
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8902

To cite this version :

Imade KOUTIRI, Daniel BELLETT, Franck MOREL, Louis AUGUSTINS - A probabilistic high
cycle fatigue model applied to cast Al-Si alloys - In: ICMFF10 : The Tenth International
Conference on Multiaxial Fatigue & Fracture, Japan, 2013-06-03 - ICMFF10 : The Tenth
International Conference on Multiaxial Fatigue & Fracture - 2013

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SAM : Science Arts et Métiers

https://core.ac.uk/display/29137891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://sam.ensam.eu
http://hdl.handle.net/10985/8902
mailto:archiveouverte@ensam.eu


A probabilistic high cycle fatigue model applied to cast Al-Si 

alloys  
 

 

I. Koutiri
1
, D. Bellett

1
, F. Morel

1,
 and L. Augustins

2
 

 

1
 LAMPA, Arts et Métiers ParisTech, Angers, France. Imade.Koutiri@ensam.eu 

2
 PSA Peugeot Citroën, Route de Gisy, 78943 Vélizy-Villacoublay Cedex, Case 

courrier VV1415. 

 

 

ABSTRACT. In this work, the high cycle fatigue behavior of cast hypo-eutectic Al-Si 

alloys is investigated. It is observed that two different coexisting fatigue initiation 

mechanisms can occur in these materials depending on the presence of different 

microstructural heterogeneities (i.e. micro-shrinkage pores, Si particles, Fe-rich inter-

metallics, DAS of the Al-matrix, etc).Firstly, an experimental study is presented, 

highlighting the coexistence of these two fatigue damage mechanisms and their 

dependence on the presence of different micro-structural heterogeneities. A 

probabilistic high cycle fatigue model, which has the capacity to describe these two 

mechanisms, is then presented. The model contains the same principal ingredients as 

the one developed by [1]. It uses a probabilistic framework to link the two different 

fatigue damage mechanisms, and can take into account the mean stress and the effect of 

a biaxial stress state.  

 

INTRODUCTION   

 

Due to their favourable combination of physical and mechanical properties, cast 

aluminium alloys have received much use in the automobile industry. One example is 

the casting of aluminium cylinder heads for automobile engines. In order to ensure that 

these components conform to their required specifications, numerical modelling 

techniques are employed [2]. The results from these simulations show that certain zones 

of these components are subjected to complex multiaxial cyclic stress-stain states, 

including high mean stress. The development of an appropriate criterion, for this 

application, is the object of this work.  

 

MATERIAL: AlSi7Cu05Mg03-T7 (A356-T7) 

 

Fatigue specimens were made from material taken from cylinder heads, manufactured 

by PSA for use in diesel automobile engines. The resulting mechanical properties of the 

material are listed in Table 1. Figure 1Figure 1 shows the material microstructure. It is 

composed of alpha-phase dendrites with an average Dendrite Arm Spacing (DAS) of 

approximately 80 μm. 
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Table 1 - Mechanical properties of AlSi7Cu05Mg03-T7 

 

The eutectic silicon particles are fine and spherical. The dark feature in Figure 1Figure 1 

is a casting defect (i.e. a micro-shrinkage pore). 

 
 

 
Figure 1. Microstructure of AlSi7Cu05Mg03 

 

EXPERIMENTAL CONDITIONS – FATIGUE TESTS 

 

Plane bending fatigue tests 

All of the fatigue tests presented below were conducted at ambient temperature and 

pressure. A series of uniaxial plane bending fatigue tests were undertaken, with the aim 

of identifying the effect of the mean stress. Five different load ratios have been 

investigated: R = -1; R = 0.1; R = 0.62 (with the maximum stress slightly less than the 

yield stress, 𝛴𝑚𝑎𝑥 ≈ 𝛴𝑌) ; R = 0.88 (with the mean stress equal to the yield stress, 

𝛴𝑚 = 𝛴𝑌); R = 0.92 (with the maximum stress slightly less than the ultimate tensile 

strength, 𝛴𝑚𝑎𝑥 ≈ 𝛴𝑢𝑡𝑠). For each load ratio, the fatigue strength at 2x10
6
 cycles was 

determined via the staircase method (10 specimens). All tests were done using a 

RUMUL Cracktronic electo-magnetic resonance fatigue testing machine. The test 

frequency was approximately 80 Hz.  

 

Biaxial and Torsional fatigue tests 

Torsional fatigue tests, with zero mean stress (R=-1), were also done. The RUMUL 

Cracktronic machine was used with the same testing conditions as described above.  

An axisymmetrical bending testing apparatus was developed to undertake these Biaxial 

fatigue tests (see Figure 2Figure 2). This test setup forms the object of a French national 

patent submitted in May 2011 [3]. Disk shaped specimens with a reduction in thickness 

on the compressive side of the specimen are tested (see Figure 2Figure 2(b)). The tests 

were conducted using a servo-hydraulic INSTRON 8802 fatigue testing machine.  

0.2% Yield stress, Ultimate tensile strength, Percent elongation at rupture, 

250 - 260 MPa 318 - 330 MPa 5.0 - 5.7 % 
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Figure 2. (a) An axisymmetrical bending testing apparatus for equibiaxial fatigue testing (b) 

Disk shaped test specimen (strain gauge shown on the compressive side) 

 

Note that only positive load ratios can be tested using this setup, and that the equibiaxial 

stress state is proportional and in-phase. The equibiaxial fatigue limit at 2x10
6
 cycles 

has been determined for a load ratio of R=0.1 using the staircase method (with 9 

specimens). The tests were conducted at a frequency of 20Hz.    

 

FATIGUE BEHAVIOUR 

 

The mean stress effect: AlSi7Cu05Mg03-T7 

Table 2 summarises the uniaxial results in terms of the fatigue limits at 2x10
6
 cycles for 

50% probability of failure.  

 

Table 2. Uniaxial fatigue results 

 

Plane Bending 

Σmoy (MPa) Σamp (MPa) Load Ratio 
Standard deviation 

(MPa) 

0 82.5 -1 17.7 

77 63.1 0.1 32.8 

195.5 44.5 0.62 7 

251 15 0.88 5.3 

283.5 11.5 0.92 5.3 

 

It is important to note that, even for the high load ratios (R = 0.88 and 0.92) a fatigue 

limit at 2x10
6
 cycles exists. These load ratios correspond to high mean stress and small 

stress amplitude, where the maximum stress is close to the ultimate tensile strength of 

the material. 

 

The effect of an equibiaxial stress state 

For the cast aluminium alloy in question, Figure 3Figure 3 shows the comparison 

between the uniaxial and equibiaxial fatigue test results for a load ratio of R=0.1.  
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Figure 3. Wohler diagram for AlSi7Cu05Mg03 (R=0.1, plane bending: uniaxial stress 

state and R=0.1, axisymmetrical bending: equibiaxial stress state)  

 

This diagram highlights the fact that the dispersion for both loading types is basically 

the same, and more surprisingly it shows that there is very little difference between the 

average fatigue limits at 2x10
6
 cycles. This implies that an equibiaxial loading condition 

does not result in greater fatigue damage than the uniaxial case (at least for this 

material).  

  

FATIGUE DAMAGE MECHANISMS 
 

Uniaxial loads 

Fatigue crack initiation sites can be varied. However, when micro-shrinkage pores are 

present they play the fundamental role in controlling fatigue behaviour. When specific 

treatments, such as HIP (Hot Isostatic Pressing), are used to obtain a microstructure 

which is practically void of micro-shrinkage pores, crack initiation occurs at other 

microstructural heterogeneities [4, 5]. In this work, initiation of the fatigue crack 

resulting in final failure of the specimens almost always occurs at a micro-shrinkage 

pore (see Figure 4Figure 4).        

It is therefore concluded that fatigue damage in this material is controlled by two 

different fatigue crack initiation mechanisms: One mechanism is associated with 

relatively large micro-shrinkage pores and the other is controlled by much smaller 

microstructural heterogeneities or the material matrix.   

It is proposed that the first mechanism is basically a problem of crack propagation, or 

more precisely, of non-propagation (see Figure 5Figure 5b)). The second mechanism is 

assumed that crack initiation is controlled by localised plasticity. 
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Figure 4. Fatigue crack initiation from a micro-shrinkage pore in AlSi7Cu05Mg03, loaded 

uniaxially with an R-ratio of R=-1 a) Surface observation b) SEM image of a failure surface  

 

THE PROPOSED MODEL 
 

The major advantage of the model proposed in this work is that both of these 

approaches are used. This approach uses the basic ingredients of the model proposed by 

Pessard and Morel [1] for the prediction of anisotropic fatigue behaviour of forged 

steels.  
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Figure 5. a) Fatigue crack initiation at Si-particles in the eutectic zones b) Initiation from a 

micro-shrinkage pore stopped by the presence of microstructural barriers  

 

Modeling the fatigue damage occurring in the material matrix  

The purpose of this section is to present the model used to describe the mechanism 

associated with the apparition of fatigue cracks in the material matrix, without the 

presence of micro-shrinkage pores. In order to estimate the probability of crack 

initiation, PF1, due to the apparition of meso-plasticity in the material matrix, the Huyen 

and Morel [6] criterion is used. This approach is based on the hypothesis of elastic 

shakedown at the mesoscopic scale and the weakest link theory applied to all material 

planes of a R.E.V. The random character of the fatigue resistance is introduced via a 

Weibull distribution. The essential ingredients of this criterion are as follows. The 

probability of fatigue failure can be expressed as: 



𝑃𝐹1 = 1 − 𝑒𝑥𝑝 [−
1

𝑉01
∫

𝑋𝑎
𝑚1  𝐼𝑚1

𝑇01
𝑚1

𝑑𝑉
𝑉

]  (1)  

Where  𝑋𝑎 = max𝜃,𝜙,𝜓{𝜒𝑎(𝜃, 𝜙, 𝜓)} and  𝜒𝑎(𝜃, 𝜙, 𝜓) =  𝑇𝑎(𝜃, 𝜙, 𝜓) +  𝛼𝛴𝑛,𝑎(𝜃, 𝜙)  

𝑇𝑎(𝜃, 𝜙, 𝜓) is the shear stress amplitude in a direction defined by three angles (𝜃, 𝜙, 𝜓),  

𝛴𝑛,𝑎(𝜃, 𝜙) is the amplitude of the normal stress acting on the material plane,𝑚1 is the 

Weibull exponent related to the scatter associated with the fatigue initiation mechanism 

To simplify the notation the parameter 𝐼𝑚1 is introduced and is equal to: 

𝐼𝑚1 = ∫ ∫ ∫ (
𝜒𝑎(𝜃,𝜙,𝜓)

(1−𝛾𝛴𝑛,𝑚(𝜃,𝜙))𝑋𝑎
)

𝑚1
2𝜋

𝜓=0

𝜋

𝜃=0

2𝜋

𝜙=0
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙𝑑𝜑  (2) 

𝛴𝑛,𝑚(𝜃, 𝜙) is the mean value of the normal stress acting on the material plane. The 

tripple integration in equation (2) is used to take into account the crack initiation 

potential on each possible slip system within an elementary volume. 𝑇𝑜1 is the scale 

parameter of the Weibull distribution, 𝛼 and 𝛾 are material parameters used to take into 

account the effect of the normal stress. It has been shown that this model results in good 

high cycle fatigue predictions for multiaxial loading conditions and in particular 

tension-torsion loads and biaxial loads [7].  

 

Modelling the fatigue damage due to micro-shrinkage pores 

The probability that a crack will propagate from a micro-shrinkage pore, PF2 is taken 

into account using concepts from Linear Elastic Fracture Mechanics. The micro-

shrinkage pores are assumed to be pre-existing cracks for which mode I propagation is 

dominate. The range of the stress intensity factor ∆𝐾 can be estimated as a function of 

the applied stress range. The no-propagation condition is defined by comparing the 

stress intensity factor ∆𝐾 to the crack propagation threshold of the material, ∆𝐾𝑡ℎ. It is 

therefore assumed that failure occurs if: 

∆𝐾 > ∆𝐾𝑡ℎ  (3) 

The random nature of the crack propagation threshold is introduced using a Weibull 

distribution: 

 𝑓02(∆𝐾𝑡ℎ) =
𝑚2

∆𝐾𝑡ℎ02
(

∆𝐾𝑡ℎ

∆𝐾𝑡ℎ02
)

𝑚2−1

𝑒𝑥𝑝 [− (
∆𝐾𝑡ℎ

∆𝐾𝑡ℎ02
)

𝑚2

]       (4) 

Where 𝑚2 is the Weibull exponent controlling the dispersion and ∆𝐾𝑡ℎ02 is the scale 

parameter associated with the damage mechanism. All cracks which are potentially 

active are taken into account via the calculation of ∆𝐾(𝜃, 𝜑) on all possible material 

planes defined by the angles (𝜃, 𝜑) . In order to estimate the possibility of crack 

propagation, the weakest link hypothesis is applied to all plane of a reference volume 

V0. The probability of crack propagations is thus given as: 

 𝑃𝐹02 = 𝑃(∆𝐾𝑡ℎ < ∆𝐾(𝜃, 𝜑)) =

1 − 𝑒𝑥𝑝 [−
1

𝐷02
∫ ∫ (

∆𝐾𝑡ℎ(𝜃,𝜑)

∆𝐾𝑡ℎ02
)

𝑚2𝜋

𝜃=0

2𝜋

𝜑=0
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑]  (5) 

The probability of rupture, for the total volume of loaded material, can be obtained by 

apply the weakest link hypothesis a second time. So that: 

 𝑃𝐹2 = 1 − 𝑒𝑥𝑝 [−
1

𝑉02
∫ {∫ ∫ (

∆𝐾(𝜃,𝜑)

∆𝐾𝑡ℎ02
)

𝑚2𝜋

𝜃=0

2𝜋

𝜑=0
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑} 𝑑𝑉

𝑉
]  (6) 
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 Where the stress intensity factor associated with plane (𝜃, 𝜑) can be written as a 

function of the stress normal to the plane 𝛥𝜎(𝜃, 𝜑) and the defect size, a: 

 ∆𝐾(𝜃, 𝜑) = 𝛥𝜎(𝜃, 𝜑)𝛽√𝜋𝑎  (7) 

The mean stress effect on ∆𝐾𝑡ℎ is generally associated with the concept of crack 

closure. The evolution of the threshold, as a function of the load ratio R, is introduced. .  
∆𝐾𝑡ℎ

∆𝐾𝑡ℎ0
= 𝑓(𝑅) =

(1−𝑅)

(1−𝜅𝑅)
   (8) 

Where ∆𝐾𝑡ℎ0 is crack propagation threshold for an R-ratio of R=0. The probability of 

rupture of the complete structure is therefore given by: 

 𝑃𝐹2 = 1 − 𝑒𝑥𝑝 [−
1

𝑉02
∫ {∫ ∫ (

𝛥𝜎𝑎(𝜃,𝜑)𝛽√𝜋𝑎

∆𝐾𝑡ℎ02
)

𝑚2𝜋

𝜃=0

2𝜋

𝜑=0
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑} 𝑑𝑉

𝑉
]  (9) 

It is possible to simplify the expression for 𝑃𝐹2by introducting the factor 𝐽𝑚2 which is 

defined as: 𝐽𝑚2 = ∫ ∫ (
𝜎𝑛,𝑎(𝜃,𝜑)

𝛴𝑛,𝑎
)

𝑚2𝜋

𝜃=0

2𝜋

𝜑=0
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑  (10) 

Where  𝛴𝑛,𝑎 = max𝜃,𝜑{𝜎𝑎(𝜃, 𝜑)}.  

The final expression becomes 𝑃𝐹2 = 1 − 𝑒𝑥𝑝 [−
1

𝑉02
∫

𝛴𝑛,𝑎
𝑚2  𝐽𝑚2

𝛴02(𝑅)𝑚2
𝑑𝑉

𝑉
] 

where 𝛴02(𝑅) =
𝛴𝑑(𝑅=0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (1−𝑅)

(1−𝜅𝑅)

𝛤(1+1
𝑚2⁄ )𝐽𝑚2

−1
m2⁄

  and 𝛤 is the Euler function, defined  

as 𝛤(𝑡) = ∫ 𝑥𝑡−1𝑒−𝑥𝑑𝑥
∞

0
. 𝛴𝑑

̅̅ ̅ is the average experimentally determined fatigue limit. 

The spatial integration allows all potential propagation sites to be taken into account as 

well as to better account for multiaxial loading conditions. 

 

The total probability of survival 

The total probability of survival on the component is defined by again applying the 

hypothesis of the weakest link. It is obtained by multiplying the two survival 

probabilities from the two different observed mechanisms: 1 − 𝑃𝐹 = (1 − 𝑃𝐹1)(1 −
𝑃𝐹2). The entire process can be represented in the form of a probabilistic Kitagawa type 

diagram, schematically shown in Figure 6Figure 6.a, which describes the competition 

between the two observed mechanisms 

 

Figure 6. a.Schematic probabilistic Kitagawa type diagram and b.Dang Van diagram, 

showing the predictions of the proposed criterion  



In order to compare the predictions of the proposed model with the experimental data 

presented above for different loading conditions (i.e. plane bending, axisymmetrical 

bending and torsion), the Dang Van criterion [8] is used. It can be seen that the 

predictions of the proposed criterion are in general less conservative and closer to the 

experimental data than the Dang Van criterion (figure 6.b).  

 

CONCLUSIONS AND PROSPECTS 
 

The principal objective of this work was to develop a probabilistic high cycle fatigue 

model adapted to Al-Si cast aluminum alloys, which is able to take into account the 

different microstructural heterogeneities present in the material. It has been concluded 

that two coexisting fatigue damage mechanisms occur in this material. In order to take 

into account both of these damage mechanisms, a probabilistic approach is used to 

model the “competition” between the two mechanisms. It is shown that the proposed 

model is capable of reproducing the experimentally observed tendencies, with respect to 

both the mean stress effect and the loading mode (torsion, uniaxial tension and 

equibiaxial tension). This work was undertaken in partnership with PSA Peugeot 

Citrooën and was financially supported by the French region, Pays de la Loire.  
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