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Abstract

In this paper a signal analysis framework for estimating time-varying ampli-

tude and frequency functions of multicomponent amplitude and frequency

modulated (AM-FM) signals is introduced. This framework is based on lo-

cal and nonlinear approaches, namely Energy Separation Algorithm (ESA)

and Empirical Mode Decomposition (EMD). Conjunction of Discrete ESA

(DESA) and EMD is called EMD-DESA. A new modified version of EMD

where smoothing instead of an interpolation to construct the upper and

lower envelopes of the signal is introduced. Since extracted IMFs are repre-

sented in terms of B-spline (BS) expansions, a closed formula of ESA robust

against noise is used. Instantaneous Frequency (IF) and Instantaneous Am-

plitude (IA) estimates of a multicomponent AM-FM signal, corrupted with

additive white Gaussian noise of varying SNRs, are analyzed and results

compared to ESA, DESA and Hilbert transform-based algorithms. SNR

and MSE are used as figures of merit. Regularized BS version of EMD-ESA

performs reasonably better in separating IA and IF components compared
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to the other methods from low to high SNR. Overall, obtained results illus-

trate the effectiveness of the proposed approach in terms of accuracy and

robustness against noise to track IF and IA features of a multicomponent

AM-FM signal.

Key words: Empirical mode decomposition, Teager-Kaiser operator,

Energy separation algorithm, Hilbert transform, AM-FM modeling.

1. Introduction

Estimating time-varying amplitude and frequency functions of a multi-

component amplitude and frequency modulated (AM-FM) signal is an area

of active interest in signal processing domain. The aim is to understand

and describe situations where the frequency content of a signal varies in

time (non-stationary signal). In different areas such as in seismic, Radar or

Sonar, signals under consideration are known to be non-stationary. Impor-

tant features of such signals are derived from Instantaneous Frequency (IF)

which provides a qualitative information and Instantaneous Amplitude (IA)

which gives a quantitative information [1]. Estimating IF and IA functions

of analyzed signal is a first step for signals analysis. More specifically, IF

determines what frequencies are present, how strong they are, and how they

change over time. However, only meaningful IFs could really help one to

explain the production, variation and evolution of physical phenomena. The

problem of meaningfully interpreting the IF’s signal has been addressed in

the literature [1]-[3]. It has been argued that the interpretation of IF may

be physically appropriate only for monocomponent signals where there is

only one spectral component or narrow range of frequencies [1],[3]. Ad-

ditionally, to reveal true physical meaning of the IF, its estimation must

be robust against noise. Though Hilbert Transform (HT) [1] and Energy
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Separation Algorithm (ESA) [8], based on Teager-Kaiser Energy Operator

(TKEO), are accepted demodulation methods, when applied to multicom-

ponent signal the tracked IF and IA features lose their physical meanings

[3]. To overcome this problem, Empirical Mode Decomposition (EMD) was

developed so that a multicomponent signal can be analyzed in physically

meaningful time-frequency-amplitude space by reducing it to a collection of

monocomponent functions [2]. The EMD breaks down any signal into a re-

duced number of oscillatory modes called Intrinsics Modes Functions (IMFs)

such that meaningful IFs and IAs are derived. Many works have been shown

that such decomposition can break out physical features [2]-[3],[4]. IMFs

extraction is followed by spectral analysis of each mode. Based on EMD

two spectral analysis are introduced [2],[6]. Applying HT or Discrete ESA

(DESA) to each IMF the derived time-frequency analysis is designated as

EMD-HT [2] or EMD-DESA [6]. We have shown that EMD-DESA gives

interesting results compared to EMD-HT and particularly for signals with

sharp transitions [6]. EMD-DESA works well in moderate noisy environ-

ment, but as EMD-HT it performs poorly for very noisy signals. Actually,

EMD-DESA limitation is due to the sensitivity to noise of TKEO which is

based on signal differentiation. Thus, to reduce noise sensitivity a system-

atic approach is to use continuous-time expansions of discrete-time signals

to numerically implement required differentiations without approximation.

Since IMFs are represented in B-spline (BS) expansions [2], a close formulae

of TKEO which ensure robustness to noise is used. Also, using a regularized

version of BS for interpolation (smoothing) in EMD process, more robust-

ness and better estimates of IF and IA compared to exact version of BS are

obtained. Contributions of this paper are as follows:

• Coupling two local and nonlinear approaches (EMD-ESA) as the basis
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of a multicomponent AM-FM signal analysis framework. Both IF and

IA of a three-component AM-FM signal with varying SNR values are

estimated and the associated errors analyzed. The proposed approach

is not constrained by the assumptions of stationarity and linearity.

• Compared to Gabor-ESA approach [7] where filterbank of Gabor fil-

ters is determined by a set of parameters, the proposed EMD-ESA

requires only one input parameter (SD value). Indeed, each Gabor

filter requires two parameters: the central filter frequency and the rms

bandwidth. Thus, to analyze a signal of K components the Gabor-

ESA requires (2K+1) parameters. While in Gabor-ESA K is known,

in EMD-ESA this value is determined automatically. Thus, compared

to Gabor-ESA, EMD-ESA is a data driven approach.

• Introduction of a new sifting where smoothing instead of interpolation

is used to construct the upper and lower envelopes of the signal to

be decomposed. Our approach can be easily extended to incorporate

other types of splines or smoothing funcions. Advantage of this sift-

ing is to give EMD more robustness against noise and to reduce the

number of unwanted IMFs of conventional EMD. The new sifting is

analyzed in free and in noisy environment and on a real signal.

2. EMD

EMD aims to analyze a multicomponent signal, s(t), by breaking it down

into a finite set of AM-FM zero-mean signals (IMFs) through an iterative

process called sifting [2]. The decomposition is based on the local time scale

of s(t) and yields adaptive basis functions. Locally, each IMF contains lower

frequency oscillations, than the just extracted one. EMD does not use pre-

determined filter and is a fully data driven method [2]. To be successfully
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decomposed into IMFs, s(t) must have at least two extrema, one minimum

and one maximum. The sifting is shown in table 1, where N denotes the

number of IMFs and rN (t) is the residual. To guarantee that IMFs retain

enough physical sense of both amplitude and frequency modulations, a Stan-

dard Deviation (SD) value (Step f) is determined. This is accomplished by

limiting the size of SD to ǫ, computed from two consecutive sifting results.

Usually, ǫ is set in [0.2, 0.3] [2]. The sifting involves the following steps:

Step 1) Fix ǫ, j ← 1 (jth IMF)

Step 2) rj−1(t)← s(t) (residual)

Step 3) Extract the j − th IMF:

(a) hj,i−1(t)← rj−1(t), i← 1 (i number of sifts)

(b) Extract local maxima/minima of hj,i−1(t)

(c) Compute upper envelope and lower envelope functions Uj,i−1(t) and Lj,i−1(t)

by interpolating respectively local maxima and minima of hj,i−1(t)

(d) Compute the envelopes mean: µj,i−1(t)← (Uj,i−1(t) + Lj,i−1(t))/2

(e) Update: hj,i(t)← hj,i−1(t)− µj,i−1(t), i← i + 1

(f) Calculate stopping criterion: SD(i) =
T∑

t=0

| hj,i−1(t)− hj,i(t) |
2 /(hj,i−1(t))

2

(g) Decision: Repeat Step (b)-(f) until SD(i) < ǫ and then IMFj(t)← hj,i(t)

Step 4) Update residual: rj(t)← rj−1(t)− IMFj(t)

Step 5) Repeat Step 3 with j ← j + 1 until the number of extrema in rj(t) ≤ 2

Table 1: Sifting process

Finally, at the end of the sifting, s(t) is represented as follows :

s(t) =
N∑

j=1

IMFj(t) + rN (t). (1)

In new sifting, smoothing is used instead of interpolation in Step 3c to

approximate the upper and lower envelopes of the signal (Fig. 2: box in
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bold).

3. Energy separation algorithm versus Hilbert transform

Spectral estimation is the second step of EMD. This consists in demod-

ulating IF and IA components of each IMF. An accepted way is to use

Analytic Signal (AS) through HT. A crucial condition for AS to give ac-

cepted results, the signal have to be symmetric with respect to the zero

mean [2]-[3]. The HT uses the whole signal (theoretically from −∞ to +∞).

As we have a finite segment of signal the window effect will distort its spec-

trum. Furthermore, it is not easy to accept the use of a global operator

as basis of a local estimation. An alternative way to estimate IA and IF is

the DESA [8]. Based on TKEO, DESA computes these functions without

involving integral transforms as in HT; it is totally based on differentiation.

A distinct advantage of TKEO is its good localization. Thus, it is natu-

ral to use local operator as basis for a local estimation such as IA and IF

components. Advantages of DESA are efficiency, low cost computational

complexity and excellent time resolution (5-sample window). A disadvan-

tage of DESA compared to HT is its sensitivity in very noisy environment.

To reduce this sensitivity, a systematic approach is to use continuous-time

expansions of discrete-time signals to numerically implement the required

differentiation with closed formulas [9]-[11]. A common limit of HT and

DESA is that they can not handle wideband signals. Thus the aim of this

paper is to combine two non-linear and local approaches, ESA and EMD to

track IA and IF of a multicomponent AM-FM signal. Associated with EMD,

which acts as bandpass filter [4], ESA can handle wideband signals [6],[12]-

[14]. Compared to Gabor filtering, EMD is a data driven approach that does

not require neither the number of filters and the central filter frequencies
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nor the rms bandwidth parameters [7]-[11]. Since IMFs are represented by

BS functions, their smoothed derivatives are involved to compute TKEO

and then in turn used in ESA. Finally, this process adds robustness to ESA.

4. ESA demodulation

TKEO is a tracking-energy operator [15] and its continuous version, Ψ,

when operating on s(t) is given by:

Ψ [s(t)]
∆
= [ṡ(t)]2 − s(t)s̈(t) (2)

where ṡ(t) = ∂s(t)
∂t

. A useful and important property of Ψ operator is its

behavior when applied to AM-FM signal s(t), and its derivative

s(t) = a(t) cos(2π

∫ t

0
f(τ)dτ) (3)

The output of Ψ for such signal is given by

Ψ [s(t)] ≈ a2(t)φ̇2(t), Ψ [ṡ(t)] ≈ a2(t)φ̇4(t) (4)

With negligible approximation error under general realistic conditions, Eq.

(4) shows that Ψ output is squared product of a(t) and the instantaneous

phase φ̇(t). If we combine relations of Eq. (4) we obtain the ESA [8]:

f(t) ≈
1

2π

√

Ψ [ṡ(t)]

Ψ [s(t)]
, | a(t) |≈

Ψ [s(t)]
√

Ψ [ṡ(t)]
(5)

Relations of Eq. (4) are valid provided that narrowband assumption of

s(t) holds. By passing the continuous-time derivation in (4) to discrete

differences, one obtains three versions of ESA namely DESA1a, DESA1 and

DESA2 [8]. These versions of ESA generally deliver comparable performance

with regards to the approximation errors for large classes of signals.
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5. B-splines approach

BS play an important role in the sifting process as all extracted IMFs

are linear combinations of splines. Since IMFs are represented by BS, it is

natural to perform computational task such as differentiation in BS domain

[9]. In this respect, BS versions of the EMD-ESA are derived [12]. The aim is

to have an EMD-ESA with closed formula. Note that other approaches such

as trigonometric interpolation can be used which is useful from an analytic

point of view, but computationally it is much more expensive than BS [16].

In the present work both exact and smoothed splines are investigated. It is

important to keep in mind that the definition of IMF does not specify what

is required of the upper and lower envelopes, only that they pass through

the maxima and minima of the signal respectively. Our approach can be

easily extended to incorporate other types of splines and particularly in the

sifting process. The main idea is that IMFs can be represented by any

spline or other functions provided that these functions have some attractive

properties such as continuity, continuity of derivatives, smoothness, simple

analytical form and simple representation.

5.0.1. Demodulation by exact splines

An IMF can be written in terms of BS expansions as follows [2],[5]:

IMFn
j (t) =

∑

k∈Z

cj [k] βn
k (t− k) (6)

where βn
k (t) and cj [k] are the Schoenberg’s central BS of order n [17] and

the BS coefficients of the jth mode, respectively. Thus IMFs derivatives

can be calculated by applying finite differences to BS coefficients of the

representation. For sake of clarity IMFn
j (t) is replaced by gn

j (t) and then
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output of TKEO for gn
j (t) and ∇gn

j (t) are given by:

Ψ
[
gn
j (t)

]
=

[
∂gn

j (t)

∂t

]2

− gn
j (t)

∂2gn
j (t)

∂t2

Ψ

[
∂gn

j (t)

∂t

]

=

[

∂2gn
j (t)

∂t2

]2

−
∂gn

j (t)

∂t

∂3gn
j (t)

∂t3
(7)

IF, fj(t), and IA, aj(t), of the jth IMF are written as follows [19]:

aj(t) =
Ψ

[

gn
j (t)

]

√

Ψ
[

∇gn
j (t)

] , fj(t) =
1

2π

√
√
√
√
√

Ψ
[

∇gn
j (t)

]

Ψ
[

gn
j (t)

] (8)

where ∇(.) ≡ ∂(.)
∂t

. To formulate ESA-BS, first derivatives of IMF are cal-

culated. An interesting feature of BS forms is given by equation (6). Using

this equation, closed-form expressions for the derivatives involving only the

coefficients cj [n] and the BS function are derived:

∂gn
j (t)

∂t
=

∑

n∈Z

(cj [n]− cj [n− 1])βn−1
j (t− n +

1

2
)

∂2gn
j (t)

∂t2
=

∑

n∈Z

(cj [n + 1]− 2cj [n] + cj [n− 1])βn−2
j (t− n)

∂3gn
j (t)

∂t3
=

∑

n∈Z

(cj [n + 1]− 3cj [n] + 3cj [n− 1]− cj [n− 2]).βn−3
j (t− n +

1

2
)

Using these derivatives in continuous ESA (Eq. 5), a closed form of EMD-

ESA-BS is derived. In this work each signal s(t) (IMF) is approximated

by a BS of third order, s(t) = c1t
3 + c2t

2 + c3t + c4. Thus the closed form

expressions of EMD-ESA-BS are given by

aj(t) =
A(t) + B(t)

√

C(t)
, fj(t) =

1

2π

√

C(t)

A(t) + B(t)
(9)

where A(t), B(t) and C(t) are given by

A(t) = 3c2
1t

4 + 4c1c2t
3 + 2c2

2t
2, B(t) = (2c2c3 − 6c1c4)t + c2

3 − 2c2c4
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C(t) = 18c2
1t

2 + 12c1c2t + 4c2
2t− 6c1c3

With exact splines, interpolating polynomial pass exactly through signal

samples. For very noisy data, one have to use BS functions passing closely

but not exactly through the signal samples using smooth BS [18].

5.0.2. Demodulation by smoothed splines

Since the sifting is an iterative process, any approximation error will

propagate through all the process (Fig. 2). This is why we carefully handle

the interpolation step and propose a new sifting process. More specifically,

we use smoothing instead of interpolation by exact splines to construct the

upper and lower envelopes. As a consequence, the number of insignificant

IMFs is reduced. Indeed, key importance of the EMD is obtaining estimates

of the IMFs of the sifted signal in a robust way. For noisy signals, errors in in-

terpolating extrema (extrema due to noise) can tend to increase the amount

of sifting iterations which ultimately over-decomposes the signal by spread-

ing out their components over adjacent modes. Consequently, the number of

unwanted IMFs increases. Instead, to reduce the number unwanted modes

we seek a solution that is close to the data but has some inherent smoothness

to counterbalance the effect of the noise. This why, smoothing is preferred

to interpolation where BS envelopes pass closely but not exactly through

the signal samples. To improve the performance of EMD-ESA-BS in noisy

environment, an approproximate representation (smoothed splines) is more

robust to noise than exact one [9]. This is done by relaxing the interpola-

tion constraint and to find a function (solution) of order n = 2r − 1 that

minimizes E (Eq. 10).

E =
∞∑

l=−∞

(IMFn
j (n)− hn

j (l))2 + λ

∫ (
∂rhn

j (t)

∂tr

)2

dt (10)
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Equation (10) is well-posed regularized least-squares problem where the first

term measures the error between the model hn
j (l) and the measured data

IMFn
j (n). The second term imposes a smoothness constraint on the solution

hn
j (l). The regularization factor, λ, measures how smooth the interpolating

function will be and how close to the data samples the interpolant will pass.

For λ = 0 there is no smoothing and the interpolation curve fits exactly the

signal samples. If λ 6= 0, the deviation to the data samples increases with

the value of λ. Once the smooth BS function of each IMF is calculated, the

next step is to integrate it to ESA following the same steps as for EMD-

ESA-BS method. The obtained method is termed ESA Regularized BS

(EMD-ESA-RBS). We illustrate in figure 1 the basic of interplolation and

smoothing. Noise-free signal (marked by circles) is displayed in thin line.

The noisy input is marked by stars and spline interpolant which fits the

noisy input data exactly (interpolation) is represented using dotted lines.

The smoothing spline is displayed in thicker line. Note that smoothing

spline is comparatively much closer to noise-free signal.

6. Results and Discussion

We show the effectiveness and evaluate the performance of the new sifting

(EMD-RBS) and the demodulation approach on synthetic and real signals.

We first show the effect of RBS interpolation on the extracted IMFs in

noisy environment. We illustrate this effect on a synthetic signal s(t) with

SNR=0dB:

s(t) = sin(10πt) + n(t) (11)

where n(t) is a white Gaussian noise. Signal s(t) is shown in the first row

of the top diagrams of Figs. 3 and 4. In the second experiment EMD-RBS

is tested on real signal derived from an hydrodynamical system. In forced
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Figure 1: Interpolation vs smoothing.

oscillatory motion, one looks at the first step to separate the component

of mechanical forcing (periodical oscillatory component with a known fre-

quency) from the signal. This oscillatory component is superimposed on the

original signal (top diagram of Fig. 7). This component is well identified, as

IMF11, by EMD-RBS (Fig. 7) while using EMD (Fig. 6) this component is

given by IMF11+IMF12 (indicated by arrows). Again, this example shows

the interest of the smoothing to construct the envelopes of the signal.

In the third experiment, we study the demodulation of a signal s(t) of three

AM-FM components with varying noise levels:

s(t) =
3∑

i=1

(ξi + κi cos(2πfait))
︸ ︷︷ ︸

Ai(t)

cos(πfcit + βi sin(2πfit)
︸ ︷︷ ︸

gi(t)

) (12)

where κi and βi are the modulation index and depth of the ith signal respec-

tively. Ai(t) and ġi(t) represent the IA and the IF of ith signal respectively.

Parameters of s1(t), s2(t) and s3(t) are (ξ1 = 2.5, κ1 = 0.4, fa1 = 0.01, fc1 =

0.25, β1 = 1.8, f1 = 0.01), (ξ2 = 0.89, κ2 = 0.3, fa2 = 0.005, fc2 = 0.125, β2 =

12



Figure 2: EMD-RBS diagram.

IA and IF estimation EMD-DESA1 EMD-ESA-BS

IA (1st component) 1.6% 1.5%

IA (2nd component) 5% 5%

IA (3rd component) 4% 3%

IF (1st component) 22× 10−4 3× 10−4

IF (2nd component) 10× 10−5 7× 10−5

IF (3rd component) 7× 10−3 5× 10−3

Table 1: MSE in estimation of IF and IA of three AM-FM components signal
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Figure 3: Decomposition of noisy signal s(t) (Eq. 11) with EMD-BS (SNR=0dB)

14



0 1 2 3 4 5 6 7 8 9

−2

0

2

si
gn

al

0 1 2 3 4 5 6 7 8 9
−2

0

2

im
f1

0 1 2 3 4 5 6 7 8 9

−1

0

1

im
f2

0 1 2 3 4 5 6 7 8 9

−0.1

0

0.1

im
f3

0 1 2 3 4 5 6 7 8 9

−0.05

0

0.05

re
s.

Samples

Figure 4: Decomposition of noisy signal s(t) (Eq. 11) with EMD-RSB (SNR=0dB)

Figure 5: Variation of the λ parameter
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Figure 6: Extracted IMFs by EMD-BS from hydrodynamical measured signal (on top).
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Figure 7: Extracted IMFs by EMD-RBS from hydrodynamical measured signal (on top).
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0.9, f2 = 0.005) and (ξ3 = −0.5, κ3 = 0.1, fa3 = 0.02, fc3 = 0.0625, β3 =

0.45, f3 = 0.02) respectively. Accuracy of EMD-ESA-BS is first tested on

noise-free signal (n(t) = 0). IF and IA estimates of s(t) are shown in Fig.

8. This plot shows that IF estimates of EMD-ESA-BS are reasonably accu-

rate with very small MSE values less than or equal to 7 × 10−3 (Table 1).

We note also a good separation of the two first IF components by EMD-

ESA-BS. For IA estimates, EMD-DESA1 and EMD-ESA-BS present similar

performances. Even if the energy of the sifted s3(t) signal is underestimated

by EMD, associated IA component is not far from the true one. We note

also few small ripples in the estimates due essentially to mode mixing phe-

nomenon of EMD [2]. MSE values of the estimates are reported in Table

1. These results show that EMD-ESA-BS performs better than its discrete

version, EMD-DESA1. This result is confirmed by accurate separating and

tracking of IF components (Fig. 8). Also, to evaluate the performance

of the method, errors corresponding to the estimation of six parameters

(ξi, κi, fai, fci, βi, fi) of the AM-FM model (Eq. 12) are calculated. These

parameters are obtained from the estimates IA and IF waveforms. In addi-

tion an average error per method (EMD-ESA-BS, EMD-DESA, EMD-HT)

is also calculated. Estimated parameters are shown in Table 2. As we can

see, EMD-ESA-BS had the lowest errors in the estimations showing the ro-

bustness of the estimated parameters compared to those of EMD-HT and

EMD-DESA1. These findings show the interest of BS approach. Across all

the estimates, the highest errors are observed for κ1, κ2, κ3 and ξ3 parame-

ters using EMD-HT. Finally, we report in Table 3 a quantitative study over

a range of AM and FM parameters (ξ, κ, fa, fc, β, f) with error analysis

of EMD-ESA-BS, EMD-DESA1 and EMD-HT methods. The AM and FM

parameters estimated by EMD-ESA-BS present, on average, significantly
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smaller deviations w.r.t. the true values compared to those given by EMD-

DESA1 and EMD-HT approaches. The performances of EMD-ESA-BS are

more pronounced for f , ξ and κ parameters.

Next, performances of EMD-ESA-RBS on signal s(t) with varying input

SNRs ranging from -10dB to 30dB are investigated. Only graphical re-

sults for SNR=20dB are presented. Demodulation results of five established

methods, namely EMD-HT, EMD-ESA-BS, EMD-DESA1, EMD-DESA1a

and EMD-DESA2 are compared. Performance of these methods are ex-

amined through MSE of IF (IA) estimates. Results of each method are

superimposed to true ones. Due to the space constraints of the paper, only

results of EMD-HT, EMD-ESA-BS, EMD-DESA1a and EMD-ESA-RBS are

presented. These results are illustrated in figures 9-16. Overall, EMD-ESA-

RBS (Fig. 12) performs better in estimating the three IF components with

small deviations than the other methods (Figs. 11,15,16) and particularly

compared to EMD-ESA-BS and EMD-DESA1a. Ripples seen in the first

IF component yielded by EMD-ESA-BS are due to exact fitting (interpola-

tion) while those of EMD-DESA1a are attributed to sensitivity to noise of

differentiations used in TKEO. Due to very low amplitude of the third IF

component none of the four methods are able to correctly this last. For IA

estimates, EMD-ESA-RBS (Fig. 9) outperforms, on average, EMD-ESA-BS,

EMD-HT and EMD-DESA1a (Figs. 9,13,14). As for IF estimates, similar

conclusions can be drawn. As expected, due exact fitting and sensitivity

of instantaneous differential operator (Eq. 5) to noise, ripples are observed

on the estimates of EMD-ESA-BS (Fig. 9) and EMD-DESA1a (Fig. 14).

Further, the latter presents more pronounced spikes in the estimates. Con-

cluding, these findings show the limits of the DESA and exact BS fitting (or

interpolation) in presence of noise, and emphasize the interest of smooth BS
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Parameters Theory EMD-

ESA-

BS

Error EMD-

DESA1

Error EMD-

HT

Error

1st component

ξ1 2.5 2.5 0% 2.48 0.8% 2.45 2%

κ1 0.4 0.38 5% 0.31 22.5% 0.3 25%

fa1 0.5% 0.5% 0% 0.47% 6% 0.48% 4%

fc1 0.25 0.24 4% 0.24 4% 0.24 4%

β1 1.8 1.8 0% 1.8 0% 1.8 0%

f1 1% 1% 0% 1% 0% 1% 0%

Average error 1.5% 5.5% 5.83%

2nd component

ξ2 0.89 0.89 0% 0.75 15.73% 0.88 1.12%

κ2 0.3 0.3 0% 0.15 50% 0.23 23.33%

fa2 1% 1% 0% 0.98% 2% 0.98% 2%

fc2 0.125 0.125 0% 0.109 12.8% 0.135 8%

β2 0.9 0.9 0% 0.9 0% 0.9 0%

f2 0.5% 0.5% 0% 0.5% 0% 0.49% 2%

Average error 0% 13.42% 6.07%

3rd component

ξ3 −0.5 −0.49 2% 0.27 46% −0.18 64%

κ3 0.1 0.08 20% 0.07 30% 0.07 30%

fa3 2% 1.9% 5% 1.8% 10% 1.9% 5%

fc3 6.25% 6.15% 1.6% 6.12% 2.08% 6.12% 2.08%

β3 0.45 0.45 0% 0.45 0% 0.45 0%

f3 2% 1.6% 20% 1.5% 25% 1.6% 20%

Average error 8.1% 18.84% 20.18%

Table 2: Evaluation of the model parameters using EMD-ESA-BS, EMD-DESA1 and

EMD-HT.
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Parameters Error

ξ 2.1 2.3 2.5 2.7 2.9 3

ξESA-BS 2.1 2.3 2.5 2.7 2.9 3 0%

ξDESA1 2.1 2.31 2.48 2.65 2.85 3.1 12%

ξHT 2.09 2.33 2.45 2.66 2.75 2.95 10%

κ 0.1 0.3 0.4 0.6 0.8 0.9

κESA-BS 0.11 0.33 0.38 0.58 0.77 089 5%

κDESA1 0.10 0.40 0.31 0.55 0.77 0.88 11%

κHT 0.12 0.52 0.30 0.55 0.70 0.79 25%

fa 0.3% 0.4% 0.5% 0.7% 0.9% 1%

faESA-BS 0.31% 0.31% 0.5% 0.65% 0.88% 0.98% 6.2%

faDESA1 0.32% 0.31% 0.47% 0.60% 0.85% 0.99% 9.3%

faHT 0.32% 0.31% 0.48% 0.66% 0.86% 0.93% 8.3%

fc 0.2 0.23 0.25 0.27 0.29 0.3

fcESA-BS 0.21 0.23 0.24 0.27 0.29 0.31 2%

fcDESA1 0.24 0.23 0.25 0.27 0.28 0.29 5.1%

fcHT 0.24 0.23 0.24 0.27 0.27 0.29 5.7%

β 1.6 1.7 1.8 1.9 2 2.1

βESA-BS 2.1 2.03 1.8 2.02 2.2 2 11.5%

βDESA1 2.01 2.00 1.8 1.95 2.25 1.9 11.3%

βHT 2.05 2.03 1.8 2.01 2.6 2.3 15.5%

f 0.3% 0.5% 1% 1.5% 1.7% 2%

fESA-BS 0.21% 0.41% 1% 1.5% 1.7% 2% 8%

fDESA1 0.21% 0.91% 1% 1.2% 1.6% 1.9% 23.8%

fHT 0.21% 0.31% 1% 1.1% 1.5% 1.8% 19.4%

Table 3: Quantitaive study over a range of AM and FM parameters using EMD-ESA-BS,

EMD-DESA1 and EMD-HT.
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Figure 8: IF and IA estimates of three component AM-FM noise-free signal: True (solid

line) and EMD-ESA-BS (dash line)
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Figure 9: IA estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-ESA-BS (SNR= 20dB) (dash line)
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Figure 10: IA estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-ESA-RBS (SNR= 20dB) (dash line)
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Figure 11: IF estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-ESA-BS (SNR= 20dB) (dash line)
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Figure 12: IF estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-ESA-RBS (SNR= 20dB) (dash line)
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Figure 13: IA estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-HT (SNR= 20dB) (dash line)
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Figure 14: IA estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-DESA1a (SNR= 20dB) (dash line)
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Figure 15: IF estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-HT (SNR= 20dB) (dash line)
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Figure 16: IF estimates of noisy multicomponent AM-FM signal: True (solid line) and

EMD-DESA1a (SNR= 20dB) (dash line)
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version for both ESA and EMD. Note that for both IA and IF estimates,

EMD-HT (Figs. 13,15) performs better than EMD-ESA-BS (Figs. 9,11) and

EMD-DESA1a (Figs. 14,16). These results are expected, since HT involves

an integral transform that does implicit smoothing. Now, we compare the

performance of the demodulation methods in term of MSE as function of

input SNR, ranging from -7dB to 30dB, for estimation of IF component of

signal s1(t). We include in this comparison EMD-DESA1 and EMD-DESA2

methods. As can be seen in the range [-7dB, 9dB] except EMD-ESA-BS

the MSE of all the methods decrease (Fig. 17). Across this same range,

even EMD-DESA2 and EMD-HT MSE values decrease rapidly, EMD-ESA-

RBS shows significant performance improvement over the other methods.

In noisy environment, signals have large variations and sharp edges and the

need of smoothing factor is apparent. Thus, the performance of EMD-ESA-

RBS is expected because the smooth BS gives the method more robustness

in the presence of noise. In the same range, EMD-ESA-BS increases and

thus performs less than EMD-ESA-RBS due essentially to exact BS fitting

which increases the MSE, as the noisy samples insert a significant error.

However, in moderately noisy environment, EMD-HT performs slightly bet-

ter in [9dB,14dB] and this is improved in [14dB, 20dB] by EMD-BS and

EMD-DESA2 methods. Toward higher SNR values (≥ 16dB), the six meth-

ods display similar performances and converge, but the best result is given

by ESA-based methods (Fig. 17). Note that in this range the best improve-

ment is provided by EMD-ESA-BS because exact fitting is well suited in less

noisy and noise free environments. Figure 18 compares the MSE of the six

methods for IA estimates of signal s2(t). As for IF estimates of s1(t), the

same tends and conclusions can be drawn. EMD-ESA-RBS performs better

than the other methods in the range [-7dB, 9dB] and for higher SNR values

27



−5 0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

MSE for s1(t) IF

SNR (dB)

M
SE

 

 
T.Hilbert
DESA1
DESA1a
DESA2
ESA−BS
ESA−BS

R

Figure 17: MSE as function of input SNR for different IF estimates for signal s1(t)

(≥ 21dB) best results are obtained by ESA-based methods (Fig. 18). As

expected EMD-ESA-BS performs less better due to the exact BS fitting in

noisy conditions. Good IA estimates are given by EMD-DESA2 in [9dB,

16dB]. As in figure 17 for higher SNR values (≥ 16dB), all methods per-

form similarly but best results are given by ESA-based methods (Fig. 18).

Even from low to high SNRs (Figs. 17,18), RBS-based method shows sig-

nificant performance improvement as compared to the other methods, these

results are conditioned by the estimation of an optimal λ value. A careful

examination of results depicted in figures 17 and 18, shows that except for

low SNR values and higher ones BS-based methods do not provide the best

estimates of IF and IA in moderate noise environment ([10dB, 16dB]). This

again shows the difficulty to find an optimal λ value for both IA and IF

estimations for all SNR ranges. Therefore, it is important to find a strategy

to adapt λ to the characteristics of the analyzed signal (SNR,. . . ).

7. Conclusion

In this work, a signal analysis framework for estimating time-varying

and frequency functions of multicomponent AM-FM signals is introduced.
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Figure 18: MSE as function of input SNR for different IA estimates for signal s2(t)

The approach is based on EMD and ESA, two local approaches and not

constrained by assumptions of stationarity and linearity of the signals. The

proposed approach is free of cross disturbance compared for example to

Wigner-Ville distribution. Furthermore, the model of narrow-band compo-

nents (IMFs) and their number are not required. A new sifting process based

on smoothing instead of an interpolation to construct the upper and lower

envelopes of the signal is introduced. Presented results show that this sifting

improves the extraction of original components from input signal and reduces

the number of insignificant IMFs (over-decomposition). Consequently, anal-

ysis of extracted modes is more easier than in classical EMD showing the

interest of RBS approach. Further, compared to Gabor filter bank approach

which is determined by a set of parameters, EMD is data driven approach.

Only SD threshold value is required. While in Gabor filtering the number of

components is an input parameter (must be known), in EMD this value is

automatically determined. Thus, EMD-ESA is data driven approach com-

pared to ESA-Gabor [10]. Since extracted IMFs are represented in terms of

29



BS (or RBS) expansions, a closed formula of ESA is used to ensure robust-

ness against noise compared to DESA. This new representation of a discrete

signal in continuous-time domain is very important for applying ESA where

signal’s derivatives must be determined with high precision. Demodulation

results of multicomponent AM-FM signal with varying SNRs by six well

established methods are presented and compared. The results are evaluated

through the MSE and estimation errors. These obtained results in free and

noisy conditions show the interest of RBS approach, in term of robustness,

for tracking both IA and IF functions of a multicomponent AM-FM signal.

BS-based methods perform reasonably better compared to the other meth-

ods from low to high SNRs. At lower SNRs the best results are provided by

EMD-ESA-RBS, showing the interest of the RBS for both EMD and ESA.

The exact BS fitting is responsible in the large increase of the MSE of the

demodulation method. For high SNR, on average, all the methods present

similar performances but BS-based methods still perform better. Overall,

the obtained results in terms of accuracy and robustness against noise, illus-

trate the effectiveness of the BS and RBS versions of EMD-ESA to track IF

and IA features of multicomponent AM-FM signals in totally adaptive way.

As all well-posed regularized least-squares problems (Eq. 10), performances

of EMD-ESA-RBS are partly dependent on proper choice of λ parameter.

The optimal value of λ is in general not known and is determined only

through experimentation. This happens because the errors depend on the

SNR, the signal and the application. As future research we plan to work on

a strategy, such as L-curves, to choosing optimal λ value for both IA and

IF tracking. Ongoing research work is also to apply the proposed strategy

to a large class of real signals to confirm the obtained results.
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