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Abstract 

The time-temperature superposition property of an amorphous polymer acrylate network is 

characterized at infinitesimal strain by standard dynamic mechanical analysis tests. Comparison of 

the shift factors determined in uniaxial tension and in torsion shows that both tests provide 

equivalent time-temperature superposition properties. More interestingly, finite strain uniaxial 

tension tests run until break at constant strain rate show that the acrylate network exhibits the same 

time-temperature superposition property at finite strain as at infinitesimal strain. Such original 

experimental evidence provides new insight for finite strain constitutive modelling of polymer 

amorphous networks. 
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1. Introduction 

The mechanical behaviour of amorphous polymers at finite strain is very sensitive to temperature 

and strain rate, especially in the glass transition temperature range, where a change of temperature 

affects greatly the molecular mobility. Various studies have reported experimental evidences 

supporting this fact ([1-7] among others), and several viscohyperelastic models with an account of 

temperature have been proposed for the representation of the mechanical behaviour of amorphous 

polymers at finite strain ([1,4-5,8-11] for instance). Despite interesting features, the models of the 

literature show difficulties to represent accurately the mechanical behaviour of amorphous polymers 

over a wide range of temperature and strain rate, let alone to predict it. In order to better model the 

time and temperature dependent behaviour of amorphous polymer networks, useful for shape 

memory applications for instance, it is proposed to explore the time-temperature superposition 

property at finite strain. Time-temperature superposition at infinitesimal strain in amorphous 

polymers is well known [12]. Such a property formulates the idea that time and temperature are 

dependent parameters. In other words, exposing the material to a high temperature and a short 

duration is the same as exposing it to a lower temperature over a longer span of time. When looking 

at the change of the stress-strain responses of amorphous polymers when the temperature or the 

strain rate varies, such a property seems also true at finite strain. Some authors showed that master 

curves could be built for finite strain behaviour quantities such as reduced yield stress [2-3,6] or 

stretch at break [13]. Nonetheless, finite strain time-temperature equivalence remains to be tested 

on the entire stress-strain response and its quantitative estimate to be compared to the time-
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temperature superposition property measured at infinitesimal strain in order to rationalize its 

introduction in general constitutive equations. For this purpose, an amorphous acrylate network has 

been synthesized and tested in dynamic mechanical analysis and in conventional uniaxial tension 

until break. Several finite strain uniaxial tension tests were run at various constant temperatures and 

constant strain rates in order to show that stress-strain curve superposition exists also at finite strain 

and to calculate the time-temperature shift factors. The strain rates applied are moderate in order to 

avoid possible self-heating of the samples.  

 

 

2. Material and experiments 

2.1. Material 

An acrylate network was prepared by copolymerization of benzyl methacrylate (BMA) with 

poly(ethylene glycol) dimethacrylate (PEGDMA) of molar weight 550 g/mol, which was used as 

crosslinker. 90% molar mass of BMA was mixed at room temperature with 10% molar mass of 

PEGDMA and 0.5% of 2,2-Dimethoxy-2phenylacetopenone (DMPA) used as photoinitator. Products 

received from Sigma Aldrich were used without transformation. The mix was cured between glass 

frames in a UVP ultraviolet chamber CL-1000 for 50 minutes in order to obtain plates of constant 

thicknesses as required for mechanical testing. 

 

 

2.2. Experiments 

The material was submitted to dynamic mechanical analysis (DMA) in torsion and in uniaxial tension.  

Dynamic torsion tests were run on a MCR502 rheometer from Anton Paar while dynamic uniaxial 

tension tests were performed on a DMA Q800 from TA instruments. Rectangular samples of length x 

width x thickness  equal to 40 x 12 x 1.3 mm3 were submitted to dynamic torsion and rectangular 

samples of 30 x 5 x 1.3 mm3 were used for dynamic tension. In order to build the material storage 

modulus master curve and to calculate the shift factors characterizing the time-temperature 

superposition at infinitesimal strain, isothermal frequency sweeps at 0.1% strain from 0.01 to 10 Hz 

were applied from 37 °C to 64 °C every 3 °C in torsion and from 30 to 65 °C every 5 °C in tension.  

At finite strain, dog-bone shape specimen of 1.3 mm thickness, 4 mm width and 20 mm gage length 

were submitted to isothermal uniaxial tension tests on an Instron 5881 testing machine equipped 

with a thermal chamber. Since crosshead displacements provide inaccurate measures of strain when 

dealing with finite strain, local strain was measured by video extensometry. The resulting force was 

recorded with a 1 kN cell. Some tests were run at constant crosshead speed of 1 mm/min. In order to 

run tests at constant strain rate, our experimental setup required to use constant piecewise 

displacement speed. The calculation of the strain rate afterward proved that it remained close to 

constant during these tests.  The strain rate was estimated by  taking the derivative with respect to 

time of the logarithmic strain,  0/ln ll , with 𝑙 and 𝑙0 being the current and the initial distances 

between two markers painted on the free surface of the sample and followed by the video 

extensometer. Therefore, the strain rate was calculated according to ll
ll

ll
/

/

/

0

0





 . Note that

0/ ll


 is the engineering strain rate. It was observed that tests run at constant crosshead speed do not 

provide access to either constant engineering strain rate tests or constant strain rate tests due to 



Published in Polymer (2015) vol. 58 pp 107-112 
 

3 
 

non-homogeneous strain within the sample resulting from the large strain applied.  In order to satisfy 

to a commonly used representation of material behaviour in conventional uniaxial tension, the 

material response will be plotted in terms of the engineering stress )/( 0SF with respect to the 

engineering strain  






 

0

0

l

ll
, with 𝑙 and 𝑙0 being obtained from the video extensometer. 

Each test was performed three times in order to validate the experimental reproducibility.  

 

3. Time-temperature superposition at infinitesimal strain 

The amorphous acrylate network was submitted to standard frequency sweeps in torsion at constant 

temperature. From the measured storage modulus 'G  and damping factor, master curves were built 

in order to verify the time-temperature superposition property (Fig. 1). The latter property is 

expressed mathematically by introducing a reduced time   defined at the reference temperature 0T , 

and writing the relationship between the reduced time and the actual time at temperature  tT  

through the shift factor 
0Ta  according to: 

  tTa

t

T0

d
d       (1) 

 

 

Figure 1. Master curves for the storage modulus and damping factor measured in torsion for a 

reference temperature of 45 °C.  

 

The material linear viscoelasticity was also characterized in uniaxial tension. Isothermal frequency 

sweep tests were carried out in order to determine the storage modulus 'E  and its associated 

damping factor. The master curves characterizing the material frequency dependence in tension are 

shown in Fig. 2.   
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Figure 2. Master curves for the storage modulus and damping factor measured in uniaxial tension for 

a reference temperature of 45 °C. 

The comparison of the shift factors directly obtained from the master curve building procedure is 

shown in Fig. 3. The material presents similar shift factor values in uniaxial tension and in torsion.  

 
Figure 3. Comparison of the time-temperature superposition shift factors obtained at 

infinitesimal strain in torsion (MCR502) and in tension (DMA Q800). 

Comparing the storage modulus and the damping factor obtained in uniaxial tension to those 

measured in shearing is possible but demands to make some assumptions. For linear viscoelastic 

isotropic materials, the complex moduli satisfy to the same relationship as the elastic moduli for 

elastic isotropic materials [14]. Therefore, denoting "'* iGGG   and "'* iEEE  the complex 

shear modulus and the complex Young modulus respectively, one may write: 

**

**
*

9

3

EK

EK
G


      (2) 

with 
*K  the complex bulk modulus. It is very difficult to reach 

*K experimentally. Moreover, the 

storage bulk modulus is expected to drop by a factor of 2 to 3 only when temperature rises above the 
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glass transition [15]. Therefore, a first assumption consists in assuming the bulk modulus as elastic 

 KK *
 and constant. Doing so and choosing a value of 1150 MPa to reach a Poisson ratio of 0.41 

in the glassy state and 0.499 in the rubbery state, complex shear storage modulus values may be 

calculated from the values of *E  measured by uniaxial dynamic mechanical analysis, using Eq. (2). It 

is also known that the DMA apparatus compliance may introduce some measure inaccuracies [16], 

especially at high frequencies when the material stiffness is high. During our experiments, it was 

noted that the DMA Q800 measures obtained at low frequencies compare well with standard 

uniaxial tension at low strain rates. To the contrary, at high frequencies, the storage modulus was 

observed to be significantly overestimated. In torsion, the MCR502 rheometer was shown to provide 

inaccurate measures at both low and high frequencies. As a consequence, adjustments of the storage 

modulus 'G  estimated with Eq. (2) from the measures of *E  and the assumption KK *
, are 

necessary at both rubbery and glassy plateaus to compare it to the values of 'G  that has been 

measured with the Anton Paar rheometer. This adjustment is made according to equation:  

))'min('(.'
~

GGbaG                            (3) 

with a  and b  two constants. Constant a  corrects the storage modulus at low frequencies and b  

corrects it at high frequencies. Values of a= 2 MPa and b=1.18 have been used.  Acknowledging both 

assumptions, one may compare the storage modulus and the damping factor provided by both sets 

of measurements (Figs. 1 and 2). Figure 4 shows the comparison between the measured storage 

modulus 'G  and the storage modulus '
~
G  deduced from Eq. (2) and Eq. (3). One notices a very 

satisfactory matching between the data, which leads to several remarks. First, assuming the bulk 

modulus as elastic is a satisfactory assumption when studying the material viscoelasticity in tension 

and in shearing. Note that measures of 
*E and 

*G  are not accurate enough to reach the dynamic 

values of 
*K  with the relationship, 

 **

**
*

33 EG

EG
K


 .     (4) 

Second, the linear viscoelasticity and time-temperature superposition property of an isotropic 

amorphous polymer network may be well estimated by either uniaxial tension or shearing dynamic 

tests since both lab tests provide with similar results. 
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Figure 4. Comparison of the master curves for the storage moduli 'G  and damping factors 

'/'' GG  measured by torsion DMA tests and calculated from uniaxial tension DMA data, 

assuming the bulk modulus elastic. 

 

Now that the time-temperature superposition property has been estimated at infinitesimal strain, let 

us return to our primary focus that is exploring the possible time-temperature superposition 

property at finite strain and its quantitative comparison with the time-temperature property 

characterized above.  

 

 

4. Time-temperature superposition at finite strain 

4.1. Dependence of the material stress-strain behaviour to temperature and strain rate 

The effect of strain rate or temperature on the mechanical behaviour of amorphous polymers at 

finite strain in uniaxial tension has been illustrated in various contributions. Nonetheless, one may 

note that experimental focus has been emphasized on thermoplastics rather than on thermosets. An 

illustration of the impact of the temperature on the acrylate network stress-strain responses, when 

uniaxially stretched until break at a constant displacement rate, is presented in Fig. 5. The effect of a 

change of strain rate at constant temperature is also shown in Fig. 5. The material stress-strain 

responses obtained at constant strain rates are less smooth due to the fact that constant strain rates 

were applied thanks to piecewise constant crosshead displacement speed as explained in section 2.2. 

When presented as such, the stress-strain responses plotted in Figure 5 suggest that time-

temperature superposition exist at finite strain but without providing access to its quantitative 

estimate.  
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Figure 5. Temperature and strain rate dependences of the acrylate network stress-strain 

response to uniaxial tension tests. Left: Tests run at various temperatures and at a constant 

displacement speed of 1 mm/min. Right: Tests run at various constant strain rates at 45 °C. 

 

 

4.2. Direct experimental evidence of time-temperature superposition  

In order to evidence and estimate the time-temperature superposition property of the acrylate 

at finite strain, uniaxial tension tests were run at various temperatures and various constant 

strain rates in order to study the superimposition of the stress-strain behaviours over the 

complete stretch range sustained by the material. Three different material stress-strain 

responses were measured at 45 °C according to various applied test strain rates 


  as presented 

in Fig. 5. For each of these stress-strain responses, different pairs 






 

,T  are to be found in 

order to show that it is possible to find the same stress-strain response at other temperatures by 

setting the strain rate to the suitable values. For temperatures lower than 45 °C, the adequate 

strain rate is expected below the strain rate applied at 45 °C, while at temperatures higher than 

45 °C, the applied strain rate should be above. It was decided to change the temperature within a 

10 °C range in order to keep the strain rate variations within our equipment capacity. Once the 

temperature set, several tests at constant strain rates were run until reaching a good match of 

the material stress-strain response with one of the responses obtained at 45 °C and plotted in 

Fig. 5. Fig. 6 shows the material stress-strain responses obtained at 45 °C that were presented in 

Fig. 5 and similar stress-strain responses obtained with the same material at other temperatures 

and constant strain rates. Therefore, a time-temperature superposition does apply at finite 

strain, at least in the temperature and strain rate ranges considered. Moreover, this 

superposition requires a mere shift factor to be applied to the strain rate, which is in favour of 

thermorheologically simple (TRS) models [5,17,18], where the material free energy is written in 

terms of strain history using a reduced time that depends on temperature history through the 

shift factor. 

Using the same definition as in Eq. (1), the experimental values of the shift factors at finite strain 

can be deduced from the strain rate values 


 , 



Published in Polymer (2015) vol. 58 pp 107-112 
 

8 
 

 
 
 Ta

T
T

T0

0







  .     (5) 

From Fig. 6 and using Eq. (5), one may estimate three sets of  TaT0
 values at finite strain for the 

reference temperature of 0T 45 °C. Fig. 7 presents a comparison of these shift factors and those 

obtained at infinitesimal strain (Fig. 3), and it can be observed that all shift factors are aligned. 

Therefore, the acrylate network shows the same time-temperature superposition property at 

infinitesimal strain as at finite strain. As a consequence, standard small-strain DMA tests may be 

enough to identify easily the time-temperature superposition that applies at finite strain, which 

was already used for shape memory modelling for instance [5,17] but without experimental 

evidences supporting it. Note that this conclusion was reached at moderate strain rates, further 

work would be necessary to investigate the case of high strain rate conditions, which has 

interested several authors [2-3,19-20]. The latter recent publications, dealing with amorphous or 

semi-crystalline polymers, have evidenced time-temperature superposition at finite strain on the 

peak stress value only and without direct comparisons with the time-temperature superposition 

property measured by DMA. 
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Figure 6. Experimental evidence of time-temperature equivalence at finite strain: Uniaxial 

tension stress-strain material behaviour for various temperatures and strain rates. 
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Figure 7. Comparison of the time-temperature superposition shift factors obtained at 

infinitesimal strain (Fig. 6) and at finite strain in uniaxial tension (UT). 

 

5. Conclusion 

An acrylate network was synthesized in lab and submitted to mechanical tests in order to better 

understand the temperature and strain rate dependences of the mechanical behaviour of 

amorphous networks when submitted to finite strain.  The time-temperature superposition property 

of the acrylate amorphous network was studied at infinitesimal strain by classic dynamic mechanical 

analysis and at finite strain by applying uniaxial tension until break at various constant temperatures 

and constant strain rates. Experimental results obtained at finite strain confirmed results from the 

literature exhibiting a strong dependence of the material uniaxial tension stress-strain response to 

temperature and strain rate. More interestingly, it was observed that the same stress-strain response 

could be obtained for various temperature and strain rate conditions. From these experimental 

evidences, it was possible to determine the time-temperature shift factors measured at finite strain. 

When compared to the infinitesimal strain time-temperature shift factors, it was showed that the 

time-temperature superposition property exhibited by the material was the same at small strain and 

at finite strain. This original experimental result should help defining more relevant temperature and 

rate dependent constitutive models for amorphous networks at finite strain relevant for rubber or 

shape memory polymer applications for instance.  
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