁸ A. Kumar,⁴⁸ S. Ahuja,⁴⁸ A. Bhardwaj,⁴⁸ B. C. Choudhary,⁴⁸ A. Kumar,⁴⁸ S. Malhotra,⁴⁸ M. Naimuddin,⁴⁸ K. Ranjan,⁴⁸ V. Sharma,⁴⁸ R. K. Shivpuri,⁴⁸ S. Banerjee,⁴⁹ S. Bhattacharya,⁴⁹ K. Chatterjee,⁴⁹ S. Dutta,⁴⁹ B. Gomber,⁴⁹ S. Jain,⁴⁹ S. Jain,⁴⁹ R. Khurana,⁴⁹ A. Modak,⁴⁹ S. Mukherjee,⁴⁹ D. Roy,⁴⁹ S. Sarkar,⁴⁹ M. Sharan,⁴⁹ A. P. Singh,⁴⁹ A. Abdulsalam,⁵⁰ D. Dutta,⁵⁰ S. Kailas,⁵⁰ V. Kumar,⁵⁰ A. K. Mohanty,^{50,c} L. M. Pant,⁵⁰ P. Shukla,⁵⁰ A. Topkar,⁵⁰ T. Aziz,⁵¹ R. M. Chatterjee,⁵¹ S. Ganguly,⁵¹ S. Ghosh,⁵¹ M. Guchait,^{51,w} A. Gurtu,^{51,x} G. Kole,⁵¹ S. Kumar,⁵¹ M. Maity,^{51,y} G. Majumder,⁵¹ K. Mazumdar,⁵¹ G. B. Mohanty,⁵¹ B. Parida,⁵¹ K. Sudhakar,⁵¹ N. Wickramage,^{51,z} S. Banerjee,⁵² R. K. Dewanjee,⁵² S. Dugad,⁵² H. Arfaei,⁵³ H. Bakhshiansohi,⁵³ H. Behnamian,⁵³ S. M. Etesami,^{53,aa} A. Fahim,^{53,bb} A. Jafari,⁵³ M. Khakzad,⁵³ M. Mohammadi Najafabadi,⁵³ M. Naseri,⁵³ S. Paktinat Mehdiabadi,⁵³ B. Safarzadeh,^{53,cc} M. Zeinali,⁵³ M. Grunewald,⁵⁴ M. Abbrescia,^{55a,55b} L. Barbone,^{55a,55b} C. Calabria,^{55a,55b} S. S. Chhibra,^{55a,55b} A. Colaleo,^{55a} D. Creanza,^{55a,55c} N. De Filippis,^{55a,55c} M. De Palma,^{55a,55b} L. Fiore,^{55a} G. Iaselli,^{55a,55c} G. Maggi,^{55a,55c} M. Maggi,^{55a,55c} S. Nuzzo,^{55a,55b} N. Pacifico,^{55a} A. Pompili,^{55a,55b} G. Pugliese,^{55a,55c} R. Radogna,^{55a,55b} G. Selvaggi,^{55a,55b} L. Silvestris,^{55a} G. Singh,^{55a,55b} R. Venditti,^{55a,55b} P. Verwilligen,^{55a} G. Zito,^{55a} G. Abbiendi,^{56a} A. C. Benvenuti,^{56a} D. Bonacorsi,^{56a,56b} S. Braibant-Giacomelli,^{56a,56b} L. Brigliadori,^{56a,56b} R. Campanini,^{56a,56b} P. Capiluppi,^{56a,56b} A. Castro,^{56a,56b} F. R. Cavallo,^{56a} G. Codispoti,^{56a,56b} M. Cuffiani,^{56a,56b} G. M. Dallavalle,^{56a} F. Fabbri,^{56a} A. Fanfani,^{56a,56b} D. Fasanella,^{56a,56b} P. Giacomelli,^{56a} C. Grandi,^{56a} L. Guiducci,^{56a,56b} S. Marcellini, ^{56a} G. Masetti, ^{56a} M. Meneghelli, ^{56a,56b} A. Montanari, ^{56a} F. L. Navarria, ^{56a,56b} F. Odorici, ^{56a} A. Perrotta, ^{56a} F. Primavera, ^{56a,56b} A. M. Rossi, ^{56a,56b} T. Rovelli, ^{56a,56b} G. P. Siroli, ^{56a,56b} N. Tosi, ^{56a,56b} R. Travaglini, ^{56a,56b} S. Albergo, ^{57a,57b} G. Cappello, ^{57a} M. Chiorboli, ^{57a,57b} S. Costa, ^{57a,57b} F. Giordano, ^{57a,c} R. Potenza, ^{57a,57b} A. Tricomi, ^{57a,57b} C. Tuve, ^{57a,57b} G. Barbagli,^{58a} V. Ciulli,^{58a,58b} C. Civinini,^{58a} R. D'Alessandro,^{58a,58b} E. Focardi,^{58a,58b} E. Gallo,^{58a} S. Gonzi,^{58a,58b} V. Gori,^{58a,58b} P. Lenzi,^{58a,58b} M. Meschini,^{58a} S. Paoletti,^{58a} G. Sguazzoni,^{58a} A. Tropiano,^{58a,58b} L. Benussi,⁵⁹ S. Bianco,⁵⁹ F. Fabbri, ⁵⁹ D. Piccolo, ⁵⁹ P. Fabbricatore, ^{60a} F. Ferro, ^{60a} M. Lo Vetere, ^{60a,60b} R. Musenich, ^{60a} E. Robutti, ^{60a} S. Tosi, ^{60a,60b}
M. E. Dinardo, ^{61a,61b} S. Fiorendi, ^{61a,61b,c} S. Gennai, ^{61a} R. Gerosa, ^{61a} A. Ghezzi, ^{61a,61b} P. Govoni, ^{61a,61b} M. T. Lucchini, ^{61a,61b,c} S. Malvezzi,^{61a} R. A. Manzoni,^{61a,61b,c} A. Martelli,^{61a,61b,c} B. Marzocchi,^{61a} D. Menasce,^{61a} L. Moroni,^{61a} M. Paganoni,^{61a,61b} D. Pedrini,^{61a} S. Ragazzi,^{61a,61b} N. Redaelli,^{61a} T. Tabarelli de Fatis,^{61a,61b} S. Buontempo,^{62a} N. Cavallo,^{62a,62c} S. Di Guida,^{62a,62d} F. Fabozzi,^{62a,62c} A. O. M. Iorio,^{62a,62b} L. Lista,^{62a} S. Meola,^{62a,62d,c} M. Merola,^{62a} P. Paolucci,^{62a,c} P. Azzi,^{63a} N. Bacchetta,^{63a} D. Bisello,^{63a,63b} A. Branca,^{63a,63b} R. Carlin,^{63a,63b} P. Checchia,^{63a} T. Dorigo,^{63a} M. Galanti,^{63a,63b,c} F. Gasparini,^{63a,63b} U. Gasparini,^{63a,63b} A. Gozzelino,^{63a} K. Kanishchev,^{63a,63c} S. Lacaprara,^{63a} I. Lazzizzera,^{63a,63c} M. Margoni,^{63a,63b} A. T. Meneguzzo,^{63a,63b} J. Pazzini,^{63a,63b} N. Pozzobon,^{63a,63b} P. Ronchese,^{63a,63b} M. Sgaravatto,^{63a} F. Simonetto, ^{63a,63b} E. Torassa, ^{63a} M. Tosi, ^{63a,63b} A. Triossi, ^{63a} S. Ventura, ^{63a} P. Zotto, ^{63a,63b} A. Zucchetta, ^{63a,63b} M. Gabusi,^{64a,64b} S. P. Ratti,^{64a,64b} C. Riccardi,^{64a,64b} P. Salvini,^{64a} P. Vitulo,^{64a,64b} M. Biasini,^{65a,65b} G. M. Bilei,^{65a} L. Fanò,^{65a,65b} P. Lariccia,^{65a,65b} G. Mantovani,^{65a,65b} M. Menichelli,^{65a} F. Romeo,^{65a,65b} A. Saha,^{65a} A. Santocchia,^{65a,65b}

A. Spiezia,^{65a,65b} K. Androsov,^{66a,dd} P. Azzurri,^{66a} G. Bagliesi,^{66a} J. Bernardini,^{66a} T. Boccali,^{66a} G. Broccolo,^{66a,66c} R. Castaldi,^{66a} M. A. Ciocci,^{66a,dd} R. Dell'Orso,^{66a} S. Donato,^{66a,66c} F. Fiori,^{66a,66c} L. Foà,^{66a,66c} A. Giassi,^{66a} M. T. Grippo,^{66a,dd} A. Kraan,^{66a} F. Ligabue,^{66a,66c} T. Lomtadze,^{66a} L. Martini,^{66a,66b} A. Messineo,^{66a,66b} C. S. Moon,^{66a,ee}
F. Palla,^{66a,c} A. Rizzi,^{66a,66b} A. Savoy-Navarro,^{66a,ff} A. T. Serban,^{66a} P. Spagnolo,^{66a} P. Squillacioti,^{66a,dd} R. Tenchini,^{66a}
G. Tonelli,^{66a,66b} A. Venturi,^{66a} P. G. Verdini,^{66a} C. Vernieri,^{66a,66c} L. Barone,^{67a,67b} F. Cavallari,^{67a} D. Del Re,^{67a,67b} G. Tonelli, ^{64,676} A. Venturi, ^{674,67b} P. G. Verdini, ⁶⁷⁴ C. Vernieri, ^{674,67b} F. Margaroli, ^{674,67b} F. Cavallari, ^{67a} D. Del Re, ^{674,67b} M. Diemoz, ^{67a} M. Grassi, ^{67a,67b} C. Jorda, ^{67a} E. Longo, ^{67a,67b} F. Margaroli, ^{67a,67b} P. Meridiani, ^{67a} F. Micheli, ^{67a,67b} S. Nourbakhsh, ^{67a,67b} G. Organtini, ^{67a,67b} R. Paramatti, ^{67a} S. Rahatlou, ^{67a,67b} C. Rovelli, ^{67a} L. Soffi, ^{67a,67b} P. Traczyk, ^{67a,67b} N. Amapane, ^{68a,68b} R. Arcidiacono, ^{68a,68c} S. Argiro, ^{68a,68b} M. Arneodo, ^{68a,68c} R. Bellan, ^{68a,68b} C. Biino, ^{68a} N. Cartiglia, ^{68a} S. Casasso, ^{68a,68b} M. Costa, ^{68a,68b} A. Degano, ^{68a,68b} N. Demaria, ^{68a} L. Finco, ^{68a,68b} C. Mariotti, ^{68a} S. Maselli, ^{68a} S. Casasso, ^{68a,68b} M. Musich, ^{68a} M. M. Obertino, ^{68a,68c} G. Ortona, ^{68a,68b} L. Pacher, ^{68a,68b} N. Pastrone, ^{68a} M. Pelliccioni, ^{68a,c8b} A. Staiano, ^{68a,68b} A. Potenza, ^{68a,68b} A. Romero, ^{68a,68b} M. Ruspa, ^{68a,68c} R. Sacchi, ^{66a,68b} A. Staiano, ^{68a} U. Tamponi, ^{68a} S. Belforte, ^{69a} V. Candelise, ^{69a,69b} M. Casarsa, ^{69a} F. Cossutti, ^{69a} C. Dalla Biaga ^{69a,69b} P. Cabhe ^{69a} C. La Liest ^{69a,69b} M. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Casarsa, ^{69a,69b} A. Casarsa, ^{69a,69b} A. Casarsa, ^{69a,69b} A. Staiano, ^{68a,68b} A. Jangano, ^{68a,68b} A. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Casarsa, ^{69a,69b} A. Staiano, ^{68a,69a,69b} A. La Liest ^{69a,69b} M. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Casarsa, ^{69a,69b} A. Staiano, ^{68a,69a,69b} A. La Liest ^{69a,69b} M. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Staiano, ^{68a,69a} C. La Liest ^{69a,69b} M. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Casarsa, ^{69a,69b} A. Staiano, ^{68a,69a} C. La Liest ^{69a,69b} M. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Staiano, ^{68a,69b} A. La Liest ^{69a,69b} M. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Staiano, ^{69a,69b} A. La Liest ^{69a,69b} D. M. Merre, ^{69a,69b} A. Staiano, ^{69a,69b} A. Cashe, ^{69a,69b} M. Merre, ^{69a,69b} D. M. et al. ^{69a,69b} A. Staiano, ⁶ G. Della Ricca, 69a,69b B. Gobbo, 69a C. La Licata, 69a,69b M. Marone, 69a,69b D. Montanino, 69a,69b A. Schizzi, 69a,69b T. Umer, 69a,69b A. Zanetti, 69a S. Chang, 70 T. Y. Kim, 70 S. K. Nam, 70 D. H. Kim, 71 G. N. Kim, 71 J. E. Kim, 71 M. S. Kim, 71 D. J. Kong,⁷¹ S. Lee,⁷¹ Y. D. Oh,⁷¹ H. Park,⁷¹ A. Sakharov,⁷¹ D. C. Son,⁷¹ J. Y. Kim,⁷² Z. J. Kim,⁷² S. Song,⁷² S. Choi,⁷³ D. Gyun,⁷³ B. Hong,⁷³ M. Jo,⁷³ H. Kim,⁷³ Y. Kim,⁷³ B. Lee,⁷³ K. S. Lee,⁷³ S. K. Park,⁷³ Y. Roh,⁷³ M. Choi,⁷⁴ J. H. Kim,⁷⁴ C. Park,⁷⁴ I. C. Park,⁷⁴ S. Park,⁷⁴ G. Ryu,⁷⁴ Y. Choi,⁷⁵ Y. K. Choi,⁷⁵ J. Goh,⁷⁵ E. Kwon,⁷⁵ J. Lee,⁷⁵ H. Seo,⁷⁵ I. Yu,⁷⁵ A. Juodagalvis,⁷⁶ J. R. Komaragiri,⁷⁷ H. Castilla-Valdez,⁷⁸ E. De La Cruz-Burelo,⁷⁸ I. Heredia-de La Cruz,^{78,gg} R. Lopez-Fernandez,⁷⁸ J. Martínez-Ortega,⁷⁸ A. Sanchez-Hernandez,⁷⁸ L. M. Villasenor-Cendejas,⁷⁸ S. Carrillo Moreno,⁷⁹ F. Vazquez Valencia,⁷⁹ H. A. Salazar Ibarguen,⁸⁰ E. Casimiro Linares,⁸¹ A. Morelos Pineda,⁸¹ D. Krofcheck,⁸² P. H. Butler,⁸³ R. Doesburg,⁸³ S. Reucroft,⁸³ A. Ahmad,⁸⁴ M. Ahmad,⁸⁴ M. I. Asghar,⁸⁴ J. Butt,⁸⁴ Q. Hassan,⁸⁴ H. R. Hoorani,⁸⁴ W. A. Khan,⁸⁴ T. Khurshid,⁸⁴ S. Qazi,⁸⁴ M. A. Shah,⁸⁴ M. Shoaib,⁸⁴ H. Bialkowska,⁸⁵ M. Bluj,^{85,hh} B. Boimska,⁸⁵ T. Frueboes,⁸⁵ M. Górski,⁸⁵ M. Kazana,⁸⁵ K. Nawrocki,⁸⁵ K. Romanowska-Rybinska,⁸⁵ M. Szleper,⁸⁵ G. Wrochna,⁸⁵ P. Zalewski,⁸⁵ G. Brona,⁸⁶ K. Bunkowski,⁸⁶ M. Cwiok,⁸⁶ W. Dominik,⁸⁶ K. Doroba,⁸⁶ A. Kalinowski,⁸⁶ M. Konecki,⁸⁶ J. Krolikowski,⁸⁶ M. Misiura,⁸⁶ W. Wolszczak,⁸⁶ P. Bargassa,⁸⁷ C. Beirão Da Cruz E Silva,⁸⁷ P. Faccioli,⁸⁷ P. G. Ferreira Parracho,⁸⁷ M. Gallinaro,⁸⁷ F. Nguyen,⁸⁷ J. Rodrigues Antunes,⁸⁷ J. Seixas,⁸⁷ J. Varela,⁸⁷ P. Vischia,⁸⁷ I. Golutvin,⁸⁸ I. Gorbunov,⁸⁸ V. Karjavin,⁸⁸ V. Konoplyanikov,⁸⁸ V. Korenkov,⁸⁸ G. Kozlov,⁸⁸ A. Lanev,⁸⁸ A. Malakhov,⁸⁸ V. Matveev,^{88,ii} P. Moisenz,⁸⁸ V. Palichik,⁸⁸ V. Perelygin,⁸⁸ M. Savina,⁸⁸ S. Shmatov,⁸⁸ S. Shulha,⁸⁸ N. Skatchkov,⁸⁸ V. Smirnov,⁸⁸ A. Zarubin,⁸⁸ V. Golovtsov,⁸⁹ Y. Ivanov,⁸⁹ V. Kim,^{89,ij} P. Levchenko,⁸⁹ V. Murzin,⁸⁹ V. Oreshkin,⁸⁹ I. Smirnov,⁸⁹ V. Sulimov,⁸⁹ L. Uvarov,⁸⁹ S. Vavilov,⁸⁹ A. Vorobyev,⁸⁹ A. Vorobyev,⁸⁹ Y. Andreev,⁹⁰ A. Dermenev,⁹⁰ S. Gninenko,⁹⁰ N. Golubev,⁹⁰ M. Kirsanov,⁹⁰ N. Krasnikov,⁹⁰ A. Pashenkov,⁹⁰ D. Tlisov,⁹⁰ A. Toropin,⁹⁰ V. Epshteyn,⁹¹ V. Gavrilov,⁹¹ N. Lychkovskaya,⁹¹ V. Popov,⁹¹ G. Safronov,⁹¹ S. Semenov,⁹¹ A. Spiridonov,⁹¹ V. Stolin,⁹¹ E. Vlasov,⁹¹ A. Zhokin,⁹¹ V. Andreev,⁹² M. Azarkin,⁹² I. Dremin,⁹² M. Kirakosyan,⁹² A. Leonidov,⁹² G. Mesyats,⁹² S. V. Rusakov,⁹² A. Vinogradov,⁹² A. Belyaev,⁹³ E. Boos,⁹³ M. Dubinin,^{93,h} L. Dudko,⁹³ A. Ershov,⁹³ A. Gribushin,⁹³ V. Klyukhin,⁹³
O. Kodolova,⁹³ I. Lokhtin,⁹³ S. Obraztsov,⁹³ S. Petrushanko,⁹³ V. Savrin,⁹³ A. Snigirev,⁹³ I. Azhgirey,⁹⁴ I. Bayshev,⁹⁴
S. Bitioukov,⁹⁴ V. Kachanov,⁹⁴ A. Kalinin,⁹⁴ D. Konstantinov,⁹⁴ V. Krychkine,⁹⁴ V. Petrov,⁹⁴ R. Ryutin,⁹⁴ A. Sobol,⁹⁴ L. Tourtchanovitch,⁹⁴ S. Troshin,⁹⁴ N. Tyurin,⁹⁴ A. Uzunian,⁹⁴ A. Volkov,⁹⁴ P. Adzic,^{95,kk} M. Djordjevic,⁹⁵ M. Ekmedzic,⁹⁵ J. Milosevic,⁹⁵ M. Aguilar-Benitez,⁹⁶ J. Alcaraz Maestre,⁹⁶ C. Battilana,⁹⁶ E. Calvo,⁹⁶ M. Cerrada,⁹⁶ M. Chamizo Llatas,^{96,c} N. Colino,⁹⁶ B. De La Cruz,⁹⁶ A. Delgado Peris,⁹⁶ D. Domínguez Vázquez,⁹⁶ A. Escalante Del Valle,⁹⁶ C. Fernandez Bedoya,⁹⁶ J. P. Fernández Ramos,⁹⁶ A. Ferrando,⁹⁶ J. Flix,⁹⁶ M. C. Fouz,⁹⁶ P. Garcia-Abia,⁹⁶ O. Gonzalez Lopez,⁹⁶ S. Goy Lopez,⁹⁶ J. M. Hernandez,⁹⁶ M. I. Josa,⁹⁶ G. Merino,⁹⁶ E. Navarro De Martino,⁹⁶ A. Pérez-Calero Yzquierdo,⁹⁶ J. Puerta Pelayo,⁹⁶ A. Quintario Olmeda,⁹⁶ I. Redondo,⁹⁶ L. Romero,⁹⁶ M. S. Soares,⁹⁶ C. Willmott,⁹⁶ C. Albajar,⁹⁷ J. F. de Trocóniz,⁹⁷ M. Missiroli,⁹⁷ H. Brun,⁹⁸ J. Cuevas,⁹⁸ J. Fernandez Menendez,⁹⁸ S. Folgueras,⁹⁸ I. Gonzalez Caballero,⁹⁸ L. Lloret Iglesias,⁹⁸ J. A. Brochero Cifuentes,⁹⁹ I. J. Cabrillo,⁹⁹ A. Calderon,⁹⁹ J. Duarte Campderros,⁹⁹ M. Fernandez,⁹⁹ G. Gomez,⁹⁹ J. Gonzalez Sanchez,⁹⁹ A. Graziano,⁹⁹ A. Lopez Virto,⁹⁹ J. Marco,⁹⁹ R. Marco,⁹⁹ C. Martinez Rivero,⁹⁹ F. Matorras,⁹⁹ F. J. Munoz Sanchez,⁹⁹ J. Piedra Gomez,⁹⁹ T. Rodrigo,⁹⁹ A. Y. Rodríguez-Marrero,⁹⁹ A. Ruiz-Jimeno,⁹⁹ L. Scodellaro,⁹⁹ I. Vila,⁹⁹ R. Vilar Cortabitarte,⁹⁹ D. Abbaneo,¹⁰⁰ E. Auffray,¹⁰⁰ G. Auzinger,¹⁰⁰ M. Bachtis,¹⁰⁰ P. Baillon,¹⁰⁰ A. H. Ball,¹⁰⁰ D. Barney,¹⁰⁰ A. Benaglia,¹⁰⁰ J. Bendavid,¹⁰⁰ L. Benhabib,¹⁰⁰ J. F. Benitez,¹⁰⁰ C. Bernet,^{100,i} G. Bianchi,¹⁰⁰ P. Bloch,¹⁰⁰ A. Bocci,¹⁰⁰ A. Bonato,¹⁰⁰ O. Bondu,¹⁰⁰

C. Botta,¹⁰⁰ H. Breuker,¹⁰⁰ T. Camporesi,¹⁰⁰ G. Cerminara,¹⁰⁰ T. Christiansen,¹⁰⁰ J. A. Coarasa Perez,¹⁰⁰ S. Colafranceschi,^{100,II} M. D'Alfonso,¹⁰⁰ D. d'Enterria,¹⁰⁰ A. Dabrowski,¹⁰⁰ A. David,¹⁰⁰ F. De Guio,¹⁰⁰ A. De Roeck,¹⁰⁰ S. De Visscher,¹⁰⁰ M. Dobson,¹⁰⁰ N. Dupont-Sagorin,¹⁰⁰ A. Elliott-Peisert,¹⁰⁰ J. Eugster,¹⁰⁰ G. Franzoni,¹⁰⁰ W. Funk,¹⁰⁰ M. Giffels,¹⁰⁰ D. Gigi,¹⁰⁰ K. Gill,¹⁰⁰ D. Giordano,¹⁰⁰ M. Girone,¹⁰⁰ M. Giunta,¹⁰⁰ F. Glege,¹⁰⁰ R. Gomez-Reino Garrido,¹⁰⁰ M. GIIIels, D. Gigi, K. GIII, D. Glordano, M. Girone, M. Gunta, F. Giege, K. Gomez-Kenio Garrido, S. Gowdy,¹⁰⁰ R. Guida,¹⁰⁰ J. Hammer,¹⁰⁰ M. Hansen,¹⁰⁰ P. Harris,¹⁰⁰ J. Hegeman,¹⁰⁰ V. Innocente,¹⁰⁰ P. Janot,¹⁰⁰
E. Karavakis,¹⁰⁰ K. Kousouris,¹⁰⁰ K. Krajczar,¹⁰⁰ P. Lecoq,¹⁰⁰ C. Lourenço,¹⁰⁰ N. Magini,¹⁰⁰ L. Malgeri,¹⁰⁰ M. Mannelli,¹⁰⁰
L. Masetti,¹⁰⁰ F. Meijers,¹⁰⁰ S. Mersi,¹⁰⁰ E. Meschi,¹⁰⁰ F. Moortgat,¹⁰⁰ M. Mulders,¹⁰⁰ P. Musella,¹⁰⁰ L. Orsini,¹⁰⁰
E. Palencia Cortezon,¹⁰⁰ L. Pape,¹⁰⁰ E. Perez,¹⁰⁰ L. Perrozzi,¹⁰⁰ A. Petrilli,¹⁰⁰ G. Petrucciani,¹⁰⁰ A. Pfeiffer,¹⁰⁰ M. Pierini,¹⁰⁰
M. Pimiä,¹⁰⁰ D. Piparo,¹⁰⁰ M. Plagge,¹⁰⁰ A. Racz,¹⁰⁰ W. Reece,¹⁰⁰ G. Rolandi,^{100,mm} M. Rovere,¹⁰⁰ H. Sakulin,¹⁰⁰ F. Santanastasio,¹⁰⁰ C. Schäfer,¹⁰⁰ C. Schwick,¹⁰⁰ S. Sekmen,¹⁰⁰ A. Sharma,¹⁰⁰ P. Siegrist,¹⁰⁰ P. Silva,¹⁰⁰ M. Simon,¹⁰⁰
P. Sphicas,^{100,nn} D. Spiga,¹⁰⁰ J. Steggemann,¹⁰⁰ B. Stieger,¹⁰⁰ M. Stoye,¹⁰⁰ D. Treille,¹⁰⁰ A. Tsirou,¹⁰⁰ G. I. Veres,^{100,u}
J. R. Vlimant,¹⁰⁰ H. K. Wöhri,¹⁰⁰ W. D. Zeuner,¹⁰⁰ W. Bertl,¹⁰¹ K. Deiters,¹⁰¹ W. Erdmann,¹⁰¹ R. Horisberger,¹⁰¹ Q. Ingram,¹⁰¹ H. C. Kaestli,¹⁰¹ S. König,¹⁰¹ D. Kotlinski,¹⁰¹ U. Langenegger,¹⁰¹ D. Renker,¹⁰¹ T. Rohe,¹⁰¹ F. Bachmair,¹⁰² L. Bianchini,¹⁰² P. Bortignon,¹⁰² M. A. Buchmann,¹⁰² B. Casal,¹⁰² N. Chanon,¹⁰² A. Deisher,¹⁰² G. Dissertori,¹⁰² M. Dittmar,¹⁰² M. Donegà,¹⁰² M. Dünser,¹⁰² P. Eller,¹⁰² C. Grab,¹⁰² D. Hits,¹⁰² W. Lustermann,¹⁰² B. Mangano,¹⁰² A. C. Marini,¹⁰² P. Martinez Ruiz del Arbol,¹⁰² D. Meister,¹⁰² N. Mohr,¹⁰² C. Nägeli,^{102,00} P. Nef,¹⁰² F. Nessi-Tedaldi,¹⁰² F. Pandolfi,¹⁰² F. Pauss,¹⁰² M. Peruzzi,¹⁰² M. Quittnat,¹⁰² L. Rebane,¹⁰² F. J. Ronga,¹⁰² M. Rossini,¹⁰² A. Starodumov,^{102,pp} M. Takahashi,¹⁰² K. Theofilatos,¹⁰² R. Wallny,¹⁰² H. A. Weber,¹⁰² C. Amsler,^{103,qq} M. F. Canelli,¹⁰³ V. Chiochia,¹⁰³ A. De Cosa,¹⁰³ A. Hinzmann,¹⁰³ T. Hreus,¹⁰³ M. Ivova Rikova,¹⁰³ B. Kilminster,¹⁰³ B. Millan Mejias,¹⁰³ J. Ngadiuba,¹⁰³ A. De Cosa, ¹⁰⁵ A. Hinzmann, ¹⁰⁷ T. Hreus, ¹⁰⁷ M. Ivova Rikova, ¹⁰⁷ B. Kiliminster, ¹⁰⁸ B. Millan Mejias, ¹⁰⁷ J. Ngadiuba, ¹⁰⁷ P. Robmann, ¹⁰³ H. Snoek, ¹⁰³ S. Taroni, ¹⁰³ M. Verzetti, ¹⁰³ Y. Yang, ¹⁰³ M. Cardaci, ¹⁰⁴ K. H. Chen, ¹⁰⁴ C. Ferro, ¹⁰⁴ C. M. Kuo, ¹⁰⁴ S. W. Li, ¹⁰⁴ W. Lin, ¹⁰⁴ Y. J. Lu, ¹⁰⁴ R. Volpe, ¹⁰⁴ S. S. Yu, ¹⁰⁴ P. Bartalini, ¹⁰⁵ P. Chang, ¹⁰⁵ Y. H. Chang, ¹⁰⁵ Y. W. Chang, ¹⁰⁵ Y. Chao, ¹⁰⁵ K. F. Chen, ¹⁰⁵ P. H. Chen, ¹⁰⁵ C. Dietz, ¹⁰⁵ U. Grundler, ¹⁰⁵ W.-S. Hou, ¹⁰⁵ Y. Hsiung, ¹⁰⁵ K. Y. Kao, ¹⁰⁵ Y. J. Lei, ¹⁰⁵ Y. F. Liu, ¹⁰⁵ R.-S. Lu, ¹⁰⁵ D. Majumder, ¹⁰⁵ E. Petrakou, ¹⁰⁵ X. Shi, ¹⁰⁵ J. G. Shiu, ¹⁰⁵ Y. M. Tzeng, ¹⁰⁵ M. Wang, ¹⁰⁵ R. Wilken, ¹⁰⁵ B. Asavapibhop, ¹⁰⁶ E. Simili, ¹⁰⁶ A. Adiguzel, ¹⁰⁷ M. N. Bakirci, ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. N. Bakirci, ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. N. Bakirci, ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. N. Bakirci, ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. N. Bakirci, ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. N. Bakirci, ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. N. ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. N. ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. ^{107,rr} S. Cerci, ^{107,ss} C. Dozen, ¹⁰⁷ M. ^{107,rr} S. ^{107,rr} S. ^{107,ss} C. Dozen, ¹⁰⁷ M. ^{107,rr} S. ^{107,rr} I. Dumanoglu,¹⁰⁷ E. Eskut,¹⁰⁷ S. Girgis,¹⁰⁷ G. Gokbulut,¹⁰⁷ E. Gurpinar,¹⁰⁷ I. Hos,¹⁰⁷ E. E. Kangal,¹⁰⁷ A. Kayis Topaksu,¹⁰⁷ G. Onengut,^{107,tt} K. Ozdemir,¹⁰⁷ S. Ozturk,^{107,tr} A. Polatoz,¹⁰⁷ K. Sogut,^{107,uu} D. Sunar Cerci,^{107,ss} B. Tali,^{107,ss} G. Onengut, ¹⁰⁷ K. Ozdemir, ¹⁰⁷ S. Ozturk, ¹⁰¹ A. Polatoz, ¹⁰⁸ K. Sogut, ¹⁰⁴ a. D. Sunar Cerci, ¹⁰⁴ B. Tali, ¹⁰⁴ B. Hali, ¹⁰⁷ H. Topakli, ^{107,17} M. Vergili, ¹⁰⁷ I. V. Akin, ¹⁰⁸ T. Aliev, ¹⁰⁸ B. Bilin, ¹⁰⁸ S. Bilmis, ¹⁰⁸ M. Deniz, ¹⁰⁸ H. Gamsizkan, ¹⁰⁸ A. M. Guler, ¹⁰⁸ G. Karapinar, ^{108,vv} K. Ocalan, ¹⁰⁸ A. Ozpineci, ¹⁰⁸ M. Serin, ¹⁰⁸ R. Sever, ¹⁰⁸ U. E. Surat, ¹⁰⁸ M. Yalvac, ¹⁰⁸ M. Zeyrek, ¹⁰⁸ E. Gülmez, ¹⁰⁹ B. Isildak, ^{109,ww} M. Kaya, ^{109,xx} O. Kaya, ^{109,xx} S. Ozkorucuklu, ^{109,yy} H. Bahtiyar, ^{110,zz} E. Barlas, ¹¹⁰ K. Cankocak, ¹¹⁰ Y. O. Günaydin, ^{110,aaa} F. I. Vardarli, ¹¹⁰ M. Yücel, ¹¹⁰ L. Levchuk, ¹¹¹ P. Sorokin, ¹¹¹ J. J. Brooke, ¹¹² E. Clement, ¹¹² D. Cussans, ¹¹² H. Flacher, ¹¹² R. Frazier, ¹¹² J. Goldstein, ¹¹² M. Grimes, ¹¹² G. P. Heath, ¹¹² H. ¹¹³ H. ¹¹⁴ H. ¹¹⁴ H. ¹¹⁴ H. ¹¹⁵ H. ¹¹⁵ H. ¹¹⁴ H. ¹¹⁵ H. ¹¹⁴ H. ¹¹⁵ H. ¹¹⁶ H. ¹¹⁶ H. ¹¹⁶ H. ¹¹⁷ H. ¹¹⁷ H. ¹¹⁶ H. ¹¹⁷ H. ¹¹⁸ H. ¹¹⁸ H. ¹¹⁸ H. ¹¹⁸ H. ¹¹⁸ H. ¹¹⁸ H. ¹¹⁹ H. ¹¹¹ H. ¹¹¹ H. ¹¹¹ H. ¹¹¹ H. ¹¹² H. ¹¹² H. ¹¹² H. ¹¹² H. ¹¹² H. ¹¹² H. ¹¹³ H. ¹¹⁴ H. ¹¹⁴ H. ¹¹⁵ H. ¹¹⁵ H. ¹¹⁵ H. ¹¹⁵ H. ¹¹⁵ H. ¹¹⁵ H. ¹¹⁶ H. ¹¹⁶ H. ¹¹⁶ H. ¹¹⁷ H. ¹¹⁸ H. ¹¹⁸ H. ¹¹⁸ H. ¹¹⁹ H. ¹¹ H. F. Heath,¹¹² J. Jacob,¹¹² L. Kreczko,¹¹² C. Lucas,¹¹² Z. Meng,¹¹² D. M. Newbold,^{112,bbb} S. Paramesvaran,¹¹² A. Poll,¹¹² S. Senkin,¹¹² V. J. Smith,¹¹² T. Williams,¹¹² K. W. Bell,¹¹³ A. Belyaev,^{113,ccc} C. Brew,¹¹³ R. M. Brown,¹¹³ D. J. A. Cockerill,¹¹³ J. A. Coughlan,¹¹³ K. Harder,¹¹³ S. Harper,¹¹³ J. Ilic,¹¹³ E. Olaiya,¹¹³ D. Petyt,¹¹³ C. H. Shepherd-Themistocleous,¹¹³ A. Thea,¹¹³ I. R. Tomalin,¹¹³ W. J. Womersley,¹¹³ S. D. Worm,¹¹³ M. Baber,¹¹⁴ R. Bainbridge,¹¹⁴ O. Buchmuller,¹¹⁴ D. Burton,¹¹⁴ D. Colling,¹¹⁴ N. Cripps,¹¹⁴ M. Cutajar,¹¹⁴ P. Dauncey,¹¹⁴ G. Davies,¹¹⁴ K. Bainbridge, O. Buchnuller, D. Burton, D. Coning, N. Chipps, M. Cutajar, P. Dauncey, G. Davies,
M. Della Negra, ¹¹⁴ P. Dunne, ¹¹⁴ W. Ferguson, ¹¹⁴ J. Fulcher, ¹¹⁴ D. Futyan, ¹¹⁴ A. Gilbert, ¹¹⁴ A. Guneratne Bryer, ¹¹⁴ G. Hall, ¹¹⁴
Z. Hatherell, ¹¹⁴ J. Hays, ¹¹⁴ G. Iles, ¹¹⁴ M. Jarvis, ¹¹⁴ G. Karapostoli, ¹¹⁴ M. Kenzie, ¹¹⁴ R. Lane, ¹¹⁴ R. Lucas, ^{114,bbb} L. Lyons, ¹¹⁴
A.-M. Magnan, ¹¹⁴ J. Marrouche, ¹¹⁴ B. Mathias, ¹¹⁴ R. Nandi, ¹¹⁴ J. Nash, ¹¹⁴ A. Nikitenko, ^{114,pp} J. Pela, ¹¹⁴ M. Pesaresi, ¹¹⁴
K. Petridis, ¹¹⁴ M. Pioppi, ^{114,ddd} D. M. Raymond, ¹¹⁴ S. Rogerson, ¹¹⁴ A. Rose, ¹¹⁴ C. Seez, ¹¹⁴ P. Sharp, ^{114,a} A. Sparrow, ¹¹⁴
A. Tapper, ¹¹⁴ M. Vazquez Acosta, ¹¹⁴ T. Virdee, ¹¹⁴ S. Wakefield, ¹¹⁴ N. Wardle, ¹¹⁴ J. E. Cole, ¹¹⁵ P. R. Hobson, ¹¹⁵ A. Khan, ¹¹⁵
P. Kyberd, ¹¹⁵ D. Leggat, ¹¹⁵ D. Leslie, ¹¹⁵ W. Martin, ¹¹⁵ I. D. Reid, ¹¹⁵ P. Symonds, ¹¹⁵ L. Teodorescu, ¹¹⁵ M. Turner, ¹¹⁵
I. Dittmann ¹¹⁶ K. Hatakeyama ¹¹⁶ A. Kacmi ¹¹⁶ H. Liu ¹¹⁶ T. Scarborough ¹¹⁶ O. Charaf ¹¹⁷ S. L. Cooper ¹¹⁷ J. Dittmann,¹¹⁶ K. Hatakeyama,¹¹⁶ A. Kasmi,¹¹⁶ H. Liu,¹¹⁶ T. Scarborough,¹¹⁶ O. Charaf,¹¹⁷ S. I. Cooper,¹¹⁷ C. Henderson,¹¹⁷ P. Rumerio,¹¹⁷ A. Avetisyan,¹¹⁸ T. Bose,¹¹⁸ C. Fantasia,¹¹⁸ A. Heister,¹¹⁸ P. Lawson,¹¹⁸ D. Lazic,¹¹⁸ C. Richardson,¹¹⁸ J. Rohlf,¹¹⁸ D. Sperka,¹¹⁸ J. St. John,¹¹⁸ L. Sulak,¹¹⁸ J. Alimena,¹¹⁹ S. Bhattacharya,¹¹⁹ G. Christopher,¹¹⁹ D. Cutts,¹¹⁹ Z. Demiragli,¹¹⁹ A. Ferapontov,¹¹⁹ A. Garabedian,¹¹⁹ U. Heintz,¹¹⁹ S. Jabeen,¹¹⁹ G. Kukartsev,¹¹⁹ E. Laird,¹¹⁹ G. Landsberg,¹¹⁹ M. Luk,¹¹⁹ M. Narain,¹¹⁹ M. Segala,¹¹⁹ T. Sinthuprasith,¹¹⁹ T. Speer,¹¹⁹ J. Swanson,¹¹⁹ R. Breedon,¹²⁰ G. Breto,¹²⁰ M. Calderon De La Barca Sanchez,¹²⁰ S. Chauhan,¹²⁰ M. Chertok,¹²⁰ J. Conway,¹²⁰ R. Conway,¹²⁰ P. T. Cox,¹²⁰ R. Erbacher,¹²⁰ M. Gardner,¹²⁰ W. Ko,¹²⁰ A. Kopecky,¹²⁰ R. Lander,¹²⁰ T. Miceli,¹²⁰ M. Mulhearn,¹²⁰ D. Pellett,¹²⁰ J. Pilot,¹²⁰

F. Ricci-Tam,¹²⁰ B. Rutherford,¹²⁰ M. Searle,¹²⁰ S. Shalhout,¹²⁰ J. Smith,¹²⁰ M. Squires,¹²⁰ M. Tripathi,¹²⁰ S. Wilbur,¹²⁰ R. Yohay,¹²⁰ V. Andreev,¹²¹ D. Cline,¹²¹ R. Cousins,¹²¹ S. Erhan,¹²¹ P. Everaerts,¹²¹ C. Farrell,¹²¹ M. Felcini,¹²¹ J. Hauser,¹²¹ M. Ignatenko,¹²¹ C. Jarvis,¹²¹ G. Rakness,¹²¹ E. Takasugi,¹²¹ V. Valuev,¹²¹ M. Weber,¹²¹ J. Babb,¹²² R. Clare,¹²² J. Ellison,¹²² J. W. Gary,¹²² G. Hanson,¹²² J. Heilman,¹²² P. Jandir,¹²² F. Lacroix,¹²² H. Liu,¹²² O. R. Long,¹²² A. Luthra,¹²² M. Malberti,¹²² H. Nguyen,¹²² A. Shrinivas,¹²² J. Sturdy,¹²² S. Sumowidagdo,¹²² S. Wimpenny,¹²² W. Andrews,¹²³ J. G. Branson,¹²³ G. B. Cerati, ¹²³ S. Cittolin, ¹²³ R. T. D'Agnolo, ¹²³ D. Evans, ¹²³ A. Holzner, ¹²³ R. Kelley, ¹²³ D. Kovalskyi, ¹²³
 M. Lebourgeois, ¹²³ J. Letts, ¹²³ I. Macneill, ¹²³ S. Padhi, ¹²³ C. Palmer, ¹²³ M. Pieri, ¹²³ M. Sani, ¹²³ V. Sharma, ¹²³ S. Simon, ¹²³ E. Sudano, ¹²³ M. Tadel, ¹²³ Y. Tu, ¹²³ A. Vartak, ¹²³ S. Wasserbaech, ¹²³, eee F. Würthwein, ¹²³ A. Yagil, ¹²³ J. Yoo, ¹²³ D. Barge, ¹²⁴ J. Bradmiller-Feld, ¹²⁴ C. Campagnari, ¹²⁴ T. Danielson, ¹²⁴ A. Dishaw, ¹²⁴ K. Flowers, ¹²⁴ M. Franco Sevilla, ¹²⁴ P. Geffert, ¹²⁴ C. George, ¹²⁴ F. Golf, ¹²⁴ J. Incandela, ¹²⁴ C. Justus, ¹²⁴ R. Magaña Villalba, ¹²⁴ N. Mccoll, ¹²⁴ V. Pavlunin, ¹²⁴ J. Richman, ¹²⁴
R. Rossin, ¹²⁴ D. Stuart, ¹²⁴ W. To, ¹²⁴ C. West, ¹²⁴ A. Apresyan, ¹²⁵ A. Bornheim, ¹²⁵ J. Bunn, ¹²⁵ Y. Chen, ¹²⁵ E. Di Marco, ¹²⁵
J. Duarte, ¹²⁵ D. Kcira, ¹²⁵ A. Mott, ¹²⁵ H. B. Newman, ¹²⁵ C. Pena, ¹²⁵ C. Rogan, ¹²⁵ M. Spiropulu, ¹²⁵ V. Timciuc, ¹²⁵ R. Wilkinson,¹²⁵ S. Xie,¹²⁵ R. Y. Zhu,¹²⁵ V. Azzolini,¹²⁶ A. Calamba,¹²⁶ R. Carroll,¹²⁶ T. Ferguson,¹²⁶ Y. Iiyama,¹²⁶ D. W. Jang, ¹²⁶ M. Paulini, ¹²⁶ J. Russ, ¹²⁶ H. Vogel, ¹²⁶ I. Vorobiev, ¹²⁶ J. P. Cumalat, ¹²⁷ B. R. Drell, ¹²⁷ W. T. Ford, ¹²⁷ A. Gaz, ¹²⁷ E. Luiggi Lopez, ¹²⁷ U. Nauenberg, ¹²⁷ J. G. Smith, ¹²⁷ K. Stenson, ¹²⁷ K. A. Ulmer, ¹²⁷ S. R. Wagner, ¹²⁷ J. Alexander, ¹²⁸ A. Chatterjee,¹²⁸ J. Chu,¹²⁸ N. Eggert,¹²⁸ L. K. Gibbons,¹²⁸ W. Hopkins,¹²⁸ A. Khukhunaishvili,¹²⁸ B. Kreis,¹²⁸
N. Mirman,¹²⁸ G. Nicolas Kaufman,¹²⁸ J. R. Patterson,¹²⁸ A. Ryd,¹²⁸ E. Salvati,¹²⁸ W. Sun,¹²⁸ W. D. Teo,¹²⁸ J. Thom,¹²⁸ J. Thompson,¹²⁸ J. Tucker,¹²⁸ Y. Weng,¹²⁸ L. Winstrom,¹²⁸ P. Wittich,¹²⁸ D. Winn,¹²⁹ S. Abdullin,¹³⁰ M. Albrow,¹³⁰ J. Anderson,¹³⁰ G. Apollinari,¹³⁰ L. A. T. Bauerdick,¹³⁰ A. Beretvas,¹³⁰ J. Berryhill,¹³⁰ P. C. Bhat,¹³⁰ K. Burkett,¹³⁰ J. N. Butler,¹³⁰ V. Chetluru,¹³⁰ H. W. K. Cheung,¹³⁰ F. Chlebana,¹³⁰ S. Cihangir,¹³⁰ V. D. Elvira,¹³⁰ I. Fisk,¹³⁰ J. Freeman,¹³⁰ Y. Gao,¹³⁰ E. Gottschalk,¹³⁰ L. Gray,¹³⁰ D. Green,¹³⁰ S. Grünendahl,¹³⁰ O. Gutsche,¹³⁰ J. Hanlon,¹³⁰ D. Hare,¹³⁰ R. M. Harris,¹³⁰ J. Hirschauer,¹³⁰ B. Hooberman,¹³⁰ S. Jindariani,¹³⁰ M. Johnson,¹³⁰ U. Joshi,¹³⁰ K. Kaadze,¹³⁰ B. Klima,¹³⁰ S. Kwan,¹³⁰ J. Linacre,¹³⁰ D. Lincoln,¹³⁰ R. Lipton,¹³⁰ T. Liu,¹³⁰ J. Lykken,¹³⁰ K. Maeshima,¹³⁰ J. M. Marraffino,¹³⁰ V. I. Martinez Outschoorn,¹³⁰ S. Maruyama,¹³⁰ D. Mason,¹³⁰ P. McBride,¹³⁰ K. Mishra,¹³⁰ S. Mrenna,¹³⁰ Y. Musienko,¹³⁰ S. Nahn,¹³⁰ C. Newman-Holmes,¹³⁰ V. O'Dell,¹³⁰ O. Prokofyev,¹³⁰ N. Ratnikova,¹³⁰ E. Sexton-Kennedy,¹³⁰ S. Sharma,¹³⁰ A. Soha,¹³⁰ W. J. Spalding,¹³⁰ L. Spiegel,¹³⁰ L. Taylor,¹³⁰ S. Tkaczyk,¹³⁰ N. V. Tran,¹³⁰ L. Uplegger,¹³⁰ E. W. Vaandering,¹³⁰ R. Vidal,¹³⁰ A. Whitbeck,¹³⁰ J. Whitmore,¹³⁰ W. Wu,¹³⁰ F. Yang,¹³⁰ J. C. Yun,¹³⁰ D. Acosta,¹³¹ P. Avery,¹³¹ D. Bourilkov,¹³¹ T. Cheng,¹³¹ S. Das,¹³¹ M. De Gruttola,¹³¹ G. P. Di Giovanni,¹³¹ D. Dobur,¹³¹ R. D. Field,¹³¹ M. Fisher,¹³¹ Y. Fu,¹³¹ I. K. Furic,¹³¹ J. Hugon,¹³¹ B. Kim,¹³¹ J. Konigsberg,¹³¹ A. Korytov,¹³¹ A. Kropivnitskaya,¹³¹ T. Kypreos,¹³¹ J. F. Low,¹³¹ K. Matchev,¹³¹ P. Milenovic,^{131,fff} G. Mitselmakher,¹³¹ L. Muniz,¹³¹ A. Rinkevicius,¹³¹ L. Shchutska,¹³¹ N. Skhirtladze,¹³¹ M. Snowball,¹³¹ J. Yelton,¹³¹ M. Zakaria,¹³¹ V. Gaultney,¹³² S. Hewamanage,¹³² S. Linn,¹³² P. Markowitz,¹³² G. Martinez,¹³² J. L. Rodriguez,¹³² T. Adams,¹³³ A. Askew,¹³³ J. Bochenek,¹³³ J. Chen,¹³³ B. Diamond,¹³³ J. Haas,¹³³ S. Hagopian,¹³³ V. Hagopian,¹³³ K. F. Johnson,¹³³ H. Prosper,¹³³ V. Veeraraghavan,¹³³ M. Weinberg,¹³³ M. M. Baarmand,¹³⁴ B. Dorney,¹³⁴ M. Hohlmann,¹³⁴ H. Kalakhety,¹³⁴ F. Yumiceva,¹³⁴ M. R. Adams,¹³⁵ L. Apanasevich,¹³⁵ V. E. Bazterra,¹³⁵ R. R. Betts,¹³⁵ I. Bucinskaite,¹³⁵ R. Cavanaugh,¹³⁵ O. Evdokimov,¹³⁵ L. Gauthier,¹³⁵ C. E. Gerber,¹³⁵ D. J. Hofman,¹³⁵ S. Khalatyan,¹³⁵ P. Kurt,¹³⁵ D. H. Moon,¹³⁵ C. O'Brien,¹³⁵ C. Silkworth,¹³⁵ P. Turner,¹³⁵ N. Varelas,¹³⁵ U. Akgun,¹³⁶ E. A. Albayrak,^{136,zz} F. Kutt, D. H. Woon, C. O'Brien, C. Shkworth, P. Turner, N. Vareias, O. Akgun, E. A. Albayrak, B. Bilki, ¹³⁶,ggg W. Clarida, ¹³⁶ K. Dilsiz, ¹³⁶ F. Duru, ¹³⁶ M. Haytmyradov, ¹³⁶ J.-P. Merlo, ¹³⁶ H. Mermerkaya, ^{136,hhh} A. Mestvirishvili, ¹³⁶ A. Moeller, ¹³⁶ J. Nachtman, ¹³⁶ H. Ogul, ¹³⁶ Y. Onel, ¹³⁶ F. Ozok, ^{136,zz} A. Penzo, ¹³⁶ R. Rahmat, ¹³⁶ S. Sen, ¹³⁶ P. Tan, ¹³⁶ E. Tiras, ¹³⁶ J. Wetzel, ¹³⁶ T. Yetkin, ^{136,iii} K. Yi, ¹³⁶ B. A. Barnett, ¹³⁷ B. Blumenfeld, ¹³⁷ S. Bolognesi, ¹³⁷ D. Fehling, ¹³⁷ A. V. Gritsan, ¹³⁷ P. Maksimovic, ¹³⁷ C. Martin, ¹³⁷ M. Swartz, ¹³⁷ P. Baringer, ¹³⁸ A. Bean, ¹³⁸ G. Benelli, ¹³⁸ J. Gray, ¹³⁸ R. P. Kenny III, ¹³⁸ M. Murray, ¹³⁸ D. Noonan, ¹³⁸ S. Sanders, ¹³⁸ J. Sekaric, ¹³⁸ R. Stringer, ¹³⁸ Q. Wang, ¹³⁸ J. C. Martin, ¹³⁹ J. C. Martin, ¹³⁹ J. Sekaric, ¹³⁹ R. Stringer, ¹³⁹ J. ¹³⁰ J. S. Wood,¹³⁸ A. F. Barfuss,¹³⁹ I. Chakaberia,¹³⁹ A. Ivanov,¹³⁹ S. Khalil,¹³⁹ M. Makouski,¹³⁹ Y. Maravin,¹³⁹ L. K. Saini,¹³⁹ S. Shrestha,¹³⁹ I. Svintradze,¹³⁹ J. Gronberg,¹⁴⁰ D. Lange,¹⁴⁰ F. Rebassoo,¹⁴⁰ D. Wright,¹⁴⁰ A. Baden,¹⁴¹ B. Calvert,¹⁴¹ S. C. Eno,¹⁴¹ J. A. Gomez,¹⁴¹ N. J. Hadley,¹⁴¹ R. G. Kellogg,¹⁴¹ T. Kolberg,¹⁴¹ Y. Lu,¹⁴¹ M. Marionneau,¹⁴¹ A. C. Mignerey,¹⁴¹ K. Pedro,¹⁴¹ A. Skuja,¹⁴¹ J. Temple,¹⁴¹ M. B. Tonjes,¹⁴¹ S. C. Tonwar,¹⁴¹ A. Apyan,¹⁴² R. Barbieri,¹⁴² G. Bauer,¹⁴² W. Busza,¹⁴² I. A. Cali,¹⁴² M. Chan,¹⁴² L. Di Matteo,¹⁴² V. Dutta,¹⁴² G. Gomez Ceballos,¹⁴² M. Goncharov,¹⁴² D. Gulhan,¹⁴² M. Klute,¹⁴² Y. S. Lai,¹⁴² Y.-J. Lee,¹⁴² A. Levin,¹⁴² P. D. Luckey,¹⁴² T. Ma,¹⁴² C. Paus,¹⁴² D. Ralph,¹⁴² C. Roland,¹⁴² G. Roland,¹⁴² G. S. F. Stephans,¹⁴² F. Stöckli,¹⁴² K. Sumorok,¹⁴² D. Velicanu,¹⁴² J. Veverka,¹⁴² B. Wyslouch,¹⁴² M. Yang,¹⁴² A. S. Yoon,¹⁴² M. Zanetti,¹⁴² V. Zhukova,¹⁴² B. Dahmes,¹⁴³ A. De Benedetti,¹⁴³ A. Gude,¹⁴³

S. C. Kao,¹⁴³ K. Klapoetke,¹⁴³ Y. Kubota,¹⁴³ J. Mans,¹⁴³ N. Pastika,¹⁴³ R. Rusack,¹⁴³ A. Singovsky,¹⁴³ N. Tambe,¹⁴³ J. Turkewitz,¹⁴³ J. G. Acosta,¹⁴⁴ L. M. Cremaldi,¹⁴⁴ R. Kroeger,¹⁴⁴ S. Oliveros,¹⁴⁴ L. Perera,¹⁴⁴ D. A. Sanders,¹⁴⁴ D. Summers,¹⁴⁴ E. Avdeeva,¹⁴⁵ K. Bloom,¹⁴⁵ S. Bose,¹⁴⁵ D. R. Claes,¹⁴⁵ A. Dominguez,¹⁴⁵ R. Gonzalez Suarez,¹⁴⁵ J. Keller,¹⁴⁵ D. Knowlton,¹⁴⁵ I. Kravchenko,¹⁴⁵ J. Lazo-Flores,¹⁴⁵ S. Malik,¹⁴⁵ F. Meier,¹⁴⁵ G. R. Snow,¹⁴⁵ J. Dolen,¹⁴⁶ A. Godshalk,¹⁴⁶ I. Iashvili,¹⁴⁶ S. Jain,¹⁴⁶ A. Kharchilava,¹⁴⁶ A. Kumar,¹⁴⁶ S. Rappoccio,¹⁴⁶ G. Alverson,¹⁴⁷ E. Barberis,¹⁴⁷ D. Baumgartel,¹⁴⁷ M. Chasco,¹⁴⁷ J. Haley,¹⁴⁷ A. Massironi,¹⁴⁷ D. Nash,¹⁴⁷ T. Orimoto,¹⁴⁷ D. Trocino,¹⁴⁷ D. Wood,¹⁴⁷ J. Zhang,¹⁴⁷ A. Anastassov,¹⁴⁸ K. A. Hahn,¹⁴⁸ A. Kubik,¹⁴⁸ L. Lusito,¹⁴⁸ N. Mucia,¹⁴⁸ N. Odell,¹⁴⁸ B. Pollack,¹⁴⁸ A. Pozdnyakov,¹⁴⁸ M. Schmitt,¹⁴⁸ S. Stoynev,¹⁴⁸ K. Sung,¹⁴⁸ M. Velasco,¹⁴⁸ S. Won,¹⁴⁸ D. Berry,¹⁴⁹ A. Brinkerhoff,¹⁴⁹ K. M. Chan,¹⁴⁹ A. Drozdetskiy,¹⁴⁹ M. Hildreth,¹⁴⁹ C. Jessop,¹⁴⁹ D. J. Karmgard,¹⁴⁹ N. Kellams,¹⁴⁹ J. Kolb,¹⁴⁹ K. Lannon,¹⁴⁹ W. Luo,¹⁴⁹ S. Lynch,¹⁴⁹ N. Marinelli,¹⁴⁹ D. M. Morse,¹⁴⁹ T. Pearson,¹⁴⁹ M. Planer,¹⁴⁹ R. Ruchti,¹⁴⁹ J. Slaunwhite,¹⁴⁹ N. Valls,¹⁴⁹ M. Wayne,¹⁴⁹ M. Wolf,¹⁴⁹ A. Woodard,¹⁴⁹ L. Antonelli,¹⁵⁰ B. Bylsma,¹⁵⁰ L. S. Durkin,¹⁵⁰ S. Flowers,¹⁵⁰ N. Valls, ¹⁵⁷ M. Wayne, ¹⁵⁷ M. Wolf, ¹⁵⁷ A. Woodard, ¹⁵⁷ L. Antonelli, ¹⁵⁰ B. Bylsma, ¹⁵⁰ L. S. Durkin, ¹⁵⁰ S. Flowers, ¹⁵⁰ C. Hill, ¹⁵⁰ R. Hughes, ¹⁵⁰ K. Kotov, ¹⁵⁰ T. Y. Ling, ¹⁵⁰ D. Puigh, ¹⁵⁰ M. Rodenburg, ¹⁵⁰ G. Smith, ¹⁵⁰ C. Vuosalo, ¹⁵⁰ B. L. Winer, ¹⁵⁰ H. Wolfe, ¹⁵⁰ H. W. Wulsin, ¹⁵⁰ E. Berry, ¹⁵¹ P. Elmer, ¹⁵¹ V. Halyo, ¹⁵¹ P. Hebda, ¹⁵¹ A. Hunt, ¹⁵¹ P. Jindal, ¹⁵¹ S. A. Koay, ¹⁵¹ P. Lujan, ¹⁵¹ D. Marlow, ¹⁵¹ T. Medvedeva, ¹⁵¹ M. Mooney, ¹⁵¹ J. Olsen, ¹⁵¹ P. Piroué, ¹⁵¹ X. Quan, ¹⁵¹ A. Raval, ¹⁵¹ H. Saka, ¹⁵¹ D. Stickland, ¹⁵¹ C. Tully, ¹⁵¹ J. S. Werner, ¹⁵¹ S. C. Zenz, ¹⁵¹ A. Zuranski, ¹⁵¹ E. Brownson, ¹⁵² A. Lopez, ¹⁵² H. Mendez, ¹⁵² J. E. Ramirez Vargas, ¹⁵² E. Alagoz, ¹⁵³ V. E. Barnes, ¹⁵³ D. Benedetti, ¹⁵³ G. Bolla, ¹⁵³ D. Bortoletto, ¹⁵³ M. Leonardo, ¹⁵³ D. Lopes Pegna, ¹⁵³ V. Maroussov, ¹⁵³ P. Merkel, ¹⁵³ D. H. Miller, ¹⁵³ N. Neumeister, ¹⁵³ B. C. Radburn-Smith, ¹⁵³ I. Shipsey, ¹⁵³ D. Silverne, ¹⁵³ A. Severthered ¹⁵³ W. Xia, ¹⁵³ L. Xu, ¹⁵³ H. D. Yaa, ¹⁵³ L. Callor, ¹⁵⁴ B. C. Radburn-Smith, ¹⁵³ I. Shipsey, ¹⁵³ P. Silverne, ¹⁵³ L. Varg, ¹⁵³ L. Varg, ¹⁵⁴ J. D. Kardov, ¹⁵⁴ J. P. Varg, ¹⁵⁵ J. J. Ramon, ¹⁵⁴ J. P. Silverne, ¹⁵⁵ J. J. S. Werne, ¹⁵⁴ J. V. ¹⁵⁵ J. J. S. Ramon, ¹⁵⁵ J. J. Shipsey, ¹⁵⁵ J. S. Varga, ¹⁵⁴ J. S. Varga, ¹⁵⁵ J. J. Shipsey, ¹⁵⁵ J. S. Varga, ¹⁵⁵ J. J. Shipsey, ¹⁵⁴ J. Silverne, ¹⁵⁵ J. S. Varga, ¹⁵⁵ J. J. Shipsey, ¹⁵⁵ J. S. Varga, ¹⁵⁴ J. Sava, ¹⁵⁵ J. J. Shipsey, ¹⁵⁵ J. Sava, ¹⁵⁴ J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁴ J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁴ J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁴ J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁴ J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. J. Sava, ¹⁵⁵ J. Sava, ¹⁵⁵ J D. Silvers,¹⁵³ A. Svyatkovskiy,¹⁵³ F. Wang,¹⁵³ W. Xie,¹⁵³ L. Xu,¹⁵³ H. D. Yoo,¹⁵³ J. Zablocki,¹⁵³ Y. Zheng,¹⁵³ N. Parashar,¹⁵⁴ J. Stupak,¹⁵⁴ A. Adair,¹⁵⁵ B. Akgun,¹⁵⁵ K. M. Ecklund,¹⁵⁵ F. J. M. Geurts,¹⁵⁵ W. Li,¹⁵⁵ B. Michlin,¹⁵⁵ B. P. Padley,¹⁵⁵ R. Redjimi,¹⁵⁵ J. Roberts,¹⁵⁵ J. Zabel,¹⁵⁵ B. Betchart,¹⁵⁶ A. Bodek,¹⁵⁶ R. Covarelli,¹⁵⁶ P. de Barbaro,¹⁵⁶ R. Demina,¹⁵⁶ Y. Eshaq,¹⁵⁶ T. Ferbel,¹⁵⁶ A. Garcia-Bellido,¹⁵⁶ P. Goldenzweig,¹⁵⁶ J. Han,¹⁵⁶ A. Harel,¹⁵⁶ D. C. Miner,¹⁵⁶ G. Petrillo,¹⁵⁶ D. Vishnevskiy,¹⁵⁶ M. Zielinski,¹⁵⁶ A. Bhatti,¹⁵⁷ R. Ciesielski,¹⁵⁷ L. Demortier,¹⁵⁷ K. Goulianos,¹⁵⁷ G. Lungu,¹⁵⁷ S. Malik,¹⁵⁷ D. Vishnevskiy, ¹⁵⁰ M. Zielinski, ¹⁵⁷ A. Bhatti, ¹⁵⁷ R. Clestelski, ¹⁵⁷ L. Demortier, ¹⁵⁸ K. Goulianos, ¹⁵⁸ G. Lungu, ¹⁵⁸ S. Mialik, C. Mesropian, ¹⁵⁷ S. Arora, ¹⁵⁸ A. Barker, ¹⁵⁸ J. P. Chou, ¹⁵⁸ C. Contreras-Campana, ¹⁵⁸ E. Contreras-Campana, ¹⁵⁸ D. Duggan, ¹⁵⁸ D. Ferencek, ¹⁵⁸ Y. Gershtein, ¹⁵⁸ R. Gray, ¹⁵⁸ E. Halkiadakis, ¹⁵⁸ D. Hidas, ¹⁵⁸ A. Lath, ¹⁵⁸ S. Panwalkar, ¹⁵⁸ M. Park, ¹⁵⁸ R. Patel, ¹⁵⁸ V. Rekovic, ¹⁵⁸ J. Robles, ¹⁵⁸ S. Salur, ¹⁵⁸ S. Schnetzer, ¹⁵⁸ C. Seitz, ¹⁵⁸ S. Somalwar, ¹⁵⁸ R. Stone, ¹⁵⁸ S. Thomas, ¹⁵⁸ P. Thomassen, ¹⁵⁸ M. Walker, ¹⁵⁸ K. Rose, ¹⁵⁹ S. Spanier, ¹⁵⁹ Z. C. Yang, ¹⁵⁹ A. York, ¹⁵⁹ O. Bouhali, ¹⁶⁰, ¹⁶⁰ I. Osipenkov, ¹⁶⁰ V. Flanagan, ¹⁶⁰ J. Gilmore, ¹⁶⁰ T. Kamon, ¹⁶⁰ A. Rose, ¹⁶⁰ A. Safonov, ¹⁶⁰ T. Sakuma, ¹⁶⁰ I. Suarez, ¹⁶⁰
A. Tatarinov, ¹⁶⁰ D. Toback, ¹⁶⁰ N. Akchurin, ¹⁶¹ C. Cowden, ¹⁶¹ J. Damgov, ¹⁶¹ C. Dragoiu, ¹⁶¹ P. R. Dudero, ¹⁶¹ J. Faulkner, ¹⁶¹ S. W. Lee, ¹⁶¹ T. Libeire, ¹⁶¹ L. Velebeure, ¹⁶¹ F. Appelt, ¹⁶² A. G. Delannov, ¹⁶² K. Kovitanggoon,¹⁶¹ S. Kunori,¹⁶¹ S. W. Lee,¹⁶¹ T. Libeiro,¹⁶¹ I. Volobouev,¹⁶¹ E. Appelt,¹⁶² A. G. Delannoy,¹⁶²
S. Greene,¹⁶² A. Gurrola,¹⁶² W. Johns,¹⁶² C. Maguire,¹⁶² Y. Mao,¹⁶² A. Melo,¹⁶² M. Sharma,¹⁶² P. Sheldon,¹⁶² B. Snook,¹⁶² S. Tuo,¹⁶² J. Velkovska,¹⁶² M. W. Arenton,¹⁶³ S. Boutle,¹⁶³ B. Cox,¹⁶³ B. Francis,¹⁶³ J. Goodell,¹⁶³ R. Hirosky,¹⁶³ A. Ledovskoy,¹⁶³ H. Li,¹⁶³ C. Lin,¹⁶³ C. Neu,¹⁶³ J. Wood,¹⁶³ S. Gollapinni,¹⁶⁴ R. Harr,¹⁶⁴ P. E. Karchin,¹⁶⁴ C. Kottachchi Kankanamge Don,¹⁶⁴ P. Lamichhane,¹⁶⁴ D. A. Belknap,¹⁶⁵ L. Borrello,¹⁶⁵ D. Carlsmith,¹⁶⁵ M. Cepeda,¹⁶⁵ S. Dasu,¹⁶⁵ S. Duric,¹⁶⁵ E. Friis,¹⁶⁵ M. Grothe,¹⁶⁵ R. Hall-Wilton,¹⁶⁵ M. Herndon,¹⁶⁵ A. Hervé,¹⁶⁵ P. Klabbers,¹⁶⁵ J. Klukas,¹⁶⁵ A. Lanaro,¹⁶⁵ C. Lazaridis,¹⁶⁵ A. Levine,¹⁶⁵ R. Loveless,¹⁶⁵ A. Mohapatra,¹⁶⁵ I. Ojalvo,¹⁶⁵ T. Perry,¹⁶⁵ G. A. Pierro,¹⁶⁵ G. Polese,¹⁶⁵ I. Ross,¹⁶⁵ T. Sarangi,¹⁶⁵ A. Savin,¹⁶⁵ W. H. Smith¹⁶⁵ and N. Woods¹⁶⁵

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia
 ²Institut für Hochenergiephysik der OeAW, Wien, Austria
 ³National Centre for Particle and High Energy Physics, Minsk, Belarus
 ⁴Universiteit Antwerpen, Antwerpen, Belgium
 ⁵Vrije Universiteit Brussel, Brussel, Belgium
 ⁶Université Libre de Bruxelles, Bruxelles, Belgium
 ⁷Ghent University, Ghent, Belgium
 ⁸Université Catholique de Louvain, Louvain-la-Neuve, Belgium
 ⁹Université de Mons, Mons, Belgium

¹⁰Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

¹¹Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ^{2a}Universidade Estadual Paulista, São Paulo, Brazil ^{12b}Universidade Federal do ABC, São Paulo, Brazil ¹³Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria ¹⁴University of Sofia, Sofia, Bulgaria ¹⁵Institute of High Energy Physics, Beijing, China ¹⁶State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Universidad de Los Andes, Bogota, Colombia ¹⁸Technical University of Split, Split, Croatia ¹⁹University of Split, Split, Croatia ²⁰Institute Rudjer Boskovic, Zagreb, Croatia ²¹University of Cyprus, Nicosia, Cyprus ²²Charles University, Prague, Czech Republic ²³Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt ²⁴National Institute of Chemical Physics and Biophysics, Tallinn, Estonia ⁵Department of Physics, University of Helsinki, Helsinki, Finland ²⁶Helsinki Institute of Physics, Helsinki, Finland ²⁷Lappeenranta University of Technology, Lappeenranta, Finland ²⁸DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France ²⁹Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France ³⁰Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France ³¹Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France ³²Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France ³³E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia ³⁴RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany ³⁵RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ³⁶RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ³⁷Deutsches Elektronen-Synchrotron, Hamburg, Germany ³⁸University of Hamburg, Hamburg, Germany ³⁹Institut für Experimentelle Kernphysik, Karlsruhe, Germany ⁴⁰Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece ⁴¹University of Athens, Athens, Greece ⁴²University of Ioánnina, Ioánnina, Greece ⁴³Wigner Research Centre for Physics, Budapest, Hungary ⁴⁴Institute of Nuclear Research ATOMKI, Debrecen, Hungary ⁴⁵University of Debrecen, Debrecen, Hungary ⁴⁶National Institute of Science Education and Research, Bhubaneswar, India ⁴⁷Panjab University, Chandigarh, India ⁴⁸University of Delhi, Delhi, India ⁴⁹Saha Institute of Nuclear Physics, Kolkata, India ⁵⁰Bhabha Atomic Research Centre, Mumbai, India ⁵¹Tata Institute of Fundamental Research - EHEP, Mumbai, India ⁵²Tata Institute of Fundamental Research - HECR, Mumbai, India ⁵³Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ⁵⁴University College Dublin, Dublin, Ireland ^{5a}INFN Sezione di Bari, Bari, Italy ^{55b}Università di Bari, Bari, Italy ^{55c}Politecnico di Bari, Bari, Italy ^{56a}INFN Sezione di Bologna, Bologna, Italy ^{56b}Università di Bologna, Bologna, Italy ^{57a}INFN Sezione di Catania, Catania, Italy ^{57b}Università di Catania, Catania, Italy ^{57c}CSFNSM, Catania, Italy ^{58a}INFN Sezione di Firenze, Firenze, Italy ^{58b}Università di Firenze, Firenze, Italy ⁵⁹INFN Laboratori Nazionali di Frascati, Frascati, Italy

^{60a}INFN Sezione di Genova, Genova, Italy ^{60b}Università di Genova, Genova, Italy ^{61a}INFN Sezione di Milano-Bicocca, Milano, Italy ^{61b}Università di Milano-Bicocca, Milano, Italy ^{62a}INFN Sezione di Napoli, Napoli, Italy ^{62b}Università di Napoli 'Federico II', Napoli, Italy ^{62c}Università della Basilicata (Potenza), Napoli, Italy 62d Università G. Marconi (Roma), Napoli, Italy ^{63a}INFN Sezione di Padova, Padova, Italy 63bUniversità di Padova, Padova, Italy ^{63c}Università di Trento (Trento), Padova, Italy ^{54a}INFN Sezione di Pavia, Pavia, Italy ^{64b}Università di Pavia, Pavia, Italy ^{65a}INFN Sezione di Perugia, Perugia, Italy ^{65b}Università di Perugia, Perugia, Italy ^{66a}INFN Sezione di Pisa, Pisa, Italy ^{66b}Università di Pisa, Pisa, Italy ^{66c}Scuola Normale Superiore di Pisa, Pisa, Italy ^{67a}INFN Sezione di Roma, Roma, Italy ^{67b}Università di Roma, Roma, Italy ^{68a}INFN Sezione di Torino, Torino, Italy ^{68b}Università di Torino, Torino, Italy ^{68c}Università del Piemonte Orientale (Novara), Torino, Italy ^{69a}INFN Sezione di Trieste, Trieste, Italy ^{69b}Università di Trieste, Trieste, Italy ⁷⁰Kangwon National University, Chunchon, Korea ⁷¹Kyungpook National University, Daegu, Korea ⁷²Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁷³Korea University, Seoul, Korea ⁷⁴University of Seoul, Seoul, Korea ⁷⁵Sungkyunkwan University, Suwon, Korea ⁷⁶Vilnius University, Vilnius, Lithuania ⁷⁷National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia ⁷⁸Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico ⁷⁹Universidad Iberoamericana, Mexico City, Mexico ⁸⁰Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ⁸¹Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico ⁸²University of Auckland, Auckland, New Zealand ⁸³University of Canterbury, Christchurch, New Zealand ⁸⁴National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ⁸⁵National Centre for Nuclear Research, Swierk, Poland ⁸⁶Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ³⁷Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ⁸⁸Joint Institute for Nuclear Research, Dubna, Russia ⁸⁹Petersburg Nuclear Physics Institute, Gatchina (Saint Petersburg), Russia ⁰Institute for Nuclear Research, Moscow, Russia ⁹¹Institute for Theoretical and Experimental Physics, Moscow, Russia ⁹²P.N. Lebedev Physical Institute, Moscow, Russia ⁹³Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ⁹⁴State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia ⁹⁵University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia ⁹⁶Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ⁹⁷Universidad Autónoma de Madrid, Madrid, Spain ⁹⁸Universidad de Oviedo, Oviedo, Spain ⁹⁹Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ¹⁰⁰CERN, European Organization for Nuclear Research, Geneva, Switzerland ¹⁰¹Paul Scherrer Institut, Villigen, Switzerland ¹⁰²Institute for Particle Physics, ETH Zurich, Zurich, Switzerland ¹⁰³Universität Zürich, Zurich, Switzerland ¹⁰⁴National Central University, Chung-Li, Taiwan

¹⁰⁵National Taiwan University (NTU), Taipei, Taiwan ¹⁰⁶Chulalongkorn University, Bangkok, Thailand ¹⁰⁷Cukurova University, Adana, Turkey ¹⁰⁸Middle East Technical University, Physics Department, Ankara, Turkey ¹⁰⁹Bogazici University, Istanbul, Turkey ¹¹⁰Istanbul Technical University, Istanbul, Turkey ¹¹¹National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine ¹¹²University of Bristol, Bristol, United Kingdom ¹¹³Rutherford Appleton Laboratory, Didcot, United Kingdom ⁴Imperial College, London, United Kingdom ¹¹⁵Brunel University, Uxbridge, United Kingdom ¹¹⁶Baylor University, Waco, USA ¹¹⁷The University of Alabama, Tuscaloosa, USA ¹¹⁸Boston University, Boston, USA ¹¹⁹Brown University, Providence, USA ¹²⁰University of California, Davis, Davis, USA ¹²¹University of California, Los Angeles, USA ¹²²University of California, Riverside, Riverside, USA ¹²³University of California, San Diego, La Jolla, USA ¹²⁴University of California, Santa Barbara, Santa Barbara, USA ¹²⁵California Institute of Technology, Pasadena, USA ¹²⁶Carnegie Mellon University, Pittsburgh, USA ¹²⁷University of Colorado at Boulder, Boulder, USA ¹²⁸Cornell University, Ithaca, USA ¹²⁹Fairfield University, Fairfield, USA ¹³⁰Fermi National Accelerator Laboratory, Batavia, USA ¹³¹University of Florida, Gainesville, USA ¹³²Florida International University, Miami, USA ¹³³Florida State University, Tallahassee, USA ¹³⁴Florida Institute of Technology, Melbourne, USA ¹³⁵University of Illinois at Chicago (UIC), Chicago, USA ¹³⁶The University of Iowa, Iowa City, USA ¹³⁷Johns Hopkins University, Baltimore, USA ¹³⁸The University of Kansas, Lawrence, USA ¹³⁹Kansas State University, Manhattan, USA ¹⁴⁰Lawrence Livermore National Laboratory, Livermore, USA ¹⁴¹University of Maryland, College Park, USA ¹⁴²Massachusetts Institute of Technology, Cambridge, USA ¹⁴³University of Minnesota, Minneapolis, USA ¹⁴⁴University of Mississippi, Oxford, USA ¹⁴⁵University of Nebraska-Lincoln, Lincoln, USA ¹⁴⁶State University of New York at Buffalo, Buffalo, USA ¹⁴⁷Northeastern University, Boston, USA ¹⁴⁸Northwestern University, Evanston, USA ¹⁴⁹University of Notre Dame, Notre Dame, USA ¹⁵⁰The Ohio State University, Columbus, USA ¹⁵¹Princeton University, Princeton, USA ¹⁵²University of Puerto Rico, Mayaguez, USA ¹⁵³Purdue University, West Lafayette, USA ¹⁵⁴Purdue University Calumet, Hammond, USA ¹⁵⁵Rice University, Houston, USA ¹⁵⁶University of Rochester, Rochester, USA ¹⁵⁷The Rockefeller University, New York, USA ¹⁵⁸Rutgers, The State University of New Jersey, Piscataway, USA ¹⁵⁹University of Tennessee, Knoxville, USA ¹⁶⁰Texas A&M University, College Station, USA ¹⁶¹Texas Tech University, Lubbock, USA ¹⁶²Vanderbilt University, Nashville, USA

¹⁶³University of Virginia, Charlottesville, USA
 ¹⁶⁴Wayne State University, Detroit, USA
 ¹⁶⁵University of Wisconsin, Madison, USA

^aDeceased.

- ^bAlso at Vienna University of Technology, Vienna, Austria.
- ^cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
- ^dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
- ^eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
- ^fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
- ^gAlso at Universidade Estadual de Campinas, Campinas, Brazil.
- ^hAlso at California Institute of Technology, Pasadena, USA.
- ¹Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
- ^jAlso at Suez University, Suez, Egypt.
- ^kAlso at Zewail City of Science and Technology, Zewail, Egypt.
- ¹Also at Cairo University, Cairo, Egypt.
- ^mAlso at Fayoum University, El-Fayoum, Egypt.
- ⁿAlso at Helwan University, Cairo, Egypt.
- ^oAlso at British University in Egypt, Cairo, Egypt.
- ^pAlso at Ain Shams University, Cairo, Egypt.
- ^qAlso at Université de Haute Alsace, Mulhouse, France.
- ^rAlso at Brandenburg University of Technology, Cottbus, Germany.
- ^sAlso at The University of Kansas, Lawrence, USA.
- ^tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
- ^uAlso at Eötvös Loránd University, Budapest, Hungary.
- ^vAlso at University of Debrecen, Debrecen, Hungary.
- ^wAlso at Tata Institute of Fundamental Research HECR, Mumbai, India.
- ^xAlso at King Abdulaziz University, Jeddah, Saudi Arabia.
- ^yAlso at University of Visva-Bharati, Santiniketan, India.
- ^zAlso at University of Ruhuna, Matara, Sri Lanka.
- ^{aa}Also at Isfahan University of Technology, Isfahan, Iran.
- ^{bb}Also at Sharif University of Technology, Tehran, Iran.
- ^{cc}Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- ^{dd}Also at Università degli Studi di Siena, Siena, Italy.
- ^{ee}Also at Centre National de la Recherche Scientifique (CNRS) IN2P3, Paris, France.
- ^{ff}Also at Purdue University, West Lafayette, USA.
- ^{gg}Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
- ^{hh}Also at National Centre for Nuclear Research, Swierk, Poland.
- ⁱⁱAlso at Institute for Nuclear Research, Moscow, Russia.
- ^{jj}Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
- ^{kk}Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
- ¹¹Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
- ^{mm}Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy.
- ⁿⁿAlso at University of Athens, Athens, Greece.
- ⁰⁰Also at Paul Scherrer Institut, Villigen, Switzerland.
- ^{pp}Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
- ^{qq}Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
- ^{rr}Also at Gaziosmanpasa University, Tokat, Turkey.
- ^{ss}Also at Adiyaman University, Adiyaman, Turkey.
- ^{tt}Also at Cag University, Mersin, Turkey.
- ^{uu}Also at Mersin University, Mersin, Turkey.
- ^{vv}Also at Izmir Institute of Technology, Izmir, Turkey.
- ^{ww}Also at Ozyegin University, Istanbul, Turkey.
- ^{xx}Also at Kafkas University, Kars, Turkey.
- ^{yy}Also at Istanbul University, Faculty of Science, Istanbul, Turkey.
- ^{zz}Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
- ^{aaa}Also at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey.
- bbb Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^{ccc}Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

- ^{ddd}Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy. ^{ece} Also at Utah Valley University, Orem, USA. ^{fff}Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. ^{ggg}Also at Argonne National Laboratory, Argonne, USA.
- hhh Also at Erzincan University, Erzincan, Turkey.
- ⁱⁱⁱAlso at Yildiz Technical University, Istanbul, Turkey.
- ⁱⁱⁱAlso at Texas A&M University at Qatar, Doha, Qatar. ^{kkk}Also at Kyungpook National University, Daegu, Korea.