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Abstract

An exact, closed-form minimum variance filter is designed for a class of discrete time un-
certain systems which allows for both multiplicative and additive noise sources. The multi-
plicative noise model includes a popular class of models (Cox-Ingersoll-Ross type models)
in econometrics. The parameters of the system under consideration which describe the state
transition are assumed to be subject to stochastic uncertainties. The problem addressed is
the design of a filter that minimizes the trace of the estimation error variance. Sensitivity
of the new filter to the size of parameter uncertainty, in terms of the variance of parameter
perturbations, is also considered. We refer to the new filter as the ‘perturbed Kalman fil-
ter’ (PKF) since it reduces to the traditional (or unperturbed) Kalman filter as the size of
stochastic perturbation approaches zero. We also consider a related approximate filtering
heuristic for univariate time series and we refer to filter based on this heuristic as approxi-
mate perturbed Kalman filter (APKF). We test the performance of our new filters on three
simulated numerical examples and compare the results with unperturbed Kalman filter that
ignores the uncertainty in the transition equation. Through numerical examples, PKF and
APKF are shown to outperform the traditional (or unperturbed) Kalman filter in terms of
the size of the estimation error when stochastic uncertainties are present, even when the
size of stochastic uncertainty is inaccurately identified.

Key words: Uncertain discrete-time systems; Robust state estimation; Minimum variance
filter; Multiplicative noise.

1 Introduction

The estimation of the state variables given the noisy measurements is one of the fun-
damental problems in control and signal processing. It is well known that Kalman
filter, based on the minimization of the variance of the estimation error, requires
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an accurate model with Gaussian noise; see, for example, [1]. However, precise
modelling of systems is usually difficult or impossible and system parameters may
vary with time or be affected by disturbances. This has motivated studies on ro-
bust Kalman filter design that will guarantee an upper bound on the filtering error
covariance for any parameter uncertainty. Filtering with guaranteed error for uncer-
tain systems was first considered in [2]. In recent years, several results have been
derived on the design of robust estimators that give an upper bound on the error
variance for any allowed modelling uncertainty, see [3]-[9] and references therein.
The idea of seeking the upper bound on the error variance has been recently applied
to discrete-time Markovian jump systems with parameter and noise uncertainty in
[10].
A Riccati equation based approach was adopted in [3], [6], [8], [9] and [11] to
deal with parameter uncertainty of norm-bounded type. More recently, in [12], this
method has been extended to uncertain discrete-time nonlinear systems where non-
linear functions are assumed to be unknown but within a conic region, characterized
as a Lipschitz condition on the system state and control signal residuals.

An alternative approach is based on the linear matrix inequality (LMI) method and
involves using an interior point algorithm for convex optimization. This interior-
point method for convex optimization has also been used to recursively compute
the minimal confidence ellipsoid for the state in [14]. The LMI approach has been
applied to solve the robustH2 andH∞ filtering for systems with norm-bounded un-
certainty, integral quadratic constraints and polytopic uncertainty, see [4], [5], [14],
[15] and [16]-[17]. A problem with both deterministic (unknown-but-bounded) and
stochastic uncertainties has been considered in [11], [18], [19]-[20] and more re-
cently in [21]. In these papers this stochastic uncertainty is expressed as a multi-
plicative noise. Unlike the case of the additive noise, the second order statistics of
the multiplicative noise is usually unknown, as it depends on the real state of the
system.

The approach taken in our paper differs from the contributions mentioned above
in several crucial aspects. First, we consider discrete time-varying uncertain sys-
tems with both multiplicative and additive noise sources. The system under con-
sideration is assumed to be subject to stochastic uncertainties in the parameters of
the transition equation. Our class of systems includes square-root affine systems,
i.e. Cox-Ingersoll-Ross type models, first introduced in [22], which are frequently
used in econometrics and finance literature, and also models that arise in the area of
stochastically sampled digital control systems, see [23] and references therein for
more details. Secondly, the problem addressed is the design of a filter that analyti-
cally minimizes the trace of estimation error covariance matrix. In [23], an optimal
linear estimator for linear discrete-time systems with stochastic parameters that are
statistically independent in time was derived. In this paper we provide an indepen-
dent derivation of the results in [23] for a class of perturbed systems. In contrast
with the optimization based worst case approaches, we yield an exact, closed form
expression for this variance minimizing filter. For univariate time series, we de-

2



rive some results on the deviation of eigenvalues of the state transition matrix of
our new filter from those of the state transition matrix of Kalman estimator for the
same system, when the uncertainty is ignored. This analysis of eigenvalues of the
perturbed system complements the results on asymptotic stability in [23]. We show
that our new perturbed filter is a well-behaved function of the model parameters,
in the sense that it converges to the traditional Kalman filter as the variance of
stochastic uncertainty tends to zero. We consider approximate filtering heuristic for
univariate time series, inspired by the exact method proposed here, which appears
to work well for a wider class of nonlinear systems. We also demonstrate through
extensive numerical experiments that our new filters perform better than the unper-
turbed Kalman filter even when the size of uncertainty is poorly identified.

The rest of the paper is organized as follows. In section 2, the minimum variance fil-
tering problem for discrete time-varying systems subject to parameter uncertainty
and multiplicative noises is formulated and the equations for the new perturbed
Kalman filter are derived for linear as well as certain non-linear cases. Section 3
deals with the sensitivity of the new filter to the parameter perturbation. A new
filtering heuristic is proposed in section 4, which is applicable to a wider class of
nonlinear systems. Three numerical examples are given in section 5 1 and some
concluding remarks are in section 6. Proofs of the results in sections 3-4 are pro-
vided in the Appendix.

2 Derivation of the new perturbed Kalman filter

Consider the following discrete-time state-space system:

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1), (1)
Y(k) = CX (k) + Dv(k), (2)

where γ ∈ {0, 0.5, 1}; X (k) and Y(k) are the respective state vector and mea-
surement vector at time t(k); A, B, C and D are given deterministic matrices; and
v(k),w(k) are uncorrelated zero mean Gaussian random variables with identity co-
variance matrix. X γ(k) indicates a vector whose each element is the corresponding
element of X (k) raised to the power γ and a positive value is chosen when γ = 0.5.
We will comment on the choice of γ at the end of this section. The time increment
t(k) − t(k − 1) is assumed constant for all k. Matrix A in transition equation is
perturbed by a random n × n matrix ∆A(k), where the elements ∆Aij(k) are
discrete time processes with zero mean and a constant covariance matrix P∆Aij

.
This model structure allows for a large number of uncorrelated noise sources, po-
tentially O(n2) when ∆A has independent perturbations, instead of O(n) if the

1 The numerical results in section 5 are also reported in the first author’s doctoral thesis
[24]
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noise is purely additive. In practice, ∆A(k) may be derived from the covariance
matrix of parameter estimates if the parameters are obtained from noisy data. Obvi-
ously, some of the entries in ∆A(k) can be identically zero. ∆A(k) and the noise
sources w(k), v(k) are assumed to be uncorrelated for all k.

Instead of applying the standard linear estimation theory to our systems of equa-
tions and writing the optimal estimator using [1], as in [23], our aim is to derive the
equations for a recursive minimum variance filter for state X (k), given the mea-
surements Y(k),Y(k − 1), · · · ,Y(0), which will reduce to Kalman filter if P∆A

is 0. As in the case of any recursive estimation algorithm, we start by assuming
that X̂ (k|k) is known. We then write the predicted mean, i.e. X̂ (k + 1|k), and the
updated mean, X̂ (k+1|k+1), in the same form as the Kalman filter, and work out
the covariance at the time step t(k+ 1) using equation (1). The standard prediction
and update equations for a linear filter and the system described by (1) are

X̂ (k + 1|k) = AX̂ (k|k), (3)

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K̄(k + 1)(Y(k + 1)− CX̂ (k + 1|k)). (4)

Our aim is to find a filter gain K̄(k + 1) that would minimize the state covariance,
which we will denote by P̄ (k + 1|k + 1). Combining the equations (3) and (4)
and using the fact that ∆A(k) and X (k) are uncorrelated, the expression for the
covariance can be easily shown to be

P̄ (k+1|k+1) = K̄(k+1)DD′K̄(k+1)+(I−K̄(k+1)C)P̄ (k+1|k)(I−K̄(k+1)C)′,
(5)

where
P̄ (k + 1|k) = AP̄ (k|k)A′ + BB′ + ˜̄P (k|k), (6)

and ˜̄P (k|k) is given by:

˜̄P ij(k|k) =
n∑
k=1

n∑
l=1

E(∆Aik∆Ajl)E(X γ
kX

γ
l ). (7)

If the elements of ∆A(k) are uncorrelated at time step t(k) then ˜̄P (k|k) is a diag-
onal matrix and its expression simplifies considerably to:

˜̄P ii(k|k) =
n∑
j=1

P∆Aij
(P̄jj(k|k) + (X̂ j(k|k))2) if γ = 1,

=
n∑
j=1

P∆Aij
X̂j(k|k) if γ = 0.5,

=
n∑
j=1

P∆Aij if γ = 0.

Here X̂ j(k|k) is the jth element of vector X̂ (k|k). We need to find K̄(k + 1) that
would minimize the trace of the covariance, i.e. tr P̄ (k+ 1|k+ 1). Now, the partial
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derivative of the trace with respect to the filter gain matrix is

∂ tr P̄ (k + 1|k + 1)

∂K̄(k + 1)
= −2P̄ (k + 1|k)C′ + 2K̄(k + 1)(CP̄ (k + 1|k)C′ + DD′). (8)

Setting this partial derivative to zero leads to the following expression for K̄(k+1):

K̄(k + 1) = P̄ (k + 1|k)C′[CP̄ (k + 1|k)C′ + DD′]−1. (9)

It can be verified that this is indeed a minimum by examining the Hessian of the
tr P̄ (k+1|k+1), please see [25] for details of differentiation of a scalar function of
a matrix. Given X̂ (k|k), P̄ (k|k) are specified, the sequence of operations specified
by equations (7), (6), (9), (5), (3) and (4) (in this order) completely define our
recursive filter, with equation (7) determining a γ−dependent term. Comparing
equation (6) to that of the unperturbed Kalman filter, we note that there is an extra
term, namely ˜̄P (k|k), in the expression for P̄ (k+1|k) and this is due to the random
parameter perturbation in equation (1). If ∆A(k) was zero for all k, the expression
for the predicted covariance P̄ (k + 1|k) would be the same as one in the original
Kalman filter equations for an unperturbed state space system (with ∆A(k) = 0
in (1)). The same would happen to the equations for the updated covariance P̄ (k+
1|k + 1) and filter gain K̄(k + 1).
Equation (7) indicates why we are using three specific values of γ, since any other
values of γ would mean having to compute other moments of X (k|k) recursively.
In section 4, we will look at an approximate filtering heuristic, inspired by the exact
method for the three values of γ proposed here, which appears to work well for
certain other values of γ. The model structure employed here is still quite flexible
and includes traditional linear state space systems (γ = 0), Cox-Ingersoll-Ross
type models used in econometrics [22] (γ = 0.5) and multiplicative noise models
(γ = 1) that are sometimes useful in digital control systems.

3 Stability and sensitivity of filter to parameter perturbations

Let us rewrite equation (4) in terms of X̂ (k|k) for the unperturbed case:

X̂ (k + 1|k + 1) = (I−K(k + 1)C)AX̂ (k|k) + K(k + 1)Y(k + 1). (10)

We know that the above system is stable in the case of unperturbed Kalman filter
( (10), as mentioned before), i.e. all the eigenvalues of (I−K(k+1)C)A are inside
the unit circle if the pair (C,A) is observable, see [26] and references therein. As
seen in the previous section, the filter gain of the perturbed Kalman filter differs
from the unperturbed Kalman filter by an additive factor which depends on the
variance of perturbations. It is of interest to see what happens to the stability of this
matrix, which maps X̂ (k|k) to X̂ (k + 1|k + 1), under parameter perturbations.
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3.1 Univariate measurement case

In this section, we consider the eigenvalues of the matrix (I −K(k+ 1)C)A, with
K(k+1) from the traditional (or unperturbed) Kalman filter and compare it with the
eigenvalues of (I−K̄(k+1)C)A, with K̄(k+1) from the perturbed Kalman filter,
introduced above. We consider a case when measurement equation (2) is scalar, i.e.
C is a 1× n matrix and D is a scalar, whereas A is n× n matrix.

To start with, we write down the equations for Kalman gain and the predicted co-
variance for the unperturbed Kalman filter for the system in (1) with ∆A = 0:

K(k + 1) = P(k + 1|k)C′[CP(k + 1|k)C′ + DD′]−1,

P(k + 1|k) = AP(k|k)A′ + BB′,

and similar expressions for the perturbed Kalman filter from the previous section
are repeated for convenience:

K̄(k + 1) = P̄ (k + 1|k)C′[CP̄ (k + 1|k)C′ + DD′]−1, (11)

P̄ (k + 1|k) = AP̄ (k|k)A′ + BB′ + ˜̄P (k|k). (12)

Suppose that both filters start with the same initial mean and covariance, X̂ (0|0)
and P (0|0). The idea is to keep track of the differences between P̄ (k + 1|k) and
P(k+1|k), so that at each time step t(k) we can express eigenvalues of the perturbed
KF in terms of the ones from the unperturbed KF.
Defining

S(k + 1) = CP(k + 1|k)C′ + DD′, (13)
in case of the unperturbed Kalman filter we have

(I −K(k + 1)C)A = (I − P(k + 1|k)C′S(k + 1)−1C)A. (14)

The following result gives an exact expression for P̄ (k|k) in terms of P(k|k),
which proves to be useful in establishing the necessary relationship in perturbed
and unperturbed eigenvalues:

Proposition 1:

P̄ (k|k) = P(k|k) + ∆P̄ (k|k), (15)

where the recursion for ∆P̄ (k|k) is as follows:

∆P̄ (0|0) = 0,

∆P̄ (k|k) = ∆P̄ (k|k − 1) + P(k|k − 1)C′S(k)−1CP(k|k − 1)

− (P(k|k − 1) + ∆P̄ (k|k − 1))φ(k)(P(k|k − 1) + ∆P̄ (k|k − 1)),

and where P̄ (k|k − 1) = P(k|k − 1) + ∆P̄ (k|k − 1),

∆P̄ (k|k − 1) = ˜̄P (k − 1|k − 1) + A∆P̄ (k − 1|k − 1)A′.
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Finally, φ(k) = C′S(k)−1[I + C∆P̄ (k|k − 1)C′S(k)−1]−1.
Proof: See Appendix.

Let us define

α(k + 1) = C∆P̄ (k + 1|k)C′S(k + 1)−1. (16)

Given the dimensions of C, S(k + 1) is a positive scalar and hence α(k + 1) is a
scalar as well. As the covariance of the perturbation matrix ∆A, i.e. P∆A → 0
and α(k + 1) → 0, ∆P̄ (k|k − 1) → 0 and ∆P̄ (k|k) → 0. Hence P̄ (k + 1|k) →
P(k + 1|k). Using this relationship, we obtain an expression similar to (14) for the
perturbed case for a small enough perturbation, i.e. for 0 < α(k + 1) < 1.

Proposition 2:

(I − K̄(k + 1)C)A =

(
I− (P(k + 1|k) + ∆P̄ (k + 1|k))

(1 +α(k + 1))
C′S(k + 1)−1C

)
A. (17)

Proof: See Appendix.

It is of interest to compare the eigenvalues of the perturbed KF and the eigenvalues
of the traditional KF. It is also desirable to try to express the size of the eigen-
value perturbation as a function of the size of parameter perturbation. Suppose that
matrix A has eigenvalues µ1, µ2, ..., µn; λ1(k + 1), λ2(k + 1), ..., λn(k + 1) and
λ̄1(k + 1), λ̄2(k + 1), ..., λ̄n(k + 1) are eigenvalues of (14) and (17) respectively.
We would look into relationship between λi(k + 1) and µi first. We know that
det (A) =

∏n
i=1 µi and tr (A) =

∑n
i=1 µi. Considering the determinant and the

trace of (14) gives us the following:

∏n
i=1 λi(k + 1)∏n

i=1 µi
= det

(
I − P(k + 1|k)C′S(k + 1)−1C

)
, (18)

= DD′S(k + 1)−1 if n = 2,
n∑
i=1

λi(k + 1) = tr (A)− tr
(
P(k + 1|k)C′S(k + 1)−1CA

)
. (19)

Considering the determinant and the trace of (17), we obtain our main result for
the eigenvalues of the perturbed filter.

Proposition 3:

7



(3a)

∏n
i=1 λ̄i(k + 1)∏n

i=1 µi
= det

(
I− (P(k + 1|k) + ∆P̄ (k + 1|k))ψ(k + 1)

)
, (20)

=
DD′S(k + 1)−1

(1 +α(k + 1))
if n = 2,

(3b)

n∑
i=1

λ̄i(k + 1) = tr (A)− tr
(
(P(k + 1|k) + ∆P̄ (k + 1|k))ψ(k + 1)A

)
, (21)

where ψ(k + 1) = C′S(k+1)−1C
1+α(k+1)

and α(k + 1) is as defined earlier in this section.
Proof: See Appendix.

We look at the perturbation of eigenvalues due to parameter perturbations next.
Note that (20) and (21) are equalities and not upper or lower bounds. Let us
consider (18) and (20):∏n

i=1 λi(k + 1)∏n
i=1 µi

= det
(
I− P(k + 1|k)C′S(k + 1)−1C

)
,∏n

i=1 λ̄i(k + 1)∏n
i=1 µi

= det
(

I− P(k + 1|k) + ∆P̄ (k + 1|k)

1 +α(k + 1)
C′S(k + 1)−1C

)
.

Defining P̃ (k + 1|k) = (P(k+1|k)+∆P̄ (k+1|k))
(1+α(k+1))

for simplicity, we note as ∆P̄ (k +

1|k) → 0, we have α(k + 1) → 0, P̃ (k + 1|k) → P(k + 1|k) and tr (P̃ (k +
1|k)) → tr (P(k + 1|k)). Hence

∏n
i=1 λ̄i(k + 1) is bounded in the same way as∏n

i=1 λi(k + 1).

Now let us consider (19) and (21):
n∑
i=1

λi(k + 1) = tr (A)− tr
(
P(k + 1|k)C′S(k + 1)−1CA

)
,

n∑
i=1

λ̄i(k + 1) = tr (A)− tr
(

(P(k + 1|k) + ∆P̄ (k + 1|k))

(1 +α(k + 1))
C′S(k + 1)−1CA

)
.

Observe also that covariances P(k + 1|k) and P̃ (k + 1|k) are both symmetric and
positive semidefinite. Hence

γmin tr (P(k + 1|k)) ≤ tr (P(k + 1|k)C′S(k + 1)−1CA) ≤ γmax tr (P(k + 1|k)),

γmin tr (P̃ (k + 1|k)) ≤ tr (P̃ (k + 1|k)C′S(k + 1)−1CA) ≤ γmax tr (P̃ (k + 1|k)),

where γmin and γmax are respectively the smallest and the largest eigenvalues of the
matrix 1

2
(C′S(k+1)−1CA +(C′S(k+1)−1CA)′), see [27] for a similar example of

bounds on matrix eigenvalues. Thus
∑n
i=1 λ̄i(k + 1) is bounded in the same way as∑n

i=1 λi(k + 1). For the case n = 2, λ̄i are fully defined by their sum and product
because of the characteristic equation λ̄2 − (λ̄1 + λ̄2)λ̄+ λ̄1λ̄2 = 0. Therefore, we
conclude that for a small enough perturbation, λ̄i won’t differ by too much from
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λi. Hence it is clear that the perturbed Kalman filter will have a transient behaviour
very similar to an unperturbed Kalman filter provided the random perturbations are
small. Even though some of the equality results are only for scalar systems with
two (or less) eigenvalues, it gives a useful qualitative insight into the impact of
perturbations on the transient behaviour of the filter.

3.2 Multivariate measurement case

Note that Proposition 2 and Proposition 3 can be both extended to cover the case
when C is a n × n matrix and D is a n × 1 vector. In this case α(k + 1) given in
(16) is a matrix. Provided that |||α(k + 1)||| < 1, where ||| ∗ ||| is a matrix norm,
we have from [28]:

(I +α(k + 1))−1 =
∞∑
l=0

(−α(k + 1))l.

In this case Proposition 2 becomes:
Proposition 4:

(I − K̄(k + 1)C)A =
(
I − P(k + 1|k)C′S(k + 1)−1C−∆K̄(k + 1)C

)
A,

(22)

where

∆K̄(k+ 1) = P(k+ 1|k)C′S(k+ 1)−1
∞∑
l=1

(−α(k+ 1))l + ∆P̄ (k+ 1|k)φ(k+ 1)

and φ(k + 1) is as in Proposition 1.
Proof: See Appendix.
Taking the trace and determinant of (22) will provide us with the sum and product
of eigenvalues λ̄i for the general case.
Proposition 5:

(5a)
n∏
i=1

λ̄i(k + 1) = det
(
I− P(k + 1|k)C′S(k + 1)−1C + ∆K̄(k + 1)C

) n∏
i=1

µi,

(23)

(5b)
n∑
i=1

λ̄i(k + 1) = tr (A)− tr
(
(P(k + 1|k)C′S(k + 1)−1C + ∆K̄(k + 1)C)A

)
.

(24)

Proof: See Appendix.
We note as ∆P̄ (k+ 1|k)→ 0, we have α(k+ 1)→ 0 and hence ∆K̄(k+ 1)→ 0.
Comparing (23) with (18) and (24) with (19), we observe that

∏n
i=1 λ̄i(k + 1)

is bounded in the same way as
∏n
i=1 λi(k + 1) and

∑n
i=1 λ̄i(k + 1) is bounded in
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the same way as
∑n
i=1 λi(k + 1).Therefore, we conclude that for a small enough

perturbation, λ̄i won’t differ by too much from λi in general case as well.

4 Approximate filtering for γ ≥ 1.5

In this section we would consider a univariate state-space system as in (1) with γ =
l
2

with l = 3, 4, .... These values of γ come up in constanct elasticity of variance

(CEV) type models, see [29] for more details. In this particular case, ˜̄P (k − 1|k −
1) = P∆AE(X 2γ(k − 1)), where positive values of X are chosen whenever there
are two roots. Hence in order to find the covariance P̄ (k|k − 1), optimal gain
K̄(k) and the updated state X̂ (k|k) at time step t(k), we would need to know
E(X 2γ(k−1)) from t(k−1). In general there is no closed form solution for this for
l ≥ 3 as we are only propogating the first two moments of X throughout the filter
recursions. However we can carry out moment matching approximation of ∆A(k−
1)X γ(k − 1) by rewriting it as a noise term with the same first two moments as
F(k− 1)u(k− 1). Here u(k− 1) is a Gaussian random variable, uncorrelated with
the state and noise terms w(k) and v(k), and F(k − 1)2 = P∆AE

(
X 2γ(k − 1)

)
.

This way we would match the first two moments of term ∆A(k − 1)X γ(k − 1)
exactly, and higher order moments would be proportional to those of u(k − 1), in
particular, the odd moments would be zero.
Using (1) we are interested in rewriting X (k)−X̂ (k|k) as an expression depending
on the state, ∆s, and an expression consisting solely of noise terms, ∆n :
Proposition 6

X (k)− X̂ (k|k) = ∆s + ∆n,

where ∆s =
(
I − K̄(k)C

)
A
(
X (k − 1)− X̂ (k − 1|k − 1)

)
and

∆n =
(
I − K̄(k)C

)
(Bw(k) + F(k − 1)u(k − 1))− K̄(k)Dv(k).

Proof: See Appendix.
Since u(k),w(k) and v(k) are zero mean uncorrelated Gaussian random variables,
we have E(wj(k)) = E(vj(k)) = E(uj(k)) = 0 for any odd integer j. Thus
E(∆n)j = 0. In the case of l = 3 and γ = 1.5, we can raise equation (29) to
the power 3, and take expectations of both sides. This would allow us to find the
expression for E(X (k))3:
Proposition 7

E(X 3(k)) = 3P(k|k)X̂ (k|k) + X̂ 3
(k|k) + (I − K̄(k)C)3A3∗

∗
(
E(X 3(k − 1))− 3P(k − 1|k − 1)X̂ (k − 1|k − 1)− X̂ 3

(k − 1|k − 1)
)
.
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Proof: See Appendix.
In general we have

E
(
X (k)− X̂ (k|k)

)q
= E(∆s + ∆n)q, (25)

for some integer power q. Provided at time step t(k) we know E(X (k−1))i for i =
1, 2, ..., 2γ, we can recursively find E(X (k))j for j = 3, ..., 2γ using the following
proposition.
Proposition 8

q∑
i=0

q
i

E(X (k))i(X̂ (k|k))q−i =
∑

j=0,2,...,q

q
j

E(∆n)jE(∆s)
q−j if q is even,

=
∑

j=0,2,...,q−3

q
j

E(∆n)jE(∆s)
q−j if q is odd,

(26)

for q = 3, ..., 2γ.
Proof: See Appendix.
Note that minimum variance derivation of the equations for K̄(k) in (9) still holds
for these values of γ as well. We would call this filter as approximate perturbed
Kalman filter (APKF) as it is a linear filter providing a solution by approximating
the perturbation term by a noise term. We look at the performance of the new filters
in simulation examples in the next section.

5 Numerical Examples

We consider three different cases for three different values of γ to illustrate and
contrast the performance of the proposed filter with that of the Kalman filter.

5.1 Case when γ = 1

In this section we consider a numerical example with the following state-space
equations.

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1),

Y(k) = CX (k) + Dv(k),
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where γ = 1,

A =

0 −0.5

1 1

 , B =

−6

1

 ,C =
(
−100 10

)

and D = 1. v(k),w(k) are uncorrelated Gaussian random variables. Perturbation
matrix ∆A(k) has zero mean, the matrix elements have the following covariance
matrix:

P∆A =

0.12 0.02

0.15 0.1

 .
Initial conditions are X (0) =

(
1 0

)′
, X̂ (0|0) =

(
0 0

)′
and

P(0|0) =

1 0

0 1

 .
In order to compare the performance of both the perturbed (PFK) and the unper-
turbed Kalman filters (KF), we consider the average root mean square error(avRMSE)
for the state, where RMSE for a sample path l is given by

RMSEl =

√√√√ 1

2F

F∑
j=1

((X 1(j)− X̂ 1(j))2 + (X 2(j)− X̂ 2(j))2),

and AvRMSE over a given number of sample pathsL is defined by 1
L

∑L
l=1RMSEl.

We use F = 100 and L = 100. Comparison of the variance of RMSE (VAR) for
both filters is also shown in tables 1-3 and is calculated as
1
L

∑L
l=1 (RMSEl − AvRMSE)2 . VAR provides a measure of variation in the filter

performance across different sample paths. We consider three cases: when the real
covariance of perturbation matrix ∆A(k) is known exactly and when two different
cases where it is assumed to be incorrectly estimated. If the model is calibrated
from data, it is likely that the parameters are imperfectly known and even the size
of uncertainty (in terms of its covariance matrix) is not known exactly. It is of in-
terest to see whether our filter performs well if this is indeed the case. We use

P̃∆A1 =

 0.2 0.1

0.05 0.15

 and P̃∆A2 =

0.25 0.15

0.05 0.2

, but keep P∆A in the equa-

tions of PKF (i.e. P∆A is the incorrect covariance matrix used when the correct
covariances in the data generating system are P̃∆A1, P̃∆A2). The results with in-
correctly specified uncertainty as above are presented in tables 2 and 3 respectively,
while table 1 presents the results when P∆A is exactly known. A comparison of a
simulated path with the paths generated by PKF and KF for X 1, with P̃∆A1 as the
real covariance of the perturbation matrix ∆A, is shown in Fig.1.

12



Table 1. Comparison of AvRMSE when P∆A is estimated correctly

KF PKF Improvement

AvRMSE 14.750 5.927 59.8%

VAR 54.061 2.285 95.8%

Table 2. Comparison of AvRMSE when P∆A1 is not estimated correctly

KF PKF Improvement

AvRMSE 18.775 8.102 56.9%

VAR 472.414 22.214 95.3%

Table 3. Comparison of AvRMSE when P∆A2 is not estimated correctly

KF PKF Improvement

AvRMSE 37.557 16.088 57.1%

VAR 1465.857 158.557 89.2%

Fig. 1. Simulated paths

We can see from all the three tables that PKF provides more accurate state estimates
in terms of both the measures of error when compared to unperturbed Kalman
filter, in both the cases when P∆A is estimated correctly and when it is not. Note
that acknowledging that the model is not precise and accounting for the random
parameter uncertainties, makes the filter more robust even to poor estimates of the
parameter uncertainty (in terms of variance of ∆A). This observation is in line
with the intuition that unperturbed filter is highly tuned to the system parameters
and the addition of ˜̄P (k|k) provides a de-tuning effect, thereby making the filter

13



more robust to uncertainty.

5.2 Case when γ = 0.5

As another example, we consider a nonlinear system

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1),

Y(k) = CX (k) + Dv(k),

with γ = 0.5, A = 0.9, B = 0.1,C = 1 and D = 0.01. v(k),w(k) are uncorre-
lated Gaussian random variables. Initial conditions are assumed to be X (0) = 0.1,
X̂ (0|0) = 0 and P(0|0) = 1.
We will compare the performance of the new perturbed Kalman filter(PKF) with
unperturbed Kalman filter(KF). Average root mean square error is calculated for
both filters as follows:

RMSE =

√√√√√ 1

F

F∑
j=1

((X (j)− X̂ (j))2),

F = 100 and we calculate AvRMSE over 100 paths, as before. As in the previous
example, these errors are also calculated for the case when covariance P∆A is not
estimated correctly. Results are summarised in tables 4-5.

Table 4. Comparison of AvRMSE when P∆A is estimated correctly

P∆A KF PKF Improvement

0.2 0.009418 0.009131 3.1%

0.3 0.009422 0.008954 5.0%

0.4 0.009661 0.008921 10.1%

Table 5. Comparison of AvRMSE when P∆A is not estimated correctly

True P∆A Assumed P∆A KF PKF Improvement

0.4 0.2 0.009965 0.009219 7.5%

0.3 0.2 0.009491 0.009052 4.6%

0.2 0.3 0.009355 0.009078 3.0%

0.2 0.4 0.009418 0.009129 2.8%

We can see from these tables that perturbed Kalman filter provides better accuracy
when compared to unperturbed Kalman filter for different values of the perturbation

14



matrix variance. The improvement is more pronounced when the variance of the
uncertainty is larger, as can be expected.

5.3 Case when γ = 1.5

As an example for our APKF, we consider a nonlinear system

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1),

Y(k) = CX (k) + Dv(k),

with γ = 1.5, A = 0.9, B = 0.1,C = 1 and D = 0.01. v(k),w(k) are uncorre-
lated Gaussian random variables. Initial conditions are assumed to be X (0) = 0.1,
X̂ (0|0) = 0 and P(0|0) = 1, as per example in the previous subsection.
We will compare the performance of the new approximate perturbed Kalman filter
(APKF) with unperturbed Kalman filter (KF). Average root mean square error is
calculated for both filters as in the previous subsection.As in the previous example,
these errors are also calculated for the case when covariance P∆A is not estimated
correctly. Results are summarized in tables 6-7.
We can see from these tables that approximate perturbed Kalman filter provides
better accuracy when compared to unperturbed Kalman filter for different values of
the perturbation matrix variance. The improvement is more pronounced when the
variance of the uncertainty is larger, as can be expected.

Table 6. Comparison of AvRMSE when P∆A is estimated correctly

P∆A KF APKF Improvement

0.2 0.009542 0.009204 3.5%

0.3 0.010312 0.009219 10.6%

0.4 0.012105 0.009235 23.7%

Table 7. Comparison of AvRMSE when P∆A is not estimated correctly

True P∆A Assumed P∆A KF APKF Improvement

0.4 0.2 0.012087 0.009232 23.6%

0.3 0.2 0.011253 0.009329 17.1%

0.2 0.3 0.009527 0.009214 3.2%

0.2 0.4 0.009583 0.009297 3.0%
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6 Summary

The contributions of this paper are as follows.

Firstly, this paper provides an independent derivation of an exact recursive linear
minimum variance filter for a class of uncertain discrete time systems. The class of
systems under consideration include linear models with state multiplicative uncer-
tainty as well as square root affine models as special cases.

Secondly, we have analyzed the sensitivity of the new filter to the size of the pa-
rameter perturbation. We have also provided results for the product and sum of
the eigenvalues of the new perturbed filter in terms of the perturbation parameter.
We have deduced that the perturbed Kalman filter will have a transient behaviour
very similar to an unperturbed Kalman filter, provided the random perturbations are
small. Our analysis of the eigenvalues of the new perturbed filter complements the
asymptotic results for similar systems in the literature.

Thirdly, in this paper we have also provided a new filtering heuristic for a wider
class of nonlinear systems for the special univariate case of γ = l

2
, for any positive

integer l ≥ 3.

Finally, we have demonstrated the utility of the new methods through comprehen-
sive numerical examples. These examples illustrate the improved accuracy achieved
by the new filters when compared to traditional (or unperturbed) Kalman filter.
Critically, the examples indicate that the perturbed filters perform better than the
unperturbed Kalman filter even when the size of uncertainty is poorly identified.
This has important implications in cases where the model is calibrated from data.

Current research is focussed on linking the results in this paper with likelihood-
based calibration of latent state models and extending the results to the parameter
uncertainty in the measurement equation.

Appendix

Proof of Proposition 1

We will prove this using a simple mathematical induction argument. Suppose that
both filters have the same initial covariance P(0|0) = P̄ (0|0). Also let ∆P̄ (0|0) =
0, so that the proposition holds for k = 0. Let’s assume that (15) holds for some
k = m with m ≥ 0, i.e. we have

P̄ (m|m) = P(m|m) + ∆P̄ (m|m),
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where ∆P̄ (m|m) = ∆P̄ (m|m − 1) + P(m|m − 1)C′S(m)−1CP(m|m − 1) −
(P(m|m−1)+∆P̄ (m|m−1))φ(m)(P(m|m−1)+∆P̄ (m|m−1)). Considering
expression for P̄ (m+ 1|m) first

P̄ (m+ 1|m) = AP̄ (m|m)A′ + BB′ + ˜̄P (m|m)

= AP(m|m)A′ + BB′ + A∆P̄ (m|m)A′ + ˜̄P (m|m)

= P(m+ 1|m) + ∆P̄ (m+ 1|m).

Then expression for P̄ (m+ 1|m+ 1) becomes

P̄ (m+ 1|m+ 1) = P̄ (m+ 1|m)− P̄ (m+ 1|m)C′(CP̄ (m+ 1|m)C′ + DD′)−1CP̄ (m+ 1|m)

= P(m+ 1|m) + ∆P̄ (m+ 1|m)

−
(
P(m+ 1|m) + ∆P̄ (m+ 1|m)

)
φ(m+ 1)C

(
P(m+ 1|m) + ∆P̄ (m+ 1|m)

)
.

Rearranging the terms as before, we obtain

P̄ (m+ 1|m+ 1) = P(m+ 1|m)− P(m+ 1|m)C′S(m+ 1)−1CP(m+ 1|m)

+ ∆P̄ (m+ 1|m) + P(m+ 1|m)C′S(m+ 1)−1CP(m+ 1|m)

−
(
P(m+ 1|m) + ∆P̄ (m+ 1|m)

)
φ(m+ 1)

(
P(m+ 1|m) + ∆P̄ (m+ 1|m)

)
= P(m+ 1|m+ 1) + ∆P̄ (m+ 1|m+ 1),

where ∆P̄ (m+ 1|m+ 1) = ∆P̄ (m+ 1|m) + P(m+ 1|m)C′S(m+ 1)−1CP(m+

1|m)−
(
P(m+ 1|m) + ∆P̄ (m+ 1|m)

)
φ(m+1)

(
P(m+ 1|m) + ∆P̄ (m+ 1|m)

)
as required. Hence by induction we have proven Proposition 1 holds for all k ≥ 0.

Proof of Proposition 2

In section 3 we defined the following relationship between P̄ (k + 1|k) and P(k +
1|k):

P̄ (k + 1|k) = P(k + 1|k) + ∆P̄ (k + 1|k).

Here ∆P̄ (k+1|k) = ˜̄P (k|k)+A∆P̄ (k|k)A′ and the recursion for P̄ (k|k) is as in
Proposition 1. Rewriting equation (11) and using definition of S(k + 1) from (13),

K̄(k + 1) = (P(k + 1|k) + ∆P̄ (k + 1|k))C′(S(k + 1) + C∆P̄ (k + 1|k)C′)−1

= (P(k + 1|k) + ∆P̄ (k + 1|k))φ(k + 1)

=
(P(k + 1|k) + ∆P̄ (k + 1|k))C′S(k + 1)−1

1 +α(k + 1)
.
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For small enough perturbation, i.e. 0 < α(k + 1) < 1, we can expand (1 +α(k +
1))−1 as a power series and then write:

K̄(k + 1) = P(k + 1|k)C′S(k + 1)−1

(
1− α(k + 1)

1 +α(k + 1)

)
+ ∆P̄ (k + 1|k)φ(k + 1)

= P(k + 1|k)C′S(k + 1)−1 + ∆P̄ (k + 1|k)φ(k + 1)−α(k + 1)P(k + 1|k)φ(k + 1)
(27)

= K(k + 1) + ∆K̄(k + 1),

where the perturbation in the Kalman gain, to account for the random perturbation
in the model parameters, is given by

∆K̄(k + 1) =
∆P̄ (k + 1|k)C′S(k + 1)−1

1 +α(k + 1)
−α(k + 1)

P(k + 1|k)C′S(k + 1)−1

1 +α(k + 1)
.

Rearranging (27) we get the desired result:

(I − K̄(k + 1)C)A = (I − (K(k + 1) + ∆K̄(k + 1))C)A

=

(
I − (P(k + 1|k) + ∆P̄ (k + 1|k))

(1 +α(k + 1))
C′S(k + 1)−1C

)
A.

Proof of Proposition 3

To prove equation (3a), we take determinant of (17)

det (I − K̄(k + 1)C)A = det (A) det (I − (P(k + 1|k) + ∆P̄ (k + 1|k))

(1 +α(k + 1))
C′S(k + 1)−1C).

When n = 2, we can use the fact that for any matrix B, det(I − B) = 1 −
tr(B) + det(B). Remember that α(k + 1) = C∆P̄ (k + 1|k)C′S(k + 1)−1. Also
note that det (C′S(k+ 1)−1C) = 0 and from definition of S(k+ 1) in (13) we have
tr (P(k + 1|k)C′S(k + 1)−1C) = 1− DD′S(k + 1)−1. This leads to

det (I − K̄(k + 1)C)A = det (A)

(
1− tr

(
(P(k + 1|k) + ∆P̄ (k + 1|k))

(1 +α(k + 1))
C′S(k + 1)−1C

))
,

= det (A)

(
1− tr (P(k + 1|k)C′S(k + 1)−1C)

1 +α(k + 1)

)
− det (A)

(
tr (C∆P̄ (k + 1|k)C′S(k + 1)−1)

1 +α(k + 1)

)
,

= det (A)

(
1− 1− DD′S(k + 1)−1

1 +α(k + 1)
− α(k + 1)

1 +α(k + 1)

)
,

= det (A)
DD′S(k + 1)−1

(1 +α(k + 1))
.

To prove equation (3b), we take trace of (17)

tr
(
(I − K̄(k + 1)C)A

)
= tr(A)− tr

(
I− (P(k + 1|k) + ∆P̄ (k + 1|k))

(1 +α(k + 1))
C′S(k + 1)−1C

)
,

which leads to the required result.
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Proof of Proposition 4

Using power series for α(k + 1) we can rewrite K̄(k + 1) as:

K̄(k + 1) = (P(k + 1|k) + ∆P̄ (k + 1|k))φ(k + 1)

= P(k + 1|k)C′S(k + 1)−1

(
I +

∞∑
l=1

(−α(k + 1))l
)

+ ∆P̄ (k + 1|k)φ(k + 1)

= K(k + 1) + ∆K̄(k + 1),

where
K(k + 1) = P(k + 1|k)C′S(k + 1)−1

and

∆K̄(k+ 1) = P(k+ 1|k)C′S(k+ 1)−1
∞∑
l=1

(−α(k+ 1))l + ∆P̄ (k+ 1|k)φ(k+ 1).

(28)
Then using ∆K̄(k + 1) we obtain

(I − K̄(k + 1)C)A =
(
I − (K(k + 1) + ∆K̄(k + 1))C

)
A,

=
(
I − P(k + 1|k)C′S(k + 1)−1C−∆K̄(k + 1)C

)
A,

as required.

Proof of Proposition 5

In order to proof (5a) we start by taking the determinant of (22) and use expression
in Proposition 4:

n∏
i=1

λ̄i(k + 1) = det
(
(I− K̄(k + 1)C)A

)
= det

(
I− P(k + 1|k)C′S(k + 1)−1C + ∆K̄(k + 1)C

)
det (A)

= det
(
I− P(k + 1|k)C′S(k + 1)−1C + ∆K̄(k + 1)C

) n∏
i=1

µi.

For the proof of (5b) we take the trace of (22) to obtain the required result:

n∑
i=1

λ̄i(k + 1) = tr
(
(I − K̄(k + 1)C)A

)
= tr (A)− tr

(
(P(k + 1|k)C′S(k + 1)−1C + ∆K̄(k + 1)C)A

)
.
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Proof of Proposition 6

In order to prove Proposition 6 we start by using (1) while rewriting ∆A(k −
1)X γ(k − 1) as F(k − 1)u(k − 1). We expand X̂ (k|k) using (10) and rearrange
the terms:

X (k)− X̂ (k|k) = AX (k − 1) + F(k − 1)u(k − 1) + Bw(k)

−
(
AX̂ (k − 1|k − 1) + K̄(k)(Y(k)− CAX̂ (k − 1|k − 1))

)
=
(
I − K̄(k)C

)
A
(
X (k − 1)− X̂ (k − 1|k − 1)

)
+
(
I − K̄(k)C

)
(Bw(k) + F(k − 1)u(k − 1))− K̄(k)Dv(k).

(29)

Proof of Proposition 7

We take expectations of both sides of (29) raised to the power 3:

E
(
X (k)− X̂ (k|k)

)3
= E(∆s + ∆n)3

= E(∆3
s) + 3E(∆2

s∆n) + 3E(∆s∆
2
n) + E(∆3

n)

= E(∆3
s)

= E
(
(I − K̄(k)C)A

(
X (k − 1)− X̂ (k − 1|k − 1)

))3

= (I − K̄(k)C)3A3E
(
X (k − 1)− X̂ (k − 1|k − 1)

)3
.

(30)

On expanding both sides of (30) we get

E
(
X 3(k)− 3X 2(k)X̂ (k|k) + 3X (k)X̂ 2

(k|k)− X̂ 3
(k|k)

)
= E

(
X 3(k − 1)− 3X 2(k − 1)X̂ (k − 1|k − 1) + 3X (k − 1)X̂ 2

(k − 1|k − 1)− X̂ 3
(k − 1|k − 1)

)
∗

∗ (I − K̄(k)C)3A3. (31)

Rearranging equation (31) we get the required result for E(X (k))3.

Proof of Proposition 8

Left hand side of equation (25) simplifies to

E
(
X (k)− X̂ (k|k)

)q
=

q∑
i=0

q
i

E(X (k))i(X̂ (k|k))q−i. (32)
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When i ∈ {0, 1, 2}, expectations E(X (k))i in (32) are given by filter update equa-
tions in section 3. However the problem arises for i ≥ 3. We have shown in Proposi-
tion 7 how to find the expectation for i = 3. Similarly to find these expectations for
i ≥ 3, we need to raise E

(
X (k)− X̂ (k|k)

)
to the power q, where q = 3, 4, ..., 2γ.

Right hand side of equation (25) can be expressed as

E(∆s + ∆n)q =
q∑
j=0

q
j

E(∆n)jE(∆s)
q−j. (33)

We know that for odd values of j we have E(∆n)j = 0. Also E(∆s) = 0 from the
definition. Hence equation (33) reduces to

E(∆s + ∆n)q =
∑

j=0,2,...,q

q
j

E(∆n)jE(∆s)
q−j if q is even,

=
∑

j=0,2,...,q−3

q
j

E(∆n)jE(∆s)
q−j if q is odd. (34)

Putting equations (32) and (34) together will give us the required result.
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