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a b s t r a c t

The paper addresses a theoretical study of the added mass effect in cavitating flow. The

cavitation is considered to induce a strong time–space variation of the fluid density at

the interface between an inviscid fluid and a three-degree-of-freedom rigid section. The

coupled problem is then simplified to a Laplace equation written for the pressure with a

boundary condition at the fluid–structure interface depending on the acceleration, the

velocity of the structure and on the rate of change of flow density. It is shown that

contrary to the homogeneous flow, the added mass operator is not symmetrical and

depends on the flow through fluid density variation. The added mass coefficients

decrease as the cavitation increases which should induce an increase of the natural

structural frequencies. The model shows also an added damping operator related to the

rate of change of flow density. Added damping coefficients are found to be positive or

negative according to the rate of change of the fluid density, indicating the possibility of

instability development between flexible structures and unsteady cavitating flows.

1. Introduction

Cavitation occurs in liquid flows if pressure locally drops below the vapor pressure (Brennen, 1995; Caupin and Herbert,
2006). This can be observed in hydraulic systems like pumps, injectors, marine propellers or hydrofoils at high speed.
Undesirable features of cavitation are performance losses, erosion, noises and vibrations that can seriously damage the
systems.

Various cavitation patterns can occur in a flow. Sheet cavitation is currently encountered on blades of hydraulic
systems. It corresponds to the situation for which a vapor cavity is attached at the leading edge of the blade and extends
over a distance on the surface, namely the cavity length. If the cavity length is smaller than the blade chord, the sheet
cavitation is also named partial cavitation.

Conversely supercavitation corresponds to situation for which the vapor cavity extends far beyond the foil trailing edge.
Sheet cavitation is unsteady by nature. For relatively small cavity lengths, the unsteadiness is localized in the rear part of
the cavity, while for larger cavity lengths the vaporized area becomes unstable with a periodical break-off of the cavity and
the periodical shedding of large bubble clusters (Leroux et al., 2005). This configuration, usually called ‘‘cloud cavitation’’,
generates periodical wall pressure fluctuations, high levels of vibration, and acoustic radiation. In that case, a part of the
foil surface passes periodically from liquid to vapor and experiences a strong periodical variation of the fluid density from
about 1 for the vapor to 1000 for the liquid.
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Computational modeling of cavitation has been pursued for years. An overview of selected studies is presented by
Wang et al. (2001). Studies dealing with cavitation modeling through the computation of the Navier–Stokes equations
have emerged in the past two decades (Chen and Heister, 1995; Goncalv�es, 2011; Kubota et al., 1992; Leroux et al., 2005;
Shukla et al., 2010; Ventikos and Tzabiras, 2000) but the prediction of such non-stationary, turbulent and locally
compressible two-phase flows remains a challenge.

Numerous authors have noted cavitation impact on fluid–structure interaction of various devices, especially propeller
blades and hydrofoils, but estimations of this impact are not frequent (Amromin and Kovinskaya, 2000; Ross et al., 2008,
2009; Young, 2007, 2008).

For example, Kopriva et al. (2007) described approximately a threefold difference in the first structural resonance
frequencies determined for a foil in vacuum and in cavitating flow, but the added mass effect (convenient for engineer
analysis) was not separated. Moreover, experimental studies recently carried out in the Research Institute of French Naval
Academy have shown that the modal response of the structure could be modified in the presence of cavitation (Benaouicha
et al., 2010). This modification can be attributed to the presence in flow of non-stationary liquid–vapor mixture with both
strong density variations and sound celerity at the fluid–structure interface, significantly modifying the coupling
conditions and the induced inertial effects.

Our interest in the present work is the study of the impact of such variations in cavitation–structure interactions. One
point of interest is a better understanding of the added mass operator. A theoretical model is proposed and resolved by
finite element method. The model has the advantage of being a generalization of homogeneous flow model (Axisa and
Antunes, 2007) to non-homogeneous flows. Comparisons with results obtained from a potential flow method in
homogeneous flow were carried out (Blevins, 1995; Han and Xu, 1996; Korotkin, 2009; Newman, 1977). Non-
homogeneous flow conditions are then considered. The model can be applied to compute the added mass operator for
any geometry. In this paper, symmetrical (rectangle) and asymmetrical (cambered hydrofoil) geometries are tested.

2. Coupled problem and added mass concept

The general scenario of a coupled problem in fluid–structure interaction is that the flow induces structure vibration and
that the displacements of the fluid–structure interface locally modifies the flow. A 2d-configuration of this coupled
problem is studied by considering a three-degree-of-freedom rigid body motion (translation and rotation) of a 2d-section
in Cartesian coordinates (Fig. 1). The fluid domain OF is supposed large compared to the structure OS, so that thereafter it is
considered as infinite. GI stands for the inlet section, GO the outlet section of the flow, GW the wall (fixed boundary) and
GFS the fluid–structure interface. n denotes the unit normal vector at @OF ¼GI [GO [ GW [ GFS pointing out of OF .

The velocity _x and acceleration €x of a point Aðx,yÞ on the interface GFS are defined as

_xðA,tÞ ¼ _xðO,tÞþx4r¼ _x1iþ _x2j ð1Þ

and

€xðA,tÞ ¼ €xðO,tÞþ _x4rþx4ðx4rÞ ¼ €x1iþ €x2j, ð2Þ

Oðx0,y0Þ being the center of rotation of the body (r¼ AO
�!

), x¼ok the angular velocity and _x ¼ _ok the angular
acceleration ðk¼ i4jÞ.

The body displacement x, velocity _x and acceleration €x are functions of fluid forces and moments, acting on the solid
surface GFS. The fluid loading can be decomposed to forces of inertial nature, which can be computed assuming that the
fluid is ideal, and forces that are related to viscosity. The forces of inertial nature can be expressed in terms of added mass
(Korotkin, 2009). Furthermore, it is often required to separate the added mass forces from the viscous forces (Ackermann
et al., 1964; Brennen, 1995; McConnell and Young, 1965).

The aim of this study being the analysis of added mass operator, it then can be assumed that the viscosity effects are
neglected.
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Fig. 1. Fluid and solid domains.



Let us consider the following conservation equations describing the ideal fluid flow in OF:

@r
@t
þr � ðruÞ ¼ 0 on OF , ðaÞ

@ðruÞ

@t
þr � ðru� uÞ ¼ �rp on OF , ðbÞ

u¼ uI on GI , ðcÞ

�pn¼ 0 on GO, ðdÞ

u � n¼ 0 on GW , ðeÞ

u � n¼ _x � n on GFS, ðfÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

where r, u and p are respectively the fluid mass density, the velocity field and the pressure field in the fluid.

2.1. Added mass in homogeneous flow

In inviscid and homogeneous single phase flow (r assumed constant in time and space), potential theory (Newman,
1977; Wang, 2008) is often used to predict the forces and moments acting on the body due to dynamic pressure of the
fluid. A rigid body motion in infinite fluid domain is considered. The fluid is assumed to be incompressible and irrotational.

Introducing a velocity potential f, such that u¼rf, and ignoring the gravity effect, the following Laplace and Bernoulli
equations are derived from Euler equations (3),

Df¼ 0 on OF , ðaÞ

r@f
@t
þ

1

2
r9rf92

þp¼ 0 on OF , ðbÞ

8<
: ð4Þ

with the moving boundary condition on GFS,

rf � n¼ _x � n, ð5Þ

and infinity condition,

fðt,rÞ9r-1 ¼ 0, 8t 2 Rþ : ð6Þ

The total force and moment acting on the rigid body are expressed as

FðtÞ ¼ �r d

dt

Z
GFS

fn ds, ð7Þ

MðtÞ ¼�r d

dt

Z
GFS

fðr� nÞ ds: ð8Þ

The added mass tensor is then defined as

ma
ij ¼ r

Z
GFS

fj

@fi

@n
ds¼ r

Z
OF

rfi � rfj dv, ð9Þ

where fi represents the velocity potential due to a body motion with unit velocity in the ith mode (Newman, 1977; Wang,
2008).

One convenient feature of the added mass tensor is the symmetry ðma
ij ¼ma

jiÞ. It is also easy to see that the added mass
coefficients depend only on the body shape.

3. Added mass operator in non-homogeneous flow

In that case, assumptions required in potential theory are not hold and added mass operator cannot be computed
directly from Eq. (9). A cavitating flow can be considered as an incompressible two-phase flow with large variations of
density from liquid to vapor resulting of hydrodynamic pressure variation (Coutier-Delgosha et al., 2007). Then, a set of
equations must be derived to take into account the variations of two-phase fluid density at the fluid–structure interface.

3.1. Linearized flow equations

Let us assume that u¼ ~uþu0 and p¼ ~pþp0 where ~u and ~p are the velocity and pressure fields of the fluid flow around a
non-vibrating structure; and u0 and p0 are the velocity and pressure fields generated by the vibration of the structure. The



variations of r due to the vibration of the structure are assumed negligible. Eqs. (3) are then written as

@r
@t
þr � ðr ~uÞþr � ðru0Þ ¼ 0, ðaÞ

@ðr ~uÞ
@t
þr � ðr ~u � ~uÞþr ~pþ , ðbÞ

@ðru0Þ

@t
þr � ðru0 � u0Þþrp0 ¼ �r � ðr½ð ~u � u0Þþðu0 � ~uÞ�Þ:

8>>>>>><
>>>>>>:

ð10Þ

In the case of unbounded fluid domain, u0 vanishes far from the mobile fluid–structure interface. Then the infinity
condition, u0 ¼ 0 on @OF \GFS, holds. The following separate boundary conditions are therefore considered

~u ¼ uI and u0 ¼ 0 on GI , ðaÞ

~pn¼ 0 and u0 ¼ 0 on GO, ðbÞ

~u � n¼ 0 and u0 ¼ 0 on GW , ðcÞ

~u � n¼ 0 and u0 � n¼ _x � n on GFS: ðdÞ

8>>>><
>>>>:

ð11Þ

u0 is supposed to be small so that u0 � u0 can be neglected. Let us notice that if ~u ¼ 0 on GFS (which is the case in viscous
fluid flow) then the average value over OF of the right-hand side of Eq. (10c) is null. Indeed, by using the Ostrogradski
theorem and boundary conditions (11), we haveZ

OF

r � ðr½ð ~u � u0Þþðu0 � ~uÞ�Þ dV ¼

Z
@OF

ðr½ð ~u � u0Þþðu0 � ~uÞ�Þ � n dS¼ 0:

If we assume that u and u0 are uncorrelated, it can be assumed that this coupling term is negligible in OF . The problem (10)
can then be split into two separate problems

@r
@t
þr � ðr ~uÞ ¼ 0 on OF , ðaÞ

@ðr ~uÞ
@t
þr � ðr ~u � ~uÞ ¼�r ~p on OF , ðbÞ

~u ¼ uI on GI , ðcÞ

~pn¼ 0 on GO, ðdÞ

~u � n¼ 0 on GW [ GFS, ðeÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

where ~u refers to the fluid velocity around the non-vibrating structure, and

r � ðru0Þ ¼ 0 on OF , ðaÞ

@ðru0Þ

@t
þrp0 ¼ 0 on OF , ðbÞ

u0 � n¼ _x � n on GFS, ðcÞ

u0 ¼ 0 on @OF \GFS, ðdÞ

8>>>>><
>>>>>:

ð13Þ

where u0 refers to the fluid velocity induced by the structure vibrations _x.
Actually, the two problems can be seen as being coupled. In fact, the fluid–structure interface velocity _x is a function of

p¼ ~pþp0. It is thus function of ~u, ~p, u0 and p0. The objective being the analysis of added mass operator, Eq. (13) has to be
solved.

By taking the divergence of Eq. (13b) and considering Eq. (13a), problem (13) can be rewritten, after the projection of
Eq. (13b) on the outgoing normal vector n of the fluid domain at GFS, in the following form:

Dp0 ¼ 0 on OF , ðaÞ

@ðru0Þ

@t
� n¼�rp0 � n on GFS, ðbÞ

p0 ¼ 0 on @OF \GFS, ðcÞ

8>><
>>: ð14Þ

the left term of Eq. (14b) can be developed, on GFS and for t 2 ½0,þ1½, as follows:

@ðru0Þ

@t
� n¼ r @u0

@t
þ
@r
@t

u0
� �

� n,

taking account of the boundary condition (13c), we have

@ðru0Þ

@t
� n¼ r €x � nþ @r

@t
_x � n on GFS:



Finally, Eq. (14) becomes

Dp0 ¼ 0 on OF , ðaÞ

rp0 � n¼�r €x � n�@r
@t
_x � n on GFS, ðbÞ

p0 ¼ 0 on @OF \GFS: ðcÞ

8>><
>>: ð15Þ

Where boundary condition (15b) depends on the acceleration and the velocity of the structure together with the rate of
change of the density at the fluid–structure interface. Due to the linearity, the superposition principle holds and the
solution of (15) can be expressed as p0 ¼ p1þp2, where p1 and p2 are respectively the solutions of the following problems:

Dp1 ¼ 0 on OF , ðaÞ

rp1 � n¼�r €x � n on GFS, ðbÞ

p1 ¼ 0 on @OF \GFS ðcÞ

8><
>: ð16Þ

and

Dp2 ¼ 0 on OF , ðaÞ

rp2 � n¼�
@r
@t
_x � n on GFS, ðbÞ

p2 ¼ 0 on @OF \GFS: ðcÞ

8>>><
>>>: ð17Þ

The solution p1 of Eq. (16) represents the inertial effect of the fluid on the structure, as it is proportional to the acceleration
€x of the structure. The solution p2 of Eq. (17) can be interpreted as time and spatial variations effect of fluid density on the
flow-structure interface. It can be related to the damping effect as it is dependent on the velocity _x of the structure.

3.2. Inertial effect

Because of linearity, the solution p1 of problem (16) is proportional to the normal acceleration €x � n of GFS; therefore the
structure loading due to the pressure field p1 is a force FðtÞ ¼ F1iþF2j and a moment MðtÞ ¼MðtÞk which are also
proportional to the acceleration of GFS. They are represented by the following integrals:

FðtÞ ¼ �
Z
GFS

p1n ds ð18Þ

and

MðtÞ ¼�
Z
GFS

p1ðr4nÞ ds, ð19Þ

they can be written as

F1ðtÞ ¼ �ma
11
€X 1�ma

12
€X 2�ma

13
€X 3,

F2ðtÞ ¼ �ma
21
€X 1�ma

22
€X 2�ma

23
€X 3,

MðtÞ ¼ �ma
31
€X 1�ma

32
€X 2�ma

33
€X 3,

8>><
>>: ð20Þ

where €X 1ðtÞ ¼ €x1ðO,tÞ and €X 2 ¼
€x2ðO,tÞ represent the translational (surge and heave) acceleration according to the 2d-

coordinates axis, €X 3ðtÞ ¼ _oðtÞ the angular (pitch) acceleration and ðma
ijÞi,j ¼ 1;2,3 are the added mass coefficients.

The matrix MðaÞ such that

F ðtÞ ¼ �MðaÞ €X ¼�ðma
ij
€X jÞi ¼ 1;2,3, ð21Þ

where F ¼ ðF1,F2,MÞT and €X ¼ ð €X iÞi ¼ 1;2,3, is the added mass- and moment-matrix.
Eq. (21) implies that acceleration in the i-direction ð €X 1a0, €X 2 ¼ 0, €X 3 ¼ 0Þ of a general cross section will induce not only

an added mass force in the i-direction, but also a force in the j-direction and a moment about the center of rotation (taken
as origin). If the cross section is symmetrical about the i- and j-axes, the added mass forces are not coupled, and only three
independent diagonal terms ðma

ii, i¼ 1;2,3Þ remain in the added mass matrix (Blevins, 1995).
It can be noted that in 2D case, the dimension of F1 and F2 is a force per unit length (N/m) and the dimension ofM is a

moment per unit length (N m/m¼N). Thus the dimensions of matrix MðaÞ coefficients are: mass per unit length (kg/m) for
ðma

ijÞi,j ¼ 1;2, moment of inertia per unit length (kg m2/m¼kg m) for ma
33 and mass (kg) for ðma

i3 and ma
3iÞi ¼ 1;2.

3.3. Damping effect

The same arguments as in the previous section can be used to argue that the solution p2 of problem (17) is proportional
to the normal velocity _x � n of GFS; therefore the structure loading due to the pressure field p2 is a force Fn

ðtÞ ¼ Fn

1iþFn

2j and
a moment MnðtÞ ¼MnðtÞk which are also proportional to the velocity of GFS. Consequently, the load acts as a damping
force (and moment) due to time and spatial variations of fluid density.



The same approach as (3.2) leads to the following relations:

Fn

1ðtÞ ¼�da
11
_X 1�da

12
_X 2�da

13
_X 3,

Fn

2ðtÞ ¼�da
21
_X 1�da

22
_X 2�da

23
_X 3,

Mn
ðtÞ ¼ �da

31
_X 1�da

32
_X 2�da

33
_X 3,

8>><
>>: ð22Þ

where _X 1ðtÞ ¼ _x1ðO,tÞ and _X 2 ¼
_x2ðO,tÞ represent the translational (surge and heave) velocity according to the 2d-

coordinate axis, _X 3ðtÞ ¼oðtÞ the angular (pitch) velocity and ðda
ijÞi,j ¼ 1;2,3 are the proportional coefficients.

The matrix DðaÞ such that

F nðtÞ ¼�DðaÞ _X ¼�ðda
ij
_X jÞi ¼ 1;2,3, ð23Þ

where F n ¼ ðFn

1,Fn

2,Mn
Þ
T and _X ¼ ð _X iÞi ¼ 1;2,3 is the added damping matrix due to the fluid density variations.

It can be noted that in 2D case, the dimension of Fn

1 and Fn

2 is a force per unit length (N/m) and the dimension ofMn is a
moment per unit length (N m/m¼N). Thus the dimensions of matrix DðaÞ coefficients are: damping per unit length (kg/s m)
for ðda

ijÞi,j ¼ 1;2, angular dumping per unit length (kg m2/s m¼kg m/s) for da
33 and mass per unit time (kg/s) for ðda

i3 and
da

3iÞi ¼ 1;2.

4. Numerical resolution in homogeneous flow

In this section, the finite element code CASTEM (CEA, 2009) is used to solve Eq. (16) in the case of a homogeneous flow.
For this case and for some elementary geometries, the added mass matrix is completely specified using potential flow
theory ðr¼ constant, m¼ 0Þ. The aim of this section is the validation of the numerical results obtained from the finite
element code.

4.1. Symmetrical section: rectangle

First, a section with two perpendicular axes of symmetry, typically a rectangle of half length a and half width b, is
considered (Fig. 2). For this case, the corresponding added mass coefficients are given by (Blevins, 1995)

ma
22 ¼ arpa2 and ma

12 ¼ma
32 ¼ 0,

where a is a parameter that is a function of a=b.
The rectangle size (a¼7.5�10�2 m, b¼9.21�10�3 m) is chosen as the approximation of the foil size which will be

used later. Thus, the values of added mass coefficients should be close for these two geometries.
For this case, a=b¼ 8:143, the parameter a can be approximated, according to table (14-1) given in Blevins (1995), by

a¼ 1:163. Then, the added mass coefficients in water obtained from the potential flow theory are

ma
22 ¼ 20 552 kg=m and ma

12 ¼ma
32 ¼ 0:

Eq. (16) is solved in the domain represented by Fig. 3. Fig. 4 shows the results depending on the meshing around a
rectangle. As shown, an asymptotic value close to the theoretical value is obtained for about 8�105 nodes around the
rectangle.

The added mass matrices (analytic and numeric methods) of the rectangle in the case of €X 1a0, €X 2a0 and €X 3a0 are
given by

MðaÞanalytic ¼

0:555 0 0

0 20:552 0

0 0 1:46801� 10�2

0
B@

1
CA

Fig. 2. Rectangle section. Acceleration direction denoted by 2.



Fig. 3. Computational domain.
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Fig. 4. Potential flow theory versus numerical results.



and

MðaÞnumeric ¼

0:557 �1:37� 10�4 2:39� 10�5

�2:32� 10�4 20:354 1:28� 10�5

2:64� 10�5 1:15� 10�5 1:41 � 10�2

0
B@

1
CA:

It is clear that the coefficients of the two matrices are very close. The numerical results are close to the analytical ones.
The 0.96% of difference for ma

22 and of 10�4 and 10�5 for ma
12 and ma

32 are obtained for about 4�105 nodes around the
rectangle.

4.2. Rotated symmetrical section: rectangle

If the added mass matrix of a symmetrical section, about the coordinate axis, is known with respect to one coordinate
system (r,s) in an infinite fluid domain, the added mass matrix with respect to another coordinate system (x,y) is rotated by
an angle y with respect to r–s coordinate axis, as shown in Fig. 5, is given by (Blevins, 1995)

ma
xxð ¼ma

11Þ ¼ma
rr cos2yþma

ss sin2y,

ma
yyð ¼ma

22Þ ¼ma
rr sin2yþma

ss cos2y,

ma
bbð ¼ma

33Þ : unchanged,

ma
xyð ¼ma

12Þ ¼
1
2ðm

a
rr�ma

ssÞsin 2y,

ma
xbð ¼ma

13Þ ¼ma
ybð ¼ma

23Þ ¼ 0,

8>>>>>>>><
>>>>>>>>:

ð24Þ

where b denotes rotation about the origin of the r–s coordinate system. It is easy to note that, in this case the added mass
matrix remains symmetrical. For y¼ 81, the flowing added mass operator is obtained by using the above formulas:

MðaÞy,analytic ¼

0:96704 2:7956 0

2:7956 20:217 0

0 0 1:46801� 10�2

0
B@

1
CA,

the flowing added mass matrix for the same configuration is obtained by using the numerical method

MðaÞy,numeric ¼

0:96379 2:7267 3:89776� 10�4

2:7333 20:069 4:30806� 10�4

4:73461� 10�4 1:01870� 10�3 1:43026� 10�2

0
B@

1
CA:

It is clear that the both matrices MðaÞy,numeric and MðaÞy,analytic are very close. It can be noted that the angle of attack makes
the added mass matrix non-diagonal but remains symmetrical. For y¼ 81, the surge added mass ma

11 increased by 74.24%,
the heave added mass ma

22 decreased by 1.63%, the pitch ma
33 was unchanged, the coupling term ma

12 increased from 0 to
2.7956, while the other coupling terms remain null. The numerical results also show the same tendency. ma

11 increased by
72.41%. ma

22 decreased by 0.82%. ma
33 remained almost unchanged with a gap of 0.676%.

4.3. Asymmetrical section: hydrofoil

A NACA66312 type hydrofoil section is considered. It is the section already studied by Benaouicha et al. (2010). The
center of rotation of the foil is taken at the point Oð0:25 � c,0Þ ¼ ð0:0375,0Þ as shown in Fig. 6, where c¼0.15 m is the chord
length. The corresponding added mass matrix is then obtained numerically by solving Eq. (16) in the domain represented

Fig. 5. Rotated rectangle section. Acceleration direction denoted by 2.

Fig. 6. NACA66312 type hydrofoil.



by Fig. 7:

MðaÞfoil ¼

0:2606 �1:49165� 10�2 1:1328� 10�2

�1:4853� 10�2 17:059 0:63214

1:13245� 10�2 0:63219 3:521� 10�2

0
B@

1
CA:

The matrix is symmetrical but not diagonal because of the asymmetry of the foil.

4.4. Rotated asymmetrical section: hydrofoil

The formulas (24) are completed in the case of asymmetrical section, about the coordinate axis, as follows:

ma
xxð ¼ma

11Þ ¼ma
rr cos2yþma

ss sin2y�ma
rs sin 2y,

ma
yyð ¼ma

22Þ ¼ma
rr sin2yþma

ss cos2yþma
rs sin 2y,

ma
bbð ¼ma

33Þ : unchanged,

ma
xyð ¼ma

12Þ ¼
1
2 ðm

a
rr�ma

ssÞsin 2yþma
rscos 2y,

ma
xbð ¼ma

13Þ ¼ma
rb cos y�ma

sb sin y,

ma
ybð ¼ma

23Þ ¼ma
rb sin yþma

sb cos y:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð25Þ

In this case too, the matrix remains symmetrical. First, it has been determined by using a semi-analytical method. It
consists to apply the analytical formulas (25) to a numerical result MðaÞfoil. The following matrix is obtained for y¼ 81:

MðaÞy,semi-analytic ¼

0:5819 2:3008 0:0992

2:3009 16:7377 0:6244

0:0992 0:6245 3:521� 10�2

0
B@

1
CA:

Second, a numerical method is applied by solving Eq. (16) in the domain represented by Fig. 8. The following added mass
matrix is obtained:

MðaÞy,numeric ¼

0:58245 2:3031 0:10145

2:3032 16:752 0:63071

0:10146 0:63075 3:58007� 10�2

0
B@

1
CA:

It is clear that the both matrices MðaÞy,semi-analytic and MðaÞy,numeric are very close. As in the case of symmetrical section, the added
mass matrix remains symmetrical for an asymmetrical section with an angle of attack y. For y¼ 81, ma

11 increased by
123.29%, ma

22 decreased by 1.88%, ma
33 and ma

23 remained unchanged, ma
12 increased from 0 to 2.3 and ma

13 increased from
1.13�10�2 to 0.099. The numerical results also show the same tendency.

Fig. 7. Computational domain (y¼ 01).



5. Numerical resolution in cavitating flow

As it has been shown, the characteristic of a cavitating flow is that r¼ rðx,y,tÞ is not constant over the foil surface. The
method described in Section 2 computes the added mass and fluid density variation effects by solving Eqs. (16) and (17). In
this section, the numerical solution of these equations are investigated for a simplified model of r, then for a fluid density
coming from a numerical resolution of a cavitating flow (Benaouicha et al., 2009). Two cases of angle of attack are studied,
y¼ 01 and y¼ 81.

5.1. Simplified model of fluid density

In the present problem (Eqs. (16) and (17)), the variations of r are along the hydrofoil interface GFS, namely in the i
direction on the hydrofoil suction side. Let us consider the simplified model of an unsteady cavity of maximum length Lpmax

oscillating at a frequency f,

LpðtÞ ¼
Lpmax

2
ð1�cosð2pftÞÞ ð26Þ

and the rate of change of the cavity is given by

@Lp

@t
¼ pfLpmax

sinð2pftÞ, ð27Þ

where Lp(t) represents the cavity length at time tðsÞ, Lpmax
the maximum cavity length and f the frequency of cavity

oscillation. Fig. 9 shows the functions (26) and (27) during two periods and for Lpmax
=c¼ 0:4, where c is the chord length

and f¼22 Hz (corresponding to experimental observations, Benaouicha et al., 2010).
Thus, rðx,y,tÞ is defined for ðx,yÞ 2 GFS and t 2 Rþ as

r¼
rv ¼ 1 kg=m3 if 0rxoLpðtÞ ðvapor mass densityÞ,

rl ¼ 103 kg=m3 if LpðtÞrxrc ðliquid mass densityÞ

(
ð28Þ

Fig. 8. Computational domain (y¼ 81).
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and

@r
@t
¼ ðrv�rlÞdðx�LpðtÞÞ

@LpðtÞ

@t
,

0rxrc, ðx,yÞ 2 GFS and 0rLpðtÞrLpmax
:

8<
: ð29Þ

d being the Dirac function.
Fig. 10 shows the time evolution of the fluid density and the rate of change at x=c¼ 0:2, on the hydrofoil.

5.1.1. Added mass matrix coefficients

The system of equations (16) is solved successively in the domains represented in Fig. 7 for y¼ 01 and Fig. 8 for y¼ 81.
The variations of the density defined by the relations (28) are considered through the boundary conditions (16c). Figs. 11
and 13 (respectively Figs. 12 and 14) show the corresponding numerical results for y¼ 01 (respectively y¼ 81).

In Fig. 11 (respectively Fig. 12), the diagonal coefficients ðma
11ðtÞ,m

a
22ðtÞ, ma

33ðtÞÞ of the added mass operator MðaÞðtÞ are
represented for y¼ 01 (respectively y¼ 81). They are continuous functions of time and depend on the fluid density
variations and then on the cavitation evolution. Indeed, it is shown that they are periodic functions with a period of
T ¼ 1=f � 0:045 s, where f is the frequency of cavity oscillations. For both angles of attack (01 and 81), the coefficients ma

11ðtÞ

and ma
22ðtÞ reach maximum values at the time for which the cavity length is minimal ðLp ¼ Lpmin

¼ 0 mÞ, and minimum
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Fig. 10. Fluid density and rate of change versus time at x=c¼ 0:2.
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Fig. 11. Diagonal added mass matrix coefficients for y¼ 01.

0 0.02 0.04 0.06 0.08 0.1
0.545

0.585

t

m
a 11

0 0.02 0.04 0.06 0.08 0.1
13.5

17.5

t

m
a 22

0 0.02 0.04 0.06 0.08 0.1
0,0354

0,0360

t

m
a 33

Fig. 12. Diagonal added mass matrix coefficients for y¼ 81.



values at the time for which the cavity length is maximal ðLp ¼ Lpmax
¼ 0:4� cÞ. As shown, the longitudinal (surge) added

mass is two order of magnitude lower than the vertical (heave) one. The angle of attack y increases the value of the surge
added mass ma

11 and decreases the value of ma
22. The variations of pitch added mass ma

33ðtÞ are more complex. They depend
on the variations of the cavitation length Lp and on the rate of change @Lp=@t. Indeed, this coefficient reaches a maximum
value for the maximum rate of change, a minimal value for the maximum length of cavitation and an intermediate value
for the minimum length of the cavity. ma

33 is three order of magnitude lower than ma
22. As expected, the angle of attack y

has no effect on the added moment ma
33. For Lpmin

¼ 0 m, the three coefficient values coincide with the results in the
homogeneous flow case.

In Fig. 13 (respectively Fig. 14), the off-diagonal coefficients of the added mass operator MðaÞðtÞ are represented for
y¼ 01 (respectively y¼ 81). It must be pointed out that the added mass operator is found to be not symmetrical. For y¼ 01,
the coefficients ma

12ðtÞ, ma
21ðtÞ and ma

31ðtÞ have the same variation as the length of the cavity, whereas ma
32ðtÞ has an

opposite variations. The coefficients ma
13ðtÞ and ma

23ðtÞ depend both on the cavity length and its time derivative. The angle
of attack y has no effect on the added mass coefficients ma

23ðtÞ and ma
32ðtÞ but increases the values of ma

12ðtÞ, ma
21ðtÞ, ma

13ðtÞ

and ma
31ðtÞ and modifies their time evolution. They are dependent on both the cavity length and its time derivative.

5.1.2. Added damping matrix coefficients

The system of equations (17) is solved for two cases of angle of attack: y¼ 01 and y¼ 81. The rate of variations of the
fluid density defined by the relations (29) is considered in the boundary conditions.

The resulting coefficients of the added damping operator DðaÞðtÞ are shown in Figs. 15 and 17 for y¼ 01 and in Figs. 16
and 18 for y¼ 81. They are periodic functions with a same period, T � 0:045 s, than the cavity oscillations. They are null
when the rate of change of the cavitation length @Lp=@t is null.

It is thus clear that without variation of the fluid density at the fluid–structure interface, as in homogeneous flow, the
added damping operator is null.

It is interesting to observe that ðda
11 and da

22Þ oscillate between positive and negative values conversely with the sign of
@Lp=@t. da

11 exhibit two extrema and inflexion point at about t¼ T=2. da
22 has quasi-sinusoidal shape and shows much

greater values. da
11 is one order of magnitude lower than da

22. da
33 has a more complex shape with two oscillations during

one period and is three order of magnitude lower than da
22.
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Fig. 13. Off-diagonal added mass coefficients for y¼ 01.
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It can be noted (Fig. 17) that the operator is not symmetrical specially for ðda
13, da

31Þ and ðda
23, da

32Þ. da
12 and da

21 have a
quasi-sinusoidal shape and are very close.

It can be pointed out that the added damping coefficients oscillate between negative and positive values that can lead
to a decrease or an increase of the total damping coefficient (in addition of structural and viscous dampings). This can have
a strong impact on structure dynamics particularly concerning hydroelastic instability development.

The angle of attack y has an effect only on the amplitudes of the added damping coefficients. The shape of the curves
remains almost the same.
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Fig. 15. Diagonal added damping matrix coefficients for y¼ 01.
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5.2. Cavitating flow

In this section, a more realistic space and time fluid density variations obtained from a numerical model of cavitation
are introduced in Eqs. (16) and (17) used in the present model. RANS equations for a single phase flow are coupled with a
barotropic state law that governs the density evolution according to the local pressure variation (Coutier-Delgosha et al.,
2007).

Fig. 19 shows the numerical solution representing the oscillation of a cavity. The variation of fluid density as well as the
rate of change along the fluid–structure interface can be deduced by

rðx,y,tÞ ¼ nðx,y,tÞrvþð1�nðx,y,tÞÞrl, ð30Þ

where rv and rl are vapor and liquid mass densities respectively and nðx,y,tÞ ¼ Vv=V is the void fraction, V is a volume of
fluid cell and Vv is a vapor volume in a fluid cell (Coutier-Delgosha et al., 2003). n is a function of the cavity length.

Fig. 20 shows the fluid density variations versus time and rate of change at x=c¼ 0:2.
Comparing to the sinusoidal idealized case (Eqs. (28) and (29)), it can be seen that the evolution of cavitation is more

complex. It is periodic but not sinusoidal with a frequency of f � 25 Hz.
As shown, during the main oscillation, the cavity experiences (at t� 0:021 s) a secondary oscillation due to the

generation of a secondary partial cavity development. It results in sharp peaks in density rate of change (Fig. 20).

5.2.1. Added mass coefficients

In this section, the problem (16) is solved by taking into account, through the boundary conditions, the fluid density
variations resulting from the cavitating flow (Fig. 20). Two cases of angle of attack are studied: y¼ 01 and y¼ 81.

Fig. 21 (respectively Fig. 22) shows the diagonal coefficients of the added mass operator MðaÞðtÞ for y¼ 01 (respectively
y¼ 81). For y¼ 01, ma

11 and ma
22 exhibit a periodical behavior with a decrease of about 30% and 11% respectively when the

cavity length is maximum. It is noted that ma
11 is two order of magnitude lower than ma

22. The secondary oscillation has no
influence. A more complex feature is observed for ma

33 with a successive increase and decrease of very small amplitudes
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Fig. 18. Off-diagonal added damping matrix coefficients for y¼ 81.

Fig. 19. Time evolution of the cavity shape (Frikha et al., 2008).



(about 0.5% of the mean value) during the cavity oscillation. A stray increase is observed at the occurrence of the secondary
oscillation. It observed that ma

33 is three order of magnitude lower than ma
22.

As expected, the angle of attack y increases the value of the surge added mass ma
11, decreases the value of ma

22 and has
no effect on the added moment ma

33.
In Fig. 23 (respectively Fig. 24), the off-diagonal coefficients of the added mass operator are represented for y¼ 01

(respectively y¼ 81). They have approximately the same shape and orders of magnitude as in the case of a sinusoidal
model of cavitation. Nevertheless, the variations are more complex in this case for which the model of cavitation is more
realistic. It must be pointed out, once again, that the added mass operator is found to be not symmetrical. Moreover, it
depends on the flow according to the density variations over the fluid–structure interface.

5.2.2. Added damping matrix coefficients

In this section, the problem (17) is solved by taking into account of the fluid density rate of change resulting from the
CFD simulation (Fig. 20). Two cases of angle of attack are studied: y¼ 01 and y¼ 81.

Fig. 25 (respectively Fig. 26) shows diagonal coefficients of the added damping operator DðaÞðtÞ for y¼ 01 (respectively
y¼ 81). They are periodic functions with a same period, T � 0:04 s, than the cavity oscillations. In this case, they have more
complex shapes than those observed in the case of sinusoidal model of cavitation. This is due to the complex variations of
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0 0.02 0.04 0.06 0.08 0.10.17

0.27

t (s)

m
a 11

 (k
g/

m
)

0 0.02 0.04 0.06 0.08 0.115

16

17

t (s)

m
a 22

 (k
g/

m
)

0 0.02 0.04 0.06 0.08 0.1
0.0351

0.0353

t (s)

m
a 33

 (k
g 

. m
)

Fig. 21. Diagonal added mass coefficients for y¼ 01.

0 0.02 0.04 0.06 0.08 0.1
0.55

0.58

t

m
a 11

0 0.02 0.04 0.06 0.08 0.1

15

16

17

t

m
a 22

0 0.02 0.04 0.06 0.08 0.1
0.0357

0.0359

t

m
a 33

Fig. 22. Diagonal added mass coefficients for y¼ 81.



the fluid density over the fluid–structure interface (Fig. 20). da
11 exhibit two extrema and inflexion point at about t¼ T=2. da

22

shows much larger values and it is one order of magnitude higher than da
11 and three order of magnitude higher than da

33.
Fig. 27 (respectively Fig. 28) shows off-diagonal coefficients of the added damping operator for y¼ 01 (respectively

y¼ 81). It should be noted that the operator is not symmetrical, even if the coefficients da
12 and da

21 are very close. The
quasi-sinusoidal shape observed in the case of the sinusoidal model of cavitation is replaced here by a more complex shape
due to the more realistic model of cavitation. It can be observed that due to sudden sharp variations of the rate of change of
the fluid density (Fig. 20), the added damping coefficients experience relatively high frequency oscillation contrary to the
idealized sinusoidal evolution.

It can be observed again that the added damping coefficients are positive or negative. Negative added damping
coefficients induce a decrease of the total damping that could be crucial for hydroelastic instabilities development.
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6. Added mass effect on natural frequencies in cavitating flow

Since the natural frequency of an elastic structure is inversely proportional to the square root of the mass of the
structure, the effect of added mass on the ith natural mode frequency fi can be expressed approximately as (Blevins, 1995)

f i9fluid

f i9vacuum

¼
1

1þ
ma

i

m

� �1=2
, ð31Þ

where m is the mass per unit length of the considered structure (hydrofoil), ma
i is the added mass for mode i and f i9fluid

(resp. f i9vacuum) the corresponding natural mode frequency (resp. in vacuum).
If we consider that the hydrofoil is made of stainless steel of density 7850 kg/m3. The area of its cross section is

2.0369�10�2 m2 and its mass per unit length is thus m¼15.9897 kg/m. The added mass coefficient, in not cavitating flow,
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that corresponds to the heave mode (in the y direction) of the foil is ma
22 ¼ 17:06 kg=m. Hence, the effect of the added mass

on the corresponding mode frequency, in not cavitating flow, is given by

f 29fluid

f 29vacuum

¼
1

1þ
ma

22

m

� �1=2
¼ 0:695: ð32Þ

The effect of the cavitation on the natural heave mode frequency f2 can be evaluated by considering, in Eq. (32), the added
mass coefficient ma

22 in cavitating flow. It is found that f2 is increased by about 3.1% for a cavity length of about 40% of the
chord length.

7. Conclusion

The present study has analyzed theoretically some aspects of fluid–structure interaction phenomena, such as added
mass effect, that could be expected to appear in cavitating flow developing over a vibrating structure. The cavitating flow
considered herein is sheet cavitation that was found to occur at the leading edge of hydrofoils or blades and that develops
partially along the structure. It is known that for given flow conditions, sheet cavitation has a large scale pulsating
behavior that induces a strong space–time variation of the fluid density at the fluid–structure interface passing
periodically from the vapor density (about unity) to the liquid density (about one thousand).

This point was examined through the derivation of Laplace equation written for the pressure and a new boundary
condition at the fluid–structure interface that takes into account the rate of change of the fluid density that can be
representative in a certain way of unsteady cavitating flow.

It has thus been found that because of fluid density variation, the boundary condition depends on both the acceleration
and the velocity of the structure. Due to linearity, Laplace equation can be separated into two equations with two distinct
sets of boundary conditions. The first one depends on the structure acceleration (inertial effect) and the second one
depends on the structure velocity and the fluid density rate of change (damping effect). Laplace equation with the
appropriate boundary conditions is then resolved for the two systems by the finite element method in homogeneous fluid
and non-homogeneous fluid. For the latter, the fluid density variation at the fluid–structure interface is firstly represented
by a simple sinusoidal model, then by a more realistic density variation obtained from a CFD resolution for cavitating flow.

Although the model is relatively simple, interesting general physical considerations can be drawn. Firstly, it has been
found that for homogeneous fluid, the added mass operator is symmetrical and agrees very well with the results of
classical potential theory showing that the method is a good generalization of the classical method and can easily be
extended to any geometry.

In cavitating flow, it has been found that the added mass operator is not yet symmetrical. It depends on both the
geometry and the flow. It has been found that the added mass operator coefficients oscillate as the cavity length oscillates.
It decreases when the cavitation extends along the flow–structure interface. The decrease of the added mass coefficients
induces an increase of the modal frequencies of the structure.

Finally, in cavitating flow the fluid density rate of change at the fluid–structure interface induces an added damping
operator. It has been found that the coefficients of the added damping operator oscillate between positive or negative
values according to the rate of change of fluid density. It can be pointed out that a negative damping could be critical for
instabilities of dynamic systems. This point of critical importance, for operating systems in which cavitation develops,
needs further analysis.
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