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Design methodology of a complex CKC 

mechanical joint with an energetic 

representation tool “multibond graph”: 

application to the helicopter 

Benjamin BOUDON*, François MALBURET, Jean-Claude CARMONA 

Abstract  Due to the operation of the rotor, the helicopter is subject to important 

vibration levels affecting namely the fatigue of the mechanical parts and the pas-

senger comfort. Suspensions between the main gear box (MGB) and the fuselage 

help to filter theses problematic vibrations. Their design can be difficult since the 

filtering should be efficient for different types of external forces (pumping force 

and roll / pitch torque) which may appear during the flight.  

As passive solutions classically show their limits, intelligent active solutions are 

proposed so that the filtering can be adjusted according to the vibration sources. 

Such studies still suffer from a lack of tools and methods, firstly, necessary to the 

design of complex mechanical systems (due to their multi-phase multi-physics 

multi-interaction characteristic, …) and secondly, to develop of an intelligent joint. 

The main objective of this paper is to provide a methodology for designing and 

analyzing an intelligent joint using an energetic representation approach: the multi-

bond graph (MBG). This method is applied here to a complex mechanical system 

with closed kinematic chains (CKC) which is the joint between the main gear box 

(MGB) and the aircraft structure of a helicopter. 

Firstly, the MBG method is analyzed. Secondly, after a brief state of art of the 

MGB-Fuselage joint, developments focus on the 2D and 3D modeling of the MGB-

Fuselage joint with a MBG approach. The 20-sim software is used to conduct the 

simulation of bond graph. Finally, the MBG models results are presented, illustrat-

ing the potential of the MBG tool to predict the dynamic of a complex CKC me-

chanical system.  
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1 Introduction 

The rotor of a helicopter is a powerful vibration generator that can generate var-

ious vibration phenomena. Let us consider:  

- forced vibrations, 

- resonances "ground and air", 

- dynamic problems of the power chain. 

Blades undergo periodic and alternating aerodynamic forces whose fundamental 

frequency is the rotation frequency of the rotor. This result is explained in [1]. These 

efforts on the blades cause forces and moments on the hub which then becomes a 

mechanical excitation of the fuselage. Therefore, its behavior depends on its dy-

namic characteristics and the filtering systems placed between the rotor and the fu-

selage (as shown in Fig. 1). In this sequel, we will focus on one of these filtering 

systems: the Dynamic Anti-Resonant Vibration Absorber system (DAVI) (called 

Suspension Antivibratoire à Résonateur Intégré (SARIB) in French).  

Fig. 1 Helicopter suspension between the MGB and the aircraft structure

Fig. 2 summarizes the main consequences of forced vibrations in a helicopter as 

explained above. For simplicity, the various couplings between the rotor and the 

fuselage, due to the actions of the fuselage on the dynamics of the blades, are not 

taken into account. 
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Fig. 2 Consequences of the forced vibrations on the helicopter 

The MGB-Fuselage joint must ensure several important functions. Firstly, the 

joint allows the transmission of the static force necessary to the sustentation of the 

helicopter with a limited required static displacement. Moreover, the joint helps to 

reduce the mechanical vibrations transmitted to the fuselage according to the force 

and displacement aspects. Classically, the MGB-Fuselage joint is composed of four 

MGB bars and a main membrane as shown in Fig. 3. 

 

Fig. 3 MGB-Fuselage description 
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Different technical solutions exist for the realization of this joint. In this paper, 

the SARIB system is particularly studied. The architecture of this system is detailed 

in section 3. 

The design and the analyze of such complex mechanical systems are usually 
conducted with analytical methods based on physical equations or signal-flow 
method based on transfer functions written on a block diagrams form. Unfortu-
nately, these two classical approaches may cause a loss of the physical sense and 
the visibility of the modeling assumptions [2]. Moreover, taking account of increas-
ing complexity requires partially to resume a part of the modeling phase. 

The “complex mechanical system dynamics” project, funded by European Aero-
nautic Defense and Space foundation (EADS), focuses on helicopter dynamics and 
has as main objective the development of an analysis methodology together with 
the related tools in order to support design and control of such systems. The present 
paper presents an energetic representation tool for modeling: multibond graph 
(MBG). The MBG is applied to model the dynamic of a classical helicopter subsys-
tem: the main gear box MGB-Fuselage joint. This approach enables to represent 
mechatronics systems in a graphical form describing the exchange of power be-
tween basic elements like inertia, compliance, dissipation, conservative power 
transformation, gyrator actions and sources. The bond graph approach used for 
multibody system called multibond graph (MBG) has been introduced by A. M. Bos 
[3] [4]. Library models for a rigid body and for various types of joints have been 
provided and bond graph models of rigid multibody systems can be assembled in a 
systematic manner. Further, W. Marquis-Favre and S. Scavarda [5] proposed a 
method dedicated to systematic generation of bond graph models for multibody sys-
tems with kinematic loops. Nevertheless, few complex multibody systems with kin-
ematic closed loops have been simulated on dedicated softwares such as 20-sim 
software [6] (simulation package for dynamic systems using physical components, 
block diagrams, bond graphs and equations of motion). 

The SARIB system here studied is a complex mechanical closed kinematic chain 

(CKC) system. The dynamics equations of such a CKC system are a differential-

algebraic equations system (DAE) which are difficult to treat and which require 

specific solving methods. It will be shown that the multibond graph method together 

with the method of singular perturbations appears to be an elegant and easy solution 

to derive the simulation of CKC system. 
The main objective of this paper is to present a design methodology based on an 

energetic representation tool : multibond graph and to show its benefits as a sys-

temic approach. This method will be applied to model a joint between the main gear 

box (MGB) and the aircraft fuselage which is a complex multi-body system because 

of the numerous bodies and joints and the mechanical forces applied on the MGB. 

The paper is organized as follows. In section 2, we shall explain the main ad-

vantages of the energetic representation tool chosen: the multibond graph compared 

to other more classical methods. Section 3 describes the kinematic structure and the 

operation of the MGB-Fuselage joint. The construction of the multibond graph of 

the joint desired is then detailed in section 4. Simulation results will be presented in 

Section 5. Finally, conclusions and perspectives will be given in the last Section. 



 2 Energetic tool : MBG for complex mechatronic system modeling 

2.1 Characterization of complex mechatronic system 

The design of the MGB-Fuselage joint studied is within the scope of the design 

of mechatronic systems. Many definitions of mechatronic systems exist. For exam-

ple, French standard NF E 01-010 [7] gives the following definition: “approach 

aiming at the synergistic integration of mechanics, electronics, control theory, and 

computer science within product design and manufacturing, in order to improve 

and/or optimize its functionality".  

We shall not detail more the concept of mechatronic systems thereafter. This 

standard and the paper [8] have dealt with the issue sufficiently so as to define the 

perimeter of the mechatronics system studied. However, what we consider as a com-

plex system is going to be defined in a more detailed way in the sequel. The goal is 

to facilitating a better understanding of the energetic representation tool chosen to 

describe complex multiphysic systems. 

Let us remember that a multiphysic system is a multitechnology system which 

involves a multidisciplinary approach: mechanics, electronics and control. For the 

MGB-Fuselage joint equipped with adjustable SARIB system, the presence of con-

trol systems and possible electronics devices to achieve energy harvesting widely 

justify this multiphysic characteristic. 

Moreover, a multiphase system is characterized by different operating phases 

during its life cycle. For example, the joint is built into a helicopter system with 

many operating phases: on the ground, parking flight, in forward flight. 

A multiscale system is characterized by the physical laws of different scales: 

distributed / lumped parameters and microscopic / macroscopic scale. The MGB- 

Fuselage joint connection equipped with adjustable SARIB system was modeled as 

a multibody lumped parameter model in this paper. Taking into account the nature 

of certain deformable bodies (as the fuselage) may require additional models with 

distributed parameters. 

A multiinteraction system includes a large number of elements in relation to 

each other and whose interactions can make emerge new properties. This character-

istic of complex systems emphasizes their holistic character based on the principle 

that "the whole is greater than the sum of its parts". The MGB-Fuselage joint 

equipped with adjustable SARIB system is a system with many bodies constrained 

by kinematic links. Moreover, this joint is itself embedded in a larger system: the 

helicopter with which it has many interactions (the fuselage, the rotor, or the com-

mand chain …). 

Such systems present complex multibehavior (nonlinearity, friction, gap ...). In 

effect, in the case of the MGB-Fuselage joint equipped with adjustable SARIB sys-

tem, there are primarily geometric nonlinearities and friction in the equations. 



2.2 Interest of using a system approach 

Given the multidisciplinary aspects and complexity of mechatronic systems we 

have stated in the previous paragraph, the design tools must have some essential 

features to enable their efficient modeling. 

First, the design tool should be based on a unique and unified language for dif-

ferent fields of physics in order to enable a common modeling early in the design 

phase of multiphysic systems. 

Then, the design tool should lead to models describing the physics of the model 

regardless the purpose of modeling. Such a model having a structure independent 

of its inputs and its outputs is called acausal. This acausal type of model is particu-

larly interesting to model multiphase systems since the model structure remains in-

dependent of the type of inputs (related to the operating conditions considered) ap-

plied to the system. 

Then, the design tool should allow a multilevel approach like an object-oriented 

language. This object-oriented approach facilitates the decomposition of a system 

into subsystems with the encapsulation of these approaches property. This multi-

level approach then permits a better management of two characteristics of complex 

systems studied. Firstly, it allows a simplification of the presentation of systems 

with multiple interactions almost essential for their analyses. Indeed, the decompo-

sition of the system into subsystems helps to hide the internal interactions of each 

subsystem and, therefore, to distinguish the interactions between major subsystems 

and the internal interactions of these subsystems. Secondly, it facilitates the inclu-

sion of the multiscale aspect since it allows one to encapsulate a distributed param-

eter model in a lumped parameters model with higher level parameters. However, 

this last point discussed in [9] remains still under study and has not been validated 

in this paper. 

Finally, the design tool should provide a modular aspect to the system model as 

presented in [10]. Indeed, the model must evolve to meet the levels of complexity 

required for each design problem by the addition or modification of new compo-

nents and subsystems and by replacing behavior laws. This is intended to deal with 

all aspects multi-interaction and multibehavior of a mechatronic system. 

Table 1 Complexity of studied system 

Design tool characteristics Complex system characteristics 

Unique and unified representation Multiphysic 

Acausal model Multiphase 

Multilevel representation Multiscale 

Modular Multi-interaction 

Multibehavior 



      2.3 MBG modeling 

2.3.1 Overview 

The concept of energy is fundamental in the description of the evolution of tech-

nological systems. Energy is present in all areas of physics and is the link between 

them. From this observation, a number of tools with energetic representation for 

modeling complex systems have been defined. One of the main tools is the bond 

graph (BG). 

The bond graph was created by H. Paynter [11] in 1959 and developed by R. 

Rosenberg and D. Karnopp [12] at MIT Boston in the United States. 

The bond graph is based on a study of the transfer of power in a system modeled 

by lumped parameters. The bond graph is a graphical modeling tool that covers all 

physical systems (mechanical, hydraulic, electronic, thermal...) regardless of their 

condition (linear, nonlinear, continuous …). 

It is represented as an oriented graph showing dynamic variables and power 

bonds between these variables. The bond graph systematically associate two differ-

ent variables for each bond: a generalized effort variable (which is a force or a 

torque in mechanics) and generalized flow variable (which is a translational or ro-

tational velocity in mechanics) on each side of the half-arrow link. Each bond has 

therefore power information, obtained by the product of these two variables, and 

allows direct access to the energy transferred by simple integration of power. The 

bond graph is based on three fundamental types of elements: active element, passive 

element and junction element. The active elements noted Se and Sf respectively 

represent sources of effort and flow. These are the power inputs of the system. The 

fundamental property that defines a source is that the variable effort (Se) or flow 

(Sf) provided by a source to a model is assumed to be independent of the comple-

mentary variable flow (Sf) or effort (Se) which depends on the characteristics of the 

system and the variable applied. Passive elements I, C and R are the three main 

components of a bond graph. The first two represent energy storage elements, re-

spectively in kinetic and potential form, while the latter represents a dissipative el-

ement. In a bond graph representation of a complete system, these previous ele-

ments can be interconnected by connecting elements in common effort (0 junction) 

or common flow (junction 1), or processors elements (TF) or gyrators (GY). 

More details on bond graph can be found [13] detailing its construction and op-

eration that we can do.  

The bond graph has been extended in the 90’s to the study of the multibody 

systems with three dimensions thanks to the multibond graph formalism. Here, the 

scalar power bonds become vectors bonds and the elements multiports.  



2.3.2 Brief review of MBG 

A brief review of multibond graph used for multibody systems is now presented. 

Readers wishing more details can refer to the multibond graph state of the art di-

rected by W. Borutzky [14] which is quite exhaustive. 

The first works were developed by M. J. L. Tiernego and A. M. Bos [3] to model 

robots. Then A. Zeid and C.-H. Chung [15] developed libraries of multibond graph 

model of three-dimensional kinematic joints. Then W. Marquis-Favre’s PhD [16] 

contains a large contributions of multibond graph applied to multibody system. The 

multibond graph is used to model both systems: serial systems and systems with 

kinematic loops. The concept of word bond graph (WBG) well illustrated in [17] 

[18] enables to have a more concise and simplified representation. The contributions 

of G. Rideout [19] and T. Rayman [20] present the simulation of multibody system 

with kinematic loops with multibond graph and 20-sim software. In their work, the 

method of singular perturbations from the work of A. Zeid and C.-H. Chung [15] is 

applied to allow the simulation of multibody system. 

2.3.3 Benefits of MBG as a structural representation 

In the modeling phase, over the last 20 years, new tools based on structural ap-
proach have emerged in comparison with the classic functional approach. We can 
mention monophysic tools such as SPICE for electrical field, ADAMS or LMS for 
multibodies field and multiphysics tools such as MapleSim software, Modelica or 
multibond graph. The definition of the scope of structural and functional models 
can be found in [21]. The MBG approach belongs to this category of the tools ena-
bling the construction of structural models as mentioned in Fig. 4. Consequently, it 
benefits from the same advantages.  

 This new structural approach as the multibond graph facilitates the systemic 

approach necessary to design a mechatronics system. 

Firstly, the complexity of the system is taken into account more progressively 

than with conventional analytical techniques since the possible modular approach 

[10] makes it easier modeling a complex system subsystem by subsystem. Indeed, 

the modularity allowed by the MBG method enables to make the model evolve to 

meet the levels of complexity required for each design problem by the addition or 

modification of new components and subsystems and by replacing behavior laws. 

As a consequence, the global representation of the system built from subsystems 

facilitates the management of interactions and/or couplings.  

Secondly, the multilevel representation of the system realized thanks to the use 

of word bond graph (WBG) allows to concatenate the bond graphs of bodies and 

joints. This technique makes possible to "zoom in / out" on different parts of the 

system as it can be done in a Simulink model [22].  
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Consequently, the modular and multilevel aspects of this tool, essential for a 

systemic approach, help to simplify the representation and analysis of complex sys-

tems. 

Moreover, the structural approach generally enables the generation of acausal 

model which makes its structure independent of its inputs and outputs as we men-

tion in section 2.2. 

2.3.4 Methods comparison : MBG versus others structural approach 

In comparison with others structural tools, new interesting features naturally ap-
pears as mentioned in Fig. 4.  

Firstly, this tool allows engineers and researchers working in multidisciplinary 
fields (especially mechanics and electronics) to have a unified representation show-
ing power transfer between system’s elements in order to support complex mul-
tiphysic system modeling.  Indeed, it should enable to easily introduce an electronic 
model of energy harvester or active control system to the mechanical system thanks 
to the same modeling representation.  

Secondly, the classical functional approach using signal-flow can complete the 
structural multibond graph model in the 20-sim software. This hybrid feature is very 
useful for performances evaluation and for the determination of a possible control 
law. 

Thirdly, this approach allows to describe the exchange of power or energy be-
tween the different components of a mechatronics system. Thanks to multibond 
graph representation, this energetic approach should permit to analyze the location 
where mechanical energy is optimum for energy harvesting consideration for ex-
ample.  

Fourthly, contrary to dedicated software enabling a structural approach in multi-

body modeling where the multibody elements have finite possibilities of parame-

tering, the MBG is more completely configurable since the designer uses the multi-

bond graph of bodies and joint built from the standard elements depicting physic 

laws and which can be thus easily modified. 

3 Study case : the MGB-Fuselage joint of an helicopter 

The classical MGB-Fuselage joint is composed of four MGB bars and a main 

membrane as we can see in Fig. 5. Let us analyze the principle of operation of this 

joint. The components of the mechanical actions of the  Rotor MGB  on the fu-

selage are composed by a static part of the effort required to the lift and a dynamic 

part from dynamic excitations induced by the rotor on the fuselage due to its own 

rotation. 



The MGB bars can suspend without flexibility the fuselage to the rotor and thus 

transmit the lift from the rotor to the structure. In addition, the MGB bars allow the 

MGB to have a rotation around a point called the focal point which is the point of 

intersection of the MGB bars. 

The membrane is a flexible suspension with some particularities: 

- a low stiffness for angular movements on the roll and pitch axes and the linear 

vertical pumping displacement, 

- a very high stiffness for linear movements perpendicular to the vertical direc-

tion and for the yaw movement. 

Thus, the membrane allows the angular movement of the MGB around the pitch 

and roll axes. The flexibility of the membrane around these axes allows a strong 

filtration of the dynamic moments around these axes. This filtering is achieved by 

adjusting the frequency of the pendulum system smaller than the excitation fre-

quency of the rotor. 

In addition, the membrane transmits to the main rotor torque thanks to its very 

high stiffness around the yaw axis. 

In conclusion, the conventional suspensions allow filtering pitch and roll dy-

namic moments without filtering the pumping dynamic efforts.  

 

Fig. 5 Flexible classical MGB-Fuselage joint 

The purpose of the SARIB suspension is to render possible the filtering of these 

pumping dynamic efforts. 

The SARIB system is composed of SARIB Bars with a tuning mass on each bar 

which are installed between the MGB bars and the fuselage.  The SARIB system is 

designed so as to create inertial forces on the fuselage opposite to the force of the 

membrane. This system enables to reduce the efforts transmitted to the fuselage for 

a frequency called anti-resonance frequency.  

To begin with, the analysis based on multibond graph focuses on the kinematic 

scheme of the 2D MGB-Fuselage joint. This simplified model is sufficient to iden-

tify physical anti-resonance phenomenon.  

MGB Bars 
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The kinematic scheme of the 2D MGB-Fuselage joint is composed of four bod-
ies (the MGB, a MGB bar, a SARIB bar and the fuselage considered as fixed) and 
five joints (three revolute joints and two prismatic joints) as shown in Fig. 6. These 
bodies are assumed to be rigid. Some local moving reference frames are attached to 
these bodies: 

attached to the MGB, 

attached to the SARIB Bar, aattacha
 attached to the MGB Bar, a

 attached to the fuselage. 
The orientation of the SARIB Bar and the MGB bar are described respectively 

by angles and . The flexible membrane located between the MGB and the fuse-
lage is modeled with two prismatic joints in serial. The intermediate part (called Int) 
is considered with negligible mass. The position of MGB is described by x and z 
coordinates. 

Moreover, three springs enable the system to have a good filtration behavior. A 
torsional spring leads to the limitation of the high movement of the SARIB bar. A 
weak spring along z axis permits the vibrations filtering. A high spring along x axis 
prevents from a hyperstatic system. 

Fig. 6 Kinematic scheme of the 2D joint between the main gear box and the fuselage 

Next, the simulation of the 3D MGB-Fuselage joint with the same energetic ap-
proach will be done. A kinematic scheme of the complete MGB-Fuselage is shown 
in Fig. 7. The joint consists of a fuselage considered as fixed, a MGB and four iden-
tical legs and a membrane. Each leg consists of a SARIB Bar and a MGB Bar con-
nected by a spherical joint. The upper end of these legs are connected to the MGB 
with spherical joints and the lower end of these legs are connected to the fuselage 
through revolute joints. The flexible membrane located between the MGB and the 
fuselage is now modeled with a prismatic joint and two revolute joints in serial. The 
intermediate parts (called Int1 and Int2) are considered with negligible masses. For 



simplicity, the orientation and position parameters are not represented in the kine-

matic scheme but are described in the joints graph.  

Fig. 7 Kinematic scheme of the 3D joint between the main gear box and the fuselage 

4 MBG modeling 

4.1 Modeling a multibody system 

Only the theoretical elements essential to the practical realization of the multi-

body bond graph representation is developed.  

Bond graph construction based on multi-body dynamics equations can be estab-

lished either with the fundamental principle of dynamics (or Newton-Euler equa-

tions) or by using Lagrange equations. Depending on the starting point, several bond 

graph construction methods have been developed: 

- the “Tiernego and Bos” method from the application of the fundamental principle 

of dynamics, 

- the “Karnopp and Rosenberg” method from the application of the Lagrange equa-

tions. 



The method used in this paper is the method of "Tiernego and Bos" since it 

allows to describe the system as an assembly of subsystems composed of bodies 

and joints. This assembly of sub-systems is clearly facilitated by the use of word 

bond graph (WBG). In the WBG, the bond graph of solids and joints are encapsu-

lated in order to focus only on the relationship between solids and joints. Each word 

bond graph element (bodies or joints) is linked to another word bond graph element 

through two power bonds for the rotational and translational power transmissions. 

Each power bond carries a 3D generalized flow vector (rotational or translational 

velocity) and the complementary 3D generalized effort vector (torque or force). 

Bond graph construction developed with the "Tiernego and Bos" method re-

quires the knowledge of a number of multibond graph elements, the bond graph 

modeling of a rigid body and joints. 

The multibond graph elements (multibond or vector bond, junctions, multiport 

energy storage elements, multiport transformers and gyrators) are directly used. 

Readers can refer to [14] to find the details of the modeling of those elements. 

4.2 Simulation difficulties of CKC systems 

The simulation of mechanical system with kinematic loops requires specific 

methods. This difficulty does not come from the multibond graph tool but from the 

application of dynamics equations to such systems where some kinematic variables 

are linked together. Regardless the analytical method employed (fundamental prin-

ciple of dynamics or Lagrange equations with multipliers), the equations obtained 

are differential algebraic equations (DAEs) whose numerical resolution requires 

specific numerical integration methods. These difficulties to solve numerically dif-

ferential equations are developed, for example, in W. Marquis-Favre [23]. A recent 

review of the methods for solving DAEs can be also found in [24]. To sum up, one 

can find three groups of methods: the direct resolution of the DAE thanks to specific 

solvers, the reduction of the DAE in an ODE like the Baumgarte stabilization 

method or partitioning method and the conversion to an ODE by modifying the 

model system. The singular perturbation method which is used in the paper belongs 

to the last category of these methods that is to say the conversion to an ODE by 

modifying the model system. 

4.3 Use of the singular perturbation method 

The multibond graph simulation with the method of the singular perturbation is 

quite easy to implement compared to conventional techniques used during an ana-

lytical study. Others techniques based on multibond graph enabling to treat the sim-

ulation of mechanical with kinematic loops exist and are described in W. Marquis-



Favre’s PhD [16]. However, we decided to use the method of singular perturbation 

which, to our point of view, keeps a physical insight and is the simpliest to apply.  

The method of singular perturbation consists in augmenting the multibond graph 

of the joints with parasitic elements [19] [20]: stiffness and damping elements cor-

responding to C energy store element and R resistive element. The values of the 

compliant elements must be chosen carefully. To our knowledge, two methods for 

selecting these elements exist : the eigenvalues decoupling between the parasitic 

frequency and the system frequency and the use of activity metric [19]. These pa-

rameters can be chosen so as to model the joint compliances which exist in all me-

chanical joints. Thus, this point gives to this method a physical significance. The 

stiffnesses introduced should be high enough in order not to change the dynamic of 

the system but not too high so as to prevent the numerical difficulties of stiff prob-

lems (with high-frequency dynamics). This method leads to a necessary compro-

mise between the accuracy of the results and the simulation time. Moreover, the 

stiffer the system is, the more numerical errors are reduced but the simulation time 

remains important. However, the increase of the simulation time can be balanced 

by parallel processing as the mass matrix in a block-diagonal form can enable to 

decouple the system as it is explained in [25]. As T. Rayman recommends, adding 

a damping element (R resistive element) in parallel with the stiff spring (C energy 

store element) enables to dampen the high eigen frequency associated with the high 

stiffness. The exact influence of these parameters still remains a research work in 

which the authors are particularly interested in.  

If the kinematic constraints modeled by the multibond graph of the joint are 

rigidly imposed, derivative causality appears at the multibonds connected to the 

translational inertia elements. The derivative causality due to constraints requires 

that the equations derived from the bond graph are differential algebraic equations 

(DAEs). The resolution of such equations is quite complex from a computational 

point of view as we explained before. The method of singular perturbation enables 

to relax the kinematic joint constraints. The dynamic equations are in a ODE form 

with no geometric constraints to deal with. Consequently, it leads to a bond graph 

with integral causality which can be simulated easily.   

As T. Rayman explains in [20], W. Marquis-favre and S. Scarvada developed 

the method of “privileged frame” [5] to facilitate the resolution of multibody system 

with kinematic loops. However, it is important to notice that even this method helps 

to minimize the number of coordinate transformations required in a multibody 

model with kinematic loops, it does not fundamentally permit the simulation of this 

system. 

4.4 Construction of the MBG model of the MGB-Fuselage joint 

In this section, the bond graph modeling of the rigid body is first recalled. The 

bond graph modeling of joints is described since they are modeled with some par-

ticularities compared to the classical way of modeling that we can find enabling to 



simulating serial mechanical system. Indeed, as already explained, the kinematic 

joints have compliant elements so as to enable the simulation of this system with 

kinematic closed loops.  

4.4.1 Rigid body modeling 

Let us remember (Fig. 8) the architecture of a rigid body multibond graph model 

based on [5], [14],  [16] and [18].  

This bond graph architecture is based on the Newton-Euler equations with re-

spectively the inertia matrix (modeled with a multiport energy store element 

i iS ,G i
 
 I in the upper part) associated with gyroscopic terms (modeled with a multi-

port gyrator element also called Eulerian Junction Structure about mass-center of 

body i expressed in its frame 
iG i

 
 EJS and the mass matrix modeled with a multi-

port energy store element  i 0
m  in the lower part). The upper part of the MBG 

represents the rotational dynamic part expressed in the body frame while the lower 

part is for the translational dynamic part expressed in a inertial reference frame (or 

Galilean frame). The two corresponding 1-junctions arrays correspond respectively 

to the angular velocity vector of body i  / 0 ii and the translational velocity vector 

of the center of mass of body i  
0

0/iV G R expressed in these two coordinate

frames. 

The central part of the MBG describes the kinematic relations between the ve-

locities of the two points of the body i (  0/
i

jV M R and  
0

0/kV M R ) and the ve-

locity of the center of mass  0/ i
iV G R resulting from the formula of the rigid body. 

The modulated transformation element (MTF) between  0/ i
iV G R and 

 
0

0/iV G R represents the coordinate transformation between the body frame and 

the inertial frame. 
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4.4.2 Kinematic joints modeling 

For simplicity, only the modeling of the joints necessary for modeling the 2D 
MGB-Fuselage are here considered: the joint revolute and prismatic including com-
pliant elements are described. On this base, the modeling of different joints such as 
spherical joint and others needed for the 3D model could be easily derived. 

Revolute joint 

The kinematic scheme and the multibond graph of the revolute joint between 
the SARIB Bar and Fuselage are illustrated in Fig. 9. 

In this multibond graph model, the variables used are: 
- the angular velocity of the fuselage 

e variables
and the SARIB bar 

relative to the inertial reference frame. The subscripts refer to the frames where these 
velocities are expressed in, 
- the translational velocities of the fuselage and the SARIB bar

 relative to the inertial reference frame at the point A, 

- the transformation matrix determined thanks to the angular velocity as ex-
plained in [19]. 

Fig. 9 Kinematic scheme and multibond graph of the revolute joint between 
SARIB Bar and Fuselage 



Prismatic joint 

The kinematic scheme and the multibond graph of the prismatic joint along z 
axis between the MGB and the intermediate body are shown in Fig. 10 as follows: 

In this multi bond graph model, the variables used are: 
- the angular velocity of the MGB 

odel, th
and the intermediate 

relative to the inertial reference frame, 

- the translational velocities of the MGB at the point 

and the intermediate body  relative to the inertial ref-
erence frame. 

Fig. 10 Kinematic scheme and multibond graph of the prismatic joint between 
MGB and Intermediate body 

4.4.3 The complete model 

Individual models of joints and bodies, previously described, are connected to-
gether according to the kinematic scheme as shown in Fig. 11, Fig. 12 and Fig. 13. 
The MGB is excited by a vertical periodic force . In these figures, 
three types of multibond graph elements can be thus distinguished:  
- the rigid bodies, such as the fuselage, the SARIB Bar, the MGB Bar and the MGB. 
- the joints, such as revolute joint used between the SARIB Bar and the fuselage. 
- the multibond graphs power bonds (half-arrows).  

The simulation of the 2D and 3D MGB-Fuselage multibond graphs is then pos-
sible. 



 

Fig. 11 Word bond graph built on 20-sim of the 2D MGB-Fuselage 
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5 Results and comments 

Like for all multibody simulation analyses, the evolution of the different 

movement parameters of the system may be deduced. For example, the position of 

MGB gravity center 
G MGB G MGB G MGB

x ,y ,z , SARIB Bar 1 gravity center 

1 1 1G BS G BS G BS
x ,y ,z , the angular parameters of the SARIB Bars

1 2 3 4
, , ,    and the 

MGB Bars 
1 2 3 4
, , ,    are shown in Fig. 14. In the same way, forces transmitted 

to the fuselage joint (revolute joint between SARIB Bar and fuselage) may be de-

duced immediately. For example, the components 
1 1 1

, ,A x A y A zf f f of the forces ap-

plied by the SARIB bars to the fuselage at the A1 point expressed in the fuselage 

frame are shown in Fig. 15. Let us note that, using mechanical analytic methods, 

some calculations are needed so as to express joint forces. 

Fig. 14 Movements parameters of the 3D model 
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Fig. 15 Excitation force and reaction forces in the revolute joints of the 3D model 

Thanks to complementary tool proposed in 20-sim software, frequency re-

sponse can be determined after having chosen inputs and outputs.  

First, the transmissibility function between the forces transmitted to the fuselage 

and the excitation force has been deduced for the 2D model.  As we can see in Fig. 

16, the transmissibility presents an anti-resonance frequency. The SARIB Bar plays 

his role since the joint enables to isolate the fuselage from the force coming from 

MGB at this specific frequency. 
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Fig. 16 Anti-resonance frequency on transmissibility function 



Then, the transmissibilities between the joint reaction at the different revolute 
joints and the excitation force have been also determined for the 3D model.  

Observing the transmissibility curves involving the vertical components of joint 
reactions (Fig. 17 up), we also find the anti-resonance phenomenon that has already 
been described with the 2D model with antiresonance around 18 Hz 

 The layout of transmissibilities, involving components in the xy plane of joint 
reaction (Fig. 17 bottom) shows that the anti-resonance phenomenon does not occur 
at the same frequency as before. This anti-resonance phenomenon does not occur at 
the same frequencies according to the type of stress applied to the MGB. This vari-
ation of the antiresonance frequency explains the interest of designing an intelligent 
joint SARIB adapted to external forces applied to the MGB. 

This analysis can be also done with an energetic point of view. Indeed, adding 
power sensors in all connections in the multibond graph, the flow of power can then 
be evaluated. As expected, all the power provided from the excitation of MGB is 
sent to the SARIB Bar. 

Transmissibility at A3 and A4 with Rx/Ry 

Transmissibility at A1 and A2 with Rz Transmissibility at A3 and A4 with Rz 

Transmissibility at A1 and A2 with Rx/Ry 

Fig. 17 Anti-resonance frequency on transmissibility function 



6 Conclusion 

In this paper, it is shown how dynamic simulations of an aeronautic complex 

subsystem can be conducted thanks to a relevant multibond graph representation. In 

this sense, the proposed contributions consist in providing a relevant methodology 

to model a multibody system with closed kinematic chains using the bond graph 

formalism and in comparing this method with others classical methods of modeling. 

The proposed methodology is based on three steps. In the first step, the modeler 

has to build the bond graph of a rigid body. The second step is dedicated to model 

the different joints connecting the bodies of the system. A fundamental point of this 

step is the use of parasitic compliant elements for the modeling of the kinematic 

constraints provided by the joints. The third step treats the assembly of the different 

created models (rigid bodies and joints). This step can be easily conducted with the 

help of a well-structured library of components. 

The simulation results of the MBG model of the studied joint have been pre-

sented. It shows the need to keep a sufficiently complete model so as to predict the 

anti-resonance phenomenon which exists in this system. Indeed, the 3D model can 

highlight the existence of different values of anti-resonant frequencies following the 

direction of efforts observed that had not been visible with the 2D model. 

The comparison of multibond graph with others classical methods of modeling 

shows that this tool appears to be a useful tool for engineers in the context of multi-

body modeling. The main arguments are now recalled. 

Its hierarchical and modular properties enables MBG to be a structural tool. 

Therefore, the constructed multi-body dynamic models enable to obtain a quite sim-

ple representation of a complex system since the multibond graph model highlights 

the topology of systems. Moreover, the simulation of multibody systems with 

closed kinematic chains may appear easier to conduct than the classic analytical 

method. The method of singular perturbation employed in this multi bond graph 

representation enables to avoid dealing with kinematic constraints equations and 

consequently to have only ODE systems to solve instead of DAEs. The use of ded-

icated software such as 20-sim may allow to hide this complex step for the modeler. 

Finally, we should not forget that the multibond graph is also a unified power based 

approach which enables to model many multi domains systems and to analyze the 

description of the energy between the components of such systems. 

Future works are being conducted so as to exploit multibond graph models for 

control design purposes. The investigations will be lead in two directions. The first 

exploitation of multibond graph representation shall focus on scalar BG analysis. 

The second exploitation of multibond graph shall lead to control architecture by 

means of inversion techniques with the help of complementary tool such as ener-

getic macroscopic representation (EMR) designed for this purpose. It should permit 

to design more robust control laws with less energy consumption. 
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