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This paper propose a new modeling approach which is ex-
perimentaly validated on piezoelectric systems in order to
provide a robust Black-box model for complex systems con-
trol. Industrial applications such as vibration control in ma-
chining and active suspension in transportation should be
concerned by the results presented here. Generally one uses
physical based approaches. These are interesting as long
as the user cares about the nature of the system. However,
sometimes complex phenomena occur in the system while
there is not sufficient expertise to explain them. Therefore, we
adopt identification methods to achieve the modeling task.
Since, the micro-displacements of the piezo-system some-
times generate corrupted data named observation outliers
leading to large estimation errors, we propose a parameter-
ized robust estimation criterion based on a mixed L2− L1

norm with an extended range of a scaling factor to tackle ef-
ficiently these outliers. This choice is motivated by the high
sensitivity of least-squares methods to the large estimation
errors. Therefore, the role of the L1-norm is to make the L2-
estimator more robust. Experimental results are presented
and discussed.

1 Introduction
Systems modeling tasks imply choosing an approach

which mainly depends on the final purpose. In this paper, we
deal with piezoelectric systems models for complex systems
control. Therefore, the modeling approach here chosen must
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provide specifically oriented control models. The method-
ology and results exposed in this paper are intended to any
industrial design involving piezoelectric actuators such as ac-
tive suspensions and vibration assisted drilling. Recently, an
interesting paper on the piezoelectric multilayer-stacked hy-
brid actuation/transduction system [46] has been proposed.
The exposed modeling procedure is possible and useful only
afterwards all physical elements have been chosen. As a mat-
ter of fact, during the physical choices step, other kinds of
models are more suitable. The reader interested in piezo-
electric materials could refer to [3] [28]. The literature shows
that in such a multi-physical device modeling, the common
approaches consists of analogical representation of the phys-
ical phenomena or finite elements analysis. In [12] [35] [37]
[38] [44] the authors developed electrical and mechanical
components that are analogous to the concerned system un-
der some conditions. Assumptions and approximations are
made to minimize computation efforts while achieving good
accuracy as long as the assumptions made are satisfied. This
makes it possible to simulate the response of the system and
quantify the influence of each parameter and tradeoffs to be
made [36]. This is an interesting approach as one needs to
understand the nature of the system and modify or improve
their physical behaviour. On the other hand, for high level
detailed study the finite-element method is often found to
be the most appropriate [42]. Both approaches often lead to
models for which it could be difficult to find the appropriate
parameters. For example in the case of piezoelectric sys-
tems, where one has to deal with micro-displacements, the
parameters estimation is very sensitive to outliers. Remem-
ber [25] [22] that outliers mean significantly large values of
the estimation errors. In this paper, the term outlier refers



to any big deviation in comparison to the usual observations.
Instead of physical modeling approach, we suggest the use a
robust identification method. Usually, the model’s parame-
ters estimation is based on least squares methods based on a
Black-box approach [31]. The main drawback in these tech-
niques comes from their high statistical sensibility to large
errors. Generally, two methods are used. The first one con-
sists in simply deleting (filtering) the influencing outliers be-
fore the fitting process. This is often an efficient approach
when expert knowledge assists this task, ensuring that the re-
moved information are not relevant ones. However, because
of its complexity, it is not always feasible. This is the case of
the piezo-system we shall deal with in this paper (Section 2).
Sometimes, data delation could lead to losing crucial infor-
mation, since they often provide valuable information about
the system’s dynamics [43]. The second method therefore
consists in treating these outliers, in order to capture rele-
vant information about the system behavior they may con-
tain. It is up to the user to interpret then the identified model
and conclude on the origin of the system’s behaviour. Since
the underlying error estimation distribution presents a heavy
tail [21] [33] [25] due to the presence of these outliers, al-
ternative solutions are brought. The LSAD (Least Sum Ab-
solute Deviation) techniques leading to linear programming
minimization problems with or without contraints proposes a
family of robustly convergent algorithm’s seems to be more
efficient than the classical least squares criterion in the case
of an estimation errors with Laplacian distribution. Another
method uses a mixedL2− L1 norm based on the parame-
terized robust estimation criterion according the Huber’sM-
estimates [25]. A simple insight on the estimation errors
characteristics fitted by the least squares criterion, provides
an idea on the convenient scaling factor which automatically
determines the balance betweenL2 andL1 contributions of
the estimation procedure. Moreover, by varying this scal-
ing factor, we can modify the rate ofL1 in comparaison with
L2. A huge scaling factor corresponds to pureL2-estimator.
Our work aims to use a parameterized robust estimation cri-
terion based on theL2−L1 Huber’s norm with an extended
range of a scaling factor, treating the innovation outliers [13].
Moreover, we propose a new decisional tool for the models
validation, namedL1-contribution function of the estimation
errors to choice the estimated pseudo-linear models.

This paper is organized as follows: Section 2 describes
the context of complex systems control. In Section 3, we
shall resume the mathematical background related to the Hu-
ber’sM-estimates problem. The following Section 4, the pa-
rameterized robust estimation criterion, the extended range
of the scaling factor and theL1-contribution are proposed
and discussed. In section 5 we shall comment these experi-
mental results. Finally, we shall give some conclusions and
perspective to this work.

2 Context of complex systems control: drilling case
A piezoelectric material changes its shape when sub-

jected to an electric field. Conversely, it induces electrical
charges when subjected to mechanical stress. This makes it

possible to use piezo-materials both in actuators and sensors
elaboration.

Fig.1 illustrates the macroscopical principle of piezo-
actuation. With respect to voltageV input and resistive force
F , the device generates micro-vibrationsu and consumes a
electric chargeq. In this paper we shall alternatively use
electric charge and electric currentI = q̇. Piezoelectric de-

Fig. 1. Piezo-actuation principle

vices are useful in advanced and complex mechanical struc-
tures design as well as in some of their manufacturing pro-
cess. This requires the participation of scientists and en-
gineers from diverse fields, mechanical, electrical, control,
computing, etc. Some of industrial assembling processes
(like aircraft structure assembling processes) may require
drilling thousands of holes specified as to be of diameter
much smaller than the depth. The main difficulty with such
a process concerns breaking and evacuating the chips. There
are many risks coming from this problems. The drilling tool
could be damaged. A technique for dealing with this prob-
lem consists of drilling with vibration assistance. Micro-
vibrations are generated and transmitted either to the work-
piece either to the drill bit. This offers a controllable solution
for chips breaking and eliminates stripping tasks. The ma-
jor stake in vibrational drilling is about generating with pre-
cision the required piezo-vibrations (in terms of frequency
and amplitude). The user should therefore elaborate the
command. For this purpose, efficient models are required.
However not all models could serve in command elabora-
tion. The common approaches consists of analogical and/or
phenomenological representation of the physical phenom-
ena or finite elements analysis (FEA). However, as men-
tioned in [5], FEA methods are useful when high level of
detail is required. This is not the case in command elabora-
tion. In previous papers [4], we adopted lumped-parameters
approach in order to establish user-oriented models in 20-
Sim [10] and Matlab-Simulink [34]. Then, these models
were improved in [5] in order to better account for nonlin-
ear phenomena occurring in piezoelectric devices. We ob-
tained good agreements between the models and the experi-
ments. For smooth (sinusoidal) voltage profiles, the proposal
models were able to predict the output displacement. Now,
the inverse question arises. Which voltage shall we gener-
ate in order to obtain a certain vibrations profile? Several
techniques exist that are extensively used. Commonly, the
system’s outputs are measured or estimated in order to track
the referee command via a synthesized feedback. In this cat-
egory one could enumerate adaptive control [32] [9], state



feedback control [26] [20], sliding model control [14] [19]
etc. All provide satisfaction despite different sources of per-
turbations. These methods are classified as global control
methods. On the other hand, other techniques (named lo-
cal techniques) consist of interconnected subparts associated
with the different parts of the system. This category includes
nested control loops [16], backstepping control [48] and in-
verse model control. If a model is available, control based
on reverse model is prefered. Indeed, inverse model control
offers an organized methodology using a decomposition of
the systems’ organs functionality with respect to exchange
energy. It consists in synthesizing the input according to the
desired output profile. Therefrom, the task is to determine
the physical reverse function of the system (piezo), so, the
control loop could be resumed in Fig.2.

Fig. 2. Control loop proposition

As it appears in Fig.2, in addition to the referee displace-
ment, the proposal control loop requires the real time electric
current. However, it is difficult to get this feedback with good
precision. Indeed, only small electric current crosses piezo-
electric devices. To measure it, a high precision device is
required. Unfortunetly, this is not easy and important noises
are usually present in the signal. Experiments showed us that
the effect of the current loop could be modelised by a noise
and the displacement. We can therefore justify Fig.3. In
this configuration, we replace the electric current feedback
by noises added to the displacement.

Fig. 3. Alternative control loop

This requires the elaboration of a new controller. How-
ever, the model obtained from analogical approaches could

be non-robust and lead to bad control loop. In the litera-
ture, [47] [17] have proposed an optimal input design for
system identification. This optimality approach is worth-
while, only when good prior knowledge is available about
the system. In practice, it is suitable to decide upon an im-
portant and interesting frequency band to identify the sys-
tem, and then select a signal with a more or less flat spec-
trum over this band. Among these signals, there exists the
Chirp signals or Swept sinusoids [41] [23] and the Pseudo
Random Binary Sequence (PRBS) which is a periodic, de-
terministic signal with white-noise-like properties, that is a
Band-limited Gaussian. For this purpose, we shall excite the
system by a PRBS, sufficiently exciting and persisting [27],
with small amplitude (±10V). This choice is motivated by
two arguments. The first and trivial one concerns the full-
ness (in term of excitation frequencies) of such a signal in
comparison with steps and sinusoidal signals. The second
reason is related to the operating condition of the concerned
system. We are dealing with piezo-systems applied to vi-
brational drilling. As a matter of fact, during the drilling
process, the system is subjected to some random impacts. A
PRBS allows therefore to reproduce such this environment.
In this case (non-smooth solicitation, eg. sawtooth signal),
even with low amplitude, the system could have a behaviour
difficult to characterize. Indeed, assuming the physical sys-
tem presented in Fig.6, sawtooth solicitation could lead to
losing contact between element 4 and element 1. Classical
mechanics can no longer allow to describe efficiently such
a behaviour. Therefore, the models presented in Fig.2 and
Fig.3 are no longer valid.

3 The Huber’s M-estimates problem

In the general way, we denote in the sequelXt (θ) =
X (t,θ) andXt = X (t), for a parameterized time varying sig-
nal. Let us consider a discrete-time SISO system with input
signalUt and output signalYt described as follows

Yt = G
(
q−1,θ

)
Ut +H

(
q−1,θ

)
et (1)

See [31] for more details. Here,G
(
q−1,θ

)
andH

(
q−1,θ

)
are the transfer functions of the system, respectively fromU
to Y ande to Y . The backward shift operatorq−1 is defined
byUt−1 = q−1Ut . Ut is an exogenous and deterministic input
signal andet a random variable with mean zero and variance
λ. Consider the general parameterized pseudo-linear models
set M(θ), with the parameters vectorθ = [θ1....θd]

T ∈ IRd

whereŶt (θ) = ϕT
t (θ)θ, t = 1,2, ..., represents the prediction

model output and a pseudo-linear regression on the base of
a data set{U1,Y1, ...,UN,YN, ...}. Here ϕT

t (θ), t = 1,2, ...
denote thet− th observations vector and

εt (θ) = Yt −Ŷt (θ) (2)



the prediction error signal also named residuals. The Huber’s
M-estimation is a minimum problem of the form

N−1ΣN
t=1ρη

(
εt(θ̂N,η)

)∼= N−1 inf
θ∈Θ

ΣN
t=1ρη (εt(θ)) (3)

or by an implicit equationN−1ΣN
t=1Ψt,η

(
ε; θ̂N,η

)
= 0, where

θ̂N,η is the robust estimator ofθ, Θ is a subset ofIRd and
ρη : S ×Θ → IR a nonnegative, convex, piecewise function
such asρη (εt(θ)) : S → IR is measurable for eachθ ∈ Θ,
with S a probability space. The constantη, named scal-
ing factor, regulates the amount of robustness and may de-
pend on the observationsYt . In the literature, [24] [45] [8]
[25](p.19) [33](pp.27,61) choose the scaling factorη = kσ
with 1≤ k ≤ 2 named tuning constant, only for the linear
models, whereσ is the standard deviation. More precisely,
theρη-norm is

ρη(X) =
{ 1

2X2 if |X| ≤ η
η |X|− 1

2η2 if |X|> η (4)

Here, ρη is chosen to render the estimation more robust
than the classical least squares estimation with respect to
the innovation outliers [13] supposed to be present in the
residuals. The least informative probability density function
[25] is defined byf (X) = Ce−ρη(X). MoreoverΨt,η (ε;θ) =
− ∂

∂θ ρη(εt (θ)) is the gradient of theρη-norm with respect to
θ, namedΨ-function.

4 The robust estimation context based on aL2 − L1

mixed norm
Now, let us deal with the main contribution of the pa-

per. The goal is to propose a robust criterion based on the
Huber’s norm and justify the choice of the scaling factor.
The new decisional tool for the models validation, named
L1-contribution is proposed and discussed.

4.1 The parameterized robust estimation criterion
Let us introduce two index sets defined byν2(θ) =

{t : |εt(θ)| ≤ η} and ν1(θ) = {t : |εt(θ)|> η}. ν2 and ν1

are respectively theL2-contribution andL1-contribution of
the residuals. We define thesign function by st(θ) = 0
if |εt(θ)| ≤ η, st(θ) = −1 if εt(θ) < −η and st(θ) = 1 if
εt(θ) > η. From this, the parameterized robust estimation
criterion to be minimized can be written as follows

WN,η(θ) =
1
N

Σt∈ν2(θ)
ε2

t (θ)
2

+
η
N

Σt∈ν1(θ)(|εt(θ)|− ηs2
t (θ)
2

)
(5)

From the derivative with respect toθ of (5), we de-
duce theΨ-function by Ψt,η (ε;θ) = −ψν2,t(θ)εν2,t(θ) −
ηψν1,t(θ)sν1,t(θ), where in the general casefνi ,t = ft if t ∈
νi(θ), fνi ,t = 0 otherwise,i = 1,2 andψt(θ) is the derivative
with respect toθ of (2).

4.2 M-estimation procedure
Fig.4 describes the estimation phase in this prediction

error framework. During this procedure, the prediction er-
rors are treated in a Parametric Adaptative Algorithm (PAA)
which include both the solver and the parameterized robust
estimation criterion to be minimized. The presence of out-
liers in the data set induces large values of the prediction
errors. Thanks to a convenient choice of the scaling factor,
the estimator robustification reduce the effects of these large
deviations and the estimated residuals correspondingly de-
crease. These residuals are built following the described rule
in the previous section:ενi ,t = εt if t ∈ νi(θ), ενi ,t = 0 oth-
erwise, i = 1,2. Therefore, let us denoteE(θ) ∈ IRN and
S(θ) ∈ IRN, respectively the vector of the residuals and the
sign function such asE(θ) = [ε1(θ)...εN(θ)] and S(θ) =
[s1(θ)...sN(θ)] with st(θ) defined in the previous section.
Moreover, let us define the weight matrixW (θ) ∈ IRN×N,
W (θ) = diag(w1(θ)...wN(θ)) wherewt(θ) = 1−s2

t (θ). The
parameterized robust estimation criterion in Eq.(5) to insert
in the PAA can then be rewritten as

WN,η(θ)=
1

2N
ET(θ)W (θ)E(θ)+

η
N

ST(θ)
[
E(θ)− η

2
S(θ)

]
(6)

Fig. 4. Description of the estimation phase in the prediction error

framework.

4.3 Choice of the scaling factor
In the literature, the tuning constant is chosen in the in-

terval range[1,2] [33] [25], only for the linear models, in
order to regulate the amount of robustness. However, this
choice ofk does not ensure the convergence of the param-
eterized robust estimation criterion given by (5) and the es-
timator remains sensitive to the large and numerous innova-
tion outliers. Maybe, because nonlinear models obviously
do not match with this type of application? In this case,
the distribution of the residuals is strongly disturbed and
presents a heavy tail. Thus, formally, it is used as-corrupted
model to induce a topological neighborhood around the tar-
get normal distributionF0, yielding a probability distribution
Fs = (1−s)F0 + sH, s∈ [0,1[ whereH is an unknown dis-
tribution. The breakdown point (BP) of an estimator is the



largest amount of contamination that the data contain such
asθ̂N,η still gives some information aboutθ. The asymptotic
contamination BP of̂θN,η denoteds∗ is the largests∗ ∈ (0,1)
such as fors< s∗, θ̂N,η remains bounded. Moreover, in the
outliers detection methods, the leverage points (LP), namely
points with highly influence of position in factor space, are
increased interest. It is shown that theM-estimator is not
always robust to LP when the tuning constant belongs in
[1,2] [33] [25]. In the case of piezo-systems where the micro-
vibrations sometimes generate outliers and disturb the ro-
bust estimation, it is interesting, to reduce the influence of
the LP on the pseudo-linear models, that we deliberately in-
vestigate the smaller values of the tuning constant, that is
k ∈ [0.05,2]. In the other hand, the improvement of the es-
timated model with the extended tuning constant, may be a
somehow favourable effect on the inner feedback (see Fig.4),
precisely due to the dependence ofϕt (θ) upon the parameter
vector.

4.4 L1-contribution function: a decisional tool for the
models validation

In the sequel, the reader should make the difference be-
tween the degree of corruption of the data measured by the
engineer and the level of the related corruption of the estima-
tion error (i.e. outliers) only considered by the statisticians.
In the robust estimation procedure describes in Fig.4, the es-
timated prediction errors larger than the scaling factor are
treated by theL1-norm in order to rend more robust the
least squares estimator. In the previous section, we de-
fined two index sets, denotedν2(θ) and ν1(θ), such as
card[ν2(θ)]+card[ν1(θ)] = N for all θ ∈Θ andN ∈ IN. Let
us denotecard[ν1(θ)] = Nout (θ) the number of innovation

outliers andNout(θ)
N the fraction of ”bad” values of the cor-

rupted samples. The small values ofη involves a robust es-
timation procedure mainlyL1 and Nout(θ)

N increases. In [25],
the author’s defined this fraction as as-replacement model in
the general context of thes-corrupted distributions. For any
robust estimator̂θN,η, there is a ˆsN-corrupted empirical dis-
tribution FŝN = (1− ŝN)FN + ŝNHN, where ˆsN = s

(
θ̂N,η

)
. In

our work, we extend the role of the fractionNout(θ)
N as a deci-

sional tool for the models validation namedL1-contribution
function denotedL1C(θ). The minima of this function can
confirm the robust estimator derived by argmin

θ∈Θ
WN,η(θ) or

give another estimator. In this case, this tool emphasizes the
decision on the choice of the estimated model. In the sequel,
we show that theL1-contribution function has a minimum,
therefore, formally, we define theL1-contribution function
as

L1C(θ) =
1
N

Σt∈ν1(θ)|st(θ)| (7)

The derivative ofL1C(θ) with respect toθ necessities the
derivative of thesign function. Therefore, we use an ap-
proximation function [6] ofst(θ) given byst (θ) ≈ ζt (θ) =
1−e−2Kεt (θ)

1+e−2Kεt (θ) , whereK is a real sufficiently large to ensure the

approximation. TheL1-contribution function can then be

rewritten asL1C(θ) = 1
N Σt∈ν1(θ)

∣∣∣1−e−2Kεt (θ)

1+e−2Kεt (θ)

∣∣∣. Now let us de-

fine two index subsets ofν1 (θ) asνL
1(θ) = {t : |εt(θ)|<−η}

and νH
1 (θ) = {t : |εt(θ)|> η} such asν1 (θ) = νL

1(θ) ∪
νH

1 (θ) and νL
1(θ) ∩ νH

1 (θ) = 0. We then haveL1C(θ) =
1
N Σt∈νH

1 (θ)
1−e−2Kεt (θ)

1+e−2Kεt (θ) + 1
N Σt∈νL

1(θ)
e2Kεt (θ)−1
e2Kεt (θ)+1

. After straightfor-
ward calculations and using a Taylor’s expansion, the deriva-
tive with respect toθ of L1C(θ) leads to

∂
∂θ

L1C(θ)≈ −4K
N

Σt∈ν1(θ)ψt (θ)e−2K|εt (θ)| (8)

whereψt (θ) =− ∂
∂θ εt (θ) [31]. Since|εt(θ)|> η, we obtain∣∣∣ ∂

∂θ L1C(θ)
∣∣∣≤ 4Ke−2Kη

N Σt∈ν1(θ) |ψt (θ)|. From [30], Ljung and

Caines showed that|ψt (θ)| is bounded for allθ ∈ Θ. There-
fore, |ψν1,t (θ)| ≤ |ψt (θ)|= Cψ and there exists an estimator

θ̂N,η ∈ Θ such that
∣∣∣ ∂

∂θ L1C
(
θ̂N,η

)∣∣∣≤ 4KCψ̂e−2Kη → 0 for K

sufficiently large.

5 Experimental results
5.1 Experimental setup

The experiments and simulations are performed with a
HPSt 1000/35-25/80 piezo-actuator from Piezomechanik. In
Fig.6 we show the mechanical assembly used for the exper-
iments. This special setup firstly aims to prevent the piezo-
electric device from damaging. Indeed, ceramic made de-
vices are brittle under stretching solicitations. Therefore
mechanisms are used to apply a pre-stress on the device. In
our design, the pre-stress value depends on the gap between
elements 1 and 2. This gap is set via thin metallic films be-
tween elements 1 and 2. In our setup, we applied 3000N. El-
ement 3 is fixed to a table. The vibrations of the piezoelectric
device (yellow element) are transmitted to element 1. This is
why the measuring sensor is about element 1 as shown in
Fig.5. We consider the whole assembly as a SISO system
(Single Input Single Output) because we are only interested
in the piezoelectric device displacement. Fig.5 shows the
measurements chain. Following are details on instrumenta-
tions and signal processing.

Piezoelectric actuator
Reference HPSt 1000/35-25/80
Manufacturer Piezomechanik
Accelerometer
Reference DYTRAN 3225F1
Sensitivity 10 mV/G
Frequency response ±10%: 1.6 to 10,000 Hz
Linearity 2% F.S max
National Instruments Cards

In: NI-9215, Out: NI-9263

Channels: 4 for each card



Simultaneous sampling
Output resolution: 16-bit
Input resolution: 24-bit
Output rate: 50 kHz
Input rate: 50 kHz

Power Operational Amplifier
Reference PA-0103

Fig. 5. Experimental setup

Fig. 6. Experimental piezo-system

In the sequel, we only consider measurements from the
gauges constraint. The accelerometer is used in order to
check the efficiency of the active gauges.

5.2 Identification procedure
In order to provide a Black-box model of the piezo-

system and more particularly a robust model from the out-
put signal of micro-displacements, we applie for the exoge-
nous input a pseudo random binary sequence (PRBS) with
a lengthL = 210− 1 and level±10V, sufficiently exciting
and persisting [27]. The sampling period isTS = 100µsand
the number of data isN = 5000. Fig.7 and Fig.8 respec-
tively show the excitation input and the output signal of the
piezo-system. This last signal presents some large values
which may be considered as an observation outliers. There-
fore, these large samples implie innovations outliers in the
estimated residuals.
Since the piezoelectric ceramic system is not a linear experi-

mental device, the adopted model is the classical Output Er-
ror (OE(nB,nF )) pseudo-linear model given by

M (θ) : Yt = q−d B(q−1,θ)
F(q−1,θ)

Ut +et

whered is the pure plant time delay andF(q−1,θ) a monic
polynomial. In our cased = 1 meaning the time delay of
the sample and hold in the discritization. The parameters
vector isθ = [b1...bnB f1... fnF ]T . The observations vector is
ϕT

t (θ) =
[
Ut−1...Ut−nB−Ŷt−1 (θ) ...−Ŷt−nF (θ)

]
. As explain

in Section4.3, the tuning constant is chosen in the interval
range[0.05,2], the scaling factor isη = kσ whereσ is the
standard deviation obtained from a least squares estimation
in the initialization phase. For the polynomialsB(q−1,θ) and
F(q−1,θ), 7≤ nB ≤ 14 and 4≤ nF ≤ 15 respectively. In the
L1-contribution function, we experimented different values
of K. We choosedK = 15 since great values do not improve
significantly the approximation.

Fig. 7. Excitation input signal: PRBS

Fig. 8. Output signal of Piezoelectric.

5.3 Distribution of the prediction errors in the least
squares estimation

As expected, the distribution of the prediction errors of
an estimated model in the classical least squares, is strongly



disturbed (see Fig.9). This non-trivial distribution is zero be-
tween−2 and+2 and presents two distributions around−3
and+3. These different results show firstly, the necessity to
use a parameterized robust estimation criterion with a scal-
ing factor and secondly, to choose this parameter and rein-
force the robustness of the least squares estimation. It seems
reasonable to investigate the variations of this scaling factor
given in the previous section.

Fig. 9. Probability density function of L2 estimation for an

OE(12,12) model.

5.4 Estimation/Validation results
In a first step, an estimation campaign has led to de-

rive nB. nB = 9 for the first model denotedM1 andnB = 12
for the second, denotedM2. Fig.10 shows the parameter-
ized robust estimation criterionWN,η as a function ofnF with
4≤ nF ≤ 15 atnB = 9, when the tuning constant is equal to
0.0625. The minima ofWN,η yields two models atnF = 8 and
nF = 12. For the first model atnF = 8, the fit less than 40%.
Let us denote the first model atnB = 9 andnF = 12, M1 :
OE(9,12). The scaling factor isη = 0.0625σ = 0.2255 and
the fit equal to 82.5% in the frequency interval[0;500Hz],
used for the control. In Fig.12, the frequency response
of M1 is compared to the spectral estimation of the piezo-
system. For the model validation, we use the results of the
L1-contribution function. Fig.11 showsL1C as a function of
nF with 4≤ nF ≤ 15 atnB = 12, when the tuning constant is
equal to 0.0875. This decisional tool provides two robust
models atnF = 9 with a fit equal to 87.2% andnF = 12
with a fit equal to 95.22%. The second selected model is
M2 : OE(12,12) for its very good fit. Even though theL1-
contribution function yields a robust model with a dimen-
tional d = nB + nF = 24, the choice has been made only
on the fit criterion, since in the case of the piezo-system,
the robust model must have a relevant characteristics for the
sensitivity of the control. For this model, the scaling factor
is η = 0.0875σ = 0.2619 and theL1-contribution function
equal to 94.2%. This value shows that the robust estimation
has been mainlyL1. The reader shall note in Fig.13 the good
frequency response in[0;500Hz] of M2 versus the spectral
estimation of the piezo-system. In Table 1 and Table 2 the

Fig. 10. Parameterized robust estimation criterion as a function of

nF at nB = 9 when η = 0.0625σ.

Fig. 11. L1-contribution function as a function of nF at nB = 12
when η = 0.0875σ.

estimated parameters ofM1 andM2 are respectively shown.

Fig. 12. Robust model M1 : OE(9,12) compared to the spectral es-

timation of the piezo-system at η = 0.0625σ = 0.2255.

In order to providea reference case, Fig.14 shows the
estimated model in least squares estimation. The great sen-
sitivity with respect to large estimation errors is clearly illus-
trated.



n 1 2 3 4 5 6 7 8 9 10 11 12

bn −0.119 −0.133 −0.115 −0.098 −0.107 −0.236 −0.104 −0.172 −0.234 0 0 0

fn −0.470 0.068 0.280 −0.291 −0.068 −0.007 −0.068 0.013 −0.261 0.239 −0.108 0.089

Table 1. Estimated parameters of M1 : OE(9,12).

n 1 2 3 4 5 6 7 8 9 10 11 12

bn −0.042 0.033 0.038 0.054 −0.206 −0.368 −0.254 −0.137 −0.159 −0.201 −0.186 −0.110

fn −0.212 −0.178 −0.005 −0.016 0.002 −0.060 −0.048 −0.144 −0.060 −0.200 4.3×10−7 0.0065

Table 2. Estimated parameters of M2 : OE(12,12).

Fig. 13. Robust model M2 : OE(12,12) compared to the spectral

estimation of the piezo-system at η = 0.0875σ = 0.2619.

Fig. 14. The model OE(12,12) in least squares estimation. The

great sensitivity to the large deviations is clearly shown.

6 Conclusion
In this paper, we showed a piezoelectric ceramic process

identification method, based on the Huber’s M-estimates,
with an extended interval range of a scaling factor to deal
with both the large estimated prediction errors and the
pseudo-linear Black-box models. We used a parameterized
robust estimation criterion composed both of aL2 part for the
small prediction errors and aL1 part for the innovation out-
liers. For the models validation, we presented and discussed
a new decisional tool, theL1-contribution function and we
extended the role of this term in order to determine thes-
corrupted models distribution of the prediction errors. More-
over, we showed that this validation tool provided relevant
models with good characteristics in the frequency interval
range for the control. Many aspects of these studies are open

to further research. It should be interesting to analyse the
properties of theL1-contribution function and an extansion
of this method will be proposed for non-linear models.
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