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Abstract

The paper describes a new non-linear finite-element formulation to analyse fa-
tigue debonding or delamination, along predefined interfaces, which is multi-scale
in time. At the small time-scale level cyclic loading and the related oscillating re-
sponse is considered in an explicit way, whereas at the large time-scale level both
the real loading actions and the related response in terms of displacement and stress
fields are replaced with ‘minimum’ and ‘maximum’ functions over the time of the
analysis, which also implies doubling the degrees of freedom of the finite-element
model. A cohesive-zone model capable of simulating sub-critical damage growth
and hysteretic local response is used on the interface. With a conventional cycle-
by-cycle incremental procedure the analysis would require a number of increments
significantly higher than the number of cycles, and would be therefore unfeasi-
ble for most industrial applications. Instead, with the developed multi-time-scale
method the cycle-by-cycle time integration is transferred from the structural level
to the local, integration-point level whereby the time step can be, and in fact should
better be, much larger than the frequency of the applied actions. The consequent
significant saving in terms of computational cost largely offsets the shortcoming of
having to double the degrees of freedom of the model and makes the analysis not
only feasible but relatively inexpensive in many cases, while retaining excellent
accuracy as showed by the presented numerical results.

1 INTRODUCTION
The extreme difficulty in modelling and analysing fatigue-crack propagation in struc-
tures has led to design procedures mainly based on time-consuming experimental fa-
tigue tests, whose results are correlated using semi-empirical models derived from Paris’
law [1–3]. While for conventional materials like steel and aluminium alloys a great
amount of experimental data are available on fatigue crack propagation, these proce-
dures become extremely expensive when applied to the design of new materials, for
which little previous experience is available, such as reinforced polymer composites or
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adhesives employed in adhesive joints. More importantly, it is now widely recognised
that fatigue delamination in non-metals involves different physical mechanisms, which
are often not well captured by Paris’ law. The constant load amplitude and ratio used
in the experimental testing represents a further limitation of the predictive capabilities
of the above design approach. This is because the damage accumulation laws based
on Miner’s rule often do not provide satisfactory approximation of the fatigue life [2].
Furthermore, Paris’ law assumes the existence of an initial crack and, therefore, is not
able to simulate crack initiation.

For the above reasons, more predictive numerical models can lead to significant sav-
ing of time and money, and cohesive-zone models (CZMs) are widely considered as a
potentially valid alternative. The response of a CZM in the case of alternating loading
depends on the local response to unloading and re-loading. Most CZMs proposed in the
literature assume elastic damage only, the secant straight line to the origin being used
during unloading, see [4, 5] among many others Referring to a single-mode case, and
denoting by σ and δ the interface stress and the relative displacement, in these cases
the same line of the σ − δ law is followed both during unloading and during re-loading
below the maximum previously attained value. This implies that, if cyclic loading with
constant amplitude is applied, at each point of the interface the response stabilises im-
mediately after the first cycle, no energy is dissipated and no fatigue crack growth is
predicted for cyclic loading (Figure 1.a).

To overcome this problem and predict fatigue crack growth, several CZMs have re-
cently been proposed [6–16]. In fact, all these models use an approach very similar
to that used much earlier by Marigo [17]. They share the principle that to simulate
the degradation of the interface for alternating values of the relative displacements the
model must entail different unloading and re-loading paths, in such a way that (a) a
‘hysteresis loop’ is obtained and (b) for a relative displacement cyclically oscillating
between two given values, the corresponding traction is progressively reduced (Fig-
ure 1.b). With these models, small increase in damage for each loading-unloading cy-
cle, which accumulates over time, is obtained even if the relative displacement does
not exceed the maximum previously attained value. Following Roe and Siegmund [8],
this type of damage growth will be referred to as ‘sub-critical’. Instead, if the relative
displacement exceeds the maximum previously attained value, for all of these models
damage increases instantaneously to values only determined by the increase in the rela-
tive displacement itself. This type of damage growth will be indicated as ‘monotonic’.
A conceptually similar approach to simulate low-cycle fatigue was used by Yang et
al. [18].

The different choices for the loading and unloading curves so far proposed in the lit-
erature [6–18] reflect the fact that the underlying physics of the problem is still unclear.
In fact most of the the models are essentially derived with a purely phenomenological
approach, a notable exception being the approach followed in Refs. [12, 14, 15] where
physically sound variational arguments are used to derive CZMs that capture fatigue
damage starting from expressions of the surface energy of the Dugdale-Barenblatt (i.e.
cohesive) type. Instead, the authors show that with a Griffith type of surface energy no
crack propagation can be obtained under cyclic loading. In the limit when the length of
the process zone and the energy release rate tend to zero, the authors also demonstrate
that the derived fatigue laws tend to Paris’ law, different Paris’ law constants being
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Figure 1: Cohesive-zone models: (a) loading-unloading lines for elastic-damage mod-
els; (b) hysteretic models with sub-critical damage growth.

obtained with different forms of surface energy.
The variational approach provides a physically well justified and therefore appealing

framework whereby all the above mentioned CZMs [6–18] represent a promising step-
forward towards a more predictive strategy in the analysis of fatigue delamination or
debonding. On the other hand, apart from more work needed for deeper understanding
of their link with the micromechanics of the problem and for their experimental valida-
tion and calibration, their main disadvantage is that the simulation of high-cycle fatigue
for real-life engineering problems would typically require the analysis of at least many
thousands of loading cycles, each of them requiring a certain number of load increments,
which is typically not feasible.

An alternative way to use CZMs for the analysis of fatigue crack growth which, in-
stead, is suited to simulate high-cycle fatigue has been presented by Violeau [19]. The
main idea was to follow an approach conceptually similar to that used by Peerlings
et al. [20] in the context of continuum fatigue-damage models and, therefore, to re-
place the cyclic loading history with its envelope and consider the number of cycles as a
‘real-valued’ variable. In fact, with the further assumption of rate-independence of the
material response, in this approach the number of cycles can be assumed as a pseudo-
time variable. A damage variable D is then introduced to simulate degradation of the
interface and its rate of change is decomposed in the sum of two terms, so that it results
Ḋ = Ḋs + Ḋf . The first term, Ḋs, also denoted ‘static’ damage (rate) in Ref. [21], rep-
resents the rate of change which would be obtained under the current load value, if the
(envelope) load was applied in a monotonic way; the second term, Ḋf , also called ‘fa-
tigue’ damage (rate) in Ref. [21], represents the rate of change which would be obtained
under the same load value, but in the hypothesis that the load was applied cyclically,
with constant amplitude and a maximum value equal to the load value itself. In the sim-
ulations it was always assumed that the minimum value of the cyclic loading was zero,
implying a load ratio R = 0, because in typical non-linear, incremental finite-element
analyses one loading function only can be considered. Violeau’s formulation was later
validated experimentally by Robinson et al. [21]. An attempt to remove the limitation
to the case R = 0 was later made by Muñoz et al. [22] who introduce a prefixed load
ratio R, with some assumption on the related response.

Starting from the same additive decomposition proposed by Violeau [19], Turon et
al. [23] proposed an alternative strategy for high-cycle fatigue that links together the
fracture-mechanics and the damage-mechanics approaches essentially translating Paris’
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law into damage evolution laws for a cohesive-zone model. One advantage of their
model is that it incorporates both a fatigue threshold and a sensitivity to the load ra-
tio. One disadvantage is that the method requires an analytical estimate of the size of
the process zone. May and Hallet [24] also pointed out that one limitation of this ap-
proach is the relatively inaccurate prediction of fatigue-damage initiation in absence of
initial cracks, which somehow undermines one of the main advantages entailed by the
use of cohesive-zone models. To improve the model in this respect they introduced an
additional damage evolution mechanism which models damage initiation with a phe-
nomenological approach based on S-N curves.

In the author’s opinion, despite the above discussed issues and others shortcomings
including the difficulty of robust and reliable identification of mixed-mode dependent
model parameters, the method proposed in Ref. [23] and other strategies proposed later
along conceptually similar lines [24–28] currently represent the most practically conve-
nient approach for industrial applications. However, with a view to future further devel-
opments of formulations, such as those in Refs. [12, 14, 15], where a CZMs capturing
fatigue crack initiation and propagation can be derived based on physically sound prin-
ciples (if not ‘first principles’), it is still desirable to derive effective numerical methods
which allow using such models for high-cycle fatigue.

Furthermore, it is also desirable to have a formulation in which the (possible variable)
load ratio is not given as part of the input data of the problem. This is because when
the bulk material behaves as linearly elastic, the ratio between maximum and minimum
relative displacements at the interface are equal to the applied load ratio. However, for
non-linear behaviour of the bulk material this is typically no longer the case.

Therefore, in this paper a new computational method is developed which is based
on the same idea as in Violeau’s work of replacing the cyclic loading with its maximum
and minimum envelopes, but goes one step further because it removes the limitation on
the load ratio, does not assume the additive decomposition and provides a basis for a
quite more general solution strategy.

The underlying principle for the proposed method is that fatigue is a multi-scale phe-
nomenon in space and in time. This principle is not new and is indeed stated by Fish
and Oskay [29], who introduce a decomposition of all response fields in the sum of a
‘macro-chronological’ (homogenised in time) part and ‘micro-chronological’ (oscilla-
tory) part, in the framework of a general theory based on the introduction of ‘almost-
periodical’ functions. This is applied to the analysis of crack growth using continuum
damage mechanics and the Gurson-Tvergaard-Needleman model, the advance of crack
being simulated eliminating elements reaching a threshold of damage.

The method proposed in this paper is different from Fish and Oskay’s strategy. It
is based on a CZM, which is an implicit way to resolve the multi-scale nature of the
problem in space, so that the novelty of the formulation consists of making explicit use
of the multi-scale nature of the problem in time. At the small time-scale level the cyclic
loading history and the related oscillating response are considered in an explicit way,
whereas at the large-scale level both the real loading actions and the related response
in terms of displacement and stress fields are replaced with suitably defined ‘minimum’
and ‘maximum’ functions over the time of the analysis, which also implies doubling
the degrees of freedom of the finite-element model. As already observed, with a con-
ventional cycle-by-cycle incremental procedure the analysis would require a very high
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number of increments, which would be unfeasible for most industrial applications. In-
stead, with the developed multi-time-scale method the cycle-by-cycle time integration
is transferred from the structural level to the local, integration-point level whereby the
time step can be, and in fact should better be, much larger than the frequency of the ap-
plied actions. The consequent significant saving in terms of computational cost largely
offsets the shortcoming of having to double the degrees of freedom of the model and
makes the analysis not only feasible but relatively inexpensive in most cases. Despite
some assumptions made on the relative-displacement variation in time, the presented
numerical results show that the developed multi-time-scale method provides excellent
accuracy both for a case of constant amplitude and when amplitude and mean values are
varied.

The detailed, cycle-by-cycle time integration at the integration point is made using
a CZM which simulates hysteretic response and sub-critical damage growth, similar to
those proposed in Refs. [6–9, 11], but simpler in the formulation and implementation.
The CZM model admits an approximated closed-form time-integration of the small-
scale problem at each integration point. In this first formulation of the method the
treatment is limited to the single-mode case and numerical results are presented for the
analysis of a double-cantilever-beam (DCB) made of two aluminium plates joined by
an epoxy adhesive and tested under cyclic prescribed displacement in mode-I.

The structure of the paper is as follows. In Section 2 the proposed CZM, which
simulates hysteretic response and sub-critical damage growth, is presented. The multi-
time-scale solution strategy is first outlined in its general form in Section 3 and then
specialised to the proposed CZM in Section 4. In Section 5 numerical results and their
comparison with experimental data are provided. Finally, conclusions are drawn in
Section 6, where future lines of research to fully develop the potential of the proposed
method are suggested.

2 COHESIVE-ZONE MODEL
This section describes the new, proposed cohesive-zone model, which simulates both
sub-critical and monotonic damage growth, developed along the lines of similar work
[6–11, 13]. This model is later used in the framework of the multi-time-scale solution
scheme presented in Sections 3 and 4.

The formulation of the cohesive-zone model is restricted to a mode-I problem, which
is the case considered in the numerical applications. A damage variableD is introduced,
and the relationship between the relative displacement δ and the interface stress σ is
provided by the classic damage-mechanics law:

σ = (1−D)K < δ >+ +K < δ >− (1)

where K denotes the initial stiffness, typically high enough to well capture the initial
undamaged response [4]. Symbols< δ >+ and< δ >− denote the positive and negative
parts of the relative displacement δ, whereby in compression the high stiffness is used
regardless of the damage, entailing negligible material interpenetration.

In the case of monotonic increase of the relative displacement the value of the dam-
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age variable is given by:

D =


0 if δ ≤ δ0 or δ ≥ δc (no damage or full damage)

δ − δ0
β δ

if δ0 < δ < δc (damage growth)
(2)

where δ0 is the value of the relative displacement below which no damage occurs, δc is
the critical relative displacement value beyond which cohesion is completely lost and
β = 1 − (δ0/δc). The above damage law results in the widely used bi-linear traction-
separation law depicted in Figure 2.a [4]. As independent parameters of this law one
can choose the interface fracture energy Gc, which is the area under the bilinear curve,
the interface strength σ0 and the ratio β between δ0 and δc. These other parameters are
then obtained by:

δc =
2Gc

σ0
δ0 = (1− β) δc K =

σ0
δ0

=

(
1

1− β

)
σ0
δc

(3)

cG

σ

δ

δ0 δc

0
σ

σ

δ

δ0 δc

0
σ unloading

re-loading

(b)(a)

Figure 2: (a) bi-linear traction-separation law for the case of a monotonic increasing
relative displacement; (b) unloading/re-loading paths.

In the general case when the displacement can increase or decrease at different times,
the following variable is first introduced as a function of time t:

δ∗ = δ∗(t) = max

{
max
τ≤t

δ(τ),
δ0

1− β D(t)

}
(4)

Hence, either δ∗ is the actual maximum previously attained relative displacement or,
during sub-critical damage growth, it is equal to the maximum between the latter and
the relative displacement that would correspond to the current damage if the process
was monotonic, as will be better clarified below.

The damage evolution is then given by the following relationship:
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dD

dδ
=



0 if δ < 0 (compression)

0 if δ∗ ≤ δ0 or δ∗ ≥ δc (no damage or full damage)

δ0
β δ2

if δ0 < δ∗ < δc and δ = δ∗ and δ̇ > 0 (monotonic damage growth)

0 if δ0 < δ∗ < δc and 0 < δ ≤ δ∗ and δ̇ ≤ 0 (unloading)

γ D if δ0 < δ∗ < δc and 0 < δ < δ∗ and δ̇ > 0 (re-loading)
(5)

where γ is a material parameter governing the rate of sub-critical damage growth.
The cases of compression δ < 0, when no damage has occurred yet (δ∗ ≤ δ0) or

when complete damage has occurred (δ∗ ≥ δc) are straightforward.
The case of ‘monotonic damage growth’ is obtained when the relative displacement

is between δ0 and δc and increases above δ∗. In this case δ∗ also increases being equal
to δ, and the bi-linear traction-separation law of Figure 2.a is followed. The derivative
of D with respect to δ is therefore simply obtained by differentiating Equation (2)2.

In the case of unloading (δ̇ ≤ 0), with 0 < δ ≤ δ∗, and when D is neither 0 nor 1
(equivalent to δ0 < δ∗ < δc), no damage growth is assumed, as expressed by Equation
(5)4.

Finally, during reloading (δ̇ > 0) after unloading, but in the sub-critical case whereby
0 < δ < δ∗, and whenD is neither 0 nor 1, the damage is assumed to increase following
Equation (5)5.

σ

δ

a

b
d

c
e

h
i

a

b

g

c

d

e
g

f

h

i

(t)δ

tδ0

δc

f

Figure 3: Cohesive-zone model developed and used in this work: (a) interface stress vs
relative displacement caused by a (b) prescribed relative-displacement history.

In order to better explain the meaning of Equations (4) and (5), Figure 3.a reports the
‘traction-relative displacement’ plot resulting from the prescribed relative-displacement
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history of Figure 3.b, for an initially undamaged interface, if the proposed CZM is used.
The response on each branch of the curve is explained as follows.

Starting from D = 0, between points a and b it is 0 < δ = δ∗ ≤ δ0, resulting in no
damage growth in accordance with Equation (5)2.

Between points b and c monotonic damage growth occurs, because δ0 < δ = δ∗ < δc
and δ̇ > 0, following Equation (5)3 and resulting in a constant negative slope.

Between points c and d it results δ̇ < 0. Hence, δ < δ∗, δ0 < δ∗ < δc and Equation
(5)4 applies resulting in unloading with no damage growth.

From point d to point e re-loading occurs because δ̇ > 0 and δ < δ∗ so that Equation
(5)5 applies and sub-critical damage growth occurs. Furthermore, because of Equation
(4), the value of δ∗ actually increases in this part. To verify this, let us observe that up
to point c only monotonic damage growth was found whereby Equation (2)2 yields the
following expression for D(tc):

D(tc) =
δ(tc)− δ0
β δ(tc)

(6)

Rearranging, and since δ∗ is constant between tc and td:

δ∗(tc) = δ∗(td) = δ(tc) =
δ0

1− β D(tc)
(7)

Because of the sub-critical damage growth between points d and e, it results D(t) >
D(tc) for td < t < te, which yields:

δ0
1− β D(t)

>
δ0

1− β D(tc)
= max

τ≤t
δ(τ) (8)

and from Equation (4) one obtains that:

δ∗(t) =
δ0

1− β D(t)
and δ̇∗ > 0 (9)

At point e, although the displacement has reached again the maximum previously
attained value, it results δ(te) < δ∗(te) because of the increase in δ∗ between points d
and e. Between points e and f unloading occurs again and the straight line to the origin
is again followed in the traction-relative displacement plot, but with a reduced slope
with respect to the first unloading because of the (sub-critical) increase in damage.

Between points f and g re-loading occurs again. For tf < t < tg it results

max
τ≤t

δ(τ) <
δ0

1− β D(t)
⇒ δ∗(t) =

δ0
1− β D(t)

(10)

Instead, the equality between the two terms is reached at point g, after which the damage
growth is again monotonic, resulting in linear softening, until cohesion is completely
lost at point h and D = 0, followed by zero traction.
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Figure 4: Schematic of the multi-time-scale solution strategy.

3 MULTI-TIME-SCALE SOLUTION STRATEGY
In this section the main original contribution of this work, i.e. the multi-time-scale
solution scheme schematised in Figure 4, is described in detail.

It is assumed that loading process is one-dimensional, i.e. the applied external forces
and the prescribed displacements are proportional to one scalar load multiplier λ, func-
tion of time, as is typical of most engineering applications. Furthermore, loading is
assumed to be cyclic with constant frequency f but not necessarily with constant am-
plitude or mean value. In particular, the following variation of λ with time is assumed:

λ(t) = λm(t) +∆λ(t) sin(2 π f t) (11)

where λm(t) and ∆λ(t) will be denoted as the ‘instantaneous’ mean value and semi-
amplitude, respectively, which in general can vary with time. In addition, it is assumed
that ∆λ(t) > 0.

Minimum and maximum ‘envelope’ functions of the load multiplier, λmin and λmax,
are introduced as follows:

λmin(t) = λm(t)−∆λ(t) λmax(t) = λm(t) +∆λ(t) (12)

The total displacements v can be decomposed into the sum of the prescribed ones up
and the non-prescribed ones u, as usual:

v = u+ up (13)

The assumption that the variable displacements u have the same type of variation as
the load multiplier is made, both in the structure and at any damaging interface:

u(t) = um(t) +∆u(t) sin(2 π f t) (14)

9



um(t) and ∆u(t) being defined as the their ‘instantaneous’ mean value and ‘semi-
amplitude’. The ‘minimum’ and ‘maximum’ displacements are defined as follows:

umin(t) = um(t)−∆u(t) umax(t) = um(t) +∆u(t) (15)

and, vice versa:

um(t) =
umax(t) + umin(t)

2
∆u(t) =

umax(t)− umin(t)

2
(16)

Remark 3.1 Assumption (14) can be seen as the combination of two hypotheses. One
is that the ‘shape’ of the response is the same as that of the input, which is only an
approximation whose validity needs to be assessed. A second hypothesis is that input
and output are in phase, which is reasonable because in this work neither damping nor
inertia terms are included.

Remark 3.2 It is also worth noting that λmin and λmax are actual envelopes of the
load multiplier (but clearly not the only ones), because ∆λ > 0, whereby λmin(t) ≤
λ(t) ≤ λmax(t) for any t and λmin(t) = λ(t) and λmax(t) = λ(t) at some different
times t as shown below in Equation (17). Instead, umin and umax could be considered
envelopes only componentwise. In fact, since the sign of the components of ∆u(t)
is not bound to be positive, the components of umin and umax are envelopes but not
necessarily minimum or maximum. Therefore, relationships (15) are a definition of
umin and umax, rather than a result, and subscripts ‘min’ and ‘max’ are used because
umin and umax are equal to u at the same times when λmin and λmax are equal to λ,
respectively:

umin(t) = u(t) and λmin(t) = λ(t) for t =
3

4 f
+

k

f

umax(t) = u(t) and λmax(t) = λ(t) for t =
1

4 f
+

k

f

(17)

and k = 1, 2, . . . ,+∞. The same remark applies to qextmin, qextmax, up,min and up,max,
which are introduced below. A similar remark will also apply to qintmin and qintmax, as
explained later.

The external forces qext and prescribed displacements up are obtained in terms of
their (fixed) reference values qext0 and u0,p as:

qext(t) = λ(t)qext0 up(t) = λ(t)u0,p (18)

The ‘minimum’ and ‘maximum’ external forces and prescribed displacements are de-
fined by:

qextmin(t) = λmin(t)q
ext
0 qextmax(t) = λmax(t)q

ext
0

up,min(t) = λmin(t)u0,p up,max(t) = λmax(t)u0,p

(19)

Assuming that the displacements u were known at each time t, the internal forces
qint(t) can be computed and two ‘minimum’ and ‘maximum’ internal force vectors,
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qintmin and qintmax can be introduced so that they satisfy the following conditions, analogous
to relationships (17):

qintmin(t) = qint(t) for t =
3

4 f
+

k

f
qintmax(t) = qint(t) for t =

1

4 f
+

k

f
(20)

and k = 1, 2, . . . ,+∞.
In this work the structural behaviour is assumed to be elastic apart from the damaging

interface. Therefore, denoting by a superscript e the element vectors from now on, it is
immediate to verify that for all the finite elements e except for the interface elements
the element internal forces qint,e have the same type of variation as the displacements,
and that qint,emin and qint,emax can be simply computed from the ‘minimum’ and ‘maximum’
element displacements in the usual way:

qint,emin (t) =

∫
Ωe

(Be)T DBe dΩ

 (umin(t) + λmin(t)u
e
0,p)

qint,emax(t) =

∫
Ωe

(Be)T DBe dΩ

 (umax(t) + λmax(t)u
e
0,p)

(21)

D and Be representing the standard elastic-moduli matrix and the usual matrix relating
the element nodal displacements to the element strains, respectively, while Ωe denotes
the element domain.

Instead, for the interface elements, the element internal forces have not necessarily
the same type of variation as the displacements, and qint,emin and qint,emax must generally be
determined by computing qint,e(t), or determining an approximation of it, through the
CZM of Section 2 and using relationships (20) at the element level. In this case, qint,emin

and qint,emax depend on the entire displacement history, whereby it results:

qint,emin = qint,emin (umin,umax, λmin, λmax)

qint,emax = qint,emax(umin,umax, λmin, λmax)

(22)

In general, not only does Remark 3.2 apply to qintmin and qintmax, too, but the components
of qintmin and qintmax may not necessarily be envelopes of qint(t).

3.1 Large-time-scale problem
The large-time-scale problem consists of finding functions umin and umax so that the
following equilibrium equations are satisfied:

rmin= qextmin − qintmin = 0

rmax= qextmax − qintmax = 0

(23)

rmin and rmax denoting the ‘min’ and ‘max’ parts of the residual. The two problems
are coupled at the interface because of the dependence of each of qint,emin and qint,emax in the
interface elements on both umin and umax in Equation (22).
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Using the Newton-Raphson method, let us denote by tn and tn+1 the times at the
beginning and at the end of increment n of the analysis. It is worth noting that each
of these times tn and tn+1 can be taken according with the chosen time-incrementation
scheme, without additional constraints (i.e. they do not have to correspond to the max-
imum, minimum or any other specific point within a cycle). For each element e, the
initial interface-element nodal displacements uen,max and uen,min are known and tentative
values uen+1,max and uen+1,min at the end of the increment have been computed after the
previous iteration. For the elastic elements around the interface the internal forces can
be computed in a straightforward way via Equations (21). This is not the case for the
interface elements, where at each integration point of each element e the maximum and
minimum relative displacements at times tn and tn+1 are given through the usual matrix
Be, evaluated at the integration point:

δn,max = Be uen,max δn+1,max = Be uen+1,max

δn,min = Be uen,min δn+1,min = Be uen+1,min

(24)

In order to determine the element internal forces qint,en+1,min = qint,emin (tn+1) and qint,en+1,max =
qint,emax(tn+1) the cyclic variation of the relative displacement is considered and the result-
ing variation of the interface stress and therefore of the element internal forces qint,e is
calculated as described in the next section.

Although not essential for the accurate solution of the structural problem, if the
quadratic convergence of the Newton-Raphson method is to be preserved the deriva-
tives of the residual vectors with respect to uen+1,min and uen+1,max are needed, so that
the linear system to solve at each iteration is:

(
∂qintn+1,min

∂un+1,min

)(k) (
∂qintn+1,min

∂un+1,max

)(k)

(
∂qintn+1,max

∂un+1,min

)(k) (
∂qintn+1,max

∂un+1,max

)(k)


 u

(k+1)
n+1,min − u

(k)
n+1,min

u
(k+1)
n+1,max − u

(k)
n+1,max

 =

−r
(k)
min

−r(k)max

 (25)

where superscripts (k) and (k+1) indicate that quantities are evaluated at iterations (k)
or (k+1). The coefficient matrix of this linear system is the ‘expanded’ tangent stiffness
matrix. In fact, until the response of the interface is elastic, the off-diagonal blocks of
the tangent matrix are zero, and the ‘min’ and ‘max’ problems are uncoupled. Instead,
when damage develops on the interface, the related interface elements will generally
contribute with non-zero coupling terms in the off-diagonal blocks.

3.2 Cycle-by-cycle time integration at the small time scale
The variation during the increment of the ‘instantaneous’ mean value and semi-amplitude
of the relative displacement, δm and ∆δm, are obtained by first computing these values
at the beginning and at the end of the increment

δm(tn) =
δn,max + δn,min

2
∆δm(tn) =

δn,max − δn,min
2

δm(tn+1) =
δn+1,max + δn+1,min

2
∆δm(tn+1) =

δn+1,max − δn+1,min

2

(26)

12



and then by linear interpolation:

δm(t) =

(
tn+1 − t
tn+1 − tn

)
δm(tn) +

(
t− tn

tn+1 − tn

)
δm(tn+1)

∆δm(t) =

(
tn+1 − t
tn+1 − tn

)
∆δm(tn) +

(
t− tn

tn+1 − tn

)
∆δm(tn+1)

t ∈ (tn, tn+1) (27)

Using the CZM, one needs to determine the stress variation σ(t) within the increment
resulting from the following assigned relative-displacement variation:

δ(t) = δm(t) +∆δm(t) sin(2 π f t) t ∈ (tn, tn+1) (28)

and the known initial value of the damage D(tn).
Pre-multimplication of σ(t) by (Be)T and integration provide the internal element

forces qint,e, from which qint,emin and qint,emax can be computed using relationships (20). An
equivalent but simpler to implement procedure is to determine minimum and maximum
interface stresses σmin(t) and σmax(t) that fulfill the following relationships analogous
to (20):

σmin(t) = σ(t) for t =
3

4 f
+

k

f
σmax(t) = σ(t) for t =

1

4 f
+

k

f
(29)

Premultimplication of σmin(t) and σmax(t) by (Be)T and integration directly provide
qint,emin and qint,emax .

In this way, the element contribution to the element tangent stiffness matrix of system
(25) is given by:

∂qint,en+1,min

∂un+1,min

(k)  ∂qint,en+1,min

∂un+1,max

(k)

(
∂qint,en+1,max

∂un+1,min

)(k) (
∂qint,en+1,max

∂un+1,max

)(k)


=

=
∫
Ωe


(Be)T

(
∂σn+1,min

∂δn+1,min

)(k)

Be (Be)T
(
∂σn+1,min

∂δn+1,max

)(k)

Be

(Be)T
(
∂σn+1,max

∂δn+1,min

)(k)

Be (Be)T
(
∂σn+1,max

∂δn+1,max

)(k)

Be

 dΩ

(30)

where σn+1,min = σmin(tn+1) and σn+1,max = σmax(tn+1).

Remark 3.3 The time-integration of the CZM can be carried out in many different
ways and, possibly, introducing some additional approximation. In fact, although the
hysteretic CZM was presented in Section 2 before describing the multi-time-scale so-
lution scheme for the sake of clarity, the proposed procedure can be employed even if
a different CZM is used, such as one of those proposed in Refs. [6–9, 11]. Hence, the
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detailed solution of the CZM to determine σn+1,min and σn+1,max at each integration
point is separately reported in the next section, because it is one of the many possi-
ble choices. Exploration of other methods and the investigation on the implications of
different time-integration schemes or indeed other CZMs is left for future work. Fur-
thermore, the range of applicability of the proposed multi-time-scale strategy is clearly
much wider than that addressed in this paper, and includes all problems involving fa-
tigue damage and failure.

4 CLOSED-FORM APPROXIMATE TIME-INTEGRATION
OF THE PROPOSED CZM

This section presents a closed-form solution scheme for the small-time-scale problem
described in Section 3.2 for the case when the CZM of Section 2 is used. The relative
displacements δn,min, δn,max, δn+1,min and δn+1,max and the damage Dn = D(tn) are
assigned. The following developments will be made assuming that both δn,min and
δn+1,min are non negative, both for the sake of simplicity and because this was always
the case in the numerical applications considered for those integration points where
Dn > 0.

Let us first consider the case that δn+1,max ≤ δn,max. This is schematised in Figure 5,
where, instead, the further assumption that δn+1,min ≥ δn,min is immaterial because what
follows also applies when δn+1,min < δn,min. In this case, regardless of whether or not
the previous damage increase has been monotonic, that is of whether or not δ∗(tn) =
δn,max, the linear interpolation (27) implies that the maximum relative displacement
never increases beyond δ∗(tn). Hence, there will be no monotonic damage growth and
all the damage increase will be sub-critical.

δ (t)

t 

     (t)maxδ

tn

tn +1

     (t)minδ

n,maxδ

n+1,maxδ

n+1,minδ

n,minδ

t 0
,m

in

t 0
,m

a
x

t 2
,m

in

t 2
,m

a
x

t k
,m

in

t k
,m

a
x

Figure 5: cyclic relative-displacement variation entailing no monotonic damage growth.

Let us assume that the number of local minima and maxima of δ in the increment
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(tn, tn+1) are the same and equal to k + 1. Furthermore, let t0,min, t0,max, t1,min, t1,max,
. . ., tk,min, tk,max be the times when the local minima and maxima are attained, re-
spectively, assuming that tj,min < tj,max as shown in Figure 5. Equation (5) is easily
integrated between each local maximum and the next local maximum by observing that
between tj−1,max and tj,min Equation (5)4 applies and no damage growth occurs, while
between tj,min and tj,max Equation (5)5 is used. This results in the following recursive
expression:

D(t1,max)= D(t0,max) e
γ [δ(t1,max)−δ(t1,min)]

D(t2,max)= D(t1,max) e
γ [δ(t2,max)−δ(t2,min)]

. . .

D(tk,max)= D(tk−1,max) e
γ [δ(tk,max)−δ(tk,min)]

(31)

which yields:

D(tk,max) = D(t0,max) e
γ
∑k

j=1
[δ(tj,max)−δ(tj,min)] (32)

By dividing and multiplying the sum by k, and observing that δ(tj,max) = δmax(tj,max)
and δ(tj,min) = δmin(tj,min), one obtains:

k∑
j=1

[δ(tj,max)− δ(tj,min)] =
(∑k

j=1 δmax(tj,max)

k
−
∑k
j=1 δmin(tj,min)

k

)
k (33)

The two sums in the last term are the averages of δmax(tj,max) and δmin(tj,min), for j
ranging from 1 to k. For k sufficiently big we can approximate:∑k

j=1 δmax(tj,max)

k
=

∑k
j=0 δmax(tj,max)

k + 1

∑k
j=1 δmin(tj,min)

k
=

∑k
j=0 δmin(tj,min)

k + 1

(34)

Because of the linear interpolation (27) δmax and δmin are linear within the increment,
so that it results: ∑k

j=0 δmax(tj,max)

k + 1
=
δmax(t0,max) + δmax(tk,max)

2

∑k
j=0 δmin(tj,min)

k + 1
=
δmin(t0,min) + δmin(tk,min)

2

(35)

Since k = f (tk,max − t0,max), f being the frequency of the cyclic loading, Equation
(32) can be rewritten as follows:

D(tk,max) = D(t0,max) e
0.5 γ f (tk,max−t0,max) [δmax(t0,max)+δmax(tk,max)−δmin(t0,min)−δmin(tk,min)]

(36)
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Assuming again that k is sufficiently big, or that the variations of δmin within half a
cycle is negligible, we can make the following approximation:

δmin(t0,min) = δmin(t0,max) δmin(tk,min) = δmin(tk,max) (37)

which yields:

D(tk,max) = D(t0,max) e
0.5 γ f (tk,max−t0,max) [δmax(t0,max)+δmax(tk,max)−δmin(t0,max)−δmin(tk,max)]

(38)
This last formula provides the sub-critical damage growth between the first and the

last local maxima within the increment, in closed form. Since the formula can also be
written replacing t0,max and tk,max with two times which do not generally coincide with
local maxima, it seems reasonable to do so replacing these times with tn and tn+1, i.e.
to extrapolate the result over the entire time increment. This provides the value of the
damage at the end of the increment as follows:

Dn+1 = D(tn+1) = D(tn) e
0.5 γ f (tn+1−tn) [δn,max+δn+1,max−δn,min−δn+1,min] (39)

At the end of the increment δ∗(tn+1) has changed because of the sub-critical damage
growth, in accordance with relationship (4), and it results:

δ∗(tn+1) =
δ0

1− β D(tn+1)
(40)

Remark 4.1 From the above derivation it turns out that the bigger k, that is the bigger
the number of cycles within one increment, the better the approximation achieved. This
might suggest that a link exists between the solution procedure proposed in this paper
and the use of asymptotic expansion techniques, such as the multi-scale approach pro-
posed by Fish and Oskay [29]. On the other hand, the procedures differ for many other
aspects and drawing a parallel is beyond the scope of this work. More generally, in con-
sideration of the novelty of the proposed method and of the very promising numerical
results presented in Section 5 and obtained with this first proposed implementation, fur-
ther studies to provide a more rigorous theoretical background to the solution procedure
proposed in this paper are also left for future work, which will include error estimations
related to assumption (14) and the exploration of alternative solution schemes for the
small-time-scale solution scheme at the integration-point level.

Remark 4.2 Although the formulation has been developed in the case that both δn,min
and δn+1,min are non negative. it is easy to recognise that the case when both δn,min
and δn+1,min are non positive is of equally simple solution while the case when one is
positive and the other is negative is still conceptually simple to handle but results in a
more complex final expression.

In the case that δn+1,max > δn,max, it is not known a priori if the damage increase is
monotonic or sub-critical within the increment. Hence, the assumption that the damage
increase is sub-critical is made first, and a tentative value for the damage at the end of
the increment is computed using Equation (39). Then, the value of δ∗(tn+1) given by
Equation (40) is compared with δn+1,max. If δn+1,max < δ∗(tn+1), then the damage
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increase is indeed sub-critical and the computed value of the damage is the correct one.
Instead, if δn+1,max > δ∗(tn+1) the damage increase is monotonic and (2)2 yields:

Dn+1 =
δn+1,max − δ0
β δn+1,max

(41)

In any case, regardless of whether the damage increase is sub-critical or monotonic,
σn+1,max and σn+1,min are finally given by:

σn+1,max = (1−Dn+1) K δn+1,max σn+1,min = (1−Dn+1) K δn+1,min (42)

4.1 Material tangent stiffness
The four terms of the material tangent stiffness matrix required in Equation (30) are
computed by differentiating Equations (42) with respect to δn+1,max and δn+1,min, which
yields

∂σn+1,max

∂δn+1,max

= [1−Dn+1] K −
∂Dn+1

∂δn+1,max

K δn+1,max

∂σn+1,max

∂δn+1,min

= − ∂Dn+1

∂δn+1,min

K δn+1,max

∂σn+1,min

∂δn+1,max

= − ∂Dn+1

∂δn+1,max

K δn+1,min

∂σn+1,min

∂δn+1,min

= [1−Dn+1] K −
∂Dn+1

∂δn+1,min

K δn+1,min

(43)

When sub-critical damage has been found Equation (39) yields:

∂Dn+1

∂δn+1,max

= 0.5 γ f (tn+1 − tn)Dn+1

∂Dn+1

∂δn+1,min

= −0.5 γ f (tn+1 − tn)Dn+1

(44)

Otherwise, when the damage has been found to be monotonic, Equation (41) provides:

∂Dn+1

∂δn+1,max

=
δ0

β δ2n+1,max

∂Dn+1

∂δn+1,min

= 0

(45)

5 NUMERICAL RESULTS
The cohesive-zone model and the multi-time-scale solution strategy described in the
previous sections have been implemented in an in-house general-purpose non-linear
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finite-element code developed by the author and in this section numerical results will be
presented to show their effectiveness.

The double-cantilever-beam (DCB) adhesive joint studied by Shyanbhog [30] and
made of two aluminium plates joined by the epoxy adhesive Araldite R© 2013 is anal-
ysed. The tested specimen, which is shown in Figure 6, was subject to cyclic loading
under displacement control with constant frequency of 1 Hz and constant amplitude and
mean value, as detailed in Section 5.1. The geometry and loading scheme used are re-
ported in Figure 7, while the material parameters used in the analysis are reported in
Table 1. The interface strength σ0 was estimated based on the adhesive tensile strength,
while β was chosen so as to obtain a very high initial penalty value for the interface
stiffness. It was found that β and σ0 are high enough for the results to be effectively
not affected by small changes of them, in accordance with the findings reported in [4].
The fracture energy Gc was determined by curve-fitting the results of a monotonic test.
Instead, γ was calibrated by comparing experimental and numerical results.

Because of symmetry only the top half of the geometry was analysed, using a regular
mesh made of two rows of 80 8-noded, iso-parametric, plane-strain elements for the
aluminium plate and one row of 65 6-noded, iso-parametric interface elements.

Figure 6: DCB adhesive joint tested [30].

Aluminium

Young modulus (GPa) Poisson ratio

70 0.33

Interface

Gc (N mm−1) σ0 (MPa) β γ (mm−1)
0.4 12 0.98 0.09

Table 1: Material parameters used in the numerical simulations.

18



u(t)

u(t)

30 130

Aluminium
Araldite 2013

6
6

Figure 7: DCB-test geometry and loading (dimensions in mm).

u(t)
8-noded plane-strain elements

6-noded interface elements

Figure 8: finite-element model used in the DCB-test.

For each of the two cases analysed and reported below in Sections 5.1 and 5.2, two
types of analyses were performed, one in a conventional way and one using the multi-
time-scale solution procedure. In all cases the frequency of the cyclic prescribed dis-
placements was 1 Hz, as in the experimental test, although the rate-independence of the
model make results independent from the frequency.

In the conventional analysis, the cyclic loading was divided in a number of incre-
ments, using an automatic incrementation scheme with a maximum time increment of
0.033 s to have about 30 increments per cycle, in order to have good sampling and
to accurately capture the maximum and minimum reactions. The CZM of Section 2
was implemented in the 6-noded interface elements, and all elements have the standard
number of degrees of freedom, namely 16 and 12 for the plane-strain and the interface
elements, respectively.

In the multi-time-scale analysis, an automatic incrementation scheme was used too,
with a maximum time increment of 15 s, so that up to 15 cycles can be ‘jumped over’
within one increment of the analysis. As explained in Section 3, both in the plane-strain
elements and in the interface elements the number of degrees of freedom needs to be
doubled, in order to provide the ‘maximum’ and ‘minimum’ displacement fields umax
and umin. Denoting again by Be the standard matrix relating the nodal displacements to
the strain at each point of the element, in the plane-strain elements the stiffness matrix
is formally obtained by the same formula as Equation (30), simply using the following
constant material stiffness matrix:

(
∂σn+1,min

∂δn+1,min

)(k) (
∂σn+1,min

∂δn+1,max

)(k)

(
∂σn+1,max

∂δn+1,min

)(k) (
∂σn+1,max

∂δn+1,max

)(k)

 =

Dps 0

0 Dps

 (46)

where Dps denotes the matrix of the elastic moduli in the plane-strain case.
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In both types of analysis, a number of ‘desired’ iterations equal to Id = 5 was
set, and the automatic incrementation procedure updated the time increment for a new
increment n+1 based on the number of iterations In required to get convergence within
increment n, as follows:

∆tn+1 = ∆tn

√
Id
In

(47)

∆tn+1 and ∆tn denoting the time increments at increments n+ 1 and n, respectively.

5.1 Constant mean value and amplitude
A first case in which the prescribed mean value and semi-amplitude are constant and
equal to um = 0.85 mm and ∆u = 0.69 mm, respectively, was analysed both numeri-
cally and experimentally in Ref. [30]. Figure 9 shows the prescribed history, including
a first initial ramp loading during the first 0.16 s of the analysis to reach the mean pre-
scribed displacement.

Figure 9: prescribed displacement history for the case of constant mean value and am-
plitude.

Figure 10 reports a comparison between the time variation of the vertical reactions
obtained using the conventional cycle-by-cycle analysis and the multi-time-scale strat-
egy. For the latter, the results are obtained in terms of two curves, which are the maxi-
mum and minimum reactions obtained for the large-scale problem as described in Sec-
tion 3. Figure 10 shows excellent accuracy obtained using the multi-time-scale solution
scheme.

During the first 0.16 s of the analysis, where the mean value and the amplitude
change from zero to the final value, and during the first fourth of the first cycle, most
of the damage increase is monotonic in the multi-time-scale analysis. This results in
a relatively rapid increase in damage which, in turn, entails the need for a small time
increment, which was set initially equal to 0.08 s. The amplitude and the mean value
remain then constant and the damage increase becomes sub-critical and therefore much
slower, whereby convergence is easier and results in a gradual increase of the time in-
crement reaching the maximum set value of 15 s after about 130 cycles.
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In Figure 11 a comparison between the maximum reaction obtained using the multi-
time-scale analysis and that measured experimentally is reported. It shows that the CZM
is able to capture the behaviour reasonably well.

Figure 10: comparison between the reactions obtained in the vertical cycle-by-cycle and
the multi-time-scale analyses for the case of constant mean value and amplitude.

Finally, the comparison between experimental and numerical analysis in terms of
crack-length versus number of cycles is reported in Figure 12 and shows quite good
agreement.

Considering that the main aim of this paper is not to claim that the proposed CZM
is better than other similar models presented in the literature but rather to propose the
original multi-time-scale solution procedure, the experimental validation is considered
satisfactory. On the other hand, the proposed CZM provides some advantages in that
it allows an approximated closed-form solution of the cycle-by-cycle time-integration
at the small scale level, which allowed the author to focus on the overall aspects of
the solution procedure leaving the further development of the CZM and of its time-
integration at the small scale for future work. Similarly, since the experimental work
was limited here to the case of constant amplitude and mean value, future work will
also extend the experimental testing to the case of variable amplitude and mean value,
which is analysed in the next section numerically.

5.2 Variable mean value and amplitude
In order to further verify the numerical accuracy of the multi-time-scale solution scheme
also in the case of variable mean value and amplitude, the displacement history of Figure
13 has been prescribed for the analysis. The comparison between the results obtained

21



Figure 11: numerical vs experimental [30] results in terms of the time variation of the
vertical reaction.

Figure 12: numerical vs experimental [30] results in terms of crack-length as a function
of the number of cycles.

with the multi-time-scale and the cycle-by-cycle analyses are reported in Figure 14 and
demonstrate that the accuracy obtained is still excellent.

Also in this case rapid monotonic damage growth occurs during the initial ramp load,
within the first 0.16 s, and during the first fourth of the first cycle, which entailed the use

22



Figure 13: prescribed displacement history for the case of variable mean value and
amplitude.

Figure 14: comparison between the vertical reactions obtained in the cycle-by-cycle and
the multi-time-scale analyses for the case of variable mean value and amplitude.

of a small time increment that gradually increases between t=0.16 s and t=5 s, when the
mean value and amplitude are constant and equal to 0.8 mm and 0.4 mm, respectively,
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resulting in subcritical damage growth only. Between, t=5 and t=10 the mean value
and the amplitude linearly increase of a factor 1.33, reaching values of 1.067 mm and
0.53 mm, so that the maximum and minimum prescribed displacements increase to
1.6 mm and 0.53 mm. In this part damage growth is mostly monotonic and therefore
faster, leading to a reduction of the time increment and of the load. After t=10, the
mean value and the amplitude remain constant until t=15, then linearly decrease again
reaching the initial value at t=20 s. Hence, after t= 10 s damage growth is sub-critical
only and therefore very slow, the visible reduction in maximum and minimum reactions
shown in Figure 14 between t=15 s and t=20 s being mainly due to the reduction in
the maximum and minimum prescribed displacements. Hence, with slower damage
growth, convergence is easier and the time increment increases, gradually tending to the
maximum set value of 15 s.

The most important positive aspect of the presented numerical results is the very
good accuracy with which the minimum and maximum reactions are obtained using the
multi-time-scale solution procedure in both of the analysed cases. As commented in
Section 3, the proposed solution procedure relies on assumption (14), whose validity
is not a trivial issue. Furthermore, the time-integration scheme at the small time-scale
level also relies on some assumptions which are expected to be well verified when each
time increment spans a large number of cycles. In fact, the numerical results show that
the accuracy is excellent also when the time increment is much smaller. All these issues
require further and deeper theoretical investigation to determine error estimators which
can lead to a more rigorous explanation of the excellent accuracy obtained.

6 CONCLUSIONS
The multi-time-scale solution procedure proposed in this paper is a very effective way
to analyse fatigue crack-growth using cohesive-zone models with hysteretic response
and sub-critical damage evolution because it eliminates the most fundamental draw-
back of this type of approach, that is the excessive number of increments required in a
conventional, incremental cycle-by-cycle analysis.

Despite the hypotheses made on the displacement variation in each cycle, excellent
agreement is obtained between the analysis conducted with the new proposed multi-
time-scale method and a conventional cycle-by-cycle simulation using the same inter-
face model. With the proposed cohesive-zone model, good agreement with experimental
results in terms of load decay with time and crack length advance with time demonstrate
the potential of the developed approach to become a viable and very effective tool for
fatigue-life prediction in industrial applications.

The proposed multi-time-scale strategy can be applied to other cohesive-zone mod-
els, different from that used in this work and possibly including mixed-mode damage,
as long as they simulate the sub-critical damage growth occurring during cyclic loading.
Hence, future work will aim to get further understanding of the underlying physics of
delamination or debonding due to fatigue, both to develop more accurate cohesive-zone
models and to determine efficient procedures for the identification of the parameters.
Furthermore deeper theoretical studies aiming to determine error estimators for the pro-
posed solution scheme will be carried out.
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Finally, it is important to underline that the range of applicability of the proposed
multi-time-scale approach is not limited to the simulation of fatigue crack growth on
interfaces, but potentially comprises also other types of fatigue phenomena such as low-
cycle fatigue in general and thermo-mechanical fatigue damage in metals in particular.
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