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Abstract: This work deals with the problem of the optimum 

design of a sandwich structure composed of two laminated 

skins and a honeycomb core. The goal is to propose a 

numerical optimisation procedure that does not make any 

simplifying hypothesis in order to obtain a true global optimal 

solution for the considered problem. In order to face the design 

of the sandwich structure at both meso and macro scales, we 

use a two-level optimisation strategy. At the first level, we 

determine the optimum geometry of the unit cell together with 

the material and geometric parameters of the laminated skins, 

while at the second level we determine the optimal skins lay-up 

giving the geometrical and material parameters issued from the 

first level. We will illustrate the application of our strategy to 

the least-weight design of a sandwich plate submitted to 

several constraints: on the first buckling load, on the positive-

definiteness of the stiffness tensor of the core, on the ratio 

between skins and core thickness and on the admissible moduli 

for the laminated skins.  

Key words: Honeycomb, homogenisation, optimisation, 

sandwich panels, genetic algorithm. 

1- Introduction 

One of the most important challenges for automotive, naval 

and aerospace industries is the reduction of the weight of 

structures. Due to their high stiffness-to-weight ratio, sandwich 

structures are widely used in several fields: aviation, 

automotive, naval, construction, industry, and so on. Their 

application, in fact, ranges from the most performing structures 

such as aircraft wings, helicopters rotor blades, racing yachts 

keels to home furnishings. 

The main characteristic of a sandwich structure concerns the 

presence of a low-density cellular solid, i.e. the core, between 

two stiffer thin plates, that increases the geometric moment of 

inertia of the plate with a few increment of weight. We can 

identify, in addition, several types of sandwich structures 

according to the geometry and shape of the core: honeycomb, 

solid, foam, corrugated, truss, web cores, and so on. The 

most important feature of the core is the relative density 

(ratio between the density of the cellular material and that of 

the material from which the cells walls are made) that can 

generally vary from 0.001 to 0.4, see [GA1]. Almost any 

material can be used to build a cellular solid: polymers, 

metals, ceramics, composites and so on. Sandwich panels, in 

aircraft applications, are composed by glass or carbon-fibre 

composite skins separated by aluminium or resin 

honeycombs, or by polymer foams. In particular, the 

honeycomb cell size can be chosen to provide cores with 

different stiffness and density properties. The result is a panel 

with very high bending stiffness-to-weight and strength-to-

weight ratios. A review on sandwich structures and their 

applications can be found in [GA1, V3, V5]. 

The optimal design of sandwich structures is much more 

cumbersome than that of a classical monolithic structure. The 

difficulties increase when the sandwich structure is made of 

composite skins and a honeycomb core. In this case, we have 

to face, into the same design process, both the difficulty of 

designing a laminated plate (concerning the skins) and the 

difficulty of designing a complex 3D cellular continuum such 

as the honeycomb core. Therefore, the engineers always use 

some simplifying assumptions or rules to obtain, in an easier 

and faster way, a solution. For example, in [A1, HA1] the 

optimal design of a sandwich plate is addressed determining 

exclusively the optimum thickness of both the core and the 

skins, keeping constant the rest of geometric and material 

parameters describing their behaviour. 

The problem of designing a sandwich panel can be 

formulated as an optimisation problem. However, unlike 

what is usually done in literature, our objective is twofold: on 

one hand, we want to formulate and solve such a problem on 

different scales and on the other hand, we want to include 

within the design process all the possible parameters defining 

the structure (at each scale) as optimisation variables. 

Therefore, in the framework of the design of a sandwich 
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panel with honeycomb core and composite skins, we will 

consider, as optimisation variables, both their geometric and 

material constitutive parameters at each scale. 

To this purpose, we propose a very general design strategy that 

consists in a numerical optimisation procedure that we set free 

from any simplifying hypothesis to obtain a true optimal 

configuration of the system. The design process that we 

propose is not submitted to restrictions: any parameter 

characterising our structure is an optimisation variable 

(thickness of the core, number of plies of skins, plies 

orientations, geometry of the unit cell).  

In order to deal with the design problem of the sandwich plate 

at both meso and macro scales, we used a two-level 

optimisation strategy. At the first level we determine the 

optimum geometry of the unit cell (core meso-scale) together 

with the material and geometric parameters of the laminated 

skins (at this level the laminate representing each skin is 

modelled as an equivalent homogeneous anisotropic plate 

whose behaviour at the macro-scale is described in terms of the 

laminate polar parameters, see [V4]). At the second level of the 

strategy, we determine the optimal skins lay-up (the skin meso-

scale) that satisfies the optimal combination of material and 

geometrical parameters issued from the first level of the 

strategy. The whole strategy is based on the use of the polar 

formalism [V1, V2, V4] and on the Genetic Algorithm (GA) 

BIANCA [M1, MV1, MV2] and it can be easily generalised to 

other problems. 

The paper is organised as follows: the mechanical problem 

considered in the study as well as the two-level strategy are 

introduced in Section 2. The mathematical formulation of the 

first-level problem is detailed in Section 3 and the problem of 

determining a suitable laminate is formulated in Section 4. A 

concise description of the Finite Element (FE) model of the 

sandwich structure at both meso and macro scales is given in 

Section 5, while in Section 6 we show some numerical results 

to prove the effectiveness of the optimisation strategy. Finally, 

Section 7 ends the paper with some concluding remarks and 

perspectives. 

2- Optimum design of sandwich panels with 
honeycomb core 

 2.1 – Problem description 

The optimisation procedure presented in this work is applied to 

a sandwich plate composed by two laminated skins and a 

honeycomb core with hexagonal cells, see Fig. 1. 

 
 

 

The skins are made of carbon-epoxy unidirectional 

orthotropic plies, while the honeycomb core is obtained from 

aluminium alloy foils whose material properties are listed in 

Table 1. 

Concerning the honeycomb core, the basic classical 

assumptions used to evaluate its elastic response and, hence, 

to determine its effective material properties (at the macro-

scale) are: 

 linear, elastic behaviour for the material of the cell 

walls; 

 perfect bonding for the wall-to-wall contact; 

 buckling of the cell walls disregarded. 

Concerning the mechanical behaviour (at the macro-scale) of 

the two laminated skins they are modelled as quasi-

homogeneous, fully orthotropic laminates, see Section 3. 

Material properties of the aluminium 

E [MPa]    [Kg/mm
3
] 

70 000  0.33 2.7 x 10
-6

 
 

Material properties of the carbon-epoxy 

1E [MPa] 2E [MPa] 3E [MPa] 

181 000 10 300 10 300 

12G [MPa] 23G [MPa] 13G [MPa] 

7 170 3 843 7 170 

12  23  13  

0.28 0.34 0.28 

s [Kg/mm
3
] 1.58 x 10

-6
  

Table 1. Material properties of the aluminium foils and of the 

carbon-epoxy plies. 

In addition, no simplifying hypotheses are made on the 

geometric and mechanical parameters of both the skins and 

the core, i.e. any parameter characterising our structure is an 

optimisation variable: geometry of the unit cell as well as 

number and orientation of the plies for the skins. Only 

avoiding the use of a priori assumptions one can hope to 

obtain the true global optimum for a given problem: this is a 

key-point in our approach. 

 2.2 – Description of the two-level strategy 

The goal of our problem is the minimisation of the weight of 

the sandwich plate subject to mechanical constraints on the 

first buckling load, on the positive-definiteness of the 

stiffness tensor of the core and on the admissible moduli for 

the laminated skins together with geometrical constraints on 

the ratio between skins and core thickness. The optimisation 

strategy is articulated into two distinct problems as described 

here below. 

First-level problem. The aim of this phase is the 

determination of the optimal geometry of the unit cell 

together with the material and geometric parameters of the 

 

Figure 1. Honeycomb core and the repetitive unit cell. 



 

 

laminated skins in order to minimise the weight of the entire 

structure. At this level the laminate representing each skin is 

modelled as an equivalent homogeneous anisotropic plate 

whose behaviour at the macro-scale is described in terms of the 

laminate polar parameters, see [V1, M1, MV1], by means of 

the classical stiffness tensors A, B and D. It is worth noting 

that, concerning the model of the core, the first level of the 

strategy involves two different scales: 

- the meso-scale wherein the core is modelled via the 

single unit cell characterised by its geometric 

variables; 

- the macro-scale where the core is modelled as an 

homogeneous orthotropic solid whose mechanical 

response is described through the full set of elastic 

moduli that depend on the geometric parameters of 

the unit cell. 

Therefore, the link between these two scales is represented by 

the homogenisation phase of the honeycomb core that leads us 

to represent the core, at the macro-scale level, as a 

homogeneous continuum characterised by its equivalent 

material properties, namely ,G,E,E,E c
12

c
3

c
2

c
1

c
23

c
13

c
12

c
23

c
13 ,,,G,G  . 

This last aspect has led us to search an accurate method to 

determine the material properties of the orthotropic core that 

will be assigned to the equivalent solid at the macro-scale. 

Second-level problem. At the second level of the strategy, we 

have to determine the optimal skins lay-up (the skin meso-

scale) that satisfies the optimal combination of their material 

and geometrical parameters issued from the first level of the 

strategy. The goal of this phase is, hence, to find at least one 

stacking sequence, for each skin, which has to be quasi-

homogeneous, fully orthotropic and has to meet the optimal 

polar parameters issued from the first step. At this level of the 

strategy, the design variables are the layers orientations. 

3- Formulation of the first level problem 

 3.1 – Optimisation variables 

In this phase, we have to determine the optimal values of the 

following parameters: 

- the thickness of both top and bottom skins, th and 

bh respectively; 

- the mechanical properties of each skin, namely the 

anisotropic polar parameters of the plate (  
t

*A
K0R , 

 
t

*A
1R  and  t*A

1  for the top skin and  
b

*A
K0R ,  b*A

1R  

and  
b

*A
1  for the bottom skin); 

- the thickness of the core ch ; 

- the geometrical properties of the unit cell of the 

honeycomb core ( 1l , 2l , ct  and  ), see Fig. 2; 

We also remark that at this level of the optimisation procedure, 

the thickness th  and bh  of the laminated skins are considered 

as discrete optimisation variables, the discretisation step being 

equal to the thickness of the elementary ply employed for the 

 

fabrication of the laminate, i.e. 125.0hh bt   mm. This 

assumption responds to a technological constraint and, in 

addition, the optimal value of these parameters will give us 

the optimal number of layers n to be used during the second-

level problem. 

Concerning the mechanical variables, we use the polar 

formalism, which gives a representation of any planar tensor 

by means of a complete set of tensor invariants. A great 

advantage in the design of anisotropic structures is that the 

polar parameters are directly linked to the different 

symmetries of the tensor, see [V1, V2, V4]. Using the polar 

formalism, the representation of the reduced stiffness tensor 

Q of the orthotropic lamina is: 
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where 0T , 1T , 0R , 1R  and K are the polar tensor 

invariants. 0T  and 1T  represent the isotropic moduli, 0R and 

1R  are the anisotropic ones, K  is the shape orthotropy 

parameter (that can get the values 0 or 1), whilst 1  is the 

polar angle that gives the othotropy orientation with respect 

to the global frame {0; x,y,z}. 

 

The constitutive law of a laminate in the framework of the 

Classical Laminate Plate Theory (CLPT) is: 

 



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χ

ε

DB

BA

M

N
    (2) 

where N and M are the tensors representing the membrane 

forces and the bending moments , respectively. ε  and χ  are 

the second-order tensors of in-plane strains and curvature of 

the laminate middle plane, whilst A, D and B are the fourth-

order  tensors of membrane, bending and coupling stiffness, 

respectively. 

In addition, even the laminate stiffness tensors can be 

expressed through the polar formalism, see [V1]. Here we 

want to highlight that, for a laminate with identical plies, 

thanks to quasi-homogeneity assumption and to the polar 

formalism, we are able to reduce the number of polar 

 
Figure 2. Geometrical parameters of the unit cell. 



 

 

parameters describing the mechanical response of the laminate, 

see [MV1]. In fact, they reduce from 18 to only three for each 

skin: the anisotropic polar moduli, i.e. *A
K0R and *A

1R , and the 

polar angle *A
1 . Moreover, in the formulation of the 

optimisation problem for the first level of the strategy, we have 

also to consider the geometric and feasibility constraints on the 

polar parameters ensuring, in this way, that the polar 

parameters issued from the optimisation correspond to a 

feasible laminate that will be designed during the second step 

of the strategy. For more details about these aspects, the reader 

is addressed to [V2].  

3.2 – Mathematical statement of the 
optimisation problem 

As previously said, the aim of the first level optimisation is the 

weight minimisation of the sandwich panel satisfying, 

simultaneously, constraints of different nature.  

The design variables of the problem can be grouped into the 

following vector: 

 

     
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The optimisation problem can now be formulated as follows: 
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where W is the weight of the sandwich plate, while  is the 

first buckling load. ref  is the buckling load determined on a 

reference structure having the same in-plane dimensions and 

boundary conditions than those of the sandwich plate that 

will be optimised, while   is the maximum admissible 

aspect-ratio between the thickness of the core and each skin. 

Constraints 4 and 5 are geometrical and feasibility 

constraints imposed on the polar parameters of top and 

bottom skins. Finally, constraints from 6 to 15 are imposed in 

order to ensure the positive definiteness of the stiffness 

tensor of the core. 

 

3.3 – Numerical procedure 
 
Problem (4) is a non-linear, non-convex problem in terms of 

both geometrical and mechanical variables. The total number 

of design variables is 13, see Eq. (3), while the total number 

of optimisation constraints is 15. 

 

For the resolution of problem (4) we used a numerical 

strategy, that makes use of  the GA BIANCA [M1] coupled 

with a meso-scale FE model for the numerical 

homogenisation of the honeycomb core and a macro-scale 

FE model for the buckling analysis of the whole panel, see 

Fig 3.  

 
As shown in Fig. 3, for each individual at each generation, 

we perform a numerical simulation for the evaluation of the 

effective material properties of the core and a subsequent 

numerical simulation for the evaluation of the first buckling 

load of the sandwich structure along with its weight. The 

meso-scale FE model uses the geometrical parameters of the 

unit cell, given by the GA BIANCA, in order to homogenise 

the honeycomb core and to determine its effective material 

properties. Afterwards, the macro-scale FE model uses the 

geometrical and mechanical design variables of the skins 

given by the GA BIANCA along with the effective material 

properties of the core to evaluate the first buckling load of 

the structure and its weight. Therefore, for these purposes the 

 
Figure 3. Numerical procedure scheme for the first-level 

problem. 

 



 

 

genetic algorithm BIANCA has been interfaced with the 

commercial FE code ANSYS
®
. 

The GA BIANCA elaborates the results of the two FE analyses 

in order to execute the genetic operations. These operations are 

repeated until the GA BIANCA meets the user-defined 

convergence criterion. 

 

The generic individual of the GA BIANCA represents a 

solution. The genotype of the generic individual, for the 

optimisation problem of the first level of the strategy, is 

characterised by only one chromosome composed of 13 genes 

representing, each one, a component of the vector of the design 

variables, see Eq. (3). 

4- Formulation of the second level problem 

 

The second-level problem concerns the lay-up design of top 

and bottom skins. Such a problem consists in determining a 

laminate stack satisfying the optimum values of both geometric 

and polar parameters issued from the first level of the strategy. 

The problem of finding a laminate stacking sequence having a 

given elastic behaviour is rather cumbersome and difficult 

because the laminate properties depend upon a combination of 

powers of circular functions of the layers orientations, see 

[MV2]. 

In the framework of the polar formalism, such a problem can 

be stated in the form of an unconstrained minimisation 

problem: 

       




r

1i

2
ii ffImin δδ

δ
    (5) 

where δ  is the vector of the layer orientations, i.e. the design 

variables of this phase, while  δ2
if  are quadratic functions in 

the space of polar parameters, each one representing a 

requirement to be satisfied, such as orthotropy, uncoupling and 

so on. 

It is worth noting that the function   δifI  of Eq. (5) is convex 

in the space of the laminate polar parameters, though it is 

highly non-convex in the space of the plies orientations (the 

true design variables) whose minima are known a priori, i.e. 

they are zeroes of this function. For more details about the 

nature of the second-level problem, see [C1, MV2]. 

 

We used the GA BIANCA to find a solution also for the 

second-level problem. In this case, each individual has a 

genotype composed of n chromosomes, one for each ply, 

characterised by a single gene coding the layer orientation. 

5- Finite element models 

The FE models used at the first-level of the strategy are built 

using the FE commercial code ANSYS
®
. The need to analyse, 

within the same generation, different geometrical 

configurations (plates with different geometrical and material 

properties), each one corresponding to an individual, requires 

the creation of an ad-hoc input file for the FE code that has to 

be interfaced with BIANCA. The FE model must be conceived 

to take into account a variable geometry, material and mesh. 

Indeed, for each individual at the current generation the FE 

code has to be able to vary in the correct way the number of 

elements wherein the structure is discretised, thus a correct 

parameterisation of the model has to be achieved. 

5.1 – FE model of the unit cell 
 

In order to determine the effective properties of the core, a 

homogenisation technique reveals to be necessary. In this 

way, the periodic honeycomb structure can be replaced by an 

equivalent orthotropic homogeneous solid whose material 

properties depend on the geometric parameters of the 

repetitive unit of the honeycomb. In particular, these 

properties are determined using the strain energy-based 

homogenisation technique of periodic media. This technique 

makes use of the repetitive unit of the periodic structure to 

approximate its effective properties at the macro-scale level. 

The basic feature of the strain energy-based homogenisation 

technique consists in the assumption that the repetitive unit 

of the periodic structure and the corresponding volume of the 

homogeneous solid undergo the same deformation having, 

hence, the same strain energy, see [B1]. In this case, the 

periodic structure is the honeycomb core whose repetitive 

unit cell has three planes of symmetry, thus we decided to 

exploit these symmetries using, in the homogenisation 

process, only an eighth of the repetitive unit cell. As 

illustrated in Fig. 4 the model is built using the 20-node 

ANSYS solid element SOLID186.  

 

 

In Fig. 4, the dark-grey elements represent the aluminium 

foils of the honeycomb core, while the light-grey ones are the 

fictitious elements used to model the “second phase” which 

has the properties of the so-called “elastic air”, see [A2].  

5.2 – FE model of the sandwich panel 

 
At the macro-scale the structure is modelled with a 

combination of shell and solid elements. In particular, the 

laminated skins are modelled using ANSYS SHELL281 

elements with eight nodes and six degrees of freedom 

(DOFs) per node, and their mechanical behaviour is 

described by defining directly the normalised stiffness 

tensors A
*
, B

*
 and D

*
. The equivalent solid representing the 

core is modelled using ANSYS SOLID186 elements with 20 

nodes and 3 DOFs per node having the material properties 

 

Figure 4. FE model of the repetitive unit cell. 



 

 

calculated using the FE model of the unit cell. Concerning the 

Boundary Conditions (BCs) of the FE model at the macro-

scale, they are depicted in Fig. 5 and listed in Table 2. In 

particular, such BCs are applied only on the edges of top and 

bottom skins. The compatibility between the displacement field 

of the skins (modelled with shell elements) and that of the core 

(modelled with solid elements) is obtained by means of 

constraint equations on each node belonging to contiguous 

solid and shell elements, see Fig. 5. In particular, we imposed 

rigid constraints between the nodes of the middle plane of the 

top (bottom) skin and the corresponding ones of the top 

(bottom) surface of the solid core. Through such constraints, 

the displacements of the nodes belonging to the top and bottom 

surfaces of the solid core are equal to those of the bottom and 

top faces of the top and bottom skins, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sides Constraint 

AB, A´B´, CD, C´D´ Ux = 0      

Uz = 0 

BC, B´C´, DA, D´A´ Uy = 0      

Uz = 0 

Table 2. BCs of the FE model of the sandwich panel. 

6- Numerical results 

In order to show the effectiveness of the proposed approach we 

studied several cases. However, for the sake of brevity, here 

we show only the results concerning one of these cases: a 

sandwich panel with different skins and with a core having a 

fixed thickness. In this case the core thickness does not belong 

to the vector of design variables, see Eq. (3), being equal to 

that of the reference structure. The reference structure is a 

square plate of side 1500a   mm characterised by the material 

properties listed in Table 1 and the geometrical properties 

listed in Table 3. 

Concerning the genetic parameters of the GA BIANCA used to 

solve the problem for this particular case, we consider one 

population of 140 individuals evolving along 300 generations 

with crossover and mutation probabilities of 0.85 and 0.017 

respectively. The roulette-wheel operator performs selection, 

the elitism is active whilst the ADP method is used for 

handling constraints, see [MV3]. 

Core 

 [deg] 1l [mm] 2l [mm] ch [mm] ct [mm] 

60 3.666 1.833 80 0.0635 

Skins 

th [mm] bh [mm] 

4 (32 plies) 4 (32 plies) 

Top skin sequence [deg] 

[45/0/45/45/-45/45/-45/0/0/45/-45/45/-45/-45/0/45]s 

Bottom skin sequence [deg] 

[45/0/45/45/-45/45/-45/0/0/45/-45/45/-45/-45/0/45]s 

Weight [Kg] 1
st
 buckling load [N/mm] 

41.02 5691.88 

Table 3. Geometrical properties of the reference structure. 

The optimal values of the geometric as well as mechanical 

design variables issued from the first-level are listed in Table 

4. As it can be easily seen, the optimum configuration has a 

weight of 36.88 Kg (about 10 % less than that of the 

reference structure) with a first buckling load of 5704.33 

N/mm (about 0.2 % greater than the reference one). 

Core 

 [deg] 1l [mm] 2l [mm] ch [mm] ct [mm] 

47 4.90 0.30 80 0.065 

Skins 

th [mm] bh [mm] 

3.5 (28 plies) 3.5 (28 plies) 

 
t

*A
K0R  

[MPa] 

 
t

*A
1R  

[MPa] 

 t*A
1  

[deg] 

 
b

*A
K0R  

[MPa] 

 b*A
1R  

[MPa] 

 
b

*A
1  

[deg] 

19594 356  -45  19324 168 45 

Top skin sequence [deg] 

[-44/46/-44/46/41/-44/-44/46/46/46/-49/-44/51/-44/46 

-49/41/-44/-39/41/46/-44/46/-44/-44/46/-49/46] 

Bottom skin sequence [deg] 

[43/43/-45/-45/-45/49/49/-41/-53/47/-44/43/-45/ 

-45/39/43/-46/40/48/-44/48/48/-41/-50/-45/44/44/-45] 

Weight [Kg] 1
st
 buckling load [N/mm] 

36.88 5704.33 

Table 4. Geometrical and mechanical properties of the optimum 

configuration. 

The optimal laminate stacks, satisfying the values of the 

geometric and polar parameters issued from the first-level 

problem, for both top and bottom skins are also listed in 

Table 4. It is worth noting that these stacking sequences 

represent true general solutions: no hypotheses are imposed 

on the stack in order to meet the elastic requirements, unlike 

what is often done in the literature (for example symmetric 

Solid 
ElementShell

Element

Rigid
Constraint

 
 

Figure 5. FE model at the macro-scale. 



 

 

stacks in order to obtain the elastic uncoupling, balanced stacks 

to obtain the membrane orthotropy, and so on).   

7- Conclusions 

The main aim of the present work is to deal with the problem 

of the optimum design of a sandwich panel composed of two 

laminated skins and a honeycomb core. The design strategy 

that we propose is a numerical optimisation procedure that 

does not make use of any simplifying assumption. The design 

process that we propose is not submitted to restrictions: any 

parameter characterising our structure is an optimisation 

variable (geometry of the unit cell of the honeycomb core, as 

well as the orientations and the number of plies for the skins). 

In order to face the design of the sandwich structure in a very 

general way a two-level multi-scale strategy has been 

considered. The first level of the procedure involves two 

scales:  

 the macro-scale wherein the sandwich panel is 

composed by two homogeneous anisotropic plates 

(the skins) whose behaviour is described in terms of 

the laminate polar parameters along with an 

homogeneous anisotropic core whose mechanical 

response is defined in terms of its effective elastic 

properties; 

 the meso-scale of the honeycomb core where we need 

to model the related representative volume element in 

order to determine the effective material properties of 

the core used at the macro-scale. 

Many types of design variables are included at this first level: 

the geometrical parameters of the honeycomb unit cell (meso-

scale) together with the total thickness and the laminate polar 

parameters of each skin (macro-scale). The second level of the 

procedure concerns the meso-scale of the laminated skins: in 

this phase, we look for the optimal stacking sequences giving 

the optimum value of the thickness and of the laminate polar 

parameters issued from the first step. 

Several features that make it an innovative, effective and 

general method for the design of complex multi-scale 

structures characterise the optimisation strategy presented in 

this work. The example presented in this paper shows that 

when standard rules for the laminate stacks are abandoned and 

when all the parameters characterising the structure, at each 

scale, are included among the design process a significant 

weight saving can be obtained: up to 10 % when compared to 

that of the reference structure with almost the same buckling 

load (0.2 % greater). 

As a concluding remark, it can be noticed that the proposed 

strategy is really effective and robust and can be easily applied 

to other different problems. 
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