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Abstract: Surface integrity (SI) plays a very important role in functional 
performance. It is dependent on a large number of machining parameters. The 
major concern of industry is to know which combination of machining 
parameters provides the best SI of machined components. Traditionally, surface 
roughness is considered to be the principal parameter to assess the SI of a 
machined part. However, residual stresses also become an important parameter 
because they control the lifetime of components (moulds, dies, etc.) and their 
abilities to withstand severe thermal and mechanical cyclic loadings (fatigue) 
during service. Therefore, significant improvements in the quality of the 
mould/die can be achieved with the control of residual stresses and surface 
roughness, both induced by machining. This paper examines both residual 
stresses and surface roughness induced by the dry turning of AISI H13 tool 
steel with different hardnesses. SI parameters were evaluated experimentally 
with respect to tool geometry, cutting speed, feed and depth of cut. A modelling 
and optimisation procedure based on artificial neural network (ANN), response 
surface methodology (RSM) and genetic algorithm (GA) approaches was 
developed and applied to identify the optimum combination of cutting 
parameters, leading to the best SI for machined components. 

Keywords: surface integrity; residual stresses; surface roughness; modelling; 
optimisation. 
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1 Introduction 

The aeronautical, energy and biomedical industries are increasingly concerned with 
integrating absolute reliability and maximum safety in the functional performance of 
machined components. Surface integrity (SI) plays a very important role in this 
functional performance and depends on a large number of machining parameters. 
Therefore, the major concern of the industry is to know which combination of machining 
parameters provides the best SI for the machined components. 

The machined material we considered was AISI H13 tool steel. It is characterised by 
a good resistance to thermal softening, high hardenability, high strength and high 
toughness. This steel has therefore been widely used to produce many different types of 
hot working dies, such as forging dies, extrusion dies, die-casting dies, etc. The process 
of making dies and moulds is one of the most demanding tasks in manufacturing 
engineering. Complex workpiece geometries, high material hardness and short lead times 
are among the main obstacles. At the same time, quality and reliability requirements are 
becoming more and more important, due to intensified competition and greater quality 
awareness. This quality and reliability is directly related to surface integrity (Jawahir 
et al., 2011). Traditionally, surface roughness is the principal parameter used to assess the 
SI of machined hot working dies made from AISI 13H tool steel. However, residual 
stresses are also becoming an important parameter. Their control during manufacturing 
will increase mould and die lifetime and their ability to withstand severe thermal and 
mechanical loading cycles (fatigue) in service. Significant improvements in the quality of 
the mould or die can therefore be achieved with the control of the residual stresses 
induced during its manufacturing. 

Earlier SI studies in the machining AISI H13 tool steel focused mainly on the 
experimental assessment of the effects of cutting process parameters, tool geometry and 
tool wear on workpiece surface roughness, residual stress and subsurface alteration, such 
as white layer formation. The residual stresses induced by machining AISI H13 tool 
steel have mostly investigated for orthogonal cutting and milling operations, using 
polycrystalline cubic boron nitride (PCBN) and coated or uncoated cemented carbide 
cutting tools. Axinte and Dewes (2002) studied the influence of cutting speed, feed 
and workpiece angle on residual stress induced by the high speed milling of AISI H13 
(47–49 HRc) tool steel, using solid carbide ball nose end mills coated with TiAlN, cooled 
by compressed air. They found compressive surface residual stresses in the direction of 
feed motion, reaching –760 MPa. Using a full factorial experimental design with two 
levels for each factor they concluded that all three cutting parameters significantly affect 
the residual stresses. In this case, increasing all three cutting parameters renders the 
surface residual stresses less compressive. Marques et al. (2006) analysed the residual 
stresses induced by the dry face milling of AISI H13 (50 HRc) tool steel with improved 
machinability, using both coated cemented carbide (with edge hone) and PCBN (with 
chamfer) cutting tools. They found predominantly compressive residual stresses at the 
machined surface and subsurface, these stresses being more compressive when using the 
coated cemented carbide cutting tool. This difference in residual stresses is attributed to 
the different cutting speeds (50 m/min using the coated cemented carbide tool and 
600 m/min using PCBN), tool geometry and tool material. Outeiro et al. (2008) analysed 
the influence of tool geometry (tool cutting edge preparation), cutting speed, uncut chip 
thickness and tool wear on residual stress distribution in the machined surface and 
subsurface of AISI H13 (51 HRc) using PCBN cutting tools under dry orthogonal cutting 



conditions. Although the residual stresses are predominantly compressive, their 
magnitude decreases, becoming in some cases tensile, as the cutting speed, uncut chip 
thickness and tool wear increase. Moreover, chamfered tools produce lower compressive 
or tensile residual stresses when compared with edge-honed tools. 

The investigation of the residual stresses induced in machining AISI H13 tool steel is 
not restricted to experimental studies. Residual stress has been also modelled and 
simulated, mainly using FEM. Chen et al. (2006) have also used FE modelling and 
experimental procedures to investigate the effects of edge preparation and feed on tool 
life and residual stresses induced by the dry orthogonal cutting of AISI H13 (52 HRc) 
tool steel, using chamfered and honed PCBN cutting tools. They showed that, although 
chamfered tools produce slightly higher tensile residual stresses at the machined surface 
when compared with honed tools, the combination of high feed and chamfered tools 
produces greater and deeper compressive residual stresses in the sub-surface. Outeiro 
et al. (2007a) developed a two-dimensional FE model of the orthogonal cutting process of 
AISI H13 (52 HRc) tool steel using PCBN cutting tools. They applied this model to 
investigate the influence of tool geometry, cutting regime parameters and tool wear on 
residual stress distribution in the machined surface and subsurface. They concluded that 
in order to reduce the magnitude of the surface residual stresses, the cutting speed should 
be increased, the uncut chip thickness (or feed) should be reduced and machining with 
honed tools having a large cutting edge radius produces better results than using 
chamfered tools. Moreover, tool wear should be controlled in order to reduce the 
magnitude of the surface residual stresses. 

Regarding the application of artificial neural networks (ANN) to predict the residual 
stresses induced by machining, Ambrogio et al (2007) proposed a predictive hybrid 
model based on ANN and FEM that was applied to determine the in-depth residual stress 
profile for a given set of cutting conditions (cutting tool, work material and cutting 
regime parameters). This hybrid approach was also used to determine the cutting 
conditions based on a given residual stress profile. 

To complete all these studies, the present paper examines the residual stresses and 
surface roughness induced by the dry turning of AISI H13 tool steel using coated 
cemented carbide and PCBN cutting tools. The full residual stress tensor and the surface 
roughness were evaluated experimentally with respect to tool geometry, cutting speed, 
feed and depth of cut. A modelling and optimisation procedure based on ANN and a 
genetic algorithm (GA) was developed and applied to identify the combination of cutting 
parameters which will induce compressive residual stresses in machined components as 
well as low surface roughness, since this combination will improve the fatigue life of 
components (Jawahir et al., 2011; M’Saoubi et al., 2008). In order to simplify the 
analysis, only one surface roughness and one surface residual stress parameter were 
selected for this optimisation procedure. They are the arithmetic average surface 
roughness (Ra) and the maximum principal residual stresses (Smax), respectively. 

2 Experimental and modelling procedures 

2.1 Experimental set-up, work materials and cutting conditions 

Turning tests were performed on a CNC lathe equipped with a specially designed 
experimental set-up for cutting forces and infrared temperature measurements (Outeiro 



et al., 2004). Longitudinal turning tests were performed on round bars of AISI H13 tool 
steel (work material hardnesses equal to 16, 46 and 51 HRc) using coated cemented 
carbide (TiCN/Al2O3/TiN, CVD coating) and PCBN cutting tools (low CBN contents, in 
this case 50% CBN). The mechanical properties of the AISI H13 tool steel and 
the cutting parameters and tool geometry are summarised in Table 1 and Table 2, 
respectively. All the tests were conducted under dry cutting conditions. 
Table 1 Mechanical properties of AISI H13 tool steel at two hardnesses 

46 HRc 51 HRc 

Yield tensile strength (MPa) 1,280 1,520 

Ultimate tensile strength (MPa) 1,420 1,810 

Young’s modulus (GPa) 210 210 

Poisson ratio 0.3 0.3 

Table 2 Tool geometry and cutting parameters 

Coated WC PCBN

Tool cutting edge radius – rn (μm) 40; 50; 67 15 

Tool nose radius – rε (mm) 0.4; 0.8; 1.2 0.8 

Chamfer geometry - 20º × 0.1 mm 

Normal rake angle – γn (º) –6 –8

Normal flank angle – α n (º) 6 8 

Inclination angle cutting edge – λs (º) –6 0 

Tool cutting edge angle – κr (º) 75; 95 90 

Tool minor cutting edge angle – κ‘r (º) 5 30 

Cutting speed – vc (m/min) 80; 100; 130 150; 200 

Feed – f (mm/rev) 0.1; 0.15; 0.2 0.05; 0.1; 0.15 

Depth of cut – ap (mm) 0.2; 1; 1.5 0.25; 0.5 

The residual stress state in the superficial layers of the workpiece was analysed by the 
X-ray diffraction technique (XRD) using the sin2ψ method (Noyan and Cohen, 1987). 
The experiments were carried out on PROTO iXRD equipment, using the parameters 
listed in Table 2. The full residual stress tensor was determined for all the cutting 
conditions, in the directions shown in Figure 1, Y being the direction of primary motion 
(circumferential direction), X the direction of the feed motion (axial direction) and Z the 
direction normal to the machined surface. Based on the full stress tensor, the maximum 
and minimum principal stresses (Smax and Smin) were calculated. 

Three surface roughness parameters (Ra, Rz and Rmax) were measured using a 
Perthometer S4P profilometer. The measurements were performed in the direction of feed 
motion (axial direction) with a trace length of 4.8 mm, using a Gaussian M1 band-pass 
filter with a cut-off length of 0.8 mm. Each surface roughness was an average value taken 
from five measurements. 



 Figure 1 Workpiece motion and directions of residual stress measurements 

2.2 Modelling and optimisation procedure and parameters 

The objective of the modelling and optimisation procedure was to find the optimal 
cutting conditions which induce low tensile or compressive residual stresses in the 
machined components and simultaneously low surface roughness. As shown in Figure 2, 
this procedure uses as input data the residual stress and surface roughness values obtained 
experimentally. It then uses the generalisation capability of the ANN to find the residual 
stress and surface roughness for a wide range of cutting conditions, and thus the residual 
stress and surface roughness function. This is the multiple-objective function which is 
used in the GA. The optimisation procedure was implemented in a computer program, 
developed using MATLAB. 

Figure 2 Modelling and optimisation procedure (see online version for colours) 



2.2.1 Artificial neural network 

As shown in Figure 3(a), three layers compose the ANN: input, hidden and output. The 
input layer corresponds to the cutting (vc, f, ap) and tool geometry (κr, rε and rn) 
parameters, having six neurons (total number of cutting conditions). An optimisation 
procedure was applied to determine the most advantageous number of neurons in the 
hidden layer, this number being equal to 50. The output layer is composed of two neurons 
corresponding to the maximum principal residual stress (Smax) and the arithmetic surface 
roughness (Ra). Each neuron of the input layer is connected to each neuron of the hidden 
layer through weights and biases. The same process takes place between the each neuron 
of the hidden layer and each neuron of output layer. 

Figure 3 (a) ANN and (b) GA architectures (see online version for colours) 

(a) 

(b) 



Smax was selected due to its higher tensile values when compared to Smin; thus Smax is the 
most critical parameter for part performance. Regarding surface roughness, although the 
three surface roughness parameters (Ra, Rz and Rmax) have different values, they follow 
exactly the same trend with respect to the cutting conditions. This means that the optimal 
cutting conditions to be identified by the optimisation procedure will be independent of a 
particular choice of surface roughness parameter. Thus, the arithmetic surface roughness 
parameter (Ra) will be used in this optimisation procedure. 

The back propagation algorithm, together with Bayesian regularisation, was used in 
training the neural networks. In this way a good generalisation capability is obtained with 
a limited amount of data. Moreover, this approach reduces the possibility of overfitting. 

A non-linear sigmoid activation function is used in the input-hidden layers and a 
linear activation function in the hidden-output layers. The input data are normalised in the 
range of [–1, 1]. The weights and biases of the network are initialised to small random 
values to avoid immediate saturation in the activation functions. Throughout this study, 
the data set is divided into two sets, one for training and the other for validation. These 
two sets consist of six input parameters (vc, f, ap, κr, rε and rn), Smax and Ra. The data for 
the training and validation sets were selected to cover the entire domain of the input data. 

2.2.2 Response surface methodology 

Response surface methodology (RSM) is a collection of mathematical and statistical 
techniques that are useful for the modelling and analysis of problems in which the output 
or response of interest is influenced by several variables and the objective is to find the 
correlation between the response and the variables (Montgomery, 2001). However, RSM 
can be also used to optimise the response. A prior knowledge of the studied process is 
thus necessary to achieve a realistic model. 

RSM was used to obtain the correlations between the six input parameters (vc, f, ap, 
κr, rε and rn) and the predicted Smax and Ra. First, a Box-Behnken design of experiments 
(DoE) was used to generate several combinations of the six input parameters to be 
simulated by the ANN. For each input parameter three levels were selected. Each 
parameter was varied between a minimum and a maximum value, covering the range of 
the experimental input data. For each combination of the six input parameters, the ANN 
calculated the Smax and the Ra. Then the correlations between the cutting parameters and 
the predicted Smax and Ra were derived. 

2.2.3 Genetic algorithm 

The objective of the GA is to find the optimum set of cutting conditions (vc, f, ap, κr, rε 
and rn), inducing compressive residual stress in the machined component as well as low 
surface roughness (minimisation). This search is performed for the range of cutting 
conditions (including tool geometry) presented in Table 1 and under specific machining 
constraints. 

Figure 3(a) shows the architecture of the GA model, which is characterised by: 

1 A fitness function or multi-objective function, which is created by the ANN. 

2 The number of variables of the objective function was 6, corresponding to the total 
number of cutting conditions. 



3 Constraints: the cutting or machining conditions must be in the range of the 
experimental input data (avoidance of extrapolation). 

4 The population at each generation is composed of 100 individuals (population size). 

5 For this population size, the elite children are set to 10, and the crossover fraction is 
0.8. Thus, the numbers of each type of child in the next generation are: 
• ten elite children
• from the remaining 90 individuals, 80% will be the number of crossover

children and 20% will be number of mutation children.

6 The algorithm stops as soon as any one of the following conditions is met (stopping 
criteria): 
• the maximum number of generations is equal to 40
• the tolerance of the objective function becomes less than 1E-20.

3 Results and discussion 

3.1 Experimental results 

Figure 4 shows Smax and Smin at the machined surface for all the samples. While 
Smax is always tensile, reaching values higher than 1,500 MPa, Smin can be tensile or 
compressive. 

Figure 4 Surface residual stresses for all the tested conditions (see online version for colours) 



Figure 5 Surface roughness for all the tested conditions (see online version for colours) 

The PCBN cutting tool generates higher tensile residual stress values when compared to 
those generated by the coated cemented carbide cutting tool. The tendency of the PCBN 
cutting tool to increase the residual stresses was also reported by Marques et al. (2006). 
When comparing with the coated cemented carbide cutting tools, the higher negative 
effective tool rake angle of the PCBN chamfered tools, combined with its lower thermal 
conductivity (44 W/mK for the PCBN and 100 W/mK for the coated cemented carbide) 
(Jawahir and Van Luttervelt, 1993), will conduct more thermal energy to the workpiece 
(Outeiro et al., 2006). As a consequence, higher tensile residual stresses are generated 
when machining with PCBN tools when compared with coated cemented carbide tools. 

Regarding the influence of the work material hardness, the tensile residual stresses 
seem to be lower for the lowest workpiece hardness. As shown in Table 1, the yield 
tensile stress increases with the material’s hardness, so the corresponding residual 
stresses are also expected to increase with hardness. This relationship between work 
material hardness and residual stresses was investigated by Matsumoto et al. (1986). 

As for surface roughness, the influence of the cutting tool is the opposite of that 
concerning residual stresses, i.e., the CBN cutting tool generates a lower surface 
roughness when compared to the coated cemented carbide tool. Regarding the influence 
of work material hardness, surface roughness is practically not affected by this parameter. 

In conclusion, the PCBN cutting tool and the associated cutting parameters seem to 
be a good choice for improving surface finishing, but a poor choice concerning the 
residual stress state in the machined surface. 

Considering these results and taking into account the fact that dry hard machining is 
increasingly used in industry, the following optimisation study will be performed only for 
a work material hardness of 51 HRc, using coated cemented carbide cutting tools. Table 3 
shows the cutting conditions, the corresponding surface residual stresses (Smax and Smin), 
the direction of the maximum principal stress (θ) and the surface roughness values (Ra). 
Since Smax is always tensile and Smin predominantly compressive, Smax is critical for 



component performance in service; thus only this stress will be used in the modelling and 
optimisation procedure. 
Table 3 Parameters used in XRD analysis 

Young modulus (GPa) 210 
Poisson ratio 0.29 
Radiation Cr-Kα 

Bragg angle 2θ (°) 156,33 (hkl) = (211) 

Number of  ψ angles 13 

ψ tilt (°) 5 

3.2 Predicted results 

After training and verification, the ANN was applied to simulate the influence of cutting 
parameters on residual stresses and surface roughness. Using the RSM it was possible to 
analyse the influence of each cutting parameter on the maximum principal residual stress 
and surface roughness. Figure 6 shows the predicted maximum principal stress with 
respect to the cutting parameters. As shown in this figure, the most influential parameters 
for residual stress are the tool cutting edge angle and the feed. For the tested parameters, 
the variation in the maximum residual stress due to feed is 130 MPa and that due to tool 
cutting edge angle is 160 MPa. In this case, high tool cutting edge angles combined with 
low feeds will produce the lowest tensile maximum principal residual stress values. The 
same conclusion was obtained when turning AISI 316L stainless steel (Outeiro et al., 
2007b). As far as surface roughness is concerned, Figure 7 shows that the most influential 
parameters for surface roughness are the tool edge radius, tool nose radius, feed and 
depth of cut. The feed seems to have the same influence on both residual stresses and 
surface roughness. Thus the feed should be reduced in order to decrease both surface 
roughness and tensile surface residual stresses. To determine the optimal cutting 
conditions, the optimisation procedure based on the GA will be applied. 
Figure 6 Influence of cutting conditions on predicted maximum principal residual stress  

(AISI H13 – 51 HRc; coated cemented carbide cutting tool; dry cutting) 



Figure 7 Influence of cutting conditions on predicted surface roughness 

(AISI H13 –51HRc; coated cemented carbide cutting tool; dry cutting)

3.3 Optimal cutting conditions 

In order to determine the optimal cutting conditions (vc, f, ap, κr, rε and rn), the 
optimisation procedure based on the GA was applied. These optimal cutting conditions 
are shown in Table 4, and induced simultaneously low tensile residual stress (Smax) and 
low surface roughness (Ra). 
Table 4 Maximum and minimum principal residual stresses (Smax and Smin), direction of 

Smax (θ) and surface roughness (Ra) for AISI H13 tool steel (51 HRc) 

Test 
number 

rn 
(µm) 

rε 
(mm) 

Kr 
(º) 

vc 
(m/min)

f 
(mm/rev) 

ap 
(mm) 

Smax 
(MPa)

Smin 
(MPa) 

θ 
(°) 

Ra 
(μm) 

1 50 0.4 75 100 0.1 1.5 204 –297 32.81 1.13

2 50 0.4 75 100 0.1 1 347 –224 30.4 1.06

3 50 0.4 75 80 0.1 1 447 –125 34.78 0.98

4 50 0.4 75 130 0.1 1 510 –152 25.71 0.87

5 50 0.4 75 100 0.15 1 487 –156 21.43 1.03

6 50 0.4 75 100 0.2 1 353 –297 34.8 1.3

7 50 0.4 75 100 0.1 0.2 170 –415 38.37 0.83

8 50 0.4 75 80 0.1 0.2 369 –214 39.3 0.74

9 50 0.4 75 130 0.1 0.2 290 –313 32.42 0.64

10 50 0.4 75 100 0.15 0.2 389 –47 33.53 0.75 

11 50 0.4 75 100 0.2 0.2 508 69 31.95 1.25 

12 50 0.4 75 100 0.1 0.2 534 –115 33.3 0.67 

13 40 0.8 75 100 0.1 1.5 171 –181 28.06 1.91 

14 50 0.4 95 100 0.1 1.5 117 –521 34.67 1.01 



Table 4 Maximum and minimum principal residual stresses (Smax and Smin), direction of  
Smax (θ) and surface roughness (Ra) for AISI H13 tool steel (51 HRc) (continued) 

Test 
number 

rn 
(µm) 

rε 
(mm) 

Kr 
(º) 

vc 
(m/min)

f 
(mm/rev) 

ap 
(mm) 

Smax 
(MPa)

Smin 
(MPa) 

θ 
(°) 

Ra 
(μm) 

15 40 0.8 95 100 0.1 1.5 168 –267 36.68 0.98 

16 67 1.2 95 100 0.1 1.5 323 –29 22.25 3.99 
17 40 0.8 75 100 0.1 1 461 –62 30.76 1.68 

18 50 0.4 95 100 0.1 1 242 –314 31.26 1.36 

19 40 0.8 95 100 0.1 1 193 –243 30.12 2.05 

20 67 1.2 95 100 0.1 1 44 –494 25.14 0.47 

21 50 0.4 95 100 0.1 0.2 148 –424 33.09 0.89 

Table 5 Optimal combination of cutting conditions 

Cutting tool Work 
material rn (μm) rε (μm) κr (o) 

vc (m/min) f (mm/rev) ap (mm) 

AISI H13 
(51 HRc) 

60 0.4 95 118 0.1 0.4 

4 Conclusions 

This work analyses the residual stresses and surface roughness generated by the 
longitudinal turning of AISI H13 (51 HRc) tool steel, using coated cemented carbide and 
PCBN cutting tools. The cutting speed was varied from 80 to 200 m/min, the feed from 
0.05 to 0.2 mm/rev and the depth of cut from 0.2 to 1.5 mm. The full residual stress 
tensor was measured for the machined surface and the minimum and maximum principal 
residual stresses were calculated. The minimum principal residual stress is a compressive 
stress reaching about –700 MPa, while the maximum principal residual stress is tensile, 
reaching about 1,550 MPa, and thus critical for the component’s performance in service. 
The surface roughness varied between 0.4 and 4 μm. When compared to the coated 
cemented carbide cutting tool, the PCBN generates higher values for tensile residual 
stress but lower values for surface roughness. The main reasons for these higher tensile 
residual stresses are probably the higher negative effective tool rake angle and the lower 
thermal conductivity of the CBN material. 

A modelling and optimisation procedure based on ANN and GA was developed and 
applied to predict both residual stresses and surface roughness. The objective was to 
identify the optimum combination of cutting parameters. The ANN was trained and used 
to simulate both residual stresses and surface roughness for different combinations of 
machining parameters. Next, an RSM was applied to evaluate the influence of each 
cutting parameter on the residual stresses and surface roughness. In order to decrease the 
magnitude of the tensile residual stresses and surface roughness, both feed and depth of 
cut must be reduced, while the cutting edge angle must be increased. Finally, the optimal 
cutting conditions inducing low tensile residual stresses and low surface roughness were 
identified using the GA. 
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