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Abstract

In this work, an analysis of both the mechanical response at the grain scale and high cycle

multiaxial fatigue criteria is undertaken using finite element (FE) simulations of polycrys-

talline aggregates. The metallic material chosen for investigation, a pure copper, has a

Face Centred Cubic (FCC) crystalline structure. Two-dimensional polycrystalline aggre-

gates, which are composed of 300 randomly orientated equiaxed grains, are loaded at the

median fatigue strength defined at 107 cycles. In order to analyse the effect of the loading

path on the local mechanical response, combined tension-torsion and biaxial tension loading

cases, in-phase and out-of-phase, with different biaxiality ratios, are applied to each poly-

crystalline aggregate. Three different material constitutive models assigned to the grains

are investigated: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the

cubic elasticity. First, some aspects of the mechanical response of the grains are highlighted,

namely the scatter and the multiaxiality of the mesoscopic responses with respect to an

uniaxial macroscopic response. Then, the distributions of relevant mechanical quantities

classically used in fatigue criteria are analysed for some loading cases and the role of each

source of anisotropy on the mechanical response is evaluated and compared to the isotropic

elastic case. In particular, the significant influence of the elastic anisotropy on the mesoscopic

mechanical response is highlighted. Finally, an analysis of three different fatigue criteria is

conducted, using mechanical quantities computed at the grain scale. More precisely, the pre-

dictions provided by these criteria, for each constitutive model studied, are compared with
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the experimental trends observed in metallic materials for such loading conditions.

Keywords: Multiaxial high cycle fatigue, Microstructure modeling, Anisotropic elasticity,

Crystal plasticity, Fatigue criterion

Nomenclature

γs : plastic slip on the slip system s

νs : accumulated plastic slip on the slip system s

τs : resolved shear stress on the slip system s

rs : isotropic hardening variable on the slip system s

xs : kinematic hardening variable on the slip system s

σ : stress tensor

εp : plastic strain tensor

ns : unit vector normal to the slip plane (Fig.1)

ls : unit vector in the slip direction (Fig.1a)

ms : orientation tensor of the slip system s

〈•〉a : volume-weighted average over the aggregate

〈•〉g : volume-weighted average over the grain g

Σ = 〈σ〉a : macroscopic stress tensor

〈σ〉g : mesoscopic stress tensor

σ(n) : mesoscopic stress vector across the plane of unit normal vector n (Fig.1b)

τ : mesoscopic shear stress vector (Fig.1b)

τa : mesoscopic shear stress amplitude (Fig.1b)

τm : mesoscopic mean shear stress (Fig.1b)

Ts,a : macroscopic resolved shear stress amplitude on the slip system s

τs,a : mesoscopic resolved shear stress amplitude on the slip system s (Fig.1b)

Σn : macroscopic normal stress acting on the plane n

σn : mesoscopic normal stress acting on the plane n (Fig.1b)

σn,a : mesoscopic normal stress amplitude acting on the plane n

σn,m : mesoscopic mean normal stress acting on the plane n

σh : mesoscopic hydrostatic stress

PFn : failure probability of a slip plane
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PFg : failure probability of a grain

PFa : failure probability of an aggregate

1. Introduction

Fatigue crack initiation in metallic materials is a local phenomenon intimately related to

the plastic activity at the grain scale. Indeed, in High Cycle Fatigue (HCF), it has been

observed that the plastic deformation localises heterogeneously in some favourably-oriented

grains leading to slip bands formation and to fatigue cracks initiation mainly at the interface

between these bands and the surrounding matrix. In this context, it seems relevant to try to

evaluate the mesoscopic mechanical quantities (i.e. the average values per grain) in order to

study the HCF strength. Unfortunately, due to complex anisotropic elasto-plastic behaviour

of the crystals constituting a metal, no simple method exists to precisely estimate these

quantities.

Homogenisation schemes are a common way to relate the mechanical response of each

grain to the macroscopic loading applied to a polycrystal. This approach has been success-

fully used in the development of HCF criteria. The first attempt of multiscale approach in

fatigue was proposed by Dang Van [1]. The work of Papadopoulos [2], a continuation of the

one of Dang Van, has allowed improvements such as a better consideration of the effect of

phase shift on the fatigue strength of metals under combined tension and torsion. Monchiet

et al. [3] have developed a criterion based, like the one proposed by Dang Van, on the elastic

shakedown concept but in which the damage is coupled to plasticity in order to explain the

mean stress effect in HCF. Morel et al. [4], starting from the definition of the fatigue crack

initiation criterion at the grain scale proposed by Papadopoulos, has constructed a criterion

in a probabilistic framework allowing to take into account the variability of the fatigue crack

initiation threshold and providing satisfactory predictions for biaxial loading cases (combined

tension and torsion, biaxial tension) [5]. Despite the qualities of these criteria (ease of appli-

cation, fairly accurate predictions), simplifying assumptions are made in their development.

The influence of these hypotheses (for instance, the consideration that the elastic behaviour

is the same at the grain scale and at the macroscopic scale) on the predictions is not nec-

essarily quantified. Moreover neighbouring and free surface effects can hardly be taken into
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account.

A promising approach, consisting in computing, by FE method, the mechanical response

of explicitly modelled polycrystalline aggregates, allows to take into account microstructural

details generally neglected in the homogenisation schemes and to deepen the analysis of the

mesoscopic mechanical responses of metals under cyclic multiaxial loading. In recent years,

several works have involved this kind of numerical simulations to contribute to the study of

the HCF behaviour. For instance, Benett et al. [6] have analysed the distribution of fatigue

crack initiation parameters inspired from well-known HCF criteria. This study was enriched

by the work of Guilhem et al. [7] in which the mechanical response of the grains is studied

according to their position in the aggregate (for instance at the free surface or in the core),

their orientation and the one of the neighbouring grains. Moreover, a study of Robert et

al. [8] has highlighted the important role played by the cubic elasticity in the mesoscopic

responses of polycrystalline copper. At last, others factors affecting fatigue strength, such as

surface roughness or pre-hardening, began to be investigated [9],[10].

The present study falls within this framework and is divided into two parts:

• The first part consists in an investigation of the role of each source of anisotropy (i.e.

elastic and plastic) on the mesoscopic mechanical responses of a polycrystalline copper

cyclically loaded, at levels corresponding to the median fatigue limit at 107 cycles, in

various biaxial loading conditions ;

• The second part is dedicated to the evaluation of the predictions of three fatigue criteria,

inspired by those proposed by Dang Van [1], Papadopoulos [2] and Morel and Huyen

[4], using the results of the FE simulations in the cases of combined tension-shear and

biaxial tension and a comparison of these predicted fatigue limits with experimental

trends.

2. Modelling approach

2.1. Constitutive material models at the grain scale

The anisotropic behaviour of the grains is due, on the one hand, to the elastic behaviour

and, on the other hand, to the crystallographic nature of the plastic slip. In FCC structure,

as for pure copper, the elastic behaviour is cubic and the plastic slip occurs along the {111}
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planes in the 〈110〉 directions which correspond respectively to the closed-packed planes

and directions of this crystal structure. In order to dissociate the effect of each sources of

anisotropy on the mesoscopic mechanical responses, three constitutive models, assigned to

the grains, are investigated:

• Linear isotropic elasticity;

• Linear cubic elasticity;

• Linear cubic elasticity with crystal plasticity.

In each case, a Hooke’s law is used to describe the elastic behaviour. In the first case, an

isotropic elastic behaviour is considered and is defined by the Young’s Modulus E and the

Poisson’s ratio ν. In the second and third cases, cubic elasticity is considered and completely

characterised by three coefficients defined in the crystal coordinate system : C1111, C1122

and C1212.

Finally, crystal plasticity is described by a single crystal visco-plastic model proposed by

Méric et al. [11]. In this constitutive model, the plastic slip rate γ̇s on a slip system s is

governed by a Norton-type flow rule (Eq. 1) involving the resolved shear stress τs acting on

s and the isotropic and kinematic hardening variables, resp. rs and xs, associated to s.

γ̇s =

〈
|τs − xs| − r0 − rs

K

〉n
+

sgn(τs − xs) = ν̇ssgn(τs − xs) (1)

where K and n are the parameters defining the viscosity and r0 corresponds to the critical

resolved shear stress. The resolved shear stress τs acting on s is computed from the stress

tensor σ by means of the orientation tensor ms (Eqs 2 and 3). This tensor allows also to

compute the plastic strain rate tensor ε̇p knowing the plastic slip rate γ̇s occurring on each

slip system s (Eq. 4).

τs = ms : σ (2)

ms =
(ns ⊗ ls + ls ⊗ ns)

2
(3)

ε̇p =
∑
s

γ̇sms (4)

The evolution laws of the hardening variables rs and xs are respectively given by Eqs 5

and 6.

rs = Q
∑
r

hsr(1− e−bνr ) (5)
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Isotropic elasticity Cubic elasticity

E [GPa] ν C1111 [GPa] C1122 [GPa] C1212 [GPa]

118 0.344 159 122 81

Viscosity Kinematic hardening

K [MPa.s1/n] n c [MPa] d

8 20 32000 900

Isotropic hardening

r0 [MPa] Q [MPa] b h0 h1 h2 h3 h4 h5

15 4 12 1 1 0.2 90 3 2.5

Table 1: Material parameters.

ẋs = cγ̇s − dν̇sxs (6)

In Eq. 5, the influence of the accumulated plastic slip νr on the slip system r on the hardening

of the slip system s is taken into account thanks to the components hsr of the interaction

matrix, introduced by Franciosi [12]. Q and b are the other isotropic hardening parameters

and c and d are the kinematic hardening parameters (Eq. 6).

The material parameters values used in the FE simulation, identified by Méric et al. [11]

and Gérard et al. [13], are summarised in Table 1.

2.2. Finite element modelling

The process used to generate periodic 2-dimensional polycrystalline aggregates geometries

is described in [8]. The finite element mesh of the CAD of the synthetic microstructure,

containing 300 equiaxed grains, is obtained using Gmsh [14]. Three-nodes triangular finite

elements, with linear interpolation and generalised plane strain hypothesis, are used. The

grains are discretised in average with 100 elements. An illustration of a geometry and a finite

element mesh of a microstructure is shown in Fig.2.

For each loading condition and constitutive model studied, three different microstructure

geometries and three different orientation sets are used. Each orientation set are composed

by 300 triplets of Euler angles chosen such as to represent an isotropic crystallographic

texture. Each triplet of Euler angles defines the orientation of one crystal frame with respect

to the reference frame of the aggregate. As a result, the mechanical response of nine different
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microstructures is investigated per loading condition and per constitutive model.

Thanks to the linearity of the elastic behaviours, only one loading cycle is computed

when purely elastic constitutive models are assigned to the grains. In the case where crystal

plasticity is used, 10 loading cycles are applied so that the aggregates tend to a stabilised

behaviour at the local scale. Periodic displacement boundary conditions are imposed at the

edge of the polycrystalline aggregates. Computations are performed by imposing the macro-

scopic stress tensor Σ, i.e. the volume-weighted average of the stress tensors over the entire

aggregate, as it is usually the case when characterising the HCF behaviour experimentally.

The numerical simulations are conducted with the ZéBuLoN FE software developped by

Mines ParisTech, NorthWest Numerics and ONERA [15].

2.3. Loading conditions

Two types of loading conditions are applied to the polycrystalline aggregates in this work:

combined tension and shear, representative of the stress state encountered in tension-torsion

fatigue test, and biaxial tension. The corresponding applied macroscopic stress tensors are

respectively expressed, in the aggregate coordinate system, by Eqs 7 and 8.

Tension-shear: Σ =


Σ11,a sin(ωt) Σ12,a sin(ωt− ϕ12) 0

Σ12,a sin(ωt− ϕ12) 0 0

0 0 0

(
e1, e2, e3

) (7)

Biaxial tension: Σ =


Σ11,a sin(ωt) 0 0

0 Σ22,a sin(ωt− ϕ22) 0

0 0 0

(
e1, e2, e3

) (8)

The choice of these loading conditions is motivated by the fact that, on the one hand,

some of them deviate in terms of stress state from usual loading cases used to identify the

fatigue criteria, especially the biaxial tension, and on the other hand, results of fatigue tests

on metallic materials are reported in the literature for these kinds of loading [5, 16–21].

Several biaxiality ratios (k12 and k22) and phase shifts (ϕ12 and ϕ22) have been selected

for this work (Tables 2 and 3). Each of these loading cases are studied when purely elastic

models are assigned to the grains but only a few of them are analysed when crystal plasticity

is used because of the high computation time induced by the use of such a constitutive model.
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k12 = Σ12,a/Σ11,a ϕ12 [◦]

0 0.25 0.5 0.75 1 2 ∞ 0 30 45 60 90

Table 2: Biaxiality ratios k12 and phase shifts ϕ12 studied for the combined tension and

shear loading cases

k22 = Σ22,a/Σ11,a ϕ22 [◦]

0 0.25 0.5 0.75 1 0 30 45 60 90 120 135 150 180

Table 3: Biaxiality ratios k22 and phase shifts ϕ22 studied for the biaxial tension loading

cases

3. Fatigue criteria

The predictions of three different fatigue criteria are studied in this work. Their ex-

pressions derive from multiaxial HCF fatigue criteria based on the mesoscopic approaches

proposed by Dang Van [1], Papadopoulos [2] and Morel and Huyen [4]. The main change

made on these criteria is the replacement of the macroscopic mechanical quantities by meso-

scopic mechanical quantities, i.e. the quantities computed from the stress tensors averaged

per grain 〈σ〉g which are obtained from the last loading cycle of the FE simulations.

3.1. Critical plane-based criterion

The criterion proposed by Dang Van is based on the assumption that the fatigue crack

initiation in one grain leads to the failure of the entire polycrystalline aggregate. To keep

this idea, a criterion checking that no crack initiates during the last loading cycle in each slip

plane contained in the polycrystal is proposed (Eq. 9). With this relation, which is similar

to the one proposed by Dang Van, it is assumed that the fatigue failure is prevented as long

as the inequality is satisfied.

σDV = max
n

[
max
t

[‖ τ(n, t)− τm(n) ‖ +αDV σh(t)]
]
≤ βDV (9)

αDV and βDV are two material parameters. τ(n, t) represents the mesoscopic shear stress

vector acting on the slip plane n, τm(n) the mesoscopic mean shear stress vector acting on the
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slip plane n and σh(t) the mesoscopic hydrostatic pressure. As the direction of the mesoscopic

shear stress vector τ(n, t) generally changes with time, the end of this vector described a path

Γ (Fig.1b) during the last loading cycle. Under these conditions, an appropriate definition

of the mesoscopic mean shear stress vector τm(n), to respect its uniqueness [22], consist to

define τm(n) as the vector OΩ with O being the origin of the shear stress vector and Ω

being the centre of the smallest circle circumscribing the path Γ (Fig.1b). The randomised

algorithm summarised in [22] is used to efficiently find the minimum enclosing circle of the

path of each slip plane.

3.2. Papadopoulos criterion

Like Dang Van, Papadopoulos has developed a fatigue criterion at the grain scale based

on the concept of elastic shakedown. In this mesoscopic fatigue criterion, a fatigue crack

does not initiate in a grain if the accumulated plastic slip on its slip systems does not exceed

a threshold.

Papadopoulos wisely noticed that the engineering fatigue limit is not considered as the

stress amplitude at which there is no crack initiation. The author relies on the fact that

non-propagating small fatigue cracks can be observed in specimens loaded below their con-

ventional fatigue limit. This leads Papadopoulos to propose a criterion, given in Eq.10, based

on an estimate of the average accumulated plastic slip of all the slip systems contained in a

representative volume element (RVE). This criterion is expressed in function of the quadratic

mean, along every slip systems in the polycrystal, of the macroscopic resolved shear stress

amplitude Ts,a (Eq. 11) and the average, along every slip planes in the polycrystal, of the

macroscopic normal stess Σn (Eq. 12).√〈
T 2
s,a

〉
+ αmax

t
[〈Σn(t)〉] ≤ β (10)

√〈
T 2
s,a

〉
=
√

5

√
1

8π2

∫ 2π

ϕ=0

∫ π

θ=0

∫ 2π

χ=0

T 2
s,adχ sin(θ)dθdϕ (11)

〈Σn(t)〉 =
1

8π2

∫ 2π

ϕ=0

∫ π

θ=0

∫ 2π

χ=0

Σn(t)dχ sin(θ)dθdϕ (12)

In this work, the form of this criterion is preserved (Eq. 13) but mesoscopic quantities

are used instead of the macroscopic ones (τs,a and σn replace respectively Ts,a and Σn):

σP =
√〈

τ2s,a
〉

+ αP max
t

[〈σn(t)〉] ≤ βP (13)
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where αP and βP correspond to the material parameters. As the microstructures studied

contain a finite number of grains and slip systems,
√〈

τ2s,a
〉

and 〈σn〉 become

√〈
τ2s,a
〉

=
√

5

√√√√ 1

Ns

Ng∑
g=1

[
f(g)

Ns∑
s=1

τ2s,a(g, s)

]
(14)

〈σn(t)〉 =
1

Np

Ng∑
g=1

f(g)

Np∑
p=1

σn(g, p, t)

 (15)

where Ns and Np are respectively the number of slip systems in a grain and the number of

slip planes in a grain. In Eqs 14 and 15, f(g) represents the volume fraction of the grain g.

For the sake of simplicity, as the grains in the microstructure have approximately the same

volume, f(g) is assumed to be equal to 1/Ng with Ng being the number of grains in the

considered microstructure.

3.3. Probabilistic fatigue criterion

Morel and Huyen have proposed a criterion based on the assumption that the fatigue

crack initiation threshold at the grain scale follows a Weibull distribution which led them to

define a failure probability for each grain contained in a polycrystalline aggregate. In order to

estimate the failure probability of the polycrystal, the authors then applied the weakest-link

hypothesis. This reasoning is repeated below.

First, a fatigue crack is assumed to initiate in a slip plane of normal n if the amplitude

of shear stress τa acting on this plane exceeds a threshold τ tha . τa is defined as the radius of

the smallest circle circumscribing the path described by τ(n, t) during the last loading cycle.

Once again, the randomised algorithm [22] is used to determine this circle. The threshold

τ tha is then supposed to be a random variable following a Weibull distribution characterised

by a shape parameter m and a scale parameter τ0. Thus, the failure probability of the slip

plane can be expressed by:

PFn = P (τa ≥ τ tha ) = 1− exp

[
−
(
τa
τ0

)m]
(16)

The normal stress effect on the fatigue strength is taken into account by considering that

τ0 depends on the normal stress amplitude σn,a and on the mean normal stress σn,m acting

10



on the slip plane of normal n (Eq. 17).

τ0 = τ ′0
1− γσn,m

1 + α(σn,a/τa)
(17)

In Eq. 17, τ ′0, γ and α are material parameters.

The failure probability PFg of a grain g is supposed to correspond to the maximum failure

among the failure probabilities of its slip planes (Eq. 18). This assumption constitutes the

major difference with respect to the initial criterion. Indeed, the weakest-link hypothesis was

used by Morel and Huyen to determined the failure probability at the grain scale PFg.

PFg = max
n∈g

[PFn] (18)

Finally, the weakest-link hypothesis is applied to determine the failure probability of a

polycrystalline aggregate PFa which leads to the following expression:

1− PFa =

Ng∏
g=1

(1− PFg) (19)

where Ng is the number of grain constituting the polycrystalline aggregate. The use of the

weakest-link hypothesis is justified by the fact that in HCF regime, the failure is driven by the

initiation and the propagation of a single crack more than the initiation and the coalescence

of a large number of cracks.

3.4. Identification of the fatigue criteria parameters and predictions of the fatigue limits

For each constitutive models assigned to the grains, the parameters of the criteria are

identified thanks to the results of the numerical simulation of polycrystalline aggregates

loaded, at the mean fatigue limit level, in fully reversed tension and in fully reversed shear.

Moreover, as the probabilistic criterion has a parameter which defined the sensitivity to the

mean normal stress, the results obtained from a third loading case are needed. The loading

case chosen is cyclic tension with a stress ratio R = 0.

The average fatigue limits of a pure copper at 107 cycles in cyclic symmetrical (R = −1)

and asymmetrical (R = 0) tension, respectively s−1 = 78MPa and s0 = 54MPa, have been

determined from experimental results by Lukàš et al. [23]. The fatigue limit in fully reversed

torsion t−1 = 50MPa has been estimated from the fatigue tests conducted by Ravilly and

reported in [24].
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For the integral and the critical plane-based criteria, the parameters are identified such as

σDV /βDV and σP /βP are, in average on the 9 realisations, equal to 1 in fully reversed tension

and in fully reversed shear. Regarding the probabilistic criterion, the procedure is similar

excepted that the shape parameter m is imposed and two values are arbitrarily chosen (5 and

20) in order to investigate the influence of this parameter on the predictions of the criterion.

The other parameters, namely τ ′0, α and γ, are identified such as PFa is, in average, equal

to 50% for each of the three loading cases.

Once the parameters identified, the fatigue criteria are used to predict the fatigue strength

for other loading cases. For a given loading case, the determination of the predicted average

fatigue limit consists in searching the normal and shear stress amplitudes which have to be

applied to the polycrystalline aggregates such as in average on the 9 realisations:

• σDV /βDV = 1 for the critical plane criterion;

• σP /βP = 1 for the integral criterion;

• PFa = 50% for the probabilistic criterion.

When elastic constitutive models are used, only one FE computation per loading condition

is needed to determine this loading amplitude thanks to the linearity of the mechanical

response. On the contrary, in cases where crystal plasticity is assigned to the grains, the

search of the fatigue limit level is an iterative process requiring several FE simulations per

loading condition which leads to important computation times. For that reason, the fatigue

limits are predicted only for some loading cases when crystal plasticity is used.

4. Results and discussion

4.1. Effect of the constitutive models on the mesoscopic mechanical responses

The mechanical response of the polycrystalline aggregates is studied at the grain scale

through the mesoscopic mechanical quantities computed from the results obtained at the last

cycle of the FE simulations and for the three material behaviours assigned to the grains.
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4.1.1. Comparison between macroscopic and mesoscopic mechanical responses

It has to be noted that the anisotropy of the material behaviour makes the stress-strain

response of each grain to differ notably from the macroscopic response. An illustration of

this fact is given in Fig.3, which represents the cyclic σ11-ε11 (resp. σ12-ε12) response of

each grain contained in one polycrystalline aggregate loaded in fully reversed tension (resp.

fully reversed shear) with an amplitude corresponding to the experimental fatigue limit. The

results obtained in the case of the cubic elasticity and in the case of the crystal plasticity in

addition to the cubic elasticity are grouped respectively in Fig.3a and Fig.3b. From these

figures, it can be observed that both cubic elasticity and crystal plasticity have a striking

impact on the scatter of the mesoscopic stress and strain responses.

It is worth noting that the use of an anisotropic constitutive model at the grain scale

results in a multiaxial stress states in the grains even in cases where a uniaxial loading is

applied to the polycrystalline aggregates as it is shown in Fig.4. In this figure, the σ11-σ22

and σ11-σ33 responses of the grains of one polycrystalline aggregate loaded in fully reversed

tension with a stress amplitude equal to the experimental fatigue limit are presented. Fig.4a

corresponds to the case where cubic elasticity is used whereas Fig.4b presents the results

obtained when the cubic elastic and crystal plastic model is applied to the grains. In Fig

4b, one can notice that the addition of the crystal plasticity induced non-proportional stress

paths at the grain scale.

4.1.2. Distributions of the shear and normal stress amplitudes

The following analysis is focused on the mechanical quantities used in the Morel and

Huyen criterion: the shear stress amplitude τa and the normal stress amplitude σn,a. In each

subfigure of Fig.5, the response, in terms of τa-σn,a, of each slip plane of the nine studied

configurations (3 microstructures × 3 orientations sets) is reported. The distribution, the

mean value (µ) and the maximum value of each component are also given. On this figure,

the results obtained with the isotropic elastic behaviour, the cubic elastic behaviour and the

combination of the cubic elasticity and the crystal plasticity in the cases of fully reversed

tension, fully reversed shear, combined tension-shear (k12 = 0.5, ϕ12 = 0◦/90◦ ) and biaxial

tension (k22 = 1, ϕ22 = 0◦) are presented. The loading amplitude applied on the aggregates

corresponds to the macroscopic median fatigue limit. In the cases of fully reversed tension
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and fully reversed shear, the median fatigue limits are known whereas in the other loading

cases, the loading levels corresponding to the median fatigue limits are estimated with the

Papadopoulos criterion.

From these results, it can be observed that, when crystal plasticity is used, the distribution

of the shear stress amplitude is much less scattered in the case of combined tension-shear

with k12 = 0.5 and ϕ12 = 90◦ than in the other cases. Thus, this particular loading case

should lead to a more homogeneous distribution of the plastic slip in the polycrystalline

aggregates.

It can be stated from Fig.5 that the distributions of the considered mechanical quantities

are strongly affected when the isotropic elasticity is replaced by the cubic elastic behaviour.

Indeed, compared to the isotropic elastic behaviour, the cubic elasticity causes a significant

increase of the maximum and the mean values of the normal stress amplitude. Conclusions

about the shear stress amplitude are slightly different. Indeed, even though an increase of the

maximum value of τa is observed, a slight decrease of its mean value is found. It should be

noted that the use of cubic elasticity instead of isotropic elasticity symmetrises significantly

the shear stress amplitude distributions. This leads to a decrease in the number of slip planes

exhibiting high shear stress level. The trends described here for the five presented cases have

also been observed for the other studied loading cases.

When compared to the cubic elastic behaviour alone, it appears that the addition of

crystal plasticity only slightly affects the distributions of the two considered mechanical

quantities. Indeed, its effect on the normal stress amplitude distribution is almost negligible.

Furthermore, the distribution of τa becomes slightly more asymmetric (excepted in the case of

biaxial tension) which leads to maintain the mean value while the maximum value decreases.

Similar conclusions on the significant influence of the cubic elasticity compared to the crystal

plasticity on the mesoscopic mechanical response were drawn by Robert et al. [8].

The moderate role of the crystal plasticity compared to the cubic elasticity can be ex-

plained in the present case by two factors. Firstly, the loading amplitudes which corre-

spond approximately to the macroscopic median fatigue limit are close to the macroscopic

yield limit so the plastic activity remains low. Secondly, the considered material has a

strong anisotropic elastic behaviour. Indeed, its anisotropy coefficient, which is defined by

a = 2C1212/(C1111 − C1122), is equal to 4.38 which is far more higher than the ones of pure
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aluminium (a ' 1.2 [25]) and of pure nickel (a ' 2.4 [26]).

4.1.3. Critical slip planes orientations

The probabilistic fatigue criterion is used in order to study the most critical slip planes

orientations for some loading cases. To conduct this analysis, for each grain contained in

a polycrystalline aggregate, the failure probability PFg is first computed and associated to

the orientation of the unit vector ns normal to the corresponding slip plane of the consid-

ered grain. Then, each of these unit normal vectors ns is represented by a point in Fig.6,

thanks to a stereographic projection, in the plane of normal vector e3 (the reference frame

is illustrated in Fig.2). The horizontal and vertical directions are respectively collinear to e1

and e2. In this figure, the colours associated to the points correspond to the magnitude of

the failure probability PFg. For each loading condition studied, the failure probabilities are

computed from the results of the FE models using isotropic elasticity, cubic elasticity and

the combination of cubic elasticity and crystal plasticity. All results are reported in figure 6.

For each constitutive model, the polycrystalline aggregates are loaded at the average fatigue

limit level according to the probabilistic fatigue criterion. Only the grains having a failure

probability PFg > 10−5 are reported.

In Fig.6, it can been seen that the change of constitutive model assigned to the grains

does not strongly change the pattern resulting from the projection of the most critical planes’

normals. Nevertheless, the scatters observed in the values of PFg and in the orientations

are increased in most cases when an anisotropic constitutive model is used. Moreover, the

location, in the pole figures, of the maximal value of PFg is different than in the isotropic

elastic case and depends on the realisation (microstructure geometry or orientations set).

In fully reversed tension, in the case of cubic elasticity and crystal plasticity, it can be

observed that the normals of the most critical planes, i.e. the planes for which a crack

initiation is most likely to occur, are inclined from 0◦ to 50◦ with respect to the loading axis.

Thus, if the predictions obtained for a bulk material are similar to those obtained for grains

located at a free surface then the angle between the intersection of the crack planes with the

surface and the loading axis will range from 40◦ to 90◦. These remarks are in accordance

with experimental observations made from low-cycle fatigue tests on an austenitic stainless

steel [27].
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4.2. Predictions of the fatigue criteria

Noting the differences between the macroscopic and the mesoscopic responses, one can

wonder how fatigue criteria based on macroscopic mechanical quantities can predict rather

accurately the fatigue limits. Even fatigue criteria using a mesoscopic approach are able

to provide satisfactory predictions (see for instance [2] and [4]) despite the frequent use

of simplifying assumptions. Among these hypotheses usually postulated, one can cite the

omission of the elastic anisotropy and the Lin-Taylor homogenisation assumption which is

invalidated by the present study (see Fig.3).

To provide some answers to this question, the predictions of the fatigue criteria described

in section 3 are determined for each constitutive model used at the grain scale and are

compared to each other. The fatigue limits predicted by the criteria, when an isotropic

elastic model is used, will serve as references because in that particular case, the mesoscopic

stress tensor 〈σ〉g correspond to the macroscopic stress tensor Σ. Thus, for this constitutive

model, the predictions provided by the criteria will be similar to those given by the original

criteria ([1], [2] and [4]).

Besides, in this section, the experimental trends observed in multiaxial high cycle fatigue

for metallic materials are summarised. Then, the predictions obtained from the three fatigue

criteria are presented and compared to these trends. In order to make a reasonable com-

parison between the experimental and the predicted fatigue limits, the experimental data

selected here concern metallic materials which have a ratio s−1/t−1 close to the one of the

studied copper and the fatigue limits are normalised.

4.2.1. Combined tension and shear

According to the experimental data found in the literature, it appears that no clear trend

can be observed regarding the effect of the phase shift on the fatigue strength of various

metallic materials subjected to tensile-torsion loads. Indeed, for a given biaxiality ratio k12,

in some cases an increase in phase shift (for ϕ12 ∈ [0◦; 90◦]) has a beneficial influence on the

fatigue strength [16, 17] while in other cases, it can have a negligible [18] or even a detrimental

[17, 19] effect. These experimental results, in addition to the fatigue limits determined by

Mielke [20], are reported in Fig.7 which represents the normalised average fatigue limits for

combined tension and shear in cases where ϕ12 = 0◦, ϕ12 = 90◦ and k12 = 0.5.
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In this figure, the fatigue limits predicted by the three fatigue criteria, for the two elastic

constitutive models studied, are also presented. The fatigue limits determined when an

isotropic elastic model is assigned to the grains (Fig.7a) are not particularly surprising.

Indeed, thanks to a sufficiently large number of grains considered, the predictions provides

by the critical plane-based criterion and the integral criterion were found to be the same as

the ones obtained respectively from the Dang Van and the Papadopoulos criteria and the

fatigue limits provided by the probabilistic fatigue criterion are only slightly different from

those given by the Morel and Huyen criterion [4]. These differences are mainly due to the

change made on the initial criterion.

According to the critical plane-based criterion, an increase of the phase difference ϕ12 (for

0◦ to 90◦) leads to a beneficial effect on the fatigue strength while the integral criterion pre-

dicts that the phase shift does not affect the fatigue limit of the material loaded in combined

tension and shear. In the case of in-phase tension-shear, the probabilistic criterion gives

predictions similar to those of the integral criterion and slightly more optimistic than those

of the critical plane criterion. Besides, in cases of high phase differences (ϕ12 ∈ [45◦; 90◦]),

fatigue limits estimated by the probabilistic fatigue criterion lies between the ones predicted

by the Papadopoulos and Dang Van criteria. It is worth noting that the shape parameter m,

in the considered range of values, does not strongly affect the average fatigue limits predicted

by the probabilistic criterion. The maximum difference encountered, occuring for ϕ12 = 90◦

and k = 1, results in an increase of about 4% of the predicted fatigue limits for m ranging

from 20 to 5.

From the results presented in Fig.7a, it appears that the fatigue limits provided by all the

considered criteria are in good agreement with experimental data for in-phase tension and

shear fully reversed loadings. On the contrary, in the case of high phase shift, the critical

plane-based criterion mostly overestimates the fatigue strength while the integral criterion

generally provides conservative predictions. At last, the probabilistic criterion seems to be

a good alternative to the integral criterion only for materials showing a significant fatigue

strength improvement due to phase shift.

Comparing the results reported in Figs. 7a and 7b, it appears that the average fatigue

limits predicted by a given criterion with the cubic elastic model are surprisingly close to those

estimated by the same criterion with the isotropic elastic model. Indeed, when ϕ12 = 0◦, the
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maximum difference observed, relative to the case of the isotropic elasticity, is lower than 8%

for the critical plane criterion and 1% for the two other criteria. In the case where ϕ12 = 90◦,

differences between fatigue limits predicted for the two constitutive models are lower than

2% for the critical plane criterion, 1% for the integral criterion and 5% for the probabilistic

criterion regardless of the m value considered.

The fatigue limits have also been estimated by the criteria when crystal plasticity was used

in the FE models for some loading cases, namely (k12 = 0.5, ϕ12 = 0◦) and (k12 = 0.5, ϕ12 = 90◦).

These predictions are summarised in Fig.8 together with those determined in the case where

only cubic elasticity was assigned to the grains. It can be observed that the addition of

the crystal plasticity does not significantly affect the predictions whatever the criterion. In-

deed, differences between predictions are lower than 1% excepted for the critical plane-based

criterion where a difference of approximately 3% is observed when k12 = 0.5 and ϕ12 = 90◦.

Thus, despite the fact that the distribution of the mesoscopic mechanical quantities are

misestimated (especially concerning the normal stress acting on the slip planes) when the

hypothesis that grains have an isotropic elastic behaviour is made, the three studied criteria

provide almost identical predictions to those obtained from FE models using cubic elasticity

or combination of cubic elasticity and crystal plasticity, at least for the cases of combined

tension and shear.

4.2.2. Biaxial tension

In the case of biaxial tension, only a small number of experimental results has been

reported. In this context, the conclusions on possible experimental trends have to be taken

with caution. From the fatigue tests conducted by Rotvel [21] and Koutiri [5], whose results

are presented in Fig.9, it can be observed that if no phase shift is applied, the increase of

the biaxiality ratio (for k22 ∈ [0; 1]) has a negligible effect on the fatigue limit defined by

Σ11,a. In the case of a phase shift ϕ22 = 180◦, a decrease of the fatigue limit is observed for

high biaxiality ratio values (k22 = 0.8 and k22 = 0.83). This latter finding is not surprising

given that these loading cases are close to the pure shear stress state (i.e. k22 = 1.0 and

ϕ22 = 180◦) and that the crystallographic texture is isotropic.

The fatigue limits predicted by each criterion using isotropic elasticity and cubic elasticity

are shown respectively in Figs. 9a and 9b. The same remarks as in the previous subsection
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can be made about the concordance of the predictions obtained from the initial criteria

and from the criteria applied to the FE results in which isotropic elasticity is used. For this

constitutive model, it can be observed that the critical plane criterion predicts systematically

a detrimental effect on the fatigue strength when the biaxiality ratio k22 increases from 0 to

1, whatever the phase shift ϕ22 is. As for the two other criteria, when ϕ22 ≥ 90◦, a decrease

of the fatigue limit is also predicted for an increase of k22. However, in the case where

ϕ22 < 90◦ a slight improvement of the fatigue limit is first encountered with the increase of

the biaxiality ratio up to approximately 0.5 then a slight decrease is noted for k22 ranging

from 0.5 to 1. Moreover the shape parameter m, once again, does not affect significantly the

average fatigue limits predicted by the probabilistic criterion for the two considered values.

The maximum difference encountered does not exceed 3% for m ranging from 5 to 20.

According to the predictions obtained for ϕ22 = 0◦, it appears that the integral and

the probabilistic criteria are the most likely to account for the experimental trends while

the critical plane criterion provide conservative fatigue limits. Unfortunately, the lack of

experimental data, in the case of fully reversed biaxial tension, does not afford the possibility

to draw a definitive conclusion about the predictive accuracy of the criteria.

Unlike the case of combined tension and shear, the comparison between the predicted fa-

tigue limits illustrated in figures 9a and 9b reveals a noteworthy sensitivity of the predictions

provided by some criteria with respect to the constitutive model assigned to the grains, espe-

cially for in-phase loading cases. Indeed, the differences encountered between the predicted

fatigue limits obtained in the cases of isotropic elasticity and cubic elasticity can reach 15%

for the critical plane criterion over the whole range of biaxiality ratio and respectively 5%

and 10% for the probabilistic criterion for m = 5 and m = 20. Nevertheless, the integral

criterion remains unchanged when cubic elasticity replaces isotropic elasticity. Indeed, the

differences between the predictions provided by this criterion for the two constitutive models

never exceed 1%.

The fatigue limits have been determined by the criteria when crystal plasticity was used

in the FE models for some loading cases for which significant differences between the pre-

dictions obtained with the isotropic elasticity and the cubic elasticity were found, namely

(k22 = 0.5, ϕ22 = 0◦), (k22 = 1, ϕ22 = 0◦) and (k22 = 1, ϕ22 = 90◦). These predictions and

those determined in the case where only cubic elasticity was assigned to the grains are re-
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ported in Fig.10. Once again, it can be stated that the addition of the crystal plasticity

affects only slightly the predictions. Indeed, differences between predictions are lower than

1% for the integral criterion, 2% for the probabilistic criterion and 3% for the critical plane

criterion.

From these results, it can be observed that the integral criterion provides predictions

which are almost unaffected by the constitutive model used at the grain scale. This is due

to the fact this criterion used averaged mechanical quantities over the entire aggregate. On

the contrary, the critical plane criterion that uses the stress state of the most stressed slip

plane in the aggregate is the criterion whose predicted fatigue limits are the more affected by

the change of constitutive model. At last, the predictions given by the probabilistic criterion

are more or less sensitive to this change depending on the value of m. The higher the shape

parameter, the more affected are the predictions. This is due to the fact that the increase of

the shape parameter leads to a decrease of the variance of the Weibull distribution, thereby

emphasising the contribution of the most stressed grains on the failure probability of the

aggregate and making negligible the one of a larger number of grains. In other words, for

high m values, only one or a few grains contribute effectively to the failure, like in the case

of the critical plane criterion, whereas for low m values, all the grains in the aggregate are

taken into account to evaluate the risk of failure, like the integral criterion.

5. Conclusion

The cyclic mechanical responses of polycrystalline aggregates, obtained from finite ele-

ment simulations, have been analysed for various loading conditions. It was reminded that

the mesoscopic responses, in terms of stress or strain, are scattered and differ significantly

from the macroscopic response of the polycrystalline aggregate. Moreover, the anisotropy of

the grains’ behaviour leads to a multiaxial response even when an uniaxial loading is applied

to the polycrystal. Furthermore, the introduction of the crystal plasticity in the constitutive

model of the grains induced a non-proportionality between the components of the stress ten-

sor during the loading cycle. At last, the influence of each source of anisotropy (elastic and

plastic) on the distributions of shear and normal stresses have been discussed. It has been

highlighted that the cubic elasticity, unlike the crystal plasticity, significantly affects these

distributions for a wide variety of loading cases. Two factors may explain these results: the
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strong anisotropic elastic behaviour of the copper single crystal and the fact that the loading

amplitudes in high cycle fatigue leads to moderate plastic strains.

The predictions obtained from three different criteria using the results of the FE com-

putations are then studied. It appears that they are generally not very sensitive to the

constitutive model assigned to the grains, for the loading cases studied, despite remarkable

differences between the mesoscopic and macroscopic responses. The most notable differ-

ences are encountered for biaxial tension loading with the critical plane criterion and the

probabilistic criterion (when the shape parameter is high). It follows that if these criteria

provide good predictions with a complex modelling, they are able to satisfactorily estimate

the fatigue limits with a simple modelling. Moreover, it has been observed, from the com-

parison between experimental trends and numerical predictions, that the integral and the

probabilistic fatigue criteria reflect quite well the effects of biaxiality and phase shift on the

fatigue strength for the considered loading conditions. However, these conclusions should

be taken with caution. Indeed, some aspects have been omitted (for instance, the free sur-

face, microstructural heterogeneities) or simplified (the microstructures are modelled with

2-dimensional polycrystalline aggregates and a generalised plane strain hypothesis is used)

in the modelling and several loading conditions have not yet been studied. Besides, another

issue that has not been discussed here is the opportunity offered by the polycrystalline aggre-

gates simulations to study the microstructural heterogeneities (micro-notches, precipitates,

pores...) effect on the HCF behaviour which could provide deeper understanding of the

experimental trends.
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(a) (b)

Figure 1: Representation of some mechanical quantities and vectors in (a) a FCC unit cell

and (b) a slip plane.

Figure 2: Geometry and detailled view of the mesh of a periodic 2-dimensional polycrystalline

aggregate with 300 grains and in average 100 elements per grain.
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(a) Cubic elasticity

(b) Cubic elasticity and crystal plasticity

Figure 3: Comparison between the macroscopic and the mesoscopic stress-strain responses

of one polycrystalline aggregate loaded at the fatigue limit level in fully reversed tension and

in fully reversed shear for: (a) a cubic elastic model and (b) a cubic elastic and crystal plastic

model assigned to the grains.
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(a) Cubic elasticity (b) Cubic elasticity and crystal plasticity

Figure 4: Comparison between the macroscopic and the mesoscopic σ11-σ22 and σ11-σ33

responses of one polycrystalline aggregate loaded at the fatigue limit level in fully reversed

tension for: (a) a cubic elasticity model and (b) a cubic elasticity and crystal plasticity model

assigned to the grains.
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(a) Fully reversed tension

(b) Fully reversed shear

(c) Tension - shear (k12 = 0.5, ϕ12 = 0◦)

(d) Tension - shear (k12 = 0.5, ϕ12 = 90◦)

(e) Biaxial tension (k22 = 1, ϕ22 = 0◦)

Figure 5: Mechanical responses, in terms of τa-σn,a, of each slip planes obtained from the

FE simulations of polycrystalline aggregates for different loading cases.
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(a) Fully reversed tension

(b) Fully reversed shear

(c) Tension - shear (k12 = 0.5, ϕ12 = 0◦)

(d) Tension - shear (k12 = 0.5, ϕ12 = 90◦)

(e) Biaxial tension (k22 = 1, ϕ22 = 0◦)

Figure 6: Stereographic projection, in the plane of normal e3, of the unit vector normal to

the most critical slip plane of each grain and associated failure probability PFg.
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(a) Isotropic elasticity

(b) Cubic elasticity

Figure 7: Predictions of the fatigue criteria in combined tension and shear for each elastic

constitutive models and experimental fatigue limits of different metallic materials.
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Figure 8: Comparison between the predictions of the fatigue criteria in combined tension and

shear obtained with cubic elasticity and with crystal plasticity in addition to cubic elasticity.
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(a) Isotropic elasticity

(b) Cubic elasticity

Figure 9: Predictions of the fatigue criteria in biaxial tension for each elastic constitutive

models and experimental fatigue limits of different metallic materials.
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Figure 10: Comparison between the predictions of the fatigue criteria in biaxial tension

obtained with cubic elasticity and with crystal plasticity in addition to cubic elasticity.
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