

1

Abstract— None of today’s large scale systems could function
without the reliable availability of a varied range of network
communications capabilities. Whilst software, hardware and
communications technologies have been advancing throughout the
past two decades, the methods commonly used by industry for
testing large scale systems which incorporate critical
communications interfaces have not kept pace. This paper argues
for the need for a specifically tailored framework to achieve
effective and precise testing of communications-critical large scale
systems (CCLSSs). The paper briefly discusses how generic test
approaches are leading to inefficient and costly test activities in
industry. The paper then outlines the features of an alternative
CCLSS domain-specific test framework, and then provides an
example based on a real case study. The paper concludes with an
evaluation of the benefits observed during the case study and an
outline of the available evidence that such benefits can be realized
with other comparable systems.

Index Terms— testing, test framework, communications-critical,
large scale IT systems, test case prioritization, requirements
prioritization

I. INTRODUCTION

During the 1980s and early 1990s, formal software test
methodologies, terminologies and practices were not clearly
established in the IT industry. The 1990s saw the emergence
of a variety of test methodologies, commonly used
terminologies, processes and tools. Despite their variety, they
all shared the common aim of making testing efficient,
structured and cheaper. This in turn was intended to lead to
reduced IT project costs and risks and improved quality of the
IT deliverables. However, the detailed definition of test cases
and how they are derived and expressed remained largely a
subjective process. The way testing is done and how efficient
it will be still relies heavily on the creativity and experience of
the tester rather than on the test standard or methodology
used.

Current commercial test methodologies, processes and tools
can and do help make the test activities better organized and
structured, but the design and specification of the tests still rely
to a large extent on the tester’s interpretation and
understanding of the system under test [1, p.1]. This creative

aspect is a feature inherent in testing and need not be viewed
negatively, but reliance on the subjective judgment of testers
leads to reduced precision and reduced efficiency of the test
activities. Furthermore, prevalent industrial test methodologies,
standards and tools are not domain-specific. This means that
individuals or teams involved in testing a system have to adapt
the test methodology, standard or tool to the type of the
system under test. This inherently incurs further overheads for
IT project budgets and timescales. It also means that the
experience gained whilst testing one system is not easily
transferable to another test activity of another system of the
same type.

Inefficient and imprecise testing results in inadequately tested
systems with lower reliability and availability levels than is
needed, as well as project delays and higher project costs [2].
The impact of the effectiveness and precision of testing is
further magnified for large scale IT systems that are prevalent
today. These are systems that combine multiple technologies,
multiple hardware platforms, multiple software components,
multiple internal and external communications interfaces, and
can be spread over a number of physical locations. Such
systems often can only function with the availability of a range
of communications networks services. For the purposes of this
paper, these systems will be called “Communications-Critical
Large Scale Systems” or “CCLSSs”.

CCLSSs are increasingly prevalent, more complex and critical.
In fact, developed societies can no longer continue to function
normally without this class of systems. Examples of CCLSSs
are: emergency mobilization applications, distributed banking
applications, trading systems, web based portals and
ecommerce sites, supply chain applications, fleet management,
automatic vehicle location systems (AVLS), e-health systems,
telecommunications network management and operations
support systems (NMS/OSS).

Can the IT industry’s vendors, clients and users adopt test
approaches that would ultimately lead to more efficient testing
of communications-critical large scale systems? The discussion
within this paper will start by explaining factors that lead to
inefficiency in testing such systems.

A new test framework for communications-
critical large scale systems

M. A. Nabulsi, R. M. Hierons

Digital Object Indentifier 10.1109/MS.2014.53 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29139320?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

II. TEST METHODOLOGIES AND STANDARDS

When testing a communications-critical large scale IT system,
there are numerous commercial test methodologies and
standards that can be adopted. Examples of these are the V-
Model [3], Agile testing [4], IEEE 829 Standard for Software
and System Test Documentation [5], BS 7925-2 standard for
component testing [6], software life cycle standard ISO/IEC
12207 [7], verification and validation standard IEEE 1012 [8],
software assessment and improvement standard ISO 15504 [9],
the more recent emerging ISO/IEC/IEEE 29119 [10], as well
as many other company specific methodologies.

Such methodologies and standards are familiar in the IT
industry, although not necessarily adopted universally or
strictly. They define how testing activities for a system should
be formalized and structured. Despite their variety, they share
a common premise that effective testing can be achieved by
adhering to or tailoring a pre-defined process. With significant
investment committed towards the adoption of such standards
and methods by industry, why does the IT industry suffer
regularly from problematic deliveries of new systems [11]?

For a new test framework to be capable of delivering more
effective testing, it needs to improve the precision and reduce
the subjectivity of the test design effort. It also needs to
“front-load” the testing of the complex features of the system,
i.e. test them as early as possible. These are the main
underlying premises behind the ideas outlined in the remainder
of this paper.

III. THE PROPOSED DOMAIN SPECIFIC TEST FRAMEWORK

Most methodologies and standards listed in Section II
originated during a time when systems were far less complex
and more procedural than they are now. IT systems became
far more complex during the late 1990s and typically supported
more complex and critical services. Development
methodologies moved from being procedural in the 1980s, to
object oriented in the 1990s. Nowadays, the trend is for model
driven or service oriented architectures (MDA, SOA) and
Agile development approaches. Commercial test practices for
large scale communications-critical systems have not kept up
with these changes. For example, when defining tests for
communications technologies and services, the traditional
distinction between functional and non-functional features is
often less appropriate when compared to transactions
processing systems, and test cases cannot always be expressed
in the traditional test case style of initial
condition/input/procedure/output. This is because
communications networks and interfaces are for setting up
connections between senders and receivers and transporting
data rather than accepting inputs and calculating or producing
outputs.

Furthermore, large scale IT systems have been increasingly
dependent on their communications interfaces, yet the widely
accepted approaches to their testing have not kept up with this
convergence between IT and communications. The adoption
of widely used standards and methods based on the V-Model,
such as IEEE 829, BS 7925-2, ISO/IEC 12207, or IEEE 1012,
would only define the structure of the test process rather than
the precision and completeness of coverage of the test cases or
their suitability for testing CCLSSs. Therefore, we believe that
the IT industry needs a new test framework that allows for
CCLSSs to be tested more precisely and predictably.

What would the proposed test framework be like?

An effective test framework intended for a specific type of
system could benefit from being derived from a domain
expert’s view of the structure of such systems [1, p.12], as well
as the order with which a system’s components, or groups of
components, should be tested. Having such a starting point for
the test design could help the test analyst in identifying gaps,
inconsistencies or ambiguity in the system requirements or the
system design, and reduces the subjectivity of the test design
effort. In other words, such a framework would be a
conceptual representation of a domain-expert’s knowledge
from a testing viewpoint. This contrasts, say, with the V-
Model which is a conceptual representation of phases of the
development cycle. Such a domain-specific test framework
can be thought of as the testing equivalent to Zachman’s
Enterprise Architecture Framework [12] in the sense that it
provides a simplified “model” upon which the test analysis and
test design can be based. This is comparable to how an
Enterprise Architecture Framework such as Zachman’s can be
used as the basis for deriving a system’s architecture.

How can such a test framework be formulated?

The idea of layers is a fundamental and well established feature
of communications protocol design and testing in the world of
telecommunications. Protocol testing [13] is a good example
of how precise and effective testing can be achieved. A
comparable approach to testing large scale systems can be
expected to lead to significant benefits - if it can be adapted to
large scale systems with significant communications layers.

Motivated by the ideas discussed in this section, a domain-
specific framework was defined for use as a template for high-
level test design for CCLSSs (Figure 1).

Digital Object Indentifier 10.1109/MS.2014.53 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

3

High

Communications links and protocols

Infrastructure / Network Elements

Data

Detailed functional

-High level
functional

Operational
processes

Figure 1: Tester’s view of a communications-critical large scale system

Under the proposed approach, test subgroups and phases are
categorized according to one of the following categories:

 Non-IT commercial: these are outside the scope of testing.

 Infrastructure: communications hardware, IT hardware

and software packages, configuration and setup needed for
the infrastructure.

 Communications links and communications features.

 Data.

 Detailed functional: functional features that are intended to
facilitate other higher level functional features but are not
in themselves what the system is intended for.

 High-level functional: the functional features that describe
how the system is meant to achieve the intended business
and operational processes.

 Business and operational processes: these represent what
the system is meant to achieve.

Each of the five layers should in turn have its layer-specific test
approach.

The industrial case study described in the next section
evaluates the feasibility and the benefits of adopting such a
framework as the starting point to organizing the test design
and test activities for a real-life CCLSS project.

IV. THE COMMUNICATIONS LAYER

This section describes an industrial case study in which the
ideas of the layered test framework discussed in the previous
section were detailed further for the communications layer and
then applied to the communications layer of a significant

CCLSS. For confidentiality, the actual name of the system is
not disclosed; it will be referred to as Sys.

The case study applied the layered test approach to the
requirements based test design for Sys, and focused on the
communications interfaces requirements. The requirements
were not intended to fit with the layered model, and contained
a large number of technical and non-technical requirements
with varying degrees of granularity and specificity. Therefore,
significant analysis effort was needed to identify and group
together the core technical communications requirements of
Sys before the ideas presented in this paper could be applied
and evaluated.

It was possible to group the requirements describing the
“communications interfaces layer” according to the five
individual communications interfaces: the primary radio
network interface, secondary/fallback radio network interface,
telephony interface, wide area network interface and local area
network interface.

For each interface, the requirements were further organized
according to the nineteen subcategories shown in Figure 2
which summarize potential generic testable features of a
communications interface for any CCLSS.

The nineteen subcategories were defined by the authors as
further detail to the overall domain-specific test framework
specifically for the communications layer. They were derived
using ideas from the telecommunications field (e.g. OSI layers
[14], TMN layers [15], eTOM/FAB process model [16]) where
abstract layers and common logical processes are used as the
conceptual basis for unifying and standardizing the approaches
to managing complex and technically varied
telecommunications networks. The authors also intended the
nineteen subcategories to represent a “value chain” of the
elements that deliver the services of a network interface. One
other intention behind this categorization was to allow for as
much separation as possible of these features into
independently testable groups of features where the lower
numbered ones can be tested first then progressing to the
higher numbered ones. This was to allow for simpler
prioritization of testing and to minimize the interdependency
between the subcategories.

The groupings of requirements of Sys were used as templates
for defining high level requirements-based communications test
cases for the communications interfaces of the system. These
were the primary output of the case study: a precise, more
objective and prioritized set of outline test cases together with
other related specific QA actions, i.e. inspections,
demonstrations, or reviews.

Figure 2 shows the 19 subcategories, with the intention being
that each communications requirement is placed in one of
these. The test cases for a particular requirement would then be
placed in the same subcategory as the requirement, with this
inducing a partial order on the test case. Specifically, if test

Digital Object Indentifier 10.1109/MS.2014.53 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

4

case t appears in an earlier subcategory than test case t’ then t
would be used before t’. Figure 2 also describes the
dependencies between the subcategories. Typically,
subcategory C depends on subcategory C’ if either features
from C’ are required in order to implement/test features from C

or changes in C’ are likely to lead to retesting of features in C.
There are also cases where dependence arises for non-technical
reasons such as project management or commercial factors.

Subcategory 19:
Operational readiness of
the interface for CCLSS
go-live

Subcategory 18:
User-defined risks

Subcategory 1: The structure/
architecture of the network
interface with CCLSS, its
components and layout,
hardware, and wiring

Subcategory 2: The
communications protocols
used

Subcategory 3: CCLSS user
terminals

Subcategory 5: All
possible types of
CCLSS senders and
receivers

Subcategory 6: The
different possible modes
of transmission used

Subcategory 7: How the
transmissions are
acknowledged by the
receivers

Subcategory 11: How
CCLSS QoS requirements
and SLAs are guaranteed,
maintained and reported

Subcategory 10:
Performance and volume
limits of the services
provided by the network

Subcategory 9: The
services provided by the
network to CCLSS

Subcategory 15:
Resilience features (of the
interface)

Subcategory 14: CCLSS
certification/compliance
requirements

Subcategory 13: Fault
handling processes of the
CCLSS interface, from
detection to resolution

Subcategory 4: The data and
messages that are
transmitted by CCLSS over
that network

Subcategory 8: How the
performance characteristics
of the network can affect
CCLSS subsystems and
processes

Subcategory 17:
Documentation provided for
CCLSS, user and technical
documentation

Subcategory 16: Business
continuity features (of the
interface)

Subcategory 12: The
ongoing operation,
maintenance and
administration of the
network/its CCLSS
interface

Figure 2: The subcategories

We produced a diagram for each communications interface of
Sys, with each diagram showing the nineteen test subcategories
with requirements allocated to each subcategory. Where no
requirements were identified then this was also indicated. The

diagram for each interface was then cross-checked for
consistency against the outline test cases for that interface.

Our findings from the case study are summarized in the next
section.

Digital Object Indentifier 10.1109/MS.2014.53 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

5

V. EVALUATION

This section outlines evidence and observations that emerged
through the case study, firstly to indicate that the proposed
framework is applicable to other comparable systems, and
secondly to demonstrate its benefits both qualitatively and,
where possible, quantitatively.

The evidence

Although the requirements were not written to fit with the
proposed domain-specific test framework, it was possible to
categorize them according to the layered test framework and to
isolate a distinct communications layer. This provides
confidence that the framework can be applied to other
comparable systems.

The nineteen test subcategories mapped well to the
requirements for each of the communications interfaces of Sys,
although the requirements were not originally written to adhere
to such a structure. The same diagram template was usable for
organizing the requirements for each of the five interfaces.

The dependencies and sequences, represented by arrows in
Figure 2, remained valid for each of the communications
interfaces of Sys. This provides further confidence that the
framework can help organize and prioritize testing for the
communications layers of other comparable systems. Like in
other engineering-type activities, prioritization is an indicator
for good quality testing [17]. Specifically, better prioritization
and scheduling of tests can lead to more faults being found
early in the development cycle, hence costing significantly less
to rectify and requiring less re-testing. This aspect of test
effectiveness will be referred to further in the randomized
simulation subsection.

The benefits

Based on the observations and evidence that emerged from the
case study, we expect the following four main advantages to be
realistically realizable if the framework is adopted as the basis
for testing comparable CCLSS:

1- Effective prioritization of the testing, as the simulations
described below show.

2- Effective identification of gaps and inconsistencies in the
requirements and the technical design through the use of the
test subcategories. This can help identify areas of potential
contradiction or ambiguity in the requirements, e.g. by using
the diagram in Figure 2 as a model for analysis and review of
the requirements.

3- Improved synergy between testing and the overall project
activities and phases because the framework helps maintain a
continuous link between test activities and requirements and
the layers of the framework can be used to define the phases of
an IT project.

4- Improved confidence in the results of tests during each
phase of the project. This is due to the efficient prioritization
of the tests, meaning fewer tests will be run too early or too
late.

Test effectiveness randomized simulations

One key estimate of “test effectiveness” is the re-testing effort
needed once a fault is identified during testing. An effective
test framework should lead to well prioritized test cases
(“prioritized” in this context is used to mean “optimally
ordered”), which in turn should lead to early detection of
faults as well as reduced re-testing effort.

We devised a way to estimate the efficiency of an ordering of a
set of requirements-based test cases, by deriving a numeric
indication of the impact of the interdependencies as explained
in the next paragraph. Given requirements X and Y, a
“dependency” refers to the situation in which X cannot be
fulfilled correctly until Y is fulfilled correctly, i.e. X is
“dependent” on Y. Here, if a fault is found in Y and fixed then
this is likely to necessitate the re-testing of the functionality of
X.

Let us suppose that we have a sequence X1, ..., Xn of
requirements. For a requirement Xm we count the number of
requirements that are before Xm in the sequence and that also
depend on Xm and let this count be Cm. The overall
dependence count is the sum of the Cm over m = 1, ..., n. The
purpose of such a simplified “test efficiency” calculation
method is to produce a simple quantitative estimate of how
“optimal” a particular ordering of a set of requirements is from
a re-test effort viewpoint.

We adopted this method in a number of randomized
simulations for the communications requirements of Sys. A
single run of the simulation would randomly order the
requirements and then determine the overall dependency count.
For each of the five communications interfaces of Sys we
carried out the following:

 A randomized simulation of 1000 orderings of the

requirements, stratified according to the nineteen
subcategories of the new framework.

 A randomized simulation of 1000 orderings of the

requirements, stratified according to the V-Model test
phases of: review, unit testing, integration testing, system
testing and user acceptance testing.

 A simulation of 1000 randomly generated orderings of the

requirements.

The term “stratified” in this context means that randomization
was carried out within each of the nineteen test subcategories
or five test phases, but the sequence of the subcategories and
phases was maintained. The results of the simulations were

Digital Object Indentifier 10.1109/MS.2014.53 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

6

represented using graphs similar to the one shown in Figure 3.
The X axis, “Total Dependency Count”, gives the overall
dependency count as explained earlier. The Y axis,
“Frequency”, is the number of simulations whose total
dependency count falls within a particular range.

The sets of results for an interface were compared visually as
well as using ANOVA analysis. For each of the five interfaces,
the new test framework was more efficient than both the V-
Model (Shown as “Rival” in the graph) and the fully random
simulation. There were variations between the five interfaces
but all differences were significant at 95% confidence
according to the ANOVA analysis.

Finally, we combined all communications requirements in one
set and repeated the simulations for this combined set; the
results are presented in the graph in Figure 3. The new
framework clearly has lower dependency counts than both the
V-Model and fully random, i.e. is more “test efficient” than
both. The resulting ANOVA analysis data is presented in the
table in Figure 3.

Figure 3: Results of the Simulation

VI. CONCLUSION

The test framework made what otherwise could have been
technically complex and fragmented test analysis and design
work relatively objective and simple. It made it easy to derive

a well prioritized set of test cases that would have otherwise
required specialist technical knowledge of communications
technologies generally and of the requirements of the specific
CCLSS project as well as its detailed technical design.

The adoption of the framework can also lead to indirect
benefits for an overall IT project developing a system
comparable to CCLSS, i.e. not just for the testing activities.
For example, by reducing the ambiguity of the requirements
and improving the objectivity of testing and QA, the adoption
of the framework early on during an IT project can reduce the
potential for disagreements between IT users and vendors.

Through this work, we demonstrated how a new test
framework can be devised and then applied to produce an
objective requirements-based test design for a
communications-critical large scale system, we then evaluated
the outcome. We also presented a new method for how “test
efficiency” can be estimated and how two test frameworks can
be compared. We gave an example of how requirements and
test design can be mapped and how both activities can be
aligned [18] to lead to more effective testing, and ultimately to
better quality CCLSSs.

Future work may include one or more of the following:
defining the layer-specific test approaches (both functional and
non-functional) for the remaining five layers, developing
further the use of simulation to evaluate the prioritization
benefit of the new test framework (Section V), devising
notations and formats to support more precise definition of the
test cases and possibly the automatic generation of the test
cases, and incorporating the ideas of this research into, or as an
extension of, one of the existing established test or software
engineering standards. Last but not least, the ideas of the new
framework need to be trialed further via an industrial
collaboration program covering more real-life CCLSS case
studies and involving real-life defects and re-testing metrics.

REFERENCES

[1] A. Bertolino, Software Testing Research: Achievements,
Challenges, Dreams, Future of Software Engineering
(FOSE'07), IEEE Computer Society, 2007

[2] S. Bullock and D. Cliff, Complexity and Emergent
Behaviour in ICT Systems, Hewlett-Packard Company.
October 2004

[3] Ammann, P., & Offutt, J. (2008). Introduction to Software
Testing. Cambridge University Press

[4] Susan D. Shaye, "Transitioning a Team to Agile Test
Methods," AGILE Conference, pp. 470-477, Agile 2008, 2008

[5] IEEE Std 829-2008, Standard for Software Test
Documentation, 2008

Digital Object Indentifier 10.1109/MS.2014.53 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

7

[6] S. C. Reid. 2000. BS 7925-2: The Software Component
Testing Standard. IEEE January 2000

[7] IS0/IEC 12207, Information Technology - Software life
cycle processes, 1995

[8] IEEE Std 1012-2012, Standard for Software Verification
and Validation Plans, 2012

[9] Thamm, J. and Kollmar, C. 2004. Assessments according
to the ISO 15504. Information Management & Consulting 19,
62-9

[10] ISO/IEC/IEEE 29119 software testing standard
http://softwaretestingstandard.org/ (March 2014)

[11] The Challenges of Complex IT Projects, British Computer
Society, Royal Academy of Engineering, April 2004

[12] J. A. Zachman, A Framework for Information Systems
Architecture, IBM Systems Journal, Vol. 26, No 3, 1987, pp.
276-292

[13] ETSI Conformance Testing
http://www.etsi.org/WebSite/technologies/ConformanceTestin
g.aspx (March 2014)

[14] Zimmermann, H. (1980). OSI Reference Model - The IS0
Model of Architecture for Open Systems Interconnection.
IEEE Transactions on Communications, 28(4), 425-432.

[15] ITU-T. (2000). Overview of TMN Recommendations:
Recommendation M.3000. ITU

[16] Kelly, M. B. (2003). The TeleManagement Forum’s
Enhanced Telecom. Journal of Network and Systems
Management, 109-119.

[17] Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002).
Test Case Prioritization: A Family of Empirical Studies. IEEE
Transactions on Software Engineering, 28(2)

[18] Barmi, Z. A., Ebrahimi, A. H., & Feldt, R. (2011).
Alignment of requirements specification and testing: A
systematic mapping study. 2011 Fourth International
Conference on Software Testing, Verification and Validation
Workshops (pp. 476-485). IEEE Computer Society.

Authors

Rob Hierons received a BA in Mathematics (Trinity College,
Cambridge), and a Ph.D. in Computer Science (Brunel
University). He then joined the Department of Mathematical
and Computing Sciences at Goldsmiths College, University of
London, before returning to Brunel University in 2000. He
was promoted to full Professor in 2003.

Contact:
Email: rob.hierons@brunel.ac.uk
Tel: +44 (0)1895 266002

Mohammad Nabulsi is a test practitioner with over 20 years’
experience in the field. He was recently awarded his PhD in
Computer Science Research by Brunel University, the thesis
for which is reflected in this paper. He holds an MSc in
Telecommunications from University College London and a
BSc in Computer Science and Business Studies from the
University of Buckingham. He is also a member of the British
Computer Society.

Contact:
Email: mnabulsi@transit.co.uk
Tel: +44 (0)7973 418905

Digital Object Indentifier 10.1109/MS.2014.53 0740-7459/$26.00 2014 IEEE

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

