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On a robust modeling of piezo-systems
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and System Laboratory and System Laboratory
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This paper propose a new modeling approach which is egrovide specifically oriented control models. The method-
perimentaly validated on piezoelectric systems in order twogy and results exposed in this paper are intended to any
provide a robust Black-box model for complex systems canedustrial design involving piezoelectric actuators such as ac-
trol. Industrial applications such as vibration control in ma-tive suspensions and vibration assisted drilling. Recently, an
chining and active suspension in transportation should hateresting paper on the piezoelectric multilayer-stacked hy-
concerned by the results presented here. Generally one ubesg actuation/transduction system [46] has been proposed.
physical based approaches. These are interesting as lohge exposed modeling procedure is possible and useful only
as the user cares about the nature of the system. Howewdterwards all physical elements have been chosen. As a mat-
sometimes complex phenomena occur in the system witdleof fact, during the physical choices step, other kinds of
there is not sufficient expertise to explain them. Therefore, wedels are more suitable. The reader interested in piezo-
adopt identification methods to achieve the modeling tasiectric materials could refer to [3] [28]. The literature shows
Since, the micro-displacements of the piezo-system somt in such a multi-physical device modeling, the common
times generate corrupted data named observation outlieapproaches consists of analogical representation of the phys-
leading to large estimation errors, we propose a parameteieal phenomena or finite elements analysis. In [12] [35] [37]
ized robust estimation criterion based on a mixed-LL; [38] [44] the authors developed electrical and mechanical
norm with an extended range of a scaling factor to tackle efomponents that are analogous to the concerned system un-
ficiently these outliers. This choice is motivated by the higler some conditions. Assumptions and approximations are
sensitivity of least-squares methods to the large estimatiomde to minimize computation efforts while achieving good
errors. Therefore, the role of theitnorm is to make the4d- accuracy as long as the assumptions made are satisfied. This
estimator more robust. Experimental results are presentedakes it possible to simulate the response of the system and
and discussed. quantify the influence of each parameter and tradeoffs to be
made [36]. This is an interesting approach as one needs to
understand the nature of the system and modify or improve
1 Introduction their physical behaviour. On the other hand, for high level
Systems modeling tasks imply choosing an approagfetailed study the finite-element method is often found to
which mainly depends on the final purpose. In this paper, i the most appropriate [42]. Both approaches often lead to
deal with piezoelectric systems models for complex systemfodels for which it could be difficult to find the appropriate
control. Therefore, the modeling approach here chosen mgsfameters. For example in the case of piezoelectric sys-
tems, where one has to deal with micro-displacements, the
parameters estimation is very sensitive to outliers. Remem-
*Corresponding Author's: corbier.christophe@gmail.com. LSIS: Lader [25] [22] that outliers mean significantly large values of
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to any big deviation in comparison to the usual observationmossible to use piezo-materials both in actuators and sensors
Instead of physical modeling approach, we suggest the uselaboration.

robust identification method. Usually, the model's parame- Fig.1 illustrates the macroscopical principle of piezo-
ters estimation is based on least squares methods based aotaation. With respect to voltayeinput and resistive force
Black-box approach [31]. The main drawback in these tech- the device generates micro-vibratiamand consumes a
niques comes from their high statistical sensibility to largelectric chargey. In this paper we shall alternatively use
errors. Generally, two methods are used. The first one caslectric charge and electric currdnt= §. Piezoelectric de-
sists in simply deleting (filtering) the influencing outliers be-

fore the fitting process. This is often an efficient approach

when expert knowledge assists this task, ensuring that the re-

moved information are not relevant ones. However, because V—™ Piezo-actuator — >
of its complexity, it is not always feasible. This is the case of

the piezo-system we shall deal with in this paper (Section 2). F— >
Sometimes, data delation could lead to losing crucial infor- Generator of

mation, since they often provide valuable information about displacements

the system’s dynamics [43]. The second method therefore

consists in treating these outliers, in order to capture rele- Fig. 1. Piezo-actuation principle

vant information about the system behavior they may con-
tain. Itis up to the user to interpret then the identified model
and conclude on the origin of the system’s behaviour. Sing&es are useful in advanced and complex mechanical struc-
the underlying error estimation distribution presents a heawyres design as well as in some of their manufacturing pro-
tail [21] [33] [25] due to the presence of these outliers, akess. This requires the participation of scientists and en-
ternative solutions are brought. The LSAD (Least Sum Algiineers from diverse fields, mechanical, electrical, control,
solute Deviation) techniques leading to linear programmingmputing, etc. Some of industrial assembling processes
minimization problems with or without contraints proposes @ike aircraft structure assembling processes) may require
family of robustly convergent algorithm’s seems to be mordrilling thousands of holes specified as to be of diameter
efficient than the classical least squares criterion in the cas@ich smaller than the depth. The main difficulty with such
of an estimation errors with Laplacian distribution. Anothea process concerns breaking and evacuating the chips. There
method uses a mixeld, — Ly norm based on the parame-are many risks coming from this problems. The drilling tool
terized robust estimation criterion according the Hublts could be damaged. A technique for dealing with this prob-
estimates [25]. A simple insight on the estimation errodem consists of drilling with vibration assistance. Micro-
characteristics fitted by the least squares criterion, providéigrations are generated and transmitted either to the work-
an idea on the convenient scaling factor which automaticalyece either to the drill bit. This offers a controllable solution
determines the balance betwedgnandL; contributions of for chips breaking and eliminates stripping tasks. The ma-
the estimation procedure. Moreover, by varying this scgbr stake in vibrational drilling is about generating with pre-
ing factor, we can modify the rate @f in comparaison with cision the required piezo-vibrations (in terms of frequency
L.. A huge scaling factor corresponds to plieestimator. and amplitude). The user should therefore elaborate the
Our work aims to use a parameterized robust estimation csemmand. For this purpose, efficient models are required.
terion based on thk, — Ly Huber’'s norm with an extended However not all models could serve in command elabora-
range of a scaling factor, treating the innovation outliers [13fon. The common approaches consists of analogical and/or
Moreover, we propose a new decisional tool for the modgihenomenological representation of the physical phenom-
validation, named.;-contribution function of the estimation ena or finite elements analysis (FEA). However, as men-
errors to choice the estimated pseudo-linear models. tioned in [5], FEA methods are useful when high level of
This paper is organized as follows: Section 2 describeetail is required. This is not the case in command elabora-
the context of complex systems control. In Section 3, wion. In previous papers [4], we adopted lumped-parameters
shall resume the mathematical background related to the Hipproach in order to establish user-oriented models in 20-
ber'sM-estimates problem. The following Section 4, the paSim [10] and Matlab-Simulink [34]. Then, these models
rameterized robust estimation criterion, the extended rangere improved in [5] in order to better account for nonlin-
of the scaling factor and thie;-contribution are proposed ear phenomena occurring in piezoelectric devices. We ob-
and discussed. In section 5 we shall comment these expegined good agreements between the models and the experi-
mental results. Finally, we shall give some conclusions amgents. For smooth (sinusoidal) voltage profiles, the proposal
perspective to this work. models were able to predict the output displacement. Now,
the inverse question arises. Which voltage shall we gener-
ate in order to obtain a certain vibrations profile? Several
2 Context of complex systems control: drilling case technigues exist that are extensively used. Commonly, the
A piezoelectric material changes its shape when subystem’s outputs are measured or estimated in order to track
jected to an electric field. Conversely, it induces electrictthe referee command via a synthesized feedback. In this cat-
charges when subjected to mechanical stress. This makesgiory one could enumerate adaptive control [32] [9], state



feedback control [26] [20], sliding model control [14] [19]be non-robust and lead to bad control loop. In the litera-
etc. All provide satisfaction despite different sources of peture, [47] [17] have proposed an optimal input design for
turbations. These methods are classified as global contsgstem identification. This optimality approach is worth-
methods. On the other hand, other techniques (named Vehile, only when good prior knowledge is available about
cal techniques) consist of interconnected subparts associdtezlsystem. In practice, it is suitable to decide upon an im-
with the different parts of the system. This category includgsortant and interesting frequency band to identify the sys-
nested control loops [16], backstepping control [48] and irem, and then select a signal with a more or less flat spec-
verse model control. If a model is available, control basedum over this band. Among these signals, there exists the
on reverse model is prefered. Indeed, inverse model contfehirp signals or Swept sinusoids [41] [23] and the Pseudo
offers an organized methodology using a decomposition Bandom Binary Sequence (PRBS) which is a periodic, de-
the systems’ organs functionality with respect to exchangerministic signal with white-noise-like properties, that is a
energy. It consists in synthesizing the input according to tligand-limited Gaussian. For this purpose, we shall excite the
desired output profile. Therefrom, the task is to determirsystem by a PRBS, sufficiently exciting and persisting [27],
the physical reverse function of the system (piezo), so, tléth small amplitude £10V). This choice is motivated by
control loop could be resumed in Fig.2. two arguments. The first and trivial one concerns the full-
ness (in term of excitation frequencies) of such a signal in
comparison with steps and sinusoidal signals. The second

. reason is related to the operating condition of the concerned
. Commans messured  System. We are dealing with piezo-systems applied to vi-
signal | ! I I brational drilling. As a matter of fact, during the drilling
S process, the system is subjected to some random impacts. A
Obtained PRBS allows therefore to reproduce such this environment.

In this case (non-smooth solicitation, eg. sawtooth signal),
even with low amplitude, the system could have a behaviour
difficult to characterize. Indeed, assuming the physical sys-
tem presented in Fig.6, sawtooth solicitation could lead to
losing contact between element 4 and element 1. Classical
mechanics can no longer allow to describe efficiently such

) o ) N ) a behaviour. Therefore, the models presented in Fig.2 and
As it appears in Fig.2, in addition to the referee dlsplacq?:lg_s are no longer valid.

ment, the proposal control loop requires the real time electric
current. However, it is difficult to get this feedback with good
precision. Indeed, only small electric current crosses piezo-
electric devices. To measure it, a high precision device
required. Unfortunetly, this is not easy and important nois
are usually present in the signal. Experiments showed us that In the general way, we denote in the seqdg(8) =

the effect of the current loop could be modelised by a noige(t,8) andX = X (t), for a parameterized time varying sig-
and the displacement. We can therefore justify Fig.3. Imal. Let us consider a discrete-time SISO system with input
this configuration, we replace the electric current feedbaskgnalU; and output signat; described as follows

by noises added to the displacement.

Drilling system

Fig. 2. Control loop proposition

is .
és The Huber’'s M-estimates problem

Y% =G(q.0)U+H(q'.0)a (1)
The effect of the
If:top cur_rent acts
Reference biero ctuay T otse See [31] for more details. Her& (q~1,8) andH (q1,6)
signal are the transfer functions of the system, respectively ftom
g B ; toY andetoY . The backward shift operator ! is defined
Controller byU;_1 = q1U;. U is an exogenous and deterministic input
F1 ul ) : . - .
Measured signal andy a random variable with mean zero and variance
o N A. Consider the general parameterized pseudo-linear models

set M(8), with the parameters vectér= [0;....8]" € R?
whereY; (8) = ¢/ (6)6,t =1,2,..., represents the prediction
model output and a pseudo-linear regression on the base of
Fig. 3. Alternative control loop a data se{Uy,Y1,...,UnN, W, ...}. Hered{ (8),t =12 ..
denote the —th observations vector and

Drilling system

This requires the elaboration of a new controller. How- A
ever, the model obtained from analogical approaches could &(0) =Y —Y:(0) (2



the prediction error signal also named residuals. The Hube#® M-estimation procedure

M-estimation is a minimum problem of the form
N2 o (8 (Bn)) = Nileiggth:lpn (&(6)) (3)

or by an implicit equatioN =N , W, ; (&; éN_n) =0, where
éNﬂ is the robust estimator @, © is a subset oRY and

Fig.4 describes the estimation phase in this prediction
error framework. During this procedure, the prediction er-
rors are treated in a Parametric Adaptative Algorithm (PAA)
which include both the solver and the parameterized robust
estimation criterion to be minimized. The presence of out-
liers in the data set induces large values of the prediction
errors. Thanks to a convenient choice of the scaling factor,
the estimator robustification reduce the effects of these large

Py : S x © — R a nonnegative, convex, piecewise functiogjeviations and the estimated residuals correspondingly de-

such aspy (£¢(0)) : $ — R is measurable for each € ©,

crease. These residuals are built following the described rule

with § a probability space. The constant named scal- in the previous sectiongy,; = & if t € v;(6), &, = 0 oth-
ing factor, regulates the amount of robustness and may @ise,i = 1,2. Therefore, let us denotg(8) € RN and

pend on the observationg. In the literature, [24] [45] [8]
[25](p.19) [33](pp.27,61) choose the scaling faatos ko

5(8) € RN, respectively the vector of the residuals and the
sign function such ast(8) = [€1(0)...en(0)] and $(8) =

with 1 < k < 2 named tuning constant, only for the linears, (g)...sy(8)] with () defined in the previous section.
models, where is the standard deviation. More preciselyyoreover, let us define the weight matri/(8) € RN*N,

thepp-norm is

1x2 if|X| <n
X)=¢2 . - 4
pﬂ( ) {ﬂlx—§ﬂ2 If|X\>ﬂ ( )

W(8) = diag(wi(8)...wy(8)) wherew; (8) = 1—s(8). The
parameterized robust estimation criterion in Eq.(5) to insert
in the PAA can then be rewritten as

Win(8) = %ET(G)‘W(S)Z(S) +

n

NSTO) [£(0)-250)]

Here, p, is chosen to render the estimation more robust (6)

than the classical least squares estimation with respect to
the innovation outliers [13] supposed to be present in the
residuals. The least informative probability density function

[25] is defined byf (X) = Ce P(X). MoreoverW, , (€;6) =
—a%pn (¢ (8)) is the gradient of the,-norm with respect to
8, named¥-function.

4 The robust estimation context based on d, — L3
mixed norm

Now, let us deal with the main contribution of the pa-
per. The goal is to propose a robust criterion based on the
Huber’'s norm and justify the choice of the scaling factor.

SYSTEM
SIS0 QUTPUT

b
SYSTEM pac

P

PARAMETERIZED

PSEUDO-LINEAR
MODEL

PRBS ADC b

PREDICTION MODEL
OUTPUT

PREDICTION
ERROR

PARAMETER VECTOR 4 PAA

The new decisional tool for the models validation, namegly 4. pescription of the estimation phase in the prediction error

Ls-contribution is proposed and discussed.

4.1 The parameterized robust estimation criterion

Let us introduce two index sets defined by(6) =
{t:]&(0)| <n} andvi(8) = {t:|&(0)| >n}. vz andv;
are respectively thé&,-contribution andL;-contribution of
the residuals. We define thsgn function by 5(6) = 0
if |&(0)]<n, (8)=-1if &(0) <-—nands(6) =1 if

framework.

4.3 Choice of the scaling factor

In the literature, the tuning constant is chosen in the in-
terval range[1,2] [33] [25], only for the linear models, in
order to regulate the amount of robustness. However, this

&(0) > n. From this, the parameterized robust estimatioghoice ofk does not ensure the convergence of the param-

criterion to be minimized can be written as follows

1 e2(0
Whin(8) = S Ztevz(0) té )+ %ztevl(e)“et(e”

B n§(9))
2
()

From the derivative with respect t6 of (5), we de-
duce theW-function by W, (£6) = —Wy,1(0)ev,(0) —
Ny, 1(0)sy,t(8), where in the general cade ; = fi if t €
vi(B), fy, t = 0 otherwisej = 1,2 andy (0) is the derivative
with respect td® of (2).

eterized robust estimation criterion given by (5) and the es-
timator remains sensitive to the large and numerous innova-
tion outliers. Maybe, because nonlinear models obviously
do not match with this type of application? In this case,
the distribution of the residuals is strongly disturbed and
presents a heavy tail. Thus, formally, it is usesi@rrupted
model to induce a topological neighborhood around the tar-
get normal distributiofiy, yielding a probability distribution
Fs= (1—s)Ry+sH, s [0,1] whereH is an unknown dis-
tribution. The breakdown point (BP) of an estimator is the



largest amount of contamination that the data contain suapproximation. The.;-contribution function can then be

asby,y still gives some information abo@it The asymptotic rewritten ad ,C (8) = %Ztevl(e)‘%ime) _Now let us de-
. ) ~ . 1+e2Ket(0)

contamination BP o denpteds* is the largess* € (O,'l) fine two index subsets of, (8) asvk(8) = {t : [&(8)] < —n}

such as fois < s*, By y remains bounded. Moreover, in the, vH(8) = {t:|&(6)| >n} such asvy(B) = vk(6) U

ou_thers Qete(_:tlon methods, the Ievg_rag(_a points (LP), namq}y(e) and vk (8) NvH(6) = 0. We then haveL,C(8) =

points with highly influence of position in factor space, arg 1_e2Ket(®) g o2Ker(8) _q .

increased interest. It is shown that theestimator is not Ntev () 176 2ka® T NZtevh(6) a1+ After straightfor-

always robust to LP when the tuning constant belongs y_ﬁard galculatlons and using a Taylor's expansion, the deriva-

[1,2] [33][25]. In the case of piezo-systems where the micrdive With respect td of L,C(8) leads to

vibrations sometimes generate outliers and disturb the ro-

bust estimation, it is interesting, to reduce the influence of 0 —4K K [ex ()

the LP on the pseudo-linear models, that we deliberately in- %L1C(9) ~ thevlw) W (6)e (8)

vestigate the smaller values of the tuning constant, that is

k € [0.05,2]. In the other hand, the improvement of the es- N _ _

timated model with the extended tuning constant, may be"d'erew: (8) = —gg&: (8) [31]. Sincele:(8)| > n, we obtain

somehow favourable effect on the inner feedback (see Fig. eL1C(e)‘ < 4Ke 2 Ztevy(0) [Pt (0)]. From [30], Ljung and

. N
precisely due to the dependencepp6) upon the parameter caines showed théy (0)| is bounded for alb € ©. There-
vector. fore, [Wy, 1 (8)] < W (8)| = Cy and there exists an estimator

Bnn € O such tha#%Llc (Bnn) ’ < 4KCye 2N — 0 forK
4.4 L,-contribution function: a decisional tool for the sufficiently large.
models validation
In the sequel, the reader should make the difference be-
tween the degree of corruption of the data measured by the
engineer and the level of the related corruption of the estimg- Experimental results
tion error (i.e. outliers) only considered by the statisticiansg 1 Experimental setup
In the robust estimation procedure describes in Fig.4, the es- Tpq experiments and simulations are performed with a
timated prediction errors larger than the scaling factor afgost 1000/35-25/80 piezo-actuator from Piezomechanik. In
treated by thelq-norm in order to rend more robust therig 6 we show the mechanical assembly used for the exper-
least squares estimator. In the previous section, We Qgjents. This special setup firstly aims to prevent the piezo-
fined two index sets, denoteeh(6) and vi(6), such as gectric device from damaging. Indeed, ceramic made de-
card[vz(8)] +card[vy(8)] =N forall@c ©andN € N. Let \iceq are brittle under stretching solicitations. Therefore
us denotecard(v1(6)] = Nout(8) the number of innovation yechanisms are used to apply a pre-stress on the device. In
outliers and™%® the fraction of "bad” values of the cor- our design, the pre-stress value depends on the gap between
rupted samples. The small valuesrpinvolves a robust es- elements 1 and 2. This gap is set via thin metallic films be-
timation procedure mainliz; and N°“Tt(e) increases. In [25], tween elements 1 and 2. In our setup, we applied BOE-
the author’s defined this fraction as-aeplacement model in ement 3 is fixed to a table. The vibrations of the piezoelectric
the general context of theecorrupted distributions. For any device (yellow element) are transmitted to element 1. This is
robust estimatoéN,n, there is asy-corrupted empirical dis- why the measuring sensor is about element 1 as shown in
tribution Fg, = (1— &) Fn + SuHn, wheresy = s(éNﬂ). In Fig.5. We consider the whole assembly as a SISO system

our work. we extend the role of the fractigﬁﬁ@) as a deci- (Single Input Single Output) because we are only interested

sional tool for the models validation nameg-contribution 1" the piezoelectric device displacement. Fig.5 shows the
function denoted.,C (8). The minima of this function can measurements chain. Following are details on instrumenta-

confirm the robust estimator derived by Brig\ () or tions and signal processing.
<

give another estimator. In this case, this tool emphasizes thgjezgelectric actuator

decision on the choice of the estimated model. In the Sequeheference HPSt 1000/35-25/80

we show that thd.;-contribution function has a minimum, Manufacturer Piezomechanik

therefore, formally, we define thie;-contribution function Accelerometer

as Reference DYTRAN 3225F1

1 Sensitivity 10 mV/G
L1C(8) = Nztev1<e)|5t(9)\ (7) F.requgancy response +10%: 1.6 to 10,000 Hz

Linearity 2% F.S max
National Instruments Cards

The derivative ofL;C(6) with respect tod necessities the Channels: 4 for each card

derivative of thesign function. Therefore, we use an ap-
proximation function [6] ofs(6) given bys (6) ~ ¢; (8) =

—2Ket (6 . ..
ﬁg—f&e;' whereK is a real sufficiently large to ensure the

In: NI-9215, Out: NI-9263



Power Operational Amplifier
Reference

Simultaneous sampling mental device, the adopted model is the classical Output Er-

Output resolution: 16-bit ror (OE (g, ng)) pseudo-linear model given by
Input resolution: 24-bit

Output rate: 50 kHz B(q~L,0)
: M(@®):Yy=q 9"~
Input rate: 50 kHz ©):Yt=q F(qL0) U +e
PA-0103

whered is the pure plant time delay arfé{qt,8) a monic
polynomial. In our case&l = 1 meaning the time delay of
the sample and hold in the discritization. The parameters

vector is8 = [by...bng fl..;an]T. The pbservations vector is
O (8) = [U—1..Ut—ng — Yi-1(8) ... — Yi_n: (8)]. As explain

in Section4.3, the tuning constant is chosen in the interval
range[0.05,2], the scaling factor i) = ko whereo is the

Gauge constraint ¥
43ctive gauges i vV

standard deviation obtained from a least squares estimation
in the initialization phase. For the polynomi&&y—*,8) and
F(q*l,e), 7<ng <14 and 4< ng < 15 respectively. In the

Lsi-contribution function, we experimented different values

Fig. 5. Experimental setup of K. We choosed = 15 since great values do not improve

0.5 0.05

Jeu fonctionnel <

Main pre-loading 2

element

significantly the approximation.

Piezo-actuator

Excitation input signal: PRBS (Volt)

i I I
0 50 100 150 200
time steps

Fig. 7. Excitation input signal: PRBS

Fig. 6. Experimental piezo-system

In the sequel, we only consider measurements from the
gauges constraint. The accelerometer is used in order to
check the efficiency of the active gauges.

5.2 lIdentification procedure

I

In order to provide a Black-box model of the piezo-
system and more particularly a robust model from the out-
put signal of micro-displacements, we applie for the exoge-
nous input a pseudo random binary sequence (PRBS) with
a lengthL = 2191 and level+10v, sufficiently exciting
and persisting [27]. The sampling periodTis= 10Qus and
the number of data id = 5000. Fig.7 and Fig.8 respec-
tively show the excitation input and the output signal of the
piezo-system. This last signal presents some large values

which may be considered as an observation outliers. Thefe3 Distribution of the prediction errors in the least
squares estimation

As expected, the distribution of the prediction errors of

Since the piezoelectric ceramic system is not a linear expegin estimated model in the classical least squares, is strongly

fore, these large samples implie innovations outliers in the
estimated residuals.

Output signal of micro-displacermnents (Valt)

i i i i i i i i i
20 40 BD B0 100 120 140 180 180 200
time steps

Fig. 8. Output signal of Piezoelectric.



disturbed (see Fig.9). This non-trivial distribution is zero be- a2
tween—2 and+2 and presents two distributions aroun@

and+3. These different results show firstly, the necessity to 0
use a parameterized robust estimation criterion with a scal-
ing factor and secondly, to choose this parameter and rein-
force the robustness of the least squares estimation. It seems
reasonable to investigate the variations of this scaling factor
given in the previous section.
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Fig. 10. Parameterized robust estimation criterion as a function of
Ng at Nng = 9when N = 0.06250.
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Fig. 9. Probability density function of Ly estimation for an
OE(12,12) model.
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5.4 Estimation/Validation results Fig. 11. L1-contribution function as a function of Ng at ng = 12

In a first step, an estimation campaign has led to dhenn = 0.087%0.
rive ng. ng = 9 for the first model denotebl; andng = 12
for the second, denoteld,. Fig.10 shows the parameter-
ized robust estimation Cl’iteridM\m as a function OhF with estimated parameters Ml andM2 are respective|y shown.
4 < ng <15 atng = 9, when the tuning constant is equal to
0.0625. The minima df\ n, yields two models atr =8 and
ng = 12. For the first model atg = 8, the fit less than 40%.
Let us denote the first model ag = 9 andng = 12, My :
OE(9,12). The scaling factor is = 0.0625% = 0.2255 and n T e
the fit equal to 85% in the frequency intervgdD;500HZ, ; '
used for the control. In Fig.12, the frequency response
of M; is compared to the spectral estimation of the piezo- o
system. For the model validation, we use the results of the
L1-contribution function. Fig.11 shows,C as a function of
ng with 4 < ng <15 atng = 12, when the tuning constant is
equal to 00875. This decisional tool provides two robust
models atng = 9 with a fit equal to 82% andng = 12
with a fit equal to 922%. The second selected model is 7% I T T S N NN SO N
M, : OE(12,12) for its very good fit. Even though the- L iy
contribution function yields a robust model with a dimen-
tional d = ng + ng = 24, the choice has been made onlfig- 12. Robust model M7 : OE(9,12) compared to the spectral es-
on the fit criterion, since in the case of the piezo-systeriimation of the piezo-system at | = 0.0625%0 = 0.22535
the robust model must have a relevant characteristics for the
sensitivity of the control. For this model, the scaling factor
isn = 0.0875% = 0.2619 and thd_;-contribution function
equal to 942%. This value shows that the robust estimation In order to providea reference case-ig.14 shows the
has been mainliz;. The reader shall note in Fig.13 the goodstimated model in least squares estimation. The great sen-
frequency response ii®;50HZ of M, versus the spectral sitivity with respect to large estimation errors is clearly illus-
estimation of the piezo-system. In Table 1 and Table 2 theated.

Model: M1

Armnplitude (dB)
=

)
=]

d
=]

Piezo.system ' |




n 1 3 4 5 6 7 8 9 10 11 12
b, | -0.119 | -0.133 | —0.115 | —0.098 | —0.107 | —0.236 | —0.104 | —0.172 | —0.234 0 0 0
fn | —0.470 | 0.068 0.280 | —0.291 | —0.068 | —0.007 | —0.068 | 0.013 | —-0.261 | 0.239 | —0.108 | 0.089
Table 1. Estimated parameters of M1 : OE(9,12).
n 1 3 4 5 6 7 8 9 10 11 12
by, | —0.042 0.038 0.054 | —0.206 | —0.368 | —0.254 | —0.137 | —0.159 | —0.201 —0.186 —-0.110
fn | —0.212 —0.005 | —0.016 | 0.002 | —0.060 | —0.048 | —0.144 | —0.060 | —0.200 | 4.3x 107 | 0.0065

Armnplitude (dB)

-30

-10

Table 2. Estimated parameters of My : OE(12,12).

OE model: nB=12 nF=12
T

Model M2

Piezo-system

i i i i i i i i i
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Fig. 13. Robust model My : OE(12,12) compared to the spectral
estimation of the piezo-system at N = 0.0875% = 0.2619

Arnplitude (4B)

OE model: nB=12 nF=12, L2 estimation
T T T T T T T

: Piezo-system

Model -

1)

i i i I L i I i I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency {Hz)

Fig. 14. The model OE(12,12) in least squares estimation. The
great sensitivity to the large deviations is clearly shown.

6 Conclusion
In this paper, we showed a piezoelectric ceramic process NTM, San Diego, Ca, pp. 829-839, 2004.
identification method, based on the Huber's M-estimateg9] D.W. Clarke, Adaptive predictive control, Annual Re-
with an extended interval range of a scaling factor to deal views in Control, vol. 20, pp. 83-94, 1996.
with both the large estimated prediction errors and tH&0] Controllab Products B.V, Version number 4.0.1.5,
pseudo-linear Black-box models. We used a parameterized P.O. Box 217, 7522 NB, Enschede, The Netherlands,
robust estimation criterion composed both abgart for the
small prediction errors andla, part for the innovation out- [11] C. Corbier, J.C. Carmona and V. Alvarado; — L,
liers. For the models validation, we presented and discussed Robust Estimation in Prediction Error System ldentifi-
a new decisional tool, thiei-contribution function and we
extended the role of this term in order to determine she
corrupted models distribution of the prediction errors. Mordg12] L. Donald, Energy Analysis of Piezoelectric-Actuated
over, we showed that this validation tool provided relevant  Structure Driven by Linear Amplifier, Journal of Intel-
models with good characteristics in the frequency interval ligent Material Systems and Structure, vol. 10, pp. 36—
range for the control. Many aspects of these studies are open 45, 1999.

to further research. It should be interesting to analyse the
properties of the_1-contribution function and an extansion
of this method will be proposed for non-linear models.
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