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Abstract. Residual stress is one of the most important surface integrity parameter that can 

significantly affect the service performance of a mechanical component, such as: contact fatigue, 

corrosion resistance and part distortion. 

For this reason the mechanical state of both the machined surface and subsurface needs to be 

investigated. Residual stress induced by dry and cryogenic machining of hardened AISI 52100 steel 

was determined by using the X-ray diffraction technique. 

The objective was to evaluate the influence of the tool cutting edge geometry, workpiece 

hardness, cutting speed, microstructural changes and cooling conditions on the distribution of the 

residual stresses in the machined surface layers. 

The results are analysed in function of the thermal and mechanical phenomena generated during 

machining and their consequences on the white layer formation. 

Introduction 

All over the world, machining operations such as turning, milling, drilling and shaping are 

consuming large amounts of money annually. In this context, hard turning is becoming more 

competitive because of its ability to properly merge factors of great interest, such as production 

costs, productivity and especially product quality. On the contrary, several issues related to this 

process require further investigations. Among these the main ones are associated with the high 

temperatures generated at the tool-chip and tool-workpiece interfaces that strongly affect the surface 

integrity and consequently the functional performance and life of a mechanical component. 

Most of the mechanical energy spend in cutting is transformed in heat, which is concentrated in a 

very small zone, resulting in high temperatures, subsequently in high tool wear rate and surface 

integrity degradation of the machined component. 

Surface integrity (roughness, microcracks, microstructural changes, phase transformations, 

residual stresses,…) of a machined component is an important aspect to take into account for the 

performance of the component in service. For this reason the quality of both the machined surface 

and subsurface needs to be carefully investigated. In order to improve surface integrity it is 

necessary to decrease the temperatures. This can be achieved by selecting the appropriated cutting 

tool geometry, cutting parameters and cooling conditions [1, 2]. 

Numerous studies have been carried out to investigate the influence of the cutting parameters on 

the residual stresses [3-5], as well as to study the white layer formation in machining of hardened 

steels [6-8]. However only few studies investigated the effects of lubrication/cooling, in particular 

the minimum quantity of lubricant (MQL), on both the white layer and residual stresses formations 

[8-9]. The main objective of this research is to provide a contribution in this direction, showing the 

the effects of the cutting tool edge geometry, workpiece hardness, cutting speed, microstructural 

changes and cryogenic cooling conditions on the residual stress distribution in the machined surface 

and subsurface induced by orthogonal machining of hardened AISI 52100. 
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Experimental Plan 

Dry and cryogenic orthogonal cutting tests were conducted on hardened 52100 steel disks using 

a MAZAK high speed CNC turning center, equipped with ICEFLY
TM

 cryogenic fluid delivery

system.  These tests were performed using CBN cutting tools (SECO grade: CBN 100) with 

chamfered (ISO TNGN 110308S, chamfer = 20° x 0.1 mm) and honed edge geometries (ISO 

TNGN 110308E, tool edge radius = 0.015 mm), mounted on a CTFNR3225P11 tool holder, 

providing rake and clearance angles of -8° and 8°, respectively. 

Disks were machined varying cutting speed, initial workpiece hardness and cutting tool edge 

geometry, both under dry and cryogenic cooling conditions (Table 1). The uncut chip thickness was 

kept constant and equal to 0.125 mm. In order to reach the mechanical and thermal steady-state 

conditions, the cutting time for each test was 18-20 s. In the machining tests, a very low flank wear 

of 0.03-0.05 mm was observed on the utilized CBN tools, thus the influence of tool-wear on the 

surface integrity can be neglected. 

Cryogenic coolant was applied by a nozzle to the area of interest as shown in Fig.1. 

After machining, samples of 5 mm x 5 mm were sectioned by wire-EDM, then polished and 

etched for 5 s using 5% Nital solution to observe microstructural changes using a light optical 

microscope (1000 X) and a scanning electron microscope (SEM). 

Finally the residual stress state in machined surface and subsurface was analyzed by the X-Ray 

diffraction technique (XRD) using the sin
2
ψ method [10]. The parameters used are reported in [11].

Both axial and circumferential residual were measured. To determine the in-depth residual stress 

profiles, successive layers of material were removed by electro-polishing to avoid the alteration of 

machining-induced residual stress. Further corrections to the residual stress data were made due to 

the volume of material removed. Due to the specific shape of the workpiece a rectangular mask was 

applied on the surface to limit the region for XRD analysis. 

Figure 1.  Experimental set-up: orthogonal cutting with cryogenic delivery nozzle position [12]. 

Table 1. Experimental test conditions 

Chamfer Tool Hone Tool Chamfer Tool 

Test 1/2 3/4 5/6 7 8 9 

Cutting Speed [m/min] 75 150 250 350 250 75 

Hardness [HRC] 56.5/61 56.5/61 56.5/61 56.5 56.5 56.5 

Cooling Condition Dry Dry Dry Dry Dry Cryogenic 

Experimental Results and Discussion 

In this paragraph, a detailed description of the influence of different cutting parameters, 

microstructural changes and cooling conditions on the surface and subsurface residual stresses 

distribution will be presented. To describe the influence of each single cutting parameter on the in-



depth residual stress profile, four different factors were considered (Fig. 2): a: Surface Residual 

Stress; b: Maximum Compressive Residual Stress Below Surface; c: Penetration Depth; d: 

Thickness Affected by Machining Residual Stress. 

Figure 2. Parameters of the in-depth residual stress profile [9]. 

Influence of the Cutting Speed. Figure 3 shows the influence of cutting speed on the residual 

stress profile in dry cooling condition. Taking into account the four parameters above reported 

(Figure 2), it is possible to describe how both axial and circumferential residual stress curve are 

affected. The results for dry cooling condition show that surface residual stress becomes more 

compressive as cutting speed increases, either in the axial direction as well as in the circumferential 

one. Furthermore, the maximum compressive residual stress below surface becomes more 

compressive when cutting speed increases and its location is shifted further from surface. In 

contrast, a slightly decrease of the thickness affected by machining residual stresses is registered 

with the increase of the cutting speed. The same results were observed during cryogenic machining 

[13]. 

These results are related to the structure of the white layer, that becomes harder and thicker when 

cutting speed increases [11]. 

(a)  (b)

Figure 3. Influence of cutting speed on the in-depth residual stresses profiles, determined in the 
axial (a) and circumferential (b) directions (workpiece hardness of 61 HRC, dry machining) [9]. 

Influence of the Tool Geometry. Figure 4 shows the influence of the cutting tool edge geometry 

on the in-depth residual stresses profiles in dry cutting. Concerning to the surface residual stress and 

maximum compressive stress below surface, this figure shows that honed-edge tool geometry 

generates lower axial and circumferential compressive residual stress when compared with those 

profiles generated by chamfered-edge tool. However, no variation in the penetration depth 

parameter is reported for both axial and circumferential. The same trends were observed under 

cryogenic cooling condition [13]. 



(a)  (b)

Figure 4. Influence of tool geometry on the in-depth residual stresses profiles, determined in the 
axial (a) and circumferential (b) directions (workpiece hardness of 56.5 HRC, dry machining) [9]. 

Influence of the Workpiece Hardness. Figure 5 shows the influence of the initial workpiece 

hardness on the in-depth residual stresses profiles in dry cutting. The reported trends show that the 

increase of workpiece hardness results in a shift of whole in-depth axial and circumferential residual 

stresses profiles towards compression.  However, the location of maximum compressive stress 

below surface remains almost constant. The same results were observed during cryogenic 

machining [13]. The reason is once more related to the hard structure present on the machined 

surface caused by phase transformation during machining, which produces more compressive 

residual stresses [14]. Furthermore, when the initial workpiece hardness decreases a slightly 

decrease of the thickness affected by machining residual stress is observed. 

(a)  (b) 

Figure 5. Influence of initial workpiece hardness on the residual stresses profiles, determined in the 
axial (a) and circumferential (b) directions (chamfered-edge geometry, dry machining) [9]. 

Influence of the Microstructural Changes (White and Dark Layers). Figure 6 shows the 

influence of the white and dark layers on the in-depth residual stresses profiles in dry cutting for 

tests 2 and 6. The results show that when machining is conducted at lower cutting speed the 

maximum compressive residual stress for both the axial and circumferential directions is located in 

the white layer region, while at higher cutting speed this maximum is located near the white-dark 

layer interface (circumferential direction) or in the dark layer (axial direction) region. Similar 

results were obtained for specimens having a hardness of 56.5 HRC. The reason for these evidences 

is related to the fact that both white layer thickness and location of the penetration depth increase 

with the increasing of the cutting speed. 



(a)   (b)

Figure 6. Influence of microstructural changes on the in-depth residual stresses profiles, determined 
for a cutting speed of 75 m/min (a) and 250 m/min (b) (workpiece hardness of 61 HRC) [9]. 

Influence of the Cooling Condition (Dry vs. Cryogenic). Figure 7 shows the influence of the 

cryogenic cooling on the in-depth residual stresses profiles, when comparing to dry machining. The 

results show that residual stresses are always compressive in both dry and cryogenic machining, 

although cryogenic cooling produces lower compressive or even tensile stress values when 

compared to dry machining. The reason for the lower compressive residual stresses values can be 

attributed to the lower hardness values observed on the machined surface and the sub-surface due to 

lower generation of white layer (characterized by untempered martensitic structure) [11]. 

Another aspect of great importance is the influence of the cooling conditions on the location of 

the penetration depth parameter, which shifts towards higher depths when dry machining is 

performed. This is once more related to the thickness of white layer that increases when dry 

machining is performed [15]. 

In fact, it is widely demonstrated that the maximum compressive residual stress for both the axial 

and the circumferential directions is strictly related to the white-dark layer transition [9]. So, when 

cryogenic machining is conducted the thickness of the white layer decreases and consequently the 

location of the maximum compressive residual stress value below surface is shifted nearer the 

surface. 

As far as the fatigue life of the machined component is concerned, the compressive stress area, 

which represents the area limited by the compressive part of the residual stress profile and the x-

axis, is of prime importance [16-21]. 

Figure 7 shows that these areas are inferior for cryogenic machining when compared to those 

areas observed for dry machining. This is mainly due to the lower generation of white layer that 

results in lower compressive values for surface residual stress (parameter a), lower maximum 

compressive residual stress below surface (parameter b) and lower thickness of the layer affected by 

compressive residual stresses induced by machining (parameter d). 

(a) (b)

Figure 7. Influence of dry and cryogenic cooling on the in-depth residual stresses profiles, 
determined in the axial (a) and circumferential (b) directions. 



Table 2 summarizes the influence of cutting speed, cutting tool edge geometry, workpiece hardness 

and cooling conditions on the white layer and compressive residual stress area.  

Table 2. Influence of each parameter in the white layer and residual stress. 

CUTTING SPEED ↑ White Layer ↑ Compressive Area ↑ 

WORKPIECE HARDNESS ↑ White Layer ↑ Compressive Area ↑ 

HONED -> CHAMFERED TOOL GEOMETRY White Layer ↑ Compressive Area ↑ 

CRYOGENIC COOLING -> DRY CUTTING White Layer ↑ Compressive Area ↑ 

Conclusions 

In this paper the influence of the cutting speed, cutting tool edge geometry, microstructural 

changes and cooling conditions on the in-depth residual stress profiles induced by both dry and 

cryogenic machining of AISI 52100 was investigated. 

It was found that both axial and circumferential surface and subsurface residual stresses become 

more compressive with increasing the cutting speed, for harder workpiece material and using 

chamfered tools.  

Finally, experimental observations reported in this study suggest that the use of cryogenic 

coolant significantly affects the in-depth residual stresses profiles. In particular, cryogenic cooling 

conditions limit the white layer thickness resulting in a shift of the residual stress profile nearer the 

surface. This leads to a less compressive value of the surface residual stress and maximum 

compressive residual stress below surface with the consequently decrease of the compressive stress 

area. In contrast, dry machining shift of the residual stress profile further the surface, thus would 

contribute to improved fatigue life, although it produces a thicker white layer which is detrimental 

for the product’s performance and relative cost (necessity of secondary removal operation). 
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