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On compressibility assumptions in aeroacoustic integrals:
a numerical study within subsonic mixing layers
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Two assumptions commonly made in predictions based on Lighthill’s formalism are investigated:
a constant density in the quadrupole expression, and the evaluation of the source quantity from
incompressible simulations. Numerical predictions of the acoustic field are conducted in the case of
a subsonic spatially evolving two-dimensional mixing layer at Re = 400. Published results of the
direct noise computation (DNC) of the flow are use as reference and input for hybrid approaches
before the assumptions on density are progressively introduced. Divergence free velocity fields are
obtained from an incompressible simulation of the same flow case, exhibiting the same hydrodynamic
field as the DNC. Fair comparisons of the hybrid predictions with the reference acoustic field valid
both assumptions in the source region for the tested values of the Mach number. However, in the
observer region, the inclusion of flow effects in the Lighthill source term is not preserved, which is
illustrated through a comparison with the Kirchhoff wave-extrapolation formalism, and with the use
of a convected Green function in the integration process.

PACS numbers: 43.28.Ra, 43.20.Wd

I. INTRODUCTION

The overall problem area addressed here is that of es-
timating the noise radiated by unsteady flows. We aim
at improving the class of methods in two steps, usually
described as hybrid, which use experimentally or numeri-
cally generated flow data as an input for solutions of wave
propagation equations, in particular those solutions writ-
ten with an integral formalism such as Lighthill’s analogy
and the Kirchhoff wave extrapolation method. Because
the two-step approach allows cost reduction in the es-
timation of the radiated field, hybrid methods are fre-
quently chosen for the prediction of flow generated noise
in many applications such as jet, high-lift devices and
landing-gear on planes, car mirror and window vortex,
fans, propellers, etc. That prediction consists in extract-
ing among the unsteady motions in the flow those able to
excite outward propagating sound waves. Consequently,
once it is obtained, the analysis of the acoustic field and
its correlation to the flow events can be conducted in or-
der to identify the noisy vortical motion. In that sense,
hybrid methods may also help the physical understand-
ing of aeroacoustic issues.

Any analogy approach relies on the explicit knowl-
edge of the source quantity that excites the wave opera-
tor. Since Lighthill’s initial derivation1 of an inhomoge-
neous wave equation from the equations of motion, with
a source term defined by the flow quantities, a constant
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research effort has been devoted to improve its potential,
from theoretical works on the source term and surround-
ing flow effect modelling, to numerical works increasing
quickness and accuracy of the solution. In particular,
Crow2 investigated analytically the distinct role of the
compressibility in the source term and in the wave oper-
ator. By the method of matched asymptotic expansion,
he concluded that, for low Mach number and compact
source region, Lighthill’s solution for the density is ade-
quate if the latter is assumed constant in the quadrupole.

Because Lighthill’s equation is an exact rearrangement
of the flow equations, it contains flow effects on acoustics
such as wave convection and refraction. The left-hand
side being the wave operator without flow, those effects
are included in the source side. Consequently, the source
term thus obtained is not the true3 acoustic source, be-
cause it accounts for other phenomena in addition to
acoustic energy production. Questing for such a reduced
source expression, Lilley4 and Ribner5 derived an analogy
equation for jet noise modelling, through the specification
of unidirectional, transversely sheared, mean flow in the
Lighthill source term, so that its solution displays sound
refraction by velocity gradients. This was numerically
applied to a mixing layer by Colonius et al6. Recently,
Suzuki & Lele7 derived approximate Green functions for
a source in a mixing layer. It should be the appropriate
propagator to associate, in the convolution integral, with
a source expression that would be purified from convec-
tion and refraction effects.

The full knowledge of the source term with fine
space and time resolutions brought by the numerical
simulations allows to check the validity of assumptions
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made in theoretical or experimental studies. Moreover,
building reduced-order models of the flow may reduce
the computational cost of closed-loop control systems.
In that context, Samanta et al8 studied the sensitivity
of several analogy formulations to errors intentionnally
introduced into the source quantity, namely removing
the highest modes from the decomposition or perturbat-
ing the most energetic ones.

The present contribution builds on these efforts to
characterise the content of the Lighthill source term, in
order to provide background for current source term eval-
uation in analogies. The assumptions regarding density
are investigated numerically, through the association of a
constant density with compressible velocity fields, as well
as the evaluation of the quadrupoles from fully incom-
pressible data. We also analyse how those assumptions
are sensitive to Mach number variations and how they af-
fect the inclusion of flow effects on acoustics in Lighthill’s
formalism. For the latter, the convected wave equation
and the Kirchhoff formalism are used as reference points.
Numerical evaluations of aeroacoustic integrals are

thus conducted in the frequency domain in the case of a
subsonic spatially evolving two-dimensional mixing layer
at Re = 400. Such flow is free from surface effect such as
reflexion or diffraction, thus focusing our analysis on the
original source term. Moreover, a two-dimensional con-
figuration allows the integration of many source quanti-
ties over many volume extents with an affordable compu-
tational effort. The integrands are read from databases
generated by the numerical solution of the Navier-Stokes
equations. A direct noise computation (DNC) provides
the compressible velocity, pressure and density fields, and
the reference result for the acoustic field at the same
time. In addition, an incompressible simulation provides
the source quantity using divergence free velocity field.
To the best of the authors’ knowledge, the resolution of
Lighthill’s equation with source data from a DNC and
an incompressible simulation of the same flow was not
conducted before.
The paper is organised as follows. In section II,

Lighthill’s and Kirchhoff’s formalisms are recalled in the
Fourier space, for either a convected wave equation or
a propagation in a medium at rest. In section III, the
mixing-layer parameters are presented along with the nu-
merical methods applied for the flow simulations and in-
tegral evaluations. The coherence between the several
prediction strategies is checked in section IV, and the
inclusion of the convection effect in the Lighthill source
term is illustrated. The influence of compressibility in
the evaluation of the quadrupoles is then adressed in sec-
tion V. Eventually, the main results of the paper are
summarised and further discussed in section VI.

II. MATHEMATICAL FORMULATION

A. Kirchhoff’s formalism

For a moving medium, the acoustic pressure p′ at any
time t and location x in a volume V is related to the

distribution Q of sources within V and the distribution
of the pressure and its derivative on the boundary of
V , noted Σ, by the generalised Green formula9. For a
2-D configuration, with U∞ = (U∞, 0) in the observer
domain, it can be written as

p′(x, t) =

∫ ∞

−∞

∫∫
V

Q(y, τ)G̃(x, t|y, τ)dydτ

+

∫ ∞

−∞

∫
Σ

{
G̃
∂p′

∂yi
− p′

∂G̃

∂yi

}
nidΣ(y)dτ

+
U∞

c20

∫ ∞

−∞

∫
Σ

{
p′
D∞G̃

Dτ
− G̃

D∞p′

Dτ

}
n1dΣ(y)dτ (1)

where n = (n1, n2) is the unit normal vector pointing
inward the observer domain V , c0 is the sound speed of
the ambient fluid, D∞/Dt = ∂/∂t + U∞

i ∂/∂xi, and G̃
is the time-domain Green function solution to the uni-
formly moving medium wave equation. By taking the
following Fourier transform:

F [f(x, t)] = f(x, ω) =

∫ ∞

−∞
f(x, t)e−iωtdt (2)

where ω is the angular frequency and i2 = −1, formula
(1) reduces to the form

p′(x, ω) =

∫∫
V

Q(y, ω)G(x|y, ω)dy

+

∫
Σ

{
G(x|y, ω)∂p

′(y, ω)

∂yi

−p′(y, ω)
∂G(x|y, ω)

∂yi

}
(ni −M2

∞n1)dΣ(y)

+
2iωM∞

c0

∫
Σ

p′(y, ω)G(x|y, ω)dΣ(y) (3)

where the time factor exp(−iωt) has been omitted. The
Green function for the propagation in a uniform flow is
given in the 2-D frequency domain by10–12:

Gc(x|y, ω) =
i

4β
exp

(
iM∞kr1

β2

)
H

(2)
0

(
krβ
β2

)
(4)

where y = (y1, y2) and x = (x1, x2) are the source
and observer locations respectively, and ri = xi − yi.

H
(m)
ν is the Hankel function of order ν and kind m,

k = ω/c0, β2 = 1 − M2
∞ is the Prandtl-Glauert fac-

tor, and rβ =
√
(x1 − y1)2 + β2(x2 − y2)2. The Green

function for the uniform medium at rest, and the related
pressure formula, are recovered when M∞ is set to 0.

In our configuration sketched in figure 1, the extrap-
olation of the acoustic waves from the control surface
Σ = (y2 = ys2) ∪ (y2 = −ys2) is obtained by the following
formula:

p′(x, ω) =
n2i

4β

∫
Σ

[
∂p′

∂y2
H

(2)
0

(
krβ
β2

)
−p′

krβ
β2

H
(2)
1

(
krβ
β2

)]
exp

(
iM∞kr1

β2

)
dy1 (5)

Kirchhoff integral (5) theoretically predicts the acoustic
pressure field provided that no source phenomenon is left
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FIG. 1. Configuration and notations for the application of
aeroacoustic integrals to the mixing layer flow.

inside V , that the pressure distribution on Σ contains the
acoustic information generated by the sources outside V ,
and convection is the only flow effect acting inside V .

B. Lighthill’s formalism

Lighthill’s equation combines the mass and momentum
conservation equation to form an inhomogeneous wave
equation for the density. Consequently, for an observer
located in the acoustic (isentropic) region, the solution
for the 2-D acoustic pressure field is given, in the fre-
quency domain, by:

p′(x, ω) =
i

4

∫∫
D

S(y, ω)H
(2)
0 (kr) dy (6)

where D is the source region and r = ||x − y||, for a
propagation in an unbounded medium at rest. In (6), S
is the Lighthill source term, defined by:

S =
−∂2Tij

∂yi∂yj
=

−∂2

∂yi∂yj

[
ρuiuj + (p′ − c20ρ

′)δij + τij
]
(7)

where ui are the components of the velocity field u =
(u, v), ρ′ is the density fluctuation from its value in the
medium at rest and τij stands for the components of the
viscous stress tensor τ .
Expression (6) can be transformed taking the space

derivatives over the Green function instead of the source
term, leading to:

p′(x, ω) =
−i

4

∫∫
D

[
k2

rirj
r2

H
(2)
2 (kr)

−k
δij

r
H

(2)
1 (kr)

]
Tij(y, ω) dy (8)

In the case of a propagation in a uniform flow at U∞ =
(U∞

1 , U∞
2 ), the derivation of a convected wave equation11

yields:

p′(x, ω) =

∫∫
D

Sc(y, ω)Gc(x|y, ω) dy (9)

where

Sc =
∂2T c

ij

∂yi∂yj
(10)

=
∂2
[
ρ(ui − U∞

i )(uj − U∞
j ) + (p′ − c20ρ

′)δij + τij
]

∂yi∂yj

Note that it is not harmless for the physical interpreta-
tion that the source expression depends on the propaga-
tion medium governing equation. It is indeed an intrinsic
consequence of the analogy formalism, as explained by
several authors3,8,13.

Similarly to the non-convected case, the space deriva-
tives can be analytically transferred to the Green func-
tion instead of numerically estimated on the source term.
The second-order derivatives of the convected Green
function (4) are given in11.

III. FLOW CONFIGURATION AND NUMERICAL TOOLS

A. Reference flow and source data

As a reference, the acoustic field radiated by a spatially
evolving subsonic mixing layer is obtained by directly
solving the compressible Navier-Stokes equations on a
spatial domain containing both the mixing region and
the acoustic far field. The flow configuration and solver
are the same as in ref.14.

The frame origin is at the inflow on the centerline, and
the mean inflow velocity profile, illustrated in figure 1,
has a hyperbolic tangent shape

ū(0, y2) = Uc +
∆U

2
tanh

(
2y2
δω

)
(11)

where Uc =
U1+U2

2 and ∆U = U1−U2, noting U1 and U2

the high- and low-speed flow respectively. The vorticity
thickness, which varies in the streamwise direction, is
defined as

δω(y1) =
∆U

max
y2

(
∂ū

∂y2

) (12)

Its value at the inflow is noted δω and is taken as the
reference length throughout the paper.

Two subsonic isothermal cases with U1 = 2U2 are
considered here, with different value of M = ∆U/c0:
0.25 and 0.40. The Reynolds number is defined by
Re = ρ0δω∆U/µ, where ρ0 is the density of the sur-
rounding fluid (set to unity in those adimensionalized
equations) and µ is the dynamic viscosity, and its value
is fixed at Re = 400. In order to obtain a periodic and
spatially fixed vortex pairing phenomenon, the flow is
pertubed just downstream of the inlet, at the frequency
f0 = 0.132Uc/(δω,f ) (where δω,f = 2δω is the local vor-
ticity thickness at x ≈ 80), and its first subharmonic
f0/2, using a divergence-free forcing function with low
amplitude, as presented in ref.14.

The space derivatives are evaluated using sixth-order
compact finite difference schemes, while a third-order
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Runge-Kutta scheme provides the time marching. Fi-
nally, the boundary conditions are written using a char-
acteristic formulation, and terms are set inflow and out-
flow. The computational domain lays over 800δω in both
directions. The grid size is (2071 × 785). It is stretched
from the centerline in y2 direction. In y1 direction, it is
almost constant below 400δω, and streched after, com-
bined with a dissipation function to create the sponge
zone. The flow solver and numerical parameters are de-
scribed in details in ref.14.

These simulations provide both the reference acoustic
field and the input data for the Kirchhoff solution (5)
and the computation of the Lighthill source quantities
(7), (10), (15) and (16).

B. Hybrid method implementations

Thanks to the periodic nature of the flow, the com-
putation of the aeroacoustic integrals can be conducted
in the frequency domain thus avoiding the integration
over the whole history of the time series that is implied
by 2D Green function in the time domain . Standard
Fast Fourrier Transform routines are applied to the
source time series. The latter are recorded about 500
times a period from the direct computation. The
Hankel functions are computed using Amos library15. A
mid-panel quadrature is implemented for the integra-
tion of the Lighthill source term, while the Kirchhoff
surface integral are evaluated with a trapezoidal rule.
Streamwise, the integration domain extends over the
whole DNC domain. The observer grid covers the DNC
domain and is uniform with 150 points in each direction,
leading to ∆xf0/c0 ≈ 8. For the formulations based on
a convected wave equation, one sets U∞ = (U1, 0) and
M∞ = U1/c0 for the high-speed flow, and U∞ = (U2, 0)
and M∞ = U2/c0 for the low-speed flow.

The truncation of the source domain, typically at the
outflow, can be treated either by a dissipation region, a
spatial weighting, or the addition of a residual term based
on the Reynolds transport theorem16 accounting for the
missed region. Here, the two first techniques are used.
Indeed, the dissipation function used in the direct com-
putation prevents the paired vortices to generate spurious
acoustic waves as they pass outflow, but their damping
is not sufficient to avoid a strong contribution to the in-
tegral. Thus a weighting function based on a Tukey win-
dowing is applied to the source term (7). With respect
to the spatial top-hat window which is de facto applied
when integrating (6) over the computational domain,
such weighting function reduces the spectral leakage17,
that is spatial spurious noise directly translated into tem-
poral noise through the dispersion relation. The source
term expression in the convected form (10) appeared
more sensitive to truncation effects, that is why a weight-
ing of the following Gaussian form is applied:

W (y1) = exp

(
−
[

y1 − y01
σ(yL1 − y01)

]4)
(13)

where y01 is the position before which W is set to 1., yL1
and σ being adjusted by the user for a given computa-
tional configuration in order that no radiation is emit-
ted from the outflow. Those weighting functions have a
streamwise extent from 500δω to the outflow boundary.

The numerical singularity in the Hankel function, ap-
pearing when the observer is located inside the integra-
tion domain, can be treated by removing a small disk
around it when computing the integral18, or by setting
the observer grid in a staggered way with respect to the
source grid. That latter solution suits better when the
spatial derivatives are evaluated on the Green function
itself.

IV. COHERENCE OF THE PREDICTION STRATEGIES

A. Validation of the hybrid methods

The present bi-harmonically excited mixing layer ex-
periences a periodic vortex-pairing phenomenon, which
occurs around y1 = 200δω, and which generates acous-
tic waves at that pairing frequency. The resulting
instantaneous acoustic pressure field, obtained by the
DNC, is plotted in figure 2a). Both Kirchhoff’s (5) and
Lighthill’s (9) formalisms, based on a convected Green’s
function and fed by source data from the DNC, accu-
rately predict that acoustic field, as visible in figure 2b)
and 2c). The comparison is fair with the field directly
computed solving the compressible Navier-Stokes equa-
tions plotted in figure 2a). In particular, the wavefront
pattern, with a maximum radiation around θ = 50o on
both layer sides, is well recovered (here and henceforth,
θ is the angle counted counterclockwise from the down-
stream direction and centered on the pairing location).

In figure 2d), the acoustic field is plotted resulting from
the numerical evaluation of Lighthill’s solution (6) with
the Green function for an observer medium at rest inte-
grated over the full DNC domain. The fair comparaison
to the field directly computed illustrates well that the
Lighthill analogy accounts for the convection effects, yet
this is the case here because the source data come from
the DNC itself and the integration domain extends over
the whole observer region. The integration of a source
term estimated from a compressible solver, over a do-
main including the observer, is then found equivalent to
the application of a convected Green function to a lo-
calised source region, as firstly described by Goldstein9

and numerically illustrated by Bogey et al19. As shown
in section V, that does not hold any more when a con-
stant density is assumed in the quadrupole.

The mean square value of the fluctuating pressure is
plotted in figure 3a) on a circle at r = 150δω away from
the apparent source location (x1 = 200δω, x2 = 0). This
quantity approaches the acoustic intensity in the far field,
and provides here a more quantitative comparison be-
tween the four methods. They agree well for all radi-
ation angles. In particular, the level fall for increasing
|θ| is perfectly reproduced by the hybrid methods. For
|θ| higher than 90o, some directivity lobes are visible, at
very low levels. The method using the integration of the

Compressibility assumptions in aeroacoustic integrals 4



FIG. 2. Instantaneous acoustic pressure field of the mixing layer, predicted by a) DNC b) Lighthill’s analogy with convected
Green’s function (9), c) the convected Kirchhoff method, and d) Lighthill’s analogy (6) with the full source domain. Levels are
the same for each field, linearly increasing from −4.0× 10−5c20 (black) to 4.0× 10−5c20 (white).
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FIG. 3. a) Acoustic intensity at r = 150δω predicted using 4 approaches. b) Influence of the source domain extent and control
surface location.

source term over the whole domain is the most affected
by this artefact, especially on the low-speed side.

In figures 2 and 3a), the control surface used in the
Kirchhoff method is defined by ys2 = 40δω, whereas the
convected Lighthill source term is integrated over the vol-
ume inside this surface. How the predicted acoustic field
depends on the control surface position and on the source
extent is analysed through figure 3b), where the error
with respect to the DNC is plotted, being defined as:

E1 =
||IHybrid(x)− IDNC(x)||

||IDNC(x)||
(14)

where I is the acoustic intensity and ||f(x)|| is the mean
value of |f | over a set of observer points. Here, that set
is defined as the line x2 = 300δω for 100 ≤ x1/δω ≤ 500.
For both hybrid methods, the error converges towards
a constant value of about 5% for ys2 > 40δω, but the
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FIG. 4. Hybrid computations with the non-convected Green function. a) Lighthill’s analogy (6) integrated over DSOURCE :
|y2/δω| < 40; b) Kirchhoff’s method (5) with M∞ = 0 for ys

2 = 40δω; c) Lighthill’s analogy (6) integrated over DOBS :
40 < |y2/δω| < 400; and d) sum of b) and c). The sum of a) and c) is identical as figure 2d). Levels are the same for each field,
linearly increasing from −4.0× 10−5c20 (black) to 4.0× 10−5c20 (white).

behavior is different for lower values. The convected
Lighthill computation reaches the steady error level from
ys2 ≈ 10δω after a regular decrease from unity. For the
Kirchhoff computation part, the error is much higher
when the control surface is located very close to the layer,
and it catches the Lighthill curve only for ys2 & 30δω.
From this result, the conclusion is that the acoustic

source mechanism is confined in |y2| ≤ 10δω, and that
below y2 ≈ 30δω, the fluctuations associated with the
vortex dynamics dominate in the pressure field and pre-
vent the Kirchhoff integral from a correct extrapolation
of the acoustic waves.

B. Uniform flow effect

A decomposition of the integration domain D is now
introduced, in order to analyse convection effect inclusion
in the Lighthill source term from a spatial point of view.
Using the notations presented in figure 1, the region de-
fined by |y2| < yS2 is notedDSOURCE and hereafter called
‘the source region’, while its complement with respect to
D is notedDOBS and called ‘the observation region’. Hy-
brid computations are then performed using the Green
function for a propagation medium at rest, that is us-
ing (5) with M∞ = 0 for the Kirchhoff method, and (6)
with an integration over DSOURCE for the Lighthill anal-
ogy.
The resulting instantaneous acoustic pressure fields for

ys2 = 40δω, plotted in figure 4a) and 4b), are very sim-
ilar between the two methods, but the prediction does
not agree with the DNC reference shown in figure 2a).
However, if the contribution of the, still not convected,

Lighthill source term with an integration over DOBS ,
shown in figure 4c), is added to both, the correct pattern
is recovered in figure 4d) for the Kirchhoff method, and
is the same as in figure 2d) for the Lighthill analogy. The
lobes for |θ| ≥ 90o are again visible in figure 4d), suggest-
ing they are an effect from the acoustic/propagation do-
main (ie: from the boundary conditions in the DNC), and
not from the source mechanism, otherwise they should
have been present in the convected Kirchhoff prediction
in figure 2c).

The convection effect can thus be provided to the wave
extrapolation from a Kirchhoff surface by the integration
of the Lighthill source term over the observer domain,
which plays here exactly the same role as the convected
Green function, that is, schematically:∫

|y2|=ys
2

{
Gc

∂p′

∂n
− p′

∂Gc

∂n

}
dy1 ≈∫

|y2|=ys
2

{
G
∂p′

∂n
− p′

∂G

∂n

}
dy1 +

∫∫
|y2|>ys

2

S ·G dy

Note that the Kirchhoff formalism leads to the same flow
quantity in the integrand, namely the pressure and its
normal derivative to the control surface, for both the
convected and static medium wave equations, unlike the
Lighthill formalism, for which the source term expres-
sion is dependent on the specific choice of the propa-
gation operator3. The fully compressible solution was
needed for that illustration, which may not improve the
efficiency of hybrid methods, though it confirms the ro-
bustness of the interpretation of Lighthill’s equation as an
implicit equation for (aero)acoustic propagation within a
uniformly moving flow. Moreover it is of theoretical in-
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terest that, within the integration process, the convected
action of the Ligthill source term is spatially limited to
the observer region (provided that the Kirchhoff surface
accounts for the whole source process).
Now that the hybrid approaches have been validated

when the source quantity is evaluated from the DNC,
whether the density variations should be included in the
Lighthill source term to ensure a correct prediction is
investigated in the following.

V. DENSITY VARIATIONS IN THE QUADRUPOLES

Attempting to separate a purely radiating part from
flow induced effects, Cabana et al.13 suggested a decom-
position of the Lighthill source term, featuring density
gradient, dilatation and vorticity from the double diver-
gence. Subterms including the two formers were iden-
tified as a compressible reaction to subterms identified
as driving terms based on vorticity and kinetic energy.
Margnat & Fortuné20 applied that decomposition to the
spatially evolving mixing-layer and noticed the impor-
tance of the dilatation transport term to account for the
mean flow effect. Moreover, applying the Reynolds de-
composition to density and velocity components of the
Lighthill tensor, Moser et al.14 reported a significant ef-
fect of the term made up with density fluctuations and
mean streamwise velocity when the Mach number is in-
creased. Those studies pose the question of the preserva-
tion of the source and propagation mechanisms included
in the Lighthill source term when the density field is sub-
mitted to assumptions, as it may occur in both theoreti-
cal works and hybrid predictions.

A. Two assumptions about compressibility

The analogy approach assumes that the flow drives
the acoustics with no feedback from the latter, so that
Lighthill’s equation can be solved explicitely once the
source distribution is known. This is theoretically valid
for weakly compressible flows, say, low Mach numbers.
In the absence of heating, once a low Mach number is
assumed, it is tempting to assume a constant density in
the evaluation of the source term, thus replacing ρ by ρ0
in the source expression, that is:

S ≈ ρ0
∂2 uiuj

∂yi ∂yj
= S0 (15)

Similarly, we define

Sc,0 = ρ0
∂2

∂yi∂yj

[
(ui − U∞

i )(uj − U∞
j )
]

(16)

This assumption is usually made when the source
quantity is evaluated from experimental data in flows
without significant density variations (subsonic and
isothermal flows): the compressible content of the ve-
locity field is preserved, while density gradients are ne-
glected. It is also often assumed in theoretical works, e.
g.21.

FIG. 5. Hybrid predictions based on Lighthill’s analogy with
a constant density in source subterms. The acoustic pressure
field radiated by a) Sc,0 with the convected Green function; b)
S0 integrated over the full DNC domain. Levels are the same
for each field, linearly increasing from −4.0× 10−5c20 (black)
to 4.0× 10−5c20 (white). DSOURCE and DOBS are defined as
inside and outside |ys

2| = 40δω respectively.

For the present mixing layer, figure 5a) shows that
neglecting density variations does not alter the acous-
tic prediction using Lighthill’s analogy in the convected
form (10). However, for the form (7) that includes the
convection effect in the source term, it does, as visible in
figure 5b), yielding an incorrect wave pattern.

Note that in acoustic motions, the fluctuating activity
involves the pressure and the velocity together with the
density, meaning that a constant density assumption will
not remove the acoustic part of the Lighthill source term
contained in the velocity field. An incompressible simu-
lation, however, will lead to a source quantity evaluated
with a divergence-free velocity field, that is:

Sc ≈ ρ0
∂2

∂yi∂yj

[
(ûi − U∞

i )(ûj − U∞
j )
]
= Ŝc,0 (17)

where ∇ · û = 0. Alternately, Ŝ0 = ρ0
∂2ûiûj

∂yi∂yj
. Such

assumption on the source term, which is common in the
use of hybrid methods, is investigated in details in the
following subsections.

B. Compressible and incompressible near-fields

For the purpose of evaluating (9) under assumption
(17), an incompressible simulation of the mixing layer at
the same Reynolds number is conducted. The incom-
pressible flow solver is that presented in22. The pertur-
bation of the inflow profile (11) is only applied to the

Compressibility assumptions in aeroacoustic integrals 7



FIG. 6. Vorticity snapshots for DNC’s at M = 0.40 (top) and M = 0.25 (middle) and for the incompressible simulation
(bottom). Levels are from −0.8U2/δω (black) to 0.0 (white).

transverse velocity component. The perturbation ampli-
tude at f0 is 0.0027U2, twice that of f0/2, while the phase
between the two frequencies is 0.4π. These settings are
chosen in order to obtain the same longitudinal evolution
as obtained in the compressible simulations. The com-
putational domain is limited to 100δω on each side of the
mixing layer since the acoustic field can not be simulated.
The dynamic viscosity is linearly increased on the second
half of the computational domain, providing a dissipation
of paired vortices before the outflow, in order to prepare
the treatment of the truncation in the hybrid acoustic
prediction.
The resulting vorticity field is compared in figure 6

to that from the DNC at different Mach numbers. As
shown by Moser et al14 there are almost no observable
differences between the vorticity field of the simulation
at M = 0.25 and that of the simulation at M = 0.40. No
more differences appear when the comparison includes
the incompressible simulation. In the following, the ve-
locity and pressure statistics in the mixing region are
quantitatively compared between the incompressible sim-
ulation and the two compressible cases. The Reynolds
decomposition is used noting f = f̄ + f ′ where f̄ is the
mean value of f over a pairing period.
The spreading of the mixing layer is characterised with

the help of the streamwise evolution of a thickness. In
addition to the vorticity thickness (12), two other defi-
nitions are used. How far the constant velocity profiles
must be moved to deliver the same mass flow leads to the
displacement thickness:

δ∗(y1) =

∫ 0

−∞

(
ū

U2
− 1

)
dy2 +

∫ +∞

0

(
1− ū

U1

)
dy2

(18)
Finally, the summation of the half thickness of each
stream yields a third definition:

δ1/2(y1) = δ1(y1) + δ2(y1) (19)

where δ1 and δ2 are defined by ū (y1, δ1) = U1 − ∆U/4
and ū (y1, δ2) = U2 +∆U/4, respectively.

The evolutions of the three thicknesses, of the stream-
wise and transverse velocity RMS fluctuations and of
the instantaneous pressure fluctuation are plotted along
the mixing-layer axis in figure 7. All the quantities show
excellent agreement between the three simulations. In
particular, the saturation of the first unstable mode oc-
curs at the same position. The vortex pairing causes a
global maximum of the thicknesses and the velocity fluc-
tuations, and a second saturation for the pressure fluc-
tuation. The fluctuations from the incompressible sim-
ulation have a slower amplitude decrease at the end of
the plotted domain, likely because the dissipation region
is not designed in the same way. The vorticity thick-
ness exhibits spurious local variations dowstream of the
pairing region. Indeed, because it is defined using the
maximum slope of the mean velocity profile, its compu-
tation may be affected by the presence of more than one
slope maximum, which happens after the pairing.

Concerning the transverse decays of fluctuations, it is
shown through figure 8 that for |y2| < 25δω, the fluctu-
ations of both velocity components and of the pressure,
once normalized by the low-speed flow velocity, have ex-
actly the same level for the three simulations. That re-
gion may then be referred to as hydrodynamic. Above
|y2| = 25δω, the fluctuations from the incompressible sim-
ulation go on decaying exponentially, while the acoustic
fluctuations start to be dominant in the compressible sim-
ulations. The latter depend on the Mach number, since
they scale with M7/2 in 2D as observed in ref.14.

At this point, it is clear from figures 6, 7, and 8, that
the hydrodynamic part of the flow is the same between
both compressible simulations and the incompressible
one. On that basis, the assumption of an incompressible
velocity field can be tested in the Lighthill prediction.

Compressibility assumptions in aeroacoustic integrals 8
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C. Results for the convected Lighthill predictions

In figure 9, the directivity of the acoustic intensity at
r = 150δω obtained using either Sc,0 or Ŝc,0 is compared
to the convected Lighthill computation using the fully
compressible source term Sc. The DNC result is shown
too, for reference. Three extents of the source region are
considered, in order to visualise any phenomenon that
could be missed where the hydrodynamic and acoustic
parts coexist. A first worthnoting result appears through
the intensity fall for |θ| > 50o, which is well captured
by all the Lighthill predictions. Below these angles, the
two sides of the mixing layer do not exhibit the same
trends. On the high-speed side, the modelling of the
source term does not significantly affect the prediction,
even for the smallest source extent. The incompressible
source term tends to yield a slight overprediction at small
|θ|, however. On the low-speed side, a strong overpredic-
tion at aft angles is observed for the three hybrid compu-
tations when the source region is limited to |y2| ≤ 20δω.
For larger source extents, the constant density modelling
yields nearly the same result as the fully compressible
source term, while the incompressible assumption still

leads to an overprediction at small |θ|, though reduced.

That influence of the source extent suggests a weakly
compressible phenomenon in the near-field, which affects
the acoustic radiation while being accounted for by the
Lighthill source term if evaluated with a compressible
velocity field. Regarding this, the pressure fluctuation
near-field is plotted in figure 10 for both flow simulations.
The DNC makes visible a pattern of two lines of spots
where the fluctuation level is strongly lower than around,
like sinks, downstream after the pairing and around y2 =
±30δω. The incompressible flow simulation returns only
one such sink, in the vicinity of the pairing. Moreover,
an asymmetry between the two streams is noticed, the
high-speed flow exhibiting more similarities between the
two simulations. Such near-fields may influence strongly
the propagation at small angles (for which acoustic rays
stay longer in the perturbed region), what could explain
why any of the convected Lighthill computations miss
the acoustic level there when the source domain do not
include it, and why the incompressible source modelling
misses this in the low-speed region even for a larger source
domain.

Compressibility assumptions in aeroacoustic integrals 9
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D. Increasing the Mach number

As investigated by Moser et al14, increasing the Mach
number of mixing layers with U1 = 2U2 leads to a re-
inforcement of the directivity peak around θ = 50o es-
pecially for the radiation towards the high-speed flow.
This is illustrated in figure 11a) and figure 11c) with
the instantaneous acoustic pressure field as given by the
DNC for M = 0.25 and M = 0.4 respectively. That
reinforcement is perfectly captured by the incompress-

ible source term modelling, as qualitatively visible in fig-
ure 11b) and figure 11d), and quantitavely confirmed by
the intensity plots at r = 150δω in figure 12 showing well
the intensity fall after θ ≈ 50o. In spite of the afore-
mentioned flaw at aft angles, such a successful associa-
tion of the incompressible source modelling with the con-
vected Green function, even for the highly subsonic case
at (M1 = 0.8, M2 = 0.4), is worth to notice.

Furthermore, it can be deduced that the effect of the
Mach number on the directivity is brought by the acous-
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tic wave convection only, because the three vortical fields
do not show any significant difference while the convolu-
tion to the convected Green function yields that directiv-
ity evolution. This is consistent with Ffowcs Williams’
theoretical work23, according to which there may be no
refraction effect of shear at the interface between two uni-
form flows of different speed and density, in the limit of
a small wavelength with respect to the transverse extent
of the flow and large with respect to the interface thick-
ness. The latter conditions are satisfied in the present
mixing layers, where the wavelength is about 50 − 80δω
and the transverse extent is indeed infinite due to the
boundary conditions (in any case, the computational do-
main is 400δω on each side of the mixing-layer).

VI. CONCLUDING REMARKS

Based on several expressions of the source term, com-
prehensive hybrid predictions were carried out in order
to bring facts about which content of the Lighthill source
quantity should be taken into account, regarding the in-
clusion of density fluctuations and the flow effects on
acoustics. The mixing-layer flow case was selected in or-
der to focus on free shear flows while avoiding wall effects.
This apparently simple 2D case still requires careful nu-
merical implemention. Instantaneous pressure fields were
preferred to point spectra in order to visualise wavefront
patterns.
Strong background is provided about the modelling of

the quadrupole term, the principal conclusions being:

• The constant density assumption is numerically
validated.

• The use of incompressible velocity fields in Lighthill
source term is numerically validated, except for the
radiation at low angles.

• The validity of both assumptions is limited, how-
ever, to the source region, because they cancel out
the inclusion of convection effects in the Lighthill
source term. Those effects are correctly predicted
when the source quantity is fully compressible (e. g.
from DNC) and when a convected Green function
is associated to either constant density or incom-
pressible quadrupoles.

The two following peripheral points are also empha-
sized:

• While the hydrodynamic pressure field from the
incompressible simulation matches perfectly with
those from the DNC, it yields an incorrect acoustic
prediction when put into the Kirchhoff formalism.
This is an expected result when the control surface
is far from the vortical region, but it shows that
the pressure field generated by the hydrodynamic
waves is not appropriate as such to model the aeroa-
coustic excitation by the (2D, low-Re) mixing-layer.

• Finally, because the reinforcement of the directivity
around |θ| ≈ 50o due to the Mach number increase
is well captured with incompressible sources and
a convected Green function, it is concluded that
such effect of the Mach number is not refraction in
the sheared region but convection in the observer
region.
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