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In this paper a new method for voiced speech enhancement combining the Empiri-17
cal Mode Decomposition (EMD) and the Adaptive Center Weighted Average (ACWA)
filter is introduced. Noisy signal is decomposed adaptively into intrinsic oscillatory com-19
ponents called Intrinsic Mode Functions (IMFs). Since voiced speech structure is mostly
distributed on both medium and low frequencies, the shorter scale IMFs of the noisy21
signal are beneath noise, however the longer scale ones are less noisy. Therefore, the
main idea of the proposed approach is to only filter the shorter scale IMFs, and to23
keep the longer scale ones unchanged. In fact, the filtering of longer scale IMFs will
introduce distortion rather than reducing noise. The denoising method is applied to sev-25
eral voiced speech signals with different noise levels and the results are compared with
wavelet approach, ACWA filter and EMD–ACWA (filtering of all IMFs using ACWA fil-27
ter). Relying on exhaustive simulations, we show the efficiency of the proposed method
for reducing noise and its superiority over other denoising methods, i.e., to improve29
Signal-to-Noise Ratio (SNR), and to offer better listening quality based on a Perceptual
Evaluation of Speech Quality (PESQ). The present study is limited to signals corrupted31
by additive white Gaussian noise.

Keywords: Voiced speech enhancement; Empirical Mode Decomposition; ACWA filter.33

1. Introduction

The aim of noise reduction in speech is to lower the noise level without affect-35

ing the speech signal quality. In many speech communication applications, the
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recorded and transmitted speech signals contain a considerable amount of acoustic1

background noise. Furthermore, with the growth of mobile communication appli-
cations, the problem of reducing the background noise has become increasingly3

important. Different strategies have been proposed for noise reduction, such as
Wiener filter [Proakis and Manolakis (1996)] or subspace filtering [Hermus et al.5

(2007)]. These linear methods have attracted significant interests and investigations
due to their easy design and implementation. However, these approaches are not7

very effective when signals contain sharp shapes or impulses of short duration. To
overcome these limits, nonlinear approaches, such as wavelet analysis, have been9

proposed [Donoho (1995)]. However, the fixed basis functions limit the performance
of the wavelets over particular class of nonstationary signals. Recently, a new data-11

driven method, called Empirical Mode Decomposition (EMD), has been introduced
by Huang et al. [1998] for analyzing nonlinear and nonstationary signals. The EMD13

decomposes adaptively a signal into intrinsic oscillatory components called Intrinsic
Mode Functions (IMFs). The basis functions of EMD are derived from the signal15

itself and hence, the analysis is adaptive in contrast to traditional methods where
the basis functions are fixed.17

In this paper, a denoising scheme combining two adaptive methods and dedi-
cated to voiced speech signals is proposed. The method is based on the EMD and the19

Adaptive Center Weighted Average (ACWA) filter [Lee (1980)] that both perform
in time space. In our previous works [Khaldi et al. (2008a; 2008b)], the denois-21

ing method is based on the filtering of all IMFs extracted from the noisy signal.
Since voiced speech signal energy is distributed over low and medium frequencies23

[Hermus et al. (2007)], the lower order of IMFs (high-frequency components) of
the noisy signal is noise-contaminated [Weng et al. (2006); Boudraa and Cexus25

(2007)]. However, the longer scale IMFs (low- and medium-frequency components)
corresponding to the most important structures of the signal are signal dominated.27

Therefore, filtering of these IMFs will introduce signal distortion rather than a
noise reduction [Cexus (2006)]. The basic idea of the proposed method is to only29

filter the shorter scale IMFs (high-frequency components), which are noise domi-
nated, and to keep the longer scale IMFs unchanged. This method is effective for31

voiced speech since the most important spectral features of voiced speech signal
are distributed over medium and low frequencies [Hermus et al. (2007)]. Indeed,33

the power spectrum density of the voiced speech is very low for high frequencies.
A criterion based on IMFs’s energy is used to detect the shorter scale IMFs that35

contain much more noise than signal [Boudraa and Cexus (2007)]. These IMFs
are filtered using ACWA filter [Lee (1980)], which operates adaptively in the time37

domain and does not require the stationarity and the whiteness of the signal. The
proposed method is applied to voiced speech signals corrupted with additive white39

Gaussian noise. Comparisons with some denoising methods (ACWA filtering of all
IMFs, wavelet denoising approach, and ACWA filtering of the noisy voiced signal)41

are performed.



2. EMD Basics1

The EMD decomposes a given signal x(t) into a set of IMFs through an iterative
process called sifting; each one with a distinct time scale [Huang et al. (1998)].3

The decomposition is based on the local time scale of x(t), and yields adaptive
basis functions. The EMD can be seen as a type of wavelet decomposition whose5

subbands are built up as needful to separate the different components of x(t). Each
IMF replaces the signal details, at a certain scale or frequency band [Flandrin et al.7

(2004)]. The EMD picks out the highest frequency oscillation that remains in x(t).
By definition, an IMF satisfies two conditions:9

(1) The number of extrema and the number of zeros crossings may differ by no
more than one.11

(2) The average value of the envelope defined by the local maxima, and the envelope
defined by the local minima, is zero.13

Thus, locally, each IMF contains lower frequency oscillations than the one
extracted just before. The EMD does not use a pre-determined filter or basis func-15

tions, and it is a fully data-driven method [Huang et al. (1998)]. To be successfully
decomposed into IMFs, the signal x(t) must have at least two extrema, one mini-17

mum and one maximum. The IMFs are extracted using an algorithm called sifting
process summarized as follows [Huang et al. (1998)]:19

• identify all extrema of x(t);
• interpolate between minima (resp. maxima), ending up with some envelope21

emin(t) (resp. emax(t));
• compute the average m(t) [(emin(t) + emax(t))/2];23

• extract the detail d(t) [x(t)−m(t)]; and
• iterate on the residual m(t).25

The signal d(t) is considered a true IMF, if it satisfies the conditions (1) and
(2). The result of the sifting is that x(t) will be decomposed into a sum of C IMFs27

and a residual rC(t) such as the following:

x(t) =
C∑

j=1

IMFj(t) + rC(t), (1)
29

where IMFj(t) is the IMF of order j and, rC(t) is the residual.

3. Interest of ACWA Filter31

Classically, the ACWA filter has been used in image enhancement applications [Lee
(1980); Russo (1996)]. It can be also interesting and effective in the context of audio33

signal enhancement. As shown by Eq. (2), the ACWA filter operates in the time
domain. In contrast to the classical filters, such as Wiener filter, all the parameters



are computed in time domain and, hence, transformation to frequency domain is1

not necessary. Besides, the noise variance is computed at all instants and the signal
is enhanced sample by sample. The ACWA filtered signal x̃(t) is described as follows3

[Lee (1980)]:

x̃(t) =
{

Fmean + K(y(t)− Fmean) if Fvar ≥ σ2

Fmean otherwise,
(2)

5

where

K = 1− σ2

Fvar
, (3)7

where Fmean and Fvar denote, respectively, the average and the variance of the
noisy signal y(t) computed over a sliding window of size L, and σ2 designates9

the variance of noise contained in the noisy signal y(t). In order to show the
effectiveness of this filter in the audio context, a comparative analysis between11

ACWA filter and Minimum Mean Square Error (MMSE) filter [Soon et al. (1998)]
is presented.13

In this work we consider the enhancement of speech sequences corrupted by
additive white Gaussian noise. The noise level is fixed through the input Signal-to-15

Noise Ratio (SNRin) to 2 dB. Figure 1 shows the superposition of the clean signal
and the filtered signals obtained by the ACWA and the MMSE filters.17

The comparative analysis of the three signals (Fig. 1) does not clearly show
the superiority of the ACWA filter over the MMSE one. Therefore, we use the19
output SNR (SNRout) and the Perceptual Evaluation of Speech Quality (PESQ)
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Table 1. Variations of the SNRout and the PESQ over the SNRin; relating

to MMSE filter and the ACWA filter.

MMSE filter ACWA filter

SNR input [dB] SNR output [dB] PESQ SNR output [dB] PESQ

−10 0.7 0.70 1.2 1.51
−8 1.53 0.91 2.01 1.72
−6 3.52 1.07 5.94 1.98
−4 5.00 1.2 7.98 2.07
−2 7.37 1.51 10.18 2.15

0 9.82 2.05 11.19 2.21
2 12.63 2.13 12.08 2.35
4 13.76 2.25 13.95 2.41
6 15.88 2.49 15.67 2.65
8 16.53 2.64 16.52 2.75

10 17.23 2.73 17.18 2.82

[Rix et al. (2001); ITU-T P.835 (2003)] criteria to quantify the speech enhancement1

quality obtained by the two filters. Table 1 presents the obtained results for different
levels of the additive noise fixed through the SNRin. These results show that for3

very low SNRin values, the ACWA filter gives higher SNRout than the MMSE filter.
However, for all considered SNRin values, the PESQ values given by the MMSE filter5

are higher than those related to the MMSE filter. The PESQ results confirm that
the ACWA filter guarantees better listening quality of the enhanced speech than7

the MMSE filter.

4. Proposed Voiced Speech Denoising Approach9

The proposed denoising method is illustrated by the scheme shown in Fig. 2. The
noisy signal y(t) is given by:11

y(t) = x(t) + b(t), (4)

where x(t) corresponds to the clean voiced speech signal and b(t) denotes an additive13

white Gaussian noise. The noisy signal is decomposed into a sum of IMFs by the
EMD, such as:15

y(t) =
C∑

j=1

IMFj(t) + rC(t). (5)

The denoising method consists in filtering by the ACWA filter a set of IMFs selected17

using an energy criterion [Boudraa and Cexus (2007)].

4.1. IMFs selection19

The EMD filtering method relies on the basic idea that most important structures
of the signal, such as voiced speech signal, are concentrated on medium and low21



Fig. 2. Scheme of the proposed denoising approach.

frequencies, that correspond to longer scale IMFs [Weng et al. (2006); Flandrin1

et al. (2005)]. Therefore, the shorter scale IMFs of the noisy version are noise
dominated, while the longer scale ones are signal dominated and their filtering can3

induce distortion of the reconstructed signal. According to this idea, there will be a
mode, indexed by js, from which the energy distribution of the important structures5

of the signal overcomes that of the noise [Boudraa and Cexus (2007)]. Thus, a
criterion based on energy density can be used [Wu and Huang (2004); Flandrin7

et al. (2005)].
From the observed signal y(t), the objective is to find an approximation x̃(t) to

the original signal x(t) that minimizes the Mean Square Error (MSE):

MSE(x, x̃) � 1
N

N∑
i=1

(x(ti)− x̃(ti))2, (6)

where x = [x(t1), x(t2), . . . , x(tN )]T and x̃ = [x̃(t1), x̃(t2), . . . , x̃(tN )]T . N is the9

length of the signal. Other distortion measures such as the Mean Absolute Error
(MAE) can be used. Then, y(t) is first decomposed using the EMD into IMFj(t), j =11

1, . . . C, and a residual rC(t), and finally x̃(t) is reconstructed using (C − k + 1)
selected IMFs starting from k to C (Eq. (7)).13

x̃k(t) =
C∑

j=k

IMFj(t) + rC(t), k = 2, . . . , C. (7)



The aim of the EMD filtering, which is carried out on time domain, is to find
the index k = js that minimizes the MSE(x, x̃). Note that Eq. (7) corresponds
to a low-pass time-space filtering [Huang et al. (2006)]. In practice the MSE or
the MAE cannot be calculated because the original signal x(t) is unknown. In
this paper we use a distortion measure called Consecutive MSE (CMSE) that
does not require the knowledge of x(t) [Boudraa and Cexus (2007)]. This quan-
tity measures the squared Euclidean distance between two consecutive recon-
structions of the signal. The CMSE is defined as follows [Boudraa and Cexus
(2007)]:

CMSE(x̃k, x̃k+1) � 1
N

N∑
i=1

(x̃k(ti)− x̃k+1(ti))2, k = 1, . . . , C − 1, (8)

� 1
N

N∑
i=1

(IMFk(ti))2. (9)

Thus, according to Eq. (9) the CMSE is reduced to the energy of the kth IMF.1

It is also the classical empirical variance estimate of the IMF. Remark if k = 1,
x̃k(t) = y(t). Finally, the index js is given by:3

js = argmax
1≤k≤C−1

[CMSE(x̃k, x̃k+1)], (10)

where x̃k and x̃k+1 are signals reconstructed starting from the IMFs indexed by5

k and (k + 1), respectively. The CMSE criterion allows to identify the IMF order
where there is the first significant change in energy. This empirical fact is derived7

from extensive experiments and simulations [Boudraa and Cexus (2007)]. Once the
index js is calculated, the IMFs of order j < js are filtered and those of order j ≥ js9

are not processed.

4.2. ACWA filtering11

The shorter scale (js−1) IMFs, which are hidden beneath noise, are filtered by the
ACWA filter performing in the time space. In fact, each IMFj(t) of order (j < js)13

is assumed to be a noisy version of the data fj(t). So it can be expressed as:

IMFj(t) = fj(t) + bj(t). (11)15

An estimate f̃j(t) of fj(t) is given by:

f̃j(t) = Γ[IMFj(t)], (12)17

where Γ[IMFj(t)] is a temporal processing [Boudraa and Cexus (2007)] correspond-
ing in this case to ACWA filter. The noise level σ̃j of IMFj can be computed as19

follows [Teukolsky et al. (1992); Boudraa and Cexus (2006)]:

σ̃j = 1.4826×Median{|IMFj(t)−Median{IMFj(t)}|}. (13)21



The proposed denoising approach is described in four steps as follows:1

Input: Noisy voiced speech: y(t).
Output: Denoised voiced speech: x̃(t).3

Initialization:
h(t)← y(t)5

Step A: Decompose y(t), by EMD, into j IMFs, j ∈ {1, . . . , C}, and the residual
rC(t).7

Step B: Calculate the energy of each IMFs, and find the index js using Eq. (10).
Step C: Denoising the shorter scale (js − 1) IMFs using relations (3) and (4).9

Step D: The denoised signal, x̃(t), is reconstructed as follows:

x̃(t) =
js−1∑
j=1

f̃j(t) +
C∑

j=js

IMFj(t) + rC(t). (14)
11

5. Results

The proposed noise reduction method is tested on voiced speech signals corrupted13

by varying additive white Gaussian noise levels, fixed through the SNRin. Four
clean voiced speech signals vowels /o/, /a/, /e/ and /i/ (Fig. 3) pronounced by a15

male speaker are analyzed.
These signals are corrupted by an additive white Gaussian noise with SNR values17

ranging from −10 dB to 10 dB. The results of the proposed scheme are compared
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with those of three methods: ACWA filtering of all IMFs (EMD–ACWA), denoising1

based on wavelet decomposition [Khaldi et al. (2008a;2008b)], and ACWA filtering
of the noisy voiced signal. The performance evaluation is based on the SNRout3

and the PESQ measures. For each SNRin value, 100 independent noise realizations
are generated and averaged values of the SNRout and the PESQ are computed.5

Noisy versions of the original signals corresponding to SNRin = 2 dB are shown
in Fig. 4.7

For illustration, Fig. 5 shows that the EMD decomposes the noisy signal /o/
into ten IMFs and a residual. According to this decomposition, we can see that9
from the fourth IMF, the original signal components are more dominant than the
noise components. This finding is well verified based on CMSE criterion.11

Indeed, Fig. 6 shows that for the sequence /o/, the maximum of CMSE points
out at the fourth IMF. Figure 6 shows the plots of the CMSE values versus the13
number of IMFs for the four signals. Each curve is characterized by only one maxi-
mum corresponding to the index js. Table 2 summarizes for each signal, the number15
of IMFs given by the EMD decomposition; and the index js corresponding to the
largest CMSE or IMF energy. The second stage of the proposed method consists17
in filtering the (js − 1) shorter scale IMFs using the ACWA filter. The size, L, of
the sliding window of ACWA filter is set to 511. Such setting is justified by the19
results shown in Fig. 7 where are displayed the variations of the SNRout versus the
L values.21
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Table 2. C and js values of each signal.

Signals /o/ /a/ /e/ /i/

C 10 11 11 12
js 4 3 4 5

Figure 7 shows that for the three considered values of SNRin, the SNRout remains1

almost constant for L ≥ 511.
Denoising results obtained by the proposed method, the ACWA filtering of3

the noisy signal, the ACWA filtering of the all IMFs of the noisy signal (EMD–
ACWA), and a denoising based on the wavelet (db8) thresholding [Khaldi et al.5

(2008a;2008b)], are shown in Fig. 8 for an SNRin = 2dB. In fact, we choose db8 with
a hard threshold as a tool of comparison, because it gives good results compared7

to the other wavelets. A careful comparative examination of the signals, as shown
in Figs. 3 and 8, shows that the proposed method performs better than the other9

three methods in terms of noise reduction.
This conclusion is confirmed by the SNRout values listed in Table 3. For all voiced11

speech signals the SNR gain achieved by the proposed method is the highest.
These findings are confirmed by the results shown in Fig. 9. It is shown that for13

the four signals the proposed method performs remarkably better than the EMD–
ACWA and the other methods. The SNR improvement achieved by the proposed15

method varies from 3.4 dB to 17.9 dB. For very lower SNRin values, we still observe
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the effectiveness of the proposed method in removing the noise components. Indeed,1
the SNR improvement is all the more high since the SNRin is low.

When listening to the enhanced speech signals, the proposed method pro-3
duces lower residual noise and noticeably less speech distortion for all the sig-
nals. This result is confirmed by the PESQ results shown in Fig. 10. These results5
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Fig. 8. (Continued)

Table 3. Denoising results, based on the SNRout, of four
noisy voiced different signals (SNRin = 2db).

Noisy signals (SNR = 2dB) /o/ /a/ /e/ /i/

Proposed method 14.82 11.87 10.55 9.44
EMD–ACWA 11.94 7.87 7.41 5.23
Wavelet (db8) 11.38 7.85 7.40 5.24
ACWA filter 9.80 8.04 7.91 7.31

demonstrate that our approach gives a significant enhancement in listening quality1
as the improvement of the PESQ values is high. Indeed, the obtained results also
show that it is more efficient to apply the ACWA filter to selected IMFs of the3
noisy signal than to the all IMFS.
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Fig. 9. Variations of SNRout versus SNRin for signals /o/, /a/, /e/, and /i/. The results are the

average of 100 noise realizations. The reported results correspond to proposed method, Wavelet
(db8), ACWA filter, and the EMD–ACWA.
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Fig. 10. Variations of PESQ values versus SNRin for the signals /o/, /a/, /e/, and /i/. The
results are the average of 100 noise realizations. The reported results correspond to proposed
method, Wavelet (db8), ACWA filter, and the EMD–ACWA.



6. Conclusion1

In this paper, a new voiced speech enhancement method is presented. To lower the
noise level, two effective and powerful methods, pre-filtering by EMD and ACWA3

filtering, are combined. Obtained results for denoising voiced speech signals with
different SNR values ranging from−10 dB to 10 dB show that the SNR improvement5

achieved by the proposed method is higher than those achieved by the wavelet
approach, the ACWA filter, and the EMD–ACWA method. In addition, the PESQ7

criterion confirms that the proposed method offers a much better listening quality
than the other methods.9
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Appendices13

In this appendix, we give brief descriptions of the quality measures used. Input
Signal-to-Noise Ratio (SNRin): The input Signal to Noise Ratio (SNRin) is15

given by:

SNRin = 10 log10

∑T
t=1(x(t))2∑T

t=1(y(t)− x(t))2
, (A.1)

17

where x and y are, respectively, the clean and the noisy signals.

Output Signal-to-Noise Ratio (SNRout): The SNRout is very sensitive to the19

time alignment of the original and distorted signals. The SNRout is measured as:

SNRout = 10 log10

∑T
t=1(x̃(t))2∑T

t=1(x(t) − x̃(t))2
, (A.2)

21

where x̃ is the reconstructed signal.

Perceptual Evaluation of Speech Quality (PESQ): The PESQ measure is23

the most complex to compute, and it is recommended by ITU-T for speech quality
assessment of 3.2 kHz (narrow-band) handset telephony and narrow-band speech25

codec [ITU-T P.835 (2003)]. The note refers PESQ values type MOS, in the form
of a scalar between −0.5 and 4.5.27
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